1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 90 static cl::opt<bool> WriteRelBFToSummary( 91 "write-relbf-to-summary", cl::Hidden, cl::init(false), 92 cl::desc("Write relative block frequency to function summary ")); 93 94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 95 96 namespace { 97 98 /// These are manifest constants used by the bitcode writer. They do not need to 99 /// be kept in sync with the reader, but need to be consistent within this file. 100 enum { 101 // VALUE_SYMTAB_BLOCK abbrev id's. 102 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 103 VST_ENTRY_7_ABBREV, 104 VST_ENTRY_6_ABBREV, 105 VST_BBENTRY_6_ABBREV, 106 107 // CONSTANTS_BLOCK abbrev id's. 108 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 CONSTANTS_INTEGER_ABBREV, 110 CONSTANTS_CE_CAST_Abbrev, 111 CONSTANTS_NULL_Abbrev, 112 113 // FUNCTION_BLOCK abbrev id's. 114 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 FUNCTION_INST_UNOP_ABBREV, 116 FUNCTION_INST_UNOP_FLAGS_ABBREV, 117 FUNCTION_INST_BINOP_ABBREV, 118 FUNCTION_INST_BINOP_FLAGS_ABBREV, 119 FUNCTION_INST_CAST_ABBREV, 120 FUNCTION_INST_RET_VOID_ABBREV, 121 FUNCTION_INST_RET_VAL_ABBREV, 122 FUNCTION_INST_UNREACHABLE_ABBREV, 123 FUNCTION_INST_GEP_ABBREV, 124 }; 125 126 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 127 /// file type. 128 class BitcodeWriterBase { 129 protected: 130 /// The stream created and owned by the client. 131 BitstreamWriter &Stream; 132 133 StringTableBuilder &StrtabBuilder; 134 135 public: 136 /// Constructs a BitcodeWriterBase object that writes to the provided 137 /// \p Stream. 138 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 139 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 140 141 protected: 142 void writeBitcodeHeader(); 143 void writeModuleVersion(); 144 }; 145 146 void BitcodeWriterBase::writeModuleVersion() { 147 // VERSION: [version#] 148 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 149 } 150 151 /// Base class to manage the module bitcode writing, currently subclassed for 152 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 153 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 154 protected: 155 /// The Module to write to bitcode. 156 const Module &M; 157 158 /// Enumerates ids for all values in the module. 159 ValueEnumerator VE; 160 161 /// Optional per-module index to write for ThinLTO. 162 const ModuleSummaryIndex *Index; 163 164 /// Map that holds the correspondence between GUIDs in the summary index, 165 /// that came from indirect call profiles, and a value id generated by this 166 /// class to use in the VST and summary block records. 167 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 168 169 /// Tracks the last value id recorded in the GUIDToValueMap. 170 unsigned GlobalValueId; 171 172 /// Saves the offset of the VSTOffset record that must eventually be 173 /// backpatched with the offset of the actual VST. 174 uint64_t VSTOffsetPlaceholder = 0; 175 176 public: 177 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 178 /// writing to the provided \p Buffer. 179 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 180 BitstreamWriter &Stream, 181 bool ShouldPreserveUseListOrder, 182 const ModuleSummaryIndex *Index) 183 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 184 VE(M, ShouldPreserveUseListOrder), Index(Index) { 185 // Assign ValueIds to any callee values in the index that came from 186 // indirect call profiles and were recorded as a GUID not a Value* 187 // (which would have been assigned an ID by the ValueEnumerator). 188 // The starting ValueId is just after the number of values in the 189 // ValueEnumerator, so that they can be emitted in the VST. 190 GlobalValueId = VE.getValues().size(); 191 if (!Index) 192 return; 193 for (const auto &GUIDSummaryLists : *Index) 194 // Examine all summaries for this GUID. 195 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 196 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 197 // For each call in the function summary, see if the call 198 // is to a GUID (which means it is for an indirect call, 199 // otherwise we would have a Value for it). If so, synthesize 200 // a value id. 201 for (auto &CallEdge : FS->calls()) 202 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 203 assignValueId(CallEdge.first.getGUID()); 204 } 205 206 protected: 207 void writePerModuleGlobalValueSummary(); 208 209 private: 210 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 211 GlobalValueSummary *Summary, 212 unsigned ValueID, 213 unsigned FSCallsAbbrev, 214 unsigned FSCallsProfileAbbrev, 215 const Function &F); 216 void writeModuleLevelReferences(const GlobalVariable &V, 217 SmallVector<uint64_t, 64> &NameVals, 218 unsigned FSModRefsAbbrev, 219 unsigned FSModVTableRefsAbbrev); 220 221 void assignValueId(GlobalValue::GUID ValGUID) { 222 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 223 } 224 225 unsigned getValueId(GlobalValue::GUID ValGUID) { 226 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 227 // Expect that any GUID value had a value Id assigned by an 228 // earlier call to assignValueId. 229 assert(VMI != GUIDToValueIdMap.end() && 230 "GUID does not have assigned value Id"); 231 return VMI->second; 232 } 233 234 // Helper to get the valueId for the type of value recorded in VI. 235 unsigned getValueId(ValueInfo VI) { 236 if (!VI.haveGVs() || !VI.getValue()) 237 return getValueId(VI.getGUID()); 238 return VE.getValueID(VI.getValue()); 239 } 240 241 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 242 }; 243 244 /// Class to manage the bitcode writing for a module. 245 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 246 /// Pointer to the buffer allocated by caller for bitcode writing. 247 const SmallVectorImpl<char> &Buffer; 248 249 /// True if a module hash record should be written. 250 bool GenerateHash; 251 252 /// If non-null, when GenerateHash is true, the resulting hash is written 253 /// into ModHash. 254 ModuleHash *ModHash; 255 256 SHA1 Hasher; 257 258 /// The start bit of the identification block. 259 uint64_t BitcodeStartBit; 260 261 public: 262 /// Constructs a ModuleBitcodeWriter object for the given Module, 263 /// writing to the provided \p Buffer. 264 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 265 StringTableBuilder &StrtabBuilder, 266 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 267 const ModuleSummaryIndex *Index, bool GenerateHash, 268 ModuleHash *ModHash = nullptr) 269 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 270 ShouldPreserveUseListOrder, Index), 271 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 272 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 273 274 /// Emit the current module to the bitstream. 275 void write(); 276 277 private: 278 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 279 280 size_t addToStrtab(StringRef Str); 281 282 void writeAttributeGroupTable(); 283 void writeAttributeTable(); 284 void writeTypeTable(); 285 void writeComdats(); 286 void writeValueSymbolTableForwardDecl(); 287 void writeModuleInfo(); 288 void writeValueAsMetadata(const ValueAsMetadata *MD, 289 SmallVectorImpl<uint64_t> &Record); 290 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 291 unsigned Abbrev); 292 unsigned createDILocationAbbrev(); 293 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned &Abbrev); 295 unsigned createGenericDINodeAbbrev(); 296 void writeGenericDINode(const GenericDINode *N, 297 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 298 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 299 unsigned Abbrev); 300 void writeDIEnumerator(const DIEnumerator *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 302 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIDerivedType(const DIDerivedType *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDICompositeType(const DICompositeType *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDISubroutineType(const DISubroutineType *N, 309 SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 312 unsigned Abbrev); 313 void writeDICompileUnit(const DICompileUnit *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubprogram(const DISubprogram *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDILexicalBlock(const DILexicalBlock *N, 318 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 319 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 320 SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICommonBlock(const DICommonBlock *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 327 unsigned Abbrev); 328 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 333 SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 336 SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIGlobalVariable(const DIGlobalVariable *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDILocalVariable(const DILocalVariable *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDILabel(const DILabel *N, 344 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 345 void writeDIExpression(const DIExpression *N, 346 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 347 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIObjCProperty(const DIObjCProperty *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDIImportedEntity(const DIImportedEntity *N, 353 SmallVectorImpl<uint64_t> &Record, 354 unsigned Abbrev); 355 unsigned createNamedMetadataAbbrev(); 356 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 357 unsigned createMetadataStringsAbbrev(); 358 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 359 SmallVectorImpl<uint64_t> &Record); 360 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 361 SmallVectorImpl<uint64_t> &Record, 362 std::vector<unsigned> *MDAbbrevs = nullptr, 363 std::vector<uint64_t> *IndexPos = nullptr); 364 void writeModuleMetadata(); 365 void writeFunctionMetadata(const Function &F); 366 void writeFunctionMetadataAttachment(const Function &F); 367 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 368 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 369 const GlobalObject &GO); 370 void writeModuleMetadataKinds(); 371 void writeOperandBundleTags(); 372 void writeSyncScopeNames(); 373 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 374 void writeModuleConstants(); 375 bool pushValueAndType(const Value *V, unsigned InstID, 376 SmallVectorImpl<unsigned> &Vals); 377 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 378 void pushValue(const Value *V, unsigned InstID, 379 SmallVectorImpl<unsigned> &Vals); 380 void pushValueSigned(const Value *V, unsigned InstID, 381 SmallVectorImpl<uint64_t> &Vals); 382 void writeInstruction(const Instruction &I, unsigned InstID, 383 SmallVectorImpl<unsigned> &Vals); 384 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 385 void writeGlobalValueSymbolTable( 386 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 387 void writeUseList(UseListOrder &&Order); 388 void writeUseListBlock(const Function *F); 389 void 390 writeFunction(const Function &F, 391 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 392 void writeBlockInfo(); 393 void writeModuleHash(size_t BlockStartPos); 394 395 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 396 return unsigned(SSID); 397 } 398 }; 399 400 /// Class to manage the bitcode writing for a combined index. 401 class IndexBitcodeWriter : public BitcodeWriterBase { 402 /// The combined index to write to bitcode. 403 const ModuleSummaryIndex &Index; 404 405 /// When writing a subset of the index for distributed backends, client 406 /// provides a map of modules to the corresponding GUIDs/summaries to write. 407 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 408 409 /// Map that holds the correspondence between the GUID used in the combined 410 /// index and a value id generated by this class to use in references. 411 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 412 413 /// Tracks the last value id recorded in the GUIDToValueMap. 414 unsigned GlobalValueId = 0; 415 416 public: 417 /// Constructs a IndexBitcodeWriter object for the given combined index, 418 /// writing to the provided \p Buffer. When writing a subset of the index 419 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 420 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 421 const ModuleSummaryIndex &Index, 422 const std::map<std::string, GVSummaryMapTy> 423 *ModuleToSummariesForIndex = nullptr) 424 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 425 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 426 // Assign unique value ids to all summaries to be written, for use 427 // in writing out the call graph edges. Save the mapping from GUID 428 // to the new global value id to use when writing those edges, which 429 // are currently saved in the index in terms of GUID. 430 forEachSummary([&](GVInfo I, bool) { 431 GUIDToValueIdMap[I.first] = ++GlobalValueId; 432 }); 433 } 434 435 /// The below iterator returns the GUID and associated summary. 436 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 437 438 /// Calls the callback for each value GUID and summary to be written to 439 /// bitcode. This hides the details of whether they are being pulled from the 440 /// entire index or just those in a provided ModuleToSummariesForIndex map. 441 template<typename Functor> 442 void forEachSummary(Functor Callback) { 443 if (ModuleToSummariesForIndex) { 444 for (auto &M : *ModuleToSummariesForIndex) 445 for (auto &Summary : M.second) { 446 Callback(Summary, false); 447 // Ensure aliasee is handled, e.g. for assigning a valueId, 448 // even if we are not importing the aliasee directly (the 449 // imported alias will contain a copy of aliasee). 450 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 451 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 452 } 453 } else { 454 for (auto &Summaries : Index) 455 for (auto &Summary : Summaries.second.SummaryList) 456 Callback({Summaries.first, Summary.get()}, false); 457 } 458 } 459 460 /// Calls the callback for each entry in the modulePaths StringMap that 461 /// should be written to the module path string table. This hides the details 462 /// of whether they are being pulled from the entire index or just those in a 463 /// provided ModuleToSummariesForIndex map. 464 template <typename Functor> void forEachModule(Functor Callback) { 465 if (ModuleToSummariesForIndex) { 466 for (const auto &M : *ModuleToSummariesForIndex) { 467 const auto &MPI = Index.modulePaths().find(M.first); 468 if (MPI == Index.modulePaths().end()) { 469 // This should only happen if the bitcode file was empty, in which 470 // case we shouldn't be importing (the ModuleToSummariesForIndex 471 // would only include the module we are writing and index for). 472 assert(ModuleToSummariesForIndex->size() == 1); 473 continue; 474 } 475 Callback(*MPI); 476 } 477 } else { 478 for (const auto &MPSE : Index.modulePaths()) 479 Callback(MPSE); 480 } 481 } 482 483 /// Main entry point for writing a combined index to bitcode. 484 void write(); 485 486 private: 487 void writeModStrings(); 488 void writeCombinedGlobalValueSummary(); 489 490 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 491 auto VMI = GUIDToValueIdMap.find(ValGUID); 492 if (VMI == GUIDToValueIdMap.end()) 493 return None; 494 return VMI->second; 495 } 496 497 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 498 }; 499 500 } // end anonymous namespace 501 502 static unsigned getEncodedCastOpcode(unsigned Opcode) { 503 switch (Opcode) { 504 default: llvm_unreachable("Unknown cast instruction!"); 505 case Instruction::Trunc : return bitc::CAST_TRUNC; 506 case Instruction::ZExt : return bitc::CAST_ZEXT; 507 case Instruction::SExt : return bitc::CAST_SEXT; 508 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 509 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 510 case Instruction::UIToFP : return bitc::CAST_UITOFP; 511 case Instruction::SIToFP : return bitc::CAST_SITOFP; 512 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 513 case Instruction::FPExt : return bitc::CAST_FPEXT; 514 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 515 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 516 case Instruction::BitCast : return bitc::CAST_BITCAST; 517 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 518 } 519 } 520 521 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 522 switch (Opcode) { 523 default: llvm_unreachable("Unknown binary instruction!"); 524 case Instruction::FNeg: return bitc::UNOP_FNEG; 525 } 526 } 527 528 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 529 switch (Opcode) { 530 default: llvm_unreachable("Unknown binary instruction!"); 531 case Instruction::Add: 532 case Instruction::FAdd: return bitc::BINOP_ADD; 533 case Instruction::Sub: 534 case Instruction::FSub: return bitc::BINOP_SUB; 535 case Instruction::Mul: 536 case Instruction::FMul: return bitc::BINOP_MUL; 537 case Instruction::UDiv: return bitc::BINOP_UDIV; 538 case Instruction::FDiv: 539 case Instruction::SDiv: return bitc::BINOP_SDIV; 540 case Instruction::URem: return bitc::BINOP_UREM; 541 case Instruction::FRem: 542 case Instruction::SRem: return bitc::BINOP_SREM; 543 case Instruction::Shl: return bitc::BINOP_SHL; 544 case Instruction::LShr: return bitc::BINOP_LSHR; 545 case Instruction::AShr: return bitc::BINOP_ASHR; 546 case Instruction::And: return bitc::BINOP_AND; 547 case Instruction::Or: return bitc::BINOP_OR; 548 case Instruction::Xor: return bitc::BINOP_XOR; 549 } 550 } 551 552 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 553 switch (Op) { 554 default: llvm_unreachable("Unknown RMW operation!"); 555 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 556 case AtomicRMWInst::Add: return bitc::RMW_ADD; 557 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 558 case AtomicRMWInst::And: return bitc::RMW_AND; 559 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 560 case AtomicRMWInst::Or: return bitc::RMW_OR; 561 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 562 case AtomicRMWInst::Max: return bitc::RMW_MAX; 563 case AtomicRMWInst::Min: return bitc::RMW_MIN; 564 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 565 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 566 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 567 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 568 } 569 } 570 571 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 572 switch (Ordering) { 573 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 574 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 575 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 576 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 577 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 578 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 579 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 580 } 581 llvm_unreachable("Invalid ordering"); 582 } 583 584 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 585 StringRef Str, unsigned AbbrevToUse) { 586 SmallVector<unsigned, 64> Vals; 587 588 // Code: [strchar x N] 589 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 590 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 591 AbbrevToUse = 0; 592 Vals.push_back(Str[i]); 593 } 594 595 // Emit the finished record. 