1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Support/Program.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV, 64 65 // SwitchInst Magic 66 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 67 }; 68 69 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 70 switch (Opcode) { 71 default: llvm_unreachable("Unknown cast instruction!"); 72 case Instruction::Trunc : return bitc::CAST_TRUNC; 73 case Instruction::ZExt : return bitc::CAST_ZEXT; 74 case Instruction::SExt : return bitc::CAST_SEXT; 75 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 76 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 77 case Instruction::UIToFP : return bitc::CAST_UITOFP; 78 case Instruction::SIToFP : return bitc::CAST_SITOFP; 79 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 80 case Instruction::FPExt : return bitc::CAST_FPEXT; 81 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 82 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 83 case Instruction::BitCast : return bitc::CAST_BITCAST; 84 } 85 } 86 87 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 88 switch (Opcode) { 89 default: llvm_unreachable("Unknown binary instruction!"); 90 case Instruction::Add: 91 case Instruction::FAdd: return bitc::BINOP_ADD; 92 case Instruction::Sub: 93 case Instruction::FSub: return bitc::BINOP_SUB; 94 case Instruction::Mul: 95 case Instruction::FMul: return bitc::BINOP_MUL; 96 case Instruction::UDiv: return bitc::BINOP_UDIV; 97 case Instruction::FDiv: 98 case Instruction::SDiv: return bitc::BINOP_SDIV; 99 case Instruction::URem: return bitc::BINOP_UREM; 100 case Instruction::FRem: 101 case Instruction::SRem: return bitc::BINOP_SREM; 102 case Instruction::Shl: return bitc::BINOP_SHL; 103 case Instruction::LShr: return bitc::BINOP_LSHR; 104 case Instruction::AShr: return bitc::BINOP_ASHR; 105 case Instruction::And: return bitc::BINOP_AND; 106 case Instruction::Or: return bitc::BINOP_OR; 107 case Instruction::Xor: return bitc::BINOP_XOR; 108 } 109 } 110 111 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 112 switch (Op) { 113 default: llvm_unreachable("Unknown RMW operation!"); 114 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 115 case AtomicRMWInst::Add: return bitc::RMW_ADD; 116 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 117 case AtomicRMWInst::And: return bitc::RMW_AND; 118 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 119 case AtomicRMWInst::Or: return bitc::RMW_OR; 120 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 121 case AtomicRMWInst::Max: return bitc::RMW_MAX; 122 case AtomicRMWInst::Min: return bitc::RMW_MIN; 123 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 124 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 125 } 126 } 127 128 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 129 switch (Ordering) { 130 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 131 case Unordered: return bitc::ORDERING_UNORDERED; 132 case Monotonic: return bitc::ORDERING_MONOTONIC; 133 case Acquire: return bitc::ORDERING_ACQUIRE; 134 case Release: return bitc::ORDERING_RELEASE; 135 case AcquireRelease: return bitc::ORDERING_ACQREL; 136 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 137 } 138 llvm_unreachable("Invalid ordering"); 139 } 140 141 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 142 switch (SynchScope) { 143 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 144 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 145 } 146 llvm_unreachable("Invalid synch scope"); 147 } 148 149 static void WriteStringRecord(unsigned Code, StringRef Str, 150 unsigned AbbrevToUse, BitstreamWriter &Stream) { 151 SmallVector<unsigned, 64> Vals; 152 153 // Code: [strchar x N] 154 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 155 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 156 AbbrevToUse = 0; 157 Vals.push_back(Str[i]); 158 } 159 160 // Emit the finished record. 161 Stream.EmitRecord(Code, Vals, AbbrevToUse); 162 } 163 164 // Emit information about parameter attributes. 165 static void WriteAttributeTable(const ValueEnumerator &VE, 166 BitstreamWriter &Stream) { 167 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 168 if (Attrs.empty()) return; 169 170 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 171 172 SmallVector<uint64_t, 64> Record; 173 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 174 const AttrListPtr &A = Attrs[i]; 175 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 176 const AttributeWithIndex &PAWI = A.getSlot(i); 177 Record.push_back(PAWI.Index); 178 Record.push_back(Attributes::encodeLLVMAttributesForBitcode(PAWI.Attrs)); 179 } 180 181 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 182 Record.clear(); 183 } 184 185 Stream.ExitBlock(); 186 } 187 188 /// WriteTypeTable - Write out the type table for a module. 189 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 190 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 191 192 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 193 SmallVector<uint64_t, 64> TypeVals; 194 195 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 196 197 // Abbrev for TYPE_CODE_POINTER. 198 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 199 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 201 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 202 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 203 204 // Abbrev for TYPE_CODE_FUNCTION. 205 Abbv = new BitCodeAbbrev(); 206 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 210 211 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 212 213 // Abbrev for TYPE_CODE_STRUCT_ANON. 214 Abbv = new BitCodeAbbrev(); 215 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 219 220 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 221 222 // Abbrev for TYPE_CODE_STRUCT_NAME. 223 Abbv = new BitCodeAbbrev(); 224 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 227 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 228 229 // Abbrev for TYPE_CODE_STRUCT_NAMED. 230 Abbv = new BitCodeAbbrev(); 231 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 235 236 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 237 238 // Abbrev for TYPE_CODE_ARRAY. 239 Abbv = new BitCodeAbbrev(); 240 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 243 244 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 245 246 // Emit an entry count so the reader can reserve space. 247 TypeVals.push_back(TypeList.size()); 248 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 249 TypeVals.clear(); 250 251 // Loop over all of the types, emitting each in turn. 252 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 253 Type *T = TypeList[i]; 254 int AbbrevToUse = 0; 255 unsigned Code = 0; 256 257 switch (T->getTypeID()) { 258 default: llvm_unreachable("Unknown type!"); 259 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 260 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 261 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 262 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 263 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 264 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 265 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 266 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 267 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 268 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 269 case Type::IntegerTyID: 270 // INTEGER: [width] 271 Code = bitc::TYPE_CODE_INTEGER; 272 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 273 break; 274 case Type::PointerTyID: { 275 PointerType *PTy = cast<PointerType>(T); 276 // POINTER: [pointee type, address space] 277 Code = bitc::TYPE_CODE_POINTER; 278 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 279 unsigned AddressSpace = PTy->getAddressSpace(); 280 TypeVals.push_back(AddressSpace); 281 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 282 break; 283 } 284 case Type::FunctionTyID: { 285 FunctionType *FT = cast<FunctionType>(T); 286 // FUNCTION: [isvararg, retty, paramty x N] 287 Code = bitc::TYPE_CODE_FUNCTION; 288 TypeVals.push_back(FT->isVarArg()); 289 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 290 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 291 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 292 AbbrevToUse = FunctionAbbrev; 293 break; 294 } 295 case Type::StructTyID: { 296 StructType *ST = cast<StructType>(T); 297 // STRUCT: [ispacked, eltty x N] 298 TypeVals.push_back(ST->isPacked()); 299 // Output all of the element types. 