1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/Bitcode/BitcodeCommon.h" 30 #include "llvm/Bitcode/BitcodeReader.h" 31 #include "llvm/Bitcode/LLVMBitCodes.h" 32 #include "llvm/Bitstream/BitCodes.h" 33 #include "llvm/Bitstream/BitstreamWriter.h" 34 #include "llvm/Config/llvm-config.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Comdat.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalIFunc.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/UseListOrder.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/MC/StringTableBuilder.h" 63 #include "llvm/MC/TargetRegistry.h" 64 #include "llvm/Object/IRSymtab.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Endian.h" 69 #include "llvm/Support/Error.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/SHA1.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <map> 80 #include <memory> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 101 namespace { 102 103 /// These are manifest constants used by the bitcode writer. They do not need to 104 /// be kept in sync with the reader, but need to be consistent within this file. 105 enum { 106 // VALUE_SYMTAB_BLOCK abbrev id's. 107 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 VST_ENTRY_7_ABBREV, 109 VST_ENTRY_6_ABBREV, 110 VST_BBENTRY_6_ABBREV, 111 112 // CONSTANTS_BLOCK abbrev id's. 113 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 CONSTANTS_INTEGER_ABBREV, 115 CONSTANTS_CE_CAST_Abbrev, 116 CONSTANTS_NULL_Abbrev, 117 118 // FUNCTION_BLOCK abbrev id's. 119 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 120 FUNCTION_INST_UNOP_ABBREV, 121 FUNCTION_INST_UNOP_FLAGS_ABBREV, 122 FUNCTION_INST_BINOP_ABBREV, 123 FUNCTION_INST_BINOP_FLAGS_ABBREV, 124 FUNCTION_INST_CAST_ABBREV, 125 FUNCTION_INST_RET_VOID_ABBREV, 126 FUNCTION_INST_RET_VAL_ABBREV, 127 FUNCTION_INST_UNREACHABLE_ABBREV, 128 FUNCTION_INST_GEP_ABBREV, 129 }; 130 131 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 132 /// file type. 133 class BitcodeWriterBase { 134 protected: 135 /// The stream created and owned by the client. 136 BitstreamWriter &Stream; 137 138 StringTableBuilder &StrtabBuilder; 139 140 public: 141 /// Constructs a BitcodeWriterBase object that writes to the provided 142 /// \p Stream. 143 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 144 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 145 146 protected: 147 void writeModuleVersion(); 148 }; 149 150 void BitcodeWriterBase::writeModuleVersion() { 151 // VERSION: [version#] 152 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 153 } 154 155 /// Base class to manage the module bitcode writing, currently subclassed for 156 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 157 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 158 protected: 159 /// The Module to write to bitcode. 160 const Module &M; 161 162 /// Enumerates ids for all values in the module. 163 ValueEnumerator VE; 164 165 /// Optional per-module index to write for ThinLTO. 166 const ModuleSummaryIndex *Index; 167 168 /// Map that holds the correspondence between GUIDs in the summary index, 169 /// that came from indirect call profiles, and a value id generated by this 170 /// class to use in the VST and summary block records. 171 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 172 173 /// Tracks the last value id recorded in the GUIDToValueMap. 174 unsigned GlobalValueId; 175 176 /// Saves the offset of the VSTOffset record that must eventually be 177 /// backpatched with the offset of the actual VST. 178 uint64_t VSTOffsetPlaceholder = 0; 179 180 public: 181 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 182 /// writing to the provided \p Buffer. 183 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 184 BitstreamWriter &Stream, 185 bool ShouldPreserveUseListOrder, 186 const ModuleSummaryIndex *Index) 187 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 188 VE(M, ShouldPreserveUseListOrder), Index(Index) { 189 // Assign ValueIds to any callee values in the index that came from 190 // indirect call profiles and were recorded as a GUID not a Value* 191 // (which would have been assigned an ID by the ValueEnumerator). 192 // The starting ValueId is just after the number of values in the 193 // ValueEnumerator, so that they can be emitted in the VST. 194 GlobalValueId = VE.getValues().size(); 195 if (!Index) 196 return; 197 for (const auto &GUIDSummaryLists : *Index) 198 // Examine all summaries for this GUID. 199 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 200 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 201 // For each call in the function summary, see if the call 202 // is to a GUID (which means it is for an indirect call, 203 // otherwise we would have a Value for it). If so, synthesize 204 // a value id. 205 for (auto &CallEdge : FS->calls()) 206 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 207 assignValueId(CallEdge.first.getGUID()); 208 } 209 210 protected: 211 void writePerModuleGlobalValueSummary(); 212 213 private: 214 void writePerModuleFunctionSummaryRecord( 215 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 216 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 217 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 218 void writeModuleLevelReferences(const GlobalVariable &V, 219 SmallVector<uint64_t, 64> &NameVals, 220 unsigned FSModRefsAbbrev, 221 unsigned FSModVTableRefsAbbrev); 222 223 void assignValueId(GlobalValue::GUID ValGUID) { 224 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 225 } 226 227 unsigned getValueId(GlobalValue::GUID ValGUID) { 228 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 229 // Expect that any GUID value had a value Id assigned by an 230 // earlier call to assignValueId. 231 assert(VMI != GUIDToValueIdMap.end() && 232 "GUID does not have assigned value Id"); 233 return VMI->second; 234 } 235 236 // Helper to get the valueId for the type of value recorded in VI. 237 unsigned getValueId(ValueInfo VI) { 238 if (!VI.haveGVs() || !VI.getValue()) 239 return getValueId(VI.getGUID()); 240 return VE.getValueID(VI.getValue()); 241 } 242 243 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 244 }; 245 246 /// Class to manage the bitcode writing for a module. 247 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 248 /// Pointer to the buffer allocated by caller for bitcode writing. 249 const SmallVectorImpl<char> &Buffer; 250 251 /// True if a module hash record should be written. 252 bool GenerateHash; 253 254 /// If non-null, when GenerateHash is true, the resulting hash is written 255 /// into ModHash. 256 ModuleHash *ModHash; 257 258 SHA1 Hasher; 259 260 /// The start bit of the identification block. 261 uint64_t BitcodeStartBit; 262 263 public: 264 /// Constructs a ModuleBitcodeWriter object for the given Module, 265 /// writing to the provided \p Buffer. 266 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 267 StringTableBuilder &StrtabBuilder, 268 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 269 const ModuleSummaryIndex *Index, bool GenerateHash, 270 ModuleHash *ModHash = nullptr) 271 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 272 ShouldPreserveUseListOrder, Index), 273 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 274 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 275 276 /// Emit the current module to the bitstream. 277 void write(); 278 279 private: 280 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 281 282 size_t addToStrtab(StringRef Str); 283 284 void writeAttributeGroupTable(); 285 void writeAttributeTable(); 286 void writeTypeTable(); 287 void writeComdats(); 288 void writeValueSymbolTableForwardDecl(); 289 void writeModuleInfo(); 290 void writeValueAsMetadata(const ValueAsMetadata *MD, 291 SmallVectorImpl<uint64_t> &Record); 292 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 unsigned createDILocationAbbrev(); 295 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned &Abbrev); 297 unsigned createGenericDINodeAbbrev(); 298 void writeGenericDINode(const GenericDINode *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 300 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIGenericSubrange(const DIGenericSubrange *N, 303 SmallVectorImpl<uint64_t> &Record, 304 unsigned Abbrev); 305 void writeDIEnumerator(const DIEnumerator *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIStringType(const DIStringType *N, 310 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 311 void writeDIDerivedType(const DIDerivedType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDICompositeType(const DICompositeType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubroutineType(const DISubroutineType *N, 316 SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDICompileUnit(const DICompileUnit *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDISubprogram(const DISubprogram *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDILexicalBlock(const DILexicalBlock *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDICommonBlock(const DICommonBlock *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 344 SmallVectorImpl<uint64_t> &Record, 345 unsigned Abbrev); 346 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIGlobalVariable(const DIGlobalVariable *N, 350 SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDILocalVariable(const DILocalVariable *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDILabel(const DILabel *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIExpression(const DIExpression *N, 357 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 358 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 359 SmallVectorImpl<uint64_t> &Record, 360 unsigned Abbrev); 361 void writeDIObjCProperty(const DIObjCProperty *N, 362 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 363 void writeDIImportedEntity(const DIImportedEntity *N, 364 SmallVectorImpl<uint64_t> &Record, 365 unsigned Abbrev); 366 unsigned createNamedMetadataAbbrev(); 367 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 368 unsigned createMetadataStringsAbbrev(); 369 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 370 SmallVectorImpl<uint64_t> &Record); 371 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 372 SmallVectorImpl<uint64_t> &Record, 373 std::vector<unsigned> *MDAbbrevs = nullptr, 374 std::vector<uint64_t> *IndexPos = nullptr); 375 void writeModuleMetadata(); 376 void writeFunctionMetadata(const Function &F); 377 void writeFunctionMetadataAttachment(const Function &F); 378 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 379 const GlobalObject &GO); 380 void writeModuleMetadataKinds(); 381 void writeOperandBundleTags(); 382 void writeSyncScopeNames(); 383 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 384 void writeModuleConstants(); 385 bool pushValueAndType(const Value *V, unsigned InstID, 386 SmallVectorImpl<unsigned> &Vals); 387 void writeOperandBundles(const CallBase &CB, unsigned InstID); 388 void pushValue(const Value *V, unsigned InstID, 389 SmallVectorImpl<unsigned> &Vals); 390 void pushValueSigned(const Value *V, unsigned InstID, 391 SmallVectorImpl<uint64_t> &Vals); 392 void writeInstruction(const Instruction &I, unsigned InstID, 393 SmallVectorImpl<unsigned> &Vals); 394 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 395 void writeGlobalValueSymbolTable( 396 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 397 void writeUseList(UseListOrder &&Order); 398 void writeUseListBlock(const Function *F); 399 void 400 writeFunction(const Function &F, 401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 402 void writeBlockInfo(); 403 void writeModuleHash(size_t BlockStartPos); 404 405 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 406 return unsigned(SSID); 407 } 408 409 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 410 }; 411 412 /// Class to manage the bitcode writing for a combined index. 413 class IndexBitcodeWriter : public BitcodeWriterBase { 414 /// The combined index to write to bitcode. 415 const ModuleSummaryIndex &Index; 416 417 /// When writing a subset of the index for distributed backends, client 418 /// provides a map of modules to the corresponding GUIDs/summaries to write. 419 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 420 421 /// Map that holds the correspondence between the GUID used in the combined 422 /// index and a value id generated by this class to use in references. 423 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 424 425 // The sorted stack id indices actually used in the summary entries being 426 // written, which will be a subset of those in the full index in the case of 427 // distributed indexes. 428 std::vector<unsigned> StackIdIndices; 429 430 /// Tracks the last value id recorded in the GUIDToValueMap. 431 unsigned GlobalValueId = 0; 432 433 public: 434 /// Constructs a IndexBitcodeWriter object for the given combined index, 435 /// writing to the provided \p Buffer. When writing a subset of the index 436 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 437 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 438 const ModuleSummaryIndex &Index, 439 const std::map<std::string, GVSummaryMapTy> 440 *ModuleToSummariesForIndex = nullptr) 441 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 442 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 443 // Assign unique value ids to all summaries to be written, for use 444 // in writing out the call graph edges. Save the mapping from GUID 445 // to the new global value id to use when writing those edges, which 446 // are currently saved in the index in terms of GUID. 447 forEachSummary([&](GVInfo I, bool IsAliasee) { 448 GUIDToValueIdMap[I.first] = ++GlobalValueId; 449 if (IsAliasee) 450 return; 451 auto *FS = dyn_cast<FunctionSummary>(I.second); 452 if (!FS) 453 return; 454 // Record all stack id indices actually used in the summary entries being 455 // written, so that we can compact them in the case of distributed ThinLTO 456 // indexes. 