596 Stream.EmitRecord(Code, Vals, AbbrevToUse); 597 } 598 599 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 600 switch (Kind) { 601 case Attribute::Alignment: 602 return bitc::ATTR_KIND_ALIGNMENT; 603 case Attribute::AllocSize: 604 return bitc::ATTR_KIND_ALLOC_SIZE; 605 case Attribute::AlwaysInline: 606 return bitc::ATTR_KIND_ALWAYS_INLINE; 607 case Attribute::ArgMemOnly: 608 return bitc::ATTR_KIND_ARGMEMONLY; 609 case Attribute::Builtin: 610 return bitc::ATTR_KIND_BUILTIN; 611 case Attribute::ByVal: 612 return bitc::ATTR_KIND_BY_VAL; 613 case Attribute::Convergent: 614 return bitc::ATTR_KIND_CONVERGENT; 615 case Attribute::InAlloca: 616 return bitc::ATTR_KIND_IN_ALLOCA; 617 case Attribute::Cold: 618 return bitc::ATTR_KIND_COLD; 619 case Attribute::InaccessibleMemOnly: 620 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 621 case Attribute::InaccessibleMemOrArgMemOnly: 622 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 623 case Attribute::InlineHint: 624 return bitc::ATTR_KIND_INLINE_HINT; 625 case Attribute::InReg: 626 return bitc::ATTR_KIND_IN_REG; 627 case Attribute::JumpTable: 628 return bitc::ATTR_KIND_JUMP_TABLE; 629 case Attribute::MinSize: 630 return bitc::ATTR_KIND_MIN_SIZE; 631 case Attribute::Naked: 632 return bitc::ATTR_KIND_NAKED; 633 case Attribute::Nest: 634 return bitc::ATTR_KIND_NEST; 635 case Attribute::NoAlias: 636 return bitc::ATTR_KIND_NO_ALIAS; 637 case Attribute::NoBuiltin: 638 return bitc::ATTR_KIND_NO_BUILTIN; 639 case Attribute::NoCapture: 640 return bitc::ATTR_KIND_NO_CAPTURE; 641 case Attribute::NoDuplicate: 642 return bitc::ATTR_KIND_NO_DUPLICATE; 643 case Attribute::NoFree: 644 return bitc::ATTR_KIND_NOFREE; 645 case Attribute::NoImplicitFloat: 646 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 647 case Attribute::NoInline: 648 return bitc::ATTR_KIND_NO_INLINE; 649 case Attribute::NoRecurse: 650 return bitc::ATTR_KIND_NO_RECURSE; 651 case Attribute::NonLazyBind: 652 return bitc::ATTR_KIND_NON_LAZY_BIND; 653 case Attribute::NonNull: 654 return bitc::ATTR_KIND_NON_NULL; 655 case Attribute::Dereferenceable: 656 return bitc::ATTR_KIND_DEREFERENCEABLE; 657 case Attribute::DereferenceableOrNull: 658 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 659 case Attribute::NoRedZone: 660 return bitc::ATTR_KIND_NO_RED_ZONE; 661 case Attribute::NoReturn: 662 return bitc::ATTR_KIND_NO_RETURN; 663 case Attribute::NoSync: 664 return bitc::ATTR_KIND_NOSYNC; 665 case Attribute::NoCfCheck: 666 return bitc::ATTR_KIND_NOCF_CHECK; 667 case Attribute::NoUnwind: 668 return bitc::ATTR_KIND_NO_UNWIND; 669 case Attribute::OptForFuzzing: 670 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 671 case Attribute::OptimizeForSize: 672 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 673 case Attribute::OptimizeNone: 674 return bitc::ATTR_KIND_OPTIMIZE_NONE; 675 case Attribute::ReadNone: 676 return bitc::ATTR_KIND_READ_NONE; 677 case Attribute::ReadOnly: 678 return bitc::ATTR_KIND_READ_ONLY; 679 case Attribute::Returned: 680 return bitc::ATTR_KIND_RETURNED; 681 case Attribute::ReturnsTwice: 682 return bitc::ATTR_KIND_RETURNS_TWICE; 683 case Attribute::SExt: 684 return bitc::ATTR_KIND_S_EXT; 685 case Attribute::Speculatable: 686 return bitc::ATTR_KIND_SPECULATABLE; 687 case Attribute::StackAlignment: 688 return bitc::ATTR_KIND_STACK_ALIGNMENT; 689 case Attribute::StackProtect: 690 return bitc::ATTR_KIND_STACK_PROTECT; 691 case Attribute::StackProtectReq: 692 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 693 case Attribute::StackProtectStrong: 694 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 695 case Attribute::SafeStack: 696 return bitc::ATTR_KIND_SAFESTACK; 697 case Attribute::ShadowCallStack: 698 return bitc::ATTR_KIND_SHADOWCALLSTACK; 699 case Attribute::StrictFP: 700 return bitc::ATTR_KIND_STRICT_FP; 701 case Attribute::StructRet: 702 return bitc::ATTR_KIND_STRUCT_RET; 703 case Attribute::SanitizeAddress: 704 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 705 case Attribute::SanitizeHWAddress: 706 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 707 case Attribute::SanitizeThread: 708 return bitc::ATTR_KIND_SANITIZE_THREAD; 709 case Attribute::SanitizeMemory: 710 return bitc::ATTR_KIND_SANITIZE_MEMORY; 711 case Attribute::SpeculativeLoadHardening: 712 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 713 case Attribute::SwiftError: 714 return bitc::ATTR_KIND_SWIFT_ERROR; 715 case Attribute::SwiftSelf: 716 return bitc::ATTR_KIND_SWIFT_SELF; 717 case Attribute::UWTable: 718 return bitc::ATTR_KIND_UW_TABLE; 719 case Attribute::WillReturn: 720 return bitc::ATTR_KIND_WILLRETURN; 721 case Attribute::WriteOnly: 722 return bitc::ATTR_KIND_WRITEONLY; 723 case Attribute::ZExt: 724 return bitc::ATTR_KIND_Z_EXT; 725 case Attribute::ImmArg: 726 return bitc::ATTR_KIND_IMMARG; 727 case Attribute::SanitizeMemTag: 728 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 729 case Attribute::EndAttrKinds: 730 llvm_unreachable("Can not encode end-attribute kinds marker."); 731 case Attribute::None: 732 llvm_unreachable("Can not encode none-attribute."); 733 } 734 735 llvm_unreachable("Trying to encode unknown attribute"); 736 } 737 738 void ModuleBitcodeWriter::writeAttributeGroupTable() { 739 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 740 VE.getAttributeGroups(); 741 if (AttrGrps.empty()) return; 742 743 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 744 745 SmallVector<uint64_t, 64> Record; 746 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 747 unsigned AttrListIndex = Pair.first; 748 AttributeSet AS = Pair.second; 749 Record.push_back(VE.getAttributeGroupID(Pair)); 750 Record.push_back(AttrListIndex); 751 752 for (Attribute Attr : AS) { 753 if (Attr.isEnumAttribute()) { 754 Record.push_back(0); 755 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 756 } else if (Attr.isIntAttribute()) { 757 Record.push_back(1); 758 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 759 Record.push_back(Attr.getValueAsInt()); 760 } else if (Attr.isStringAttribute()) { 761 StringRef Kind = Attr.getKindAsString(); 762 StringRef Val = Attr.getValueAsString(); 763 764 Record.push_back(Val.empty() ? 3 : 4); 765 Record.append(Kind.begin(), Kind.end()); 766 Record.push_back(0); 767 if (!Val.empty()) { 768 Record.append(Val.begin(), Val.end()); 769 Record.push_back(0); 770 } 771 } else { 772 assert(Attr.isTypeAttribute()); 773 Type *Ty = Attr.getValueAsType(); 774 Record.push_back(Ty ? 6 : 5); 775 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 776 if (Ty) 777 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 778 } 779 } 780 781 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 782 Record.clear(); 783 } 784 785 Stream.ExitBlock(); 786 } 787 788 void ModuleBitcodeWriter::writeAttributeTable() { 789 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 790 if (Attrs.empty()) return; 791 792 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 793 794 SmallVector<uint64_t, 64> Record; 795 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 796 AttributeList AL = Attrs[i]; 797 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 798 AttributeSet AS = AL.getAttributes(i); 799 if (AS.hasAttributes()) 800 Record.push_back(VE.getAttributeGroupID({i, AS})); 801 } 802 803 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 804 Record.clear(); 805 } 806 807 Stream.ExitBlock(); 808 } 809 810 /// WriteTypeTable - Write out the type table for a module. 811 void ModuleBitcodeWriter::writeTypeTable() { 812 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 813 814 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 815 SmallVector<uint64_t, 64> TypeVals; 816 817 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 818 819 // Abbrev for TYPE_CODE_POINTER. 820 auto Abbv = std::make_shared<BitCodeAbbrev>(); 821 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 823 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 824 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 825 826 // Abbrev for TYPE_CODE_FUNCTION. 827 Abbv = std::make_shared<BitCodeAbbrev>(); 828 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 832 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 833 834 // Abbrev for TYPE_CODE_STRUCT_ANON. 835 Abbv = std::make_shared<BitCodeAbbrev>(); 836 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 840 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 841 842 // Abbrev for TYPE_CODE_STRUCT_NAME. 843 Abbv = std::make_shared<BitCodeAbbrev>(); 844 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 847 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 848 849 // Abbrev for TYPE_CODE_STRUCT_NAMED. 850 Abbv = std::make_shared<BitCodeAbbrev>(); 851 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 855 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 856 857 // Abbrev for TYPE_CODE_ARRAY. 858 Abbv = std::make_shared<BitCodeAbbrev>(); 859 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 862 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 863 864 // Emit an entry count so the reader can reserve space. 865 TypeVals.push_back(TypeList.size()); 866 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 867 TypeVals.clear(); 868 869 // Loop over all of the types, emitting each in turn. 870 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 871 Type *T = TypeList[i]; 872 int AbbrevToUse = 0; 873 unsigned Code = 0; 874 875 switch (T->getTypeID()) { 876 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 877 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 878 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 879 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 880 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 881 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 882 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 883 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 884 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 885 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 886 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 887 case Type::IntegerTyID: 888 // INTEGER: [width] 889 Code = bitc::TYPE_CODE_INTEGER; 890 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 891 break; 892 case Type::PointerTyID: { 893 PointerType *PTy = cast<PointerType>(T); 894 // POINTER: [pointee type, address space] 895 Code = bitc::TYPE_CODE_POINTER; 896 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 897 unsigned AddressSpace = PTy->getAddressSpace(); 898 TypeVals.push_back(AddressSpace); 899 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 900 break; 901 } 902 case Type::FunctionTyID: { 903 FunctionType *FT = cast<FunctionType>(T); 904 // FUNCTION: [isvararg, retty, paramty x N] 905 Code = bitc::TYPE_CODE_FUNCTION; 906 TypeVals.push_back(FT->isVarArg()); 907 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 908 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 909 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 910 AbbrevToUse = FunctionAbbrev; 911 break; 912 } 913 case Type::StructTyID: { 914 StructType *ST = cast<StructType>(T); 915 // STRUCT: [ispacked, eltty x N] 916 TypeVals.push_back(ST->isPacked()); 917 // Output all of the element types. 918 for (StructType::element_iterator I = ST->element_begin(), 919 E = ST->element_end(); I != E; ++I) 920 TypeVals.push_back(VE.getTypeID(*I)); 921 922 if (ST->isLiteral()) { 923 Code = bitc::TYPE_CODE_STRUCT_ANON; 924 AbbrevToUse = StructAnonAbbrev; 925 } else { 926 if (ST->isOpaque()) { 927 Code = bitc::TYPE_CODE_OPAQUE; 928 } else { 929 Code = bitc::TYPE_CODE_STRUCT_NAMED; 930 AbbrevToUse = StructNamedAbbrev; 931 } 932 933 // Emit the name if it is present. 934 if (!ST->getName().empty()) 935 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 936 StructNameAbbrev); 937 } 938 break; 939 } 940 case Type::ArrayTyID: { 941 ArrayType *AT = cast<ArrayType>(T); 942 // ARRAY: [numelts, eltty] 943 Code = bitc::TYPE_CODE_ARRAY; 944 TypeVals.push_back(AT->getNumElements()); 945 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 946 AbbrevToUse = ArrayAbbrev; 947 break; 948 } 949 case Type::VectorTyID: { 950 VectorType *VT = cast<VectorType>(T); 951 // VECTOR [numelts, eltty] or 952 // [numelts, eltty, scalable] 953 Code = bitc::TYPE_CODE_VECTOR; 954 TypeVals.push_back(VT->getNumElements()); 955 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 956 if (VT->isScalable()) 957 TypeVals.push_back(VT->isScalable()); 958 break; 959 } 960 } 961 962 // Emit the finished record. 963 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 964 TypeVals.clear(); 965 } 966 967 Stream.ExitBlock(); 968 } 969 970 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 971 switch (Linkage) { 972 case GlobalValue::ExternalLinkage: 973 return 0; 974 case GlobalValue::WeakAnyLinkage: 975 return 16; 976 case GlobalValue::AppendingLinkage: 977 return 2; 978 case GlobalValue::InternalLinkage: 979 return 3; 980 case GlobalValue::LinkOnceAnyLinkage: 981 return 18; 982 case GlobalValue::ExternalWeakLinkage: 983 return 7; 984 case GlobalValue::CommonLinkage: 985 return 8; 986 case GlobalValue::PrivateLinkage: 987 return 9; 988 case GlobalValue::WeakODRLinkage: 989 return 17; 990 case GlobalValue::LinkOnceODRLinkage: 991 return 19; 992 case GlobalValue::AvailableExternallyLinkage: 993 return 12; 994 } 995 llvm_unreachable("Invalid linkage"); 996 } 997 998 static unsigned getEncodedLinkage(const GlobalValue &GV) { 999 return getEncodedLinkage(GV.getLinkage()); 1000 } 1001 1002 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1003 uint64_t RawFlags = 0; 1004 RawFlags |= Flags.ReadNone; 1005 RawFlags |= (Flags.ReadOnly << 1); 1006 RawFlags |= (Flags.NoRecurse << 2); 1007 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1008 RawFlags |= (Flags.NoInline << 4); 1009 RawFlags |= (Flags.AlwaysInline << 5); 1010 return RawFlags; 1011 } 1012 1013 // Decode the flags for GlobalValue in the summary 1014 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1015 uint64_t RawFlags = 0; 1016 1017 RawFlags |= Flags.NotEligibleToImport; // bool 1018 RawFlags |= (Flags.Live << 1); 1019 RawFlags |= (Flags.DSOLocal << 2); 1020 RawFlags |= (Flags.CanAutoHide << 3); 1021 1022 // Linkage don't need to be remapped at that time for the summary. Any future 1023 // change to the getEncodedLinkage() function will need to be taken into 1024 // account here as well. 1025 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1026 1027 return RawFlags; 1028 } 1029 1030 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1031 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1032 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1033 return RawFlags; 1034 } 1035 1036 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1037 switch (GV.getVisibility()) { 1038 case GlobalValue::DefaultVisibility: return 0; 1039 case GlobalValue::HiddenVisibility: return 1; 1040 case GlobalValue::ProtectedVisibility: return 2; 1041 } 1042 llvm_unreachable("Invalid visibility"); 1043 } 1044 1045 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1046 switch (GV.getDLLStorageClass()) { 1047 case GlobalValue::DefaultStorageClass: return 0; 1048 case GlobalValue::DLLImportStorageClass: return 1; 1049 case GlobalValue::DLLExportStorageClass: return 2; 1050 } 1051 llvm_unreachable("Invalid DLL storage class"); 1052 } 1053 1054 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1055 switch (GV.getThreadLocalMode()) { 1056 case GlobalVariable::NotThreadLocal: return 0; 1057 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1058 case GlobalVariable::LocalDynamicTLSModel: return 2; 1059 case GlobalVariable::InitialExecTLSModel: return 3; 1060 case GlobalVariable::LocalExecTLSModel: return 4; 1061 } 1062 llvm_unreachable("Invalid TLS model"); 1063 } 1064 1065 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1066 switch (C.getSelectionKind()) { 1067 case Comdat::Any: 1068 return bitc::COMDAT_SELECTION_KIND_ANY; 1069 case Comdat::ExactMatch: 1070 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1071 case Comdat::Largest: 1072 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1073 case Comdat::NoDuplicates: 1074 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1075 case Comdat::SameSize: 1076 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1077 } 1078 llvm_unreachable("Invalid selection kind"); 1079 } 1080 1081 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1082 switch (GV.getUnnamedAddr()) { 1083 case GlobalValue::UnnamedAddr::None: return 0; 1084 case GlobalValue::UnnamedAddr::Local: return 2; 1085 case GlobalValue::UnnamedAddr::Global: return 1; 1086 } 1087 llvm_unreachable("Invalid unnamed_addr"); 1088 } 1089 1090 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1091 if (GenerateHash) 1092 Hasher.update(Str); 1093 return StrtabBuilder.add(Str); 1094 } 1095 1096 void ModuleBitcodeWriter::writeComdats() { 1097 SmallVector<unsigned, 64> Vals; 1098 for (const Comdat *C : VE.getComdats()) { 1099 // COMDAT: [strtab offset, strtab size, selection_kind] 1100 Vals.push_back(addToStrtab(C->getName())); 1101 Vals.push_back(C->getName().size()); 1102 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1103 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1104 Vals.clear(); 1105 } 1106 } 1107 1108 /// Write a record that will eventually hold the word offset of the 1109 /// module-level VST. For now the offset is 0, which will be backpatched 1110 /// after the real VST is written. Saves the bit offset to backpatch. 1111 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1112 // Write a placeholder value in for the offset of the real VST, 1113 // which is written after the function blocks so that it can include 1114 // the offset of each function. The placeholder offset will be 1115 // updated when the real VST is written. 1116 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1117 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1118 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1119 // hold the real VST offset. Must use fixed instead of VBR as we don't 1120 // know how many VBR chunks to reserve ahead of time. 1121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1122 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1123 1124 // Emit the placeholder 1125 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1126 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1127 1128 // Compute and save the bit offset to the placeholder, which will be 1129 // patched when the real VST is written. We can simply subtract the 32-bit 1130 // fixed size from the current bit number to get the location to backpatch. 1131 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1132 } 1133 1134 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1135 1136 /// Determine the encoding to use for the given string name and length. 1137 static StringEncoding getStringEncoding(StringRef Str) { 1138 bool isChar6 = true; 1139 for (char C : Str) { 1140 if (isChar6) 1141 isChar6 = BitCodeAbbrevOp::isChar6(C); 1142 if ((unsigned char)C & 128) 1143 // don't bother scanning the rest. 1144 return SE_Fixed8; 1145 } 1146 if (isChar6) 1147 return SE_Char6; 1148 return SE_Fixed7; 1149 } 1150 1151 /// Emit top-level description of module, including target triple, inline asm, 1152 /// descriptors for global variables, and function prototype info. 1153 /// Returns the bit offset to backpatch with the location of the real VST. 1154 void ModuleBitcodeWriter::writeModuleInfo() { 1155 // Emit various pieces of data attached to a module. 1156 if (!M.getTargetTriple().empty()) 1157 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1158 0 /*TODO*/); 1159 const std::string &DL = M.getDataLayoutStr(); 1160 if (!DL.empty()) 1161 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1162 if (!M.getModuleInlineAsm().empty()) 1163 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1164 0 /*TODO*/); 1165 1166 // Emit information about sections and GC, computing how many there are. Also 1167 // compute the maximum alignment value. 1168 std::map<std::string, unsigned> SectionMap; 1169 std::map<std::string, unsigned> GCMap; 1170 unsigned MaxAlignment = 0; 1171 unsigned MaxGlobalType = 0; 1172 for (const GlobalValue &GV : M.globals()) { 1173 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1174 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1175 if (GV.hasSection()) { 1176 // Give section names unique ID's. 1177 unsigned &Entry = SectionMap[GV.getSection()]; 1178 if (!Entry) { 1179 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1180 0 /*TODO*/); 1181 Entry = SectionMap.size(); 1182 } 1183 } 1184 } 1185 for (const Function &F : M) { 1186 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1187 if (F.hasSection()) { 1188 // Give section names unique ID's. 1189 unsigned &Entry = SectionMap[F.getSection()]; 1190 if (!Entry) { 1191 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1192 0 /*TODO*/); 1193 Entry = SectionMap.size(); 1194 } 1195 } 1196 if (F.hasGC()) { 1197 // Same for GC names. 1198 unsigned &Entry = GCMap[F.getGC()]; 1199 if (!Entry) { 1200 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1201 0 /*TODO*/); 1202 Entry = GCMap.size(); 1203 } 1204 } 1205 } 1206 1207 // Emit abbrev for globals, now that we know # sections and max alignment. 1208 unsigned SimpleGVarAbbrev = 0; 1209 if (!M.global_empty()) { 1210 // Add an abbrev for common globals with no visibility or thread localness. 1211 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1212 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1216 Log2_32_Ceil(MaxGlobalType+1))); 1217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1218 //| explicitType << 1 1219 //| constant 1220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1222 if (MaxAlignment == 0) // Alignment. 1223 Abbv->Add(BitCodeAbbrevOp(0)); 1224 else { 1225 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1227 Log2_32_Ceil(MaxEncAlignment+1))); 1228 } 1229 if (SectionMap.empty()) // Section. 1230 Abbv->Add(BitCodeAbbrevOp(0)); 1231 else 1232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1233 Log2_32_Ceil(SectionMap.size()+1))); 1234 // Don't bother emitting vis + thread local. 