300 for (StructType::element_iterator I = ST->element_begin(), 301 E = ST->element_end(); I != E; ++I) 302 TypeVals.push_back(VE.getTypeID(*I)); 303 304 if (ST->isLiteral()) { 305 Code = bitc::TYPE_CODE_STRUCT_ANON; 306 AbbrevToUse = StructAnonAbbrev; 307 } else { 308 if (ST->isOpaque()) { 309 Code = bitc::TYPE_CODE_OPAQUE; 310 } else { 311 Code = bitc::TYPE_CODE_STRUCT_NAMED; 312 AbbrevToUse = StructNamedAbbrev; 313 } 314 315 // Emit the name if it is present. 316 if (!ST->getName().empty()) 317 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 318 StructNameAbbrev, Stream); 319 } 320 break; 321 } 322 case Type::ArrayTyID: { 323 ArrayType *AT = cast<ArrayType>(T); 324 // ARRAY: [numelts, eltty] 325 Code = bitc::TYPE_CODE_ARRAY; 326 TypeVals.push_back(AT->getNumElements()); 327 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 328 AbbrevToUse = ArrayAbbrev; 329 break; 330 } 331 case Type::VectorTyID: { 332 VectorType *VT = cast<VectorType>(T); 333 // VECTOR [numelts, eltty] 334 Code = bitc::TYPE_CODE_VECTOR; 335 TypeVals.push_back(VT->getNumElements()); 336 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 337 break; 338 } 339 } 340 341 // Emit the finished record. 342 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 343 TypeVals.clear(); 344 } 345 346 Stream.ExitBlock(); 347 } 348 349 static unsigned getEncodedLinkage(const GlobalValue *GV) { 350 switch (GV->getLinkage()) { 351 case GlobalValue::ExternalLinkage: return 0; 352 case GlobalValue::WeakAnyLinkage: return 1; 353 case GlobalValue::AppendingLinkage: return 2; 354 case GlobalValue::InternalLinkage: return 3; 355 case GlobalValue::LinkOnceAnyLinkage: return 4; 356 case GlobalValue::DLLImportLinkage: return 5; 357 case GlobalValue::DLLExportLinkage: return 6; 358 case GlobalValue::ExternalWeakLinkage: return 7; 359 case GlobalValue::CommonLinkage: return 8; 360 case GlobalValue::PrivateLinkage: return 9; 361 case GlobalValue::WeakODRLinkage: return 10; 362 case GlobalValue::LinkOnceODRLinkage: return 11; 363 case GlobalValue::AvailableExternallyLinkage: return 12; 364 case GlobalValue::LinkerPrivateLinkage: return 13; 365 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 366 case GlobalValue::LinkOnceODRAutoHideLinkage: return 15; 367 } 368 llvm_unreachable("Invalid linkage"); 369 } 370 371 static unsigned getEncodedVisibility(const GlobalValue *GV) { 372 switch (GV->getVisibility()) { 373 case GlobalValue::DefaultVisibility: return 0; 374 case GlobalValue::HiddenVisibility: return 1; 375 case GlobalValue::ProtectedVisibility: return 2; 376 } 377 llvm_unreachable("Invalid visibility"); 378 } 379 380 static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) { 381 switch (GV->getThreadLocalMode()) { 382 case GlobalVariable::NotThreadLocal: return 0; 383 case GlobalVariable::GeneralDynamicTLSModel: return 1; 384 case GlobalVariable::LocalDynamicTLSModel: return 2; 385 case GlobalVariable::InitialExecTLSModel: return 3; 386 case GlobalVariable::LocalExecTLSModel: return 4; 387 } 388 llvm_unreachable("Invalid TLS model"); 389 } 390 391 // Emit top-level description of module, including target triple, inline asm, 392 // descriptors for global variables, and function prototype info. 393 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 394 BitstreamWriter &Stream) { 395 // Emit the list of dependent libraries for the Module. 396 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 397 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 398 399 // Emit various pieces of data attached to a module. 400 if (!M->getTargetTriple().empty()) 401 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 402 0/*TODO*/, Stream); 403 if (!M->getDataLayout().empty()) 404 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 405 0/*TODO*/, Stream); 406 if (!M->getModuleInlineAsm().empty()) 407 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 408 0/*TODO*/, Stream); 409 410 // Emit information about sections and GC, computing how many there are. Also 411 // compute the maximum alignment value. 412 std::map<std::string, unsigned> SectionMap; 413 std::map<std::string, unsigned> GCMap; 414 unsigned MaxAlignment = 0; 415 unsigned MaxGlobalType = 0; 416 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 417 GV != E; ++GV) { 418 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 419 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 420 if (GV->hasSection()) { 421 // Give section names unique ID's. 422 unsigned &Entry = SectionMap[GV->getSection()]; 423 if (!Entry) { 424 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 425 0/*TODO*/, Stream); 426 Entry = SectionMap.size(); 427 } 428 } 429 } 430 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 431 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 432 if (F->hasSection()) { 433 // Give section names unique ID's. 434 unsigned &Entry = SectionMap[F->getSection()]; 435 if (!Entry) { 436 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 437 0/*TODO*/, Stream); 438 Entry = SectionMap.size(); 439 } 440 } 441 if (F->hasGC()) { 442 // Same for GC names. 443 unsigned &Entry = GCMap[F->getGC()]; 444 if (!Entry) { 445 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 446 0/*TODO*/, Stream); 447 Entry = GCMap.size(); 448 } 449 } 450 } 451 452 // Emit abbrev for globals, now that we know # sections and max alignment. 453 unsigned SimpleGVarAbbrev = 0; 454 if (!M->global_empty()) { 455 // Add an abbrev for common globals with no visibility or thread localness. 456 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 457 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 459 Log2_32_Ceil(MaxGlobalType+1))); 460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 463 if (MaxAlignment == 0) // Alignment. 464 Abbv->Add(BitCodeAbbrevOp(0)); 465 else { 466 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 468 Log2_32_Ceil(MaxEncAlignment+1))); 469 } 470 if (SectionMap.empty()) // Section. 471 Abbv->Add(BitCodeAbbrevOp(0)); 472 else 473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 474 Log2_32_Ceil(SectionMap.size()+1))); 475 // Don't bother emitting vis + thread local. 476 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 477 } 478 479 // Emit the global variable information. 480 SmallVector<unsigned, 64> Vals; 481 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 482 GV != E; ++GV) { 483 unsigned AbbrevToUse = 0; 484 485 // GLOBALVAR: [type, isconst, initid, 486 // linkage, alignment, section, visibility, threadlocal, 487 // unnamed_addr] 488 Vals.push_back(VE.getTypeID(GV->getType())); 489 Vals.push_back(GV->isConstant()); 490 Vals.push_back(GV->isDeclaration() ? 0 : 491 (VE.getValueID(GV->getInitializer()) + 1)); 492 Vals.push_back(getEncodedLinkage(GV)); 493 Vals.push_back(Log2_32(GV->getAlignment())+1); 494 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 495 if (GV->isThreadLocal() || 496 GV->getVisibility() != GlobalValue::DefaultVisibility || 497 GV->hasUnnamedAddr()) { 498 Vals.push_back(getEncodedVisibility(GV)); 499 Vals.push_back(getEncodedThreadLocalMode(GV)); 500 Vals.push_back(GV->hasUnnamedAddr()); 501 } else { 502 AbbrevToUse = SimpleGVarAbbrev; 503 } 504 505 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 506 Vals.clear(); 507 } 508 509 // Emit the function proto information. 510 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 511 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 512 // section, visibility, gc, unnamed_addr] 513 Vals.push_back(VE.getTypeID(F->getType())); 514 Vals.push_back(F->getCallingConv()); 515 Vals.push_back(F->isDeclaration()); 516 Vals.push_back(getEncodedLinkage(F)); 517 Vals.push_back(VE.getAttributeID(F->getAttributes())); 518 Vals.push_back(Log2_32(F->getAlignment())+1); 519 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 520 Vals.push_back(getEncodedVisibility(F)); 521 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 522 Vals.push_back(F->hasUnnamedAddr()); 523 524 unsigned AbbrevToUse = 0; 525 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 526 Vals.clear(); 527 } 528 529 // Emit the alias information. 