xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 9c2eb220edd5e831a17bfbde65dcc49e402d7540)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Bitcode/BitcodeReader.h"
28 #include "llvm/Bitcode/LLVMBitCodes.h"
29 #include "llvm/Bitstream/BitCodes.h"
30 #include "llvm/Bitstream/BitstreamWriter.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/UseListOrder.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/MC/StringTableBuilder.h"
61 #include "llvm/Object/IRSymtab.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Endian.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/SHA1.h"
70 #include "llvm/Support/TargetRegistry.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <memory>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 static cl::opt<unsigned>
86     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
87                    cl::desc("Number of metadatas above which we emit an index "
88                             "to enable lazy-loading"));
89 
90 static cl::opt<bool> WriteRelBFToSummary(
91     "write-relbf-to-summary", cl::Hidden, cl::init(false),
92     cl::desc("Write relative block frequency to function summary "));
93 
94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
95 
96 namespace {
97 
98 /// These are manifest constants used by the bitcode writer. They do not need to
99 /// be kept in sync with the reader, but need to be consistent within this file.
100 enum {
101   // VALUE_SYMTAB_BLOCK abbrev id's.
102   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
103   VST_ENTRY_7_ABBREV,
104   VST_ENTRY_6_ABBREV,
105   VST_BBENTRY_6_ABBREV,
106 
107   // CONSTANTS_BLOCK abbrev id's.
108   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
109   CONSTANTS_INTEGER_ABBREV,
110   CONSTANTS_CE_CAST_Abbrev,
111   CONSTANTS_NULL_Abbrev,
112 
113   // FUNCTION_BLOCK abbrev id's.
114   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
115   FUNCTION_INST_UNOP_ABBREV,
116   FUNCTION_INST_UNOP_FLAGS_ABBREV,
117   FUNCTION_INST_BINOP_ABBREV,
118   FUNCTION_INST_BINOP_FLAGS_ABBREV,
119   FUNCTION_INST_CAST_ABBREV,
120   FUNCTION_INST_RET_VOID_ABBREV,
121   FUNCTION_INST_RET_VAL_ABBREV,
122   FUNCTION_INST_UNREACHABLE_ABBREV,
123   FUNCTION_INST_GEP_ABBREV,
124 };
125 
126 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
127 /// file type.
128 class BitcodeWriterBase {
129 protected:
130   /// The stream created and owned by the client.
131   BitstreamWriter &Stream;
132 
133   StringTableBuilder &StrtabBuilder;
134 
135 public:
136   /// Constructs a BitcodeWriterBase object that writes to the provided
137   /// \p Stream.
138   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
139       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
140 
141 protected:
142   void writeBitcodeHeader();
143   void writeModuleVersion();
144 };
145 
146 void BitcodeWriterBase::writeModuleVersion() {
147   // VERSION: [version#]
148   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
149 }
150 
151 /// Base class to manage the module bitcode writing, currently subclassed for
152 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
153 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
154 protected:
155   /// The Module to write to bitcode.
156   const Module &M;
157 
158   /// Enumerates ids for all values in the module.
159   ValueEnumerator VE;
160 
161   /// Optional per-module index to write for ThinLTO.
162   const ModuleSummaryIndex *Index;
163 
164   /// Map that holds the correspondence between GUIDs in the summary index,
165   /// that came from indirect call profiles, and a value id generated by this
166   /// class to use in the VST and summary block records.
167   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
168 
169   /// Tracks the last value id recorded in the GUIDToValueMap.
170   unsigned GlobalValueId;
171 
172   /// Saves the offset of the VSTOffset record that must eventually be
173   /// backpatched with the offset of the actual VST.
174   uint64_t VSTOffsetPlaceholder = 0;
175 
176 public:
177   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
178   /// writing to the provided \p Buffer.
179   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
180                           BitstreamWriter &Stream,
181                           bool ShouldPreserveUseListOrder,
182                           const ModuleSummaryIndex *Index)
183       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
184         VE(M, ShouldPreserveUseListOrder), Index(Index) {
185     // Assign ValueIds to any callee values in the index that came from
186     // indirect call profiles and were recorded as a GUID not a Value*
187     // (which would have been assigned an ID by the ValueEnumerator).
188     // The starting ValueId is just after the number of values in the
189     // ValueEnumerator, so that they can be emitted in the VST.
190     GlobalValueId = VE.getValues().size();
191     if (!Index)
192       return;
193     for (const auto &GUIDSummaryLists : *Index)
194       // Examine all summaries for this GUID.
195       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
196         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
197           // For each call in the function summary, see if the call
198           // is to a GUID (which means it is for an indirect call,
199           // otherwise we would have a Value for it). If so, synthesize
200           // a value id.
201           for (auto &CallEdge : FS->calls())
202             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
203               assignValueId(CallEdge.first.getGUID());
204   }
205 
206 protected:
207   void writePerModuleGlobalValueSummary();
208 
209 private:
210   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
211                                            GlobalValueSummary *Summary,
212                                            unsigned ValueID,
213                                            unsigned FSCallsAbbrev,
214                                            unsigned FSCallsProfileAbbrev,
215                                            const Function &F);
216   void writeModuleLevelReferences(const GlobalVariable &V,
217                                   SmallVector<uint64_t, 64> &NameVals,
218                                   unsigned FSModRefsAbbrev,
219                                   unsigned FSModVTableRefsAbbrev);
220 
221   void assignValueId(GlobalValue::GUID ValGUID) {
222     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
223   }
224 
225   unsigned getValueId(GlobalValue::GUID ValGUID) {
226     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
227     // Expect that any GUID value had a value Id assigned by an
228     // earlier call to assignValueId.
229     assert(VMI != GUIDToValueIdMap.end() &&
230            "GUID does not have assigned value Id");
231     return VMI->second;
232   }
233 
234   // Helper to get the valueId for the type of value recorded in VI.
235   unsigned getValueId(ValueInfo VI) {
236     if (!VI.haveGVs() || !VI.getValue())
237       return getValueId(VI.getGUID());
238     return VE.getValueID(VI.getValue());
239   }
240 
241   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
242 };
243 
244 /// Class to manage the bitcode writing for a module.
245 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
246   /// Pointer to the buffer allocated by caller for bitcode writing.
247   const SmallVectorImpl<char> &Buffer;
248 
249   /// True if a module hash record should be written.
250   bool GenerateHash;
251 
252   /// If non-null, when GenerateHash is true, the resulting hash is written
253   /// into ModHash.
254   ModuleHash *ModHash;
255 
256   SHA1 Hasher;
257 
258   /// The start bit of the identification block.
259   uint64_t BitcodeStartBit;
260 
261 public:
262   /// Constructs a ModuleBitcodeWriter object for the given Module,
263   /// writing to the provided \p Buffer.
264   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
265                       StringTableBuilder &StrtabBuilder,
266                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
267                       const ModuleSummaryIndex *Index, bool GenerateHash,
268                       ModuleHash *ModHash = nullptr)
269       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
270                                 ShouldPreserveUseListOrder, Index),
271         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
272         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
273 
274   /// Emit the current module to the bitstream.
275   void write();
276 
277 private:
278   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
279 
280   size_t addToStrtab(StringRef Str);
281 
282   void writeAttributeGroupTable();
283   void writeAttributeTable();
284   void writeTypeTable();
285   void writeComdats();
286   void writeValueSymbolTableForwardDecl();
287   void writeModuleInfo();
288   void writeValueAsMetadata(const ValueAsMetadata *MD,
289                             SmallVectorImpl<uint64_t> &Record);
290   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
291                     unsigned Abbrev);
292   unsigned createDILocationAbbrev();
293   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
294                        unsigned &Abbrev);
295   unsigned createGenericDINodeAbbrev();
296   void writeGenericDINode(const GenericDINode *N,
297                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
298   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
299                        unsigned Abbrev);
300   void writeDIEnumerator(const DIEnumerator *N,
301                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
302   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
303                         unsigned Abbrev);
304   void writeDIDerivedType(const DIDerivedType *N,
305                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
306   void writeDICompositeType(const DICompositeType *N,
307                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
308   void writeDISubroutineType(const DISubroutineType *N,
309                              SmallVectorImpl<uint64_t> &Record,
310                              unsigned Abbrev);
311   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
312                    unsigned Abbrev);
313   void writeDICompileUnit(const DICompileUnit *N,
314                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
315   void writeDISubprogram(const DISubprogram *N,
316                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
317   void writeDILexicalBlock(const DILexicalBlock *N,
318                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
319   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
320                                SmallVectorImpl<uint64_t> &Record,
321                                unsigned Abbrev);
322   void writeDICommonBlock(const DICommonBlock *N,
323                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
324   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
325                         unsigned Abbrev);
326   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
327                     unsigned Abbrev);
328   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
329                         unsigned Abbrev);
330   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
331                      unsigned Abbrev);
332   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
333                                     SmallVectorImpl<uint64_t> &Record,
334                                     unsigned Abbrev);
335   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
336                                      SmallVectorImpl<uint64_t> &Record,
337                                      unsigned Abbrev);
338   void writeDIGlobalVariable(const DIGlobalVariable *N,
339                              SmallVectorImpl<uint64_t> &Record,
340                              unsigned Abbrev);
341   void writeDILocalVariable(const DILocalVariable *N,
342                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
343   void writeDILabel(const DILabel *N,
344                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
345   void writeDIExpression(const DIExpression *N,
346                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
347   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
348                                        SmallVectorImpl<uint64_t> &Record,
349                                        unsigned Abbrev);
350   void writeDIObjCProperty(const DIObjCProperty *N,
351                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
352   void writeDIImportedEntity(const DIImportedEntity *N,
353                              SmallVectorImpl<uint64_t> &Record,
354                              unsigned Abbrev);
355   unsigned createNamedMetadataAbbrev();
356   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
357   unsigned createMetadataStringsAbbrev();
358   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
359                             SmallVectorImpl<uint64_t> &Record);
360   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
361                             SmallVectorImpl<uint64_t> &Record,
362                             std::vector<unsigned> *MDAbbrevs = nullptr,
363                             std::vector<uint64_t> *IndexPos = nullptr);
364   void writeModuleMetadata();
365   void writeFunctionMetadata(const Function &F);
366   void writeFunctionMetadataAttachment(const Function &F);
367   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
368   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
369                                     const GlobalObject &GO);
370   void writeModuleMetadataKinds();
371   void writeOperandBundleTags();
372   void writeSyncScopeNames();
373   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
374   void writeModuleConstants();
375   bool pushValueAndType(const Value *V, unsigned InstID,
376                         SmallVectorImpl<unsigned> &Vals);
377   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
378   void pushValue(const Value *V, unsigned InstID,
379                  SmallVectorImpl<unsigned> &Vals);
380   void pushValueSigned(const Value *V, unsigned InstID,
381                        SmallVectorImpl<uint64_t> &Vals);
382   void writeInstruction(const Instruction &I, unsigned InstID,
383                         SmallVectorImpl<unsigned> &Vals);
384   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
385   void writeGlobalValueSymbolTable(
386       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
387   void writeUseList(UseListOrder &&Order);
388   void writeUseListBlock(const Function *F);
389   void
390   writeFunction(const Function &F,
391                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
392   void writeBlockInfo();
393   void writeModuleHash(size_t BlockStartPos);
394 
395   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
396     return unsigned(SSID);
397   }
398 };
399 
400 /// Class to manage the bitcode writing for a combined index.
401 class IndexBitcodeWriter : public BitcodeWriterBase {
402   /// The combined index to write to bitcode.
403   const ModuleSummaryIndex &Index;
404 
405   /// When writing a subset of the index for distributed backends, client
406   /// provides a map of modules to the corresponding GUIDs/summaries to write.
407   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
408 
409   /// Map that holds the correspondence between the GUID used in the combined
410   /// index and a value id generated by this class to use in references.
411   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
412 
413   /// Tracks the last value id recorded in the GUIDToValueMap.
414   unsigned GlobalValueId = 0;
415 
416 public:
417   /// Constructs a IndexBitcodeWriter object for the given combined index,
418   /// writing to the provided \p Buffer. When writing a subset of the index
419   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
420   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
421                      const ModuleSummaryIndex &Index,
422                      const std::map<std::string, GVSummaryMapTy>
423                          *ModuleToSummariesForIndex = nullptr)
424       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
425         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
426     // Assign unique value ids to all summaries to be written, for use
427     // in writing out the call graph edges. Save the mapping from GUID
428     // to the new global value id to use when writing those edges, which
429     // are currently saved in the index in terms of GUID.
430     forEachSummary([&](GVInfo I, bool) {
431       GUIDToValueIdMap[I.first] = ++GlobalValueId;
432     });
433   }
434 
435   /// The below iterator returns the GUID and associated summary.
436   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
437 
438   /// Calls the callback for each value GUID and summary to be written to
439   /// bitcode. This hides the details of whether they are being pulled from the
440   /// entire index or just those in a provided ModuleToSummariesForIndex map.
441   template<typename Functor>
442   void forEachSummary(Functor Callback) {
443     if (ModuleToSummariesForIndex) {
444       for (auto &M : *ModuleToSummariesForIndex)
445         for (auto &Summary : M.second) {
446           Callback(Summary, false);
447           // Ensure aliasee is handled, e.g. for assigning a valueId,
448           // even if we are not importing the aliasee directly (the
449           // imported alias will contain a copy of aliasee).
450           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
451             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
452         }
453     } else {
454       for (auto &Summaries : Index)
455         for (auto &Summary : Summaries.second.SummaryList)
456           Callback({Summaries.first, Summary.get()}, false);
457     }
458   }
459 
460   /// Calls the callback for each entry in the modulePaths StringMap that
461   /// should be written to the module path string table. This hides the details
462   /// of whether they are being pulled from the entire index or just those in a
463   /// provided ModuleToSummariesForIndex map.
464   template <typename Functor> void forEachModule(Functor Callback) {
465     if (ModuleToSummariesForIndex) {
466       for (const auto &M : *ModuleToSummariesForIndex) {
467         const auto &MPI = Index.modulePaths().find(M.first);
468         if (MPI == Index.modulePaths().end()) {
469           // This should only happen if the bitcode file was empty, in which
470           // case we shouldn't be importing (the ModuleToSummariesForIndex
471           // would only include the module we are writing and index for).
472           assert(ModuleToSummariesForIndex->size() == 1);
473           continue;
474         }
475         Callback(*MPI);
476       }
477     } else {
478       for (const auto &MPSE : Index.modulePaths())
479         Callback(MPSE);
480     }
481   }
482 
483   /// Main entry point for writing a combined index to bitcode.
484   void write();
485 
486 private:
487   void writeModStrings();
488   void writeCombinedGlobalValueSummary();
489 
490   Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
491     auto VMI = GUIDToValueIdMap.find(ValGUID);
492     if (VMI == GUIDToValueIdMap.end())
493       return None;
494     return VMI->second;
495   }
496 
497   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
498 };
499 
500 } // end anonymous namespace
501 
502 static unsigned getEncodedCastOpcode(unsigned Opcode) {
503   switch (Opcode) {
504   default: llvm_unreachable("Unknown cast instruction!");
505   case Instruction::Trunc   : return bitc::CAST_TRUNC;
506   case Instruction::ZExt    : return bitc::CAST_ZEXT;
507   case Instruction::SExt    : return bitc::CAST_SEXT;
508   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
509   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
510   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
511   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
512   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
513   case Instruction::FPExt   : return bitc::CAST_FPEXT;
514   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
515   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
516   case Instruction::BitCast : return bitc::CAST_BITCAST;
517   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
518   }
519 }
520 
521 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
522   switch (Opcode) {
523   default: llvm_unreachable("Unknown binary instruction!");
524   case Instruction::FNeg: return bitc::UNOP_FNEG;
525   }
526 }
527 
528 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
529   switch (Opcode) {
530   default: llvm_unreachable("Unknown binary instruction!");
531   case Instruction::Add:
532   case Instruction::FAdd: return bitc::BINOP_ADD;
533   case Instruction::Sub:
534   case Instruction::FSub: return bitc::BINOP_SUB;
535   case Instruction::Mul:
536   case Instruction::FMul: return bitc::BINOP_MUL;
537   case Instruction::UDiv: return bitc::BINOP_UDIV;
538   case Instruction::FDiv:
539   case Instruction::SDiv: return bitc::BINOP_SDIV;
540   case Instruction::URem: return bitc::BINOP_UREM;
541   case Instruction::FRem:
542   case Instruction::SRem: return bitc::BINOP_SREM;
543   case Instruction::Shl:  return bitc::BINOP_SHL;
544   case Instruction::LShr: return bitc::BINOP_LSHR;
545   case Instruction::AShr: return bitc::BINOP_ASHR;
546   case Instruction::And:  return bitc::BINOP_AND;
547   case Instruction::Or:   return bitc::BINOP_OR;
548   case Instruction::Xor:  return bitc::BINOP_XOR;
549   }
550 }
551 
552 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
553   switch (Op) {
554   default: llvm_unreachable("Unknown RMW operation!");
555   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
556   case AtomicRMWInst::Add: return bitc::RMW_ADD;
557   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
558   case AtomicRMWInst::And: return bitc::RMW_AND;
559   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
560   case AtomicRMWInst::Or: return bitc::RMW_OR;
561   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
562   case AtomicRMWInst::Max: return bitc::RMW_MAX;
563   case AtomicRMWInst::Min: return bitc::RMW_MIN;
564   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
565   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
566   case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
567   case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
568   }
569 }
570 
571 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
572   switch (Ordering) {
573   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
574   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
575   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
576   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
577   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
578   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
579   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
580   }
581   llvm_unreachable("Invalid ordering");
582 }
583 
584 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
585                               StringRef Str, unsigned AbbrevToUse) {
586   SmallVector<unsigned, 64> Vals;
587 
588   // Code: [strchar x N]
589   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
590     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
591       AbbrevToUse = 0;
592     Vals.push_back(Str[i]);
593   }
594 
595   // Emit the finished record.