457 for (auto &CI : FS->callsites()) 458 for (auto Idx : CI.StackIdIndices) 459 StackIdIndices.push_back(Idx); 460 for (auto &AI : FS->allocs()) 461 for (auto &MIB : AI.MIBs) 462 for (auto Idx : MIB.StackIdIndices) 463 StackIdIndices.push_back(Idx); 464 }); 465 llvm::sort(StackIdIndices); 466 StackIdIndices.erase( 467 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 468 StackIdIndices.end()); 469 } 470 471 /// The below iterator returns the GUID and associated summary. 472 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 473 474 /// Calls the callback for each value GUID and summary to be written to 475 /// bitcode. This hides the details of whether they are being pulled from the 476 /// entire index or just those in a provided ModuleToSummariesForIndex map. 477 template<typename Functor> 478 void forEachSummary(Functor Callback) { 479 if (ModuleToSummariesForIndex) { 480 for (auto &M : *ModuleToSummariesForIndex) 481 for (auto &Summary : M.second) { 482 Callback(Summary, false); 483 // Ensure aliasee is handled, e.g. for assigning a valueId, 484 // even if we are not importing the aliasee directly (the 485 // imported alias will contain a copy of aliasee). 486 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 487 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 488 } 489 } else { 490 for (auto &Summaries : Index) 491 for (auto &Summary : Summaries.second.SummaryList) 492 Callback({Summaries.first, Summary.get()}, false); 493 } 494 } 495 496 /// Calls the callback for each entry in the modulePaths StringMap that 497 /// should be written to the module path string table. This hides the details 498 /// of whether they are being pulled from the entire index or just those in a 499 /// provided ModuleToSummariesForIndex map. 500 template <typename Functor> void forEachModule(Functor Callback) { 501 if (ModuleToSummariesForIndex) { 502 for (const auto &M : *ModuleToSummariesForIndex) { 503 const auto &MPI = Index.modulePaths().find(M.first); 504 if (MPI == Index.modulePaths().end()) { 505 // This should only happen if the bitcode file was empty, in which 506 // case we shouldn't be importing (the ModuleToSummariesForIndex 507 // would only include the module we are writing and index for). 508 assert(ModuleToSummariesForIndex->size() == 1); 509 continue; 510 } 511 Callback(*MPI); 512 } 513 } else { 514 for (const auto &MPSE : Index.modulePaths()) 515 Callback(MPSE); 516 } 517 } 518 519 /// Main entry point for writing a combined index to bitcode. 520 void write(); 521 522 private: 523 void writeModStrings(); 524 void writeCombinedGlobalValueSummary(); 525 526 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 527 auto VMI = GUIDToValueIdMap.find(ValGUID); 528 if (VMI == GUIDToValueIdMap.end()) 529 return None; 530 return VMI->second; 531 } 532 533 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 534 }; 535 536 } // end anonymous namespace 537 538 static unsigned getEncodedCastOpcode(unsigned Opcode) { 539 switch (Opcode) { 540 default: llvm_unreachable("Unknown cast instruction!"); 541 case Instruction::Trunc : return bitc::CAST_TRUNC; 542 case Instruction::ZExt : return bitc::CAST_ZEXT; 543 case Instruction::SExt : return bitc::CAST_SEXT; 544 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 545 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 546 case Instruction::UIToFP : return bitc::CAST_UITOFP; 547 case Instruction::SIToFP : return bitc::CAST_SITOFP; 548 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 549 case Instruction::FPExt : return bitc::CAST_FPEXT; 550 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 551 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 552 case Instruction::BitCast : return bitc::CAST_BITCAST; 553 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 554 } 555 } 556 557 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 558 switch (Opcode) { 559 default: llvm_unreachable("Unknown binary instruction!"); 560 case Instruction::FNeg: return bitc::UNOP_FNEG; 561 } 562 } 563 564 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 565 switch (Opcode) { 566 default: llvm_unreachable("Unknown binary instruction!"); 567 case Instruction::Add: 568 case Instruction::FAdd: return bitc::BINOP_ADD; 569 case Instruction::Sub: 570 case Instruction::FSub: return bitc::BINOP_SUB; 571 case Instruction::Mul: 572 case Instruction::FMul: return bitc::BINOP_MUL; 573 case Instruction::UDiv: return bitc::BINOP_UDIV; 574 case Instruction::FDiv: 575 case Instruction::SDiv: return bitc::BINOP_SDIV; 576 case Instruction::URem: return bitc::BINOP_UREM; 577 case Instruction::FRem: 578 case Instruction::SRem: return bitc::BINOP_SREM; 579 case Instruction::Shl: return bitc::BINOP_SHL; 580 case Instruction::LShr: return bitc::BINOP_LSHR; 581 case Instruction::AShr: return bitc::BINOP_ASHR; 582 case Instruction::And: return bitc::BINOP_AND; 583 case Instruction::Or: return bitc::BINOP_OR; 584 case Instruction::Xor: return bitc::BINOP_XOR; 585 } 586 } 587 588 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 589 switch (Op) { 590 default: llvm_unreachable("Unknown RMW operation!"); 591 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 592 case AtomicRMWInst::Add: return bitc::RMW_ADD; 593 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 594 case AtomicRMWInst::And: return bitc::RMW_AND; 595 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 596 case AtomicRMWInst::Or: return bitc::RMW_OR; 597 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 598 case AtomicRMWInst::Max: return bitc::RMW_MAX; 599 case AtomicRMWInst::Min: return bitc::RMW_MIN; 600 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 601 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 602 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 603 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 604 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 605 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 606 } 607 } 608 609 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 610 switch (Ordering) { 611 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 612 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 613 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 614 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 615 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 616 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 617 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 618 } 619 llvm_unreachable("Invalid ordering"); 620 } 621 622 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 623 StringRef Str, unsigned AbbrevToUse) { 624 SmallVector<unsigned, 64> Vals; 625 626 // Code: [strchar x N] 627 for (char C : Str) { 628 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 629 AbbrevToUse = 0; 630 Vals.push_back(C); 631 } 632 633 // Emit the finished record. 634 Stream.EmitRecord(Code, Vals, AbbrevToUse); 635 } 636 637 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 638 switch (Kind) { 639 case Attribute::Alignment: 640 return bitc::ATTR_KIND_ALIGNMENT; 641 case Attribute::AllocAlign: 642 return bitc::ATTR_KIND_ALLOC_ALIGN; 643 case Attribute::AllocSize: 644 return bitc::ATTR_KIND_ALLOC_SIZE; 645 case Attribute::AlwaysInline: 646 return bitc::ATTR_KIND_ALWAYS_INLINE; 647 case Attribute::Builtin: 648 return bitc::ATTR_KIND_BUILTIN; 649 case Attribute::ByVal: 650 return bitc::ATTR_KIND_BY_VAL; 651 case Attribute::Convergent: 652 return bitc::ATTR_KIND_CONVERGENT; 653 case Attribute::InAlloca: 654 return bitc::ATTR_KIND_IN_ALLOCA; 655 case Attribute::Cold: 656 return bitc::ATTR_KIND_COLD; 657 case Attribute::DisableSanitizerInstrumentation: 658 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 659 case Attribute::FnRetThunkExtern: 660 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 661 case Attribute::Hot: 662 return bitc::ATTR_KIND_HOT; 663 case Attribute::ElementType: 664 return bitc::ATTR_KIND_ELEMENTTYPE; 665 case Attribute::InlineHint: 666 return bitc::ATTR_KIND_INLINE_HINT; 667 case Attribute::InReg: 668 return bitc::ATTR_KIND_IN_REG; 669 case Attribute::JumpTable: 670 return bitc::ATTR_KIND_JUMP_TABLE; 671 case Attribute::MinSize: 672 return bitc::ATTR_KIND_MIN_SIZE; 673 case Attribute::AllocatedPointer: 674 return bitc::ATTR_KIND_ALLOCATED_POINTER; 675 case Attribute::AllocKind: 676 return bitc::ATTR_KIND_ALLOC_KIND; 677 case Attribute::Memory: 678 return bitc::ATTR_KIND_MEMORY; 679 case Attribute::Naked: 680 return bitc::ATTR_KIND_NAKED; 681 case Attribute::Nest: 682 return bitc::ATTR_KIND_NEST; 683 case Attribute::NoAlias: 684 return bitc::ATTR_KIND_NO_ALIAS; 685 case Attribute::NoBuiltin: 686 return bitc::ATTR_KIND_NO_BUILTIN; 687 case Attribute::NoCallback: 688 return bitc::ATTR_KIND_NO_CALLBACK; 689 case Attribute::NoCapture: 690 return bitc::ATTR_KIND_NO_CAPTURE; 691 case Attribute::NoDuplicate: 692 return bitc::ATTR_KIND_NO_DUPLICATE; 693 case Attribute::NoFree: 694 return bitc::ATTR_KIND_NOFREE; 695 case Attribute::NoImplicitFloat: 696 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 697 case Attribute::NoInline: 698 return bitc::ATTR_KIND_NO_INLINE; 699 case Attribute::NoRecurse: 700 return bitc::ATTR_KIND_NO_RECURSE; 701 case Attribute::NoMerge: 702 return bitc::ATTR_KIND_NO_MERGE; 703 case Attribute::NonLazyBind: 704 return bitc::ATTR_KIND_NON_LAZY_BIND; 705 case Attribute::NonNull: 706 return bitc::ATTR_KIND_NON_NULL; 707 case Attribute::Dereferenceable: 708 return bitc::ATTR_KIND_DEREFERENCEABLE; 709 case Attribute::DereferenceableOrNull: 710 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 711 case Attribute::NoRedZone: 712 return bitc::ATTR_KIND_NO_RED_ZONE; 713 case Attribute::NoReturn: 714 return bitc::ATTR_KIND_NO_RETURN; 715 case Attribute::NoSync: 716 return bitc::ATTR_KIND_NOSYNC; 717 case Attribute::NoCfCheck: 718 return bitc::ATTR_KIND_NOCF_CHECK; 719 case Attribute::NoProfile: 720 return bitc::ATTR_KIND_NO_PROFILE; 721 case Attribute::SkipProfile: 722 return bitc::ATTR_KIND_SKIP_PROFILE; 723 case Attribute::NoUnwind: 724 return bitc::ATTR_KIND_NO_UNWIND; 725 case Attribute::NoSanitizeBounds: 726 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 727 case Attribute::NoSanitizeCoverage: 728 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 729 case Attribute::NullPointerIsValid: 730 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 731 case Attribute::OptForFuzzing: 732 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 733 case Attribute::OptimizeForSize: 734 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 735 case Attribute::OptimizeNone: 736 return bitc::ATTR_KIND_OPTIMIZE_NONE; 737 case Attribute::ReadNone: 738 return bitc::ATTR_KIND_READ_NONE; 739 case Attribute::ReadOnly: 740 return bitc::ATTR_KIND_READ_ONLY; 741 case Attribute::Returned: 742 return bitc::ATTR_KIND_RETURNED; 743 case Attribute::ReturnsTwice: 744 return bitc::ATTR_KIND_RETURNS_TWICE; 745 case Attribute::SExt: 746 return bitc::ATTR_KIND_S_EXT; 747 case Attribute::Speculatable: 748 return bitc::ATTR_KIND_SPECULATABLE; 749 case Attribute::StackAlignment: 750 return bitc::ATTR_KIND_STACK_ALIGNMENT; 751 case Attribute::StackProtect: 752 return bitc::ATTR_KIND_STACK_PROTECT; 753 case Attribute::StackProtectReq: 754 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 755 case Attribute::StackProtectStrong: 756 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 757 case Attribute::SafeStack: 758 return bitc::ATTR_KIND_SAFESTACK; 759 case Attribute::ShadowCallStack: 760 return bitc::ATTR_KIND_SHADOWCALLSTACK; 761 case Attribute::StrictFP: 762 return bitc::ATTR_KIND_STRICT_FP; 763 case Attribute::StructRet: 764 return bitc::ATTR_KIND_STRUCT_RET; 765 case Attribute::SanitizeAddress: 766 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 767 case Attribute::SanitizeHWAddress: 768 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 769 case Attribute::SanitizeThread: 770 return bitc::ATTR_KIND_SANITIZE_THREAD; 771 case Attribute::SanitizeMemory: 772 return bitc::ATTR_KIND_SANITIZE_MEMORY; 773 case Attribute::SpeculativeLoadHardening: 774 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 775 case Attribute::SwiftError: 776 return bitc::ATTR_KIND_SWIFT_ERROR; 777 case Attribute::SwiftSelf: 778 return bitc::ATTR_KIND_SWIFT_SELF; 779 case Attribute::SwiftAsync: 780 return bitc::ATTR_KIND_SWIFT_ASYNC; 781 case Attribute::UWTable: 782 return bitc::ATTR_KIND_UW_TABLE; 783 case Attribute::VScaleRange: 784 return bitc::ATTR_KIND_VSCALE_RANGE; 785 case Attribute::WillReturn: 786 return bitc::ATTR_KIND_WILLRETURN; 787 case Attribute::WriteOnly: 788 return bitc::ATTR_KIND_WRITEONLY; 789 case Attribute::ZExt: 790 return bitc::ATTR_KIND_Z_EXT; 791 case Attribute::ImmArg: 792 return bitc::ATTR_KIND_IMMARG; 793 case Attribute::SanitizeMemTag: 794 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 795 case Attribute::Preallocated: 796 return bitc::ATTR_KIND_PREALLOCATED; 797 case Attribute::NoUndef: 798 return bitc::ATTR_KIND_NOUNDEF; 799 case Attribute::ByRef: 800 return bitc::ATTR_KIND_BYREF; 801 case Attribute::MustProgress: 802 return bitc::ATTR_KIND_MUSTPROGRESS; 803 case Attribute::PresplitCoroutine: 804 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 805 case Attribute::EndAttrKinds: 806 llvm_unreachable("Can not encode end-attribute kinds marker."); 807 case Attribute::None: 808 llvm_unreachable("Can not encode none-attribute."); 809 case Attribute::EmptyKey: 810 case Attribute::TombstoneKey: 811 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 812 } 813 814 llvm_unreachable("Trying to encode unknown attribute"); 815 } 816 817 void ModuleBitcodeWriter::writeAttributeGroupTable() { 818 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 819 VE.getAttributeGroups(); 820 if (AttrGrps.empty()) return; 821 822 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 823 824 SmallVector<uint64_t, 64> Record; 825 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 826 unsigned AttrListIndex = Pair.first; 827 AttributeSet AS = Pair.second; 828 Record.push_back(VE.getAttributeGroupID(Pair)); 829 Record.push_back(AttrListIndex); 830 831 for (Attribute Attr : AS) { 832 if (Attr.isEnumAttribute()) { 833 Record.push_back(0); 834 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 835 } else if (Attr.isIntAttribute()) { 836 Record.push_back(1); 837 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 838 Record.push_back(Attr.getValueAsInt()); 839 } else if (Attr.isStringAttribute()) { 840 StringRef Kind = Attr.getKindAsString(); 841 StringRef Val = Attr.getValueAsString(); 842 843 Record.push_back(Val.empty() ? 