530 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 531 AI != E; ++AI) { 532 // ALIAS: [alias type, aliasee val#, linkage, visibility] 533 Vals.push_back(VE.getTypeID(AI->getType())); 534 Vals.push_back(VE.getValueID(AI->getAliasee())); 535 Vals.push_back(getEncodedLinkage(AI)); 536 Vals.push_back(getEncodedVisibility(AI)); 537 unsigned AbbrevToUse = 0; 538 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 539 Vals.clear(); 540 } 541 } 542 543 static uint64_t GetOptimizationFlags(const Value *V) { 544 uint64_t Flags = 0; 545 546 if (const OverflowingBinaryOperator *OBO = 547 dyn_cast<OverflowingBinaryOperator>(V)) { 548 if (OBO->hasNoSignedWrap()) 549 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 550 if (OBO->hasNoUnsignedWrap()) 551 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 552 } else if (const PossiblyExactOperator *PEO = 553 dyn_cast<PossiblyExactOperator>(V)) { 554 if (PEO->isExact()) 555 Flags |= 1 << bitc::PEO_EXACT; 556 } else if (const FPMathOperator *FPMO = 557 dyn_cast<const FPMathOperator>(V)) { 558 if (FPMO->hasUnsafeAlgebra()) 559 Flags |= 1 << bitc::FMF_UNSAFE_ALGEBRA; 560 if (FPMO->hasNoNaNs()) 561 Flags |= 1 << bitc::FMF_NO_NANS; 562 if (FPMO->hasNoInfs()) 563 Flags |= 1 << bitc::FMF_NO_INFS; 564 if (FPMO->hasNoSignedZeros()) 565 Flags |= 1 << bitc::FMF_NO_SIGNED_ZEROS; 566 if (FPMO->hasAllowReciprocal()) 567 Flags |= 1 << bitc::FMF_ALLOW_RECIPROCAL; 568 } 569 570 return Flags; 571 } 572 573 static void WriteMDNode(const MDNode *N, 574 const ValueEnumerator &VE, 575 BitstreamWriter &Stream, 576 SmallVector<uint64_t, 64> &Record) { 577 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 578 if (N->getOperand(i)) { 579 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 580 Record.push_back(VE.getValueID(N->getOperand(i))); 581 } else { 582 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 583 Record.push_back(0); 584 } 585 } 586 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 587 bitc::METADATA_NODE; 588 Stream.EmitRecord(MDCode, Record, 0); 589 Record.clear(); 590 } 591 592 static void WriteModuleMetadata(const Module *M, 593 const ValueEnumerator &VE, 594 BitstreamWriter &Stream) { 595 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 596 bool StartedMetadataBlock = false; 597 unsigned MDSAbbrev = 0; 598 SmallVector<uint64_t, 64> Record; 599 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 600 601 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 602 if (!N->isFunctionLocal() || !N->getFunction()) { 603 if (!StartedMetadataBlock) { 604 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 605 StartedMetadataBlock = true; 606 } 607 WriteMDNode(N, VE, Stream, Record); 608 } 609 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 610 if (!StartedMetadataBlock) { 611 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 612 613 // Abbrev for METADATA_STRING. 614 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 615 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 618 MDSAbbrev = Stream.EmitAbbrev(Abbv); 619 StartedMetadataBlock = true; 620 } 621 622 // Code: [strchar x N] 623 Record.append(MDS->begin(), MDS->end()); 624 625 // Emit the finished record. 626 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 627 Record.clear(); 628 } 629 } 630 631 // Write named metadata. 632 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 633 E = M->named_metadata_end(); I != E; ++I) { 634 const NamedMDNode *NMD = I; 635 if (!StartedMetadataBlock) { 636 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 637 StartedMetadataBlock = true; 638 } 639 640 // Write name. 641 StringRef Str = NMD->getName(); 642 for (unsigned i = 0, e = Str.size(); i != e; ++i) 643 Record.push_back(Str[i]); 644 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 645 Record.clear(); 646 647 // Write named metadata operands. 648 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 649 Record.push_back(VE.getValueID(NMD->getOperand(i))); 650 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 651 Record.clear(); 652 } 653 654 if (StartedMetadataBlock) 655 Stream.ExitBlock(); 656 } 657 658 static void WriteFunctionLocalMetadata(const Function &F, 659 const ValueEnumerator &VE, 660 BitstreamWriter &Stream) { 661 bool StartedMetadataBlock = false; 662 SmallVector<uint64_t, 64> Record; 663 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 664 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 665 if (const MDNode *N = Vals[i]) 666 if (N->isFunctionLocal() && N->getFunction() == &F) { 667 if (!StartedMetadataBlock) { 668 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 669 StartedMetadataBlock = true; 670 } 671 WriteMDNode(N, VE, Stream, Record); 672 } 673 674 if (StartedMetadataBlock) 675 Stream.ExitBlock(); 676 } 677 678 static void WriteMetadataAttachment(const Function &F, 679 const ValueEnumerator &VE, 680 BitstreamWriter &Stream) { 681 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 682 683 SmallVector<uint64_t, 64> Record; 684 685 // Write metadata attachments 686 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 687 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 688 689 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 690 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 691 I != E; ++I) { 692 MDs.clear(); 693 I->getAllMetadataOtherThanDebugLoc(MDs); 694 695 // If no metadata, ignore instruction. 696 if (MDs.empty()) continue; 697 698 Record.push_back(VE.getInstructionID(I)); 699 700 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 701 Record.push_back(MDs[i].first); 702 Record.push_back(VE.getValueID(MDs[i].second)); 703 } 704 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 705 Record.clear(); 706 } 707 708 Stream.ExitBlock(); 709 } 710 711 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 712 SmallVector<uint64_t, 64> Record; 713 714 // Write metadata kinds 715 // METADATA_KIND - [n x [id, name]] 716 SmallVector<StringRef, 4> Names; 717 M->getMDKindNames(Names); 718 719 if (Names.empty()) return; 720 721 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 722 723 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 724 Record.push_back(MDKindID); 725 StringRef KName = Names[MDKindID]; 726 Record.append(KName.begin(), KName.end()); 727 728 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 729 Record.clear(); 730 } 731 732 Stream.ExitBlock(); 733 } 734 735 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 736 if ((int64_t)V >= 0) 737 Vals.push_back(V << 1); 738 else 739 Vals.push_back((-V << 1) | 1); 740 } 741 742 static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals, 743 unsigned &Code, unsigned &AbbrevToUse, const APInt &Val, 744 bool EmitSizeForWideNumbers = false 745 ) { 746 if (Val.getBitWidth() <= 64) { 747 uint64_t V = Val.getSExtValue(); 748 emitSignedInt64(Vals, V); 749 Code = bitc::CST_CODE_INTEGER; 750 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 751 } else { 752 // Wide integers, > 64 bits in size. 753 // We have an arbitrary precision integer value to write whose 754 // bit width is > 64. However, in canonical unsigned integer 755 // format it is likely that the high bits are going to be zero. 756 // So, we only write the number of active words. 757 unsigned NWords = Val.getActiveWords(); 758 759 if (EmitSizeForWideNumbers) 760 Vals.push_back(NWords); 761 762 const uint64_t *RawWords = Val.getRawData(); 763 for (unsigned i = 0; i != NWords; ++i) { 764 emitSignedInt64(Vals, RawWords[i]); 765 } 766 Code = bitc::CST_CODE_WIDE_INTEGER; 767 } 768 } 769 770 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 771 const ValueEnumerator &VE, 772 BitstreamWriter &Stream, bool isGlobal) { 773 if (FirstVal == LastVal) return; 774 775 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 776 777 unsigned AggregateAbbrev = 0; 778 unsigned String8Abbrev = 0; 779 unsigned CString7Abbrev = 0; 780 unsigned CString6Abbrev = 0; 781 // If this is a constant pool for the module, emit module-specific abbrevs. 782 if (isGlobal) { 783 // Abbrev for CST_CODE_AGGREGATE. 784 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 785 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 788 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 789 790 // Abbrev for CST_CODE_STRING. 791 Abbv = new BitCodeAbbrev(); 792 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 795 String8Abbrev = Stream.EmitAbbrev(Abbv); 796 // Abbrev for CST_CODE_CSTRING. 797 Abbv = new BitCodeAbbrev(); 798 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 801 CString7Abbrev = Stream.EmitAbbrev(Abbv); 802 // Abbrev for CST_CODE_CSTRING. 