1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV, 60 FUNCTION_INST_GEP_ABBREV, 61 }; 62 63 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 64 switch (Opcode) { 65 default: llvm_unreachable("Unknown cast instruction!"); 66 case Instruction::Trunc : return bitc::CAST_TRUNC; 67 case Instruction::ZExt : return bitc::CAST_ZEXT; 68 case Instruction::SExt : return bitc::CAST_SEXT; 69 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 70 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 71 case Instruction::UIToFP : return bitc::CAST_UITOFP; 72 case Instruction::SIToFP : return bitc::CAST_SITOFP; 73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 74 case Instruction::FPExt : return bitc::CAST_FPEXT; 75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 77 case Instruction::BitCast : return bitc::CAST_BITCAST; 78 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 79 } 80 } 81 82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 83 switch (Opcode) { 84 default: llvm_unreachable("Unknown binary instruction!"); 85 case Instruction::Add: 86 case Instruction::FAdd: return bitc::BINOP_ADD; 87 case Instruction::Sub: 88 case Instruction::FSub: return bitc::BINOP_SUB; 89 case Instruction::Mul: 90 case Instruction::FMul: return bitc::BINOP_MUL; 91 case Instruction::UDiv: return bitc::BINOP_UDIV; 92 case Instruction::FDiv: 93 case Instruction::SDiv: return bitc::BINOP_SDIV; 94 case Instruction::URem: return bitc::BINOP_UREM; 95 case Instruction::FRem: 96 case Instruction::SRem: return bitc::BINOP_SREM; 97 case Instruction::Shl: return bitc::BINOP_SHL; 98 case Instruction::LShr: return bitc::BINOP_LSHR; 99 case Instruction::AShr: return bitc::BINOP_ASHR; 100 case Instruction::And: return bitc::BINOP_AND; 101 case Instruction::Or: return bitc::BINOP_OR; 102 case Instruction::Xor: return bitc::BINOP_XOR; 103 } 104 } 105 106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 107 switch (Op) { 108 default: llvm_unreachable("Unknown RMW operation!"); 109 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 110 case AtomicRMWInst::Add: return bitc::RMW_ADD; 111 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 112 case AtomicRMWInst::And: return bitc::RMW_AND; 113 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 114 case AtomicRMWInst::Or: return bitc::RMW_OR; 115 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 116 case AtomicRMWInst::Max: return bitc::RMW_MAX; 117 case AtomicRMWInst::Min: return bitc::RMW_MIN; 118 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 119 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 120 } 121 } 122 123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 124 switch (Ordering) { 125 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 126 case Unordered: return bitc::ORDERING_UNORDERED; 127 case Monotonic: return bitc::ORDERING_MONOTONIC; 128 case Acquire: return bitc::ORDERING_ACQUIRE; 129 case Release: return bitc::ORDERING_RELEASE; 130 case AcquireRelease: return bitc::ORDERING_ACQREL; 131 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 132 } 133 llvm_unreachable("Invalid ordering"); 134 } 135 136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 137 switch (SynchScope) { 138 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 139 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 140 } 141 llvm_unreachable("Invalid synch scope"); 142 } 143 144 static void WriteStringRecord(unsigned Code, StringRef Str, 145 unsigned AbbrevToUse, BitstreamWriter &Stream) { 146 SmallVector<unsigned, 64> Vals; 147 148 // Code: [strchar x N] 149 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 150 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 151 AbbrevToUse = 0; 152 Vals.push_back(Str[i]); 153 } 154 155 // Emit the finished record. 156 Stream.EmitRecord(Code, Vals, AbbrevToUse); 157 } 158 159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 160 switch (Kind) { 161 case Attribute::Alignment: 162 return bitc::ATTR_KIND_ALIGNMENT; 163 case Attribute::AlwaysInline: 164 return bitc::ATTR_KIND_ALWAYS_INLINE; 165 case Attribute::ArgMemOnly: 166 return bitc::ATTR_KIND_ARGMEMONLY; 167 case Attribute::Builtin: 168 return bitc::ATTR_KIND_BUILTIN; 169 case Attribute::ByVal: 170 return bitc::ATTR_KIND_BY_VAL; 171 case Attribute::Convergent: 172 return bitc::ATTR_KIND_CONVERGENT; 173 case Attribute::InAlloca: 174 return bitc::ATTR_KIND_IN_ALLOCA; 175 case Attribute::Cold: 176 return bitc::ATTR_KIND_COLD; 177 case Attribute::InlineHint: 178 return bitc::ATTR_KIND_INLINE_HINT; 179 case Attribute::InReg: 180 return bitc::ATTR_KIND_IN_REG; 181 case Attribute::JumpTable: 182 return bitc::ATTR_KIND_JUMP_TABLE; 183 case Attribute::MinSize: 184 return bitc::ATTR_KIND_MIN_SIZE; 185 case Attribute::Naked: 186 return bitc::ATTR_KIND_NAKED; 187 case Attribute::Nest: 188 return bitc::ATTR_KIND_NEST; 189 case Attribute::NoAlias: 190 return bitc::ATTR_KIND_NO_ALIAS; 191 case Attribute::NoBuiltin: 192 return bitc::ATTR_KIND_NO_BUILTIN; 193 case Attribute::NoCapture: 194 return bitc::ATTR_KIND_NO_CAPTURE; 195 case Attribute::NoDuplicate: 196 return bitc::ATTR_KIND_NO_DUPLICATE; 197 case Attribute::NoImplicitFloat: 198 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 199 case Attribute::NoInline: 200 return bitc::ATTR_KIND_NO_INLINE; 201 case Attribute::NonLazyBind: 202 return bitc::ATTR_KIND_NON_LAZY_BIND; 203 case Attribute::NonNull: 204 return bitc::ATTR_KIND_NON_NULL; 205 case Attribute::Dereferenceable: 206 return bitc::ATTR_KIND_DEREFERENCEABLE; 207 case Attribute::DereferenceableOrNull: 208 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 209 case Attribute::NoRedZone: 210 return bitc::ATTR_KIND_NO_RED_ZONE; 211 case Attribute::NoReturn: 212 return bitc::ATTR_KIND_NO_RETURN; 213 case Attribute::NoUnwind: 214 return bitc::ATTR_KIND_NO_UNWIND; 215 case Attribute::OptimizeForSize: 216 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 217 case Attribute::OptimizeNone: 218 return bitc::ATTR_KIND_OPTIMIZE_NONE; 219 case Attribute::ReadNone: 220 return bitc::ATTR_KIND_READ_NONE; 221 case Attribute::ReadOnly: 222 return bitc::ATTR_KIND_READ_ONLY; 223 case Attribute::Returned: 224 return bitc::ATTR_KIND_RETURNED; 225 case Attribute::ReturnsTwice: 226 return bitc::ATTR_KIND_RETURNS_TWICE; 227 case Attribute::SExt: 228 return bitc::ATTR_KIND_S_EXT; 229 case Attribute::StackAlignment: 230 return bitc::ATTR_KIND_STACK_ALIGNMENT; 231 case Attribute::StackProtect: 232 return bitc::ATTR_KIND_STACK_PROTECT; 233 case Attribute::StackProtectReq: 234 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 235 case Attribute::StackProtectStrong: 236 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 237 case Attribute::SafeStack: 238 return bitc::ATTR_KIND_SAFESTACK; 239 case Attribute::StructRet: 240 return bitc::ATTR_KIND_STRUCT_RET; 241 case Attribute::SanitizeAddress: 242 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 243 case Attribute::SanitizeThread: 244 return bitc::ATTR_KIND_SANITIZE_THREAD; 245 case Attribute::SanitizeMemory: 246 return bitc::ATTR_KIND_SANITIZE_MEMORY; 247 case Attribute::UWTable: 248 return bitc::ATTR_KIND_UW_TABLE; 249 case Attribute::ZExt: 250 return bitc::ATTR_KIND_Z_EXT; 251 case Attribute::EndAttrKinds: 252 llvm_unreachable("Can not encode end-attribute kinds marker."); 253 case Attribute::None: 254 llvm_unreachable("Can not encode none-attribute."); 255 } 256 257 llvm_unreachable("Trying to encode unknown attribute"); 258 } 259 260 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 261 BitstreamWriter &Stream) { 262 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 263 if (AttrGrps.empty()) return; 264 265 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 266 267 SmallVector<uint64_t, 64> Record; 268 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 269 AttributeSet AS = AttrGrps[i]; 270 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 271 AttributeSet A = AS.getSlotAttributes(i); 272 273 Record.push_back(VE.getAttributeGroupID(A)); 274 Record.push_back(AS.getSlotIndex(i)); 275 276 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 277 I != E; ++I) { 278 Attribute Attr = *I; 279 if (Attr.isEnumAttribute()) { 280 Record.push_back(0); 281 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 282 } else if (Attr.isIntAttribute()) { 283 Record.push_back(1); 284 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 285 Record.push_back(Attr.getValueAsInt()); 286 } else { 287 StringRef Kind = Attr.getKindAsString(); 288 StringRef Val = Attr.getValueAsString(); 289 290 Record.push_back(Val.empty() ? 3 : 4); 291 Record.append(Kind.begin(), Kind.end()); 292 Record.push_back(0); 293 if (!Val.empty()) { 294 Record.append(Val.begin(), Val.end()); 295 Record.push_back(0); 296 } 297 } 298 } 299 300 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 301 Record.clear(); 302 } 303 } 304 305 Stream.ExitBlock(); 306 } 307 308 static void WriteAttributeTable(const ValueEnumerator &VE, 309 BitstreamWriter &Stream) { 310 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 311 if (Attrs.empty()) return; 312 313 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 314 315 SmallVector<uint64_t, 64> Record; 316 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 317 const AttributeSet &A = Attrs[i]; 318 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 319 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 320 321 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 322 Record.clear(); 323 } 324 325 Stream.ExitBlock(); 326 } 327 328 /// WriteTypeTable - Write out the type table for a module. 329 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 330 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 331 332 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 333 SmallVector<uint64_t, 64> TypeVals; 334 335 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 336 337 // Abbrev for TYPE_CODE_POINTER. 338 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 339 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 342 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_FUNCTION. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_ANON. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 359 360 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 361 362 // Abbrev for TYPE_CODE_STRUCT_NAME. 363 Abbv = new BitCodeAbbrev(); 364 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 367 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_STRUCT_NAMED. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 375 376 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 377 378 // Abbrev for TYPE_CODE_ARRAY. 379 Abbv = new BitCodeAbbrev(); 380 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 383 384 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 385 386 // Emit an entry count so the reader can reserve space. 