3 : 4); 844 Record.append(Kind.begin(), Kind.end()); 845 Record.push_back(0); 846 if (!Val.empty()) { 847 Record.append(Val.begin(), Val.end()); 848 Record.push_back(0); 849 } 850 } else { 851 assert(Attr.isTypeAttribute()); 852 Type *Ty = Attr.getValueAsType(); 853 Record.push_back(Ty ? 6 : 5); 854 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 855 if (Ty) 856 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 857 } 858 } 859 860 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 861 Record.clear(); 862 } 863 864 Stream.ExitBlock(); 865 } 866 867 void ModuleBitcodeWriter::writeAttributeTable() { 868 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 869 if (Attrs.empty()) return; 870 871 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 872 873 SmallVector<uint64_t, 64> Record; 874 for (const AttributeList &AL : Attrs) { 875 for (unsigned i : AL.indexes()) { 876 AttributeSet AS = AL.getAttributes(i); 877 if (AS.hasAttributes()) 878 Record.push_back(VE.getAttributeGroupID({i, AS})); 879 } 880 881 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 882 Record.clear(); 883 } 884 885 Stream.ExitBlock(); 886 } 887 888 /// WriteTypeTable - Write out the type table for a module. 889 void ModuleBitcodeWriter::writeTypeTable() { 890 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 891 892 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 893 SmallVector<uint64_t, 64> TypeVals; 894 895 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 896 897 // Abbrev for TYPE_CODE_POINTER. 898 auto Abbv = std::make_shared<BitCodeAbbrev>(); 899 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 901 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 902 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 903 904 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 905 Abbv = std::make_shared<BitCodeAbbrev>(); 906 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 907 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 908 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 909 910 // Abbrev for TYPE_CODE_FUNCTION. 911 Abbv = std::make_shared<BitCodeAbbrev>(); 912 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 916 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 917 918 // Abbrev for TYPE_CODE_STRUCT_ANON. 919 Abbv = std::make_shared<BitCodeAbbrev>(); 920 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 924 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 925 926 // Abbrev for TYPE_CODE_STRUCT_NAME. 927 Abbv = std::make_shared<BitCodeAbbrev>(); 928 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 931 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 932 933 // Abbrev for TYPE_CODE_STRUCT_NAMED. 934 Abbv = std::make_shared<BitCodeAbbrev>(); 935 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 939 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 940 941 // Abbrev for TYPE_CODE_ARRAY. 942 Abbv = std::make_shared<BitCodeAbbrev>(); 943 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 946 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 947 948 // Emit an entry count so the reader can reserve space. 949 TypeVals.push_back(TypeList.size()); 950 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 951 TypeVals.clear(); 952 953 // Loop over all of the types, emitting each in turn. 954 for (Type *T : TypeList) { 955 int AbbrevToUse = 0; 956 unsigned Code = 0; 957 958 switch (T->getTypeID()) { 959 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 960 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 961 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 962 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 963 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 964 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 965 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 966 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 967 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 968 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 969 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 970 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 971 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 972 case Type::IntegerTyID: 973 // INTEGER: [width] 974 Code = bitc::TYPE_CODE_INTEGER; 975 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 976 break; 977 case Type::PointerTyID: { 978 PointerType *PTy = cast<PointerType>(T); 979 unsigned AddressSpace = PTy->getAddressSpace(); 980 if (PTy->isOpaque()) { 981 // OPAQUE_POINTER: [address space] 982 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 983 TypeVals.push_back(AddressSpace); 984 if (AddressSpace == 0) 985 AbbrevToUse = OpaquePtrAbbrev; 986 } else { 987 // POINTER: [pointee type, address space] 988 Code = bitc::TYPE_CODE_POINTER; 989 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 990 TypeVals.push_back(AddressSpace); 991 if (AddressSpace == 0) 992 AbbrevToUse = PtrAbbrev; 993 } 994 break; 995 } 996 case Type::FunctionTyID: { 997 FunctionType *FT = cast<FunctionType>(T); 998 // FUNCTION: [isvararg, retty, paramty x N] 999 Code = bitc::TYPE_CODE_FUNCTION; 1000 TypeVals.push_back(FT->isVarArg()); 1001 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1002 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1003 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1004 AbbrevToUse = FunctionAbbrev; 1005 break; 1006 } 1007 case Type::StructTyID: { 1008 StructType *ST = cast<StructType>(T); 1009 // STRUCT: [ispacked, eltty x N] 1010 TypeVals.push_back(ST->isPacked()); 1011 // Output all of the element types. 1012 for (Type *ET : ST->elements()) 1013 TypeVals.push_back(VE.getTypeID(ET)); 1014 1015 if (ST->isLiteral()) { 1016 Code = bitc::TYPE_CODE_STRUCT_ANON; 1017 AbbrevToUse = StructAnonAbbrev; 1018 } else { 1019 if (ST->isOpaque()) { 1020 Code = bitc::TYPE_CODE_OPAQUE; 1021 } else { 1022 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1023 AbbrevToUse = StructNamedAbbrev; 1024 } 1025 1026 // Emit the name if it is present. 1027 if (!ST->getName().empty()) 1028 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1029 StructNameAbbrev); 1030 } 1031 break; 1032 } 1033 case Type::ArrayTyID: { 1034 ArrayType *AT = cast<ArrayType>(T); 1035 // ARRAY: [numelts, eltty] 1036 Code = bitc::TYPE_CODE_ARRAY; 1037 TypeVals.push_back(AT->getNumElements()); 1038 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1039 AbbrevToUse = ArrayAbbrev; 1040 break; 1041 } 1042 case Type::FixedVectorTyID: 1043 case Type::ScalableVectorTyID: { 1044 VectorType *VT = cast<VectorType>(T); 1045 // VECTOR [numelts, eltty] or 1046 // [numelts, eltty, scalable] 1047 Code = bitc::TYPE_CODE_VECTOR; 1048 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1049 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1050 if (isa<ScalableVectorType>(VT)) 1051 TypeVals.push_back(true); 1052 break; 1053 } 1054 case Type::TypedPointerTyID: 1055 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1056 } 1057 1058 // Emit the finished record. 1059 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1060 TypeVals.clear(); 1061 } 1062 1063 Stream.ExitBlock(); 1064 } 1065 1066 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1067 switch (Linkage) { 1068 case GlobalValue::ExternalLinkage: 1069 return 0; 1070 case GlobalValue::WeakAnyLinkage: 1071 return 16; 1072 case GlobalValue::AppendingLinkage: 1073 return 2; 1074 case GlobalValue::InternalLinkage: 1075 return 3; 1076 case GlobalValue::LinkOnceAnyLinkage: 1077 return 18; 1078 case GlobalValue::ExternalWeakLinkage: 1079 return 7; 1080 case GlobalValue::CommonLinkage: 1081 return 8; 1082 case GlobalValue::PrivateLinkage: 1083 return 9; 1084 case GlobalValue::WeakODRLinkage: 1085 return 17; 1086 case GlobalValue::LinkOnceODRLinkage: 1087 return 19; 1088 case GlobalValue::AvailableExternallyLinkage: 1089 return 12; 1090 } 1091 llvm_unreachable("Invalid linkage"); 1092 } 1093 1094 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1095 return getEncodedLinkage(GV.getLinkage()); 1096 } 1097 1098 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1099 uint64_t RawFlags = 0; 1100 RawFlags |= Flags.ReadNone; 1101 RawFlags |= (Flags.ReadOnly << 1); 1102 RawFlags |= (Flags.NoRecurse << 2); 1103 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1104 RawFlags |= (Flags.NoInline << 4); 1105 RawFlags |= (Flags.AlwaysInline << 5); 1106 RawFlags |= (Flags.NoUnwind << 6); 1107 RawFlags |= (Flags.MayThrow << 7); 1108 RawFlags |= (Flags.HasUnknownCall << 8); 1109 RawFlags |= (Flags.MustBeUnreachable << 9); 1110 return RawFlags; 1111 } 1112 1113 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1114 // in BitcodeReader.cpp. 1115 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1116 uint64_t RawFlags = 0; 1117 1118 RawFlags |= Flags.NotEligibleToImport; // bool 1119 RawFlags |= (Flags.Live << 1); 1120 RawFlags |= (Flags.DSOLocal << 2); 1121 RawFlags |= (Flags.CanAutoHide << 3); 1122 1123 // Linkage don't need to be remapped at that time for the summary. Any future 1124 // change to the getEncodedLinkage() function will need to be taken into 1125 // account here as well. 1126 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1127 1128 RawFlags |= (Flags.Visibility << 8); // 2 bits 1129 1130 return RawFlags; 1131 } 1132 1133 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1134 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1135 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1136 return RawFlags; 1137 } 1138 1139 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1140 switch (GV.getVisibility()) { 1141 case GlobalValue::DefaultVisibility: return 0; 1142 case GlobalValue::HiddenVisibility: return 1; 1143 case GlobalValue::ProtectedVisibility: return 2; 1144 } 1145 llvm_unreachable("Invalid visibility"); 1146 } 1147 1148 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1149 switch (GV.getDLLStorageClass()) { 1150 case GlobalValue::DefaultStorageClass: return 0; 1151 case GlobalValue::DLLImportStorageClass: return 1; 1152 case GlobalValue::DLLExportStorageClass: return 2; 1153 } 1154 llvm_unreachable("Invalid DLL storage class"); 1155 } 1156 1157 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1158 switch (GV.getThreadLocalMode()) { 1159 case GlobalVariable::NotThreadLocal: return 0; 1160 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1161 case GlobalVariable::LocalDynamicTLSModel: return 2; 1162 case GlobalVariable::InitialExecTLSModel: return 3; 1163 case GlobalVariable::LocalExecTLSModel: return 4; 1164 } 1165 llvm_unreachable("Invalid TLS model"); 1166 } 1167 1168 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1169 switch (C.getSelectionKind()) { 1170 case Comdat::Any: 1171 return bitc::COMDAT_SELECTION_KIND_ANY; 1172 case Comdat::ExactMatch: 1173 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1174 case Comdat::Largest: 1175 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1176 case Comdat::NoDeduplicate: 1177 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1178 case Comdat::SameSize: 1179 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1180 } 1181 llvm_unreachable("Invalid selection kind"); 1182 } 1183 1184 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1185 switch (GV.getUnnamedAddr()) { 1186 case GlobalValue::UnnamedAddr::None: return 0; 1187 case GlobalValue::UnnamedAddr::Local: return 2; 1188 case GlobalValue::UnnamedAddr::Global: return 1; 1189 } 1190 llvm_unreachable("Invalid unnamed_addr"); 1191 } 1192 1193 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1194 if (GenerateHash) 1195 Hasher.update(Str); 1196 return StrtabBuilder.add(Str); 1197 } 1198 1199 void ModuleBitcodeWriter::writeComdats() { 1200 SmallVector<unsigned, 64> Vals; 1201 for (const Comdat *C : VE.getComdats()) { 1202 // COMDAT: [strtab offset, strtab size, selection_kind] 1203 Vals.push_back(addToStrtab(C->getName())); 1204 Vals.push_back(C->getName().size()); 1205 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1206 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1207 Vals.clear(); 1208 } 1209 } 1210 1211 /// Write a record that will eventually hold the word offset of the 1212 /// module-level VST. For now the offset is 0, which will be backpatched 1213 /// after the real VST is written. Saves the bit offset to backpatch. 1214 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1215 // Write a placeholder value in for the offset of the real VST, 1216 // which is written after the function blocks so that it can include 1217 // the offset of each function. The placeholder offset will be 1218 // updated when the real VST is written. 