1235 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1236 } 1237 1238 SmallVector<unsigned, 64> Vals; 1239 // Emit the module's source file name. 1240 { 1241 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1242 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1243 if (Bits == SE_Char6) 1244 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1245 else if (Bits == SE_Fixed7) 1246 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1247 1248 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1249 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1250 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1252 Abbv->Add(AbbrevOpToUse); 1253 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1254 1255 for (const auto P : M.getSourceFileName()) 1256 Vals.push_back((unsigned char)P); 1257 1258 // Emit the finished record. 1259 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1260 Vals.clear(); 1261 } 1262 1263 // Emit the global variable information. 1264 for (const GlobalVariable &GV : M.globals()) { 1265 unsigned AbbrevToUse = 0; 1266 1267 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1268 // linkage, alignment, section, visibility, threadlocal, 1269 // unnamed_addr, externally_initialized, dllstorageclass, 1270 // comdat, attributes, DSO_Local] 1271 Vals.push_back(addToStrtab(GV.getName())); 1272 Vals.push_back(GV.getName().size()); 1273 Vals.push_back(VE.getTypeID(GV.getValueType())); 1274 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1275 Vals.push_back(GV.isDeclaration() ? 0 : 1276 (VE.getValueID(GV.getInitializer()) + 1)); 1277 Vals.push_back(getEncodedLinkage(GV)); 1278 Vals.push_back(Log2_32(GV.getAlignment())+1); 1279 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1280 if (GV.isThreadLocal() || 1281 GV.getVisibility() != GlobalValue::DefaultVisibility || 1282 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1283 GV.isExternallyInitialized() || 1284 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1285 GV.hasComdat() || 1286 GV.hasAttributes() || 1287 GV.isDSOLocal() || 1288 GV.hasPartition()) { 1289 Vals.push_back(getEncodedVisibility(GV)); 1290 Vals.push_back(getEncodedThreadLocalMode(GV)); 1291 Vals.push_back(getEncodedUnnamedAddr(GV)); 1292 Vals.push_back(GV.isExternallyInitialized()); 1293 Vals.push_back(getEncodedDLLStorageClass(GV)); 1294 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1295 1296 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1297 Vals.push_back(VE.getAttributeListID(AL)); 1298 1299 Vals.push_back(GV.isDSOLocal()); 1300 Vals.push_back(addToStrtab(GV.getPartition())); 1301 Vals.push_back(GV.getPartition().size()); 1302 } else { 1303 AbbrevToUse = SimpleGVarAbbrev; 1304 } 1305 1306 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1307 Vals.clear(); 1308 } 1309 1310 // Emit the function proto information. 1311 for (const Function &F : M) { 1312 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1313 // linkage, paramattrs, alignment, section, visibility, gc, 1314 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1315 // prefixdata, personalityfn, DSO_Local, addrspace] 1316 Vals.push_back(addToStrtab(F.getName())); 1317 Vals.push_back(F.getName().size()); 1318 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1319 Vals.push_back(F.getCallingConv()); 1320 Vals.push_back(F.isDeclaration()); 1321 Vals.push_back(getEncodedLinkage(F)); 1322 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1323 Vals.push_back(Log2_32(F.getAlignment())+1); 1324 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1325 Vals.push_back(getEncodedVisibility(F)); 1326 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1327 Vals.push_back(getEncodedUnnamedAddr(F)); 1328 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1329 : 0); 1330 Vals.push_back(getEncodedDLLStorageClass(F)); 1331 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1332 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1333 : 0); 1334 Vals.push_back( 1335 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1336 1337 Vals.push_back(F.isDSOLocal()); 1338 Vals.push_back(F.getAddressSpace()); 1339 Vals.push_back(addToStrtab(F.getPartition())); 1340 Vals.push_back(F.getPartition().size()); 1341 1342 unsigned AbbrevToUse = 0; 1343 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1344 Vals.clear(); 1345 } 1346 1347 // Emit the alias information. 1348 for (const GlobalAlias &A : M.aliases()) { 1349 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1350 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1351 // DSO_Local] 1352 Vals.push_back(addToStrtab(A.getName())); 1353 Vals.push_back(A.getName().size()); 1354 Vals.push_back(VE.getTypeID(A.getValueType())); 1355 Vals.push_back(A.getType()->getAddressSpace()); 1356 Vals.push_back(VE.getValueID(A.getAliasee())); 1357 Vals.push_back(getEncodedLinkage(A)); 1358 Vals.push_back(getEncodedVisibility(A)); 1359 Vals.push_back(getEncodedDLLStorageClass(A)); 1360 Vals.push_back(getEncodedThreadLocalMode(A)); 1361 Vals.push_back(getEncodedUnnamedAddr(A)); 1362 Vals.push_back(A.isDSOLocal()); 1363 Vals.push_back(addToStrtab(A.getPartition())); 1364 Vals.push_back(A.getPartition().size()); 1365 1366 unsigned AbbrevToUse = 0; 1367 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1368 Vals.clear(); 1369 } 1370 1371 // Emit the ifunc information. 1372 for (const GlobalIFunc &I : M.ifuncs()) { 1373 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1374 // val#, linkage, visibility, DSO_Local] 1375 Vals.push_back(addToStrtab(I.getName())); 1376 Vals.push_back(I.getName().size()); 1377 Vals.push_back(VE.getTypeID(I.getValueType())); 1378 Vals.push_back(I.getType()->getAddressSpace()); 1379 Vals.push_back(VE.getValueID(I.getResolver())); 1380 Vals.push_back(getEncodedLinkage(I)); 1381 Vals.push_back(getEncodedVisibility(I)); 1382 Vals.push_back(I.isDSOLocal()); 1383 Vals.push_back(addToStrtab(I.getPartition())); 1384 Vals.push_back(I.getPartition().size()); 1385 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1386 Vals.clear(); 1387 } 1388 1389 writeValueSymbolTableForwardDecl(); 1390 } 1391 1392 static uint64_t getOptimizationFlags(const Value *V) { 1393 uint64_t Flags = 0; 1394 1395 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1396 if (OBO->hasNoSignedWrap()) 1397 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1398 if (OBO->hasNoUnsignedWrap()) 1399 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1400 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1401 if (PEO->isExact()) 1402 Flags |= 1 << bitc::PEO_EXACT; 1403 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1404 if (FPMO->hasAllowReassoc()) 1405 Flags |= bitc::AllowReassoc; 1406 if (FPMO->hasNoNaNs()) 1407 Flags |= bitc::NoNaNs; 1408 if (FPMO->hasNoInfs()) 1409 Flags |= bitc::NoInfs; 1410 if (FPMO->hasNoSignedZeros()) 1411 Flags |= bitc::NoSignedZeros; 1412 if (FPMO->hasAllowReciprocal()) 1413 Flags |= bitc::AllowReciprocal; 1414 if (FPMO->hasAllowContract()) 1415 Flags |= bitc::AllowContract; 1416 if (FPMO->hasApproxFunc()) 1417 Flags |= bitc::ApproxFunc; 1418 } 1419 1420 return Flags; 1421 } 1422 1423 void ModuleBitcodeWriter::writeValueAsMetadata( 1424 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1425 // Mimic an MDNode with a value as one operand. 1426 Value *V = MD->getValue(); 1427 Record.push_back(VE.getTypeID(V->getType())); 1428 Record.push_back(VE.getValueID(V)); 1429 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1430 Record.clear(); 1431 } 1432 1433 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1434 SmallVectorImpl<uint64_t> &Record, 1435 unsigned Abbrev) { 1436 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1437 Metadata *MD = N->getOperand(i); 1438 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1439 "Unexpected function-local metadata"); 1440 Record.push_back(VE.getMetadataOrNullID(MD)); 1441 } 1442 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1443 : bitc::METADATA_NODE, 1444 Record, Abbrev); 1445 Record.clear(); 1446 } 1447 1448 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1449 // Assume the column is usually under 128, and always output the inlined-at 1450 // location (it's never more expensive than building an array size 1). 1451 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1452 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1459 return Stream.EmitAbbrev(std::move(Abbv)); 1460 } 1461 1462 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1463 SmallVectorImpl<uint64_t> &Record, 1464 unsigned &Abbrev) { 1465 if (!Abbrev) 1466 Abbrev = createDILocationAbbrev(); 1467 1468 Record.push_back(N->isDistinct()); 1469 Record.push_back(N->getLine()); 1470 Record.push_back(N->getColumn()); 1471 Record.push_back(VE.getMetadataID(N->getScope())); 1472 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1473 Record.push_back(N->isImplicitCode()); 1474 1475 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1476 Record.clear(); 1477 } 1478 1479 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1480 // Assume the column is usually under 128, and always output the inlined-at 1481 // location (it's never more expensive than building an array size 1). 1482 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1483 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1490 return Stream.EmitAbbrev(std::move(Abbv)); 1491 } 1492 1493 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1494 SmallVectorImpl<uint64_t> &Record, 1495 unsigned &Abbrev) { 1496 if (!Abbrev) 1497 Abbrev = createGenericDINodeAbbrev(); 1498 1499 Record.push_back(N->isDistinct()); 1500 Record.push_back(N->getTag()); 1501 Record.push_back(0); // Per-tag version field; unused for now. 1502 1503 for (auto &I : N->operands()) 1504 Record.push_back(VE.getMetadataOrNullID(I)); 1505 1506 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1507 Record.clear(); 1508 } 1509 1510 static uint64_t rotateSign(int64_t I) { 1511 uint64_t U = I; 1512 return I < 0 ? ~(U << 1) : U << 1; 1513 } 1514 1515 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1516 SmallVectorImpl<uint64_t> &Record, 1517 unsigned Abbrev) { 1518 const uint64_t Version = 1 << 1; 1519 Record.push_back((uint64_t)N->isDistinct() | Version); 1520 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1521 Record.push_back(rotateSign(N->getLowerBound())); 1522 1523 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1524 Record.clear(); 1525 } 1526 1527 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1528 SmallVectorImpl<uint64_t> &Record, 1529 unsigned Abbrev) { 1530 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1531 Record.push_back(rotateSign(N->getValue())); 1532 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1533 1534 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1535 Record.clear(); 1536 } 1537 1538 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1539 SmallVectorImpl<uint64_t> &Record, 1540 unsigned Abbrev) { 1541 Record.push_back(N->isDistinct()); 1542 Record.push_back(N->getTag()); 1543 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1544 Record.push_back(N->getSizeInBits()); 1545 Record.push_back(N->getAlignInBits()); 1546 Record.push_back(N->getEncoding()); 1547 Record.push_back(N->getFlags()); 1548 1549 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1550 Record.clear(); 1551 } 1552 1553 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1554 SmallVectorImpl<uint64_t> &Record, 1555 unsigned Abbrev) { 1556 Record.push_back(N->isDistinct()); 1557 Record.push_back(N->getTag()); 1558 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1559 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1560 Record.push_back(N->getLine()); 1561 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1562 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1563 Record.push_back(N->getSizeInBits()); 1564 Record.push_back(N->getAlignInBits()); 1565 Record.push_back(N->getOffsetInBits()); 1566 Record.push_back(N->getFlags()); 1567 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1568 1569 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1570 // that there is no DWARF address space associated with DIDerivedType. 1571 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1572 Record.push_back(*DWARFAddressSpace + 1); 1573 else 1574 Record.push_back(0); 1575 1576 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1577 Record.clear(); 1578 } 1579 1580 void ModuleBitcodeWriter::writeDICompositeType( 1581 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1582 unsigned Abbrev) { 1583 const unsigned IsNotUsedInOldTypeRef = 0x2; 1584 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1585 Record.push_back(N->getTag()); 1586 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1587 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1588 Record.push_back(N->getLine()); 1589 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1590 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1591 Record.push_back(N->getSizeInBits()); 1592 Record.push_back(N->getAlignInBits()); 1593 Record.push_back(N->getOffsetInBits()); 1594 Record.push_back(N->getFlags()); 1595 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1596 Record.push_back(N->getRuntimeLang()); 1597 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1600 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1601 1602 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1603 Record.clear(); 1604 } 1605 1606 void ModuleBitcodeWriter::writeDISubroutineType( 1607 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1608 unsigned Abbrev) { 1609 const unsigned HasNoOldTypeRefs = 0x2; 1610 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1611 Record.push_back(N->getFlags()); 1612 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1613 Record.push_back(N->getCC()); 1614 1615 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1616 Record.clear(); 1617 } 1618 1619 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1620 SmallVectorImpl<uint64_t> &Record, 1621 unsigned Abbrev) { 1622 Record.push_back(N->isDistinct()); 1623 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1624 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1625 if (N->getRawChecksum()) { 1626 Record.push_back(N->getRawChecksum()->Kind); 1627 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1628 } else { 1629 // Maintain backwards compatibility with the old internal representation of 1630 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1631 Record.push_back(0); 1632 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1633 } 1634 auto Source = N->getRawSource(); 1635 if (Source) 1636 Record.push_back(VE.getMetadataOrNullID(*Source)); 1637 1638 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1639 Record.clear(); 1640 } 1641 1642 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1643 SmallVectorImpl<uint64_t> &Record, 1644 unsigned Abbrev) { 1645 assert(N->isDistinct() && "Expected distinct compile units"); 1646 Record.push_back(/* IsDistinct */ true); 1647 Record.push_back(N->getSourceLanguage()); 1648 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1649 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1650 Record.push_back(N->isOptimized()); 1651 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1652 Record.push_back(N->getRuntimeVersion()); 1653 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1654 Record.push_back(N->getEmissionKind()); 1655 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1657 Record.push_back(/* subprograms */ 0); 1658 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1659 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1660 Record.push_back(N->getDWOId()); 1661 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1662 Record.push_back(N->getSplitDebugInlining()); 1663 Record.push_back(N->getDebugInfoForProfiling()); 1664 Record.push_back((unsigned)N->getNameTableKind()); 1665 Record.push_back(N->getRangesBaseAddress()); 1666 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1667 1668 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1669 Record.clear(); 1670 } 1671 1672 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1673 SmallVectorImpl<uint64_t> &Record, 1674 unsigned Abbrev) { 1675 const uint64_t HasUnitFlag = 1 << 1; 1676 const uint64_t HasSPFlagsFlag = 1 << 2; 1677 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1678 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1679 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1680 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1681 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1682 Record.push_back(N->getLine()); 1683 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1684 Record.push_back(N->getScopeLine()); 1685 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1686 Record.push_back(N->getSPFlags()); 1687 Record.push_back(N->getVirtualIndex()); 1688 Record.push_back(N->getFlags()); 1689 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1690 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1691 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1693 Record.push_back(N->getThisAdjustment()); 1694 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1695 1696 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1697 Record.clear(); 1698 } 1699 1700 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1701 SmallVectorImpl<uint64_t> &Record, 1702 unsigned Abbrev) { 1703 Record.push_back(N->isDistinct()); 1704 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1705 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1706 Record.push_back(N->getLine()); 1707 Record.push_back(N->getColumn()); 1708 1709 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1710 Record.clear(); 1711 } 1712 1713 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1714 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1715 unsigned Abbrev) { 1716 Record.push_back(N->isDistinct()); 1717 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1719 Record.push_back(N->getDiscriminator()); 1720 1721 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1722 Record.clear(); 1723 } 1724 1725 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1726 SmallVectorImpl<uint64_t> &Record, 1727 unsigned Abbrev) { 1728 Record.push_back(N->isDistinct()); 1729 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1730 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1731 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1732 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1733 Record.push_back(N->getLineNo()); 1734 1735 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1736 Record.clear(); 1737 } 1738 1739 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1740 SmallVectorImpl<uint64_t> &Record, 1741 unsigned Abbrev) { 1742 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1743 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1744 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1745 1746 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1747 Record.clear(); 1748 } 1749 1750 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1751 SmallVectorImpl<uint64_t> &Record, 1752 unsigned Abbrev) { 1753 Record.push_back(N->isDistinct()); 1754 Record.push_back(N->getMacinfoType()); 1755 Record.push_back(N->getLine()); 1756 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1757 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1758 1759 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1760 Record.clear(); 1761 } 1762 1763 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1764 SmallVectorImpl<uint64_t> &Record, 1765 unsigned Abbrev) { 1766 Record.push_back(N->isDistinct()); 1767 Record.push_back(N->getMacinfoType()); 1768 Record.push_back(N->getLine()); 1769 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1770 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1771 1772 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1773 Record.clear(); 1774 } 1775 1776 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1777 SmallVectorImpl<uint64_t> &Record, 1778 unsigned Abbrev) { 1779 Record.push_back(N->isDistinct()); 1780 for (auto &I : N->operands()) 1781 Record.push_back(VE.getMetadataOrNullID(I)); 1782 1783 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1784 Record.clear(); 1785 } 1786 1787 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1788 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1789 unsigned Abbrev) { 1790 Record.push_back(N->isDistinct()); 1791 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1792 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1793 1794 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1795 Record.clear(); 1796 } 1797 1798 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1799 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1800 unsigned Abbrev) { 1801 Record.push_back(N->isDistinct()); 1802 Record.push_back(N->getTag()); 1803 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1804 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1805 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1806 1807 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1808 Record.clear(); 1809 } 1810 1811 void ModuleBitcodeWriter::writeDIGlobalVariable( 1812 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1813 unsigned Abbrev) { 1814 const uint64_t Version = 2 << 1; 1815 Record.push_back((uint64_t)N->isDistinct() | Version); 1816 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1817 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1818 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1819 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1820 Record.push_back(N->getLine()); 1821 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1822 Record.push_back(N->isLocalToUnit()); 1823 Record.push_back(N->isDefinition()); 1824 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1825 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1826 Record.push_back(N->getAlignInBits()); 1827 1828 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1829 Record.clear(); 1830 } 1831 1832 void ModuleBitcodeWriter::writeDILocalVariable( 1833 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1834 unsigned Abbrev) { 1835 // In order to support all possible bitcode formats in BitcodeReader we need 1836 // to distinguish the following cases: 1837 // 1) Record has no artificial tag (Record[1]), 1838 // has no obsolete inlinedAt field (Record[9]). 