387 TypeVals.push_back(TypeList.size()); 388 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 389 TypeVals.clear(); 390 391 // Loop over all of the types, emitting each in turn. 392 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 393 Type *T = TypeList[i]; 394 int AbbrevToUse = 0; 395 unsigned Code = 0; 396 397 switch (T->getTypeID()) { 398 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 399 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 400 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 401 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 402 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 403 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 404 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 405 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 406 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 407 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 408 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 409 case Type::IntegerTyID: 410 // INTEGER: [width] 411 Code = bitc::TYPE_CODE_INTEGER; 412 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 413 break; 414 case Type::PointerTyID: { 415 PointerType *PTy = cast<PointerType>(T); 416 // POINTER: [pointee type, address space] 417 Code = bitc::TYPE_CODE_POINTER; 418 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 419 unsigned AddressSpace = PTy->getAddressSpace(); 420 TypeVals.push_back(AddressSpace); 421 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 422 break; 423 } 424 case Type::FunctionTyID: { 425 FunctionType *FT = cast<FunctionType>(T); 426 // FUNCTION: [isvararg, retty, paramty x N] 427 Code = bitc::TYPE_CODE_FUNCTION; 428 TypeVals.push_back(FT->isVarArg()); 429 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 430 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 431 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 432 AbbrevToUse = FunctionAbbrev; 433 break; 434 } 435 case Type::StructTyID: { 436 StructType *ST = cast<StructType>(T); 437 // STRUCT: [ispacked, eltty x N] 438 TypeVals.push_back(ST->isPacked()); 439 // Output all of the element types. 440 for (StructType::element_iterator I = ST->element_begin(), 441 E = ST->element_end(); I != E; ++I) 442 TypeVals.push_back(VE.getTypeID(*I)); 443 444 if (ST->isLiteral()) { 445 Code = bitc::TYPE_CODE_STRUCT_ANON; 446 AbbrevToUse = StructAnonAbbrev; 447 } else { 448 if (ST->isOpaque()) { 449 Code = bitc::TYPE_CODE_OPAQUE; 450 } else { 451 Code = bitc::TYPE_CODE_STRUCT_NAMED; 452 AbbrevToUse = StructNamedAbbrev; 453 } 454 455 // Emit the name if it is present. 456 if (!ST->getName().empty()) 457 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 458 StructNameAbbrev, Stream); 459 } 460 break; 461 } 462 case Type::ArrayTyID: { 463 ArrayType *AT = cast<ArrayType>(T); 464 // ARRAY: [numelts, eltty] 465 Code = bitc::TYPE_CODE_ARRAY; 466 TypeVals.push_back(AT->getNumElements()); 467 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 468 AbbrevToUse = ArrayAbbrev; 469 break; 470 } 471 case Type::VectorTyID: { 472 VectorType *VT = cast<VectorType>(T); 473 // VECTOR [numelts, eltty] 474 Code = bitc::TYPE_CODE_VECTOR; 475 TypeVals.push_back(VT->getNumElements()); 476 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 477 break; 478 } 479 } 480 481 // Emit the finished record. 482 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 483 TypeVals.clear(); 484 } 485 486 Stream.ExitBlock(); 487 } 488 489 static unsigned getEncodedLinkage(const GlobalValue &GV) { 490 switch (GV.getLinkage()) { 491 case GlobalValue::ExternalLinkage: 492 return 0; 493 case GlobalValue::WeakAnyLinkage: 494 return 16; 495 case GlobalValue::AppendingLinkage: 496 return 2; 497 case GlobalValue::InternalLinkage: 498 return 3; 499 case GlobalValue::LinkOnceAnyLinkage: 500 return 18; 501 case GlobalValue::ExternalWeakLinkage: 502 return 7; 503 case GlobalValue::CommonLinkage: 504 return 8; 505 case GlobalValue::PrivateLinkage: 506 return 9; 507 case GlobalValue::WeakODRLinkage: 508 return 17; 509 case GlobalValue::LinkOnceODRLinkage: 510 return 19; 511 case GlobalValue::AvailableExternallyLinkage: 512 return 12; 513 } 514 llvm_unreachable("Invalid linkage"); 515 } 516 517 static unsigned getEncodedVisibility(const GlobalValue &GV) { 518 switch (GV.getVisibility()) { 519 case GlobalValue::DefaultVisibility: return 0; 520 case GlobalValue::HiddenVisibility: return 1; 521 case GlobalValue::ProtectedVisibility: return 2; 522 } 523 llvm_unreachable("Invalid visibility"); 524 } 525 526 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 527 switch (GV.getDLLStorageClass()) { 528 case GlobalValue::DefaultStorageClass: return 0; 529 case GlobalValue::DLLImportStorageClass: return 1; 530 case GlobalValue::DLLExportStorageClass: return 2; 531 } 532 llvm_unreachable("Invalid DLL storage class"); 533 } 534 535 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 536 switch (GV.getThreadLocalMode()) { 537 case GlobalVariable::NotThreadLocal: return 0; 538 case GlobalVariable::GeneralDynamicTLSModel: return 1; 539 case GlobalVariable::LocalDynamicTLSModel: return 2; 540 case GlobalVariable::InitialExecTLSModel: return 3; 541 case GlobalVariable::LocalExecTLSModel: return 4; 542 } 543 llvm_unreachable("Invalid TLS model"); 544 } 545 546 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 547 switch (C.getSelectionKind()) { 548 case Comdat::Any: 549 return bitc::COMDAT_SELECTION_KIND_ANY; 550 case Comdat::ExactMatch: 551 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 552 case Comdat::Largest: 553 return bitc::COMDAT_SELECTION_KIND_LARGEST; 554 case Comdat::NoDuplicates: 555 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 556 case Comdat::SameSize: 557 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 558 } 559 llvm_unreachable("Invalid selection kind"); 560 } 561 562 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 563 SmallVector<uint16_t, 64> Vals; 564 for (const Comdat *C : VE.getComdats()) { 565 // COMDAT: [selection_kind, name] 566 Vals.push_back(getEncodedComdatSelectionKind(*C)); 567 size_t Size = C->getName().size(); 568 assert(isUInt<16>(Size)); 569 Vals.push_back(Size); 570 for (char Chr : C->getName()) 571 Vals.push_back((unsigned char)Chr); 572 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 573 Vals.clear(); 574 } 575 } 576 577 // Emit top-level description of module, including target triple, inline asm, 578 // descriptors for global variables, and function prototype info. 579 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 580 BitstreamWriter &Stream) { 581 // Emit various pieces of data attached to a module. 582 if (!M->getTargetTriple().empty()) 583 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 584 0/*TODO*/, Stream); 585 const std::string &DL = M->getDataLayoutStr(); 586 if (!DL.empty()) 587 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 588 if (!M->getModuleInlineAsm().empty()) 589 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 590 0/*TODO*/, Stream); 591 592 // Emit information about sections and GC, computing how many there are. Also 593 // compute the maximum alignment value. 594 std::map<std::string, unsigned> SectionMap; 595 std::map<std::string, unsigned> GCMap; 596 unsigned MaxAlignment = 0; 597 unsigned MaxGlobalType = 0; 598 for (const GlobalValue &GV : M->globals()) { 599 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 600 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 601 if (GV.hasSection()) { 602 // Give section names unique ID's. 603 unsigned &Entry = SectionMap[GV.getSection()]; 604 if (!Entry) { 605 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 606 0/*TODO*/, Stream); 607 Entry = SectionMap.size(); 608 } 609 } 610 } 611 for (const Function &F : *M) { 612 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 613 if (F.hasSection()) { 614 // Give section names unique ID's. 615 unsigned &Entry = SectionMap[F.getSection()]; 616 if (!Entry) { 617 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 618 0/*TODO*/, Stream); 619 Entry = SectionMap.size(); 620 } 621 } 622 if (F.hasGC()) { 623 // Same for GC names. 624 unsigned &Entry = GCMap[F.getGC()]; 625 if (!Entry) { 626 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 627 0/*TODO*/, Stream); 628 Entry = GCMap.size(); 629 } 630 } 631 } 632 633 // Emit abbrev for globals, now that we know # sections and max alignment. 634 unsigned SimpleGVarAbbrev = 0; 635 if (!M->global_empty()) { 636 // Add an abbrev for common globals with no visibility or thread localness. 637 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 638 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 640 Log2_32_Ceil(MaxGlobalType+1))); 641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 642 //| explicitType << 1 643 //| constant 644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 646 if (MaxAlignment == 0) // Alignment. 647 Abbv->Add(BitCodeAbbrevOp(0)); 648 else { 649 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 651 Log2_32_Ceil(MaxEncAlignment+1))); 652 } 653 if (SectionMap.empty()) // Section. 654 Abbv->Add(BitCodeAbbrevOp(0)); 655 else 656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 657 Log2_32_Ceil(SectionMap.size()+1))); 658 // Don't bother emitting vis + thread local. 659 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 660 } 661 662 // Emit the global variable information. 663 SmallVector<unsigned, 64> Vals; 664 for (const GlobalVariable &GV : M->globals()) { 665 unsigned AbbrevToUse = 0; 666 667 // GLOBALVAR: [type, isconst, initid, 668 // linkage, alignment, section, visibility, threadlocal, 669 // unnamed_addr, externally_initialized, dllstorageclass, 670 // comdat] 671 Vals.push_back(VE.getTypeID(GV.getValueType())); 672 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 673 Vals.push_back(GV.isDeclaration() ? 0 : 674 (VE.getValueID(GV.getInitializer()) + 1)); 675 Vals.push_back(getEncodedLinkage(GV)); 676 Vals.push_back(Log2_32(GV.getAlignment())+1); 677 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 678 if (GV.isThreadLocal() || 679 GV.getVisibility() != GlobalValue::DefaultVisibility || 680 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 681 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 682 GV.hasComdat()) { 683 Vals.push_back(getEncodedVisibility(GV)); 684 Vals.push_back(getEncodedThreadLocalMode(GV)); 685 Vals.push_back(GV.hasUnnamedAddr()); 686 Vals.push_back(GV.isExternallyInitialized()); 687 Vals.push_back(getEncodedDLLStorageClass(GV)); 688 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 689 } else { 690 AbbrevToUse = SimpleGVarAbbrev; 691 } 692 693 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 694 Vals.clear(); 695 } 696 697 // Emit the function proto information. 698 for (const Function &F : *M) { 699 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 700 // section, visibility, gc, unnamed_addr, prologuedata, 701 // dllstorageclass, comdat, prefixdata, personalityfn] 702 Vals.push_back(VE.getTypeID(F.getFunctionType())); 703 Vals.push_back(F.getCallingConv()); 704 Vals.push_back(F.isDeclaration()); 705 Vals.push_back(getEncodedLinkage(F)); 706 Vals.push_back(VE.getAttributeID(F.getAttributes())); 707 Vals.push_back(Log2_32(F.getAlignment())+1); 708 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 709 Vals.push_back(getEncodedVisibility(F)); 710 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 711 Vals.push_back(F.hasUnnamedAddr()); 712 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 713 : 0); 714 Vals.push_back(getEncodedDLLStorageClass(F)); 715 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 716 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 717 : 0); 718 Vals.push_back( 719 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 720 721 unsigned AbbrevToUse = 0; 722 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 723 Vals.clear(); 724 } 725 726 // Emit the alias information. 