1219 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1220 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1221 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1222 // hold the real VST offset. Must use fixed instead of VBR as we don't 1223 // know how many VBR chunks to reserve ahead of time. 1224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1225 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1226 1227 // Emit the placeholder 1228 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1229 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1230 1231 // Compute and save the bit offset to the placeholder, which will be 1232 // patched when the real VST is written. We can simply subtract the 32-bit 1233 // fixed size from the current bit number to get the location to backpatch. 1234 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1235 } 1236 1237 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1238 1239 /// Determine the encoding to use for the given string name and length. 1240 static StringEncoding getStringEncoding(StringRef Str) { 1241 bool isChar6 = true; 1242 for (char C : Str) { 1243 if (isChar6) 1244 isChar6 = BitCodeAbbrevOp::isChar6(C); 1245 if ((unsigned char)C & 128) 1246 // don't bother scanning the rest. 1247 return SE_Fixed8; 1248 } 1249 if (isChar6) 1250 return SE_Char6; 1251 return SE_Fixed7; 1252 } 1253 1254 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1255 "Sanitizer Metadata is too large for naive serialization."); 1256 static unsigned 1257 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1258 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1259 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1260 } 1261 1262 /// Emit top-level description of module, including target triple, inline asm, 1263 /// descriptors for global variables, and function prototype info. 1264 /// Returns the bit offset to backpatch with the location of the real VST. 1265 void ModuleBitcodeWriter::writeModuleInfo() { 1266 // Emit various pieces of data attached to a module. 1267 if (!M.getTargetTriple().empty()) 1268 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1269 0 /*TODO*/); 1270 const std::string &DL = M.getDataLayoutStr(); 1271 if (!DL.empty()) 1272 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1273 if (!M.getModuleInlineAsm().empty()) 1274 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1275 0 /*TODO*/); 1276 1277 // Emit information about sections and GC, computing how many there are. Also 1278 // compute the maximum alignment value. 1279 std::map<std::string, unsigned> SectionMap; 1280 std::map<std::string, unsigned> GCMap; 1281 MaybeAlign MaxAlignment; 1282 unsigned MaxGlobalType = 0; 1283 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1284 if (A) 1285 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1286 }; 1287 for (const GlobalVariable &GV : M.globals()) { 1288 UpdateMaxAlignment(GV.getAlign()); 1289 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1290 if (GV.hasSection()) { 1291 // Give section names unique ID's. 1292 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1293 if (!Entry) { 1294 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1295 0 /*TODO*/); 1296 Entry = SectionMap.size(); 1297 } 1298 } 1299 } 1300 for (const Function &F : M) { 1301 UpdateMaxAlignment(F.getAlign()); 1302 if (F.hasSection()) { 1303 // Give section names unique ID's. 1304 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1305 if (!Entry) { 1306 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1307 0 /*TODO*/); 1308 Entry = SectionMap.size(); 1309 } 1310 } 1311 if (F.hasGC()) { 1312 // Same for GC names. 1313 unsigned &Entry = GCMap[F.getGC()]; 1314 if (!Entry) { 1315 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1316 0 /*TODO*/); 1317 Entry = GCMap.size(); 1318 } 1319 } 1320 } 1321 1322 // Emit abbrev for globals, now that we know # sections and max alignment. 1323 unsigned SimpleGVarAbbrev = 0; 1324 if (!M.global_empty()) { 1325 // Add an abbrev for common globals with no visibility or thread localness. 1326 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1327 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1331 Log2_32_Ceil(MaxGlobalType+1))); 1332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1333 //| explicitType << 1 1334 //| constant 1335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1337 if (!MaxAlignment) // Alignment. 1338 Abbv->Add(BitCodeAbbrevOp(0)); 1339 else { 1340 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1342 Log2_32_Ceil(MaxEncAlignment+1))); 1343 } 1344 if (SectionMap.empty()) // Section. 1345 Abbv->Add(BitCodeAbbrevOp(0)); 1346 else 1347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1348 Log2_32_Ceil(SectionMap.size()+1))); 1349 // Don't bother emitting vis + thread local. 1350 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1351 } 1352 1353 SmallVector<unsigned, 64> Vals; 1354 // Emit the module's source file name. 1355 { 1356 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1357 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1358 if (Bits == SE_Char6) 1359 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1360 else if (Bits == SE_Fixed7) 1361 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1362 1363 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1364 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1365 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1367 Abbv->Add(AbbrevOpToUse); 1368 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1369 1370 for (const auto P : M.getSourceFileName()) 1371 Vals.push_back((unsigned char)P); 1372 1373 // Emit the finished record. 1374 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1375 Vals.clear(); 1376 } 1377 1378 // Emit the global variable information. 1379 for (const GlobalVariable &GV : M.globals()) { 1380 unsigned AbbrevToUse = 0; 1381 1382 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1383 // linkage, alignment, section, visibility, threadlocal, 1384 // unnamed_addr, externally_initialized, dllstorageclass, 1385 // comdat, attributes, DSO_Local, GlobalSanitizer] 1386 Vals.push_back(addToStrtab(GV.getName())); 1387 Vals.push_back(GV.getName().size()); 1388 Vals.push_back(VE.getTypeID(GV.getValueType())); 1389 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1390 Vals.push_back(GV.isDeclaration() ? 0 : 1391 (VE.getValueID(GV.getInitializer()) + 1)); 1392 Vals.push_back(getEncodedLinkage(GV)); 1393 Vals.push_back(getEncodedAlign(GV.getAlign())); 1394 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1395 : 0); 1396 if (GV.isThreadLocal() || 1397 GV.getVisibility() != GlobalValue::DefaultVisibility || 1398 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1399 GV.isExternallyInitialized() || 1400 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1401 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1402 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1403 Vals.push_back(getEncodedVisibility(GV)); 1404 Vals.push_back(getEncodedThreadLocalMode(GV)); 1405 Vals.push_back(getEncodedUnnamedAddr(GV)); 1406 Vals.push_back(GV.isExternallyInitialized()); 1407 Vals.push_back(getEncodedDLLStorageClass(GV)); 1408 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1409 1410 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1411 Vals.push_back(VE.getAttributeListID(AL)); 1412 1413 Vals.push_back(GV.isDSOLocal()); 1414 Vals.push_back(addToStrtab(GV.getPartition())); 1415 Vals.push_back(GV.getPartition().size()); 1416 1417 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1418 GV.getSanitizerMetadata()) 1419 : 0)); 1420 } else { 1421 AbbrevToUse = SimpleGVarAbbrev; 1422 } 1423 1424 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1425 Vals.clear(); 1426 } 1427 1428 // Emit the function proto information. 1429 for (const Function &F : M) { 1430 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1431 // linkage, paramattrs, alignment, section, visibility, gc, 1432 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1433 // prefixdata, personalityfn, DSO_Local, addrspace] 1434 Vals.push_back(addToStrtab(F.getName())); 1435 Vals.push_back(F.getName().size()); 1436 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1437 Vals.push_back(F.getCallingConv()); 1438 Vals.push_back(F.isDeclaration()); 1439 Vals.push_back(getEncodedLinkage(F)); 1440 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1441 Vals.push_back(getEncodedAlign(F.getAlign())); 1442 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1443 : 0); 1444 Vals.push_back(getEncodedVisibility(F)); 1445 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1446 Vals.push_back(getEncodedUnnamedAddr(F)); 1447 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1448 : 0); 1449 Vals.push_back(getEncodedDLLStorageClass(F)); 1450 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1451 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1452 : 0); 1453 Vals.push_back( 1454 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1455 1456 Vals.push_back(F.isDSOLocal()); 1457 Vals.push_back(F.getAddressSpace()); 1458 Vals.push_back(addToStrtab(F.getPartition())); 1459 Vals.push_back(F.getPartition().size()); 1460 1461 unsigned AbbrevToUse = 0; 1462 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1463 Vals.clear(); 1464 } 1465 1466 // Emit the alias information. 1467 for (const GlobalAlias &A : M.aliases()) { 1468 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1469 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1470 // DSO_Local] 1471 Vals.push_back(addToStrtab(A.getName())); 1472 Vals.push_back(A.getName().size()); 1473 Vals.push_back(VE.getTypeID(A.getValueType())); 1474 Vals.push_back(A.getType()->getAddressSpace()); 1475 Vals.push_back(VE.getValueID(A.getAliasee())); 1476 Vals.push_back(getEncodedLinkage(A)); 1477 Vals.push_back(getEncodedVisibility(A)); 1478 Vals.push_back(getEncodedDLLStorageClass(A)); 1479 Vals.push_back(getEncodedThreadLocalMode(A)); 1480 Vals.push_back(getEncodedUnnamedAddr(A)); 1481 Vals.push_back(A.isDSOLocal()); 1482 Vals.push_back(addToStrtab(A.getPartition())); 1483 Vals.push_back(A.getPartition().size()); 1484 1485 unsigned AbbrevToUse = 0; 1486 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1487 Vals.clear(); 1488 } 1489 1490 // Emit the ifunc information. 1491 for (const GlobalIFunc &I : M.ifuncs()) { 1492 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1493 // val#, linkage, visibility, DSO_Local] 1494 Vals.push_back(addToStrtab(I.getName())); 1495 Vals.push_back(I.getName().size()); 1496 Vals.push_back(VE.getTypeID(I.getValueType())); 1497 Vals.push_back(I.getType()->getAddressSpace()); 1498 Vals.push_back(VE.getValueID(I.getResolver())); 1499 Vals.push_back(getEncodedLinkage(I)); 1500 Vals.push_back(getEncodedVisibility(I)); 1501 Vals.push_back(I.isDSOLocal()); 1502 Vals.push_back(addToStrtab(I.getPartition())); 1503 Vals.push_back(I.getPartition().size()); 1504 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1505 Vals.clear(); 1506 } 1507 1508 writeValueSymbolTableForwardDecl(); 1509 } 1510 1511 static uint64_t getOptimizationFlags(const Value *V) { 1512 uint64_t Flags = 0; 1513 1514 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1515 if (OBO->hasNoSignedWrap()) 1516 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1517 if (OBO->hasNoUnsignedWrap()) 1518 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1519 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1520 if (PEO->isExact()) 1521 Flags |= 1 << bitc::PEO_EXACT; 1522 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1523 if (FPMO->hasAllowReassoc()) 1524 Flags |= bitc::AllowReassoc; 1525 if (FPMO->hasNoNaNs()) 1526 Flags |= bitc::NoNaNs; 1527 if (FPMO->hasNoInfs()) 1528 Flags |= bitc::NoInfs; 1529 if (FPMO->hasNoSignedZeros()) 1530 Flags |= bitc::NoSignedZeros; 1531 if (FPMO->hasAllowReciprocal()) 1532 Flags |= bitc::AllowReciprocal; 1533 if (FPMO->hasAllowContract()) 1534 Flags |= bitc::AllowContract; 1535 if (FPMO->hasApproxFunc()) 1536 Flags |= bitc::ApproxFunc; 1537 } 1538 1539 return Flags; 1540 } 1541 1542 void ModuleBitcodeWriter::writeValueAsMetadata( 1543 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1544 // Mimic an MDNode with a value as one operand. 1545 Value *V = MD->getValue(); 1546 Record.push_back(VE.getTypeID(V->getType())); 1547 Record.push_back(VE.getValueID(V)); 1548 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1549 Record.clear(); 1550 } 1551 1552 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1553 SmallVectorImpl<uint64_t> &Record, 1554 unsigned Abbrev) { 1555 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1556 Metadata *MD = N->getOperand(i); 1557 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1558 "Unexpected function-local metadata"); 1559 Record.push_back(VE.getMetadataOrNullID(MD)); 1560 } 1561 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1562 : bitc::METADATA_NODE, 1563 Record, Abbrev); 1564 Record.clear(); 1565 } 1566 1567 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1568 // Assume the column is usually under 128, and always output the inlined-at 1569 // location (it's never more expensive than building an array size 1). 1570 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1571 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1578 return Stream.EmitAbbrev(std::move(Abbv)); 1579 } 1580 1581 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1582 SmallVectorImpl<uint64_t> &Record, 1583 unsigned &Abbrev) { 1584 if (!Abbrev) 1585 Abbrev = createDILocationAbbrev(); 1586 1587 Record.push_back(N->isDistinct()); 1588 Record.push_back(N->getLine()); 1589 Record.push_back(N->getColumn()); 1590 Record.push_back(VE.getMetadataID(N->getScope())); 1591 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1592 Record.push_back(N->isImplicitCode()); 1593 1594 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1595 Record.clear(); 1596 } 1597 1598 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1599 // Assume the column is usually under 128, and always output the inlined-at 1600 // location (it's never more expensive than building an array size 1). 