803 Abbv = new BitCodeAbbrev(); 804 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 807 CString6Abbrev = Stream.EmitAbbrev(Abbv); 808 } 809 810 SmallVector<uint64_t, 64> Record; 811 812 const ValueEnumerator::ValueList &Vals = VE.getValues(); 813 Type *LastTy = 0; 814 for (unsigned i = FirstVal; i != LastVal; ++i) { 815 const Value *V = Vals[i].first; 816 // If we need to switch types, do so now. 817 if (V->getType() != LastTy) { 818 LastTy = V->getType(); 819 Record.push_back(VE.getTypeID(LastTy)); 820 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 821 CONSTANTS_SETTYPE_ABBREV); 822 Record.clear(); 823 } 824 825 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 826 Record.push_back(unsigned(IA->hasSideEffects()) | 827 unsigned(IA->isAlignStack()) << 1 | 828 unsigned(IA->getDialect()&1) << 2); 829 830 // Add the asm string. 831 const std::string &AsmStr = IA->getAsmString(); 832 Record.push_back(AsmStr.size()); 833 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 834 Record.push_back(AsmStr[i]); 835 836 // Add the constraint string. 837 const std::string &ConstraintStr = IA->getConstraintString(); 838 Record.push_back(ConstraintStr.size()); 839 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 840 Record.push_back(ConstraintStr[i]); 841 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 842 Record.clear(); 843 continue; 844 } 845 const Constant *C = cast<Constant>(V); 846 unsigned Code = -1U; 847 unsigned AbbrevToUse = 0; 848 if (C->isNullValue()) { 849 Code = bitc::CST_CODE_NULL; 850 } else if (isa<UndefValue>(C)) { 851 Code = bitc::CST_CODE_UNDEF; 852 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 853 EmitAPInt(Record, Code, AbbrevToUse, IV->getValue()); 854 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 855 Code = bitc::CST_CODE_FLOAT; 856 Type *Ty = CFP->getType(); 857 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 858 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 859 } else if (Ty->isX86_FP80Ty()) { 860 // api needed to prevent premature destruction 861 // bits are not in the same order as a normal i80 APInt, compensate. 862 APInt api = CFP->getValueAPF().bitcastToAPInt(); 863 const uint64_t *p = api.getRawData(); 864 Record.push_back((p[1] << 48) | (p[0] >> 16)); 865 Record.push_back(p[0] & 0xffffLL); 866 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 867 APInt api = CFP->getValueAPF().bitcastToAPInt(); 868 const uint64_t *p = api.getRawData(); 869 Record.push_back(p[0]); 870 Record.push_back(p[1]); 871 } else { 872 assert (0 && "Unknown FP type!"); 873 } 874 } else if (isa<ConstantDataSequential>(C) && 875 cast<ConstantDataSequential>(C)->isString()) { 876 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 877 // Emit constant strings specially. 878 unsigned NumElts = Str->getNumElements(); 879 // If this is a null-terminated string, use the denser CSTRING encoding. 880 if (Str->isCString()) { 881 Code = bitc::CST_CODE_CSTRING; 882 --NumElts; // Don't encode the null, which isn't allowed by char6. 883 } else { 884 Code = bitc::CST_CODE_STRING; 885 AbbrevToUse = String8Abbrev; 886 } 887 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 888 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 889 for (unsigned i = 0; i != NumElts; ++i) { 890 unsigned char V = Str->getElementAsInteger(i); 891 Record.push_back(V); 892 isCStr7 &= (V & 128) == 0; 893 if (isCStrChar6) 894 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 895 } 896 897 if (isCStrChar6) 898 AbbrevToUse = CString6Abbrev; 899 else if (isCStr7) 900 AbbrevToUse = CString7Abbrev; 901 } else if (const ConstantDataSequential *CDS = 902 dyn_cast<ConstantDataSequential>(C)) { 903 Code = bitc::CST_CODE_DATA; 904 Type *EltTy = CDS->getType()->getElementType(); 905 if (isa<IntegerType>(EltTy)) { 906 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 907 Record.push_back(CDS->getElementAsInteger(i)); 908 } else if (EltTy->isFloatTy()) { 909 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 910 union { float F; uint32_t I; }; 911 F = CDS->getElementAsFloat(i); 912 Record.push_back(I); 913 } 914 } else { 915 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 916 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 917 union { double F; uint64_t I; }; 918 F = CDS->getElementAsDouble(i); 919 Record.push_back(I); 920 } 921 } 922 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 923 isa<ConstantVector>(C)) { 924 Code = bitc::CST_CODE_AGGREGATE; 925 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 926 Record.push_back(VE.getValueID(C->getOperand(i))); 927 AbbrevToUse = AggregateAbbrev; 928 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 929 switch (CE->getOpcode()) { 930 default: 931 if (Instruction::isCast(CE->getOpcode())) { 932 Code = bitc::CST_CODE_CE_CAST; 933 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 934 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 935 Record.push_back(VE.getValueID(C->getOperand(0))); 936 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 937 } else { 938 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 939 Code = bitc::CST_CODE_CE_BINOP; 940 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 941 Record.push_back(VE.getValueID(C->getOperand(0))); 942 Record.push_back(VE.getValueID(C->getOperand(1))); 943 uint64_t Flags = GetOptimizationFlags(CE); 944 if (Flags != 0) 945 Record.push_back(Flags); 946 } 947 break; 948 case Instruction::GetElementPtr: 949 Code = bitc::CST_CODE_CE_GEP; 950 if (cast<GEPOperator>(C)->isInBounds()) 951 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 952 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 953 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 954 Record.push_back(VE.getValueID(C->getOperand(i))); 955 } 956 break; 957 case Instruction::Select: 958 Code = bitc::CST_CODE_CE_SELECT; 959 Record.push_back(VE.getValueID(C->getOperand(0))); 960 Record.push_back(VE.getValueID(C->getOperand(1))); 961 Record.push_back(VE.getValueID(C->getOperand(2))); 962 break; 963 case Instruction::ExtractElement: 964 Code = bitc::CST_CODE_CE_EXTRACTELT; 965 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 966 Record.push_back(VE.getValueID(C->getOperand(0))); 967 Record.push_back(VE.getValueID(C->getOperand(1))); 968 break; 969 case Instruction::InsertElement: 970 Code = bitc::CST_CODE_CE_INSERTELT; 971 Record.push_back(VE.getValueID(C->getOperand(0))); 972 Record.push_back(VE.getValueID(C->getOperand(1))); 973 Record.push_back(VE.getValueID(C->getOperand(2))); 974 break; 975 case Instruction::ShuffleVector: 976 // If the return type and argument types are the same, this is a 977 // standard shufflevector instruction. If the types are different, 978 // then the shuffle is widening or truncating the input vectors, and 979 // the argument type must also be encoded. 980 if (C->getType() == C->getOperand(0)->getType()) { 981 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 982 } else { 983 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 984 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 985 } 986 Record.push_back(VE.getValueID(C->getOperand(0))); 987 Record.push_back(VE.getValueID(C->getOperand(1))); 988 Record.push_back(VE.getValueID(C->getOperand(2))); 989 break; 990 case Instruction::ICmp: 991 case Instruction::FCmp: 992 Code = bitc::CST_CODE_CE_CMP; 993 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 994 Record.push_back(VE.getValueID(C->getOperand(0))); 995 Record.push_back(VE.getValueID(C->getOperand(1))); 996 Record.push_back(CE->getPredicate()); 997 break; 998 } 999 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1000 Code = bitc::CST_CODE_BLOCKADDRESS; 1001 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1002 Record.push_back(VE.getValueID(BA->getFunction())); 1003 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1004 } else { 1005 #ifndef NDEBUG 1006 C->dump(); 1007 #endif 1008 llvm_unreachable("Unknown constant!"); 1009 } 1010 Stream.EmitRecord(Code, Record, AbbrevToUse); 1011 Record.clear(); 1012 } 1013 1014 Stream.ExitBlock(); 1015 } 1016 1017 static void WriteModuleConstants(const ValueEnumerator &VE, 1018 BitstreamWriter &Stream) { 1019 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1020 1021 // Find the first constant to emit, which is the first non-globalvalue value. 1022 // We know globalvalues have been emitted by WriteModuleInfo. 1023 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1024 if (!isa<GlobalValue>(Vals[i].first)) { 1025 WriteConstants(i, Vals.size(), VE, Stream, true); 1026 return; 1027 } 1028 } 1029 } 1030 1031 /// PushValueAndType - The file has to encode both the value and type id for 1032 /// many values, because we need to know what type to create for forward 1033 /// references. However, most operands are not forward references, so this type 1034 /// field is not needed. 