727 for (const GlobalAlias &A : M->aliases()) { 728 // ALIAS: [alias type, aliasee val#, linkage, visibility] 729 Vals.push_back(VE.getTypeID(A.getType())); 730 Vals.push_back(VE.getValueID(A.getAliasee())); 731 Vals.push_back(getEncodedLinkage(A)); 732 Vals.push_back(getEncodedVisibility(A)); 733 Vals.push_back(getEncodedDLLStorageClass(A)); 734 Vals.push_back(getEncodedThreadLocalMode(A)); 735 Vals.push_back(A.hasUnnamedAddr()); 736 unsigned AbbrevToUse = 0; 737 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 738 Vals.clear(); 739 } 740 } 741 742 static uint64_t GetOptimizationFlags(const Value *V) { 743 uint64_t Flags = 0; 744 745 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 746 if (OBO->hasNoSignedWrap()) 747 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 748 if (OBO->hasNoUnsignedWrap()) 749 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 750 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 751 if (PEO->isExact()) 752 Flags |= 1 << bitc::PEO_EXACT; 753 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 754 if (FPMO->hasUnsafeAlgebra()) 755 Flags |= FastMathFlags::UnsafeAlgebra; 756 if (FPMO->hasNoNaNs()) 757 Flags |= FastMathFlags::NoNaNs; 758 if (FPMO->hasNoInfs()) 759 Flags |= FastMathFlags::NoInfs; 760 if (FPMO->hasNoSignedZeros()) 761 Flags |= FastMathFlags::NoSignedZeros; 762 if (FPMO->hasAllowReciprocal()) 763 Flags |= FastMathFlags::AllowReciprocal; 764 } 765 766 return Flags; 767 } 768 769 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 770 const ValueEnumerator &VE, 771 BitstreamWriter &Stream, 772 SmallVectorImpl<uint64_t> &Record) { 773 // Mimic an MDNode with a value as one operand. 774 Value *V = MD->getValue(); 775 Record.push_back(VE.getTypeID(V->getType())); 776 Record.push_back(VE.getValueID(V)); 777 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 778 Record.clear(); 779 } 780 781 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 782 BitstreamWriter &Stream, 783 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 784 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 785 Metadata *MD = N->getOperand(i); 786 assert(!(MD && isa<LocalAsMetadata>(MD)) && 787 "Unexpected function-local metadata"); 788 Record.push_back(VE.getMetadataOrNullID(MD)); 789 } 790 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 791 : bitc::METADATA_NODE, 792 Record, Abbrev); 793 Record.clear(); 794 } 795 796 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE, 797 BitstreamWriter &Stream, 798 SmallVectorImpl<uint64_t> &Record, 799 unsigned Abbrev) { 800 Record.push_back(N->isDistinct()); 801 Record.push_back(N->getLine()); 802 Record.push_back(N->getColumn()); 803 Record.push_back(VE.getMetadataID(N->getScope())); 804 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 805 806 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 807 Record.clear(); 808 } 809 810 static void WriteGenericDINode(const GenericDINode *N, 811 const ValueEnumerator &VE, 812 BitstreamWriter &Stream, 813 SmallVectorImpl<uint64_t> &Record, 814 unsigned Abbrev) { 815 Record.push_back(N->isDistinct()); 816 Record.push_back(N->getTag()); 817 Record.push_back(0); // Per-tag version field; unused for now. 818 819 for (auto &I : N->operands()) 820 Record.push_back(VE.getMetadataOrNullID(I)); 821 822 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 823 Record.clear(); 824 } 825 826 static uint64_t rotateSign(int64_t I) { 827 uint64_t U = I; 828 return I < 0 ? ~(U << 1) : U << 1; 829 } 830 831 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &, 832 BitstreamWriter &Stream, 833 SmallVectorImpl<uint64_t> &Record, 834 unsigned Abbrev) { 835 Record.push_back(N->isDistinct()); 836 Record.push_back(N->getCount()); 837 Record.push_back(rotateSign(N->getLowerBound())); 838 839 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 840 Record.clear(); 841 } 842 843 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 844 BitstreamWriter &Stream, 845 SmallVectorImpl<uint64_t> &Record, 846 unsigned Abbrev) { 847 Record.push_back(N->isDistinct()); 848 Record.push_back(rotateSign(N->getValue())); 849 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 850 851 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 852 Record.clear(); 853 } 854 855 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 856 BitstreamWriter &Stream, 857 SmallVectorImpl<uint64_t> &Record, 858 unsigned Abbrev) { 859 Record.push_back(N->isDistinct()); 860 Record.push_back(N->getTag()); 861 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 862 Record.push_back(N->getSizeInBits()); 863 Record.push_back(N->getAlignInBits()); 864 Record.push_back(N->getEncoding()); 865 866 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 867 Record.clear(); 868 } 869 870 static void WriteDIDerivedType(const DIDerivedType *N, 871 const ValueEnumerator &VE, 872 BitstreamWriter &Stream, 873 SmallVectorImpl<uint64_t> &Record, 874 unsigned Abbrev) { 875 Record.push_back(N->isDistinct()); 876 Record.push_back(N->getTag()); 877 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 878 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 879 Record.push_back(N->getLine()); 880 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 881 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 882 Record.push_back(N->getSizeInBits()); 883 Record.push_back(N->getAlignInBits()); 884 Record.push_back(N->getOffsetInBits()); 885 Record.push_back(N->getFlags()); 886 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 887 888 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 889 Record.clear(); 890 } 891 892 static void WriteDICompositeType(const DICompositeType *N, 893 const ValueEnumerator &VE, 894 BitstreamWriter &Stream, 895 SmallVectorImpl<uint64_t> &Record, 896 unsigned Abbrev) { 897 Record.push_back(N->isDistinct()); 898 Record.push_back(N->getTag()); 899 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 900 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 901 Record.push_back(N->getLine()); 902 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 903 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 904 Record.push_back(N->getSizeInBits()); 905 Record.push_back(N->getAlignInBits()); 906 Record.push_back(N->getOffsetInBits()); 907 Record.push_back(N->getFlags()); 908 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 909 Record.push_back(N->getRuntimeLang()); 910 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 911 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 912 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 913 914 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 915 Record.clear(); 916 } 917 918 static void WriteDISubroutineType(const DISubroutineType *N, 919 const ValueEnumerator &VE, 920 BitstreamWriter &Stream, 921 SmallVectorImpl<uint64_t> &Record, 922 unsigned Abbrev) { 923 Record.push_back(N->isDistinct()); 924 Record.push_back(N->getFlags()); 925 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 926 927 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 928 Record.clear(); 929 } 930 931 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE, 932 BitstreamWriter &Stream, 933 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 934 Record.push_back(N->isDistinct()); 935 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 936 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 937 938 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 939 Record.clear(); 940 } 941 942 static void WriteDICompileUnit(const DICompileUnit *N, 943 const ValueEnumerator &VE, 944 BitstreamWriter &Stream, 945 SmallVectorImpl<uint64_t> &Record, 946 unsigned Abbrev) { 947 assert(N->isDistinct() && "Expected distinct compile units"); 948 Record.push_back(/* IsDistinct */ true); 949 Record.push_back(N->getSourceLanguage()); 950 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 951 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 952 Record.push_back(N->isOptimized()); 953 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 954 Record.push_back(N->getRuntimeVersion()); 955 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 956 Record.push_back(N->getEmissionKind()); 957 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 958 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 959 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 960 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 961 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 962 Record.push_back(N->getDWOId()); 963 964 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 965 Record.clear(); 966 } 967 968 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 969 BitstreamWriter &Stream, 970 SmallVectorImpl<uint64_t> &Record, 971 unsigned Abbrev) { 972 Record.push_back(N->isDistinct()); 973 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 974 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 975 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 976 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 977 Record.push_back(N->getLine()); 978 Record.push_back(VE.getMetadataOrNullID(N->getType())); 979 Record.push_back(N->isLocalToUnit()); 980 Record.push_back(N->isDefinition()); 981 Record.push_back(N->getScopeLine()); 982 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 983 Record.push_back(N->getVirtuality()); 984 Record.push_back(N->getVirtualIndex()); 985 Record.push_back(N->getFlags()); 986 Record.push_back(N->isOptimized()); 987 Record.push_back(VE.getMetadataOrNullID(N->getRawFunction())); 988 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 989 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 990 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 991 992 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 993 Record.clear(); 994 } 995 996 static void WriteDILexicalBlock(const DILexicalBlock *N, 997 const ValueEnumerator &VE, 998 BitstreamWriter &Stream, 999 SmallVectorImpl<uint64_t> &Record, 1000 unsigned Abbrev) { 1001 Record.push_back(N->isDistinct()); 1002 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1003 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1004 Record.push_back(N->getLine()); 1005 Record.push_back(N->getColumn()); 1006 1007 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1008 Record.clear(); 1009 } 1010 1011 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N, 1012 const ValueEnumerator &VE, 1013 BitstreamWriter &Stream, 1014 SmallVectorImpl<uint64_t> &Record, 1015 unsigned Abbrev) { 1016 Record.push_back(N->isDistinct()); 1017 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1018 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1019 Record.push_back(N->getDiscriminator()); 1020 