1601 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1602 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1609 return Stream.EmitAbbrev(std::move(Abbv)); 1610 } 1611 1612 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1613 SmallVectorImpl<uint64_t> &Record, 1614 unsigned &Abbrev) { 1615 if (!Abbrev) 1616 Abbrev = createGenericDINodeAbbrev(); 1617 1618 Record.push_back(N->isDistinct()); 1619 Record.push_back(N->getTag()); 1620 Record.push_back(0); // Per-tag version field; unused for now. 1621 1622 for (auto &I : N->operands()) 1623 Record.push_back(VE.getMetadataOrNullID(I)); 1624 1625 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1626 Record.clear(); 1627 } 1628 1629 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1630 SmallVectorImpl<uint64_t> &Record, 1631 unsigned Abbrev) { 1632 const uint64_t Version = 2 << 1; 1633 Record.push_back((uint64_t)N->isDistinct() | Version); 1634 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1635 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1636 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1637 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1638 1639 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1640 Record.clear(); 1641 } 1642 1643 void ModuleBitcodeWriter::writeDIGenericSubrange( 1644 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1645 unsigned Abbrev) { 1646 Record.push_back((uint64_t)N->isDistinct()); 1647 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1648 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1649 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1650 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1651 1652 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1653 Record.clear(); 1654 } 1655 1656 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1657 if ((int64_t)V >= 0) 1658 Vals.push_back(V << 1); 1659 else 1660 Vals.push_back((-V << 1) | 1); 1661 } 1662 1663 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1664 // We have an arbitrary precision integer value to write whose 1665 // bit width is > 64. However, in canonical unsigned integer 1666 // format it is likely that the high bits are going to be zero. 1667 // So, we only write the number of active words. 1668 unsigned NumWords = A.getActiveWords(); 1669 const uint64_t *RawData = A.getRawData(); 1670 for (unsigned i = 0; i < NumWords; i++) 1671 emitSignedInt64(Vals, RawData[i]); 1672 } 1673 1674 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1675 SmallVectorImpl<uint64_t> &Record, 1676 unsigned Abbrev) { 1677 const uint64_t IsBigInt = 1 << 2; 1678 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1679 Record.push_back(N->getValue().getBitWidth()); 1680 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1681 emitWideAPInt(Record, N->getValue()); 1682 1683 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1684 Record.clear(); 1685 } 1686 1687 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1688 SmallVectorImpl<uint64_t> &Record, 1689 unsigned Abbrev) { 1690 Record.push_back(N->isDistinct()); 1691 Record.push_back(N->getTag()); 1692 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1693 Record.push_back(N->getSizeInBits()); 1694 Record.push_back(N->getAlignInBits()); 1695 Record.push_back(N->getEncoding()); 1696 Record.push_back(N->getFlags()); 1697 1698 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1699 Record.clear(); 1700 } 1701 1702 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1703 SmallVectorImpl<uint64_t> &Record, 1704 unsigned Abbrev) { 1705 Record.push_back(N->isDistinct()); 1706 Record.push_back(N->getTag()); 1707 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1708 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1711 Record.push_back(N->getSizeInBits()); 1712 Record.push_back(N->getAlignInBits()); 1713 Record.push_back(N->getEncoding()); 1714 1715 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1716 Record.clear(); 1717 } 1718 1719 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1720 SmallVectorImpl<uint64_t> &Record, 1721 unsigned Abbrev) { 1722 Record.push_back(N->isDistinct()); 1723 Record.push_back(N->getTag()); 1724 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1726 Record.push_back(N->getLine()); 1727 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1728 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1729 Record.push_back(N->getSizeInBits()); 1730 Record.push_back(N->getAlignInBits()); 1731 Record.push_back(N->getOffsetInBits()); 1732 Record.push_back(N->getFlags()); 1733 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1734 1735 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1736 // that there is no DWARF address space associated with DIDerivedType. 1737 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1738 Record.push_back(*DWARFAddressSpace + 1); 1739 else 1740 Record.push_back(0); 1741 1742 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1743 1744 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1745 Record.clear(); 1746 } 1747 1748 void ModuleBitcodeWriter::writeDICompositeType( 1749 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1750 unsigned Abbrev) { 1751 const unsigned IsNotUsedInOldTypeRef = 0x2; 1752 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1753 Record.push_back(N->getTag()); 1754 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1755 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1756 Record.push_back(N->getLine()); 1757 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1758 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1759 Record.push_back(N->getSizeInBits()); 1760 Record.push_back(N->getAlignInBits()); 1761 Record.push_back(N->getOffsetInBits()); 1762 Record.push_back(N->getFlags()); 1763 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1764 Record.push_back(N->getRuntimeLang()); 1765 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1766 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1767 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1768 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1769 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1770 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1771 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1772 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1773 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1774 1775 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1776 Record.clear(); 1777 } 1778 1779 void ModuleBitcodeWriter::writeDISubroutineType( 1780 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1781 unsigned Abbrev) { 1782 const unsigned HasNoOldTypeRefs = 0x2; 1783 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1784 Record.push_back(N->getFlags()); 1785 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1786 Record.push_back(N->getCC()); 1787 1788 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1789 Record.clear(); 1790 } 1791 1792 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1793 SmallVectorImpl<uint64_t> &Record, 1794 unsigned Abbrev) { 1795 Record.push_back(N->isDistinct()); 1796 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1797 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1798 if (N->getRawChecksum()) { 1799 Record.push_back(N->getRawChecksum()->Kind); 1800 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1801 } else { 1802 // Maintain backwards compatibility with the old internal representation of 1803 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1804 Record.push_back(0); 1805 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1806 } 1807 auto Source = N->getRawSource(); 1808 if (Source) 1809 Record.push_back(VE.getMetadataOrNullID(*Source)); 1810 1811 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1812 Record.clear(); 1813 } 1814 1815 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1816 SmallVectorImpl<uint64_t> &Record, 1817 unsigned Abbrev) { 1818 assert(N->isDistinct() && "Expected distinct compile units"); 1819 Record.push_back(/* IsDistinct */ true); 1820 Record.push_back(N->getSourceLanguage()); 1821 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1822 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1823 Record.push_back(N->isOptimized()); 1824 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1825 Record.push_back(N->getRuntimeVersion()); 1826 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1827 Record.push_back(N->getEmissionKind()); 1828 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1829 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1830 Record.push_back(/* subprograms */ 0); 1831 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1832 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1833 Record.push_back(N->getDWOId()); 1834 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1835 Record.push_back(N->getSplitDebugInlining()); 1836 Record.push_back(N->getDebugInfoForProfiling()); 1837 Record.push_back((unsigned)N->getNameTableKind()); 1838 Record.push_back(N->getRangesBaseAddress()); 1839 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1840 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1841 1842 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1843 Record.clear(); 1844 } 1845 1846 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1847 SmallVectorImpl<uint64_t> &Record, 1848 unsigned Abbrev) { 1849 const uint64_t HasUnitFlag = 1 << 1; 1850 const uint64_t HasSPFlagsFlag = 1 << 2; 1851 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1852 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1854 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1856 Record.push_back(N->getLine()); 1857 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1858 Record.push_back(N->getScopeLine()); 1859 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1860 Record.push_back(N->getSPFlags()); 1861 Record.push_back(N->getVirtualIndex()); 1862 Record.push_back(N->getFlags()); 1863 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1864 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1865 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1866 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1867 Record.push_back(N->getThisAdjustment()); 1868 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1869 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1870 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1871 1872 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1873 Record.clear(); 1874 } 1875 1876 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1877 SmallVectorImpl<uint64_t> &Record, 1878 unsigned Abbrev) { 1879 Record.push_back(N->isDistinct()); 1880 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1881 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1882 Record.push_back(N->getLine()); 1883 Record.push_back(N->getColumn()); 1884 1885 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1886 Record.clear(); 1887 } 1888 1889 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1890 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1891 unsigned Abbrev) { 1892 Record.push_back(N->isDistinct()); 1893 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1894 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1895 Record.push_back(N->getDiscriminator()); 1896 1897 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1898 Record.clear(); 1899 } 1900 1901 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1902 SmallVectorImpl<uint64_t> &Record, 1903 unsigned Abbrev) { 1904 Record.push_back(N->isDistinct()); 1905 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1906 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1907 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1908 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1909 Record.push_back(N->getLineNo()); 1910 1911 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1912 Record.clear(); 1913 } 1914 1915 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1916 SmallVectorImpl<uint64_t> &Record, 1917 unsigned Abbrev) { 1918 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1919 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1920 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1921 1922 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1923 Record.clear(); 1924 } 1925 1926 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1927 SmallVectorImpl<uint64_t> &Record, 1928 unsigned Abbrev) { 1929 Record.push_back(N->isDistinct()); 1930 Record.push_back(N->getMacinfoType()); 1931 Record.push_back(N->getLine()); 1932 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1933 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1934 1935 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1936 Record.clear(); 1937 } 1938 1939 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1940 SmallVectorImpl<uint64_t> &Record, 1941 unsigned Abbrev) { 1942 Record.push_back(N->isDistinct()); 1943 Record.push_back(N->getMacinfoType()); 1944 Record.push_back(N->getLine()); 1945 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1946 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1947 1948 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1949 Record.clear(); 1950 } 1951 1952 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1953 SmallVectorImpl<uint64_t> &Record, 1954 unsigned Abbrev) { 1955 Record.reserve(N->getArgs().size()); 1956 for (ValueAsMetadata *MD : N->getArgs()) 1957 Record.push_back(VE.getMetadataID(MD)); 1958 