1035 /// 1036 /// This function adds V's value ID to Vals. If the value ID is higher than the 1037 /// instruction ID, then it is a forward reference, and it also includes the 1038 /// type ID. The value ID that is written is encoded relative to the InstID. 1039 static bool PushValueAndType(const Value *V, unsigned InstID, 1040 SmallVector<unsigned, 64> &Vals, 1041 ValueEnumerator &VE) { 1042 unsigned ValID = VE.getValueID(V); 1043 // Make encoding relative to the InstID. 1044 Vals.push_back(InstID - ValID); 1045 if (ValID >= InstID) { 1046 Vals.push_back(VE.getTypeID(V->getType())); 1047 return true; 1048 } 1049 return false; 1050 } 1051 1052 /// pushValue - Like PushValueAndType, but where the type of the value is 1053 /// omitted (perhaps it was already encoded in an earlier operand). 1054 static void pushValue(const Value *V, unsigned InstID, 1055 SmallVector<unsigned, 64> &Vals, 1056 ValueEnumerator &VE) { 1057 unsigned ValID = VE.getValueID(V); 1058 Vals.push_back(InstID - ValID); 1059 } 1060 1061 static void pushValue64(const Value *V, unsigned InstID, 1062 SmallVector<uint64_t, 128> &Vals, 1063 ValueEnumerator &VE) { 1064 uint64_t ValID = VE.getValueID(V); 1065 Vals.push_back(InstID - ValID); 1066 } 1067 1068 static void pushValueSigned(const Value *V, unsigned InstID, 1069 SmallVector<uint64_t, 128> &Vals, 1070 ValueEnumerator &VE) { 1071 unsigned ValID = VE.getValueID(V); 1072 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1073 emitSignedInt64(Vals, diff); 1074 } 1075 1076 /// WriteInstruction - Emit an instruction to the specified stream. 1077 static void WriteInstruction(const Instruction &I, unsigned InstID, 1078 ValueEnumerator &VE, BitstreamWriter &Stream, 1079 SmallVector<unsigned, 64> &Vals) { 1080 unsigned Code = 0; 1081 unsigned AbbrevToUse = 0; 1082 VE.setInstructionID(&I); 1083 switch (I.getOpcode()) { 1084 default: 1085 if (Instruction::isCast(I.getOpcode())) { 1086 Code = bitc::FUNC_CODE_INST_CAST; 1087 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1088 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1089 Vals.push_back(VE.getTypeID(I.getType())); 1090 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1091 } else { 1092 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1093 Code = bitc::FUNC_CODE_INST_BINOP; 1094 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1095 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1096 pushValue(I.getOperand(1), InstID, Vals, VE); 1097 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1098 uint64_t Flags = GetOptimizationFlags(&I); 1099 if (Flags != 0) { 1100 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1101 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1102 Vals.push_back(Flags); 1103 } 1104 } 1105 break; 1106 1107 case Instruction::GetElementPtr: 1108 Code = bitc::FUNC_CODE_INST_GEP; 1109 if (cast<GEPOperator>(&I)->isInBounds()) 1110 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1111 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1112 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1113 break; 1114 case Instruction::ExtractValue: { 1115 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1116 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1117 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1118 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1119 Vals.push_back(*i); 1120 break; 1121 } 1122 case Instruction::InsertValue: { 1123 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1124 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1125 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1126 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1127 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1128 Vals.push_back(*i); 1129 break; 1130 } 1131 case Instruction::Select: 1132 Code = bitc::FUNC_CODE_INST_VSELECT; 1133 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1134 pushValue(I.getOperand(2), InstID, Vals, VE); 1135 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1136 break; 1137 case Instruction::ExtractElement: 1138 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1139 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1140 pushValue(I.getOperand(1), InstID, Vals, VE); 1141 break; 1142 case Instruction::InsertElement: 1143 Code = bitc::FUNC_CODE_INST_INSERTELT; 1144 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1145 pushValue(I.getOperand(1), InstID, Vals, VE); 1146 pushValue(I.getOperand(2), InstID, Vals, VE); 1147 break; 1148 case Instruction::ShuffleVector: 1149 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1150 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1151 pushValue(I.getOperand(1), InstID, Vals, VE); 1152 pushValue(I.getOperand(2), InstID, Vals, VE); 1153 break; 1154 case Instruction::ICmp: 1155 case Instruction::FCmp: 1156 // compare returning Int1Ty or vector of Int1Ty 1157 Code = bitc::FUNC_CODE_INST_CMP2; 1158 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1159 pushValue(I.getOperand(1), InstID, Vals, VE); 1160 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1161 break; 1162 1163 case Instruction::Ret: 1164 { 1165 Code = bitc::FUNC_CODE_INST_RET; 1166 unsigned NumOperands = I.getNumOperands(); 1167 if (NumOperands == 0) 1168 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1169 else if (NumOperands == 1) { 1170 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1171 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1172 } else { 1173 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1174 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1175 } 1176 } 1177 break; 1178 case Instruction::Br: 1179 { 1180 Code = bitc::FUNC_CODE_INST_BR; 1181 BranchInst &II = cast<BranchInst>(I); 1182 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1183 if (II.isConditional()) { 1184 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1185 pushValue(II.getCondition(), InstID, Vals, VE); 1186 } 1187 } 1188 break; 1189 case Instruction::Switch: 1190 { 1191 // Redefine Vals, since here we need to use 64 bit values 1192 // explicitly to store large APInt numbers. 1193 SmallVector<uint64_t, 128> Vals64; 1194 1195 Code = bitc::FUNC_CODE_INST_SWITCH; 1196 SwitchInst &SI = cast<SwitchInst>(I); 1197 1198 uint32_t SwitchRecordHeader = SI.hash() | (SWITCH_INST_MAGIC << 16); 1199 Vals64.push_back(SwitchRecordHeader); 1200 1201 Vals64.push_back(VE.getTypeID(SI.getCondition()->getType())); 1202 pushValue64(SI.getCondition(), InstID, Vals64, VE); 1203 Vals64.push_back(VE.getValueID(SI.getDefaultDest())); 1204 Vals64.push_back(SI.getNumCases()); 1205 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); 1206 i != e; ++i) { 1207 IntegersSubset& CaseRanges = i.getCaseValueEx(); 1208 unsigned Code, Abbrev; // will unused. 1209 1210 if (CaseRanges.isSingleNumber()) { 1211 Vals64.push_back(1/*NumItems = 1*/); 1212 Vals64.push_back(true/*IsSingleNumber = true*/); 1213 EmitAPInt(Vals64, Code, Abbrev, CaseRanges.getSingleNumber(0), true); 1214 } else { 1215 1216 Vals64.push_back(CaseRanges.getNumItems()); 1217 1218 if (CaseRanges.isSingleNumbersOnly()) { 1219 for (unsigned ri = 0, rn = CaseRanges.getNumItems(); 1220 ri != rn; ++ri) { 1221 1222 Vals64.push_back(true/*IsSingleNumber = true*/); 1223 1224 EmitAPInt(Vals64, Code, Abbrev, 1225 CaseRanges.getSingleNumber(ri), true); 1226 } 1227 } else 1228 for (unsigned ri = 0, rn = CaseRanges.getNumItems(); 1229 ri != rn; ++ri) { 1230 IntegersSubset::Range r = CaseRanges.getItem(ri); 1231 bool IsSingleNumber = CaseRanges.isSingleNumber(ri); 1232 1233 Vals64.push_back(IsSingleNumber); 1234 1235 EmitAPInt(Vals64, Code, Abbrev, r.getLow(), true); 1236 if (!IsSingleNumber) 1237 EmitAPInt(Vals64, Code, Abbrev, r.getHigh(), true); 1238 } 1239 } 1240 Vals64.push_back(VE.getValueID(i.getCaseSuccessor())); 1241 } 1242 1243 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1244 1245 // Also do expected action - clear external Vals collection: 1246 Vals.clear(); 1247 return; 1248 } 1249 break; 1250 case Instruction::IndirectBr: 1251 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1252 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1253 // Encode the address operand as relative, but not the basic blocks. 