1021 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1022 Record.clear(); 1023 } 1024 1025 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1026 BitstreamWriter &Stream, 1027 SmallVectorImpl<uint64_t> &Record, 1028 unsigned Abbrev) { 1029 Record.push_back(N->isDistinct()); 1030 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1031 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1032 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1033 Record.push_back(N->getLine()); 1034 1035 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1036 Record.clear(); 1037 } 1038 1039 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE, 1040 BitstreamWriter &Stream, 1041 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1042 Record.push_back(N->isDistinct()); 1043 for (auto &I : N->operands()) 1044 Record.push_back(VE.getMetadataOrNullID(I)); 1045 1046 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1047 Record.clear(); 1048 } 1049 1050 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N, 1051 const ValueEnumerator &VE, 1052 BitstreamWriter &Stream, 1053 SmallVectorImpl<uint64_t> &Record, 1054 unsigned Abbrev) { 1055 Record.push_back(N->isDistinct()); 1056 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1057 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1058 1059 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1060 Record.clear(); 1061 } 1062 1063 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N, 1064 const ValueEnumerator &VE, 1065 BitstreamWriter &Stream, 1066 SmallVectorImpl<uint64_t> &Record, 1067 unsigned Abbrev) { 1068 Record.push_back(N->isDistinct()); 1069 Record.push_back(N->getTag()); 1070 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1071 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1072 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1073 1074 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1075 Record.clear(); 1076 } 1077 1078 static void WriteDIGlobalVariable(const DIGlobalVariable *N, 1079 const ValueEnumerator &VE, 1080 BitstreamWriter &Stream, 1081 SmallVectorImpl<uint64_t> &Record, 1082 unsigned Abbrev) { 1083 Record.push_back(N->isDistinct()); 1084 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1085 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1086 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1087 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1088 Record.push_back(N->getLine()); 1089 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1090 Record.push_back(N->isLocalToUnit()); 1091 Record.push_back(N->isDefinition()); 1092 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1093 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1094 1095 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1096 Record.clear(); 1097 } 1098 1099 static void WriteDILocalVariable(const DILocalVariable *N, 1100 const ValueEnumerator &VE, 1101 BitstreamWriter &Stream, 1102 SmallVectorImpl<uint64_t> &Record, 1103 unsigned Abbrev) { 1104 Record.push_back(N->isDistinct()); 1105 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1106 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1107 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1108 Record.push_back(N->getLine()); 1109 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1110 Record.push_back(N->getArg()); 1111 Record.push_back(N->getFlags()); 1112 1113 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1114 Record.clear(); 1115 } 1116 1117 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &, 1118 BitstreamWriter &Stream, 1119 SmallVectorImpl<uint64_t> &Record, 1120 unsigned Abbrev) { 1121 Record.reserve(N->getElements().size() + 1); 1122 1123 Record.push_back(N->isDistinct()); 1124 Record.append(N->elements_begin(), N->elements_end()); 1125 1126 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1127 Record.clear(); 1128 } 1129 1130 static void WriteDIObjCProperty(const DIObjCProperty *N, 1131 const ValueEnumerator &VE, 1132 BitstreamWriter &Stream, 1133 SmallVectorImpl<uint64_t> &Record, 1134 unsigned Abbrev) { 1135 Record.push_back(N->isDistinct()); 1136 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1137 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1138 Record.push_back(N->getLine()); 1139 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1140 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1141 Record.push_back(N->getAttributes()); 1142 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1143 1144 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1145 Record.clear(); 1146 } 1147 1148 static void WriteDIImportedEntity(const DIImportedEntity *N, 1149 const ValueEnumerator &VE, 1150 BitstreamWriter &Stream, 1151 SmallVectorImpl<uint64_t> &Record, 1152 unsigned Abbrev) { 1153 Record.push_back(N->isDistinct()); 1154 Record.push_back(N->getTag()); 1155 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1156 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1157 Record.push_back(N->getLine()); 1158 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1159 1160 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1161 Record.clear(); 1162 } 1163 1164 static void WriteModuleMetadata(const Module *M, 1165 const ValueEnumerator &VE, 1166 BitstreamWriter &Stream) { 1167 const auto &MDs = VE.getMDs(); 1168 if (MDs.empty() && M->named_metadata_empty()) 1169 return; 1170 1171 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1172 1173 unsigned MDSAbbrev = 0; 1174 if (VE.hasMDString()) { 1175 // Abbrev for METADATA_STRING. 1176 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1177 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1180 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1181 } 1182 1183 // Initialize MDNode abbreviations. 1184 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1185 #include "llvm/IR/Metadata.def" 1186 1187 if (VE.hasDILocation()) { 1188 // Abbrev for METADATA_LOCATION. 1189 // 1190 // Assume the column is usually under 128, and always output the inlined-at 1191 // location (it's never more expensive than building an array size 1). 1192 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1193 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1199 DILocationAbbrev = Stream.EmitAbbrev(Abbv); 1200 } 1201 1202 if (VE.hasGenericDINode()) { 1203 // Abbrev for METADATA_GENERIC_DEBUG. 1204 // 1205 // Assume the column is usually under 128, and always output the inlined-at 1206 // location (it's never more expensive than building an array size 1). 1207 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1208 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1215 GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv); 1216 } 1217 1218 unsigned NameAbbrev = 0; 1219 if (!M->named_metadata_empty()) { 1220 // Abbrev for METADATA_NAME. 1221 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1222 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1225 NameAbbrev = Stream.EmitAbbrev(Abbv); 1226 } 1227 1228 SmallVector<uint64_t, 64> Record; 1229 for (const Metadata *MD : MDs) { 1230 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1231 assert(N->isResolved() && "Expected forward references to be resolved"); 1232 1233 switch (N->getMetadataID()) { 1234 default: 1235 llvm_unreachable("Invalid MDNode subclass"); 1236 #define HANDLE_MDNODE_LEAF(CLASS) \ 1237 case Metadata::CLASS##Kind: \ 1238 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1239 continue; 1240 #include "llvm/IR/Metadata.def" 1241 } 1242 } 1243 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1244 WriteValueAsMetadata(MDC, VE, Stream, Record); 1245 continue; 1246 } 1247 const MDString *MDS = cast<MDString>(MD); 1248 // Code: [strchar x N] 1249 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1250 1251 // Emit the finished record. 1252 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1253 Record.clear(); 1254 } 1255 1256 // Write named metadata. 1257 for (const NamedMDNode &NMD : M->named_metadata()) { 1258 // Write name. 1259 StringRef Str = NMD.getName(); 1260 Record.append(Str.bytes_begin(), Str.bytes_end()); 1261 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1262 Record.clear(); 1263 1264 // Write named metadata operands. 1265 for (const MDNode *N : NMD.operands()) 1266 Record.push_back(VE.getMetadataID(N)); 1267 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1268 Record.clear(); 1269 } 1270 1271 Stream.ExitBlock(); 1272 } 1273 1274 static void WriteFunctionLocalMetadata(const Function &F, 1275 const ValueEnumerator &VE, 1276 BitstreamWriter &Stream) { 1277 bool StartedMetadataBlock = false; 1278 SmallVector<uint64_t, 64> Record; 1279 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1280 VE.getFunctionLocalMDs(); 1281 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1282 assert(MDs[i] && "Expected valid function-local metadata"); 1283 if (!StartedMetadataBlock) { 1284 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1285 StartedMetadataBlock = true; 1286 } 1287 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1288 } 1289 1290 if (StartedMetadataBlock) 1291 Stream.ExitBlock(); 1292 } 1293 1294 static void WriteMetadataAttachment(const Function &F, 1295 const ValueEnumerator &VE, 1296 BitstreamWriter &Stream) { 1297 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1298 1299 SmallVector<uint64_t, 64> Record; 1300 1301 // Write metadata attachments 1302 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1303 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1304 F.getAllMetadata(MDs); 1305 if (!MDs.empty()) { 1306 for (const auto &I : MDs) { 1307 Record.push_back(I.first); 1308 Record.push_back(VE.getMetadataID(I.second)); 1309 } 1310 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1311 Record.clear(); 1312 } 1313 1314 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1315 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1316 I != E; ++I) { 1317 MDs.clear(); 1318 I->getAllMetadataOtherThanDebugLoc(MDs); 1319 1320 // If no metadata, ignore instruction. 1321 if (MDs.empty()) continue; 1322 1323 Record.push_back(VE.getInstructionID(I)); 1324 1325 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1326 Record.push_back(MDs[i].first); 1327 Record.push_back(VE.getMetadataID(MDs[i].second)); 1328 } 1329 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1330 Record.clear(); 1331 } 1332 1333 Stream.ExitBlock(); 1334 } 1335 1336 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1337 SmallVector<uint64_t, 64> Record; 1338 1339 // Write metadata kinds 1340 // METADATA_KIND - [n x [id, name]] 1341 SmallVector<StringRef, 8> Names; 1342 M->getMDKindNames(Names); 1343 1344 if (Names.empty()) return; 1345 1346 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1347 1348 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1349 Record.push_back(MDKindID); 1350 StringRef KName = Names[MDKindID]; 1351 Record.append(KName.begin(), KName.end()); 1352 1353 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1354 Record.clear(); 1355 } 1356 1357 Stream.ExitBlock(); 1358 } 1359 1360 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1361 if ((int64_t)V >= 0) 1362 Vals.push_back(V << 1); 1363 else 1364 Vals.push_back((-V << 1) | 1); 1365 } 1366 1367 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1368 const ValueEnumerator &VE, 1369 BitstreamWriter &Stream, bool isGlobal) { 1370 if (FirstVal == LastVal) return; 1371 1372 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1373 1374 unsigned AggregateAbbrev = 0; 1375 unsigned String8Abbrev = 0; 1376 unsigned CString7Abbrev = 0; 1377 unsigned CString6Abbrev = 0; 1378 // If this is a constant pool for the module, emit module-specific abbrevs. 