596   Stream.EmitRecord(Code, Vals, AbbrevToUse);
597 }
598 
599 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
600   switch (Kind) {
601   case Attribute::Alignment:
602     return bitc::ATTR_KIND_ALIGNMENT;
603   case Attribute::AllocSize:
604     return bitc::ATTR_KIND_ALLOC_SIZE;
605   case Attribute::AlwaysInline:
606     return bitc::ATTR_KIND_ALWAYS_INLINE;
607   case Attribute::ArgMemOnly:
608     return bitc::ATTR_KIND_ARGMEMONLY;
609   case Attribute::Builtin:
610     return bitc::ATTR_KIND_BUILTIN;
611   case Attribute::ByVal:
612     return bitc::ATTR_KIND_BY_VAL;
613   case Attribute::Convergent:
614     return bitc::ATTR_KIND_CONVERGENT;
615   case Attribute::InAlloca:
616     return bitc::ATTR_KIND_IN_ALLOCA;
617   case Attribute::Cold:
618     return bitc::ATTR_KIND_COLD;
619   case Attribute::InaccessibleMemOnly:
620     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
621   case Attribute::InaccessibleMemOrArgMemOnly:
622     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
623   case Attribute::InlineHint:
624     return bitc::ATTR_KIND_INLINE_HINT;
625   case Attribute::InReg:
626     return bitc::ATTR_KIND_IN_REG;
627   case Attribute::JumpTable:
628     return bitc::ATTR_KIND_JUMP_TABLE;
629   case Attribute::MinSize:
630     return bitc::ATTR_KIND_MIN_SIZE;
631   case Attribute::Naked:
632     return bitc::ATTR_KIND_NAKED;
633   case Attribute::Nest:
634     return bitc::ATTR_KIND_NEST;
635   case Attribute::NoAlias:
636     return bitc::ATTR_KIND_NO_ALIAS;
637   case Attribute::NoBuiltin:
638     return bitc::ATTR_KIND_NO_BUILTIN;
639   case Attribute::NoCapture:
640     return bitc::ATTR_KIND_NO_CAPTURE;
641   case Attribute::NoDuplicate:
642     return bitc::ATTR_KIND_NO_DUPLICATE;
643   case Attribute::NoFree:
644     return bitc::ATTR_KIND_NOFREE;
645   case Attribute::NoImplicitFloat:
646     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
647   case Attribute::NoInline:
648     return bitc::ATTR_KIND_NO_INLINE;
649   case Attribute::NoRecurse:
650     return bitc::ATTR_KIND_NO_RECURSE;
651   case Attribute::NonLazyBind:
652     return bitc::ATTR_KIND_NON_LAZY_BIND;
653   case Attribute::NonNull:
654     return bitc::ATTR_KIND_NON_NULL;
655   case Attribute::Dereferenceable:
656     return bitc::ATTR_KIND_DEREFERENCEABLE;
657   case Attribute::DereferenceableOrNull:
658     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
659   case Attribute::NoRedZone:
660     return bitc::ATTR_KIND_NO_RED_ZONE;
661   case Attribute::NoReturn:
662     return bitc::ATTR_KIND_NO_RETURN;
663   case Attribute::NoSync:
664     return bitc::ATTR_KIND_NOSYNC;
665   case Attribute::NoCfCheck:
666     return bitc::ATTR_KIND_NOCF_CHECK;
667   case Attribute::NoUnwind:
668     return bitc::ATTR_KIND_NO_UNWIND;
669   case Attribute::OptForFuzzing:
670     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
671   case Attribute::OptimizeForSize:
672     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
673   case Attribute::OptimizeNone:
674     return bitc::ATTR_KIND_OPTIMIZE_NONE;
675   case Attribute::ReadNone:
676     return bitc::ATTR_KIND_READ_NONE;
677   case Attribute::ReadOnly:
678     return bitc::ATTR_KIND_READ_ONLY;
679   case Attribute::Returned:
680     return bitc::ATTR_KIND_RETURNED;
681   case Attribute::ReturnsTwice:
682     return bitc::ATTR_KIND_RETURNS_TWICE;
683   case Attribute::SExt:
684     return bitc::ATTR_KIND_S_EXT;
685   case Attribute::Speculatable:
686     return bitc::ATTR_KIND_SPECULATABLE;
687   case Attribute::StackAlignment:
688     return bitc::ATTR_KIND_STACK_ALIGNMENT;
689   case Attribute::StackProtect:
690     return bitc::ATTR_KIND_STACK_PROTECT;
691   case Attribute::StackProtectReq:
692     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
693   case Attribute::StackProtectStrong:
694     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
695   case Attribute::SafeStack:
696     return bitc::ATTR_KIND_SAFESTACK;
697   case Attribute::ShadowCallStack:
698     return bitc::ATTR_KIND_SHADOWCALLSTACK;
699   case Attribute::StrictFP:
700     return bitc::ATTR_KIND_STRICT_FP;
701   case Attribute::StructRet:
702     return bitc::ATTR_KIND_STRUCT_RET;
703   case Attribute::SanitizeAddress:
704     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
705   case Attribute::SanitizeHWAddress:
706     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
707   case Attribute::SanitizeThread:
708     return bitc::ATTR_KIND_SANITIZE_THREAD;
709   case Attribute::SanitizeMemory:
710     return bitc::ATTR_KIND_SANITIZE_MEMORY;
711   case Attribute::SpeculativeLoadHardening:
712     return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
713   case Attribute::SwiftError:
714     return bitc::ATTR_KIND_SWIFT_ERROR;
715   case Attribute::SwiftSelf:
716     return bitc::ATTR_KIND_SWIFT_SELF;
717   case Attribute::UWTable:
718     return bitc::ATTR_KIND_UW_TABLE;
719   case Attribute::WillReturn:
720     return bitc::ATTR_KIND_WILLRETURN;
721   case Attribute::WriteOnly:
722     return bitc::ATTR_KIND_WRITEONLY;
723   case Attribute::ZExt:
724     return bitc::ATTR_KIND_Z_EXT;
725   case Attribute::ImmArg:
726     return bitc::ATTR_KIND_IMMARG;
727   case Attribute::SanitizeMemTag:
728     return bitc::ATTR_KIND_SANITIZE_MEMTAG;
729   case Attribute::EndAttrKinds:
730     llvm_unreachable("Can not encode end-attribute kinds marker.");
731   case Attribute::None:
732     llvm_unreachable("Can not encode none-attribute.");
733   }
734 
735   llvm_unreachable("Trying to encode unknown attribute");
736 }
737 
738 void ModuleBitcodeWriter::writeAttributeGroupTable() {
739   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
740       VE.getAttributeGroups();
741   if (AttrGrps.empty()) return;
742 
743   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
744 
745   SmallVector<uint64_t, 64> Record;
746   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
747     unsigned AttrListIndex = Pair.first;
748     AttributeSet AS = Pair.second;
749     Record.push_back(VE.getAttributeGroupID(Pair));
750     Record.push_back(AttrListIndex);
751 
752     for (Attribute Attr : AS) {
753       if (Attr.isEnumAttribute()) {
754         Record.push_back(0);
755         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
756       } else if (Attr.isIntAttribute()) {
757         Record.push_back(1);
758         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
759         Record.push_back(Attr.getValueAsInt());
760       } else if (Attr.isStringAttribute()) {
761         StringRef Kind = Attr.getKindAsString();
762         StringRef Val = Attr.getValueAsString();
763 
764         Record.push_back(Val.empty() ? 3 : 4);
765         Record.append(Kind.begin(), Kind.end());
766         Record.push_back(0);
767         if (!Val.empty()) {
768           Record.append(Val.begin(), Val.end());
769           Record.push_back(0);
770         }
771       } else {
772         assert(Attr.isTypeAttribute());
773         Type *Ty = Attr.getValueAsType();
774         Record.push_back(Ty ? 6 : 5);
775         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
776         if (Ty)
777           Record.push_back(VE.getTypeID(Attr.getValueAsType()));
778       }
779     }
780 
781     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
782     Record.clear();
783   }
784 
785   Stream.ExitBlock();
786 }
787 
788 void ModuleBitcodeWriter::writeAttributeTable() {
789   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
790   if (Attrs.empty()) return;
791 
792   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
793 
794   SmallVector<uint64_t, 64> Record;
795   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
796     AttributeList AL = Attrs[i];
797     for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
798       AttributeSet AS = AL.getAttributes(i);
799       if (AS.hasAttributes())
800         Record.push_back(VE.getAttributeGroupID({i, AS}));
801     }
802 
803     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
804     Record.clear();
805   }
806 
807   Stream.ExitBlock();
808 }
809 
810 /// WriteTypeTable - Write out the type table for a module.
811 void ModuleBitcodeWriter::writeTypeTable() {
812   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
813 
814   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
815   SmallVector<uint64_t, 64> TypeVals;
816 
817   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
818 
819   // Abbrev for TYPE_CODE_POINTER.
820   auto Abbv = std::make_shared<BitCodeAbbrev>();
821   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
822   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
823   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
824   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
825 
826   // Abbrev for TYPE_CODE_FUNCTION.
827   Abbv = std::make_shared<BitCodeAbbrev>();
828   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
829   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
830   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
831   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
832   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
833 
834   // Abbrev for TYPE_CODE_STRUCT_ANON.
835   Abbv = std::make_shared<BitCodeAbbrev>();
836   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
837   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
838   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
839   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
840   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
841 
842   // Abbrev for TYPE_CODE_STRUCT_NAME.
843   Abbv = std::make_shared<BitCodeAbbrev>();
844   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
845   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
846   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
847   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
848 
849   // Abbrev for TYPE_CODE_STRUCT_NAMED.
850   Abbv = std::make_shared<BitCodeAbbrev>();
851   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
852   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
853   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
854   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
855   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
856 
857   // Abbrev for TYPE_CODE_ARRAY.
858   Abbv = std::make_shared<BitCodeAbbrev>();
859   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
860   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
861   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
862   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
863 
864   // Emit an entry count so the reader can reserve space.
865   TypeVals.push_back(TypeList.size());
866   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
867   TypeVals.clear();
868 
869   // Loop over all of the types, emitting each in turn.
870   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
871     Type *T = TypeList[i];
872     int AbbrevToUse = 0;
873     unsigned Code = 0;
874 
875     switch (T->getTypeID()) {
876     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
877     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
878     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
879     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
880     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
881     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
882     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
883     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
884     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
885     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
886     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
887     case Type::IntegerTyID:
888       // INTEGER: [width]
889       Code = bitc::TYPE_CODE_INTEGER;
890       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
891       break;
892     case Type::PointerTyID: {
893       PointerType *PTy = cast<PointerType>(T);
894       // POINTER: [pointee type, address space]
895       Code = bitc::TYPE_CODE_POINTER;
896       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
897       unsigned AddressSpace = PTy->getAddressSpace();
898       TypeVals.push_back(AddressSpace);
899       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
900       break;
901     }
902     case Type::FunctionTyID: {
903       FunctionType *FT = cast<FunctionType>(T);
904       // FUNCTION: [isvararg, retty, paramty x N]
905       Code = bitc::TYPE_CODE_FUNCTION;
906       TypeVals.push_back(FT->isVarArg());
907       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
908       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
909         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
910       AbbrevToUse = FunctionAbbrev;
911       break;
912     }
913     case Type::StructTyID: {
914       StructType *ST = cast<StructType>(T);
915       // STRUCT: [ispacked, eltty x N]
916       TypeVals.push_back(ST->isPacked());
917       // Output all of the element types.
918       for (StructType::element_iterator I = ST->element_begin(),
919            E = ST->element_end(); I != E; ++I)
920         TypeVals.push_back(VE.getTypeID(*I));
921 
922       if (ST->isLiteral()) {
923         Code = bitc::TYPE_CODE_STRUCT_ANON;
924         AbbrevToUse = StructAnonAbbrev;
925       } else {
926         if (ST->isOpaque()) {
927           Code = bitc::TYPE_CODE_OPAQUE;
928         } else {
929           Code = bitc::TYPE_CODE_STRUCT_NAMED;
930           AbbrevToUse = StructNamedAbbrev;
931         }
932 
933         // Emit the name if it is present.
934         if (!ST->getName().empty())
935           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
936                             StructNameAbbrev);
937       }
938       break;
939     }
940     case Type::ArrayTyID: {
941       ArrayType *AT = cast<ArrayType>(T);
942       // ARRAY: [numelts, eltty]
943       Code = bitc::TYPE_CODE_ARRAY;
944       TypeVals.push_back(AT->getNumElements());
945       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
946       AbbrevToUse = ArrayAbbrev;
947       break;
948     }
949     case Type::VectorTyID: {
950       VectorType *VT = cast<VectorType>(T);
951       // VECTOR [numelts, eltty] or
952       //        [numelts, eltty, scalable]
953       Code = bitc::TYPE_CODE_VECTOR;
954       TypeVals.push_back(VT->getNumElements());
955       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
956       if (VT->isScalable())
957         TypeVals.push_back(VT->isScalable());
958       break;
959     }
960     }
961 
962     // Emit the finished record.
963     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
964     TypeVals.clear();
965   }
966 
967   Stream.ExitBlock();
968 }
969 
970 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
971   switch (Linkage) {
972   case GlobalValue::ExternalLinkage:
973     return 0;
974   case GlobalValue::WeakAnyLinkage:
975     return 16;
976   case GlobalValue::AppendingLinkage:
977     return 2;
978   case GlobalValue::InternalLinkage:
979     return 3;
980   case GlobalValue::LinkOnceAnyLinkage:
981     return 18;
982   case GlobalValue::ExternalWeakLinkage:
983     return 7;
984   case GlobalValue::CommonLinkage:
985     return 8;
986   case GlobalValue::PrivateLinkage:
987     return 9;
988   case GlobalValue::WeakODRLinkage:
989     return 17;
990   case GlobalValue::LinkOnceODRLinkage:
991     return 19;
992   case GlobalValue::AvailableExternallyLinkage:
993     return 12;
994   }
995   llvm_unreachable("Invalid linkage");
996 }
997 
998 static unsigned getEncodedLinkage(const GlobalValue &GV) {
999   return getEncodedLinkage(GV.getLinkage());
1000 }
1001 
1002 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1003   uint64_t RawFlags = 0;
1004   RawFlags |= Flags.ReadNone;
1005   RawFlags |= (Flags.ReadOnly << 1);
1006   RawFlags |= (Flags.NoRecurse << 2);
1007   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1008   RawFlags |= (Flags.NoInline << 4);
1009   RawFlags |= (Flags.AlwaysInline << 5);
1010   return RawFlags;
1011 }
1012 
1013 // Decode the flags for GlobalValue in the summary
1014 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1015   uint64_t RawFlags = 0;
1016 
1017   RawFlags |= Flags.NotEligibleToImport; // bool
1018   RawFlags |= (Flags.Live << 1);
1019   RawFlags |= (Flags.DSOLocal << 2);
1020   RawFlags |= (Flags.CanAutoHide << 3);
1021 
1022   // Linkage don't need to be remapped at that time for the summary. Any future
1023   // change to the getEncodedLinkage() function will need to be taken into
1024   // account here as well.
1025   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1026 
1027   return RawFlags;
1028 }
1029 
1030 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1031   uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1032                       (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1033   return RawFlags;
1034 }
1035 
1036 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1037   switch (GV.getVisibility()) {
1038   case GlobalValue::DefaultVisibility:   return 0;
1039   case GlobalValue::HiddenVisibility:    return 1;
1040   case GlobalValue::ProtectedVisibility: return 2;
1041   }
1042   llvm_unreachable("Invalid visibility");
1043 }
1044 
1045 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1046   switch (GV.getDLLStorageClass()) {
1047   case GlobalValue::DefaultStorageClass:   return 0;
1048   case GlobalValue::DLLImportStorageClass: return 1;
1049   case GlobalValue::DLLExportStorageClass: return 2;
1050   }
1051   llvm_unreachable("Invalid DLL storage class");
1052 }
1053 
1054 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1055   switch (GV.getThreadLocalMode()) {
1056     case GlobalVariable::NotThreadLocal:         return 0;
1057     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1058     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1059     case GlobalVariable::InitialExecTLSModel:    return 3;
1060     case GlobalVariable::LocalExecTLSModel:      return 4;
1061   }
1062   llvm_unreachable("Invalid TLS model");
1063 }
1064 
1065 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1066   switch (C.getSelectionKind()) {
1067   case Comdat::Any:
1068     return bitc::COMDAT_SELECTION_KIND_ANY;
1069   case Comdat::ExactMatch:
1070     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1071   case Comdat::Largest:
1072     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1073   case Comdat::NoDuplicates:
1074     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1075   case Comdat::SameSize:
1076     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1077   }
1078   llvm_unreachable("Invalid selection kind");
1079 }
1080 
1081 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1082   switch (GV.getUnnamedAddr()) {
1083   case GlobalValue::UnnamedAddr::None:   return 0;
1084   case GlobalValue::UnnamedAddr::Local:  return 2;
1085   case GlobalValue::UnnamedAddr::Global: return 1;
1086   }
1087   llvm_unreachable("Invalid unnamed_addr");
1088 }
1089 
1090 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1091   if (GenerateHash)
1092     Hasher.update(Str);
1093   return StrtabBuilder.add(Str);
1094 }
1095 
1096 void ModuleBitcodeWriter::writeComdats() {
1097   SmallVector<unsigned, 64> Vals;
1098   for (const Comdat *C : VE.getComdats()) {
1099     // COMDAT: [strtab offset, strtab size, selection_kind]
1100     Vals.push_back(addToStrtab(C->getName()));
1101     Vals.push_back(C->getName().size());
1102     Vals.push_back(getEncodedComdatSelectionKind(*C));
1103     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1104     Vals.clear();
1105   }
1106 }
1107 
1108 /// Write a record that will eventually hold the word offset of the
1109 /// module-level VST. For now the offset is 0, which will be backpatched
1110 /// after the real VST is written. Saves the bit offset to backpatch.
1111 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1112   // Write a placeholder value in for the offset of the real VST,
1113   // which is written after the function blocks so that it can include
1114   // the offset of each function. The placeholder offset will be
1115   // updated when the real VST is written.
1116   auto Abbv = std::make_shared<BitCodeAbbrev>();
1117   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1118   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1119   // hold the real VST offset. Must use fixed instead of VBR as we don't
1120   // know how many VBR chunks to reserve ahead of time.
1121   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1122   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1123 
1124   // Emit the placeholder
1125   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1126   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1127 
1128   // Compute and save the bit offset to the placeholder, which will be
1129   // patched when the real VST is written. We can simply subtract the 32-bit
1130   // fixed size from the current bit number to get the location to backpatch.
1131   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1132 }
1133 
1134 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1135 
1136 /// Determine the encoding to use for the given string name and length.
1137 static StringEncoding getStringEncoding(StringRef Str) {
1138   bool isChar6 = true;
1139   for (char C : Str) {
1140     if (isChar6)
1141       isChar6 = BitCodeAbbrevOp::isChar6(C);
1142     if ((unsigned char)C & 128)
1143       // don't bother scanning the rest.
1144       return SE_Fixed8;
1145   }
1146   if (isChar6)
1147     return SE_Char6;
1148   return SE_Fixed7;
1149 }
1150 
1151 /// Emit top-level description of module, including target triple, inline asm,
1152 /// descriptors for global variables, and function prototype info.
1153 /// Returns the bit offset to backpatch with the location of the real VST.
1154 void ModuleBitcodeWriter::writeModuleInfo() {
1155   // Emit various pieces of data attached to a module.
1156   if (!M.getTargetTriple().empty())
1157     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1158                       0 /*TODO*/);
1159   const std::string &DL = M.getDataLayoutStr();
1160   if (!DL.empty())
1161     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1162   if (!M.getModuleInlineAsm().empty())
1163     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1164                       0 /*TODO*/);
1165 
1166   // Emit information about sections and GC, computing how many there are. Also
1167   // compute the maximum alignment value.
1168   std::map<std::string, unsigned> SectionMap;
1169   std::map<std::string, unsigned> GCMap;
1170   unsigned MaxAlignment = 0;
1171   unsigned MaxGlobalType = 0;
1172   for (const GlobalValue &GV : M.globals()) {
1173     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1174     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1175     if (GV.hasSection()) {
1176       // Give section names unique ID's.