1254 pushValue(I.getOperand(0), InstID, Vals, VE); 1255 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1256 Vals.push_back(VE.getValueID(I.getOperand(i))); 1257 break; 1258 1259 case Instruction::Invoke: { 1260 const InvokeInst *II = cast<InvokeInst>(&I); 1261 const Value *Callee(II->getCalledValue()); 1262 PointerType *PTy = cast<PointerType>(Callee->getType()); 1263 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1264 Code = bitc::FUNC_CODE_INST_INVOKE; 1265 1266 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1267 Vals.push_back(II->getCallingConv()); 1268 Vals.push_back(VE.getValueID(II->getNormalDest())); 1269 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1270 PushValueAndType(Callee, InstID, Vals, VE); 1271 1272 // Emit value #'s for the fixed parameters. 1273 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1274 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1275 1276 // Emit type/value pairs for varargs params. 1277 if (FTy->isVarArg()) { 1278 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1279 i != e; ++i) 1280 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1281 } 1282 break; 1283 } 1284 case Instruction::Resume: 1285 Code = bitc::FUNC_CODE_INST_RESUME; 1286 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1287 break; 1288 case Instruction::Unreachable: 1289 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1290 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1291 break; 1292 1293 case Instruction::PHI: { 1294 const PHINode &PN = cast<PHINode>(I); 1295 Code = bitc::FUNC_CODE_INST_PHI; 1296 // With the newer instruction encoding, forward references could give 1297 // negative valued IDs. This is most common for PHIs, so we use 1298 // signed VBRs. 1299 SmallVector<uint64_t, 128> Vals64; 1300 Vals64.push_back(VE.getTypeID(PN.getType())); 1301 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1302 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1303 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1304 } 1305 // Emit a Vals64 vector and exit. 1306 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1307 Vals64.clear(); 1308 return; 1309 } 1310 1311 case Instruction::LandingPad: { 1312 const LandingPadInst &LP = cast<LandingPadInst>(I); 1313 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1314 Vals.push_back(VE.getTypeID(LP.getType())); 1315 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1316 Vals.push_back(LP.isCleanup()); 1317 Vals.push_back(LP.getNumClauses()); 1318 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1319 if (LP.isCatch(I)) 1320 Vals.push_back(LandingPadInst::Catch); 1321 else 1322 Vals.push_back(LandingPadInst::Filter); 1323 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1324 } 1325 break; 1326 } 1327 1328 case Instruction::Alloca: 1329 Code = bitc::FUNC_CODE_INST_ALLOCA; 1330 Vals.push_back(VE.getTypeID(I.getType())); 1331 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1332 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1333 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1334 break; 1335 1336 case Instruction::Load: 1337 if (cast<LoadInst>(I).isAtomic()) { 1338 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1339 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1340 } else { 1341 Code = bitc::FUNC_CODE_INST_LOAD; 1342 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1343 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1344 } 1345 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1346 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1347 if (cast<LoadInst>(I).isAtomic()) { 1348 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1349 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1350 } 1351 break; 1352 case Instruction::Store: 1353 if (cast<StoreInst>(I).isAtomic()) 1354 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1355 else 1356 Code = bitc::FUNC_CODE_INST_STORE; 1357 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1358 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1359 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1360 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1361 if (cast<StoreInst>(I).isAtomic()) { 1362 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1363 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1364 } 1365 break; 1366 case Instruction::AtomicCmpXchg: 1367 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1368 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1369 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1370 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1371 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1372 Vals.push_back(GetEncodedOrdering( 1373 cast<AtomicCmpXchgInst>(I).getOrdering())); 1374 Vals.push_back(GetEncodedSynchScope( 1375 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1376 break; 1377 case Instruction::AtomicRMW: 1378 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1379 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1380 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1381 Vals.push_back(GetEncodedRMWOperation( 1382 cast<AtomicRMWInst>(I).getOperation())); 1383 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1384 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1385 Vals.push_back(GetEncodedSynchScope( 1386 cast<AtomicRMWInst>(I).getSynchScope())); 1387 break; 1388 case Instruction::Fence: 1389 Code = bitc::FUNC_CODE_INST_FENCE; 1390 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1391 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1392 break; 1393 case Instruction::Call: { 1394 const CallInst &CI = cast<CallInst>(I); 1395 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1396 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1397 1398 Code = bitc::FUNC_CODE_INST_CALL; 1399 1400 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1401 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1402 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1403 1404 // Emit value #'s for the fixed parameters. 1405 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1406 // Check for labels (can happen with asm labels). 1407 if (FTy->getParamType(i)->isLabelTy()) 1408 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1409 else 1410 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1411 } 1412 1413 // Emit type/value pairs for varargs params. 1414 if (FTy->isVarArg()) { 1415 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1416 i != e; ++i) 1417 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1418 } 1419 break; 1420 } 1421 case Instruction::VAArg: 1422 Code = bitc::FUNC_CODE_INST_VAARG; 1423 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1424 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1425 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1426 break; 1427 } 1428 1429 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1430 Vals.clear(); 1431 } 1432 1433 // Emit names for globals/functions etc. 1434 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1435 const ValueEnumerator &VE, 1436 BitstreamWriter &Stream) { 1437 if (VST.empty()) return; 1438 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1439 1440 // FIXME: Set up the abbrev, we know how many values there are! 1441 // FIXME: We know if the type names can use 7-bit ascii. 1442 SmallVector<unsigned, 64> NameVals; 1443 1444 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1445 SI != SE; ++SI) { 1446 1447 const ValueName &Name = *SI; 1448 1449 // Figure out the encoding to use for the name. 1450 bool is7Bit = true; 1451 bool isChar6 = true; 1452 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1453 C != E; ++C) { 1454 if (isChar6) 1455 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1456 if ((unsigned char)*C & 128) { 1457 is7Bit = false; 1458 break; // don't bother scanning the rest. 1459 } 1460 } 1461 1462 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1463 1464 // VST_ENTRY: [valueid, namechar x N] 1465 // VST_BBENTRY: [bbid, namechar x N] 1466 unsigned Code; 1467 if (isa<BasicBlock>(SI->getValue())) { 1468 Code = bitc::VST_CODE_BBENTRY; 1469 if (isChar6) 1470 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1471 } else { 1472 Code = bitc::VST_CODE_ENTRY; 1473 if (isChar6) 1474 AbbrevToUse = VST_ENTRY_6_ABBREV; 1475 else if (is7Bit) 1476 AbbrevToUse = VST_ENTRY_7_ABBREV; 1477 } 1478 1479 NameVals.push_back(VE.getValueID(SI->getValue())); 1480 for (const char *P = Name.getKeyData(), 1481 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1482 NameVals.push_back((unsigned char)*P); 1483 1484 // Emit the finished record. 