1839 // In this case Record size will be 8, HasAlignment flag is false. 1840 // 2) Record has artificial tag (Record[1]), 1841 // has no obsolete inlignedAt field (Record[9]). 1842 // In this case Record size will be 9, HasAlignment flag is false. 1843 // 3) Record has both artificial tag (Record[1]) and 1844 // obsolete inlignedAt field (Record[9]). 1845 // In this case Record size will be 10, HasAlignment flag is false. 1846 // 4) Record has neither artificial tag, nor inlignedAt field, but 1847 // HasAlignment flag is true and Record[8] contains alignment value. 1848 const uint64_t HasAlignmentFlag = 1 << 1; 1849 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1850 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1851 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1852 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1853 Record.push_back(N->getLine()); 1854 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1855 Record.push_back(N->getArg()); 1856 Record.push_back(N->getFlags()); 1857 Record.push_back(N->getAlignInBits()); 1858 1859 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1860 Record.clear(); 1861 } 1862 1863 void ModuleBitcodeWriter::writeDILabel( 1864 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1865 unsigned Abbrev) { 1866 Record.push_back((uint64_t)N->isDistinct()); 1867 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1868 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1869 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1870 Record.push_back(N->getLine()); 1871 1872 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1873 Record.clear(); 1874 } 1875 1876 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1877 SmallVectorImpl<uint64_t> &Record, 1878 unsigned Abbrev) { 1879 Record.reserve(N->getElements().size() + 1); 1880 const uint64_t Version = 3 << 1; 1881 Record.push_back((uint64_t)N->isDistinct() | Version); 1882 Record.append(N->elements_begin(), N->elements_end()); 1883 1884 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1885 Record.clear(); 1886 } 1887 1888 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1889 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1890 unsigned Abbrev) { 1891 Record.push_back(N->isDistinct()); 1892 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1893 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1894 1895 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1896 Record.clear(); 1897 } 1898 1899 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1900 SmallVectorImpl<uint64_t> &Record, 1901 unsigned Abbrev) { 1902 Record.push_back(N->isDistinct()); 1903 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1904 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1905 Record.push_back(N->getLine()); 1906 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1907 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1908 Record.push_back(N->getAttributes()); 1909 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1910 1911 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1912 Record.clear(); 1913 } 1914 1915 void ModuleBitcodeWriter::writeDIImportedEntity( 1916 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1917 unsigned Abbrev) { 1918 Record.push_back(N->isDistinct()); 1919 Record.push_back(N->getTag()); 1920 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1921 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1922 Record.push_back(N->getLine()); 1923 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1924 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1925 1926 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1927 Record.clear(); 1928 } 1929 1930 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1931 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1932 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1935 return Stream.EmitAbbrev(std::move(Abbv)); 1936 } 1937 1938 void ModuleBitcodeWriter::writeNamedMetadata( 1939 SmallVectorImpl<uint64_t> &Record) { 1940 if (M.named_metadata_empty()) 1941 return; 1942 1943 unsigned Abbrev = createNamedMetadataAbbrev(); 1944 for (const NamedMDNode &NMD : M.named_metadata()) { 1945 // Write name. 1946 StringRef Str = NMD.getName(); 1947 Record.append(Str.bytes_begin(), Str.bytes_end()); 1948 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1949 Record.clear(); 1950 1951 // Write named metadata operands. 1952 for (const MDNode *N : NMD.operands()) 1953 Record.push_back(VE.getMetadataID(N)); 1954 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1955 Record.clear(); 1956 } 1957 } 1958 1959 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1960 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1961 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1965 return Stream.EmitAbbrev(std::move(Abbv)); 1966 } 1967 1968 /// Write out a record for MDString. 1969 /// 1970 /// All the metadata strings in a metadata block are emitted in a single 1971 /// record. The sizes and strings themselves are shoved into a blob. 1972 void ModuleBitcodeWriter::writeMetadataStrings( 1973 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1974 if (Strings.empty()) 1975 return; 1976 1977 // Start the record with the number of strings. 1978 Record.push_back(bitc::METADATA_STRINGS); 1979 Record.push_back(Strings.size()); 1980 1981 // Emit the sizes of the strings in the blob. 1982 SmallString<256> Blob; 1983 { 1984 BitstreamWriter W(Blob); 1985 for (const Metadata *MD : Strings) 1986 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1987 W.FlushToWord(); 1988 } 1989 1990 // Add the offset to the strings to the record. 1991 Record.push_back(Blob.size()); 1992 1993 // Add the strings to the blob. 1994 for (const Metadata *MD : Strings) 1995 Blob.append(cast<MDString>(MD)->getString()); 1996 1997 // Emit the final record. 1998 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1999 Record.clear(); 2000 } 2001 2002 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2003 enum MetadataAbbrev : unsigned { 2004 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2005 #include "llvm/IR/Metadata.def" 2006 LastPlusOne 2007 }; 2008 2009 void ModuleBitcodeWriter::writeMetadataRecords( 2010 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2011 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2012 if (MDs.empty()) 2013 return; 2014 2015 // Initialize MDNode abbreviations. 2016 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2017 #include "llvm/IR/Metadata.def" 2018 2019 for (const Metadata *MD : MDs) { 2020 if (IndexPos) 2021 IndexPos->push_back(Stream.GetCurrentBitNo()); 2022 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2023 assert(N->isResolved() && "Expected forward references to be resolved"); 2024 2025 switch (N->getMetadataID()) { 2026 default: 2027 llvm_unreachable("Invalid MDNode subclass"); 2028 #define HANDLE_MDNODE_LEAF(CLASS) \ 2029 case Metadata::CLASS##Kind: \ 2030 if (MDAbbrevs) \ 2031 write##CLASS(cast<CLASS>(N), Record, \ 2032 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2033 else \ 2034 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2035 continue; 2036 #include "llvm/IR/Metadata.def" 2037 } 2038 } 2039 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2040 } 2041 } 2042 2043 void ModuleBitcodeWriter::writeModuleMetadata() { 2044 if (!VE.hasMDs() && M.named_metadata_empty()) 2045 return; 2046 2047 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2048 SmallVector<uint64_t, 64> Record; 2049 2050 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2051 // block and load any metadata. 2052 std::vector<unsigned> MDAbbrevs; 2053 2054 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2055 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2056 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2057 createGenericDINodeAbbrev(); 2058 2059 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2060 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2063 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2064 2065 Abbv = std::make_shared<BitCodeAbbrev>(); 2066 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2069 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2070 2071 // Emit MDStrings together upfront. 2072 writeMetadataStrings(VE.getMDStrings(), Record); 2073 2074 // We only emit an index for the metadata record if we have more than a given 2075 // (naive) threshold of metadatas, otherwise it is not worth it. 2076 if (VE.getNonMDStrings().size() > IndexThreshold) { 2077 // Write a placeholder value in for the offset of the metadata index, 2078 // which is written after the records, so that it can include 2079 // the offset of each entry. The placeholder offset will be 2080 // updated after all records are emitted. 2081 uint64_t Vals[] = {0, 0}; 2082 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2083 } 2084 2085 // Compute and save the bit offset to the current position, which will be 2086 // patched when we emit the index later. We can simply subtract the 64-bit 2087 // fixed size from the current bit number to get the location to backpatch. 2088 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2089 2090 // This index will contain the bitpos for each individual record. 2091 std::vector<uint64_t> IndexPos; 2092 IndexPos.reserve(VE.getNonMDStrings().size()); 2093 2094 // Write all the records 2095 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2096 2097 if (VE.getNonMDStrings().size() > IndexThreshold) { 2098 // Now that we have emitted all the records we will emit the index. But 2099 // first 2100 // backpatch the forward reference so that the reader can skip the records 2101 // efficiently. 2102 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2103 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2104 2105 // Delta encode the index. 2106 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2107 for (auto &Elt : IndexPos) { 2108 auto EltDelta = Elt - PreviousValue; 2109 PreviousValue = Elt; 2110 Elt = EltDelta; 2111 } 2112 // Emit the index record. 2113 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2114 IndexPos.clear(); 2115 } 2116 2117 // Write the named metadata now. 2118 writeNamedMetadata(Record); 2119 2120 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2121 SmallVector<uint64_t, 4> Record; 2122 Record.push_back(VE.getValueID(&GO)); 2123 pushGlobalMetadataAttachment(Record, GO); 2124 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2125 }; 2126 for (const Function &F : M) 2127 if (F.isDeclaration() && F.hasMetadata()) 2128 AddDeclAttachedMetadata(F); 2129 // FIXME: Only store metadata for declarations here, and move data for global 2130 // variable definitions to a separate block (PR28134). 2131 for (const GlobalVariable &GV : M.globals()) 2132 if (GV.hasMetadata()) 2133 AddDeclAttachedMetadata(GV); 2134 2135 Stream.ExitBlock(); 2136 } 2137 2138 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2139 if (!VE.hasMDs()) 2140 return; 2141 2142 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2143 SmallVector<uint64_t, 64> Record; 2144 writeMetadataStrings(VE.getMDStrings(), Record); 2145 writeMetadataRecords(VE.getNonMDStrings(), Record); 2146 Stream.ExitBlock(); 2147 } 2148 2149 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2150 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2151 // [n x [id, mdnode]] 2152 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2153 GO.getAllMetadata(MDs); 2154 for (const auto &I : MDs) { 2155 Record.push_back(I.first); 2156 Record.push_back(VE.getMetadataID(I.second)); 2157 } 2158 } 2159 2160 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2161 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2162 2163 SmallVector<uint64_t, 64> Record; 2164 2165 if (F.hasMetadata()) { 2166 pushGlobalMetadataAttachment(Record, F); 2167 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2168 Record.clear(); 2169 } 2170 2171 // Write metadata attachments 2172 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2173 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2174 for (const BasicBlock &BB : F) 2175 for (const Instruction &I : BB) { 2176 MDs.clear(); 2177 I.getAllMetadataOtherThanDebugLoc(MDs); 2178 2179 // If no metadata, ignore instruction. 2180 if (MDs.empty()) continue; 2181 2182 Record.push_back(VE.getInstructionID(&I)); 2183 2184 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2185 Record.push_back(MDs[i].first); 2186 Record.push_back(VE.getMetadataID(MDs[i].second)); 2187 } 2188 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2189 Record.clear(); 2190 } 2191 2192 Stream.ExitBlock(); 2193 } 2194 2195 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2196 SmallVector<uint64_t, 64> Record; 2197 2198 // Write metadata kinds 2199 // METADATA_KIND - [n x [id, name]] 2200 SmallVector<StringRef, 8> Names; 2201 M.getMDKindNames(Names); 2202 2203 if (Names.empty()) return; 2204 2205 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2206 2207 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2208 Record.push_back(MDKindID); 2209 StringRef KName = Names[MDKindID]; 2210 Record.append(KName.begin(), KName.end()); 2211 2212 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2213 Record.clear(); 2214 } 2215 2216 Stream.ExitBlock(); 2217 } 2218 2219 void ModuleBitcodeWriter::writeOperandBundleTags() { 2220 // Write metadata kinds 2221 // 2222 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2223 // 2224 // OPERAND_BUNDLE_TAG - [strchr x N] 2225 2226 SmallVector<StringRef, 8> Tags; 2227 M.getOperandBundleTags(Tags); 2228 2229 if (Tags.empty()) 2230 return; 2231 2232 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2233 2234 SmallVector<uint64_t, 64> Record; 2235 2236 for (auto Tag : Tags) { 2237 Record.append(Tag.begin(), Tag.end()); 2238 2239 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2240 Record.clear(); 2241 } 2242 2243 Stream.ExitBlock(); 2244 } 2245 2246 void ModuleBitcodeWriter::writeSyncScopeNames() { 2247 SmallVector<StringRef, 8> SSNs; 2248 M.getContext().getSyncScopeNames(SSNs); 2249 if (SSNs.empty()) 2250 return; 2251 2252 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2253 2254 SmallVector<uint64_t, 64> Record; 2255 for (auto SSN : SSNs) { 2256 Record.append(SSN.begin(), SSN.end()); 2257 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2258 Record.clear(); 2259 } 2260 2261 Stream.ExitBlock(); 2262 } 2263 2264 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2265 if ((int64_t)V >= 0) 2266 Vals.push_back(V << 1); 2267 else 2268 Vals.push_back((-V << 1) | 1); 2269 } 2270 2271 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2272 bool isGlobal) { 2273 if (FirstVal == LastVal) return; 2274 2275 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2276 2277 unsigned AggregateAbbrev = 0; 2278 unsigned String8Abbrev = 0; 2279 unsigned CString7Abbrev = 0; 2280 unsigned CString6Abbrev = 0; 2281 // If this is a constant pool for the module, emit module-specific abbrevs. 2282 if (isGlobal) { 2283 // Abbrev for CST_CODE_AGGREGATE. 2284 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2285 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2288 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2289 2290 // Abbrev for CST_CODE_STRING. 2291 Abbv = std::make_shared<BitCodeAbbrev>(); 2292 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2295 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2296 // Abbrev for CST_CODE_CSTRING. 2297 Abbv = std::make_shared<BitCodeAbbrev>(); 2298 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2301 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2302 // Abbrev for CST_CODE_CSTRING. 2303 Abbv = std::make_shared<BitCodeAbbrev>(); 2304 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2307 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2308 } 2309 2310 SmallVector<uint64_t, 64> Record; 2311 2312 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2313 Type *LastTy = nullptr; 2314 for (unsigned i = FirstVal; i != LastVal; ++i) { 2315 const Value *V = Vals[i].first; 2316 // If we need to switch types, do so now. 2317 if (V->getType() != LastTy) { 2318 LastTy = V->getType(); 2319 Record.push_back(VE.getTypeID(LastTy)); 2320 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2321 CONSTANTS_SETTYPE_ABBREV); 2322 Record.clear(); 2323 } 2324 2325 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2326 Record.push_back(unsigned(IA->hasSideEffects()) | 2327 unsigned(IA->isAlignStack()) << 1 | 2328 unsigned(IA->getDialect()&1) << 2); 2329 2330 // Add the asm string. 2331 const std::string &AsmStr = IA->getAsmString(); 2332 Record.push_back(AsmStr.size()); 2333 Record.append(AsmStr.begin(), AsmStr.end()); 2334 2335 // Add the constraint string. 2336 const std::string &ConstraintStr = IA->getConstraintString(); 2337 Record.push_back(ConstraintStr.size()); 2338 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2339 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2340 Record.clear(); 2341 continue; 2342 } 2343 const Constant *C = cast<Constant>(V); 2344 unsigned Code = -1U; 2345 unsigned AbbrevToUse = 0; 2346 if (C->isNullValue()) { 2347 Code = bitc::CST_CODE_NULL; 2348 } else if (isa<UndefValue>(C)) { 2349 Code = bitc::CST_CODE_UNDEF; 2350 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2351 if (IV->getBitWidth() <= 64) { 2352 uint64_t V = IV->getSExtValue(); 2353 emitSignedInt64(Record, V); 2354 Code = bitc::CST_CODE_INTEGER; 2355 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2356 } else { // Wide integers, > 64 bits in size. 2357 // We have an arbitrary precision integer value to write whose 2358 // bit width is > 64. However, in canonical unsigned integer 2359 // format it is likely that the high bits are going to be zero. 2360 // So, we only write the number of active words. 2361 unsigned NWords = IV->getValue().getActiveWords(); 2362 const uint64_t *RawWords = IV->getValue().getRawData(); 2363 for (unsigned i = 0; i != NWords; ++i) { 2364 emitSignedInt64(Record, RawWords[i]); 2365 } 2366 Code = bitc::CST_CODE_WIDE_INTEGER; 2367 } 2368 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2369 Code = bitc::CST_CODE_FLOAT; 2370 Type *Ty = CFP->getType(); 2371 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2372 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2373 } else if (Ty->isX86_FP80Ty()) { 2374 // api needed to prevent premature destruction 2375 // bits are not in the same order as a normal i80 APInt, compensate. 2376 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2377 const uint64_t *p = api.getRawData(); 2378 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2379 Record.push_back(p[0] & 0xffffLL); 2380 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2381 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2382 const uint64_t *p = api.getRawData(); 2383 Record.push_back(p[0]); 2384 Record.push_back(p[1]); 2385 } else { 2386 assert(0 && "Unknown FP type!"); 2387 } 2388 } else if (isa<ConstantDataSequential>(C) && 2389 cast<ConstantDataSequential>(C)->isString()) { 2390 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2391 // Emit constant strings specially. 2392 unsigned NumElts = Str->getNumElements(); 2393 // If this is a null-terminated string, use the denser CSTRING encoding. 2394 if (Str->isCString()) { 2395 Code = bitc::CST_CODE_CSTRING; 2396 --NumElts; // Don't encode the null, which isn't allowed by char6. 