1959 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1960 Record.clear(); 1961 } 1962 1963 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1964 SmallVectorImpl<uint64_t> &Record, 1965 unsigned Abbrev) { 1966 Record.push_back(N->isDistinct()); 1967 for (auto &I : N->operands()) 1968 Record.push_back(VE.getMetadataOrNullID(I)); 1969 Record.push_back(N->getLineNo()); 1970 Record.push_back(N->getIsDecl()); 1971 1972 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1973 Record.clear(); 1974 } 1975 1976 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 1977 SmallVectorImpl<uint64_t> &Record, 1978 unsigned Abbrev) { 1979 // There are no arguments for this metadata type. 1980 Record.push_back(N->isDistinct()); 1981 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 1982 Record.clear(); 1983 } 1984 1985 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1986 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1987 unsigned Abbrev) { 1988 Record.push_back(N->isDistinct()); 1989 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1990 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1991 Record.push_back(N->isDefault()); 1992 1993 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1994 Record.clear(); 1995 } 1996 1997 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1998 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1999 unsigned Abbrev) { 2000 Record.push_back(N->isDistinct()); 2001 Record.push_back(N->getTag()); 2002 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2003 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2004 Record.push_back(N->isDefault()); 2005 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2006 2007 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2008 Record.clear(); 2009 } 2010 2011 void ModuleBitcodeWriter::writeDIGlobalVariable( 2012 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2013 unsigned Abbrev) { 2014 const uint64_t Version = 2 << 1; 2015 Record.push_back((uint64_t)N->isDistinct() | Version); 2016 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2017 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2018 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2019 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2020 Record.push_back(N->getLine()); 2021 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2022 Record.push_back(N->isLocalToUnit()); 2023 Record.push_back(N->isDefinition()); 2024 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2025 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2026 Record.push_back(N->getAlignInBits()); 2027 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2028 2029 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2030 Record.clear(); 2031 } 2032 2033 void ModuleBitcodeWriter::writeDILocalVariable( 2034 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2035 unsigned Abbrev) { 2036 // In order to support all possible bitcode formats in BitcodeReader we need 2037 // to distinguish the following cases: 2038 // 1) Record has no artificial tag (Record[1]), 2039 // has no obsolete inlinedAt field (Record[9]). 2040 // In this case Record size will be 8, HasAlignment flag is false. 2041 // 2) Record has artificial tag (Record[1]), 2042 // has no obsolete inlignedAt field (Record[9]). 2043 // In this case Record size will be 9, HasAlignment flag is false. 2044 // 3) Record has both artificial tag (Record[1]) and 2045 // obsolete inlignedAt field (Record[9]). 2046 // In this case Record size will be 10, HasAlignment flag is false. 2047 // 4) Record has neither artificial tag, nor inlignedAt field, but 2048 // HasAlignment flag is true and Record[8] contains alignment value. 2049 const uint64_t HasAlignmentFlag = 1 << 1; 2050 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2051 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2052 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2053 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2054 Record.push_back(N->getLine()); 2055 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2056 Record.push_back(N->getArg()); 2057 Record.push_back(N->getFlags()); 2058 Record.push_back(N->getAlignInBits()); 2059 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2060 2061 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2062 Record.clear(); 2063 } 2064 2065 void ModuleBitcodeWriter::writeDILabel( 2066 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2067 unsigned Abbrev) { 2068 Record.push_back((uint64_t)N->isDistinct()); 2069 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2070 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2071 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2072 Record.push_back(N->getLine()); 2073 2074 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2075 Record.clear(); 2076 } 2077 2078 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2079 SmallVectorImpl<uint64_t> &Record, 2080 unsigned Abbrev) { 2081 Record.reserve(N->getElements().size() + 1); 2082 const uint64_t Version = 3 << 1; 2083 Record.push_back((uint64_t)N->isDistinct() | Version); 2084 Record.append(N->elements_begin(), N->elements_end()); 2085 2086 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2087 Record.clear(); 2088 } 2089 2090 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2091 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2092 unsigned Abbrev) { 2093 Record.push_back(N->isDistinct()); 2094 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2095 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2096 2097 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2098 Record.clear(); 2099 } 2100 2101 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2102 SmallVectorImpl<uint64_t> &Record, 2103 unsigned Abbrev) { 2104 Record.push_back(N->isDistinct()); 2105 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2106 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2107 Record.push_back(N->getLine()); 2108 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2109 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2110 Record.push_back(N->getAttributes()); 2111 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2112 2113 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2114 Record.clear(); 2115 } 2116 2117 void ModuleBitcodeWriter::writeDIImportedEntity( 2118 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2119 unsigned Abbrev) { 2120 Record.push_back(N->isDistinct()); 2121 Record.push_back(N->getTag()); 2122 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2123 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2124 Record.push_back(N->getLine()); 2125 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2126 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2127 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2128 2129 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2130 Record.clear(); 2131 } 2132 2133 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2134 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2135 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2138 return Stream.EmitAbbrev(std::move(Abbv)); 2139 } 2140 2141 void ModuleBitcodeWriter::writeNamedMetadata( 2142 SmallVectorImpl<uint64_t> &Record) { 2143 if (M.named_metadata_empty()) 2144 return; 2145 2146 unsigned Abbrev = createNamedMetadataAbbrev(); 2147 for (const NamedMDNode &NMD : M.named_metadata()) { 2148 // Write name. 2149 StringRef Str = NMD.getName(); 2150 Record.append(Str.bytes_begin(), Str.bytes_end()); 2151 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2152 Record.clear(); 2153 2154 // Write named metadata operands. 2155 for (const MDNode *N : NMD.operands()) 2156 Record.push_back(VE.getMetadataID(N)); 2157 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2158 Record.clear(); 2159 } 2160 } 2161 2162 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2163 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2164 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2168 return Stream.EmitAbbrev(std::move(Abbv)); 2169 } 2170 2171 /// Write out a record for MDString. 2172 /// 2173 /// All the metadata strings in a metadata block are emitted in a single 2174 /// record. The sizes and strings themselves are shoved into a blob. 2175 void ModuleBitcodeWriter::writeMetadataStrings( 2176 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2177 if (Strings.empty()) 2178 return; 2179 2180 // Start the record with the number of strings. 2181 Record.push_back(bitc::METADATA_STRINGS); 2182 Record.push_back(Strings.size()); 2183 2184 // Emit the sizes of the strings in the blob. 2185 SmallString<256> Blob; 2186 { 2187 BitstreamWriter W(Blob); 2188 for (const Metadata *MD : Strings) 2189 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2190 W.FlushToWord(); 2191 } 2192 2193 // Add the offset to the strings to the record. 2194 Record.push_back(Blob.size()); 2195 2196 // Add the strings to the blob. 2197 for (const Metadata *MD : Strings) 2198 Blob.append(cast<MDString>(MD)->getString()); 2199 2200 // Emit the final record. 2201 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2202 Record.clear(); 2203 } 2204 2205 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2206 enum MetadataAbbrev : unsigned { 2207 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2208 #include "llvm/IR/Metadata.def" 2209 LastPlusOne 2210 }; 2211 2212 void ModuleBitcodeWriter::writeMetadataRecords( 2213 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2214 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2215 if (MDs.empty()) 2216 return; 2217 2218 // Initialize MDNode abbreviations. 2219 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2220 #include "llvm/IR/Metadata.def" 2221 2222 for (const Metadata *MD : MDs) { 2223 if (IndexPos) 2224 IndexPos->push_back(Stream.GetCurrentBitNo()); 2225 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2226 assert(N->isResolved() && "Expected forward references to be resolved"); 2227 2228 switch (N->getMetadataID()) { 2229 default: 2230 llvm_unreachable("Invalid MDNode subclass"); 2231 #define HANDLE_MDNODE_LEAF(CLASS) \ 2232 case Metadata::CLASS##Kind: \ 2233 if (MDAbbrevs) \ 2234 write##CLASS(cast<CLASS>(N), Record, \ 2235 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2236 else \ 2237 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2238 continue; 2239 #include "llvm/IR/Metadata.def" 2240 } 2241 } 2242 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2243 } 2244 } 2245 2246 void ModuleBitcodeWriter::writeModuleMetadata() { 2247 if (!VE.hasMDs() && M.named_metadata_empty()) 2248 return; 2249 2250 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2251 SmallVector<uint64_t, 64> Record; 2252 2253 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2254 // block and load any metadata. 2255 std::vector<unsigned> MDAbbrevs; 2256 2257 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2258 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2259 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2260 createGenericDINodeAbbrev(); 2261 2262 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2263 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2266 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2267 2268 Abbv = std::make_shared<BitCodeAbbrev>(); 2269 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2272 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2273 2274 // Emit MDStrings together upfront. 2275 writeMetadataStrings(VE.getMDStrings(), Record); 2276 2277 // We only emit an index for the metadata record if we have more than a given 2278 // (naive) threshold of metadatas, otherwise it is not worth it. 2279 if (VE.getNonMDStrings().size() > IndexThreshold) { 2280 // Write a placeholder value in for the offset of the metadata index, 2281 // which is written after the records, so that it can include 2282 // the offset of each entry. The placeholder offset will be 2283 // updated after all records are emitted. 2284 uint64_t Vals[] = {0, 0}; 2285 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2286 } 2287 2288 // Compute and save the bit offset to the current position, which will be 2289 // patched when we emit the index later. We can simply subtract the 64-bit 2290 // fixed size from the current bit number to get the location to backpatch. 2291 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2292 2293 // This index will contain the bitpos for each individual record. 2294 std::vector<uint64_t> IndexPos; 2295 IndexPos.reserve(VE.getNonMDStrings().size()); 2296 2297 // Write all the records 2298 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2299 2300 if (VE.getNonMDStrings().size() > IndexThreshold) { 2301 // Now that we have emitted all the records we will emit the index. But 2302 // first 2303 // backpatch the forward reference so that the reader can skip the records 2304 // efficiently. 2305 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2306 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2307 2308 // Delta encode the index. 2309 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2310 for (auto &Elt : IndexPos) { 2311 auto EltDelta = Elt - PreviousValue; 2312 PreviousValue = Elt; 2313 Elt = EltDelta; 2314 } 2315 // Emit the index record. 2316 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2317 IndexPos.clear(); 2318 } 2319 2320 // Write the named metadata now. 2321 writeNamedMetadata(Record); 2322 2323 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2324 SmallVector<uint64_t, 4> Record; 2325 Record.push_back(VE.getValueID(&GO)); 2326 pushGlobalMetadataAttachment(Record, GO); 2327 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2328 }; 2329 for (const Function &F : M) 2330 if (F.isDeclaration() && F.hasMetadata()) 2331 AddDeclAttachedMetadata(F); 2332 // FIXME: Only store metadata for declarations here, and move data for global 2333 // variable definitions to a separate block (PR28134). 