1485 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1486 NameVals.clear(); 1487 } 1488 Stream.ExitBlock(); 1489 } 1490 1491 /// WriteFunction - Emit a function body to the module stream. 1492 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1493 BitstreamWriter &Stream) { 1494 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1495 VE.incorporateFunction(F); 1496 1497 SmallVector<unsigned, 64> Vals; 1498 1499 // Emit the number of basic blocks, so the reader can create them ahead of 1500 // time. 1501 Vals.push_back(VE.getBasicBlocks().size()); 1502 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1503 Vals.clear(); 1504 1505 // If there are function-local constants, emit them now. 1506 unsigned CstStart, CstEnd; 1507 VE.getFunctionConstantRange(CstStart, CstEnd); 1508 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1509 1510 // If there is function-local metadata, emit it now. 1511 WriteFunctionLocalMetadata(F, VE, Stream); 1512 1513 // Keep a running idea of what the instruction ID is. 1514 unsigned InstID = CstEnd; 1515 1516 bool NeedsMetadataAttachment = false; 1517 1518 DebugLoc LastDL; 1519 1520 // Finally, emit all the instructions, in order. 1521 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1522 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1523 I != E; ++I) { 1524 WriteInstruction(*I, InstID, VE, Stream, Vals); 1525 1526 if (!I->getType()->isVoidTy()) 1527 ++InstID; 1528 1529 // If the instruction has metadata, write a metadata attachment later. 1530 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1531 1532 // If the instruction has a debug location, emit it. 1533 DebugLoc DL = I->getDebugLoc(); 1534 if (DL.isUnknown()) { 1535 // nothing todo. 1536 } else if (DL == LastDL) { 1537 // Just repeat the same debug loc as last time. 1538 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1539 } else { 1540 MDNode *Scope, *IA; 1541 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1542 1543 Vals.push_back(DL.getLine()); 1544 Vals.push_back(DL.getCol()); 1545 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1546 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1547 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1548 Vals.clear(); 1549 1550 LastDL = DL; 1551 } 1552 } 1553 1554 // Emit names for all the instructions etc. 1555 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1556 1557 if (NeedsMetadataAttachment) 1558 WriteMetadataAttachment(F, VE, Stream); 1559 VE.purgeFunction(); 1560 Stream.ExitBlock(); 1561 } 1562 1563 // Emit blockinfo, which defines the standard abbreviations etc. 1564 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1565 // We only want to emit block info records for blocks that have multiple 1566 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1567 // Other blocks can define their abbrevs inline. 1568 Stream.EnterBlockInfoBlock(2); 1569 1570 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1571 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1576 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1577 Abbv) != VST_ENTRY_8_ABBREV) 1578 llvm_unreachable("Unexpected abbrev ordering!"); 1579 } 1580 1581 { // 7-bit fixed width VST_ENTRY strings. 1582 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1583 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1587 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1588 Abbv) != VST_ENTRY_7_ABBREV) 1589 llvm_unreachable("Unexpected abbrev ordering!"); 1590 } 1591 { // 6-bit char6 VST_ENTRY strings. 1592 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1593 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1597 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1598 Abbv) != VST_ENTRY_6_ABBREV) 1599 llvm_unreachable("Unexpected abbrev ordering!"); 1600 } 1601 { // 6-bit char6 VST_BBENTRY strings. 1602 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1603 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1607 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1608 Abbv) != VST_BBENTRY_6_ABBREV) 1609 llvm_unreachable("Unexpected abbrev ordering!"); 1610 } 1611 1612 1613 1614 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1615 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1616 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1618 Log2_32_Ceil(VE.getTypes().size()+1))); 1619 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1620 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1621 llvm_unreachable("Unexpected abbrev ordering!"); 1622 } 1623 1624 { // INTEGER abbrev for CONSTANTS_BLOCK. 1625 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1626 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1628 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1629 Abbv) != CONSTANTS_INTEGER_ABBREV) 1630 llvm_unreachable("Unexpected abbrev ordering!"); 1631 } 1632 1633 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1634 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1635 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1638 Log2_32_Ceil(VE.getTypes().size()+1))); 1639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1640 1641 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1642 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1643 llvm_unreachable("Unexpected abbrev ordering!"); 1644 } 1645 { // NULL abbrev for CONSTANTS_BLOCK. 1646 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1647 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1648 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1649 Abbv) != CONSTANTS_NULL_Abbrev) 1650 llvm_unreachable("Unexpected abbrev ordering!"); 1651 } 1652 1653 // FIXME: This should only use space for first class types! 1654 1655 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1656 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1657 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1661 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1662 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1663 llvm_unreachable("Unexpected abbrev ordering!"); 1664 } 1665 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1666 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1667 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1671 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1672 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1673 llvm_unreachable("Unexpected abbrev ordering!"); 1674 } 1675 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1676 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1677 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1682 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1683 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1684 llvm_unreachable("Unexpected abbrev ordering!"); 1685 } 1686 { // INST_CAST abbrev for FUNCTION_BLOCK. 1687 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1688 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1691 Log2_32_Ceil(VE.getTypes().size()+1))); 1692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1693 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1694 Abbv) != FUNCTION_INST_CAST_ABBREV) 1695 llvm_unreachable("Unexpected abbrev ordering!"); 1696 } 1697 1698 { // INST_RET abbrev for FUNCTION_BLOCK. 1699 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1700 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1701 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1702 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1703 llvm_unreachable("Unexpected abbrev ordering!"); 1704 } 1705 { // INST_RET abbrev for FUNCTION_BLOCK. 1706 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1707 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1709 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1710 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1711 llvm_unreachable("Unexpected abbrev ordering!"); 1712 } 1713 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1714 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1715 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1716 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1717 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1718 llvm_unreachable("Unexpected abbrev ordering!"); 1719 } 1720 1721 Stream.ExitBlock(); 1722 } 1723 1724 // Sort the Users based on the order in which the reader parses the bitcode 1725 // file. 1726 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1727 // TODO: Implement. 