1177       unsigned &Entry = SectionMap[GV.getSection()];
1178       if (!Entry) {
1179         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1180                           0 /*TODO*/);
1181         Entry = SectionMap.size();
1182       }
1183     }
1184   }
1185   for (const Function &F : M) {
1186     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1187     if (F.hasSection()) {
1188       // Give section names unique ID's.
1189       unsigned &Entry = SectionMap[F.getSection()];
1190       if (!Entry) {
1191         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1192                           0 /*TODO*/);
1193         Entry = SectionMap.size();
1194       }
1195     }
1196     if (F.hasGC()) {
1197       // Same for GC names.
1198       unsigned &Entry = GCMap[F.getGC()];
1199       if (!Entry) {
1200         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1201                           0 /*TODO*/);
1202         Entry = GCMap.size();
1203       }
1204     }
1205   }
1206 
1207   // Emit abbrev for globals, now that we know # sections and max alignment.
1208   unsigned SimpleGVarAbbrev = 0;
1209   if (!M.global_empty()) {
1210     // Add an abbrev for common globals with no visibility or thread localness.
1211     auto Abbv = std::make_shared<BitCodeAbbrev>();
1212     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1213     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1214     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1215     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1216                               Log2_32_Ceil(MaxGlobalType+1)));
1217     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1218                                                            //| explicitType << 1
1219                                                            //| constant
1220     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1221     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1222     if (MaxAlignment == 0)                                 // Alignment.
1223       Abbv->Add(BitCodeAbbrevOp(0));
1224     else {
1225       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1226       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1227                                Log2_32_Ceil(MaxEncAlignment+1)));
1228     }
1229     if (SectionMap.empty())                                    // Section.
1230       Abbv->Add(BitCodeAbbrevOp(0));
1231     else
1232       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1233                                Log2_32_Ceil(SectionMap.size()+1)));
1234     // Don't bother emitting vis + thread local.
1235     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1236   }
1237 
1238   SmallVector<unsigned, 64> Vals;
1239   // Emit the module's source file name.
1240   {
1241     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1242     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1243     if (Bits == SE_Char6)
1244       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1245     else if (Bits == SE_Fixed7)
1246       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1247 
1248     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1249     auto Abbv = std::make_shared<BitCodeAbbrev>();
1250     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1251     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1252     Abbv->Add(AbbrevOpToUse);
1253     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1254 
1255     for (const auto P : M.getSourceFileName())
1256       Vals.push_back((unsigned char)P);
1257 
1258     // Emit the finished record.
1259     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1260     Vals.clear();
1261   }
1262 
1263   // Emit the global variable information.
1264   for (const GlobalVariable &GV : M.globals()) {
1265     unsigned AbbrevToUse = 0;
1266 
1267     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1268     //             linkage, alignment, section, visibility, threadlocal,
1269     //             unnamed_addr, externally_initialized, dllstorageclass,
1270     //             comdat, attributes, DSO_Local]
1271     Vals.push_back(addToStrtab(GV.getName()));
1272     Vals.push_back(GV.getName().size());
1273     Vals.push_back(VE.getTypeID(GV.getValueType()));
1274     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1275     Vals.push_back(GV.isDeclaration() ? 0 :
1276                    (VE.getValueID(GV.getInitializer()) + 1));
1277     Vals.push_back(getEncodedLinkage(GV));
1278     Vals.push_back(Log2_32(GV.getAlignment())+1);
1279     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1280     if (GV.isThreadLocal() ||
1281         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1282         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1283         GV.isExternallyInitialized() ||
1284         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1285         GV.hasComdat() ||
1286         GV.hasAttributes() ||
1287         GV.isDSOLocal() ||
1288         GV.hasPartition()) {
1289       Vals.push_back(getEncodedVisibility(GV));
1290       Vals.push_back(getEncodedThreadLocalMode(GV));
1291       Vals.push_back(getEncodedUnnamedAddr(GV));
1292       Vals.push_back(GV.isExternallyInitialized());
1293       Vals.push_back(getEncodedDLLStorageClass(GV));
1294       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1295 
1296       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1297       Vals.push_back(VE.getAttributeListID(AL));
1298 
1299       Vals.push_back(GV.isDSOLocal());
1300       Vals.push_back(addToStrtab(GV.getPartition()));
1301       Vals.push_back(GV.getPartition().size());
1302     } else {
1303       AbbrevToUse = SimpleGVarAbbrev;
1304     }
1305 
1306     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1307     Vals.clear();
1308   }
1309 
1310   // Emit the function proto information.
1311   for (const Function &F : M) {
1312     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1313     //             linkage, paramattrs, alignment, section, visibility, gc,
1314     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1315     //             prefixdata, personalityfn, DSO_Local, addrspace]
1316     Vals.push_back(addToStrtab(F.getName()));
1317     Vals.push_back(F.getName().size());
1318     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1319     Vals.push_back(F.getCallingConv());
1320     Vals.push_back(F.isDeclaration());
1321     Vals.push_back(getEncodedLinkage(F));
1322     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1323     Vals.push_back(Log2_32(F.getAlignment())+1);
1324     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1325     Vals.push_back(getEncodedVisibility(F));
1326     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1327     Vals.push_back(getEncodedUnnamedAddr(F));
1328     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1329                                        : 0);
1330     Vals.push_back(getEncodedDLLStorageClass(F));
1331     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1332     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1333                                      : 0);
1334     Vals.push_back(
1335         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1336 
1337     Vals.push_back(F.isDSOLocal());
1338     Vals.push_back(F.getAddressSpace());
1339     Vals.push_back(addToStrtab(F.getPartition()));
1340     Vals.push_back(F.getPartition().size());
1341 
1342     unsigned AbbrevToUse = 0;
1343     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1344     Vals.clear();
1345   }
1346 
1347   // Emit the alias information.
1348   for (const GlobalAlias &A : M.aliases()) {
1349     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1350     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1351     //         DSO_Local]
1352     Vals.push_back(addToStrtab(A.getName()));
1353     Vals.push_back(A.getName().size());
1354     Vals.push_back(VE.getTypeID(A.getValueType()));
1355     Vals.push_back(A.getType()->getAddressSpace());
1356     Vals.push_back(VE.getValueID(A.getAliasee()));
1357     Vals.push_back(getEncodedLinkage(A));
1358     Vals.push_back(getEncodedVisibility(A));
1359     Vals.push_back(getEncodedDLLStorageClass(A));
1360     Vals.push_back(getEncodedThreadLocalMode(A));
1361     Vals.push_back(getEncodedUnnamedAddr(A));
1362     Vals.push_back(A.isDSOLocal());
1363     Vals.push_back(addToStrtab(A.getPartition()));
1364     Vals.push_back(A.getPartition().size());
1365 
1366     unsigned AbbrevToUse = 0;
1367     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1368     Vals.clear();
1369   }
1370 
1371   // Emit the ifunc information.
1372   for (const GlobalIFunc &I : M.ifuncs()) {
1373     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1374     //         val#, linkage, visibility, DSO_Local]
1375     Vals.push_back(addToStrtab(I.getName()));
1376     Vals.push_back(I.getName().size());
1377     Vals.push_back(VE.getTypeID(I.getValueType()));
1378     Vals.push_back(I.getType()->getAddressSpace());
1379     Vals.push_back(VE.getValueID(I.getResolver()));
1380     Vals.push_back(getEncodedLinkage(I));
1381     Vals.push_back(getEncodedVisibility(I));
1382     Vals.push_back(I.isDSOLocal());
1383     Vals.push_back(addToStrtab(I.getPartition()));
1384     Vals.push_back(I.getPartition().size());
1385     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1386     Vals.clear();
1387   }
1388 
1389   writeValueSymbolTableForwardDecl();
1390 }
1391 
1392 static uint64_t getOptimizationFlags(const Value *V) {
1393   uint64_t Flags = 0;
1394 
1395   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1396     if (OBO->hasNoSignedWrap())
1397       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1398     if (OBO->hasNoUnsignedWrap())
1399       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1400   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1401     if (PEO->isExact())
1402       Flags |= 1 << bitc::PEO_EXACT;
1403   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1404     if (FPMO->hasAllowReassoc())
1405       Flags |= bitc::AllowReassoc;
1406     if (FPMO->hasNoNaNs())
1407       Flags |= bitc::NoNaNs;
1408     if (FPMO->hasNoInfs())
1409       Flags |= bitc::NoInfs;
1410     if (FPMO->hasNoSignedZeros())
1411       Flags |= bitc::NoSignedZeros;
1412     if (FPMO->hasAllowReciprocal())
1413       Flags |= bitc::AllowReciprocal;
1414     if (FPMO->hasAllowContract())
1415       Flags |= bitc::AllowContract;
1416     if (FPMO->hasApproxFunc())
1417       Flags |= bitc::ApproxFunc;
1418   }
1419 
1420   return Flags;
1421 }
1422 
1423 void ModuleBitcodeWriter::writeValueAsMetadata(
1424     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1425   // Mimic an MDNode with a value as one operand.
1426   Value *V = MD->getValue();
1427   Record.push_back(VE.getTypeID(V->getType()));
1428   Record.push_back(VE.getValueID(V));
1429   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1430   Record.clear();
1431 }
1432 
1433 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1434                                        SmallVectorImpl<uint64_t> &Record,
1435                                        unsigned Abbrev) {
1436   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1437     Metadata *MD = N->getOperand(i);
1438     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1439            "Unexpected function-local metadata");
1440     Record.push_back(VE.getMetadataOrNullID(MD));
1441   }
1442   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1443                                     : bitc::METADATA_NODE,
1444                     Record, Abbrev);
1445   Record.clear();
1446 }
1447 
1448 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1449   // Assume the column is usually under 128, and always output the inlined-at
1450   // location (it's never more expensive than building an array size 1).
1451   auto Abbv = std::make_shared<BitCodeAbbrev>();
1452   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1453   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1454   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1455   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1456   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1457   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1458   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1459   return Stream.EmitAbbrev(std::move(Abbv));
1460 }
1461 
1462 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1463                                           SmallVectorImpl<uint64_t> &Record,
1464                                           unsigned &Abbrev) {
1465   if (!Abbrev)
1466     Abbrev = createDILocationAbbrev();
1467 
1468   Record.push_back(N->isDistinct());
1469   Record.push_back(N->getLine());
1470   Record.push_back(N->getColumn());
1471   Record.push_back(VE.getMetadataID(N->getScope()));
1472   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1473   Record.push_back(N->isImplicitCode());
1474 
1475   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1476   Record.clear();
1477 }
1478 
1479 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1480   // Assume the column is usually under 128, and always output the inlined-at
1481   // location (it's never more expensive than building an array size 1).
1482   auto Abbv = std::make_shared<BitCodeAbbrev>();
1483   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1484   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1485   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1486   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1487   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1488   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1489   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1490   return Stream.EmitAbbrev(std::move(Abbv));
1491 }
1492 
1493 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1494                                              SmallVectorImpl<uint64_t> &Record,
1495                                              unsigned &Abbrev) {
1496   if (!Abbrev)
1497     Abbrev = createGenericDINodeAbbrev();
1498 
1499   Record.push_back(N->isDistinct());
1500   Record.push_back(N->getTag());
1501   Record.push_back(0); // Per-tag version field; unused for now.
1502 
1503   for (auto &I : N->operands())
1504     Record.push_back(VE.getMetadataOrNullID(I));
1505 
1506   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1507   Record.clear();
1508 }
1509 
1510 static uint64_t rotateSign(int64_t I) {
1511   uint64_t U = I;
1512   return I < 0 ? ~(U << 1) : U << 1;
1513 }
1514 
1515 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1516                                           SmallVectorImpl<uint64_t> &Record,
1517                                           unsigned Abbrev) {
1518   const uint64_t Version = 1 << 1;
1519   Record.push_back((uint64_t)N->isDistinct() | Version);
1520   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1521   Record.push_back(rotateSign(N->getLowerBound()));
1522 
1523   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1524   Record.clear();
1525 }
1526 
1527 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1528                                             SmallVectorImpl<uint64_t> &Record,
1529                                             unsigned Abbrev) {
1530   Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1531   Record.push_back(rotateSign(N->getValue()));
1532   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1533 
1534   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1535   Record.clear();
1536 }
1537 
1538 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1539                                            SmallVectorImpl<uint64_t> &Record,
1540                                            unsigned Abbrev) {
1541   Record.push_back(N->isDistinct());
1542   Record.push_back(N->getTag());
1543   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1544   Record.push_back(N->getSizeInBits());
1545   Record.push_back(N->getAlignInBits());
1546   Record.push_back(N->getEncoding());
1547   Record.push_back(N->getFlags());
1548 
1549   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1550   Record.clear();
1551 }
1552 
1553 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1554                                              SmallVectorImpl<uint64_t> &Record,
1555                                              unsigned Abbrev) {
1556   Record.push_back(N->isDistinct());
1557   Record.push_back(N->getTag());
1558   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1559   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1560   Record.push_back(N->getLine());
1561   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1562   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1563   Record.push_back(N->getSizeInBits());
1564   Record.push_back(N->getAlignInBits());
1565   Record.push_back(N->getOffsetInBits());
1566   Record.push_back(N->getFlags());
1567   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1568 
1569   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1570   // that there is no DWARF address space associated with DIDerivedType.
1571   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1572     Record.push_back(*DWARFAddressSpace + 1);
1573   else
1574     Record.push_back(0);
1575 
1576   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1577   Record.clear();
1578 }
1579 
1580 void ModuleBitcodeWriter::writeDICompositeType(
1581     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1582     unsigned Abbrev) {
1583   const unsigned IsNotUsedInOldTypeRef = 0x2;
1584   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1585   Record.push_back(N->getTag());
1586   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1587   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1588   Record.push_back(N->getLine());
1589   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1590   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1591   Record.push_back(N->getSizeInBits());
1592   Record.push_back(N->getAlignInBits());
1593   Record.push_back(N->getOffsetInBits());
1594   Record.push_back(N->getFlags());
1595   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1596   Record.push_back(N->getRuntimeLang());
1597   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1598   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1599   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1600   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1601 
1602   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1603   Record.clear();
1604 }
1605 
1606 void ModuleBitcodeWriter::writeDISubroutineType(
1607     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1608     unsigned Abbrev) {
1609   const unsigned HasNoOldTypeRefs = 0x2;
1610   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1611   Record.push_back(N->getFlags());
1612   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1613   Record.push_back(N->getCC());
1614 
1615   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1616   Record.clear();
1617 }
1618 
1619 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1620                                       SmallVectorImpl<uint64_t> &Record,
1621                                       unsigned Abbrev) {
1622   Record.push_back(N->isDistinct());
1623   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1624   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1625   if (N->getRawChecksum()) {
1626     Record.push_back(N->getRawChecksum()->Kind);
1627     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1628   } else {
1629     // Maintain backwards compatibility with the old internal representation of
1630     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1631     Record.push_back(0);
1632     Record.push_back(VE.getMetadataOrNullID(nullptr));
1633   }
1634   auto Source = N->getRawSource();
1635   if (Source)
1636     Record.push_back(VE.getMetadataOrNullID(*Source));
1637 
1638   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1639   Record.clear();
1640 }
1641 
1642 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1643                                              SmallVectorImpl<uint64_t> &Record,
1644                                              unsigned Abbrev) {
1645   assert(N->isDistinct() && "Expected distinct compile units");
1646   Record.push_back(/* IsDistinct */ true);
1647   Record.push_back(N->getSourceLanguage());
1648   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1649   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1650   Record.push_back(N->isOptimized());
1651   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1652   Record.push_back(N->getRuntimeVersion());
1653   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1654   Record.push_back(N->getEmissionKind());
1655   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1656   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1657   Record.push_back(/* subprograms */ 0);
1658   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1659   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1660   Record.push_back(N->getDWOId());
1661   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1662   Record.push_back(N->getSplitDebugInlining());
1663   Record.push_back(N->getDebugInfoForProfiling());
1664   Record.push_back((unsigned)N->getNameTableKind());
1665   Record.push_back(N->getRangesBaseAddress());
1666   Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1667 
1668   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1669   Record.clear();
1670 }
1671 
1672 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1673                                             SmallVectorImpl<uint64_t> &Record,
1674                                             unsigned Abbrev) {
1675   const uint64_t HasUnitFlag = 1 << 1;
1676   const uint64_t HasSPFlagsFlag = 1 << 2;
1677   Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1678   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1679   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1680   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1681   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1682   Record.push_back(N->getLine());
1683   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1684   Record.push_back(N->getScopeLine());
1685   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1686   Record.push_back(N->getSPFlags());
1687   Record.push_back(N->getVirtualIndex());
1688   Record.push_back(N->getFlags());
1689   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1690   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1691   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1692   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1693   Record.push_back(N->getThisAdjustment());
1694   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1695 
1696   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1697   Record.clear();
1698 }
1699 
1700 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1701                                               SmallVectorImpl<uint64_t> &Record,
1702                                               unsigned Abbrev) {
1703   Record.push_back(N->isDistinct());
1704   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1705   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1706   Record.push_back(N->getLine());
1707   Record.push_back(N->getColumn());
1708 
1709   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1710   Record.clear();
1711 }
1712 
1713 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1714     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1715     unsigned Abbrev) {
1716   Record.push_back(N->isDistinct());
1717   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1718   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1719   Record.push_back(N->getDiscriminator());
1720 
1721   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1722   Record.clear();
1723 }
1724 
1725 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1726                                              SmallVectorImpl<uint64_t> &Record,
1727                                              unsigned Abbrev) {
1728   Record.push_back(N->isDistinct());
1729   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1730   Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1731   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1732   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1733   Record.push_back(N->getLineNo());
1734 
1735   Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1736   Record.clear();
1737 }
1738 
1739 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1740                                            SmallVectorImpl<uint64_t> &Record,
1741                                            unsigned Abbrev) {
1742   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1743   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1744   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1745 
1746   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1747   Record.clear();
1748 }
1749 
1750 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1751                                        SmallVectorImpl<uint64_t> &Record,
1752                                        unsigned Abbrev) {
1753   Record.push_back(N->isDistinct());
1754   Record.push_back(N->getMacinfoType());
1755   Record.push_back(N->getLine());
1756   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1757   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1758 
1759   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1760   Record.clear();
1761 }
1762 
1763 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1764                                            SmallVectorImpl<uint64_t> &Record,
1765                                            unsigned Abbrev) {
1766   Record.push_back(N->isDistinct());
1767   Record.push_back(N->getMacinfoType());
1768   Record.push_back(N->getLine());
1769   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1770   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1771 
1772   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1773   Record.clear();
1774 }
1775 
1776 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1777                                         SmallVectorImpl<uint64_t> &Record,
1778                                         unsigned Abbrev) {
1779   Record.push_back(N->isDistinct());
1780   for (auto &I : N->operands())
1781     Record.push_back(VE.getMetadataOrNullID(I));
1782 
1783   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1784   Record.clear();
1785 }
1786 
1787 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1788     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1789     unsigned Abbrev) {
1790   Record.push_back(N->isDistinct());
1791   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1792   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1793 
1794   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1795   Record.clear();
1796 }
1797 
1798 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1799     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1800     unsigned Abbrev) {
1801   Record.push_back(N->isDistinct());
1802   Record.push_back(N->getTag());
1803   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1804   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1805   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1806 
1807   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1808   Record.clear();
1809 }
1810 
1811 void ModuleBitcodeWriter::writeDIGlobalVariable(
1812     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1813     unsigned Abbrev) {
1814   const uint64_t Version = 2 << 1;
1815   Record.push_back((uint64_t)N->isDistinct() | Version);
1816   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1817   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1818   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1819   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1820   Record.push_back(N->getLine());
1821   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1822   Record.push_back(N->isLocalToUnit());
1823   Record.push_back(N->isDefinition());
1824   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1825   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1826   Record.push_back(N->getAlignInBits());
1827 
1828   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1829   Record.clear();
1830 }
1831 
1832 void ModuleBitcodeWriter::writeDILocalVariable(
1833     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1834     unsigned Abbrev) {
1835   // In order to support all possible bitcode formats in BitcodeReader we need
1836   // to distinguish the following cases:
1837   // 1) Record has no artificial tag (Record[1]),
1838   //   has no obsolete inlinedAt field (Record[9]).