2397 } else { 2398 Code = bitc::CST_CODE_STRING; 2399 AbbrevToUse = String8Abbrev; 2400 } 2401 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2402 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2403 for (unsigned i = 0; i != NumElts; ++i) { 2404 unsigned char V = Str->getElementAsInteger(i); 2405 Record.push_back(V); 2406 isCStr7 &= (V & 128) == 0; 2407 if (isCStrChar6) 2408 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2409 } 2410 2411 if (isCStrChar6) 2412 AbbrevToUse = CString6Abbrev; 2413 else if (isCStr7) 2414 AbbrevToUse = CString7Abbrev; 2415 } else if (const ConstantDataSequential *CDS = 2416 dyn_cast<ConstantDataSequential>(C)) { 2417 Code = bitc::CST_CODE_DATA; 2418 Type *EltTy = CDS->getType()->getElementType(); 2419 if (isa<IntegerType>(EltTy)) { 2420 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2421 Record.push_back(CDS->getElementAsInteger(i)); 2422 } else { 2423 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2424 Record.push_back( 2425 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2426 } 2427 } else if (isa<ConstantAggregate>(C)) { 2428 Code = bitc::CST_CODE_AGGREGATE; 2429 for (const Value *Op : C->operands()) 2430 Record.push_back(VE.getValueID(Op)); 2431 AbbrevToUse = AggregateAbbrev; 2432 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2433 switch (CE->getOpcode()) { 2434 default: 2435 if (Instruction::isCast(CE->getOpcode())) { 2436 Code = bitc::CST_CODE_CE_CAST; 2437 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2438 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2439 Record.push_back(VE.getValueID(C->getOperand(0))); 2440 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2441 } else { 2442 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2443 Code = bitc::CST_CODE_CE_BINOP; 2444 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2445 Record.push_back(VE.getValueID(C->getOperand(0))); 2446 Record.push_back(VE.getValueID(C->getOperand(1))); 2447 uint64_t Flags = getOptimizationFlags(CE); 2448 if (Flags != 0) 2449 Record.push_back(Flags); 2450 } 2451 break; 2452 case Instruction::FNeg: { 2453 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2454 Code = bitc::CST_CODE_CE_UNOP; 2455 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2456 Record.push_back(VE.getValueID(C->getOperand(0))); 2457 uint64_t Flags = getOptimizationFlags(CE); 2458 if (Flags != 0) 2459 Record.push_back(Flags); 2460 break; 2461 } 2462 case Instruction::GetElementPtr: { 2463 Code = bitc::CST_CODE_CE_GEP; 2464 const auto *GO = cast<GEPOperator>(C); 2465 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2466 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2467 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2468 Record.push_back((*Idx << 1) | GO->isInBounds()); 2469 } else if (GO->isInBounds()) 2470 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2471 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2472 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2473 Record.push_back(VE.getValueID(C->getOperand(i))); 2474 } 2475 break; 2476 } 2477 case Instruction::Select: 2478 Code = bitc::CST_CODE_CE_SELECT; 2479 Record.push_back(VE.getValueID(C->getOperand(0))); 2480 Record.push_back(VE.getValueID(C->getOperand(1))); 2481 Record.push_back(VE.getValueID(C->getOperand(2))); 2482 break; 2483 case Instruction::ExtractElement: 2484 Code = bitc::CST_CODE_CE_EXTRACTELT; 2485 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2486 Record.push_back(VE.getValueID(C->getOperand(0))); 2487 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2488 Record.push_back(VE.getValueID(C->getOperand(1))); 2489 break; 2490 case Instruction::InsertElement: 2491 Code = bitc::CST_CODE_CE_INSERTELT; 2492 Record.push_back(VE.getValueID(C->getOperand(0))); 2493 Record.push_back(VE.getValueID(C->getOperand(1))); 2494 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2495 Record.push_back(VE.getValueID(C->getOperand(2))); 2496 break; 2497 case Instruction::ShuffleVector: 2498 // If the return type and argument types are the same, this is a 2499 // standard shufflevector instruction. If the types are different, 2500 // then the shuffle is widening or truncating the input vectors, and 2501 // the argument type must also be encoded. 2502 if (C->getType() == C->getOperand(0)->getType()) { 2503 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2504 } else { 2505 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2506 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2507 } 2508 Record.push_back(VE.getValueID(C->getOperand(0))); 2509 Record.push_back(VE.getValueID(C->getOperand(1))); 2510 Record.push_back(VE.getValueID(C->getOperand(2))); 2511 break; 2512 case Instruction::ICmp: 2513 case Instruction::FCmp: 2514 Code = bitc::CST_CODE_CE_CMP; 2515 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2516 Record.push_back(VE.getValueID(C->getOperand(0))); 2517 Record.push_back(VE.getValueID(C->getOperand(1))); 2518 Record.push_back(CE->getPredicate()); 2519 break; 2520 } 2521 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2522 Code = bitc::CST_CODE_BLOCKADDRESS; 2523 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2524 Record.push_back(VE.getValueID(BA->getFunction())); 2525 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2526 } else { 2527 #ifndef NDEBUG 2528 C->dump(); 2529 #endif 2530 llvm_unreachable("Unknown constant!"); 2531 } 2532 Stream.EmitRecord(Code, Record, AbbrevToUse); 2533 Record.clear(); 2534 } 2535 2536 Stream.ExitBlock(); 2537 } 2538 2539 void ModuleBitcodeWriter::writeModuleConstants() { 2540 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2541 2542 // Find the first constant to emit, which is the first non-globalvalue value. 2543 // We know globalvalues have been emitted by WriteModuleInfo. 2544 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2545 if (!isa<GlobalValue>(Vals[i].first)) { 2546 writeConstants(i, Vals.size(), true); 2547 return; 2548 } 2549 } 2550 } 2551 2552 /// pushValueAndType - The file has to encode both the value and type id for 2553 /// many values, because we need to know what type to create for forward 2554 /// references. However, most operands are not forward references, so this type 2555 /// field is not needed. 2556 /// 2557 /// This function adds V's value ID to Vals. If the value ID is higher than the 2558 /// instruction ID, then it is a forward reference, and it also includes the 2559 /// type ID. The value ID that is written is encoded relative to the InstID. 2560 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2561 SmallVectorImpl<unsigned> &Vals) { 2562 unsigned ValID = VE.getValueID(V); 2563 // Make encoding relative to the InstID. 2564 Vals.push_back(InstID - ValID); 2565 if (ValID >= InstID) { 2566 Vals.push_back(VE.getTypeID(V->getType())); 2567 return true; 2568 } 2569 return false; 2570 } 2571 2572 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2573 unsigned InstID) { 2574 SmallVector<unsigned, 64> Record; 2575 LLVMContext &C = CS.getInstruction()->getContext(); 2576 2577 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2578 const auto &Bundle = CS.getOperandBundleAt(i); 2579 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2580 2581 for (auto &Input : Bundle.Inputs) 2582 pushValueAndType(Input, InstID, Record); 2583 2584 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2585 Record.clear(); 2586 } 2587 } 2588 2589 /// pushValue - Like pushValueAndType, but where the type of the value is 2590 /// omitted (perhaps it was already encoded in an earlier operand). 2591 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2592 SmallVectorImpl<unsigned> &Vals) { 2593 unsigned ValID = VE.getValueID(V); 2594 Vals.push_back(InstID - ValID); 2595 } 2596 2597 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2598 SmallVectorImpl<uint64_t> &Vals) { 2599 unsigned ValID = VE.getValueID(V); 2600 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2601 emitSignedInt64(Vals, diff); 2602 } 2603 2604 /// WriteInstruction - Emit an instruction to the specified stream. 2605 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2606 unsigned InstID, 2607 SmallVectorImpl<unsigned> &Vals) { 2608 unsigned Code = 0; 2609 unsigned AbbrevToUse = 0; 2610 VE.setInstructionID(&I); 2611 switch (I.getOpcode()) { 2612 default: 2613 if (Instruction::isCast(I.getOpcode())) { 2614 Code = bitc::FUNC_CODE_INST_CAST; 2615 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2616 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2617 Vals.push_back(VE.getTypeID(I.getType())); 2618 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2619 } else { 2620 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2621 Code = bitc::FUNC_CODE_INST_BINOP; 2622 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2623 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2624 pushValue(I.getOperand(1), InstID, Vals); 2625 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2626 uint64_t Flags = getOptimizationFlags(&I); 2627 if (Flags != 0) { 2628 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2629 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2630 Vals.push_back(Flags); 2631 } 2632 } 2633 break; 2634 case Instruction::FNeg: { 2635 Code = bitc::FUNC_CODE_INST_UNOP; 2636 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2637 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2638 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2639 uint64_t Flags = getOptimizationFlags(&I); 2640 if (Flags != 0) { 2641 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2642 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2643 Vals.push_back(Flags); 2644 } 2645 break; 2646 } 2647 case Instruction::GetElementPtr: { 2648 Code = bitc::FUNC_CODE_INST_GEP; 2649 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2650 auto &GEPInst = cast<GetElementPtrInst>(I); 2651 Vals.push_back(GEPInst.isInBounds()); 2652 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2653 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2654 pushValueAndType(I.getOperand(i), InstID, Vals); 2655 break; 2656 } 2657 case Instruction::ExtractValue: { 2658 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2659 pushValueAndType(I.getOperand(0), InstID, Vals); 2660 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2661 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2662 break; 2663 } 2664 case Instruction::InsertValue: { 2665 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2666 pushValueAndType(I.getOperand(0), InstID, Vals); 2667 pushValueAndType(I.getOperand(1), InstID, Vals); 2668 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2669 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2670 break; 2671 } 2672 case Instruction::Select: { 2673 Code = bitc::FUNC_CODE_INST_VSELECT; 2674 pushValueAndType(I.getOperand(1), InstID, Vals); 2675 pushValue(I.getOperand(2), InstID, Vals); 2676 pushValueAndType(I.getOperand(0), InstID, Vals); 2677 uint64_t Flags = getOptimizationFlags(&I); 2678 if (Flags != 0) 2679 Vals.push_back(Flags); 2680 break; 2681 } 2682 case Instruction::ExtractElement: 2683 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2684 pushValueAndType(I.getOperand(0), InstID, Vals); 2685 pushValueAndType(I.getOperand(1), InstID, Vals); 2686 break; 2687 case Instruction::InsertElement: 2688 Code = bitc::FUNC_CODE_INST_INSERTELT; 2689 pushValueAndType(I.getOperand(0), InstID, Vals); 2690 pushValue(I.getOperand(1), InstID, Vals); 2691 pushValueAndType(I.getOperand(2), InstID, Vals); 2692 break; 2693 case Instruction::ShuffleVector: 2694 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2695 pushValueAndType(I.getOperand(0), InstID, Vals); 2696 pushValue(I.getOperand(1), InstID, Vals); 2697 pushValue(I.getOperand(2), InstID, Vals); 2698 break; 2699 case Instruction::ICmp: 2700 case Instruction::FCmp: { 2701 // compare returning Int1Ty or vector of Int1Ty 2702 Code = bitc::FUNC_CODE_INST_CMP2; 2703 pushValueAndType(I.getOperand(0), InstID, Vals); 2704 pushValue(I.getOperand(1), InstID, Vals); 2705 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2706 uint64_t Flags = getOptimizationFlags(&I); 2707 if (Flags != 0) 2708 Vals.push_back(Flags); 2709 break; 2710 } 2711 2712 case Instruction::Ret: 2713 { 2714 Code = bitc::FUNC_CODE_INST_RET; 2715 unsigned NumOperands = I.getNumOperands(); 2716 if (NumOperands == 0) 2717 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2718 else if (NumOperands == 1) { 2719 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2720 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2721 } else { 2722 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2723 pushValueAndType(I.getOperand(i), InstID, Vals); 2724 } 2725 } 2726 break; 2727 case Instruction::Br: 2728 { 2729 Code = bitc::FUNC_CODE_INST_BR; 2730 const BranchInst &II = cast<BranchInst>(I); 2731 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2732 if (II.isConditional()) { 2733 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2734 pushValue(II.getCondition(), InstID, Vals); 2735 } 2736 } 2737 break; 2738 case Instruction::Switch: 2739 { 2740 Code = bitc::FUNC_CODE_INST_SWITCH; 2741 const SwitchInst &SI = cast<SwitchInst>(I); 2742 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2743 pushValue(SI.getCondition(), InstID, Vals); 2744 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2745 for (auto Case : SI.cases()) { 2746 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2747 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2748 } 2749 } 2750 break; 2751 case Instruction::IndirectBr: 2752 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2753 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2754 // Encode the address operand as relative, but not the basic blocks. 2755 pushValue(I.getOperand(0), InstID, Vals); 2756 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2757 Vals.push_back(VE.getValueID(I.getOperand(i))); 2758 break; 2759 2760 case Instruction::Invoke: { 2761 const InvokeInst *II = cast<InvokeInst>(&I); 2762 const Value *Callee = II->getCalledValue(); 2763 FunctionType *FTy = II->getFunctionType(); 2764 2765 if (II->hasOperandBundles()) 2766 writeOperandBundles(II, InstID); 2767 2768 Code = bitc::FUNC_CODE_INST_INVOKE; 2769 2770 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2771 Vals.push_back(II->getCallingConv() | 1 << 13); 2772 Vals.push_back(VE.getValueID(II->getNormalDest())); 2773 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2774 Vals.push_back(VE.getTypeID(FTy)); 2775 pushValueAndType(Callee, InstID, Vals); 2776 2777 // Emit value #'s for the fixed parameters. 2778 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2779 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2780 2781 // Emit type/value pairs for varargs params. 2782 if (FTy->isVarArg()) { 2783 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2784 i != e; ++i) 2785 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2786 } 2787 break; 2788 } 2789 case Instruction::Resume: 2790 Code = bitc::FUNC_CODE_INST_RESUME; 2791 pushValueAndType(I.getOperand(0), InstID, Vals); 2792 break; 2793 case Instruction::CleanupRet: { 2794 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2795 const auto &CRI = cast<CleanupReturnInst>(I); 2796 pushValue(CRI.getCleanupPad(), InstID, Vals); 2797 if (CRI.hasUnwindDest()) 2798 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2799 break; 2800 } 2801 case Instruction::CatchRet: { 2802 Code = bitc::FUNC_CODE_INST_CATCHRET; 2803 const auto &CRI = cast<CatchReturnInst>(I); 2804 pushValue(CRI.getCatchPad(), InstID, Vals); 2805 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2806 break; 2807 } 2808 case Instruction::CleanupPad: 2809 case Instruction::CatchPad: { 2810 const auto &FuncletPad = cast<FuncletPadInst>(I); 2811 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2812 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2813 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2814 2815 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2816 Vals.push_back(NumArgOperands); 2817 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2818 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2819 break; 2820 } 2821 case Instruction::CatchSwitch: { 2822 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2823 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2824 2825 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2826 2827 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2828 Vals.push_back(NumHandlers); 2829 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2830 Vals.push_back(VE.getValueID(CatchPadBB)); 2831 2832 if (CatchSwitch.hasUnwindDest()) 2833 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2834 break; 2835 } 2836 case Instruction::CallBr: { 2837 const CallBrInst *CBI = cast<CallBrInst>(&I); 2838 const Value *Callee = CBI->getCalledValue(); 2839 FunctionType *FTy = CBI->getFunctionType(); 2840 2841 if (CBI->hasOperandBundles()) 2842 writeOperandBundles(CBI, InstID); 2843 2844 Code = bitc::FUNC_CODE_INST_CALLBR; 2845 2846 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2847 2848 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2849 1 << bitc::CALL_EXPLICIT_TYPE); 2850 2851 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2852 Vals.push_back(CBI->getNumIndirectDests()); 2853 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2854 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2855 2856 Vals.push_back(VE.getTypeID(FTy)); 2857 pushValueAndType(Callee, InstID, Vals); 2858 2859 // Emit value #'s for the fixed parameters. 2860 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2861 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2862 2863 // Emit type/value pairs for varargs params. 2864 if (FTy->isVarArg()) { 2865 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2866 i != e; ++i) 2867 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2868 } 2869 break; 2870 } 2871 case Instruction::Unreachable: 2872 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2873 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2874 break; 2875 2876 case Instruction::PHI: { 2877 const PHINode &PN = cast<PHINode>(I); 2878 Code = bitc::FUNC_CODE_INST_PHI; 2879 // With the newer instruction encoding, forward references could give 2880 // negative valued IDs. This is most common for PHIs, so we use 2881 // signed VBRs. 2882 SmallVector<uint64_t, 128> Vals64; 2883 Vals64.push_back(VE.getTypeID(PN.getType())); 2884 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2885 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2886 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2887 } 2888 2889 uint64_t Flags = getOptimizationFlags(&I); 2890 if (Flags != 0) 2891 Vals64.push_back(Flags); 2892 2893 // Emit a Vals64 vector and exit. 2894 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2895 Vals64.clear(); 2896 return; 2897 } 2898 2899 case Instruction::LandingPad: { 2900 const LandingPadInst &LP = cast<LandingPadInst>(I); 2901 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2902 Vals.push_back(VE.getTypeID(LP.getType())); 2903 Vals.push_back(LP.isCleanup()); 2904 Vals.push_back(LP.getNumClauses()); 2905 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2906 if (LP.isCatch(I)) 2907 Vals.push_back(LandingPadInst::Catch); 2908 else 2909 Vals.push_back(LandingPadInst::Filter); 2910 pushValueAndType(LP.getClause(I), InstID, Vals); 2911 } 2912 break; 2913 } 2914 2915 case Instruction::Alloca: { 2916 Code = bitc::FUNC_CODE_INST_ALLOCA; 2917 const AllocaInst &AI = cast<AllocaInst>(I); 2918 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2919 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2920 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2921 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2922 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2923 "not enough bits for maximum alignment"); 2924 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2925 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2926 AlignRecord |= 1 << 6; 2927 AlignRecord |= AI.isSwiftError() << 7; 2928 Vals.push_back(AlignRecord); 2929 break; 2930 } 2931 2932 case Instruction::Load: 2933 if (cast<LoadInst>(I).isAtomic()) { 2934 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2935 pushValueAndType(I.getOperand(0), InstID, Vals); 2936 } else { 2937 Code = bitc::FUNC_CODE_INST_LOAD; 2938 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2939 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2940 } 2941 Vals.push_back(VE.getTypeID(I.getType())); 2942 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2943 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2944 if (cast<LoadInst>(I).isAtomic()) { 2945 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2946 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2947 } 2948 break; 2949 case Instruction::Store: 2950 if (cast<StoreInst>(I).isAtomic()) 2951 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2952 else 2953 Code = bitc::FUNC_CODE_INST_STORE; 2954 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2955 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2956 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2957 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2958 if (cast<StoreInst>(I).isAtomic()) { 2959 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2960 Vals.push_back( 2961 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2962 } 2963 break; 2964 case Instruction::AtomicCmpXchg: 2965 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2966 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2967 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2968 pushValue(I.getOperand(2), InstID, Vals); // newval. 