1379 if (isGlobal) { 1380 // Abbrev for CST_CODE_AGGREGATE. 1381 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1382 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1385 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1386 1387 // Abbrev for CST_CODE_STRING. 1388 Abbv = new BitCodeAbbrev(); 1389 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1392 String8Abbrev = Stream.EmitAbbrev(Abbv); 1393 // Abbrev for CST_CODE_CSTRING. 1394 Abbv = new BitCodeAbbrev(); 1395 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1398 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1399 // Abbrev for CST_CODE_CSTRING. 1400 Abbv = new BitCodeAbbrev(); 1401 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1404 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1405 } 1406 1407 SmallVector<uint64_t, 64> Record; 1408 1409 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1410 Type *LastTy = nullptr; 1411 for (unsigned i = FirstVal; i != LastVal; ++i) { 1412 const Value *V = Vals[i].first; 1413 // If we need to switch types, do so now. 1414 if (V->getType() != LastTy) { 1415 LastTy = V->getType(); 1416 Record.push_back(VE.getTypeID(LastTy)); 1417 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1418 CONSTANTS_SETTYPE_ABBREV); 1419 Record.clear(); 1420 } 1421 1422 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1423 Record.push_back(unsigned(IA->hasSideEffects()) | 1424 unsigned(IA->isAlignStack()) << 1 | 1425 unsigned(IA->getDialect()&1) << 2); 1426 1427 // Add the asm string. 1428 const std::string &AsmStr = IA->getAsmString(); 1429 Record.push_back(AsmStr.size()); 1430 Record.append(AsmStr.begin(), AsmStr.end()); 1431 1432 // Add the constraint string. 1433 const std::string &ConstraintStr = IA->getConstraintString(); 1434 Record.push_back(ConstraintStr.size()); 1435 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1436 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1437 Record.clear(); 1438 continue; 1439 } 1440 const Constant *C = cast<Constant>(V); 1441 unsigned Code = -1U; 1442 unsigned AbbrevToUse = 0; 1443 if (C->isNullValue()) { 1444 Code = bitc::CST_CODE_NULL; 1445 } else if (isa<UndefValue>(C)) { 1446 Code = bitc::CST_CODE_UNDEF; 1447 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1448 if (IV->getBitWidth() <= 64) { 1449 uint64_t V = IV->getSExtValue(); 1450 emitSignedInt64(Record, V); 1451 Code = bitc::CST_CODE_INTEGER; 1452 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1453 } else { // Wide integers, > 64 bits in size. 1454 // We have an arbitrary precision integer value to write whose 1455 // bit width is > 64. However, in canonical unsigned integer 1456 // format it is likely that the high bits are going to be zero. 1457 // So, we only write the number of active words. 1458 unsigned NWords = IV->getValue().getActiveWords(); 1459 const uint64_t *RawWords = IV->getValue().getRawData(); 1460 for (unsigned i = 0; i != NWords; ++i) { 1461 emitSignedInt64(Record, RawWords[i]); 1462 } 1463 Code = bitc::CST_CODE_WIDE_INTEGER; 1464 } 1465 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1466 Code = bitc::CST_CODE_FLOAT; 1467 Type *Ty = CFP->getType(); 1468 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1469 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1470 } else if (Ty->isX86_FP80Ty()) { 1471 // api needed to prevent premature destruction 1472 // bits are not in the same order as a normal i80 APInt, compensate. 1473 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1474 const uint64_t *p = api.getRawData(); 1475 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1476 Record.push_back(p[0] & 0xffffLL); 1477 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1478 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1479 const uint64_t *p = api.getRawData(); 1480 Record.push_back(p[0]); 1481 Record.push_back(p[1]); 1482 } else { 1483 assert (0 && "Unknown FP type!"); 1484 } 1485 } else if (isa<ConstantDataSequential>(C) && 1486 cast<ConstantDataSequential>(C)->isString()) { 1487 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1488 // Emit constant strings specially. 1489 unsigned NumElts = Str->getNumElements(); 1490 // If this is a null-terminated string, use the denser CSTRING encoding. 1491 if (Str->isCString()) { 1492 Code = bitc::CST_CODE_CSTRING; 1493 --NumElts; // Don't encode the null, which isn't allowed by char6. 1494 } else { 1495 Code = bitc::CST_CODE_STRING; 1496 AbbrevToUse = String8Abbrev; 1497 } 1498 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1499 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1500 for (unsigned i = 0; i != NumElts; ++i) { 1501 unsigned char V = Str->getElementAsInteger(i); 1502 Record.push_back(V); 1503 isCStr7 &= (V & 128) == 0; 1504 if (isCStrChar6) 1505 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1506 } 1507 1508 if (isCStrChar6) 1509 AbbrevToUse = CString6Abbrev; 1510 else if (isCStr7) 1511 AbbrevToUse = CString7Abbrev; 1512 } else if (const ConstantDataSequential *CDS = 1513 dyn_cast<ConstantDataSequential>(C)) { 1514 Code = bitc::CST_CODE_DATA; 1515 Type *EltTy = CDS->getType()->getElementType(); 1516 if (isa<IntegerType>(EltTy)) { 1517 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1518 Record.push_back(CDS->getElementAsInteger(i)); 1519 } else if (EltTy->isFloatTy()) { 1520 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1521 union { float F; uint32_t I; }; 1522 F = CDS->getElementAsFloat(i); 1523 Record.push_back(I); 1524 } 1525 } else { 1526 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1527 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1528 union { double F; uint64_t I; }; 1529 F = CDS->getElementAsDouble(i); 1530 Record.push_back(I); 1531 } 1532 } 1533 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1534 isa<ConstantVector>(C)) { 1535 Code = bitc::CST_CODE_AGGREGATE; 1536 for (const Value *Op : C->operands()) 1537 Record.push_back(VE.getValueID(Op)); 1538 AbbrevToUse = AggregateAbbrev; 1539 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1540 switch (CE->getOpcode()) { 1541 default: 1542 if (Instruction::isCast(CE->getOpcode())) { 1543 Code = bitc::CST_CODE_CE_CAST; 1544 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1545 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1546 Record.push_back(VE.getValueID(C->getOperand(0))); 1547 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1548 } else { 1549 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1550 Code = bitc::CST_CODE_CE_BINOP; 1551 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1552 Record.push_back(VE.getValueID(C->getOperand(0))); 1553 Record.push_back(VE.getValueID(C->getOperand(1))); 1554 uint64_t Flags = GetOptimizationFlags(CE); 1555 if (Flags != 0) 1556 Record.push_back(Flags); 1557 } 1558 break; 1559 case Instruction::GetElementPtr: { 1560 Code = bitc::CST_CODE_CE_GEP; 1561 const auto *GO = cast<GEPOperator>(C); 1562 if (GO->isInBounds()) 1563 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1564 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1565 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1566 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1567 Record.push_back(VE.getValueID(C->getOperand(i))); 1568 } 1569 break; 1570 } 1571 case Instruction::Select: 1572 Code = bitc::CST_CODE_CE_SELECT; 1573 Record.push_back(VE.getValueID(C->getOperand(0))); 1574 Record.push_back(VE.getValueID(C->getOperand(1))); 1575 Record.push_back(VE.getValueID(C->getOperand(2))); 1576 break; 1577 case Instruction::ExtractElement: 1578 Code = bitc::CST_CODE_CE_EXTRACTELT; 1579 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1580 Record.push_back(VE.getValueID(C->getOperand(0))); 1581 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1582 Record.push_back(VE.getValueID(C->getOperand(1))); 1583 break; 1584 case Instruction::InsertElement: 1585 Code = bitc::CST_CODE_CE_INSERTELT; 1586 Record.push_back(VE.getValueID(C->getOperand(0))); 1587 Record.push_back(VE.getValueID(C->getOperand(1))); 1588 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1589 Record.push_back(VE.getValueID(C->getOperand(2))); 1590 break; 1591 case Instruction::ShuffleVector: 1592 // If the return type and argument types are the same, this is a 1593 // standard shufflevector instruction. If the types are different, 1594 // then the shuffle is widening or truncating the input vectors, and 1595 // the argument type must also be encoded. 1596 if (C->getType() == C->getOperand(0)->getType()) { 1597 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1598 } else { 1599 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1600 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1601 } 1602 Record.push_back(VE.getValueID(C->getOperand(0))); 1603 Record.push_back(VE.getValueID(C->getOperand(1))); 1604 Record.push_back(VE.getValueID(C->getOperand(2))); 1605 break; 1606 case Instruction::ICmp: 1607 case Instruction::FCmp: 1608 Code = bitc::CST_CODE_CE_CMP; 1609 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1610 Record.push_back(VE.getValueID(C->getOperand(0))); 1611 Record.push_back(VE.getValueID(C->getOperand(1))); 1612 Record.push_back(CE->getPredicate()); 1613 break; 1614 } 1615 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1616 Code = bitc::CST_CODE_BLOCKADDRESS; 1617 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1618 Record.push_back(VE.getValueID(BA->getFunction())); 1619 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1620 } else { 1621 #ifndef NDEBUG 1622 C->dump(); 1623 #endif 1624 llvm_unreachable("Unknown constant!"); 1625 } 1626 Stream.EmitRecord(Code, Record, AbbrevToUse); 1627 Record.clear(); 1628 } 1629 1630 Stream.ExitBlock(); 1631 } 1632 1633 static void WriteModuleConstants(const ValueEnumerator &VE, 1634 BitstreamWriter &Stream) { 1635 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1636 1637 // Find the first constant to emit, which is the first non-globalvalue value. 1638 // We know globalvalues have been emitted by WriteModuleInfo. 1639 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1640 if (!isa<GlobalValue>(Vals[i].first)) { 1641 WriteConstants(i, Vals.size(), VE, Stream, true); 1642 return; 1643 } 1644 } 1645 } 1646 1647 /// PushValueAndType - The file has to encode both the value and type id for 1648 /// many values, because we need to know what type to create for forward 1649 /// references. However, most operands are not forward references, so this type 1650 /// field is not needed. 1651 /// 1652 /// This function adds V's value ID to Vals. If the value ID is higher than the 1653 /// instruction ID, then it is a forward reference, and it also includes the 1654 /// type ID. The value ID that is written is encoded relative to the InstID. 