1839   //   In this case Record size will be 8, HasAlignment flag is false.
1840   // 2) Record has artificial tag (Record[1]),
1841   //   has no obsolete inlignedAt field (Record[9]).
1842   //   In this case Record size will be 9, HasAlignment flag is false.
1843   // 3) Record has both artificial tag (Record[1]) and
1844   //   obsolete inlignedAt field (Record[9]).
1845   //   In this case Record size will be 10, HasAlignment flag is false.
1846   // 4) Record has neither artificial tag, nor inlignedAt field, but
1847   //   HasAlignment flag is true and Record[8] contains alignment value.
1848   const uint64_t HasAlignmentFlag = 1 << 1;
1849   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1850   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1851   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1852   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1853   Record.push_back(N->getLine());
1854   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1855   Record.push_back(N->getArg());
1856   Record.push_back(N->getFlags());
1857   Record.push_back(N->getAlignInBits());
1858 
1859   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1860   Record.clear();
1861 }
1862 
1863 void ModuleBitcodeWriter::writeDILabel(
1864     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1865     unsigned Abbrev) {
1866   Record.push_back((uint64_t)N->isDistinct());
1867   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1868   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1869   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1870   Record.push_back(N->getLine());
1871 
1872   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
1873   Record.clear();
1874 }
1875 
1876 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1877                                             SmallVectorImpl<uint64_t> &Record,
1878                                             unsigned Abbrev) {
1879   Record.reserve(N->getElements().size() + 1);
1880   const uint64_t Version = 3 << 1;
1881   Record.push_back((uint64_t)N->isDistinct() | Version);
1882   Record.append(N->elements_begin(), N->elements_end());
1883 
1884   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1885   Record.clear();
1886 }
1887 
1888 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1889     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1890     unsigned Abbrev) {
1891   Record.push_back(N->isDistinct());
1892   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1893   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1894 
1895   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1896   Record.clear();
1897 }
1898 
1899 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1900                                               SmallVectorImpl<uint64_t> &Record,
1901                                               unsigned Abbrev) {
1902   Record.push_back(N->isDistinct());
1903   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1904   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1905   Record.push_back(N->getLine());
1906   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1907   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1908   Record.push_back(N->getAttributes());
1909   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1910 
1911   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1912   Record.clear();
1913 }
1914 
1915 void ModuleBitcodeWriter::writeDIImportedEntity(
1916     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1917     unsigned Abbrev) {
1918   Record.push_back(N->isDistinct());
1919   Record.push_back(N->getTag());
1920   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1921   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1922   Record.push_back(N->getLine());
1923   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1924   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1925 
1926   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1927   Record.clear();
1928 }
1929 
1930 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1931   auto Abbv = std::make_shared<BitCodeAbbrev>();
1932   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1933   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1934   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1935   return Stream.EmitAbbrev(std::move(Abbv));
1936 }
1937 
1938 void ModuleBitcodeWriter::writeNamedMetadata(
1939     SmallVectorImpl<uint64_t> &Record) {
1940   if (M.named_metadata_empty())
1941     return;
1942 
1943   unsigned Abbrev = createNamedMetadataAbbrev();
1944   for (const NamedMDNode &NMD : M.named_metadata()) {
1945     // Write name.
1946     StringRef Str = NMD.getName();
1947     Record.append(Str.bytes_begin(), Str.bytes_end());
1948     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1949     Record.clear();
1950 
1951     // Write named metadata operands.
1952     for (const MDNode *N : NMD.operands())
1953       Record.push_back(VE.getMetadataID(N));
1954     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1955     Record.clear();
1956   }
1957 }
1958 
1959 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1960   auto Abbv = std::make_shared<BitCodeAbbrev>();
1961   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1962   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1963   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1964   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1965   return Stream.EmitAbbrev(std::move(Abbv));
1966 }
1967 
1968 /// Write out a record for MDString.
1969 ///
1970 /// All the metadata strings in a metadata block are emitted in a single
1971 /// record.  The sizes and strings themselves are shoved into a blob.
1972 void ModuleBitcodeWriter::writeMetadataStrings(
1973     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1974   if (Strings.empty())
1975     return;
1976 
1977   // Start the record with the number of strings.
1978   Record.push_back(bitc::METADATA_STRINGS);
1979   Record.push_back(Strings.size());
1980 
1981   // Emit the sizes of the strings in the blob.
1982   SmallString<256> Blob;
1983   {
1984     BitstreamWriter W(Blob);
1985     for (const Metadata *MD : Strings)
1986       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1987     W.FlushToWord();
1988   }
1989 
1990   // Add the offset to the strings to the record.
1991   Record.push_back(Blob.size());
1992 
1993   // Add the strings to the blob.
1994   for (const Metadata *MD : Strings)
1995     Blob.append(cast<MDString>(MD)->getString());
1996 
1997   // Emit the final record.
1998   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1999   Record.clear();
2000 }
2001 
2002 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2003 enum MetadataAbbrev : unsigned {
2004 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2005 #include "llvm/IR/Metadata.def"
2006   LastPlusOne
2007 };
2008 
2009 void ModuleBitcodeWriter::writeMetadataRecords(
2010     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2011     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2012   if (MDs.empty())
2013     return;
2014 
2015   // Initialize MDNode abbreviations.
2016 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2017 #include "llvm/IR/Metadata.def"
2018 
2019   for (const Metadata *MD : MDs) {
2020     if (IndexPos)
2021       IndexPos->push_back(Stream.GetCurrentBitNo());
2022     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2023       assert(N->isResolved() && "Expected forward references to be resolved");
2024 
2025       switch (N->getMetadataID()) {
2026       default:
2027         llvm_unreachable("Invalid MDNode subclass");
2028 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2029   case Metadata::CLASS##Kind:                                                  \
2030     if (MDAbbrevs)                                                             \
2031       write##CLASS(cast<CLASS>(N), Record,                                     \
2032                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
2033     else                                                                       \
2034       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
2035     continue;
2036 #include "llvm/IR/Metadata.def"
2037       }
2038     }
2039     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2040   }
2041 }
2042 
2043 void ModuleBitcodeWriter::writeModuleMetadata() {
2044   if (!VE.hasMDs() && M.named_metadata_empty())
2045     return;
2046 
2047   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2048   SmallVector<uint64_t, 64> Record;
2049 
2050   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2051   // block and load any metadata.
2052   std::vector<unsigned> MDAbbrevs;
2053 
2054   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2055   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2056   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2057       createGenericDINodeAbbrev();
2058 
2059   auto Abbv = std::make_shared<BitCodeAbbrev>();
2060   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2061   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2062   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2063   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2064 
2065   Abbv = std::make_shared<BitCodeAbbrev>();
2066   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2067   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2068   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2069   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2070 
2071   // Emit MDStrings together upfront.
2072   writeMetadataStrings(VE.getMDStrings(), Record);
2073 
2074   // We only emit an index for the metadata record if we have more than a given
2075   // (naive) threshold of metadatas, otherwise it is not worth it.
2076   if (VE.getNonMDStrings().size() > IndexThreshold) {
2077     // Write a placeholder value in for the offset of the metadata index,
2078     // which is written after the records, so that it can include
2079     // the offset of each entry. The placeholder offset will be
2080     // updated after all records are emitted.
2081     uint64_t Vals[] = {0, 0};
2082     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2083   }
2084 
2085   // Compute and save the bit offset to the current position, which will be
2086   // patched when we emit the index later. We can simply subtract the 64-bit
2087   // fixed size from the current bit number to get the location to backpatch.
2088   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2089 
2090   // This index will contain the bitpos for each individual record.
2091   std::vector<uint64_t> IndexPos;
2092   IndexPos.reserve(VE.getNonMDStrings().size());
2093 
2094   // Write all the records
2095   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2096 
2097   if (VE.getNonMDStrings().size() > IndexThreshold) {
2098     // Now that we have emitted all the records we will emit the index. But
2099     // first
2100     // backpatch the forward reference so that the reader can skip the records
2101     // efficiently.
2102     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2103                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2104 
2105     // Delta encode the index.
2106     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2107     for (auto &Elt : IndexPos) {
2108       auto EltDelta = Elt - PreviousValue;
2109       PreviousValue = Elt;
2110       Elt = EltDelta;
2111     }
2112     // Emit the index record.
2113     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2114     IndexPos.clear();
2115   }
2116 
2117   // Write the named metadata now.
2118   writeNamedMetadata(Record);
2119 
2120   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2121     SmallVector<uint64_t, 4> Record;
2122     Record.push_back(VE.getValueID(&GO));
2123     pushGlobalMetadataAttachment(Record, GO);
2124     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2125   };
2126   for (const Function &F : M)
2127     if (F.isDeclaration() && F.hasMetadata())
2128       AddDeclAttachedMetadata(F);
2129   // FIXME: Only store metadata for declarations here, and move data for global
2130   // variable definitions to a separate block (PR28134).
2131   for (const GlobalVariable &GV : M.globals())
2132     if (GV.hasMetadata())
2133       AddDeclAttachedMetadata(GV);
2134 
2135   Stream.ExitBlock();
2136 }
2137 
2138 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2139   if (!VE.hasMDs())
2140     return;
2141 
2142   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2143   SmallVector<uint64_t, 64> Record;
2144   writeMetadataStrings(VE.getMDStrings(), Record);
2145   writeMetadataRecords(VE.getNonMDStrings(), Record);
2146   Stream.ExitBlock();
2147 }
2148 
2149 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2150     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2151   // [n x [id, mdnode]]
2152   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2153   GO.getAllMetadata(MDs);
2154   for (const auto &I : MDs) {
2155     Record.push_back(I.first);
2156     Record.push_back(VE.getMetadataID(I.second));
2157   }
2158 }
2159 
2160 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2161   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2162 
2163   SmallVector<uint64_t, 64> Record;
2164 
2165   if (F.hasMetadata()) {
2166     pushGlobalMetadataAttachment(Record, F);
2167     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2168     Record.clear();
2169   }
2170 
2171   // Write metadata attachments
2172   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2173   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2174   for (const BasicBlock &BB : F)
2175     for (const Instruction &I : BB) {
2176       MDs.clear();
2177       I.getAllMetadataOtherThanDebugLoc(MDs);
2178 
2179       // If no metadata, ignore instruction.
2180       if (MDs.empty()) continue;
2181 
2182       Record.push_back(VE.getInstructionID(&I));
2183 
2184       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2185         Record.push_back(MDs[i].first);
2186         Record.push_back(VE.getMetadataID(MDs[i].second));
2187       }
2188       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2189       Record.clear();
2190     }
2191 
2192   Stream.ExitBlock();
2193 }
2194 
2195 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2196   SmallVector<uint64_t, 64> Record;
2197 
2198   // Write metadata kinds
2199   // METADATA_KIND - [n x [id, name]]
2200   SmallVector<StringRef, 8> Names;
2201   M.getMDKindNames(Names);
2202 
2203   if (Names.empty()) return;
2204 
2205   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2206 
2207   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2208     Record.push_back(MDKindID);
2209     StringRef KName = Names[MDKindID];
2210     Record.append(KName.begin(), KName.end());
2211 
2212     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2213     Record.clear();
2214   }
2215 
2216   Stream.ExitBlock();
2217 }
2218 
2219 void ModuleBitcodeWriter::writeOperandBundleTags() {
2220   // Write metadata kinds
2221   //
2222   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2223   //
2224   // OPERAND_BUNDLE_TAG - [strchr x N]
2225 
2226   SmallVector<StringRef, 8> Tags;
2227   M.getOperandBundleTags(Tags);
2228 
2229   if (Tags.empty())
2230     return;
2231 
2232   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2233 
2234   SmallVector<uint64_t, 64> Record;
2235 
2236   for (auto Tag : Tags) {
2237     Record.append(Tag.begin(), Tag.end());
2238 
2239     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2240     Record.clear();
2241   }
2242 
2243   Stream.ExitBlock();
2244 }
2245 
2246 void ModuleBitcodeWriter::writeSyncScopeNames() {
2247   SmallVector<StringRef, 8> SSNs;
2248   M.getContext().getSyncScopeNames(SSNs);
2249   if (SSNs.empty())
2250     return;
2251 
2252   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2253 
2254   SmallVector<uint64_t, 64> Record;
2255   for (auto SSN : SSNs) {
2256     Record.append(SSN.begin(), SSN.end());
2257     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2258     Record.clear();
2259   }
2260 
2261   Stream.ExitBlock();
2262 }
2263 
2264 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2265   if ((int64_t)V >= 0)
2266     Vals.push_back(V << 1);
2267   else
2268     Vals.push_back((-V << 1) | 1);
2269 }
2270 
2271 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2272                                          bool isGlobal) {
2273   if (FirstVal == LastVal) return;
2274 
2275   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2276 
2277   unsigned AggregateAbbrev = 0;
2278   unsigned String8Abbrev = 0;
2279   unsigned CString7Abbrev = 0;
2280   unsigned CString6Abbrev = 0;
2281   // If this is a constant pool for the module, emit module-specific abbrevs.
2282   if (isGlobal) {
2283     // Abbrev for CST_CODE_AGGREGATE.
2284     auto Abbv = std::make_shared<BitCodeAbbrev>();
2285     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2286     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2287     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2288     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2289 
2290     // Abbrev for CST_CODE_STRING.
2291     Abbv = std::make_shared<BitCodeAbbrev>();
2292     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2293     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2294     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2295     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2296     // Abbrev for CST_CODE_CSTRING.
2297     Abbv = std::make_shared<BitCodeAbbrev>();
2298     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2299     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2300     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2301     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2302     // Abbrev for CST_CODE_CSTRING.
2303     Abbv = std::make_shared<BitCodeAbbrev>();
2304     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2305     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2306     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2307     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2308   }
2309 
2310   SmallVector<uint64_t, 64> Record;
2311 
2312   const ValueEnumerator::ValueList &Vals = VE.getValues();
2313   Type *LastTy = nullptr;
2314   for (unsigned i = FirstVal; i != LastVal; ++i) {
2315     const Value *V = Vals[i].first;
2316     // If we need to switch types, do so now.
2317     if (V->getType() != LastTy) {
2318       LastTy = V->getType();
2319       Record.push_back(VE.getTypeID(LastTy));
2320       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2321                         CONSTANTS_SETTYPE_ABBREV);
2322       Record.clear();
2323     }
2324 
2325     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2326       Record.push_back(unsigned(IA->hasSideEffects()) |
2327                        unsigned(IA->isAlignStack()) << 1 |
2328                        unsigned(IA->getDialect()&1) << 2);
2329 
2330       // Add the asm string.
2331       const std::string &AsmStr = IA->getAsmString();
2332       Record.push_back(AsmStr.size());
2333       Record.append(AsmStr.begin(), AsmStr.end());
2334 
2335       // Add the constraint string.
2336       const std::string &ConstraintStr = IA->getConstraintString();
2337       Record.push_back(ConstraintStr.size());
2338       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2339       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2340       Record.clear();
2341       continue;
2342     }
2343     const Constant *C = cast<Constant>(V);
2344     unsigned Code = -1U;
2345     unsigned AbbrevToUse = 0;
2346     if (C->isNullValue()) {
2347       Code = bitc::CST_CODE_NULL;
2348     } else if (isa<UndefValue>(C)) {
2349       Code = bitc::CST_CODE_UNDEF;
2350     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2351       if (IV->getBitWidth() <= 64) {
2352         uint64_t V = IV->getSExtValue();
2353         emitSignedInt64(Record, V);
2354         Code = bitc::CST_CODE_INTEGER;
2355         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2356       } else {                             // Wide integers, > 64 bits in size.
2357         // We have an arbitrary precision integer value to write whose
2358         // bit width is > 64. However, in canonical unsigned integer
2359         // format it is likely that the high bits are going to be zero.
2360         // So, we only write the number of active words.
2361         unsigned NWords = IV->getValue().getActiveWords();
2362         const uint64_t *RawWords = IV->getValue().getRawData();
2363         for (unsigned i = 0; i != NWords; ++i) {
2364           emitSignedInt64(Record, RawWords[i]);
2365         }
2366         Code = bitc::CST_CODE_WIDE_INTEGER;
2367       }
2368     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2369       Code = bitc::CST_CODE_FLOAT;
2370       Type *Ty = CFP->getType();
2371       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2372         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2373       } else if (Ty->isX86_FP80Ty()) {
2374         // api needed to prevent premature destruction
2375         // bits are not in the same order as a normal i80 APInt, compensate.
2376         APInt api = CFP->getValueAPF().bitcastToAPInt();
2377         const uint64_t *p = api.getRawData();
2378         Record.push_back((p[1] << 48) | (p[0] >> 16));
2379         Record.push_back(p[0] & 0xffffLL);
2380       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2381         APInt api = CFP->getValueAPF().bitcastToAPInt();
2382         const uint64_t *p = api.getRawData();
2383         Record.push_back(p[0]);
2384         Record.push_back(p[1]);
2385       } else {
2386         assert(0 && "Unknown FP type!");
2387       }
2388     } else if (isa<ConstantDataSequential>(C) &&
2389                cast<ConstantDataSequential>(C)->isString()) {
2390       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2391       // Emit constant strings specially.
2392       unsigned NumElts = Str->getNumElements();
2393       // If this is a null-terminated string, use the denser CSTRING encoding.