2969 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2970 Vals.push_back( 2971 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2972 Vals.push_back( 2973 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2974 Vals.push_back( 2975 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2976 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2977 break; 2978 case Instruction::AtomicRMW: 2979 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2980 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2981 pushValue(I.getOperand(1), InstID, Vals); // val. 2982 Vals.push_back( 2983 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2984 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2985 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2986 Vals.push_back( 2987 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2988 break; 2989 case Instruction::Fence: 2990 Code = bitc::FUNC_CODE_INST_FENCE; 2991 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2992 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2993 break; 2994 case Instruction::Call: { 2995 const CallInst &CI = cast<CallInst>(I); 2996 FunctionType *FTy = CI.getFunctionType(); 2997 2998 if (CI.hasOperandBundles()) 2999 writeOperandBundles(&CI, InstID); 3000 3001 Code = bitc::FUNC_CODE_INST_CALL; 3002 3003 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3004 3005 unsigned Flags = getOptimizationFlags(&I); 3006 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3007 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3008 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3009 1 << bitc::CALL_EXPLICIT_TYPE | 3010 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3011 unsigned(Flags != 0) << bitc::CALL_FMF); 3012 if (Flags != 0) 3013 Vals.push_back(Flags); 3014 3015 Vals.push_back(VE.getTypeID(FTy)); 3016 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 3017 3018 // Emit value #'s for the fixed parameters. 3019 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3020 // Check for labels (can happen with asm labels). 3021 if (FTy->getParamType(i)->isLabelTy()) 3022 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3023 else 3024 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3025 } 3026 3027 // Emit type/value pairs for varargs params. 3028 if (FTy->isVarArg()) { 3029 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3030 i != e; ++i) 3031 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3032 } 3033 break; 3034 } 3035 case Instruction::VAArg: 3036 Code = bitc::FUNC_CODE_INST_VAARG; 3037 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3038 pushValue(I.getOperand(0), InstID, Vals); // valist. 3039 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3040 break; 3041 case Instruction::Freeze: 3042 Code = bitc::FUNC_CODE_INST_FREEZE; 3043 pushValueAndType(I.getOperand(0), InstID, Vals); 3044 break; 3045 } 3046 3047 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3048 Vals.clear(); 3049 } 3050 3051 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3052 /// to allow clients to efficiently find the function body. 3053 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3054 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3055 // Get the offset of the VST we are writing, and backpatch it into 3056 // the VST forward declaration record. 3057 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3058 // The BitcodeStartBit was the stream offset of the identification block. 3059 VSTOffset -= bitcodeStartBit(); 3060 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3061 // Note that we add 1 here because the offset is relative to one word 3062 // before the start of the identification block, which was historically 3063 // always the start of the regular bitcode header. 3064 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3065 3066 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3067 3068 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3069 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3072 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3073 3074 for (const Function &F : M) { 3075 uint64_t Record[2]; 3076 3077 if (F.isDeclaration()) 3078 continue; 3079 3080 Record[0] = VE.getValueID(&F); 3081 3082 // Save the word offset of the function (from the start of the 3083 // actual bitcode written to the stream). 3084 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3085 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3086 // Note that we add 1 here because the offset is relative to one word 3087 // before the start of the identification block, which was historically 3088 // always the start of the regular bitcode header. 3089 Record[1] = BitcodeIndex / 32 + 1; 3090 3091 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3092 } 3093 3094 Stream.ExitBlock(); 3095 } 3096 3097 /// Emit names for arguments, instructions and basic blocks in a function. 3098 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3099 const ValueSymbolTable &VST) { 3100 if (VST.empty()) 3101 return; 3102 3103 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3104 3105 // FIXME: Set up the abbrev, we know how many values there are! 3106 // FIXME: We know if the type names can use 7-bit ascii. 3107 SmallVector<uint64_t, 64> NameVals; 3108 3109 for (const ValueName &Name : VST) { 3110 // Figure out the encoding to use for the name. 3111 StringEncoding Bits = getStringEncoding(Name.getKey()); 3112 3113 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3114 NameVals.push_back(VE.getValueID(Name.getValue())); 3115 3116 // VST_CODE_ENTRY: [valueid, namechar x N] 3117 // VST_CODE_BBENTRY: [bbid, namechar x N] 3118 unsigned Code; 3119 if (isa<BasicBlock>(Name.getValue())) { 3120 Code = bitc::VST_CODE_BBENTRY; 3121 if (Bits == SE_Char6) 3122 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3123 } else { 3124 Code = bitc::VST_CODE_ENTRY; 3125 if (Bits == SE_Char6) 3126 AbbrevToUse = VST_ENTRY_6_ABBREV; 3127 else if (Bits == SE_Fixed7) 3128 AbbrevToUse = VST_ENTRY_7_ABBREV; 3129 } 3130 3131 for (const auto P : Name.getKey()) 3132 NameVals.push_back((unsigned char)P); 3133 3134 // Emit the finished record. 3135 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3136 NameVals.clear(); 3137 } 3138 3139 Stream.ExitBlock(); 3140 } 3141 3142 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3143 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3144 unsigned Code; 3145 if (isa<BasicBlock>(Order.V)) 3146 Code = bitc::USELIST_CODE_BB; 3147 else 3148 Code = bitc::USELIST_CODE_DEFAULT; 3149 3150 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3151 Record.push_back(VE.getValueID(Order.V)); 3152 Stream.EmitRecord(Code, Record); 3153 } 3154 3155 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3156 assert(VE.shouldPreserveUseListOrder() && 3157 "Expected to be preserving use-list order"); 3158 3159 auto hasMore = [&]() { 3160 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3161 }; 3162 if (!hasMore()) 3163 // Nothing to do. 3164 return; 3165 3166 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3167 while (hasMore()) { 3168 writeUseList(std::move(VE.UseListOrders.back())); 3169 VE.UseListOrders.pop_back(); 3170 } 3171 Stream.ExitBlock(); 3172 } 3173 3174 /// Emit a function body to the module stream. 3175 void ModuleBitcodeWriter::writeFunction( 3176 const Function &F, 3177 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3178 // Save the bitcode index of the start of this function block for recording 3179 // in the VST. 3180 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3181 3182 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3183 VE.incorporateFunction(F); 3184 3185 SmallVector<unsigned, 64> Vals; 3186 3187 // Emit the number of basic blocks, so the reader can create them ahead of 3188 // time. 3189 Vals.push_back(VE.getBasicBlocks().size()); 3190 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3191 Vals.clear(); 3192 3193 // If there are function-local constants, emit them now. 3194 unsigned CstStart, CstEnd; 3195 VE.getFunctionConstantRange(CstStart, CstEnd); 3196 writeConstants(CstStart, CstEnd, false); 3197 3198 // If there is function-local metadata, emit it now. 3199 writeFunctionMetadata(F); 3200 3201 // Keep a running idea of what the instruction ID is. 3202 unsigned InstID = CstEnd; 3203 3204 bool NeedsMetadataAttachment = F.hasMetadata(); 3205 3206 DILocation *LastDL = nullptr; 3207 // Finally, emit all the instructions, in order. 3208 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3209 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3210 I != E; ++I) { 3211 writeInstruction(*I, InstID, Vals); 3212 3213 if (!I->getType()->isVoidTy()) 3214 ++InstID; 3215 3216 // If the instruction has metadata, write a metadata attachment later. 3217 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3218 3219 // If the instruction has a debug location, emit it. 3220 DILocation *DL = I->getDebugLoc(); 3221 if (!DL) 3222 continue; 3223 3224 if (DL == LastDL) { 3225 // Just repeat the same debug loc as last time. 3226 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3227 continue; 3228 } 3229 3230 Vals.push_back(DL->getLine()); 3231 Vals.push_back(DL->getColumn()); 3232 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3233 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3234 Vals.push_back(DL->isImplicitCode()); 3235 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3236 Vals.clear(); 3237 3238 LastDL = DL; 3239 } 3240 3241 // Emit names for all the instructions etc. 3242 if (auto *Symtab = F.getValueSymbolTable()) 3243 writeFunctionLevelValueSymbolTable(*Symtab); 3244 3245 if (NeedsMetadataAttachment) 3246 writeFunctionMetadataAttachment(F); 3247 if (VE.shouldPreserveUseListOrder()) 3248 writeUseListBlock(&F); 3249 VE.purgeFunction(); 3250 Stream.ExitBlock(); 3251 } 3252 3253 // Emit blockinfo, which defines the standard abbreviations etc. 3254 void ModuleBitcodeWriter::writeBlockInfo() { 3255 // We only want to emit block info records for blocks that have multiple 3256 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3257 // Other blocks can define their abbrevs inline. 3258 Stream.EnterBlockInfoBlock(); 3259 3260 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3261 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3266 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3267 VST_ENTRY_8_ABBREV) 3268 llvm_unreachable("Unexpected abbrev ordering!"); 3269 } 3270 3271 { // 7-bit fixed width VST_CODE_ENTRY strings. 3272 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3273 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3277 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3278 VST_ENTRY_7_ABBREV) 3279 llvm_unreachable("Unexpected abbrev ordering!"); 3280 } 3281 { // 6-bit char6 VST_CODE_ENTRY strings. 3282 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3283 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3287 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3288 VST_ENTRY_6_ABBREV) 3289 llvm_unreachable("Unexpected abbrev ordering!"); 3290 } 3291 { // 6-bit char6 VST_CODE_BBENTRY strings. 3292 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3293 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3297 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3298 VST_BBENTRY_6_ABBREV) 3299 llvm_unreachable("Unexpected abbrev ordering!"); 3300 } 3301 3302 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3303 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3304 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3306 VE.computeBitsRequiredForTypeIndicies())); 3307 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3308 CONSTANTS_SETTYPE_ABBREV) 3309 llvm_unreachable("Unexpected abbrev ordering!"); 3310 } 3311 3312 { // INTEGER abbrev for CONSTANTS_BLOCK. 3313 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3314 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3316 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3317 CONSTANTS_INTEGER_ABBREV) 3318 llvm_unreachable("Unexpected abbrev ordering!"); 3319 } 3320 3321 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3322 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3323 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3326 VE.computeBitsRequiredForTypeIndicies())); 3327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3328 3329 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3330 CONSTANTS_CE_CAST_Abbrev) 3331 llvm_unreachable("Unexpected abbrev ordering!"); 3332 } 3333 { // NULL abbrev for CONSTANTS_BLOCK. 3334 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3335 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3336 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3337 CONSTANTS_NULL_Abbrev) 3338 llvm_unreachable("Unexpected abbrev ordering!"); 3339 } 3340 3341 // FIXME: This should only use space for first class types! 3342 3343 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3344 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3345 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3348 VE.computeBitsRequiredForTypeIndicies())); 3349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3351 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3352 FUNCTION_INST_LOAD_ABBREV) 3353 llvm_unreachable("Unexpected abbrev ordering!"); 3354 } 3355 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3356 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3357 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3360 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3361 FUNCTION_INST_UNOP_ABBREV) 3362 llvm_unreachable("Unexpected abbrev ordering!"); 3363 } 3364 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3365 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3366 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3370 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3371 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3372 llvm_unreachable("Unexpected abbrev ordering!"); 3373 } 3374 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3375 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3376 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3380 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3381 FUNCTION_INST_BINOP_ABBREV) 3382 llvm_unreachable("Unexpected abbrev ordering!"); 3383 } 3384 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3385 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3386 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3391 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3392 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3393 llvm_unreachable("Unexpected abbrev ordering!"); 3394 } 3395 { // INST_CAST abbrev for FUNCTION_BLOCK. 3396 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3397 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3400 VE.computeBitsRequiredForTypeIndicies())); 3401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3402 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3403 FUNCTION_INST_CAST_ABBREV) 3404 llvm_unreachable("Unexpected abbrev ordering!"); 3405 } 3406 3407 { // INST_RET abbrev for FUNCTION_BLOCK. 3408 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3409 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3410 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3411 FUNCTION_INST_RET_VOID_ABBREV) 3412 llvm_unreachable("Unexpected abbrev ordering!"); 3413 } 3414 { // INST_RET abbrev for FUNCTION_BLOCK. 3415 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3416 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3418 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3419 FUNCTION_INST_RET_VAL_ABBREV) 3420 llvm_unreachable("Unexpected abbrev ordering!"); 3421 } 3422 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3423 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3424 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3425 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3426 FUNCTION_INST_UNREACHABLE_ABBREV) 3427 llvm_unreachable("Unexpected abbrev ordering!"); 3428 } 3429 { 3430 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3431 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3434 Log2_32_Ceil(VE.getTypes().size() + 1))); 3435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3437 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3438 FUNCTION_INST_GEP_ABBREV) 3439 llvm_unreachable("Unexpected abbrev ordering!"); 3440 } 3441 3442 Stream.ExitBlock(); 3443 } 3444 3445 /// Write the module path strings, currently only used when generating 3446 /// a combined index file. 3447 void IndexBitcodeWriter::writeModStrings() { 3448 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3449 3450 // TODO: See which abbrev sizes we actually need to emit 3451 3452 // 8-bit fixed-width MST_ENTRY strings. 3453 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3454 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3458 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3459 3460 // 7-bit fixed width MST_ENTRY strings. 3461 Abbv = std::make_shared<BitCodeAbbrev>(); 3462 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3466 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3467 3468 // 6-bit char6 MST_ENTRY strings. 3469 Abbv = std::make_shared<BitCodeAbbrev>(); 3470 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3474 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3475 3476 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3477 Abbv = std::make_shared<BitCodeAbbrev>(); 3478 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3484 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3485 3486 SmallVector<unsigned, 64> Vals; 3487 forEachModule( 3488 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3489 StringRef Key = MPSE.getKey(); 3490 const auto &Value = MPSE.getValue(); 3491 StringEncoding Bits = getStringEncoding(Key); 3492 unsigned AbbrevToUse = Abbrev8Bit; 3493 if (Bits == SE_Char6) 3494 AbbrevToUse = Abbrev6Bit; 3495 else if (Bits == SE_Fixed7) 3496 AbbrevToUse = Abbrev7Bit; 3497 3498 Vals.push_back(Value.first); 3499 Vals.append(Key.begin(), Key.end()); 3500 3501 // Emit the finished record. 3502 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3503 3504 // Emit an optional hash for the module now 3505 const auto &Hash = Value.second; 3506 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3507 Vals.assign(Hash.begin(), Hash.end()); 3508 // Emit the hash record. 3509 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3510 } 3511 3512 Vals.clear(); 3513 }); 3514 Stream.ExitBlock(); 3515 } 3516 3517 /// Write the function type metadata related records that need to appear before 3518 /// a function summary entry (whether per-module or combined). 3519 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3520 FunctionSummary *FS) { 3521 if (!FS->type_tests().empty()) 3522 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3523 3524 SmallVector<uint64_t, 64> Record; 3525 3526 auto WriteVFuncIdVec = [&](uint64_t Ty, 3527 ArrayRef<FunctionSummary::VFuncId> VFs) { 3528 if (VFs.empty()) 3529 return; 3530 Record.clear(); 3531 for (auto &VF : VFs) { 3532 Record.push_back(VF.GUID); 3533 Record.push_back(VF.Offset); 3534 } 3535 Stream.EmitRecord(Ty, Record); 3536 }; 3537 3538 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3539 FS->type_test_assume_vcalls()); 3540 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3541 FS->type_checked_load_vcalls()); 3542 3543 auto WriteConstVCallVec = [&](uint64_t Ty, 3544 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3545 for (auto &VC : VCs) { 3546 Record.clear(); 3547 Record.push_back(VC.VFunc.GUID); 3548 Record.push_back(VC.VFunc.Offset); 3549 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3550 Stream.EmitRecord(Ty, Record); 3551 } 3552 }; 3553 3554 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3555 FS->type_test_assume_const_vcalls()); 3556 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3557 FS->type_checked_load_const_vcalls()); 3558 } 3559 3560 /// Collect type IDs from type tests used by function. 