1728 return true; 1729 } 1730 1731 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1732 BitstreamWriter &Stream) { 1733 1734 // One or zero uses can't get out of order. 1735 if (V->use_empty() || V->hasNUses(1)) 1736 return; 1737 1738 // Make a copy of the in-memory use-list for sorting. 1739 unsigned UseListSize = std::distance(V->use_begin(), V->use_end()); 1740 SmallVector<const User*, 8> UseList; 1741 UseList.reserve(UseListSize); 1742 for (Value::const_use_iterator I = V->use_begin(), E = V->use_end(); 1743 I != E; ++I) { 1744 const User *U = *I; 1745 UseList.push_back(U); 1746 } 1747 1748 // Sort the copy based on the order read by the BitcodeReader. 1749 std::sort(UseList.begin(), UseList.end(), bitcodereader_order); 1750 1751 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1752 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1753 1754 // TODO: Emit the USELIST_CODE_ENTRYs. 1755 } 1756 1757 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1758 BitstreamWriter &Stream) { 1759 VE.incorporateFunction(*F); 1760 1761 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1762 AI != AE; ++AI) 1763 WriteUseList(AI, VE, Stream); 1764 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1765 ++BB) { 1766 WriteUseList(BB, VE, Stream); 1767 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1768 ++II) { 1769 WriteUseList(II, VE, Stream); 1770 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1771 OI != E; ++OI) { 1772 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1773 isa<InlineAsm>(*OI)) 1774 WriteUseList(*OI, VE, Stream); 1775 } 1776 } 1777 } 1778 VE.purgeFunction(); 1779 } 1780 1781 // Emit use-lists. 1782 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1783 BitstreamWriter &Stream) { 1784 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1785 1786 // XXX: this modifies the module, but in a way that should never change the 1787 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1788 // contain entries in the use_list that do not exist in the Module and are 1789 // not stored in the .bc file. 1790 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1791 I != E; ++I) 1792 I->removeDeadConstantUsers(); 1793 1794 // Write the global variables. 1795 for (Module::const_global_iterator GI = M->global_begin(), 1796 GE = M->global_end(); GI != GE; ++GI) { 1797 WriteUseList(GI, VE, Stream); 1798 1799 // Write the global variable initializers. 1800 if (GI->hasInitializer()) 1801 WriteUseList(GI->getInitializer(), VE, Stream); 1802 } 1803 1804 // Write the functions. 1805 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1806 WriteUseList(FI, VE, Stream); 1807 if (!FI->isDeclaration()) 1808 WriteFunctionUseList(FI, VE, Stream); 1809 } 1810 1811 // Write the aliases. 1812 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1813 AI != AE; ++AI) { 1814 WriteUseList(AI, VE, Stream); 1815 WriteUseList(AI->getAliasee(), VE, Stream); 1816 } 1817 1818 Stream.ExitBlock(); 1819 } 1820 1821 /// WriteModule - Emit the specified module to the bitstream. 1822 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1823 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1824 1825 SmallVector<unsigned, 1> Vals; 1826 unsigned CurVersion = 1; 1827 Vals.push_back(CurVersion); 1828 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1829 1830 // Analyze the module, enumerating globals, functions, etc. 1831 ValueEnumerator VE(M); 1832 1833 // Emit blockinfo, which defines the standard abbreviations etc. 1834 WriteBlockInfo(VE, Stream); 1835 1836 // Emit information about parameter attributes. 1837 WriteAttributeTable(VE, Stream); 1838 1839 // Emit information describing all of the types in the module. 1840 WriteTypeTable(VE, Stream); 1841 1842 // Emit top-level description of module, including target triple, inline asm, 1843 // descriptors for global variables, and function prototype info. 1844 WriteModuleInfo(M, VE, Stream); 1845 1846 // Emit constants. 1847 WriteModuleConstants(VE, Stream); 1848 1849 // Emit metadata. 1850 WriteModuleMetadata(M, VE, Stream); 1851 1852 // Emit metadata. 1853 WriteModuleMetadataStore(M, Stream); 1854 1855 // Emit names for globals/functions etc. 1856 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1857 1858 // Emit use-lists. 1859 if (EnablePreserveUseListOrdering) 1860 WriteModuleUseLists(M, VE, Stream); 1861 1862 // Emit function bodies. 1863 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1864 if (!F->isDeclaration()) 1865 WriteFunction(*F, VE, Stream); 1866 1867 Stream.ExitBlock(); 1868 } 1869 1870 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1871 /// header and trailer to make it compatible with the system archiver. To do 1872 /// this we emit the following header, and then emit a trailer that pads the 1873 /// file out to be a multiple of 16 bytes. 1874 /// 1875 /// struct bc_header { 1876 /// uint32_t Magic; // 0x0B17C0DE 1877 /// uint32_t Version; // Version, currently always 0. 1878 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1879 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1880 /// uint32_t CPUType; // CPU specifier. 1881 /// ... potentially more later ... 1882 /// }; 1883 enum { 1884 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1885 DarwinBCHeaderSize = 5*4 1886 }; 1887 1888 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1889 uint32_t &Position) { 1890 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1891 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1892 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1893 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1894 Position += 4; 1895 } 1896 1897 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1898 const Triple &TT) { 1899 unsigned CPUType = ~0U; 1900 1901 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1902 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1903 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1904 // specific constants here because they are implicitly part of the Darwin ABI. 1905 enum { 1906 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1907 DARWIN_CPU_TYPE_X86 = 7, 1908 DARWIN_CPU_TYPE_ARM = 12, 1909 DARWIN_CPU_TYPE_POWERPC = 18 1910 }; 1911 1912 Triple::ArchType Arch = TT.getArch(); 1913 if (Arch == Triple::x86_64) 1914 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1915 else if (Arch == Triple::x86) 1916 CPUType = DARWIN_CPU_TYPE_X86; 1917 else if (Arch == Triple::ppc) 1918 CPUType = DARWIN_CPU_TYPE_POWERPC; 1919 else if (Arch == Triple::ppc64) 1920 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1921 else if (Arch == Triple::arm || Arch == Triple::thumb) 1922 CPUType = DARWIN_CPU_TYPE_ARM; 1923 1924 // Traditional Bitcode starts after header. 1925 assert(Buffer.size() >= DarwinBCHeaderSize && 1926 "Expected header size to be reserved"); 1927 unsigned BCOffset = DarwinBCHeaderSize; 1928 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 1929 1930 // Write the magic and version. 1931 unsigned Position = 0; 1932 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 1933 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 1934 WriteInt32ToBuffer(BCOffset , Buffer, Position); 1935 WriteInt32ToBuffer(BCSize , Buffer, Position); 1936 WriteInt32ToBuffer(CPUType , Buffer, Position); 1937 1938 // If the file is not a multiple of 16 bytes, insert dummy padding. 1939 while (Buffer.size() & 15) 1940 Buffer.push_back(0); 1941 } 1942 1943 /// WriteBitcodeToFile - Write the specified module to the specified output 1944 /// stream. 1945 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1946 SmallVector<char, 1024> Buffer; 1947 Buffer.reserve(256*1024); 1948 1949 // If this is darwin or another generic macho target, reserve space for the 1950 // header. 1951 Triple TT(M->getTargetTriple()); 1952 if (TT.isOSDarwin()) 1953 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 1954 1955 // Emit the module into the buffer. 1956 { 1957 BitstreamWriter Stream(Buffer); 1958 1959 // Emit the file header. 1960 Stream.Emit((unsigned)'B', 8); 1961 Stream.Emit((unsigned)'C', 8); 1962 Stream.Emit(0x0, 4); 1963 Stream.Emit(0xC, 4); 1964 Stream.Emit(0xE, 4); 1965 Stream.Emit(0xD, 4); 1966 1967 // Emit the module. 1968 WriteModule(M, Stream); 1969 } 1970 1971 if (TT.isOSDarwin()) 1972 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 1973 1974 // Write the generated bitstream to "Out". 1975 Out.write((char*)&Buffer.front(), Buffer.size()); 1976 } 1977