1655 static bool PushValueAndType(const Value *V, unsigned InstID, 1656 SmallVectorImpl<unsigned> &Vals, 1657 ValueEnumerator &VE) { 1658 unsigned ValID = VE.getValueID(V); 1659 // Make encoding relative to the InstID. 1660 Vals.push_back(InstID - ValID); 1661 if (ValID >= InstID) { 1662 Vals.push_back(VE.getTypeID(V->getType())); 1663 return true; 1664 } 1665 return false; 1666 } 1667 1668 /// pushValue - Like PushValueAndType, but where the type of the value is 1669 /// omitted (perhaps it was already encoded in an earlier operand). 1670 static void pushValue(const Value *V, unsigned InstID, 1671 SmallVectorImpl<unsigned> &Vals, 1672 ValueEnumerator &VE) { 1673 unsigned ValID = VE.getValueID(V); 1674 Vals.push_back(InstID - ValID); 1675 } 1676 1677 static void pushValueSigned(const Value *V, unsigned InstID, 1678 SmallVectorImpl<uint64_t> &Vals, 1679 ValueEnumerator &VE) { 1680 unsigned ValID = VE.getValueID(V); 1681 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1682 emitSignedInt64(Vals, diff); 1683 } 1684 1685 /// WriteInstruction - Emit an instruction to the specified stream. 1686 static void WriteInstruction(const Instruction &I, unsigned InstID, 1687 ValueEnumerator &VE, BitstreamWriter &Stream, 1688 SmallVectorImpl<unsigned> &Vals) { 1689 unsigned Code = 0; 1690 unsigned AbbrevToUse = 0; 1691 VE.setInstructionID(&I); 1692 switch (I.getOpcode()) { 1693 default: 1694 if (Instruction::isCast(I.getOpcode())) { 1695 Code = bitc::FUNC_CODE_INST_CAST; 1696 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1697 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1698 Vals.push_back(VE.getTypeID(I.getType())); 1699 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1700 } else { 1701 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1702 Code = bitc::FUNC_CODE_INST_BINOP; 1703 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1704 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1705 pushValue(I.getOperand(1), InstID, Vals, VE); 1706 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1707 uint64_t Flags = GetOptimizationFlags(&I); 1708 if (Flags != 0) { 1709 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1710 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1711 Vals.push_back(Flags); 1712 } 1713 } 1714 break; 1715 1716 case Instruction::GetElementPtr: { 1717 Code = bitc::FUNC_CODE_INST_GEP; 1718 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1719 auto &GEPInst = cast<GetElementPtrInst>(I); 1720 Vals.push_back(GEPInst.isInBounds()); 1721 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1722 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1723 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1724 break; 1725 } 1726 case Instruction::ExtractValue: { 1727 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1728 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1729 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1730 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1731 break; 1732 } 1733 case Instruction::InsertValue: { 1734 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1735 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1736 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1737 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1738 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1739 break; 1740 } 1741 case Instruction::Select: 1742 Code = bitc::FUNC_CODE_INST_VSELECT; 1743 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1744 pushValue(I.getOperand(2), InstID, Vals, VE); 1745 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1746 break; 1747 case Instruction::ExtractElement: 1748 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1749 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1750 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1751 break; 1752 case Instruction::InsertElement: 1753 Code = bitc::FUNC_CODE_INST_INSERTELT; 1754 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1755 pushValue(I.getOperand(1), InstID, Vals, VE); 1756 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1757 break; 1758 case Instruction::ShuffleVector: 1759 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1760 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1761 pushValue(I.getOperand(1), InstID, Vals, VE); 1762 pushValue(I.getOperand(2), InstID, Vals, VE); 1763 break; 1764 case Instruction::ICmp: 1765 case Instruction::FCmp: { 1766 // compare returning Int1Ty or vector of Int1Ty 1767 Code = bitc::FUNC_CODE_INST_CMP2; 1768 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1769 pushValue(I.getOperand(1), InstID, Vals, VE); 1770 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1771 uint64_t Flags = GetOptimizationFlags(&I); 1772 if (Flags != 0) 1773 Vals.push_back(Flags); 1774 break; 1775 } 1776 1777 case Instruction::Ret: 1778 { 1779 Code = bitc::FUNC_CODE_INST_RET; 1780 unsigned NumOperands = I.getNumOperands(); 1781 if (NumOperands == 0) 1782 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1783 else if (NumOperands == 1) { 1784 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1785 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1786 } else { 1787 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1788 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1789 } 1790 } 1791 break; 1792 case Instruction::Br: 1793 { 1794 Code = bitc::FUNC_CODE_INST_BR; 1795 const BranchInst &II = cast<BranchInst>(I); 1796 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1797 if (II.isConditional()) { 1798 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1799 pushValue(II.getCondition(), InstID, Vals, VE); 1800 } 1801 } 1802 break; 1803 case Instruction::Switch: 1804 { 1805 Code = bitc::FUNC_CODE_INST_SWITCH; 1806 const SwitchInst &SI = cast<SwitchInst>(I); 1807 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1808 pushValue(SI.getCondition(), InstID, Vals, VE); 1809 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1810 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1811 i != e; ++i) { 1812 Vals.push_back(VE.getValueID(i.getCaseValue())); 1813 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1814 } 1815 } 1816 break; 1817 case Instruction::IndirectBr: 1818 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1819 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1820 // Encode the address operand as relative, but not the basic blocks. 1821 pushValue(I.getOperand(0), InstID, Vals, VE); 1822 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1823 Vals.push_back(VE.getValueID(I.getOperand(i))); 1824 break; 1825 1826 case Instruction::Invoke: { 1827 const InvokeInst *II = cast<InvokeInst>(&I); 1828 const Value *Callee = II->getCalledValue(); 1829 FunctionType *FTy = II->getFunctionType(); 1830 Code = bitc::FUNC_CODE_INST_INVOKE; 1831 1832 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1833 Vals.push_back(II->getCallingConv() | 1 << 13); 1834 Vals.push_back(VE.getValueID(II->getNormalDest())); 1835 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1836 Vals.push_back(VE.getTypeID(FTy)); 1837 PushValueAndType(Callee, InstID, Vals, VE); 1838 1839 // Emit value #'s for the fixed parameters. 1840 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1841 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1842 1843 // Emit type/value pairs for varargs params. 1844 if (FTy->isVarArg()) { 1845 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1846 i != e; ++i) 1847 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1848 } 1849 break; 1850 } 1851 case Instruction::Resume: 1852 Code = bitc::FUNC_CODE_INST_RESUME; 1853 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1854 break; 1855 case Instruction::CleanupRet: { 1856 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 1857 const auto &CRI = cast<CleanupReturnInst>(I); 1858 pushValue(CRI.getCleanupPad(), InstID, Vals, VE); 1859 if (CRI.hasUnwindDest()) 1860 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 1861 break; 1862 } 1863 case Instruction::CatchRet: { 1864 Code = bitc::FUNC_CODE_INST_CATCHRET; 1865 const auto &CRI = cast<CatchReturnInst>(I); 1866 pushValue(CRI.getCatchPad(), InstID, Vals, VE); 1867 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 1868 break; 1869 } 1870 case Instruction::CatchPad: { 1871 Code = bitc::FUNC_CODE_INST_CATCHPAD; 1872 const auto &CPI = cast<CatchPadInst>(I); 1873 Vals.push_back(VE.getValueID(CPI.getNormalDest())); 1874 Vals.push_back(VE.getValueID(CPI.getUnwindDest())); 1875 unsigned NumArgOperands = CPI.getNumArgOperands(); 1876 Vals.push_back(NumArgOperands); 1877 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 1878 PushValueAndType(CPI.getArgOperand(Op), InstID, Vals, VE); 1879 break; 1880 } 1881 case Instruction::TerminatePad: { 1882 Code = bitc::FUNC_CODE_INST_TERMINATEPAD; 1883 const auto &TPI = cast<TerminatePadInst>(I); 1884 Vals.push_back(TPI.hasUnwindDest()); 1885 if (TPI.hasUnwindDest()) 1886 Vals.push_back(VE.getValueID(TPI.getUnwindDest())); 1887 unsigned NumArgOperands = TPI.getNumArgOperands(); 1888 Vals.push_back(NumArgOperands); 1889 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 1890 PushValueAndType(TPI.getArgOperand(Op), InstID, Vals, VE); 1891 break; 1892 } 1893 case Instruction::CleanupPad: { 1894 Code = bitc::FUNC_CODE_INST_CLEANUPPAD; 1895 const auto &CPI = cast<CleanupPadInst>(I); 1896 unsigned NumOperands = CPI.getNumOperands(); 1897 Vals.push_back(NumOperands); 1898 for (unsigned Op = 0; Op != NumOperands; ++Op) 1899 PushValueAndType(CPI.getOperand(Op), InstID, Vals, VE); 1900 break; 1901 } 1902 case Instruction::CatchEndPad: { 1903 Code = bitc::FUNC_CODE_INST_CATCHENDPAD; 1904 const auto &CEPI = cast<CatchEndPadInst>(I); 1905 if (CEPI.hasUnwindDest()) 1906 Vals.push_back(VE.getValueID(CEPI.getUnwindDest())); 1907 break; 1908 } 1909 case Instruction::CleanupEndPad: { 1910 Code = bitc::FUNC_CODE_INST_CLEANUPENDPAD; 1911 const auto &CEPI = cast<CleanupEndPadInst>(I); 1912 pushValue(CEPI.getCleanupPad(), InstID, Vals, VE); 1913 if (CEPI.hasUnwindDest()) 1914 Vals.push_back(VE.getValueID(CEPI.getUnwindDest())); 1915 break; 1916 } 1917 case Instruction::Unreachable: 1918 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1919 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1920 break; 1921 1922 case Instruction::PHI: { 1923 const PHINode &PN = cast<PHINode>(I); 1924 Code = bitc::FUNC_CODE_INST_PHI; 1925 // With the newer instruction encoding, forward references could give 1926 // negative valued IDs. This is most common for PHIs, so we use 1927 // signed VBRs. 1928 SmallVector<uint64_t, 128> Vals64; 1929 Vals64.push_back(VE.getTypeID(PN.getType())); 1930 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1931 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1932 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1933 } 1934 // Emit a Vals64 vector and exit. 1935 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1936 Vals64.clear(); 1937 return; 1938 } 1939 1940 case Instruction::LandingPad: { 1941 const LandingPadInst &LP = cast<LandingPadInst>(I); 1942 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1943 Vals.push_back(VE.getTypeID(LP.getType())); 1944 Vals.push_back(LP.isCleanup()); 1945 Vals.push_back(LP.getNumClauses()); 1946 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1947 if (LP.isCatch(I)) 1948 Vals.push_back(LandingPadInst::Catch); 1949 else 1950 Vals.push_back(LandingPadInst::Filter); 1951 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1952 } 1953 break; 1954 } 1955 1956 case Instruction::Alloca: { 1957 Code = bitc::FUNC_CODE_INST_ALLOCA; 1958 const AllocaInst &AI = cast<AllocaInst>(I); 1959 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 1960 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1961 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1962 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1963 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1964 "not enough bits for maximum alignment"); 1965 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1966 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1967 AlignRecord |= 1 << 6; 1968 // Reserve bit 7 for SwiftError flag. 1969 // AlignRecord |= AI.isSwiftError() << 7; 1970 Vals.push_back(AlignRecord); 1971 break; 1972 } 1973 1974 case Instruction::Load: 1975 if (cast<LoadInst>(I).isAtomic()) { 1976 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1977 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1978 } else { 1979 Code = bitc::FUNC_CODE_INST_LOAD; 1980 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1981 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1982 } 1983 Vals.push_back(VE.getTypeID(I.getType())); 1984 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1985 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1986 if (cast<LoadInst>(I).isAtomic()) { 1987 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1988 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1989 } 1990 break; 1991 case Instruction::Store: 1992 if (cast<StoreInst>(I).isAtomic()) 1993 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1994 else 1995 Code = bitc::FUNC_CODE_INST_STORE; 1996 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1997 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 1998 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1999 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2000 if (cast<StoreInst>(I).isAtomic()) { 2001 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2002 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2003 } 2004 break; 2005 case Instruction::AtomicCmpXchg: 2006 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2007 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2008 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 2009 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 2010 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2011 Vals.push_back(GetEncodedOrdering( 2012 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2013 Vals.push_back(GetEncodedSynchScope( 2014 cast<AtomicCmpXchgInst>(I).getSynchScope())); 2015 Vals.push_back(GetEncodedOrdering( 2016 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2017 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2018 break; 2019 case Instruction::AtomicRMW: 2020 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2021 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2022 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 2023 Vals.push_back(GetEncodedRMWOperation( 2024 cast<AtomicRMWInst>(I).getOperation())); 2025 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2026 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2027 Vals.push_back(GetEncodedSynchScope( 2028 cast<AtomicRMWInst>(I).getSynchScope())); 2029 break; 2030 case Instruction::Fence: 2031 Code = bitc::FUNC_CODE_INST_FENCE; 2032 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2033 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2034 break; 2035 case Instruction::Call: { 2036 const CallInst &CI = cast<CallInst>(I); 2037 FunctionType *FTy = CI.getFunctionType(); 2038 2039 Code = bitc::FUNC_CODE_INST_CALL; 2040 2041 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2042 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 2043 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 2044 Vals.push_back(VE.getTypeID(FTy)); 2045 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 2046 2047 // Emit value #'s for the fixed parameters. 2048 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2049 // Check for labels (can happen with asm labels). 2050 if (FTy->getParamType(i)->isLabelTy()) 2051 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2052 else 2053 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 2054 } 2055 2056 // Emit type/value pairs for varargs params. 2057 if (FTy->isVarArg()) { 2058 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2059 i != e; ++i) 2060 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 2061 } 2062 break; 2063 } 2064 case Instruction::VAArg: 2065 Code = bitc::FUNC_CODE_INST_VAARG; 2066 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2067 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 2068 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2069 break; 2070 } 2071 2072 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2073 Vals.clear(); 2074 } 2075 2076 // Emit names for globals/functions etc. 2077 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 2078 const ValueEnumerator &VE, 2079 BitstreamWriter &Stream) { 2080 if (VST.empty()) return; 2081 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2082 2083 // FIXME: Set up the abbrev, we know how many values there are! 2084 // FIXME: We know if the type names can use 7-bit ascii. 2085 SmallVector<unsigned, 64> NameVals; 2086 2087 for (const ValueName &Name : VST) { 2088 2089 // Figure out the encoding to use for the name. 2090 bool is7Bit = true; 2091 bool isChar6 = true; 2092 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 2093 C != E; ++C) { 2094 if (isChar6) 2095 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2096 if ((unsigned char)*C & 128) { 2097 is7Bit = false; 2098 break; // don't bother scanning the rest. 2099 } 2100 } 2101 2102 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2103 2104 // VST_ENTRY: [valueid, namechar x N] 2105 // VST_BBENTRY: [bbid, namechar x N] 2106 unsigned Code; 2107 if (isa<BasicBlock>(Name.getValue())) { 2108 Code = bitc::VST_CODE_BBENTRY; 2109 if (isChar6) 2110 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2111 } else { 2112 Code = bitc::VST_CODE_ENTRY; 2113 if (isChar6) 2114 AbbrevToUse = VST_ENTRY_6_ABBREV; 2115 else if (is7Bit) 2116 AbbrevToUse = VST_ENTRY_7_ABBREV; 2117 } 2118 2119 NameVals.push_back(VE.getValueID(Name.getValue())); 2120 for (const char *P = Name.getKeyData(), 2121 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 2122 NameVals.push_back((unsigned char)*P); 2123 2124 // Emit the finished record. 2125 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2126 NameVals.clear(); 2127 } 2128 Stream.ExitBlock(); 2129 } 2130 2131 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2132 BitstreamWriter &Stream) { 2133 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2134 unsigned Code; 2135 if (isa<BasicBlock>(Order.V)) 2136 Code = bitc::USELIST_CODE_BB; 2137 else 2138 Code = bitc::USELIST_CODE_DEFAULT; 2139 2140 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2141 Record.push_back(VE.getValueID(Order.V)); 2142 Stream.EmitRecord(Code, Record); 2143 } 2144 2145 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2146 BitstreamWriter &Stream) { 2147 assert(VE.shouldPreserveUseListOrder() && 2148 "Expected to be preserving use-list order"); 2149 2150 auto hasMore = [&]() { 2151 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2152 }; 2153 if (!hasMore()) 2154 // Nothing to do. 2155 return; 2156 2157 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2158 while (hasMore()) { 2159 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2160 VE.UseListOrders.pop_back(); 2161 } 2162 Stream.ExitBlock(); 2163 } 2164 2165 /// WriteFunction - Emit a function body to the module stream. 2166 static void WriteFunction(const Function &F, ValueEnumerator &VE, 2167 BitstreamWriter &Stream) { 2168 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2169 VE.incorporateFunction(F); 2170 2171 SmallVector<unsigned, 64> Vals; 2172 2173 // Emit the number of basic blocks, so the reader can create them ahead of 2174 // time. 2175 Vals.push_back(VE.getBasicBlocks().size()); 2176 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2177 Vals.clear(); 2178 2179 // If there are function-local constants, emit them now. 2180 unsigned CstStart, CstEnd; 2181 VE.getFunctionConstantRange(CstStart, CstEnd); 2182 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2183 2184 // If there is function-local metadata, emit it now. 2185 WriteFunctionLocalMetadata(F, VE, Stream); 2186 2187 // Keep a running idea of what the instruction ID is. 2188 unsigned InstID = CstEnd; 2189 2190 bool NeedsMetadataAttachment = F.hasMetadata(); 2191 2192 DILocation *LastDL = nullptr; 2193 2194 // Finally, emit all the instructions, in order. 2195 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2196 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2197 I != E; ++I) { 2198 WriteInstruction(*I, InstID, VE, Stream, Vals); 2199 2200 if (!I->getType()->isVoidTy()) 2201 ++InstID; 2202 2203 // If the instruction has metadata, write a metadata attachment later. 2204 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2205 2206 // If the instruction has a debug location, emit it. 2207 DILocation *DL = I->getDebugLoc(); 2208 if (!DL) 2209 continue; 2210 2211 if (DL == LastDL) { 2212 // Just repeat the same debug loc as last time. 2213 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2214 continue; 2215 } 2216 2217 Vals.push_back(DL->getLine()); 2218 Vals.push_back(DL->getColumn()); 2219 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2220 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2221 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2222 Vals.clear(); 2223 2224 LastDL = DL; 2225 } 2226 2227 // Emit names for all the instructions etc. 2228 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2229 2230 if (NeedsMetadataAttachment) 2231 WriteMetadataAttachment(F, VE, Stream); 2232 if (VE.shouldPreserveUseListOrder()) 2233 WriteUseListBlock(&F, VE, Stream); 2234 VE.purgeFunction(); 2235 Stream.ExitBlock(); 2236 } 2237 2238 // Emit blockinfo, which defines the standard abbreviations etc. 2239 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2240 // We only want to emit block info records for blocks that have multiple 2241 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2242 // Other blocks can define their abbrevs inline. 2243 Stream.EnterBlockInfoBlock(2); 2244 2245 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2246 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2251 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2252 Abbv) != VST_ENTRY_8_ABBREV) 2253 llvm_unreachable("Unexpected abbrev ordering!"); 2254 } 2255 2256 { // 7-bit fixed width VST_ENTRY strings. 