2394       if (Str->isCString()) {
2395         Code = bitc::CST_CODE_CSTRING;
2396         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2397       } else {
2398         Code = bitc::CST_CODE_STRING;
2399         AbbrevToUse = String8Abbrev;
2400       }
2401       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2402       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2403       for (unsigned i = 0; i != NumElts; ++i) {
2404         unsigned char V = Str->getElementAsInteger(i);
2405         Record.push_back(V);
2406         isCStr7 &= (V & 128) == 0;
2407         if (isCStrChar6)
2408           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2409       }
2410 
2411       if (isCStrChar6)
2412         AbbrevToUse = CString6Abbrev;
2413       else if (isCStr7)
2414         AbbrevToUse = CString7Abbrev;
2415     } else if (const ConstantDataSequential *CDS =
2416                   dyn_cast<ConstantDataSequential>(C)) {
2417       Code = bitc::CST_CODE_DATA;
2418       Type *EltTy = CDS->getType()->getElementType();
2419       if (isa<IntegerType>(EltTy)) {
2420         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2421           Record.push_back(CDS->getElementAsInteger(i));
2422       } else {
2423         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2424           Record.push_back(
2425               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2426       }
2427     } else if (isa<ConstantAggregate>(C)) {
2428       Code = bitc::CST_CODE_AGGREGATE;
2429       for (const Value *Op : C->operands())
2430         Record.push_back(VE.getValueID(Op));
2431       AbbrevToUse = AggregateAbbrev;
2432     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2433       switch (CE->getOpcode()) {
2434       default:
2435         if (Instruction::isCast(CE->getOpcode())) {
2436           Code = bitc::CST_CODE_CE_CAST;
2437           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2438           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2439           Record.push_back(VE.getValueID(C->getOperand(0)));
2440           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2441         } else {
2442           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2443           Code = bitc::CST_CODE_CE_BINOP;
2444           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2445           Record.push_back(VE.getValueID(C->getOperand(0)));
2446           Record.push_back(VE.getValueID(C->getOperand(1)));
2447           uint64_t Flags = getOptimizationFlags(CE);
2448           if (Flags != 0)
2449             Record.push_back(Flags);
2450         }
2451         break;
2452       case Instruction::FNeg: {
2453         assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2454         Code = bitc::CST_CODE_CE_UNOP;
2455         Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2456         Record.push_back(VE.getValueID(C->getOperand(0)));
2457         uint64_t Flags = getOptimizationFlags(CE);
2458         if (Flags != 0)
2459           Record.push_back(Flags);
2460         break;
2461       }
2462       case Instruction::GetElementPtr: {
2463         Code = bitc::CST_CODE_CE_GEP;
2464         const auto *GO = cast<GEPOperator>(C);
2465         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2466         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2467           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2468           Record.push_back((*Idx << 1) | GO->isInBounds());
2469         } else if (GO->isInBounds())
2470           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2471         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2472           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2473           Record.push_back(VE.getValueID(C->getOperand(i)));
2474         }
2475         break;
2476       }
2477       case Instruction::Select:
2478         Code = bitc::CST_CODE_CE_SELECT;
2479         Record.push_back(VE.getValueID(C->getOperand(0)));
2480         Record.push_back(VE.getValueID(C->getOperand(1)));
2481         Record.push_back(VE.getValueID(C->getOperand(2)));
2482         break;
2483       case Instruction::ExtractElement:
2484         Code = bitc::CST_CODE_CE_EXTRACTELT;
2485         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2486         Record.push_back(VE.getValueID(C->getOperand(0)));
2487         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2488         Record.push_back(VE.getValueID(C->getOperand(1)));
2489         break;
2490       case Instruction::InsertElement:
2491         Code = bitc::CST_CODE_CE_INSERTELT;
2492         Record.push_back(VE.getValueID(C->getOperand(0)));
2493         Record.push_back(VE.getValueID(C->getOperand(1)));
2494         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2495         Record.push_back(VE.getValueID(C->getOperand(2)));
2496         break;
2497       case Instruction::ShuffleVector:
2498         // If the return type and argument types are the same, this is a
2499         // standard shufflevector instruction.  If the types are different,
2500         // then the shuffle is widening or truncating the input vectors, and
2501         // the argument type must also be encoded.
2502         if (C->getType() == C->getOperand(0)->getType()) {
2503           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2504         } else {
2505           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2506           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2507         }
2508         Record.push_back(VE.getValueID(C->getOperand(0)));
2509         Record.push_back(VE.getValueID(C->getOperand(1)));
2510         Record.push_back(VE.getValueID(C->getOperand(2)));
2511         break;
2512       case Instruction::ICmp:
2513       case Instruction::FCmp:
2514         Code = bitc::CST_CODE_CE_CMP;
2515         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2516         Record.push_back(VE.getValueID(C->getOperand(0)));
2517         Record.push_back(VE.getValueID(C->getOperand(1)));
2518         Record.push_back(CE->getPredicate());
2519         break;
2520       }
2521     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2522       Code = bitc::CST_CODE_BLOCKADDRESS;
2523       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2524       Record.push_back(VE.getValueID(BA->getFunction()));
2525       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2526     } else {
2527 #ifndef NDEBUG
2528       C->dump();
2529 #endif
2530       llvm_unreachable("Unknown constant!");
2531     }
2532     Stream.EmitRecord(Code, Record, AbbrevToUse);
2533     Record.clear();
2534   }
2535 
2536   Stream.ExitBlock();
2537 }
2538 
2539 void ModuleBitcodeWriter::writeModuleConstants() {
2540   const ValueEnumerator::ValueList &Vals = VE.getValues();
2541 
2542   // Find the first constant to emit, which is the first non-globalvalue value.
2543   // We know globalvalues have been emitted by WriteModuleInfo.
2544   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2545     if (!isa<GlobalValue>(Vals[i].first)) {
2546       writeConstants(i, Vals.size(), true);
2547       return;
2548     }
2549   }
2550 }
2551 
2552 /// pushValueAndType - The file has to encode both the value and type id for
2553 /// many values, because we need to know what type to create for forward
2554 /// references.  However, most operands are not forward references, so this type
2555 /// field is not needed.
2556 ///
2557 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2558 /// instruction ID, then it is a forward reference, and it also includes the
2559 /// type ID.  The value ID that is written is encoded relative to the InstID.
2560 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2561                                            SmallVectorImpl<unsigned> &Vals) {
2562   unsigned ValID = VE.getValueID(V);
2563   // Make encoding relative to the InstID.
2564   Vals.push_back(InstID - ValID);
2565   if (ValID >= InstID) {
2566     Vals.push_back(VE.getTypeID(V->getType()));
2567     return true;
2568   }
2569   return false;
2570 }
2571 
2572 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2573                                               unsigned InstID) {
2574   SmallVector<unsigned, 64> Record;
2575   LLVMContext &C = CS.getInstruction()->getContext();
2576 
2577   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2578     const auto &Bundle = CS.getOperandBundleAt(i);
2579     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2580 
2581     for (auto &Input : Bundle.Inputs)
2582       pushValueAndType(Input, InstID, Record);
2583 
2584     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2585     Record.clear();
2586   }
2587 }
2588 
2589 /// pushValue - Like pushValueAndType, but where the type of the value is
2590 /// omitted (perhaps it was already encoded in an earlier operand).
2591 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2592                                     SmallVectorImpl<unsigned> &Vals) {
2593   unsigned ValID = VE.getValueID(V);
2594   Vals.push_back(InstID - ValID);
2595 }
2596 
2597 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2598                                           SmallVectorImpl<uint64_t> &Vals) {
2599   unsigned ValID = VE.getValueID(V);
2600   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2601   emitSignedInt64(Vals, diff);
2602 }
2603 
2604 /// WriteInstruction - Emit an instruction to the specified stream.
2605 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2606                                            unsigned InstID,
2607                                            SmallVectorImpl<unsigned> &Vals) {
2608   unsigned Code = 0;
2609   unsigned AbbrevToUse = 0;
2610   VE.setInstructionID(&I);
2611   switch (I.getOpcode()) {
2612   default:
2613     if (Instruction::isCast(I.getOpcode())) {
2614       Code = bitc::FUNC_CODE_INST_CAST;
2615       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2616         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2617       Vals.push_back(VE.getTypeID(I.getType()));
2618       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2619     } else {
2620       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2621       Code = bitc::FUNC_CODE_INST_BINOP;
2622       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2623         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2624       pushValue(I.getOperand(1), InstID, Vals);
2625       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2626       uint64_t Flags = getOptimizationFlags(&I);
2627       if (Flags != 0) {
2628         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2629           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2630         Vals.push_back(Flags);
2631       }
2632     }
2633     break;
2634   case Instruction::FNeg: {
2635     Code = bitc::FUNC_CODE_INST_UNOP;
2636     if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2637       AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2638     Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2639     uint64_t Flags = getOptimizationFlags(&I);
2640     if (Flags != 0) {
2641       if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2642         AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2643       Vals.push_back(Flags);
2644     }
2645     break;
2646   }
2647   case Instruction::GetElementPtr: {
2648     Code = bitc::FUNC_CODE_INST_GEP;
2649     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2650     auto &GEPInst = cast<GetElementPtrInst>(I);
2651     Vals.push_back(GEPInst.isInBounds());
2652     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2653     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2654       pushValueAndType(I.getOperand(i), InstID, Vals);
2655     break;
2656   }
2657   case Instruction::ExtractValue: {
2658     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2659     pushValueAndType(I.getOperand(0), InstID, Vals);
2660     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2661     Vals.append(EVI->idx_begin(), EVI->idx_end());
2662     break;
2663   }
2664   case Instruction::InsertValue: {
2665     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2666     pushValueAndType(I.getOperand(0), InstID, Vals);
2667     pushValueAndType(I.getOperand(1), InstID, Vals);
2668     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2669     Vals.append(IVI->idx_begin(), IVI->idx_end());
2670     break;
2671   }
2672   case Instruction::Select: {
2673     Code = bitc::FUNC_CODE_INST_VSELECT;
2674     pushValueAndType(I.getOperand(1), InstID, Vals);
2675     pushValue(I.getOperand(2), InstID, Vals);
2676     pushValueAndType(I.getOperand(0), InstID, Vals);
2677     uint64_t Flags = getOptimizationFlags(&I);
2678     if (Flags != 0)
2679       Vals.push_back(Flags);
2680     break;
2681   }
2682   case Instruction::ExtractElement:
2683     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2684     pushValueAndType(I.getOperand(0), InstID, Vals);
2685     pushValueAndType(I.getOperand(1), InstID, Vals);
2686     break;
2687   case Instruction::InsertElement:
2688     Code = bitc::FUNC_CODE_INST_INSERTELT;
2689     pushValueAndType(I.getOperand(0), InstID, Vals);
2690     pushValue(I.getOperand(1), InstID, Vals);
2691     pushValueAndType(I.getOperand(2), InstID, Vals);
2692     break;
2693   case Instruction::ShuffleVector:
2694     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2695     pushValueAndType(I.getOperand(0), InstID, Vals);
2696     pushValue(I.getOperand(1), InstID, Vals);
2697     pushValue(I.getOperand(2), InstID, Vals);
2698     break;
2699   case Instruction::ICmp:
2700   case Instruction::FCmp: {
2701     // compare returning Int1Ty or vector of Int1Ty
2702     Code = bitc::FUNC_CODE_INST_CMP2;
2703     pushValueAndType(I.getOperand(0), InstID, Vals);
2704     pushValue(I.getOperand(1), InstID, Vals);
2705     Vals.push_back(cast<CmpInst>(I).getPredicate());
2706     uint64_t Flags = getOptimizationFlags(&I);
2707     if (Flags != 0)
2708       Vals.push_back(Flags);
2709     break;
2710   }
2711 
2712   case Instruction::Ret:
2713     {
2714       Code = bitc::FUNC_CODE_INST_RET;
2715       unsigned NumOperands = I.getNumOperands();
2716       if (NumOperands == 0)
2717         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2718       else if (NumOperands == 1) {
2719         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2720           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2721       } else {
2722         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2723           pushValueAndType(I.getOperand(i), InstID, Vals);
2724       }
2725     }
2726     break;
2727   case Instruction::Br:
2728     {
2729       Code = bitc::FUNC_CODE_INST_BR;
2730       const BranchInst &II = cast<BranchInst>(I);
2731       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2732       if (II.isConditional()) {
2733         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2734         pushValue(II.getCondition(), InstID, Vals);
2735       }
2736     }
2737     break;
2738   case Instruction::Switch:
2739     {
2740       Code = bitc::FUNC_CODE_INST_SWITCH;
2741       const SwitchInst &SI = cast<SwitchInst>(I);
2742       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2743       pushValue(SI.getCondition(), InstID, Vals);
2744       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2745       for (auto Case : SI.cases()) {
2746         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2747         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2748       }
2749     }
2750     break;
2751   case Instruction::IndirectBr:
2752     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2753     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2754     // Encode the address operand as relative, but not the basic blocks.
2755     pushValue(I.getOperand(0), InstID, Vals);
2756     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2757       Vals.push_back(VE.getValueID(I.getOperand(i)));
2758     break;
2759 
2760   case Instruction::Invoke: {
2761     const InvokeInst *II = cast<InvokeInst>(&I);
2762     const Value *Callee = II->getCalledValue();
2763     FunctionType *FTy = II->getFunctionType();
2764 
2765     if (II->hasOperandBundles())
2766       writeOperandBundles(II, InstID);
2767 
2768     Code = bitc::FUNC_CODE_INST_INVOKE;
2769 
2770     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2771     Vals.push_back(II->getCallingConv() | 1 << 13);
2772     Vals.push_back(VE.getValueID(II->getNormalDest()));
2773     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2774     Vals.push_back(VE.getTypeID(FTy));
2775     pushValueAndType(Callee, InstID, Vals);
2776 
2777     // Emit value #'s for the fixed parameters.
2778     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2779       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2780 
2781     // Emit type/value pairs for varargs params.
2782     if (FTy->isVarArg()) {
2783       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2784            i != e; ++i)
2785         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2786     }
2787     break;
2788   }
2789   case Instruction::Resume:
2790     Code = bitc::FUNC_CODE_INST_RESUME;
2791     pushValueAndType(I.getOperand(0), InstID, Vals);
2792     break;
2793   case Instruction::CleanupRet: {
2794     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2795     const auto &CRI = cast<CleanupReturnInst>(I);
2796     pushValue(CRI.getCleanupPad(), InstID, Vals);
2797     if (CRI.hasUnwindDest())
2798       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2799     break;
2800   }
2801   case Instruction::CatchRet: {
2802     Code = bitc::FUNC_CODE_INST_CATCHRET;
2803     const auto &CRI = cast<CatchReturnInst>(I);
2804     pushValue(CRI.getCatchPad(), InstID, Vals);
2805     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2806     break;
2807   }
2808   case Instruction::CleanupPad:
2809   case Instruction::CatchPad: {
2810     const auto &FuncletPad = cast<FuncletPadInst>(I);
2811     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2812                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2813     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2814 
2815     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2816     Vals.push_back(NumArgOperands);
2817     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2818       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2819     break;
2820   }
2821   case Instruction::CatchSwitch: {
2822     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2823     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2824 
2825     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2826 
2827     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2828     Vals.push_back(NumHandlers);
2829     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2830       Vals.push_back(VE.getValueID(CatchPadBB));
2831 
2832     if (CatchSwitch.hasUnwindDest())
2833       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2834     break;
2835   }
2836   case Instruction::CallBr: {
2837     const CallBrInst *CBI = cast<CallBrInst>(&I);
2838     const Value *Callee = CBI->getCalledValue();
2839     FunctionType *FTy = CBI->getFunctionType();
2840 
2841     if (CBI->hasOperandBundles())
2842       writeOperandBundles(CBI, InstID);
2843 
2844     Code = bitc::FUNC_CODE_INST_CALLBR;
2845 
2846     Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
2847 
2848     Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
2849                    1 << bitc::CALL_EXPLICIT_TYPE);
2850 
2851     Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
2852     Vals.push_back(CBI->getNumIndirectDests());
2853     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
2854       Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
2855 
2856     Vals.push_back(VE.getTypeID(FTy));
2857     pushValueAndType(Callee, InstID, Vals);
2858 
2859     // Emit value #'s for the fixed parameters.
2860     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2861       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2862 
2863     // Emit type/value pairs for varargs params.
2864     if (FTy->isVarArg()) {
2865       for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands();
2866            i != e; ++i)
2867         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2868     }
2869     break;
2870   }
2871   case Instruction::Unreachable:
2872     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2873     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2874     break;
2875 
2876   case Instruction::PHI: {
2877     const PHINode &PN = cast<PHINode>(I);
2878     Code = bitc::FUNC_CODE_INST_PHI;
2879     // With the newer instruction encoding, forward references could give
2880     // negative valued IDs.  This is most common for PHIs, so we use
2881     // signed VBRs.
2882     SmallVector<uint64_t, 128> Vals64;
2883     Vals64.push_back(VE.getTypeID(PN.getType()));
2884     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2885       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2886       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2887     }
2888 
2889     uint64_t Flags = getOptimizationFlags(&I);
2890     if (Flags != 0)
2891       Vals64.push_back(Flags);
2892 
2893     // Emit a Vals64 vector and exit.
2894     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2895     Vals64.clear();
2896     return;
2897   }
2898 
2899   case Instruction::LandingPad: {
2900     const LandingPadInst &LP = cast<LandingPadInst>(I);
2901     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2902     Vals.push_back(VE.getTypeID(LP.getType()));
2903     Vals.push_back(LP.isCleanup());
2904     Vals.push_back(LP.getNumClauses());
2905     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2906       if (LP.isCatch(I))
2907         Vals.push_back(LandingPadInst::Catch);
2908       else
2909         Vals.push_back(LandingPadInst::Filter);
2910       pushValueAndType(LP.getClause(I), InstID, Vals);
2911     }
2912     break;
2913   }
2914 
2915   case Instruction::Alloca: {
2916     Code = bitc::FUNC_CODE_INST_ALLOCA;
2917     const AllocaInst &AI = cast<AllocaInst>(I);
2918     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2919     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2920     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2921     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2922     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2923            "not enough bits for maximum alignment");
2924     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2925     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2926     AlignRecord |= 1 << 6;
2927     AlignRecord |= AI.isSwiftError() << 7;
2928     Vals.push_back(AlignRecord);
2929     break;
2930   }
2931 
2932   case Instruction::Load:
2933     if (cast<LoadInst>(I).isAtomic()) {
2934       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2935       pushValueAndType(I.getOperand(0), InstID, Vals);
2936     } else {
2937       Code = bitc::FUNC_CODE_INST_LOAD;
2938       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2939         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2940     }
2941     Vals.push_back(VE.getTypeID(I.getType()));
2942     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2943     Vals.push_back(cast<LoadInst>(I).isVolatile());
2944     if (cast<LoadInst>(I).isAtomic()) {
2945       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2946       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2947     }
2948     break;
2949   case Instruction::Store:
2950     if (cast<StoreInst>(I).isAtomic())
2951       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2952     else
2953       Code = bitc::FUNC_CODE_INST_STORE;
2954     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2955     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2956     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2957     Vals.push_back(cast<StoreInst>(I).isVolatile());
2958     if (cast<StoreInst>(I).isAtomic()) {
2959       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2960       Vals.push_back(
2961           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2962     }
2963     break;
2964   case Instruction::AtomicCmpXchg:
2965     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2966     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2967     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2968     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2969     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2970     Vals.push_back(
2971         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2972     Vals.push_back(
2973         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2974     Vals.push_back(
2975         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2976     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2977     break;
2978   case Instruction::AtomicRMW:
2979     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2980     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2981     pushValue(I.getOperand(1), InstID, Vals);        // val.