3561 static void 3562 getReferencedTypeIds(FunctionSummary *FS, 3563 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3564 if (!FS->type_tests().empty()) 3565 for (auto &TT : FS->type_tests()) 3566 ReferencedTypeIds.insert(TT); 3567 3568 auto GetReferencedTypesFromVFuncIdVec = 3569 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3570 for (auto &VF : VFs) 3571 ReferencedTypeIds.insert(VF.GUID); 3572 }; 3573 3574 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3575 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3576 3577 auto GetReferencedTypesFromConstVCallVec = 3578 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3579 for (auto &VC : VCs) 3580 ReferencedTypeIds.insert(VC.VFunc.GUID); 3581 }; 3582 3583 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3584 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3585 } 3586 3587 static void writeWholeProgramDevirtResolutionByArg( 3588 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3589 const WholeProgramDevirtResolution::ByArg &ByArg) { 3590 NameVals.push_back(args.size()); 3591 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3592 3593 NameVals.push_back(ByArg.TheKind); 3594 NameVals.push_back(ByArg.Info); 3595 NameVals.push_back(ByArg.Byte); 3596 NameVals.push_back(ByArg.Bit); 3597 } 3598 3599 static void writeWholeProgramDevirtResolution( 3600 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3601 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3602 NameVals.push_back(Id); 3603 3604 NameVals.push_back(Wpd.TheKind); 3605 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3606 NameVals.push_back(Wpd.SingleImplName.size()); 3607 3608 NameVals.push_back(Wpd.ResByArg.size()); 3609 for (auto &A : Wpd.ResByArg) 3610 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3611 } 3612 3613 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3614 StringTableBuilder &StrtabBuilder, 3615 const std::string &Id, 3616 const TypeIdSummary &Summary) { 3617 NameVals.push_back(StrtabBuilder.add(Id)); 3618 NameVals.push_back(Id.size()); 3619 3620 NameVals.push_back(Summary.TTRes.TheKind); 3621 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3622 NameVals.push_back(Summary.TTRes.AlignLog2); 3623 NameVals.push_back(Summary.TTRes.SizeM1); 3624 NameVals.push_back(Summary.TTRes.BitMask); 3625 NameVals.push_back(Summary.TTRes.InlineBits); 3626 3627 for (auto &W : Summary.WPDRes) 3628 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3629 W.second); 3630 } 3631 3632 static void writeTypeIdCompatibleVtableSummaryRecord( 3633 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3634 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3635 ValueEnumerator &VE) { 3636 NameVals.push_back(StrtabBuilder.add(Id)); 3637 NameVals.push_back(Id.size()); 3638 3639 for (auto &P : Summary) { 3640 NameVals.push_back(P.AddressPointOffset); 3641 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3642 } 3643 } 3644 3645 // Helper to emit a single function summary record. 3646 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3647 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3648 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3649 const Function &F) { 3650 NameVals.push_back(ValueID); 3651 3652 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3653 writeFunctionTypeMetadataRecords(Stream, FS); 3654 3655 auto SpecialRefCnts = FS->specialRefCounts(); 3656 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3657 NameVals.push_back(FS->instCount()); 3658 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3659 NameVals.push_back(FS->refs().size()); 3660 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3661 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3662 3663 for (auto &RI : FS->refs()) 3664 NameVals.push_back(VE.getValueID(RI.getValue())); 3665 3666 bool HasProfileData = 3667 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3668 for (auto &ECI : FS->calls()) { 3669 NameVals.push_back(getValueId(ECI.first)); 3670 if (HasProfileData) 3671 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3672 else if (WriteRelBFToSummary) 3673 NameVals.push_back(ECI.second.RelBlockFreq); 3674 } 3675 3676 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3677 unsigned Code = 3678 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3679 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3680 : bitc::FS_PERMODULE)); 3681 3682 // Emit the finished record. 3683 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3684 NameVals.clear(); 3685 } 3686 3687 // Collect the global value references in the given variable's initializer, 3688 // and emit them in a summary record. 3689 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3690 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3691 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3692 auto VI = Index->getValueInfo(V.getGUID()); 3693 if (!VI || VI.getSummaryList().empty()) { 3694 // Only declarations should not have a summary (a declaration might however 3695 // have a summary if the def was in module level asm). 3696 assert(V.isDeclaration()); 3697 return; 3698 } 3699 auto *Summary = VI.getSummaryList()[0].get(); 3700 NameVals.push_back(VE.getValueID(&V)); 3701 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3702 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3703 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3704 3705 auto VTableFuncs = VS->vTableFuncs(); 3706 if (!VTableFuncs.empty()) 3707 NameVals.push_back(VS->refs().size()); 3708 3709 unsigned SizeBeforeRefs = NameVals.size(); 3710 for (auto &RI : VS->refs()) 3711 NameVals.push_back(VE.getValueID(RI.getValue())); 3712 // Sort the refs for determinism output, the vector returned by FS->refs() has 3713 // been initialized from a DenseSet. 3714 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3715 3716 if (VTableFuncs.empty()) 3717 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3718 FSModRefsAbbrev); 3719 else { 3720 // VTableFuncs pairs should already be sorted by offset. 3721 for (auto &P : VTableFuncs) { 3722 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3723 NameVals.push_back(P.VTableOffset); 3724 } 3725 3726 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3727 FSModVTableRefsAbbrev); 3728 } 3729 NameVals.clear(); 3730 } 3731 3732 /// Emit the per-module summary section alongside the rest of 3733 /// the module's bitcode. 3734 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3735 // By default we compile with ThinLTO if the module has a summary, but the 3736 // client can request full LTO with a module flag. 3737 bool IsThinLTO = true; 3738 if (auto *MD = 3739 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3740 IsThinLTO = MD->getZExtValue(); 3741 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3742 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3743 4); 3744 3745 Stream.EmitRecord( 3746 bitc::FS_VERSION, 3747 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3748 3749 // Write the index flags. 3750 uint64_t Flags = 0; 3751 // Bits 1-3 are set only in the combined index, skip them. 3752 if (Index->enableSplitLTOUnit()) 3753 Flags |= 0x8; 3754 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3755 3756 if (Index->begin() == Index->end()) { 3757 Stream.ExitBlock(); 3758 return; 3759 } 3760 3761 for (const auto &GVI : valueIds()) { 3762 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3763 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3764 } 3765 3766 // Abbrev for FS_PERMODULE_PROFILE. 3767 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3768 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3776 // numrefs x valueid, n x (valueid, hotness) 3777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3779 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3780 3781 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3782 Abbv = std::make_shared<BitCodeAbbrev>(); 3783 if (WriteRelBFToSummary) 3784 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3785 else 3786 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3794 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3797 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3798 3799 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3800 Abbv = std::make_shared<BitCodeAbbrev>(); 3801 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3806 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3807 3808 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3809 Abbv = std::make_shared<BitCodeAbbrev>(); 3810 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3814 // numrefs x valueid, n x (valueid , offset) 3815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3817 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3818 3819 // Abbrev for FS_ALIAS. 3820 Abbv = std::make_shared<BitCodeAbbrev>(); 3821 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3825 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3826 3827 // Abbrev for FS_TYPE_ID_METADATA 3828 Abbv = std::make_shared<BitCodeAbbrev>(); 3829 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3832 // n x (valueid , offset) 3833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3835 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3836 3837 SmallVector<uint64_t, 64> NameVals; 3838 // Iterate over the list of functions instead of the Index to 3839 // ensure the ordering is stable. 3840 for (const Function &F : M) { 3841 // Summary emission does not support anonymous functions, they have to 3842 // renamed using the anonymous function renaming pass. 3843 if (!F.hasName()) 3844 report_fatal_error("Unexpected anonymous function when writing summary"); 3845 3846 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3847 if (!VI || VI.getSummaryList().empty()) { 3848 // Only declarations should not have a summary (a declaration might 3849 // however have a summary if the def was in module level asm). 3850 assert(F.isDeclaration()); 3851 continue; 3852 } 3853 auto *Summary = VI.getSummaryList()[0].get(); 3854 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3855 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3856 } 3857 3858 // Capture references from GlobalVariable initializers, which are outside 3859 // of a function scope. 3860 for (const GlobalVariable &G : M.globals()) 3861 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3862 FSModVTableRefsAbbrev); 3863 3864 for (const GlobalAlias &A : M.aliases()) { 3865 auto *Aliasee = A.getBaseObject(); 3866 if (!Aliasee->hasName()) 3867 // Nameless function don't have an entry in the summary, skip it. 3868 continue; 3869 auto AliasId = VE.getValueID(&A); 3870 auto AliaseeId = VE.getValueID(Aliasee); 3871 NameVals.push_back(AliasId); 3872 auto *Summary = Index->getGlobalValueSummary(A); 3873 AliasSummary *AS = cast<AliasSummary>(Summary); 3874 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3875 NameVals.push_back(AliaseeId); 3876 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3877 NameVals.clear(); 3878 } 3879 3880 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3881 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3882 S.second, VE); 3883 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3884 TypeIdCompatibleVtableAbbrev); 3885 NameVals.clear(); 3886 } 3887 3888 Stream.ExitBlock(); 3889 } 3890 3891 /// Emit the combined summary section into the combined index file. 3892 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3893 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3894 Stream.EmitRecord( 3895 bitc::FS_VERSION, 3896 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3897 3898 // Write the index flags. 3899 uint64_t Flags = 0; 3900 if (Index.withGlobalValueDeadStripping()) 3901 Flags |= 0x1; 3902 if (Index.skipModuleByDistributedBackend()) 3903 Flags |= 0x2; 3904 if (Index.hasSyntheticEntryCounts()) 3905 Flags |= 0x4; 3906 if (Index.enableSplitLTOUnit()) 3907 Flags |= 0x8; 3908 if (Index.partiallySplitLTOUnits()) 3909 Flags |= 0x10; 3910 if (Index.withAttributePropagation()) 3911 Flags |= 0x20; 3912 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3913 3914 for (const auto &GVI : valueIds()) { 3915 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3916 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3917 } 3918 3919 // Abbrev for FS_COMBINED. 3920 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3921 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3931 // numrefs x valueid, n x (valueid) 3932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3934 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3935 3936 // Abbrev for FS_COMBINED_PROFILE. 3937 Abbv = std::make_shared<BitCodeAbbrev>(); 3938 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3948 // numrefs x valueid, n x (valueid, hotness) 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3951 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3952 3953 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3954 Abbv = std::make_shared<BitCodeAbbrev>(); 3955 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3961 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3962 3963 // Abbrev for FS_COMBINED_ALIAS. 3964 Abbv = std::make_shared<BitCodeAbbrev>(); 3965 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3970 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3971 3972 // The aliases are emitted as a post-pass, and will point to the value 3973 // id of the aliasee. Save them in a vector for post-processing. 3974 SmallVector<AliasSummary *, 64> Aliases; 3975 3976 // Save the value id for each summary for alias emission. 3977 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3978 3979 SmallVector<uint64_t, 64> NameVals; 3980 3981 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3982 // with the type ids referenced by this index file. 3983 std::set<GlobalValue::GUID> ReferencedTypeIds; 3984 3985 // For local linkage, we also emit the original name separately 3986 // immediately after the record. 3987 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3988 if (!GlobalValue::isLocalLinkage(S.linkage())) 3989 return; 3990 NameVals.push_back(S.getOriginalName()); 3991 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3992 NameVals.clear(); 3993 }; 3994 3995 std::set<GlobalValue::GUID> DefOrUseGUIDs; 3996 forEachSummary([&](GVInfo I, bool IsAliasee) { 3997 GlobalValueSummary *S = I.second; 3998 assert(S); 3999 DefOrUseGUIDs.insert(I.first); 4000 for (const ValueInfo &VI : S->refs()) 4001 DefOrUseGUIDs.insert(VI.getGUID()); 4002 4003 auto ValueId = getValueId(I.first); 4004 assert(ValueId); 4005 SummaryToValueIdMap[S] = *ValueId; 4006 4007 // If this is invoked for an aliasee, we want to record the above 4008 // mapping, but then not emit a summary entry (if the aliasee is 4009 // to be imported, we will invoke this separately with IsAliasee=false). 4010 if (IsAliasee) 4011 return; 4012 4013 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4014 // Will process aliases as a post-pass because the reader wants all 4015 // global to be loaded first. 4016 Aliases.push_back(AS); 4017 return; 4018 } 4019 4020 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4021 NameVals.push_back(*ValueId); 4022 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4023 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4024 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4025 for (auto &RI : VS->refs()) { 4026 auto RefValueId = getValueId(RI.getGUID()); 4027 if (!RefValueId) 4028 continue; 4029 NameVals.push_back(*RefValueId); 4030 } 4031 4032 // Emit the finished record. 4033 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4034 FSModRefsAbbrev); 4035 NameVals.clear(); 4036 MaybeEmitOriginalName(*S); 4037 return; 4038 } 4039 4040 auto *FS = cast<FunctionSummary>(S); 4041 writeFunctionTypeMetadataRecords(Stream, FS); 4042 getReferencedTypeIds(FS, ReferencedTypeIds); 4043 4044 NameVals.push_back(*ValueId); 4045 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4046 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4047 NameVals.push_back(FS->instCount()); 4048 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4049 NameVals.push_back(FS->entryCount()); 4050 4051 // Fill in below 4052 NameVals.push_back(0); // numrefs 4053 NameVals.push_back(0); // rorefcnt 4054 NameVals.push_back(0); // worefcnt 4055 4056 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4057 for (auto &RI : FS->refs()) { 4058 auto RefValueId = getValueId(RI.getGUID()); 4059 if (!RefValueId) 4060 continue; 4061 NameVals.push_back(*RefValueId); 4062 if (RI.isReadOnly()) 4063 RORefCnt++; 4064 else if (RI.isWriteOnly()) 4065 WORefCnt++; 4066 Count++; 4067 } 4068 NameVals[6] = Count; 4069 NameVals[7] = RORefCnt; 4070 NameVals[8] = WORefCnt; 4071 4072 bool HasProfileData = false; 4073 for (auto &EI : FS->calls()) { 4074 HasProfileData |= 4075 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4076 if (HasProfileData) 4077 break; 4078 } 4079 4080 for (auto &EI : FS->calls()) { 4081 // If this GUID doesn't have a value id, it doesn't have a function 4082 // summary and we don't need to record any calls to it. 4083 GlobalValue::GUID GUID = EI.first.getGUID(); 4084 auto CallValueId = getValueId(GUID); 4085 if (!CallValueId) { 4086 // For SamplePGO, the indirect call targets for local functions will 4087 // have its original name annotated in profile. We try to find the 4088 // corresponding PGOFuncName as the GUID. 4089 GUID = Index.getGUIDFromOriginalID(GUID); 4090 if (GUID == 0) 4091 continue; 4092 CallValueId = getValueId(GUID); 4093 if (!CallValueId) 4094 continue; 4095 // The mapping from OriginalId to GUID may return a GUID 4096 // that corresponds to a static variable. Filter it out here. 4097 // This can happen when 4098 // 1) There is a call to a library function which does not have 4099 // a CallValidId; 4100 // 2) There is a static variable with the OriginalGUID identical 4101 // to the GUID of the library function in 1); 4102 // When this happens, the logic for SamplePGO kicks in and 4103 // the static variable in 2) will be found, which needs to be 4104 // filtered out. 4105 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4106 if (GVSum && 4107 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4108 continue; 4109 } 4110 NameVals.push_back(*CallValueId); 4111 if (HasProfileData) 4112 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4113 } 4114 4115 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4116 unsigned Code = 4117 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4118 4119 // Emit the finished record. 4120 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4121 NameVals.clear(); 4122 MaybeEmitOriginalName(*S); 4123 }); 4124 4125 for (auto *AS : Aliases) { 4126 auto AliasValueId = SummaryToValueIdMap[AS]; 4127 assert(AliasValueId); 4128 NameVals.push_back(AliasValueId); 4129 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4130 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4131 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4132 assert(AliaseeValueId); 4133 NameVals.push_back(AliaseeValueId); 4134 4135 // Emit the finished record. 4136 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4137 NameVals.clear(); 4138 MaybeEmitOriginalName(*AS); 4139 4140 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4141 getReferencedTypeIds(FS, ReferencedTypeIds); 4142 } 4143 4144 if (!Index.cfiFunctionDefs().empty()) { 4145 for (auto &S : Index.cfiFunctionDefs()) { 4146 if (DefOrUseGUIDs.count( 4147 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4148 NameVals.push_back(StrtabBuilder.add(S)); 4149 NameVals.push_back(S.size()); 4150 } 4151 } 4152 if (!NameVals.empty()) { 4153 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4154 NameVals.clear(); 4155 } 4156 } 4157 4158 if (!Index.cfiFunctionDecls().empty()) { 4159 for (auto &S : Index.cfiFunctionDecls()) { 4160 if (DefOrUseGUIDs.count( 4161 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4162 NameVals.push_back(StrtabBuilder.add(S)); 4163 NameVals.push_back(S.size()); 4164 } 4165 } 4166 if (!NameVals.empty()) { 4167 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4168 NameVals.clear(); 4169 } 4170 } 4171 4172 // Walk the GUIDs that were referenced, and write the 4173 // corresponding type id records. 4174 for (auto &T : ReferencedTypeIds) { 4175 auto TidIter = Index.typeIds().equal_range(T); 4176 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4177 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4178 It->second.second); 4179 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4180 NameVals.clear(); 4181 } 4182 } 4183 4184 Stream.ExitBlock(); 4185 } 4186 4187 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4188 /// current llvm version, and a record for the epoch number. 