2257 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2258 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2262 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2263 Abbv) != VST_ENTRY_7_ABBREV) 2264 llvm_unreachable("Unexpected abbrev ordering!"); 2265 } 2266 { // 6-bit char6 VST_ENTRY strings. 2267 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2268 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2272 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2273 Abbv) != VST_ENTRY_6_ABBREV) 2274 llvm_unreachable("Unexpected abbrev ordering!"); 2275 } 2276 { // 6-bit char6 VST_BBENTRY strings. 2277 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2278 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2282 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2283 Abbv) != VST_BBENTRY_6_ABBREV) 2284 llvm_unreachable("Unexpected abbrev ordering!"); 2285 } 2286 2287 2288 2289 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2290 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2291 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2293 VE.computeBitsRequiredForTypeIndicies())); 2294 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2295 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2296 llvm_unreachable("Unexpected abbrev ordering!"); 2297 } 2298 2299 { // INTEGER abbrev for CONSTANTS_BLOCK. 2300 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2301 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2303 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2304 Abbv) != CONSTANTS_INTEGER_ABBREV) 2305 llvm_unreachable("Unexpected abbrev ordering!"); 2306 } 2307 2308 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2309 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2310 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2313 VE.computeBitsRequiredForTypeIndicies())); 2314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2315 2316 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2317 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2318 llvm_unreachable("Unexpected abbrev ordering!"); 2319 } 2320 { // NULL abbrev for CONSTANTS_BLOCK. 2321 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2322 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2323 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2324 Abbv) != CONSTANTS_NULL_Abbrev) 2325 llvm_unreachable("Unexpected abbrev ordering!"); 2326 } 2327 2328 // FIXME: This should only use space for first class types! 2329 2330 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2331 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2332 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2335 VE.computeBitsRequiredForTypeIndicies())); 2336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2338 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2339 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2340 llvm_unreachable("Unexpected abbrev ordering!"); 2341 } 2342 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2343 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2344 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2348 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2349 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2350 llvm_unreachable("Unexpected abbrev ordering!"); 2351 } 2352 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2353 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2354 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2359 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2360 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2361 llvm_unreachable("Unexpected abbrev ordering!"); 2362 } 2363 { // INST_CAST abbrev for FUNCTION_BLOCK. 2364 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2365 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2368 VE.computeBitsRequiredForTypeIndicies())); 2369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2370 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2371 Abbv) != FUNCTION_INST_CAST_ABBREV) 2372 llvm_unreachable("Unexpected abbrev ordering!"); 2373 } 2374 2375 { // INST_RET abbrev for FUNCTION_BLOCK. 2376 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2377 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2378 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2379 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2380 llvm_unreachable("Unexpected abbrev ordering!"); 2381 } 2382 { // INST_RET abbrev for FUNCTION_BLOCK. 2383 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2384 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2386 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2387 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2388 llvm_unreachable("Unexpected abbrev ordering!"); 2389 } 2390 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2391 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2392 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2393 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2394 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2395 llvm_unreachable("Unexpected abbrev ordering!"); 2396 } 2397 { 2398 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2399 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2402 Log2_32_Ceil(VE.getTypes().size() + 1))); 2403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2405 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2406 FUNCTION_INST_GEP_ABBREV) 2407 llvm_unreachable("Unexpected abbrev ordering!"); 2408 } 2409 2410 Stream.ExitBlock(); 2411 } 2412 2413 /// WriteModule - Emit the specified module to the bitstream. 2414 static void WriteModule(const Module *M, BitstreamWriter &Stream, 2415 bool ShouldPreserveUseListOrder) { 2416 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2417 2418 SmallVector<unsigned, 1> Vals; 2419 unsigned CurVersion = 1; 2420 Vals.push_back(CurVersion); 2421 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2422 2423 // Analyze the module, enumerating globals, functions, etc. 2424 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 2425 2426 // Emit blockinfo, which defines the standard abbreviations etc. 2427 WriteBlockInfo(VE, Stream); 2428 2429 // Emit information about attribute groups. 2430 WriteAttributeGroupTable(VE, Stream); 2431 2432 // Emit information about parameter attributes. 2433 WriteAttributeTable(VE, Stream); 2434 2435 // Emit information describing all of the types in the module. 2436 WriteTypeTable(VE, Stream); 2437 2438 writeComdats(VE, Stream); 2439 2440 // Emit top-level description of module, including target triple, inline asm, 2441 // descriptors for global variables, and function prototype info. 2442 WriteModuleInfo(M, VE, Stream); 2443 2444 // Emit constants. 2445 WriteModuleConstants(VE, Stream); 2446 2447 // Emit metadata. 2448 WriteModuleMetadata(M, VE, Stream); 2449 2450 // Emit metadata. 2451 WriteModuleMetadataStore(M, Stream); 2452 2453 // Emit names for globals/functions etc. 2454 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2455 2456 // Emit module-level use-lists. 2457 if (VE.shouldPreserveUseListOrder()) 2458 WriteUseListBlock(nullptr, VE, Stream); 2459 2460 // Emit function bodies. 2461 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2462 if (!F->isDeclaration()) 2463 WriteFunction(*F, VE, Stream); 2464 2465 Stream.ExitBlock(); 2466 } 2467 2468 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2469 /// header and trailer to make it compatible with the system archiver. To do 2470 /// this we emit the following header, and then emit a trailer that pads the 2471 /// file out to be a multiple of 16 bytes. 2472 /// 2473 /// struct bc_header { 2474 /// uint32_t Magic; // 0x0B17C0DE 2475 /// uint32_t Version; // Version, currently always 0. 2476 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2477 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2478 /// uint32_t CPUType; // CPU specifier. 2479 /// ... potentially more later ... 2480 /// }; 2481 enum { 2482 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2483 DarwinBCHeaderSize = 5*4 2484 }; 2485 2486 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2487 uint32_t &Position) { 2488 support::endian::write32le(&Buffer[Position], Value); 2489 Position += 4; 2490 } 2491 2492 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2493 const Triple &TT) { 2494 unsigned CPUType = ~0U; 2495 2496 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2497 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2498 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2499 // specific constants here because they are implicitly part of the Darwin ABI. 2500 enum { 2501 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2502 DARWIN_CPU_TYPE_X86 = 7, 2503 DARWIN_CPU_TYPE_ARM = 12, 2504 DARWIN_CPU_TYPE_POWERPC = 18 2505 }; 2506 2507 Triple::ArchType Arch = TT.getArch(); 2508 if (Arch == Triple::x86_64) 2509 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2510 else if (Arch == Triple::x86) 2511 CPUType = DARWIN_CPU_TYPE_X86; 2512 else if (Arch == Triple::ppc) 2513 CPUType = DARWIN_CPU_TYPE_POWERPC; 2514 else if (Arch == Triple::ppc64) 2515 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2516 else if (Arch == Triple::arm || Arch == Triple::thumb) 2517 CPUType = DARWIN_CPU_TYPE_ARM; 2518 2519 // Traditional Bitcode starts after header. 2520 assert(Buffer.size() >= DarwinBCHeaderSize && 2521 "Expected header size to be reserved"); 2522 unsigned BCOffset = DarwinBCHeaderSize; 2523 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2524 2525 // Write the magic and version. 2526 unsigned Position = 0; 2527 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2528 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2529 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2530 WriteInt32ToBuffer(BCSize , Buffer, Position); 2531 WriteInt32ToBuffer(CPUType , Buffer, Position); 2532 2533 // If the file is not a multiple of 16 bytes, insert dummy padding. 2534 while (Buffer.size() & 15) 2535 Buffer.push_back(0); 2536 } 2537 2538 /// WriteBitcodeToFile - Write the specified module to the specified output 2539 /// stream. 2540 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 2541 bool ShouldPreserveUseListOrder) { 2542 SmallVector<char, 0> Buffer; 2543 Buffer.reserve(256*1024); 2544 2545 // If this is darwin or another generic macho target, reserve space for the 2546 // header. 2547 Triple TT(M->getTargetTriple()); 2548 if (TT.isOSDarwin()) 2549 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2550 2551 // Emit the module into the buffer. 2552 { 2553 BitstreamWriter Stream(Buffer); 2554 2555 // Emit the file header. 2556 Stream.Emit((unsigned)'B', 8); 2557 Stream.Emit((unsigned)'C', 8); 2558 Stream.Emit(0x0, 4); 2559 Stream.Emit(0xC, 4); 2560 Stream.Emit(0xE, 4); 2561 Stream.Emit(0xD, 4); 2562 2563 // Emit the module. 2564 WriteModule(M, Stream, ShouldPreserveUseListOrder); 2565 } 2566 2567 if (TT.isOSDarwin()) 2568 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2569 2570 // Write the generated bitstream to "Out". 2571 Out.write((char*)&Buffer.front(), Buffer.size()); 2572 } 2573