2982     Vals.push_back(
2983         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2984     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2985     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2986     Vals.push_back(
2987         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2988     break;
2989   case Instruction::Fence:
2990     Code = bitc::FUNC_CODE_INST_FENCE;
2991     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2992     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2993     break;
2994   case Instruction::Call: {
2995     const CallInst &CI = cast<CallInst>(I);
2996     FunctionType *FTy = CI.getFunctionType();
2997 
2998     if (CI.hasOperandBundles())
2999       writeOperandBundles(&CI, InstID);
3000 
3001     Code = bitc::FUNC_CODE_INST_CALL;
3002 
3003     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3004 
3005     unsigned Flags = getOptimizationFlags(&I);
3006     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3007                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3008                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3009                    1 << bitc::CALL_EXPLICIT_TYPE |
3010                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3011                    unsigned(Flags != 0) << bitc::CALL_FMF);
3012     if (Flags != 0)
3013       Vals.push_back(Flags);
3014 
3015     Vals.push_back(VE.getTypeID(FTy));
3016     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
3017 
3018     // Emit value #'s for the fixed parameters.
3019     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3020       // Check for labels (can happen with asm labels).
3021       if (FTy->getParamType(i)->isLabelTy())
3022         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3023       else
3024         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3025     }
3026 
3027     // Emit type/value pairs for varargs params.
3028     if (FTy->isVarArg()) {
3029       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
3030            i != e; ++i)
3031         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3032     }
3033     break;
3034   }
3035   case Instruction::VAArg:
3036     Code = bitc::FUNC_CODE_INST_VAARG;
3037     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
3038     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
3039     Vals.push_back(VE.getTypeID(I.getType())); // restype.
3040     break;
3041   case Instruction::Freeze:
3042     Code = bitc::FUNC_CODE_INST_FREEZE;
3043     pushValueAndType(I.getOperand(0), InstID, Vals);
3044     break;
3045   }
3046 
3047   Stream.EmitRecord(Code, Vals, AbbrevToUse);
3048   Vals.clear();
3049 }
3050 
3051 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3052 /// to allow clients to efficiently find the function body.
3053 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3054   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3055   // Get the offset of the VST we are writing, and backpatch it into
3056   // the VST forward declaration record.
3057   uint64_t VSTOffset = Stream.GetCurrentBitNo();
3058   // The BitcodeStartBit was the stream offset of the identification block.
3059   VSTOffset -= bitcodeStartBit();
3060   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3061   // Note that we add 1 here because the offset is relative to one word
3062   // before the start of the identification block, which was historically
3063   // always the start of the regular bitcode header.
3064   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3065 
3066   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3067 
3068   auto Abbv = std::make_shared<BitCodeAbbrev>();
3069   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3070   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3071   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3072   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3073 
3074   for (const Function &F : M) {
3075     uint64_t Record[2];
3076 
3077     if (F.isDeclaration())
3078       continue;
3079 
3080     Record[0] = VE.getValueID(&F);
3081 
3082     // Save the word offset of the function (from the start of the
3083     // actual bitcode written to the stream).
3084     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3085     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3086     // Note that we add 1 here because the offset is relative to one word
3087     // before the start of the identification block, which was historically
3088     // always the start of the regular bitcode header.
3089     Record[1] = BitcodeIndex / 32 + 1;
3090 
3091     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3092   }
3093 
3094   Stream.ExitBlock();
3095 }
3096 
3097 /// Emit names for arguments, instructions and basic blocks in a function.
3098 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3099     const ValueSymbolTable &VST) {
3100   if (VST.empty())
3101     return;
3102 
3103   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3104 
3105   // FIXME: Set up the abbrev, we know how many values there are!
3106   // FIXME: We know if the type names can use 7-bit ascii.
3107   SmallVector<uint64_t, 64> NameVals;
3108 
3109   for (const ValueName &Name : VST) {
3110     // Figure out the encoding to use for the name.
3111     StringEncoding Bits = getStringEncoding(Name.getKey());
3112 
3113     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3114     NameVals.push_back(VE.getValueID(Name.getValue()));
3115 
3116     // VST_CODE_ENTRY:   [valueid, namechar x N]
3117     // VST_CODE_BBENTRY: [bbid, namechar x N]
3118     unsigned Code;
3119     if (isa<BasicBlock>(Name.getValue())) {
3120       Code = bitc::VST_CODE_BBENTRY;
3121       if (Bits == SE_Char6)
3122         AbbrevToUse = VST_BBENTRY_6_ABBREV;
3123     } else {
3124       Code = bitc::VST_CODE_ENTRY;
3125       if (Bits == SE_Char6)
3126         AbbrevToUse = VST_ENTRY_6_ABBREV;
3127       else if (Bits == SE_Fixed7)
3128         AbbrevToUse = VST_ENTRY_7_ABBREV;
3129     }
3130 
3131     for (const auto P : Name.getKey())
3132       NameVals.push_back((unsigned char)P);
3133 
3134     // Emit the finished record.
3135     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3136     NameVals.clear();
3137   }
3138 
3139   Stream.ExitBlock();
3140 }
3141 
3142 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3143   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3144   unsigned Code;
3145   if (isa<BasicBlock>(Order.V))
3146     Code = bitc::USELIST_CODE_BB;
3147   else
3148     Code = bitc::USELIST_CODE_DEFAULT;
3149 
3150   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3151   Record.push_back(VE.getValueID(Order.V));
3152   Stream.EmitRecord(Code, Record);
3153 }
3154 
3155 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3156   assert(VE.shouldPreserveUseListOrder() &&
3157          "Expected to be preserving use-list order");
3158 
3159   auto hasMore = [&]() {
3160     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3161   };
3162   if (!hasMore())
3163     // Nothing to do.
3164     return;
3165 
3166   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3167   while (hasMore()) {
3168     writeUseList(std::move(VE.UseListOrders.back()));
3169     VE.UseListOrders.pop_back();
3170   }
3171   Stream.ExitBlock();
3172 }
3173 
3174 /// Emit a function body to the module stream.
3175 void ModuleBitcodeWriter::writeFunction(
3176     const Function &F,
3177     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3178   // Save the bitcode index of the start of this function block for recording
3179   // in the VST.
3180   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3181 
3182   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3183   VE.incorporateFunction(F);
3184 
3185   SmallVector<unsigned, 64> Vals;
3186 
3187   // Emit the number of basic blocks, so the reader can create them ahead of
3188   // time.
3189   Vals.push_back(VE.getBasicBlocks().size());
3190   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3191   Vals.clear();
3192 
3193   // If there are function-local constants, emit them now.
3194   unsigned CstStart, CstEnd;
3195   VE.getFunctionConstantRange(CstStart, CstEnd);
3196   writeConstants(CstStart, CstEnd, false);
3197 
3198   // If there is function-local metadata, emit it now.
3199   writeFunctionMetadata(F);
3200 
3201   // Keep a running idea of what the instruction ID is.
3202   unsigned InstID = CstEnd;
3203 
3204   bool NeedsMetadataAttachment = F.hasMetadata();
3205 
3206   DILocation *LastDL = nullptr;
3207   // Finally, emit all the instructions, in order.
3208   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3209     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3210          I != E; ++I) {
3211       writeInstruction(*I, InstID, Vals);
3212 
3213       if (!I->getType()->isVoidTy())
3214         ++InstID;
3215 
3216       // If the instruction has metadata, write a metadata attachment later.
3217       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3218 
3219       // If the instruction has a debug location, emit it.
3220       DILocation *DL = I->getDebugLoc();
3221       if (!DL)
3222         continue;
3223 
3224       if (DL == LastDL) {
3225         // Just repeat the same debug loc as last time.
3226         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3227         continue;
3228       }
3229 
3230       Vals.push_back(DL->getLine());
3231       Vals.push_back(DL->getColumn());
3232       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3233       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3234       Vals.push_back(DL->isImplicitCode());
3235       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3236       Vals.clear();
3237 
3238       LastDL = DL;
3239     }
3240 
3241   // Emit names for all the instructions etc.
3242   if (auto *Symtab = F.getValueSymbolTable())
3243     writeFunctionLevelValueSymbolTable(*Symtab);
3244 
3245   if (NeedsMetadataAttachment)
3246     writeFunctionMetadataAttachment(F);
3247   if (VE.shouldPreserveUseListOrder())
3248     writeUseListBlock(&F);
3249   VE.purgeFunction();
3250   Stream.ExitBlock();
3251 }
3252 
3253 // Emit blockinfo, which defines the standard abbreviations etc.
3254 void ModuleBitcodeWriter::writeBlockInfo() {
3255   // We only want to emit block info records for blocks that have multiple
3256   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3257   // Other blocks can define their abbrevs inline.
3258   Stream.EnterBlockInfoBlock();
3259 
3260   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3261     auto Abbv = std::make_shared<BitCodeAbbrev>();
3262     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3263     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3264     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3265     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3266     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3267         VST_ENTRY_8_ABBREV)
3268       llvm_unreachable("Unexpected abbrev ordering!");
3269   }
3270 
3271   { // 7-bit fixed width VST_CODE_ENTRY strings.
3272     auto Abbv = std::make_shared<BitCodeAbbrev>();
3273     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3274     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3275     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3276     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3277     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3278         VST_ENTRY_7_ABBREV)
3279       llvm_unreachable("Unexpected abbrev ordering!");
3280   }
3281   { // 6-bit char6 VST_CODE_ENTRY strings.
3282     auto Abbv = std::make_shared<BitCodeAbbrev>();
3283     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3284     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3285     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3286     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3287     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3288         VST_ENTRY_6_ABBREV)
3289       llvm_unreachable("Unexpected abbrev ordering!");
3290   }
3291   { // 6-bit char6 VST_CODE_BBENTRY strings.
3292     auto Abbv = std::make_shared<BitCodeAbbrev>();
3293     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3294     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3295     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3296     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3297     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3298         VST_BBENTRY_6_ABBREV)
3299       llvm_unreachable("Unexpected abbrev ordering!");
3300   }
3301 
3302   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3303     auto Abbv = std::make_shared<BitCodeAbbrev>();
3304     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3305     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3306                               VE.computeBitsRequiredForTypeIndicies()));
3307     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3308         CONSTANTS_SETTYPE_ABBREV)
3309       llvm_unreachable("Unexpected abbrev ordering!");
3310   }
3311 
3312   { // INTEGER abbrev for CONSTANTS_BLOCK.
3313     auto Abbv = std::make_shared<BitCodeAbbrev>();
3314     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3315     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3316     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3317         CONSTANTS_INTEGER_ABBREV)
3318       llvm_unreachable("Unexpected abbrev ordering!");
3319   }
3320 
3321   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3322     auto Abbv = std::make_shared<BitCodeAbbrev>();
3323     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3324     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3325     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3326                               VE.computeBitsRequiredForTypeIndicies()));
3327     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3328 
3329     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3330         CONSTANTS_CE_CAST_Abbrev)
3331       llvm_unreachable("Unexpected abbrev ordering!");
3332   }
3333   { // NULL abbrev for CONSTANTS_BLOCK.
3334     auto Abbv = std::make_shared<BitCodeAbbrev>();
3335     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3336     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3337         CONSTANTS_NULL_Abbrev)
3338       llvm_unreachable("Unexpected abbrev ordering!");
3339   }
3340 
3341   // FIXME: This should only use space for first class types!
3342 
3343   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3344     auto Abbv = std::make_shared<BitCodeAbbrev>();
3345     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3346     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3347     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3348                               VE.computeBitsRequiredForTypeIndicies()));
3349     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3350     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3351     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3352         FUNCTION_INST_LOAD_ABBREV)
3353       llvm_unreachable("Unexpected abbrev ordering!");
3354   }
3355   { // INST_UNOP abbrev for FUNCTION_BLOCK.
3356     auto Abbv = std::make_shared<BitCodeAbbrev>();
3357     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3358     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3359     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3360     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3361         FUNCTION_INST_UNOP_ABBREV)
3362       llvm_unreachable("Unexpected abbrev ordering!");
3363   }
3364   { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3365     auto Abbv = std::make_shared<BitCodeAbbrev>();
3366     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3367     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3368     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3369     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3370     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3371         FUNCTION_INST_UNOP_FLAGS_ABBREV)
3372       llvm_unreachable("Unexpected abbrev ordering!");
3373   }
3374   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3375     auto Abbv = std::make_shared<BitCodeAbbrev>();
3376     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3377     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3379     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3380     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3381         FUNCTION_INST_BINOP_ABBREV)
3382       llvm_unreachable("Unexpected abbrev ordering!");
3383   }
3384   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3385     auto Abbv = std::make_shared<BitCodeAbbrev>();
3386     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3387     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3388     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3389     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3390     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3391     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3392         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3393       llvm_unreachable("Unexpected abbrev ordering!");
3394   }
3395   { // INST_CAST abbrev for FUNCTION_BLOCK.
3396     auto Abbv = std::make_shared<BitCodeAbbrev>();
3397     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3398     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3399     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3400                               VE.computeBitsRequiredForTypeIndicies()));
3401     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3402     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3403         FUNCTION_INST_CAST_ABBREV)
3404       llvm_unreachable("Unexpected abbrev ordering!");
3405   }
3406 
3407   { // INST_RET abbrev for FUNCTION_BLOCK.
3408     auto Abbv = std::make_shared<BitCodeAbbrev>();
3409     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3410     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3411         FUNCTION_INST_RET_VOID_ABBREV)
3412       llvm_unreachable("Unexpected abbrev ordering!");
3413   }
3414   { // INST_RET abbrev for FUNCTION_BLOCK.
3415     auto Abbv = std::make_shared<BitCodeAbbrev>();
3416     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3417     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3418     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3419         FUNCTION_INST_RET_VAL_ABBREV)
3420       llvm_unreachable("Unexpected abbrev ordering!");
3421   }
3422   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3423     auto Abbv = std::make_shared<BitCodeAbbrev>();
3424     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3425     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3426         FUNCTION_INST_UNREACHABLE_ABBREV)
3427       llvm_unreachable("Unexpected abbrev ordering!");
3428   }
3429   {
3430     auto Abbv = std::make_shared<BitCodeAbbrev>();
3431     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3432     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3433     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3434                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3435     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3436     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3437     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3438         FUNCTION_INST_GEP_ABBREV)
3439       llvm_unreachable("Unexpected abbrev ordering!");
3440   }
3441 
3442   Stream.ExitBlock();
3443 }
3444 
3445 /// Write the module path strings, currently only used when generating
3446 /// a combined index file.
3447 void IndexBitcodeWriter::writeModStrings() {
3448   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3449 
3450   // TODO: See which abbrev sizes we actually need to emit
3451 
3452   // 8-bit fixed-width MST_ENTRY strings.
3453   auto Abbv = std::make_shared<BitCodeAbbrev>();
3454   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3455   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3456   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3457   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3458   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3459 
3460   // 7-bit fixed width MST_ENTRY strings.
3461   Abbv = std::make_shared<BitCodeAbbrev>();
3462   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3463   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3464   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3465   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3466   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3467 
3468   // 6-bit char6 MST_ENTRY strings.
3469   Abbv = std::make_shared<BitCodeAbbrev>();
3470   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3471   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3472   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3473   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3474   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3475 
3476   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3477   Abbv = std::make_shared<BitCodeAbbrev>();
3478   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3479   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3480   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3481   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3482   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3483   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3484   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3485 
3486   SmallVector<unsigned, 64> Vals;
3487   forEachModule(
3488       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3489         StringRef Key = MPSE.getKey();
3490         const auto &Value = MPSE.getValue();
3491         StringEncoding Bits = getStringEncoding(Key);
3492         unsigned AbbrevToUse = Abbrev8Bit;
3493         if (Bits == SE_Char6)
3494           AbbrevToUse = Abbrev6Bit;
3495         else if (Bits == SE_Fixed7)
3496           AbbrevToUse = Abbrev7Bit;
3497 
3498         Vals.push_back(Value.first);
3499         Vals.append(Key.begin(), Key.end());
3500 
3501         // Emit the finished record.
3502         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3503 
3504         // Emit an optional hash for the module now
3505         const auto &Hash = Value.second;
3506         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3507           Vals.assign(Hash.begin(), Hash.end());
3508           // Emit the hash record.
3509           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3510         }
3511 
3512         Vals.clear();
3513       });
3514   Stream.ExitBlock();
3515 }
3516 
3517 /// Write the function type metadata related records that need to appear before
3518 /// a function summary entry (whether per-module or combined).
3519 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3520                                              FunctionSummary *FS) {
3521   if (!FS->type_tests().empty())
3522     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3523 
3524   SmallVector<uint64_t, 64> Record;
3525 
3526   auto WriteVFuncIdVec = [&](uint64_t Ty,
3527                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3528     if (VFs.empty())
3529       return;
3530     Record.clear();
3531     for (auto &VF : VFs) {
3532       Record.push_back(VF.GUID);
3533       Record.push_back(VF.Offset);
3534     }
3535     Stream.EmitRecord(Ty, Record);
3536   };
3537 
3538   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3539                   FS->type_test_assume_vcalls());
3540   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3541                   FS->type_checked_load_vcalls());
3542 
3543   auto WriteConstVCallVec = [&](uint64_t Ty,
3544                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3545     for (auto &VC : VCs) {
3546       Record.clear();
3547       Record.push_back(VC.VFunc.GUID);
3548       Record.push_back(VC.VFunc.Offset);
3549       Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3550       Stream.EmitRecord(Ty, Record);
3551     }
3552   };
3553 
3554   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3555                      FS->type_test_assume_const_vcalls());
3556   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3557                      FS->type_checked_load_const_vcalls());
3558 }
3559 
3560 /// Collect type IDs from type tests used by function.