4189 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4190 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4191 4192 // Write the "user readable" string identifying the bitcode producer 4193 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4194 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4197 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4198 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4199 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4200 4201 // Write the epoch version 4202 Abbv = std::make_shared<BitCodeAbbrev>(); 4203 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4205 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4206 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 4207 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4208 Stream.ExitBlock(); 4209 } 4210 4211 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4212 // Emit the module's hash. 4213 // MODULE_CODE_HASH: [5*i32] 4214 if (GenerateHash) { 4215 uint32_t Vals[5]; 4216 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4217 Buffer.size() - BlockStartPos)); 4218 StringRef Hash = Hasher.result(); 4219 for (int Pos = 0; Pos < 20; Pos += 4) { 4220 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4221 } 4222 4223 // Emit the finished record. 4224 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4225 4226 if (ModHash) 4227 // Save the written hash value. 4228 llvm::copy(Vals, std::begin(*ModHash)); 4229 } 4230 } 4231 4232 void ModuleBitcodeWriter::write() { 4233 writeIdentificationBlock(Stream); 4234 4235 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4236 size_t BlockStartPos = Buffer.size(); 4237 4238 writeModuleVersion(); 4239 4240 // Emit blockinfo, which defines the standard abbreviations etc. 4241 writeBlockInfo(); 4242 4243 // Emit information describing all of the types in the module. 4244 writeTypeTable(); 4245 4246 // Emit information about attribute groups. 4247 writeAttributeGroupTable(); 4248 4249 // Emit information about parameter attributes. 4250 writeAttributeTable(); 4251 4252 writeComdats(); 4253 4254 // Emit top-level description of module, including target triple, inline asm, 4255 // descriptors for global variables, and function prototype info. 4256 writeModuleInfo(); 4257 4258 // Emit constants. 4259 writeModuleConstants(); 4260 4261 // Emit metadata kind names. 4262 writeModuleMetadataKinds(); 4263 4264 // Emit metadata. 4265 writeModuleMetadata(); 4266 4267 // Emit module-level use-lists. 4268 if (VE.shouldPreserveUseListOrder()) 4269 writeUseListBlock(nullptr); 4270 4271 writeOperandBundleTags(); 4272 writeSyncScopeNames(); 4273 4274 // Emit function bodies. 4275 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4276 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4277 if (!F->isDeclaration()) 4278 writeFunction(*F, FunctionToBitcodeIndex); 4279 4280 // Need to write after the above call to WriteFunction which populates 4281 // the summary information in the index. 4282 if (Index) 4283 writePerModuleGlobalValueSummary(); 4284 4285 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4286 4287 writeModuleHash(BlockStartPos); 4288 4289 Stream.ExitBlock(); 4290 } 4291 4292 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4293 uint32_t &Position) { 4294 support::endian::write32le(&Buffer[Position], Value); 4295 Position += 4; 4296 } 4297 4298 /// If generating a bc file on darwin, we have to emit a 4299 /// header and trailer to make it compatible with the system archiver. To do 4300 /// this we emit the following header, and then emit a trailer that pads the 4301 /// file out to be a multiple of 16 bytes. 4302 /// 4303 /// struct bc_header { 4304 /// uint32_t Magic; // 0x0B17C0DE 4305 /// uint32_t Version; // Version, currently always 0. 4306 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4307 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4308 /// uint32_t CPUType; // CPU specifier. 4309 /// ... potentially more later ... 4310 /// }; 4311 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4312 const Triple &TT) { 4313 unsigned CPUType = ~0U; 4314 4315 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4316 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4317 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4318 // specific constants here because they are implicitly part of the Darwin ABI. 4319 enum { 4320 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4321 DARWIN_CPU_TYPE_X86 = 7, 4322 DARWIN_CPU_TYPE_ARM = 12, 4323 DARWIN_CPU_TYPE_POWERPC = 18 4324 }; 4325 4326 Triple::ArchType Arch = TT.getArch(); 4327 if (Arch == Triple::x86_64) 4328 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4329 else if (Arch == Triple::x86) 4330 CPUType = DARWIN_CPU_TYPE_X86; 4331 else if (Arch == Triple::ppc) 4332 CPUType = DARWIN_CPU_TYPE_POWERPC; 4333 else if (Arch == Triple::ppc64) 4334 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4335 else if (Arch == Triple::arm || Arch == Triple::thumb) 4336 CPUType = DARWIN_CPU_TYPE_ARM; 4337 4338 // Traditional Bitcode starts after header. 4339 assert(Buffer.size() >= BWH_HeaderSize && 4340 "Expected header size to be reserved"); 4341 unsigned BCOffset = BWH_HeaderSize; 4342 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4343 4344 // Write the magic and version. 4345 unsigned Position = 0; 4346 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4347 writeInt32ToBuffer(0, Buffer, Position); // Version. 4348 writeInt32ToBuffer(BCOffset, Buffer, Position); 4349 writeInt32ToBuffer(BCSize, Buffer, Position); 4350 writeInt32ToBuffer(CPUType, Buffer, Position); 4351 4352 // If the file is not a multiple of 16 bytes, insert dummy padding. 4353 while (Buffer.size() & 15) 4354 Buffer.push_back(0); 4355 } 4356 4357 /// Helper to write the header common to all bitcode files. 4358 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4359 // Emit the file header. 4360 Stream.Emit((unsigned)'B', 8); 4361 Stream.Emit((unsigned)'C', 8); 4362 Stream.Emit(0x0, 4); 4363 Stream.Emit(0xC, 4); 4364 Stream.Emit(0xE, 4); 4365 Stream.Emit(0xD, 4); 4366 } 4367 4368 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4369 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4370 writeBitcodeHeader(*Stream); 4371 } 4372 4373 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4374 4375 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4376 Stream->EnterSubblock(Block, 3); 4377 4378 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4379 Abbv->Add(BitCodeAbbrevOp(Record)); 4380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4381 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4382 4383 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4384 4385 Stream->ExitBlock(); 4386 } 4387 4388 void BitcodeWriter::writeSymtab() { 4389 assert(!WroteStrtab && !WroteSymtab); 4390 4391 // If any module has module-level inline asm, we will require a registered asm 4392 // parser for the target so that we can create an accurate symbol table for 4393 // the module. 4394 for (Module *M : Mods) { 4395 if (M->getModuleInlineAsm().empty()) 4396 continue; 4397 4398 std::string Err; 4399 const Triple TT(M->getTargetTriple()); 4400 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4401 if (!T || !T->hasMCAsmParser()) 4402 return; 4403 } 4404 4405 WroteSymtab = true; 4406 SmallVector<char, 0> Symtab; 4407 // The irsymtab::build function may be unable to create a symbol table if the 4408 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4409 // table is not required for correctness, but we still want to be able to 4410 // write malformed modules to bitcode files, so swallow the error. 4411 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4412 consumeError(std::move(E)); 4413 return; 4414 } 4415 4416 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4417 {Symtab.data(), Symtab.size()}); 4418 } 4419 4420 void BitcodeWriter::writeStrtab() { 4421 assert(!WroteStrtab); 4422 4423 std::vector<char> Strtab; 4424 StrtabBuilder.finalizeInOrder(); 4425 Strtab.resize(StrtabBuilder.getSize()); 4426 StrtabBuilder.write((uint8_t *)Strtab.data()); 4427 4428 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4429 {Strtab.data(), Strtab.size()}); 4430 4431 WroteStrtab = true; 4432 } 4433 4434 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4435 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4436 WroteStrtab = true; 4437 } 4438 4439 void BitcodeWriter::writeModule(const Module &M, 4440 bool ShouldPreserveUseListOrder, 4441 const ModuleSummaryIndex *Index, 4442 bool GenerateHash, ModuleHash *ModHash) { 4443 assert(!WroteStrtab); 4444 4445 // The Mods vector is used by irsymtab::build, which requires non-const 4446 // Modules in case it needs to materialize metadata. But the bitcode writer 4447 // requires that the module is materialized, so we can cast to non-const here, 4448 // after checking that it is in fact materialized. 4449 assert(M.isMaterialized()); 4450 Mods.push_back(const_cast<Module *>(&M)); 4451 4452 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4453 ShouldPreserveUseListOrder, Index, 4454 GenerateHash, ModHash); 4455 ModuleWriter.write(); 4456 } 4457 4458 void BitcodeWriter::writeIndex( 4459 const ModuleSummaryIndex *Index, 4460 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4461 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4462 ModuleToSummariesForIndex); 4463 IndexWriter.write(); 4464 } 4465 4466 /// Write the specified module to the specified output stream. 4467 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4468 bool ShouldPreserveUseListOrder, 4469 const ModuleSummaryIndex *Index, 4470 bool GenerateHash, ModuleHash *ModHash) { 4471 SmallVector<char, 0> Buffer; 4472 Buffer.reserve(256*1024); 4473 4474 // If this is darwin or another generic macho target, reserve space for the 4475 // header. 4476 Triple TT(M.getTargetTriple()); 4477 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4478 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4479 4480 BitcodeWriter Writer(Buffer); 4481 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4482 ModHash); 4483 Writer.writeSymtab(); 4484 Writer.writeStrtab(); 4485 4486 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4487 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4488 4489 // Write the generated bitstream to "Out". 4490 Out.write((char*)&Buffer.front(), Buffer.size()); 4491 } 4492 4493 void IndexBitcodeWriter::write() { 4494 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4495 4496 writeModuleVersion(); 4497 4498 // Write the module paths in the combined index. 4499 writeModStrings(); 4500 4501 // Write the summary combined index records. 4502 writeCombinedGlobalValueSummary(); 4503 4504 Stream.ExitBlock(); 4505 } 4506 4507 // Write the specified module summary index to the given raw output stream, 4508 // where it will be written in a new bitcode block. This is used when 4509 // writing the combined index file for ThinLTO. When writing a subset of the 4510 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4511 void llvm::WriteIndexToFile( 4512 const ModuleSummaryIndex &Index, raw_ostream &Out, 4513 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4514 SmallVector<char, 0> Buffer; 4515 Buffer.reserve(256 * 1024); 4516 4517 BitcodeWriter Writer(Buffer); 4518 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4519 Writer.writeStrtab(); 4520 4521 Out.write((char *)&Buffer.front(), Buffer.size()); 4522 } 4523 4524 namespace { 4525 4526 /// Class to manage the bitcode writing for a thin link bitcode file. 4527 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4528 /// ModHash is for use in ThinLTO incremental build, generated while writing 4529 /// the module bitcode file. 4530 const ModuleHash *ModHash; 4531 4532 public: 4533 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4534 BitstreamWriter &Stream, 4535 const ModuleSummaryIndex &Index, 4536 const ModuleHash &ModHash) 4537 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4538 /*ShouldPreserveUseListOrder=*/false, &Index), 4539 ModHash(&ModHash) {} 4540 4541 void write(); 4542 4543 private: 4544 void writeSimplifiedModuleInfo(); 4545 }; 4546 4547 } // end anonymous namespace 4548 4549 // This function writes a simpilified module info for thin link bitcode file. 4550 // It only contains the source file name along with the name(the offset and 4551 // size in strtab) and linkage for global values. For the global value info 4552 // entry, in order to keep linkage at offset 5, there are three zeros used 4553 // as padding. 4554 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4555 SmallVector<unsigned, 64> Vals; 4556 // Emit the module's source file name. 4557 { 4558 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4559 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4560 if (Bits == SE_Char6) 4561 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4562 else if (Bits == SE_Fixed7) 4563 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4564 4565 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4566 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4567 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4569 Abbv->Add(AbbrevOpToUse); 4570 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4571 4572 for (const auto P : M.getSourceFileName()) 4573 Vals.push_back((unsigned char)P); 4574 4575 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4576 Vals.clear(); 4577 } 4578 4579 // Emit the global variable information. 4580 for (const GlobalVariable &GV : M.globals()) { 4581 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4582 Vals.push_back(StrtabBuilder.add(GV.getName())); 4583 Vals.push_back(GV.getName().size()); 4584 Vals.push_back(0); 4585 Vals.push_back(0); 4586 Vals.push_back(0); 4587 Vals.push_back(getEncodedLinkage(GV)); 4588 4589 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4590 Vals.clear(); 4591 } 4592 4593 // Emit the function proto information. 4594 for (const Function &F : M) { 4595 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4596 Vals.push_back(StrtabBuilder.add(F.getName())); 4597 Vals.push_back(F.getName().size()); 4598 Vals.push_back(0); 4599 Vals.push_back(0); 4600 Vals.push_back(0); 4601 Vals.push_back(getEncodedLinkage(F)); 4602 4603 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4604 Vals.clear(); 4605 } 4606 4607 // Emit the alias information. 4608 for (const GlobalAlias &A : M.aliases()) { 4609 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4610 Vals.push_back(StrtabBuilder.add(A.getName())); 4611 Vals.push_back(A.getName().size()); 4612 Vals.push_back(0); 4613 Vals.push_back(0); 4614 Vals.push_back(0); 4615 Vals.push_back(getEncodedLinkage(A)); 4616 4617 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4618 Vals.clear(); 4619 } 4620 4621 // Emit the ifunc information. 4622 for (const GlobalIFunc &I : M.ifuncs()) { 4623 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4624 Vals.push_back(StrtabBuilder.add(I.getName())); 4625 Vals.push_back(I.getName().size()); 4626 Vals.push_back(0); 4627 Vals.push_back(0); 4628 Vals.push_back(0); 4629 Vals.push_back(getEncodedLinkage(I)); 4630 4631 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4632 Vals.clear(); 4633 } 4634 } 4635 4636 void ThinLinkBitcodeWriter::write() { 4637 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4638 4639 writeModuleVersion(); 4640 4641 writeSimplifiedModuleInfo(); 4642 4643 writePerModuleGlobalValueSummary(); 4644 4645 // Write module hash. 4646 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4647 4648 Stream.ExitBlock(); 4649 } 4650 4651 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4652 const ModuleSummaryIndex &Index, 4653 const ModuleHash &ModHash) { 4654 assert(!WroteStrtab); 4655 4656 // The Mods vector is used by irsymtab::build, which requires non-const 4657 // Modules in case it needs to materialize metadata. But the bitcode writer 4658 // requires that the module is materialized, so we can cast to non-const here, 4659 // after checking that it is in fact materialized. 4660 assert(M.isMaterialized()); 4661 Mods.push_back(const_cast<Module *>(&M)); 4662 4663 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4664 ModHash); 4665 ThinLinkWriter.write(); 4666 } 4667 4668 // Write the specified thin link bitcode file to the given raw output stream, 4669 // where it will be written in a new bitcode block. This is used when 4670 // writing the per-module index file for ThinLTO. 4671 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4672 const ModuleSummaryIndex &Index, 4673 const ModuleHash &ModHash) { 4674 SmallVector<char, 0> Buffer; 4675 Buffer.reserve(256 * 1024); 4676 4677 BitcodeWriter Writer(Buffer); 4678 Writer.writeThinLinkBitcode(M, Index, ModHash); 4679 Writer.writeSymtab(); 4680 Writer.writeStrtab(); 4681 4682 Out.write((char *)&Buffer.front(), Buffer.size()); 4683 } 4684 4685 static const char *getSectionNameForBitcode(const Triple &T) { 4686 switch (T.getObjectFormat()) { 4687 case Triple::MachO: 4688 return "__LLVM,__bitcode"; 4689 case Triple::COFF: 4690 case Triple::ELF: 4691 case Triple::Wasm: 4692 case Triple::UnknownObjectFormat: 4693 return ".llvmbc"; 4694 case Triple::XCOFF: 4695 llvm_unreachable("XCOFF is not yet implemented"); 4696 break; 4697 } 4698 llvm_unreachable("Unimplemented ObjectFormatType"); 4699 } 4700 4701 static const char *getSectionNameForCommandline(const Triple &T) { 4702 switch (T.getObjectFormat()) { 4703 case Triple::MachO: 4704 return "__LLVM,__cmdline"; 4705 case Triple::COFF: 4706 case Triple::ELF: 4707 case Triple::Wasm: 4708 case Triple::UnknownObjectFormat: 4709 return ".llvmcmd"; 4710 case Triple::XCOFF: 4711 llvm_unreachable("XCOFF is not yet implemented"); 4712 break; 4713 } 4714 llvm_unreachable("Unimplemented ObjectFormatType"); 4715 } 4716 4717 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4718 bool EmbedBitcode, bool EmbedMarker, 4719 const std::vector<uint8_t> *CmdArgs) { 4720 // Save llvm.compiler.used and remove it. 4721 SmallVector<Constant *, 2> UsedArray; 4722 SmallPtrSet<GlobalValue *, 4> UsedGlobals; 4723 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4724 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4725 for (auto *GV : UsedGlobals) { 4726 if (GV->getName() != "llvm.embedded.module" && 4727 GV->getName() != "llvm.cmdline") 4728 UsedArray.push_back( 4729 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4730 } 4731 if (Used) 4732 Used->eraseFromParent(); 4733 4734 // Embed the bitcode for the llvm module. 4735 std::string Data; 4736 ArrayRef<uint8_t> ModuleData; 4737 Triple T(M.getTargetTriple()); 4738 // Create a constant that contains the bitcode. 4739 // In case of embedding a marker, ignore the input Buf and use the empty 4740 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 4741 if (EmbedBitcode) { 4742 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 4743 (const unsigned char *)Buf.getBufferEnd())) { 4744 // If the input is LLVM Assembly, bitcode is produced by serializing 4745 // the module. Use-lists order need to be preserved in this case. 4746 llvm::raw_string_ostream OS(Data); 4747 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4748 ModuleData = 4749 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4750 } else 4751 // If the input is LLVM bitcode, write the input byte stream directly. 4752 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4753 Buf.getBufferSize()); 4754 } 4755 llvm::Constant *ModuleConstant = 4756 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4757 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4758 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4759 ModuleConstant); 4760 GV->setSection(getSectionNameForBitcode(T)); 4761 UsedArray.push_back( 4762 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4763 if (llvm::GlobalVariable *Old = 4764 M.getGlobalVariable("llvm.embedded.module", true)) { 4765 assert(Old->hasOneUse() && 4766 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4767 GV->takeName(Old); 4768 Old->eraseFromParent(); 4769 } else { 4770 GV->setName("llvm.embedded.module"); 4771 } 4772 4773 // Skip if only bitcode needs to be embedded. 4774 if (EmbedMarker) { 4775 // Embed command-line options. 4776 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()), 4777 CmdArgs->size()); 4778 llvm::Constant *CmdConstant = 4779 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4780 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4781 llvm::GlobalValue::PrivateLinkage, 4782 CmdConstant); 4783 GV->setSection(getSectionNameForCommandline(T)); 4784 UsedArray.push_back( 4785 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4786 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4787 assert(Old->hasOneUse() && 4788 "llvm.cmdline can only be used once in llvm.compiler.used"); 4789 GV->takeName(Old); 4790 Old->eraseFromParent(); 4791 } else { 4792 GV->setName("llvm.cmdline"); 4793 } 4794 } 4795 4796 if (UsedArray.empty()) 4797 return; 4798 4799 // Recreate llvm.compiler.used. 4800 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4801 auto *NewUsed = new GlobalVariable( 4802 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4803 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4804 NewUsed->setSection("llvm.metadata"); 4805 } 4806