2334 for (const GlobalVariable &GV : M.globals()) 2335 if (GV.hasMetadata()) 2336 AddDeclAttachedMetadata(GV); 2337 2338 Stream.ExitBlock(); 2339 } 2340 2341 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2342 if (!VE.hasMDs()) 2343 return; 2344 2345 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2346 SmallVector<uint64_t, 64> Record; 2347 writeMetadataStrings(VE.getMDStrings(), Record); 2348 writeMetadataRecords(VE.getNonMDStrings(), Record); 2349 Stream.ExitBlock(); 2350 } 2351 2352 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2353 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2354 // [n x [id, mdnode]] 2355 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2356 GO.getAllMetadata(MDs); 2357 for (const auto &I : MDs) { 2358 Record.push_back(I.first); 2359 Record.push_back(VE.getMetadataID(I.second)); 2360 } 2361 } 2362 2363 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2364 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2365 2366 SmallVector<uint64_t, 64> Record; 2367 2368 if (F.hasMetadata()) { 2369 pushGlobalMetadataAttachment(Record, F); 2370 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2371 Record.clear(); 2372 } 2373 2374 // Write metadata attachments 2375 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2376 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2377 for (const BasicBlock &BB : F) 2378 for (const Instruction &I : BB) { 2379 MDs.clear(); 2380 I.getAllMetadataOtherThanDebugLoc(MDs); 2381 2382 // If no metadata, ignore instruction. 2383 if (MDs.empty()) continue; 2384 2385 Record.push_back(VE.getInstructionID(&I)); 2386 2387 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2388 Record.push_back(MDs[i].first); 2389 Record.push_back(VE.getMetadataID(MDs[i].second)); 2390 } 2391 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2392 Record.clear(); 2393 } 2394 2395 Stream.ExitBlock(); 2396 } 2397 2398 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2399 SmallVector<uint64_t, 64> Record; 2400 2401 // Write metadata kinds 2402 // METADATA_KIND - [n x [id, name]] 2403 SmallVector<StringRef, 8> Names; 2404 M.getMDKindNames(Names); 2405 2406 if (Names.empty()) return; 2407 2408 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2409 2410 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2411 Record.push_back(MDKindID); 2412 StringRef KName = Names[MDKindID]; 2413 Record.append(KName.begin(), KName.end()); 2414 2415 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2416 Record.clear(); 2417 } 2418 2419 Stream.ExitBlock(); 2420 } 2421 2422 void ModuleBitcodeWriter::writeOperandBundleTags() { 2423 // Write metadata kinds 2424 // 2425 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2426 // 2427 // OPERAND_BUNDLE_TAG - [strchr x N] 2428 2429 SmallVector<StringRef, 8> Tags; 2430 M.getOperandBundleTags(Tags); 2431 2432 if (Tags.empty()) 2433 return; 2434 2435 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2436 2437 SmallVector<uint64_t, 64> Record; 2438 2439 for (auto Tag : Tags) { 2440 Record.append(Tag.begin(), Tag.end()); 2441 2442 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2443 Record.clear(); 2444 } 2445 2446 Stream.ExitBlock(); 2447 } 2448 2449 void ModuleBitcodeWriter::writeSyncScopeNames() { 2450 SmallVector<StringRef, 8> SSNs; 2451 M.getContext().getSyncScopeNames(SSNs); 2452 if (SSNs.empty()) 2453 return; 2454 2455 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2456 2457 SmallVector<uint64_t, 64> Record; 2458 for (auto SSN : SSNs) { 2459 Record.append(SSN.begin(), SSN.end()); 2460 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2461 Record.clear(); 2462 } 2463 2464 Stream.ExitBlock(); 2465 } 2466 2467 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2468 bool isGlobal) { 2469 if (FirstVal == LastVal) return; 2470 2471 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2472 2473 unsigned AggregateAbbrev = 0; 2474 unsigned String8Abbrev = 0; 2475 unsigned CString7Abbrev = 0; 2476 unsigned CString6Abbrev = 0; 2477 // If this is a constant pool for the module, emit module-specific abbrevs. 2478 if (isGlobal) { 2479 // Abbrev for CST_CODE_AGGREGATE. 2480 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2481 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2484 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2485 2486 // Abbrev for CST_CODE_STRING. 2487 Abbv = std::make_shared<BitCodeAbbrev>(); 2488 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2491 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2492 // Abbrev for CST_CODE_CSTRING. 2493 Abbv = std::make_shared<BitCodeAbbrev>(); 2494 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2497 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2498 // Abbrev for CST_CODE_CSTRING. 2499 Abbv = std::make_shared<BitCodeAbbrev>(); 2500 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2503 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2504 } 2505 2506 SmallVector<uint64_t, 64> Record; 2507 2508 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2509 Type *LastTy = nullptr; 2510 for (unsigned i = FirstVal; i != LastVal; ++i) { 2511 const Value *V = Vals[i].first; 2512 // If we need to switch types, do so now. 2513 if (V->getType() != LastTy) { 2514 LastTy = V->getType(); 2515 Record.push_back(VE.getTypeID(LastTy)); 2516 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2517 CONSTANTS_SETTYPE_ABBREV); 2518 Record.clear(); 2519 } 2520 2521 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2522 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2523 Record.push_back( 2524 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2525 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2526 2527 // Add the asm string. 2528 const std::string &AsmStr = IA->getAsmString(); 2529 Record.push_back(AsmStr.size()); 2530 Record.append(AsmStr.begin(), AsmStr.end()); 2531 2532 // Add the constraint string. 2533 const std::string &ConstraintStr = IA->getConstraintString(); 2534 Record.push_back(ConstraintStr.size()); 2535 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2536 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2537 Record.clear(); 2538 continue; 2539 } 2540 const Constant *C = cast<Constant>(V); 2541 unsigned Code = -1U; 2542 unsigned AbbrevToUse = 0; 2543 if (C->isNullValue()) { 2544 Code = bitc::CST_CODE_NULL; 2545 } else if (isa<PoisonValue>(C)) { 2546 Code = bitc::CST_CODE_POISON; 2547 } else if (isa<UndefValue>(C)) { 2548 Code = bitc::CST_CODE_UNDEF; 2549 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2550 if (IV->getBitWidth() <= 64) { 2551 uint64_t V = IV->getSExtValue(); 2552 emitSignedInt64(Record, V); 2553 Code = bitc::CST_CODE_INTEGER; 2554 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2555 } else { // Wide integers, > 64 bits in size. 2556 emitWideAPInt(Record, IV->getValue()); 2557 Code = bitc::CST_CODE_WIDE_INTEGER; 2558 } 2559 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2560 Code = bitc::CST_CODE_FLOAT; 2561 Type *Ty = CFP->getType(); 2562 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2563 Ty->isDoubleTy()) { 2564 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2565 } else if (Ty->isX86_FP80Ty()) { 2566 // api needed to prevent premature destruction 2567 // bits are not in the same order as a normal i80 APInt, compensate. 2568 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2569 const uint64_t *p = api.getRawData(); 2570 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2571 Record.push_back(p[0] & 0xffffLL); 2572 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2573 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2574 const uint64_t *p = api.getRawData(); 2575 Record.push_back(p[0]); 2576 Record.push_back(p[1]); 2577 } else { 2578 assert(0 && "Unknown FP type!"); 2579 } 2580 } else if (isa<ConstantDataSequential>(C) && 2581 cast<ConstantDataSequential>(C)->isString()) { 2582 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2583 // Emit constant strings specially. 2584 unsigned NumElts = Str->getNumElements(); 2585 // If this is a null-terminated string, use the denser CSTRING encoding. 2586 if (Str->isCString()) { 2587 Code = bitc::CST_CODE_CSTRING; 2588 --NumElts; // Don't encode the null, which isn't allowed by char6. 2589 } else { 2590 Code = bitc::CST_CODE_STRING; 2591 AbbrevToUse = String8Abbrev; 2592 } 2593 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2594 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2595 for (unsigned i = 0; i != NumElts; ++i) { 2596 unsigned char V = Str->getElementAsInteger(i); 2597 Record.push_back(V); 2598 isCStr7 &= (V & 128) == 0; 2599 if (isCStrChar6) 2600 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2601 } 2602 2603 if (isCStrChar6) 2604 AbbrevToUse = CString6Abbrev; 2605 else if (isCStr7) 2606 AbbrevToUse = CString7Abbrev; 2607 } else if (const ConstantDataSequential *CDS = 2608 dyn_cast<ConstantDataSequential>(C)) { 2609 Code = bitc::CST_CODE_DATA; 2610 Type *EltTy = CDS->getElementType(); 2611 if (isa<IntegerType>(EltTy)) { 2612 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2613 Record.push_back(CDS->getElementAsInteger(i)); 2614 } else { 2615 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2616 Record.push_back( 2617 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2618 } 2619 } else if (isa<ConstantAggregate>(C)) { 2620 Code = bitc::CST_CODE_AGGREGATE; 2621 for (const Value *Op : C->operands()) 2622 Record.push_back(VE.getValueID(Op)); 2623 AbbrevToUse = AggregateAbbrev; 2624 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2625 switch (CE->getOpcode()) { 2626 default: 2627 if (Instruction::isCast(CE->getOpcode())) { 2628 Code = bitc::CST_CODE_CE_CAST; 2629 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2630 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2631 Record.push_back(VE.getValueID(C->getOperand(0))); 2632 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2633 } else { 2634 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2635 Code = bitc::CST_CODE_CE_BINOP; 2636 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2637 Record.push_back(VE.getValueID(C->getOperand(0))); 2638 Record.push_back(VE.getValueID(C->getOperand(1))); 2639 uint64_t Flags = getOptimizationFlags(CE); 2640 if (Flags != 0) 2641 Record.push_back(Flags); 2642 } 2643 break; 2644 case Instruction::FNeg: { 2645 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2646 Code = bitc::CST_CODE_CE_UNOP; 2647 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2648 Record.push_back(VE.getValueID(C->getOperand(0))); 2649 uint64_t Flags = getOptimizationFlags(CE); 2650 if (Flags != 0) 2651 Record.push_back(Flags); 2652 break; 2653 } 2654 case Instruction::GetElementPtr: { 2655 Code = bitc::CST_CODE_CE_GEP; 2656 const auto *GO = cast<GEPOperator>(C); 2657 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2658 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2659 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2660 Record.push_back((*Idx << 1) | GO->isInBounds()); 2661 } else if (GO->isInBounds()) 2662 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2663 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2664 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2665 Record.push_back(VE.getValueID(C->getOperand(i))); 2666 } 2667 break; 2668 } 2669 case Instruction::Select: 2670 Code = bitc::CST_CODE_CE_SELECT; 2671 Record.push_back(VE.getValueID(C->getOperand(0))); 2672 Record.push_back(VE.getValueID(C->getOperand(1))); 2673 Record.push_back(VE.getValueID(C->getOperand(2))); 2674 break; 2675 case Instruction::ExtractElement: 2676 Code = bitc::CST_CODE_CE_EXTRACTELT; 2677 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2678 Record.push_back(VE.getValueID(C->getOperand(0))); 2679 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2680 Record.push_back(VE.getValueID(C->getOperand(1))); 2681 break; 2682 case Instruction::InsertElement: 2683 Code = bitc::CST_CODE_CE_INSERTELT; 2684 Record.push_back(VE.getValueID(C->getOperand(0))); 2685 Record.push_back(VE.getValueID(C->getOperand(1))); 2686 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2687 Record.push_back(VE.getValueID(C->getOperand(2))); 2688 break; 2689 case Instruction::ShuffleVector: 2690 // If the return type and argument types are the same, this is a 2691 // standard shufflevector instruction. If the types are different, 2692 // then the shuffle is widening or truncating the input vectors, and 2693 // the argument type must also be encoded. 2694 if (C->getType() == C->getOperand(0)->getType()) { 2695 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2696 } else { 2697 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2698 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2699 } 2700 Record.push_back(VE.getValueID(C->getOperand(0))); 2701 Record.push_back(VE.getValueID(C->getOperand(1))); 2702 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2703 break; 2704 case Instruction::ICmp: 2705 case Instruction::FCmp: 2706 Code = bitc::CST_CODE_CE_CMP; 2707 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2708 Record.push_back(VE.getValueID(C->getOperand(0))); 2709 Record.push_back(VE.getValueID(C->getOperand(1))); 2710 Record.push_back(CE->getPredicate()); 2711 break; 2712 } 2713 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2714 Code = bitc::CST_CODE_BLOCKADDRESS; 2715 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2716 Record.push_back(VE.getValueID(BA->getFunction())); 2717 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2718 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2719 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2720 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2721 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2722 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2723 Code = bitc::CST_CODE_NO_CFI_VALUE; 2724 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2725 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2726 } else { 2727 #ifndef NDEBUG 2728 C->dump(); 2729 #endif 2730 llvm_unreachable("Unknown constant!"); 2731 } 2732 Stream.EmitRecord(Code, Record, AbbrevToUse); 2733 Record.clear(); 2734 } 2735 2736 Stream.ExitBlock(); 2737 } 2738 2739 void ModuleBitcodeWriter::writeModuleConstants() { 2740 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2741 2742 // Find the first constant to emit, which is the first non-globalvalue value. 