3561 static void
3562 getReferencedTypeIds(FunctionSummary *FS,
3563                      std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3564   if (!FS->type_tests().empty())
3565     for (auto &TT : FS->type_tests())
3566       ReferencedTypeIds.insert(TT);
3567 
3568   auto GetReferencedTypesFromVFuncIdVec =
3569       [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3570         for (auto &VF : VFs)
3571           ReferencedTypeIds.insert(VF.GUID);
3572       };
3573 
3574   GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3575   GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3576 
3577   auto GetReferencedTypesFromConstVCallVec =
3578       [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3579         for (auto &VC : VCs)
3580           ReferencedTypeIds.insert(VC.VFunc.GUID);
3581       };
3582 
3583   GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3584   GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3585 }
3586 
3587 static void writeWholeProgramDevirtResolutionByArg(
3588     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3589     const WholeProgramDevirtResolution::ByArg &ByArg) {
3590   NameVals.push_back(args.size());
3591   NameVals.insert(NameVals.end(), args.begin(), args.end());
3592 
3593   NameVals.push_back(ByArg.TheKind);
3594   NameVals.push_back(ByArg.Info);
3595   NameVals.push_back(ByArg.Byte);
3596   NameVals.push_back(ByArg.Bit);
3597 }
3598 
3599 static void writeWholeProgramDevirtResolution(
3600     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3601     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3602   NameVals.push_back(Id);
3603 
3604   NameVals.push_back(Wpd.TheKind);
3605   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3606   NameVals.push_back(Wpd.SingleImplName.size());
3607 
3608   NameVals.push_back(Wpd.ResByArg.size());
3609   for (auto &A : Wpd.ResByArg)
3610     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3611 }
3612 
3613 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3614                                      StringTableBuilder &StrtabBuilder,
3615                                      const std::string &Id,
3616                                      const TypeIdSummary &Summary) {
3617   NameVals.push_back(StrtabBuilder.add(Id));
3618   NameVals.push_back(Id.size());
3619 
3620   NameVals.push_back(Summary.TTRes.TheKind);
3621   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3622   NameVals.push_back(Summary.TTRes.AlignLog2);
3623   NameVals.push_back(Summary.TTRes.SizeM1);
3624   NameVals.push_back(Summary.TTRes.BitMask);
3625   NameVals.push_back(Summary.TTRes.InlineBits);
3626 
3627   for (auto &W : Summary.WPDRes)
3628     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3629                                       W.second);
3630 }
3631 
3632 static void writeTypeIdCompatibleVtableSummaryRecord(
3633     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3634     const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3635     ValueEnumerator &VE) {
3636   NameVals.push_back(StrtabBuilder.add(Id));
3637   NameVals.push_back(Id.size());
3638 
3639   for (auto &P : Summary) {
3640     NameVals.push_back(P.AddressPointOffset);
3641     NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3642   }
3643 }
3644 
3645 // Helper to emit a single function summary record.
3646 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3647     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3648     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3649     const Function &F) {
3650   NameVals.push_back(ValueID);
3651 
3652   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3653   writeFunctionTypeMetadataRecords(Stream, FS);
3654 
3655   auto SpecialRefCnts = FS->specialRefCounts();
3656   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3657   NameVals.push_back(FS->instCount());
3658   NameVals.push_back(getEncodedFFlags(FS->fflags()));
3659   NameVals.push_back(FS->refs().size());
3660   NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
3661   NameVals.push_back(SpecialRefCnts.second); // worefcnt
3662 
3663   for (auto &RI : FS->refs())
3664     NameVals.push_back(VE.getValueID(RI.getValue()));
3665 
3666   bool HasProfileData =
3667       F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3668   for (auto &ECI : FS->calls()) {
3669     NameVals.push_back(getValueId(ECI.first));
3670     if (HasProfileData)
3671       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3672     else if (WriteRelBFToSummary)
3673       NameVals.push_back(ECI.second.RelBlockFreq);
3674   }
3675 
3676   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3677   unsigned Code =
3678       (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3679                       : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3680                                              : bitc::FS_PERMODULE));
3681 
3682   // Emit the finished record.
3683   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3684   NameVals.clear();
3685 }
3686 
3687 // Collect the global value references in the given variable's initializer,
3688 // and emit them in a summary record.
3689 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3690     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3691     unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
3692   auto VI = Index->getValueInfo(V.getGUID());
3693   if (!VI || VI.getSummaryList().empty()) {
3694     // Only declarations should not have a summary (a declaration might however
3695     // have a summary if the def was in module level asm).
3696     assert(V.isDeclaration());
3697     return;
3698   }
3699   auto *Summary = VI.getSummaryList()[0].get();
3700   NameVals.push_back(VE.getValueID(&V));
3701   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3702   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3703   NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3704 
3705   auto VTableFuncs = VS->vTableFuncs();
3706   if (!VTableFuncs.empty())
3707     NameVals.push_back(VS->refs().size());
3708 
3709   unsigned SizeBeforeRefs = NameVals.size();
3710   for (auto &RI : VS->refs())
3711     NameVals.push_back(VE.getValueID(RI.getValue()));
3712   // Sort the refs for determinism output, the vector returned by FS->refs() has
3713   // been initialized from a DenseSet.
3714   llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3715 
3716   if (VTableFuncs.empty())
3717     Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3718                       FSModRefsAbbrev);
3719   else {
3720     // VTableFuncs pairs should already be sorted by offset.
3721     for (auto &P : VTableFuncs) {
3722       NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
3723       NameVals.push_back(P.VTableOffset);
3724     }
3725 
3726     Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
3727                       FSModVTableRefsAbbrev);
3728   }
3729   NameVals.clear();
3730 }
3731 
3732 /// Emit the per-module summary section alongside the rest of
3733 /// the module's bitcode.
3734 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3735   // By default we compile with ThinLTO if the module has a summary, but the
3736   // client can request full LTO with a module flag.
3737   bool IsThinLTO = true;
3738   if (auto *MD =
3739           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3740     IsThinLTO = MD->getZExtValue();
3741   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3742                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3743                        4);
3744 
3745   Stream.EmitRecord(
3746       bitc::FS_VERSION,
3747       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
3748 
3749   // Write the index flags.
3750   uint64_t Flags = 0;
3751   // Bits 1-3 are set only in the combined index, skip them.
3752   if (Index->enableSplitLTOUnit())
3753     Flags |= 0x8;
3754   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3755 
3756   if (Index->begin() == Index->end()) {
3757     Stream.ExitBlock();
3758     return;
3759   }
3760 
3761   for (const auto &GVI : valueIds()) {
3762     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3763                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3764   }
3765 
3766   // Abbrev for FS_PERMODULE_PROFILE.
3767   auto Abbv = std::make_shared<BitCodeAbbrev>();
3768   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3769   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3770   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3771   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3772   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3773   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3774   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3775   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3776   // numrefs x valueid, n x (valueid, hotness)
3777   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3778   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3779   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3780 
3781   // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3782   Abbv = std::make_shared<BitCodeAbbrev>();
3783   if (WriteRelBFToSummary)
3784     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3785   else
3786     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3787   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3788   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3789   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3790   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3791   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3792   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3793   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3794   // numrefs x valueid, n x (valueid [, rel_block_freq])
3795   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3796   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3797   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3798 
3799   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3800   Abbv = std::make_shared<BitCodeAbbrev>();
3801   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3802   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3803   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3804   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3805   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3806   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3807 
3808   // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
3809   Abbv = std::make_shared<BitCodeAbbrev>();
3810   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
3811   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3812   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3813   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3814   // numrefs x valueid, n x (valueid , offset)
3815   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3816   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3817   unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3818 
3819   // Abbrev for FS_ALIAS.
3820   Abbv = std::make_shared<BitCodeAbbrev>();
3821   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3822   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3823   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3824   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3825   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3826 
3827   // Abbrev for FS_TYPE_ID_METADATA
3828   Abbv = std::make_shared<BitCodeAbbrev>();
3829   Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
3830   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
3831   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
3832   // n x (valueid , offset)
3833   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3834   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3835   unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3836 
3837   SmallVector<uint64_t, 64> NameVals;
3838   // Iterate over the list of functions instead of the Index to
3839   // ensure the ordering is stable.
3840   for (const Function &F : M) {
3841     // Summary emission does not support anonymous functions, they have to
3842     // renamed using the anonymous function renaming pass.
3843     if (!F.hasName())
3844       report_fatal_error("Unexpected anonymous function when writing summary");
3845 
3846     ValueInfo VI = Index->getValueInfo(F.getGUID());
3847     if (!VI || VI.getSummaryList().empty()) {
3848       // Only declarations should not have a summary (a declaration might
3849       // however have a summary if the def was in module level asm).
3850       assert(F.isDeclaration());
3851       continue;
3852     }
3853     auto *Summary = VI.getSummaryList()[0].get();
3854     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3855                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3856   }
3857 
3858   // Capture references from GlobalVariable initializers, which are outside
3859   // of a function scope.
3860   for (const GlobalVariable &G : M.globals())
3861     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
3862                                FSModVTableRefsAbbrev);
3863 
3864   for (const GlobalAlias &A : M.aliases()) {
3865     auto *Aliasee = A.getBaseObject();
3866     if (!Aliasee->hasName())
3867       // Nameless function don't have an entry in the summary, skip it.
3868       continue;
3869     auto AliasId = VE.getValueID(&A);
3870     auto AliaseeId = VE.getValueID(Aliasee);
3871     NameVals.push_back(AliasId);
3872     auto *Summary = Index->getGlobalValueSummary(A);
3873     AliasSummary *AS = cast<AliasSummary>(Summary);
3874     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3875     NameVals.push_back(AliaseeId);
3876     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3877     NameVals.clear();
3878   }
3879 
3880   for (auto &S : Index->typeIdCompatibleVtableMap()) {
3881     writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
3882                                              S.second, VE);
3883     Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
3884                       TypeIdCompatibleVtableAbbrev);
3885     NameVals.clear();
3886   }
3887 
3888   Stream.ExitBlock();
3889 }
3890 
3891 /// Emit the combined summary section into the combined index file.
3892 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3893   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3894   Stream.EmitRecord(
3895       bitc::FS_VERSION,
3896       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
3897 
3898   // Write the index flags.
3899   uint64_t Flags = 0;
3900   if (Index.withGlobalValueDeadStripping())
3901     Flags |= 0x1;
3902   if (Index.skipModuleByDistributedBackend())
3903     Flags |= 0x2;
3904   if (Index.hasSyntheticEntryCounts())
3905     Flags |= 0x4;
3906   if (Index.enableSplitLTOUnit())
3907     Flags |= 0x8;
3908   if (Index.partiallySplitLTOUnits())
3909     Flags |= 0x10;
3910   if (Index.withAttributePropagation())
3911     Flags |= 0x20;
3912   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3913 
3914   for (const auto &GVI : valueIds()) {
3915     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3916                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3917   }
3918 
3919   // Abbrev for FS_COMBINED.
3920   auto Abbv = std::make_shared<BitCodeAbbrev>();
3921   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3922   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3923   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3924   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3925   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3926   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3927   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
3928   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3929   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3930   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3931   // numrefs x valueid, n x (valueid)
3932   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3933   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3934   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3935 
3936   // Abbrev for FS_COMBINED_PROFILE.
3937   Abbv = std::make_shared<BitCodeAbbrev>();
3938   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3939   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3940   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3941   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3942   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3943   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3944   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
3945   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3946   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3947   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3948   // numrefs x valueid, n x (valueid, hotness)
3949   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3950   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3951   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3952 
3953   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3954   Abbv = std::make_shared<BitCodeAbbrev>();
3955   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3956   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3957   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3958   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3959   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3960   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3961   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3962 
3963   // Abbrev for FS_COMBINED_ALIAS.
3964   Abbv = std::make_shared<BitCodeAbbrev>();
3965   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3966   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3967   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3968   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3969   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3970   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3971 
3972   // The aliases are emitted as a post-pass, and will point to the value
3973   // id of the aliasee. Save them in a vector for post-processing.
3974   SmallVector<AliasSummary *, 64> Aliases;
3975 
3976   // Save the value id for each summary for alias emission.
3977   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3978 
3979   SmallVector<uint64_t, 64> NameVals;
3980 
3981   // Set that will be populated during call to writeFunctionTypeMetadataRecords
3982   // with the type ids referenced by this index file.
3983   std::set<GlobalValue::GUID> ReferencedTypeIds;
3984 
3985   // For local linkage, we also emit the original name separately
3986   // immediately after the record.
3987   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3988     if (!GlobalValue::isLocalLinkage(S.linkage()))
3989       return;
3990     NameVals.push_back(S.getOriginalName());
3991     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3992     NameVals.clear();
3993   };
3994 
3995   std::set<GlobalValue::GUID> DefOrUseGUIDs;
3996   forEachSummary([&](GVInfo I, bool IsAliasee) {
3997     GlobalValueSummary *S = I.second;
3998     assert(S);
3999     DefOrUseGUIDs.insert(I.first);
4000     for (const ValueInfo &VI : S->refs())
4001       DefOrUseGUIDs.insert(VI.getGUID());
4002 
4003     auto ValueId = getValueId(I.first);
4004     assert(ValueId);
4005     SummaryToValueIdMap[S] = *ValueId;
4006 
4007     // If this is invoked for an aliasee, we want to record the above
4008     // mapping, but then not emit a summary entry (if the aliasee is
4009     // to be imported, we will invoke this separately with IsAliasee=false).
4010     if (IsAliasee)
4011       return;
4012 
4013     if (auto *AS = dyn_cast<AliasSummary>(S)) {
4014       // Will process aliases as a post-pass because the reader wants all
4015       // global to be loaded first.
4016       Aliases.push_back(AS);
4017       return;
4018     }
4019 
4020     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4021       NameVals.push_back(*ValueId);
4022       NameVals.push_back(Index.getModuleId(VS->modulePath()));
4023       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4024       NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4025       for (auto &RI : VS->refs()) {
4026         auto RefValueId = getValueId(RI.getGUID());
4027         if (!RefValueId)
4028           continue;
4029         NameVals.push_back(*RefValueId);
4030       }
4031 
4032       // Emit the finished record.
4033       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4034                         FSModRefsAbbrev);
4035       NameVals.clear();
4036       MaybeEmitOriginalName(*S);
4037       return;
4038     }
4039 
4040     auto *FS = cast<FunctionSummary>(S);
4041     writeFunctionTypeMetadataRecords(Stream, FS);
4042     getReferencedTypeIds(FS, ReferencedTypeIds);
4043 
4044     NameVals.push_back(*ValueId);
4045     NameVals.push_back(Index.getModuleId(FS->modulePath()));
4046     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4047     NameVals.push_back(FS->instCount());
4048     NameVals.push_back(getEncodedFFlags(FS->fflags()));
4049     NameVals.push_back(FS->entryCount());
4050 
4051     // Fill in below
4052     NameVals.push_back(0); // numrefs
4053     NameVals.push_back(0); // rorefcnt
4054     NameVals.push_back(0); // worefcnt
4055 
4056     unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4057     for (auto &RI : FS->refs()) {
4058       auto RefValueId = getValueId(RI.getGUID());
4059       if (!RefValueId)
4060         continue;
4061       NameVals.push_back(*RefValueId);
4062       if (RI.isReadOnly())
4063         RORefCnt++;
4064       else if (RI.isWriteOnly())
4065         WORefCnt++;
4066       Count++;
4067     }
4068     NameVals[6] = Count;
4069     NameVals[7] = RORefCnt;
4070     NameVals[8] = WORefCnt;
4071 
4072     bool HasProfileData = false;
4073     for (auto &EI : FS->calls()) {
4074       HasProfileData |=
4075           EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
4076       if (HasProfileData)
4077         break;
4078     }
4079 
4080     for (auto &EI : FS->calls()) {
4081       // If this GUID doesn't have a value id, it doesn't have a function
4082       // summary and we don't need to record any calls to it.
4083       GlobalValue::GUID GUID = EI.first.getGUID();
4084       auto CallValueId = getValueId(GUID);
4085       if (!CallValueId) {
4086         // For SamplePGO, the indirect call targets for local functions will
4087         // have its original name annotated in profile. We try to find the
4088         // corresponding PGOFuncName as the GUID.
4089         GUID = Index.getGUIDFromOriginalID(GUID);
4090         if (GUID == 0)
4091           continue;
4092         CallValueId = getValueId(GUID);
4093         if (!CallValueId)
4094           continue;
4095         // The mapping from OriginalId to GUID may return a GUID
4096         // that corresponds to a static variable. Filter it out here.
4097         // This can happen when
4098         // 1) There is a call to a library function which does not have
4099         // a CallValidId;
4100         // 2) There is a static variable with the  OriginalGUID identical
4101         // to the GUID of the library function in 1);
4102         // When this happens, the logic for SamplePGO kicks in and
4103         // the static variable in 2) will be found, which needs to be
4104         // filtered out.
4105         auto *GVSum = Index.getGlobalValueSummary(GUID, false);
4106         if (GVSum &&
4107             GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
4108           continue;
4109       }
4110       NameVals.push_back(*CallValueId);
4111       if (HasProfileData)
4112         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
4113     }
4114 
4115     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4116     unsigned Code =
4117         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4118 
4119     // Emit the finished record.
4120     Stream.EmitRecord(Code, NameVals, FSAbbrev);
4121     NameVals.clear();
4122     MaybeEmitOriginalName(*S);
4123   });
4124 
4125   for (auto *AS : Aliases) {
4126     auto AliasValueId = SummaryToValueIdMap[AS];
4127     assert(AliasValueId);
4128     NameVals.push_back(AliasValueId);
4129     NameVals.push_back(Index.getModuleId(AS->modulePath()));
4130     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4131     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4132     assert(AliaseeValueId);
4133     NameVals.push_back(AliaseeValueId);
4134 
4135     // Emit the finished record.
4136     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4137     NameVals.clear();
4138     MaybeEmitOriginalName(*AS);
4139 
4140     if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4141       getReferencedTypeIds(FS, ReferencedTypeIds);
4142   }
4143 
4144   if (!Index.cfiFunctionDefs().empty()) {
4145     for (auto &S : Index.cfiFunctionDefs()) {
4146       if (DefOrUseGUIDs.count(
4147               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4148         NameVals.push_back(StrtabBuilder.add(S));
4149         NameVals.push_back(S.size());
4150       }
4151     }
4152     if (!NameVals.empty()) {
4153       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4154       NameVals.clear();
4155     }
4156   }
4157 
4158   if (!Index.cfiFunctionDecls().empty()) {
4159     for (auto &S : Index.cfiFunctionDecls()) {
4160       if (DefOrUseGUIDs.count(
4161               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4162         NameVals.push_back(StrtabBuilder.add(S));
4163         NameVals.push_back(S.size());
4164       }
4165     }
4166     if (!NameVals.empty()) {
4167       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4168       NameVals.clear();
4169     }
4170   }
4171 
4172   // Walk the GUIDs that were referenced, and write the
4173   // corresponding type id records.
4174   for (auto &T : ReferencedTypeIds) {
4175     auto TidIter = Index.typeIds().equal_range(T);
4176     for (auto It = TidIter.first; It != TidIter.second; ++It) {
4177       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4178                                It->second.second);
4179       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4180       NameVals.clear();
4181     }
4182   }
4183 
4184   Stream.ExitBlock();
4185 }
4186 
4187 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4188 /// current llvm version, and a record for the epoch number.
4189 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4190   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4191 
4192   // Write the "user readable" string identifying the bitcode producer
4193   auto Abbv = std::make_shared<BitCodeAbbrev>();
4194   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4195   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4196   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4197   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4198   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4199                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4200 
4201   // Write the epoch version
4202   Abbv = std::make_shared<BitCodeAbbrev>();
4203   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4204   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4205   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4206   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
4207   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4208   Stream.ExitBlock();
4209 }
4210 
4211 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4212   // Emit the module's hash.
4213   // MODULE_CODE_HASH: [5*i32]
4214   if (GenerateHash) {
4215     uint32_t Vals[5];
4216     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4217                                     Buffer.size() - BlockStartPos));
4218     StringRef Hash = Hasher.result();
4219     for (int Pos = 0; Pos < 20; Pos += 4) {
4220       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4221     }
4222 
4223     // Emit the finished record.
4224     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4225 
4226     if (ModHash)
4227       // Save the written hash value.
4228       llvm::copy(Vals, std::begin(*ModHash));
4229   }
4230 }
4231 
4232 void ModuleBitcodeWriter::write() {
4233   writeIdentificationBlock(Stream);
4234 
4235   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4236   size_t BlockStartPos = Buffer.size();
4237 
4238   writeModuleVersion();
4239 
4240   // Emit blockinfo, which defines the standard abbreviations etc.
4241   writeBlockInfo();
4242 
4243   // Emit information describing all of the types in the module.
4244   writeTypeTable();
4245 
4246   // Emit information about attribute groups.
4247   writeAttributeGroupTable();
4248 
4249   // Emit information about parameter attributes.
4250   writeAttributeTable();
4251 
4252   writeComdats();
4253 
4254   // Emit top-level description of module, including target triple, inline asm,
4255   // descriptors for global variables, and function prototype info.
4256   writeModuleInfo();
4257 
4258   // Emit constants.
4259   writeModuleConstants();
4260 
4261   // Emit metadata kind names.
4262   writeModuleMetadataKinds();
4263 
4264   // Emit metadata.
4265   writeModuleMetadata();
4266 
4267   // Emit module-level use-lists.
4268   if (VE.shouldPreserveUseListOrder())
4269     writeUseListBlock(nullptr);
4270 
4271   writeOperandBundleTags();
4272   writeSyncScopeNames();
4273 
4274   // Emit function bodies.
4275   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4276   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4277     if (!F->isDeclaration())
4278       writeFunction(*F, FunctionToBitcodeIndex);
4279 
4280   // Need to write after the above call to WriteFunction which populates
4281   // the summary information in the index.
4282   if (Index)
4283     writePerModuleGlobalValueSummary();
4284 
4285   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4286 
4287   writeModuleHash(BlockStartPos);
4288 
4289   Stream.ExitBlock();
4290 }
4291 
4292 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4293                                uint32_t &Position) {
4294   support::endian::write32le(&Buffer[Position], Value);
4295   Position += 4;
4296 }
4297 
4298 /// If generating a bc file on darwin, we have to emit a
4299 /// header and trailer to make it compatible with the system archiver.  To do
4300 /// this we emit the following header, and then emit a trailer that pads the
4301 /// file out to be a multiple of 16 bytes.
4302 ///
4303 /// struct bc_header {
4304 ///   uint32_t Magic;         // 0x0B17C0DE
4305 ///   uint32_t Version;       // Version, currently always 0.
4306 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4307 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4308 ///   uint32_t CPUType;       // CPU specifier.
4309 ///   ... potentially more later ...
4310 /// };
4311 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4312                                          const Triple &TT) {
4313   unsigned CPUType = ~0U;
4314 
4315   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4316   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4317   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4318   // specific constants here because they are implicitly part of the Darwin ABI.
4319   enum {
4320     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4321     DARWIN_CPU_TYPE_X86        = 7,
4322     DARWIN_CPU_TYPE_ARM        = 12,
4323     DARWIN_CPU_TYPE_POWERPC    = 18
4324   };
4325 
4326   Triple::ArchType Arch = TT.getArch();
4327   if (Arch == Triple::x86_64)
4328     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4329   else if (Arch == Triple::x86)
4330     CPUType = DARWIN_CPU_TYPE_X86;
4331   else if (Arch == Triple::ppc)
4332     CPUType = DARWIN_CPU_TYPE_POWERPC;
4333   else if (Arch == Triple::ppc64)
4334     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4335   else if (Arch == Triple::arm || Arch == Triple::thumb)
4336     CPUType = DARWIN_CPU_TYPE_ARM;
4337 
4338   // Traditional Bitcode starts after header.
4339   assert(Buffer.size() >= BWH_HeaderSize &&
4340          "Expected header size to be reserved");
4341   unsigned BCOffset = BWH_HeaderSize;
4342   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4343 
4344   // Write the magic and version.
4345   unsigned Position = 0;
4346   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4347   writeInt32ToBuffer(0, Buffer, Position); // Version.
4348   writeInt32ToBuffer(BCOffset, Buffer, Position);
4349   writeInt32ToBuffer(BCSize, Buffer, Position);
4350   writeInt32ToBuffer(CPUType, Buffer, Position);
4351 
4352   // If the file is not a multiple of 16 bytes, insert dummy padding.
4353   while (Buffer.size() & 15)
4354     Buffer.push_back(0);
4355 }
4356 
4357 /// Helper to write the header common to all bitcode files.
4358 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4359   // Emit the file header.
4360   Stream.Emit((unsigned)'B', 8);
4361   Stream.Emit((unsigned)'C', 8);
4362   Stream.Emit(0x0, 4);
4363   Stream.Emit(0xC, 4);
4364   Stream.Emit(0xE, 4);
4365   Stream.Emit(0xD, 4);
4366 }
4367 
4368 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
4369     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4370   writeBitcodeHeader(*Stream);
4371 }
4372 
4373 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4374 
4375 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4376   Stream->EnterSubblock(Block, 3);
4377 
4378   auto Abbv = std::make_shared<BitCodeAbbrev>();
4379   Abbv->Add(BitCodeAbbrevOp(Record));
4380   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4381   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4382 
4383   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4384 
4385   Stream->ExitBlock();
4386 }
4387 
4388 void BitcodeWriter::writeSymtab() {
4389   assert(!WroteStrtab && !WroteSymtab);
4390 
4391   // If any module has module-level inline asm, we will require a registered asm
4392   // parser for the target so that we can create an accurate symbol table for
4393   // the module.
4394   for (Module *M : Mods) {
4395     if (M->getModuleInlineAsm().empty())
4396       continue;
4397 
4398     std::string Err;
4399     const Triple TT(M->getTargetTriple());
4400     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4401     if (!T || !T->hasMCAsmParser())
4402       return;
4403   }
4404 
4405   WroteSymtab = true;
4406   SmallVector<char, 0> Symtab;
4407   // The irsymtab::build function may be unable to create a symbol table if the
4408   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4409   // table is not required for correctness, but we still want to be able to
4410   // write malformed modules to bitcode files, so swallow the error.
4411   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4412     consumeError(std::move(E));
4413     return;
4414   }
4415 
4416   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4417             {Symtab.data(), Symtab.size()});
4418 }
4419 
4420 void BitcodeWriter::writeStrtab() {
4421   assert(!WroteStrtab);
4422 
4423   std::vector<char> Strtab;
4424   StrtabBuilder.finalizeInOrder();
4425   Strtab.resize(StrtabBuilder.getSize());
4426   StrtabBuilder.write((uint8_t *)Strtab.data());
4427 
4428   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4429             {Strtab.data(), Strtab.size()});
4430 
4431   WroteStrtab = true;
4432 }
4433 
4434 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4435   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4436   WroteStrtab = true;
4437 }
4438 
4439 void BitcodeWriter::writeModule(const Module &M,
4440                                 bool ShouldPreserveUseListOrder,
4441                                 const ModuleSummaryIndex *Index,
4442                                 bool GenerateHash, ModuleHash *ModHash) {
4443   assert(!WroteStrtab);
4444 
4445   // The Mods vector is used by irsymtab::build, which requires non-const
4446   // Modules in case it needs to materialize metadata. But the bitcode writer
4447   // requires that the module is materialized, so we can cast to non-const here,
4448   // after checking that it is in fact materialized.
4449   assert(M.isMaterialized());
4450   Mods.push_back(const_cast<Module *>(&M));
4451 
4452   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4453                                    ShouldPreserveUseListOrder, Index,
4454                                    GenerateHash, ModHash);
4455   ModuleWriter.write();
4456 }
4457 
4458 void BitcodeWriter::writeIndex(
4459     const ModuleSummaryIndex *Index,
4460     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4461   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4462                                  ModuleToSummariesForIndex);
4463   IndexWriter.write();
4464 }
4465 
4466 /// Write the specified module to the specified output stream.
4467 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4468                               bool ShouldPreserveUseListOrder,
4469                               const ModuleSummaryIndex *Index,
4470                               bool GenerateHash, ModuleHash *ModHash) {
4471   SmallVector<char, 0> Buffer;
4472   Buffer.reserve(256*1024);
4473 
4474   // If this is darwin or another generic macho target, reserve space for the
4475   // header.
4476   Triple TT(M.getTargetTriple());
4477   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4478     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4479 
4480   BitcodeWriter Writer(Buffer);
4481   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4482                      ModHash);
4483   Writer.writeSymtab();
4484   Writer.writeStrtab();
4485 
4486   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4487     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4488 
4489   // Write the generated bitstream to "Out".
4490   Out.write((char*)&Buffer.front(), Buffer.size());
4491 }
4492 
4493 void IndexBitcodeWriter::write() {
4494   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4495 
4496   writeModuleVersion();
4497 
4498   // Write the module paths in the combined index.
4499   writeModStrings();
4500 
4501   // Write the summary combined index records.
4502   writeCombinedGlobalValueSummary();
4503 
4504   Stream.ExitBlock();
4505 }
4506 
4507 // Write the specified module summary index to the given raw output stream,
4508 // where it will be written in a new bitcode block. This is used when
4509 // writing the combined index file for ThinLTO. When writing a subset of the
4510 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4511 void llvm::WriteIndexToFile(
4512     const ModuleSummaryIndex &Index, raw_ostream &Out,
4513     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4514   SmallVector<char, 0> Buffer;
4515   Buffer.reserve(256 * 1024);
4516 
4517   BitcodeWriter Writer(Buffer);
4518   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4519   Writer.writeStrtab();
4520 
4521   Out.write((char *)&Buffer.front(), Buffer.size());
4522 }
4523 
4524 namespace {
4525 
4526 /// Class to manage the bitcode writing for a thin link bitcode file.
4527 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4528   /// ModHash is for use in ThinLTO incremental build, generated while writing
4529   /// the module bitcode file.
4530   const ModuleHash *ModHash;
4531 
4532 public:
4533   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4534                         BitstreamWriter &Stream,
4535                         const ModuleSummaryIndex &Index,
4536                         const ModuleHash &ModHash)
4537       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4538                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4539         ModHash(&ModHash) {}
4540 
4541   void write();
4542 
4543 private:
4544   void writeSimplifiedModuleInfo();
4545 };
4546 
4547 } // end anonymous namespace
4548 
4549 // This function writes a simpilified module info for thin link bitcode file.
4550 // It only contains the source file name along with the name(the offset and
4551 // size in strtab) and linkage for global values. For the global value info
4552 // entry, in order to keep linkage at offset 5, there are three zeros used
4553 // as padding.
4554 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4555   SmallVector<unsigned, 64> Vals;
4556   // Emit the module's source file name.
4557   {
4558     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4559     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4560     if (Bits == SE_Char6)
4561       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4562     else if (Bits == SE_Fixed7)
4563       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4564 
4565     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4566     auto Abbv = std::make_shared<BitCodeAbbrev>();
4567     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4568     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4569     Abbv->Add(AbbrevOpToUse);
4570     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4571 
4572     for (const auto P : M.getSourceFileName())
4573       Vals.push_back((unsigned char)P);
4574 
4575     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4576     Vals.clear();
4577   }
4578 
4579   // Emit the global variable information.
4580   for (const GlobalVariable &GV : M.globals()) {
4581     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4582     Vals.push_back(StrtabBuilder.add(GV.getName()));
4583     Vals.push_back(GV.getName().size());
4584     Vals.push_back(0);
4585     Vals.push_back(0);
4586     Vals.push_back(0);
4587     Vals.push_back(getEncodedLinkage(GV));
4588 
4589     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4590     Vals.clear();
4591   }
4592 
4593   // Emit the function proto information.
4594   for (const Function &F : M) {
4595     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4596     Vals.push_back(StrtabBuilder.add(F.getName()));
4597     Vals.push_back(F.getName().size());
4598     Vals.push_back(0);
4599     Vals.push_back(0);
4600     Vals.push_back(0);
4601     Vals.push_back(getEncodedLinkage(F));
4602 
4603     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4604     Vals.clear();
4605   }
4606 
4607   // Emit the alias information.
4608   for (const GlobalAlias &A : M.aliases()) {
4609     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4610     Vals.push_back(StrtabBuilder.add(A.getName()));
4611     Vals.push_back(A.getName().size());
4612     Vals.push_back(0);
4613     Vals.push_back(0);
4614     Vals.push_back(0);
4615     Vals.push_back(getEncodedLinkage(A));
4616 
4617     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4618     Vals.clear();
4619   }
4620 
4621   // Emit the ifunc information.
4622   for (const GlobalIFunc &I : M.ifuncs()) {
4623     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4624     Vals.push_back(StrtabBuilder.add(I.getName()));
4625     Vals.push_back(I.getName().size());
4626     Vals.push_back(0);
4627     Vals.push_back(0);
4628     Vals.push_back(0);
4629     Vals.push_back(getEncodedLinkage(I));
4630 
4631     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4632     Vals.clear();
4633   }
4634 }
4635 
4636 void ThinLinkBitcodeWriter::write() {
4637   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4638 
4639   writeModuleVersion();
4640 
4641   writeSimplifiedModuleInfo();
4642 
4643   writePerModuleGlobalValueSummary();
4644 
4645   // Write module hash.
4646   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4647 
4648   Stream.ExitBlock();
4649 }
4650 
4651 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4652                                          const ModuleSummaryIndex &Index,
4653                                          const ModuleHash &ModHash) {
4654   assert(!WroteStrtab);
4655 
4656   // The Mods vector is used by irsymtab::build, which requires non-const
4657   // Modules in case it needs to materialize metadata. But the bitcode writer
4658   // requires that the module is materialized, so we can cast to non-const here,
4659   // after checking that it is in fact materialized.
4660   assert(M.isMaterialized());
4661   Mods.push_back(const_cast<Module *>(&M));
4662 
4663   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4664                                        ModHash);
4665   ThinLinkWriter.write();
4666 }
4667 
4668 // Write the specified thin link bitcode file to the given raw output stream,
4669 // where it will be written in a new bitcode block. This is used when
4670 // writing the per-module index file for ThinLTO.
4671 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4672                                       const ModuleSummaryIndex &Index,
4673                                       const ModuleHash &ModHash) {
4674   SmallVector<char, 0> Buffer;
4675   Buffer.reserve(256 * 1024);
4676 
4677   BitcodeWriter Writer(Buffer);
4678   Writer.writeThinLinkBitcode(M, Index, ModHash);
4679   Writer.writeSymtab();
4680   Writer.writeStrtab();
4681 
4682   Out.write((char *)&Buffer.front(), Buffer.size());
4683 }
4684 
4685 static const char *getSectionNameForBitcode(const Triple &T) {
4686   switch (T.getObjectFormat()) {
4687   case Triple::MachO:
4688     return "__LLVM,__bitcode";
4689   case Triple::COFF:
4690   case Triple::ELF:
4691   case Triple::Wasm:
4692   case Triple::UnknownObjectFormat:
4693     return ".llvmbc";
4694   case Triple::XCOFF:
4695     llvm_unreachable("XCOFF is not yet implemented");
4696     break;
4697   }
4698   llvm_unreachable("Unimplemented ObjectFormatType");
4699 }
4700 
4701 static const char *getSectionNameForCommandline(const Triple &T) {
4702   switch (T.getObjectFormat()) {
4703   case Triple::MachO:
4704     return "__LLVM,__cmdline";
4705   case Triple::COFF:
4706   case Triple::ELF:
4707   case Triple::Wasm:
4708   case Triple::UnknownObjectFormat:
4709     return ".llvmcmd";
4710   case Triple::XCOFF:
4711     llvm_unreachable("XCOFF is not yet implemented");
4712     break;
4713   }
4714   llvm_unreachable("Unimplemented ObjectFormatType");
4715 }
4716 
4717 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
4718                                 bool EmbedBitcode, bool EmbedMarker,
4719                                 const std::vector<uint8_t> *CmdArgs) {
4720   // Save llvm.compiler.used and remove it.
4721   SmallVector<Constant *, 2> UsedArray;
4722   SmallPtrSet<GlobalValue *, 4> UsedGlobals;
4723   Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0);
4724   GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
4725   for (auto *GV : UsedGlobals) {
4726     if (GV->getName() != "llvm.embedded.module" &&
4727         GV->getName() != "llvm.cmdline")
4728       UsedArray.push_back(
4729           ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4730   }
4731   if (Used)
4732     Used->eraseFromParent();
4733 
4734   // Embed the bitcode for the llvm module.
4735   std::string Data;
4736   ArrayRef<uint8_t> ModuleData;
4737   Triple T(M.getTargetTriple());
4738   // Create a constant that contains the bitcode.
4739   // In case of embedding a marker, ignore the input Buf and use the empty
4740   // ArrayRef. It is also legal to create a bitcode marker even Buf is empty.
4741   if (EmbedBitcode) {
4742     if (!isBitcode((const unsigned char *)Buf.getBufferStart(),
4743                    (const unsigned char *)Buf.getBufferEnd())) {
4744       // If the input is LLVM Assembly, bitcode is produced by serializing
4745       // the module. Use-lists order need to be preserved in this case.
4746       llvm::raw_string_ostream OS(Data);
4747       llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
4748       ModuleData =
4749           ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
4750     } else
4751       // If the input is LLVM bitcode, write the input byte stream directly.
4752       ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
4753                                      Buf.getBufferSize());
4754   }
4755   llvm::Constant *ModuleConstant =
4756       llvm::ConstantDataArray::get(M.getContext(), ModuleData);
4757   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
4758       M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
4759       ModuleConstant);
4760   GV->setSection(getSectionNameForBitcode(T));
4761   UsedArray.push_back(
4762       ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4763   if (llvm::GlobalVariable *Old =
4764           M.getGlobalVariable("llvm.embedded.module", true)) {
4765     assert(Old->hasOneUse() &&
4766            "llvm.embedded.module can only be used once in llvm.compiler.used");
4767     GV->takeName(Old);
4768     Old->eraseFromParent();
4769   } else {
4770     GV->setName("llvm.embedded.module");
4771   }
4772 
4773   // Skip if only bitcode needs to be embedded.
4774   if (EmbedMarker) {
4775     // Embed command-line options.
4776     ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()),
4777                               CmdArgs->size());
4778     llvm::Constant *CmdConstant =
4779         llvm::ConstantDataArray::get(M.getContext(), CmdData);
4780     GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
4781                                   llvm::GlobalValue::PrivateLinkage,
4782                                   CmdConstant);
4783     GV->setSection(getSectionNameForCommandline(T));
4784     UsedArray.push_back(
4785         ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4786     if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
4787       assert(Old->hasOneUse() &&
4788              "llvm.cmdline can only be used once in llvm.compiler.used");
4789       GV->takeName(Old);
4790       Old->eraseFromParent();
4791     } else {
4792       GV->setName("llvm.cmdline");
4793     }
4794   }
4795 
4796   if (UsedArray.empty())
4797     return;
4798 
4799   // Recreate llvm.compiler.used.
4800   ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
4801   auto *NewUsed = new GlobalVariable(
4802       M, ATy, false, llvm::GlobalValue::AppendingLinkage,
4803       llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
4804   NewUsed->setSection("llvm.metadata");
4805 }
4806