2743 // We know globalvalues have been emitted by WriteModuleInfo. 2744 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2745 if (!isa<GlobalValue>(Vals[i].first)) { 2746 writeConstants(i, Vals.size(), true); 2747 return; 2748 } 2749 } 2750 } 2751 2752 /// pushValueAndType - The file has to encode both the value and type id for 2753 /// many values, because we need to know what type to create for forward 2754 /// references. However, most operands are not forward references, so this type 2755 /// field is not needed. 2756 /// 2757 /// This function adds V's value ID to Vals. If the value ID is higher than the 2758 /// instruction ID, then it is a forward reference, and it also includes the 2759 /// type ID. The value ID that is written is encoded relative to the InstID. 2760 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2761 SmallVectorImpl<unsigned> &Vals) { 2762 unsigned ValID = VE.getValueID(V); 2763 // Make encoding relative to the InstID. 2764 Vals.push_back(InstID - ValID); 2765 if (ValID >= InstID) { 2766 Vals.push_back(VE.getTypeID(V->getType())); 2767 return true; 2768 } 2769 return false; 2770 } 2771 2772 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2773 unsigned InstID) { 2774 SmallVector<unsigned, 64> Record; 2775 LLVMContext &C = CS.getContext(); 2776 2777 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2778 const auto &Bundle = CS.getOperandBundleAt(i); 2779 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2780 2781 for (auto &Input : Bundle.Inputs) 2782 pushValueAndType(Input, InstID, Record); 2783 2784 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2785 Record.clear(); 2786 } 2787 } 2788 2789 /// pushValue - Like pushValueAndType, but where the type of the value is 2790 /// omitted (perhaps it was already encoded in an earlier operand). 2791 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2792 SmallVectorImpl<unsigned> &Vals) { 2793 unsigned ValID = VE.getValueID(V); 2794 Vals.push_back(InstID - ValID); 2795 } 2796 2797 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2798 SmallVectorImpl<uint64_t> &Vals) { 2799 unsigned ValID = VE.getValueID(V); 2800 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2801 emitSignedInt64(Vals, diff); 2802 } 2803 2804 /// WriteInstruction - Emit an instruction to the specified stream. 2805 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2806 unsigned InstID, 2807 SmallVectorImpl<unsigned> &Vals) { 2808 unsigned Code = 0; 2809 unsigned AbbrevToUse = 0; 2810 VE.setInstructionID(&I); 2811 switch (I.getOpcode()) { 2812 default: 2813 if (Instruction::isCast(I.getOpcode())) { 2814 Code = bitc::FUNC_CODE_INST_CAST; 2815 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2816 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2817 Vals.push_back(VE.getTypeID(I.getType())); 2818 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2819 } else { 2820 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2821 Code = bitc::FUNC_CODE_INST_BINOP; 2822 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2823 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2824 pushValue(I.getOperand(1), InstID, Vals); 2825 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2826 uint64_t Flags = getOptimizationFlags(&I); 2827 if (Flags != 0) { 2828 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2829 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2830 Vals.push_back(Flags); 2831 } 2832 } 2833 break; 2834 case Instruction::FNeg: { 2835 Code = bitc::FUNC_CODE_INST_UNOP; 2836 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2837 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2838 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2839 uint64_t Flags = getOptimizationFlags(&I); 2840 if (Flags != 0) { 2841 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2842 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2843 Vals.push_back(Flags); 2844 } 2845 break; 2846 } 2847 case Instruction::GetElementPtr: { 2848 Code = bitc::FUNC_CODE_INST_GEP; 2849 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2850 auto &GEPInst = cast<GetElementPtrInst>(I); 2851 Vals.push_back(GEPInst.isInBounds()); 2852 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2853 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2854 pushValueAndType(I.getOperand(i), InstID, Vals); 2855 break; 2856 } 2857 case Instruction::ExtractValue: { 2858 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2859 pushValueAndType(I.getOperand(0), InstID, Vals); 2860 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2861 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2862 break; 2863 } 2864 case Instruction::InsertValue: { 2865 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2866 pushValueAndType(I.getOperand(0), InstID, Vals); 2867 pushValueAndType(I.getOperand(1), InstID, Vals); 2868 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2869 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2870 break; 2871 } 2872 case Instruction::Select: { 2873 Code = bitc::FUNC_CODE_INST_VSELECT; 2874 pushValueAndType(I.getOperand(1), InstID, Vals); 2875 pushValue(I.getOperand(2), InstID, Vals); 2876 pushValueAndType(I.getOperand(0), InstID, Vals); 2877 uint64_t Flags = getOptimizationFlags(&I); 2878 if (Flags != 0) 2879 Vals.push_back(Flags); 2880 break; 2881 } 2882 case Instruction::ExtractElement: 2883 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2884 pushValueAndType(I.getOperand(0), InstID, Vals); 2885 pushValueAndType(I.getOperand(1), InstID, Vals); 2886 break; 2887 case Instruction::InsertElement: 2888 Code = bitc::FUNC_CODE_INST_INSERTELT; 2889 pushValueAndType(I.getOperand(0), InstID, Vals); 2890 pushValue(I.getOperand(1), InstID, Vals); 2891 pushValueAndType(I.getOperand(2), InstID, Vals); 2892 break; 2893 case Instruction::ShuffleVector: 2894 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2895 pushValueAndType(I.getOperand(0), InstID, Vals); 2896 pushValue(I.getOperand(1), InstID, Vals); 2897 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2898 Vals); 2899 break; 2900 case Instruction::ICmp: 2901 case Instruction::FCmp: { 2902 // compare returning Int1Ty or vector of Int1Ty 2903 Code = bitc::FUNC_CODE_INST_CMP2; 2904 pushValueAndType(I.getOperand(0), InstID, Vals); 2905 pushValue(I.getOperand(1), InstID, Vals); 2906 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2907 uint64_t Flags = getOptimizationFlags(&I); 2908 if (Flags != 0) 2909 Vals.push_back(Flags); 2910 break; 2911 } 2912 2913 case Instruction::Ret: 2914 { 2915 Code = bitc::FUNC_CODE_INST_RET; 2916 unsigned NumOperands = I.getNumOperands(); 2917 if (NumOperands == 0) 2918 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2919 else if (NumOperands == 1) { 2920 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2921 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2922 } else { 2923 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2924 pushValueAndType(I.getOperand(i), InstID, Vals); 2925 } 2926 } 2927 break; 2928 case Instruction::Br: 2929 { 2930 Code = bitc::FUNC_CODE_INST_BR; 2931 const BranchInst &II = cast<BranchInst>(I); 2932 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2933 if (II.isConditional()) { 2934 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2935 pushValue(II.getCondition(), InstID, Vals); 2936 } 2937 } 2938 break; 2939 case Instruction::Switch: 2940 { 2941 Code = bitc::FUNC_CODE_INST_SWITCH; 2942 const SwitchInst &SI = cast<SwitchInst>(I); 2943 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2944 pushValue(SI.getCondition(), InstID, Vals); 2945 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2946 for (auto Case : SI.cases()) { 2947 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2948 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2949 } 2950 } 2951 break; 2952 case Instruction::IndirectBr: 2953 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2954 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2955 // Encode the address operand as relative, but not the basic blocks. 2956 pushValue(I.getOperand(0), InstID, Vals); 2957 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2958 Vals.push_back(VE.getValueID(I.getOperand(i))); 2959 break; 2960 2961 case Instruction::Invoke: { 2962 const InvokeInst *II = cast<InvokeInst>(&I); 2963 const Value *Callee = II->getCalledOperand(); 2964 FunctionType *FTy = II->getFunctionType(); 2965 2966 if (II->hasOperandBundles()) 2967 writeOperandBundles(*II, InstID); 2968 2969 Code = bitc::FUNC_CODE_INST_INVOKE; 2970 2971 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2972 Vals.push_back(II->getCallingConv() | 1 << 13); 2973 Vals.push_back(VE.getValueID(II->getNormalDest())); 2974 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2975 Vals.push_back(VE.getTypeID(FTy)); 2976 pushValueAndType(Callee, InstID, Vals); 2977 2978 // Emit value #'s for the fixed parameters. 2979 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2980 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2981 2982 // Emit type/value pairs for varargs params. 2983 if (FTy->isVarArg()) { 2984 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2985 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2986 } 2987 break; 2988 } 2989 case Instruction::Resume: 2990 Code = bitc::FUNC_CODE_INST_RESUME; 2991 pushValueAndType(I.getOperand(0), InstID, Vals); 2992 break; 2993 case Instruction::CleanupRet: { 2994 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2995 const auto &CRI = cast<CleanupReturnInst>(I); 2996 pushValue(CRI.getCleanupPad(), InstID, Vals); 2997 if (CRI.hasUnwindDest()) 2998 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2999 break; 3000 } 3001 case Instruction::CatchRet: { 3002 Code = bitc::FUNC_CODE_INST_CATCHRET; 3003 const auto &CRI = cast<CatchReturnInst>(I); 3004 pushValue(CRI.getCatchPad(), InstID, Vals); 3005 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3006 break; 3007 } 3008 case Instruction::CleanupPad: 3009 case Instruction::CatchPad: { 3010 const auto &FuncletPad = cast<FuncletPadInst>(I); 3011 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3012 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3013 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3014 3015 unsigned NumArgOperands = FuncletPad.arg_size(); 3016 Vals.push_back(NumArgOperands); 3017 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3018 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3019 break; 3020 } 3021 case Instruction::CatchSwitch: { 3022 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3023 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3024 3025 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3026 3027 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3028 Vals.push_back(NumHandlers); 3029 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3030 Vals.push_back(VE.getValueID(CatchPadBB)); 3031 3032 if (CatchSwitch.hasUnwindDest()) 3033 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3034 break; 3035 } 3036 case Instruction::CallBr: { 3037 const CallBrInst *CBI = cast<CallBrInst>(&I); 3038 const Value *Callee = CBI->getCalledOperand(); 3039 FunctionType *FTy = CBI->getFunctionType(); 3040 3041 if (CBI->hasOperandBundles()) 3042 writeOperandBundles(*CBI, InstID); 3043 3044 Code = bitc::FUNC_CODE_INST_CALLBR; 3045 3046 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3047 3048 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3049 1 << bitc::CALL_EXPLICIT_TYPE); 3050 3051 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3052 Vals.push_back(CBI->getNumIndirectDests()); 3053 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3054 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3055 3056 Vals.push_back(VE.getTypeID(FTy)); 3057 pushValueAndType(Callee, InstID, Vals); 3058 3059 // Emit value #'s for the fixed parameters. 3060 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3061 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3062 3063 // Emit type/value pairs for varargs params. 3064 if (FTy->isVarArg()) { 3065 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3066 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3067 } 3068 break; 3069 } 3070 case Instruction::Unreachable: 3071 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3072 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3073 break; 3074 3075 case Instruction::PHI: { 3076 const PHINode &PN = cast<PHINode>(I); 3077 Code = bitc::FUNC_CODE_INST_PHI; 3078 // With the newer instruction encoding, forward references could give 3079 // negative valued IDs. This is most common for PHIs, so we use 3080 // signed VBRs. 3081 SmallVector<uint64_t, 128> Vals64; 3082 Vals64.push_back(VE.getTypeID(PN.getType())); 3083 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3084 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3085 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3086 } 3087 3088 uint64_t Flags = getOptimizationFlags(&I); 3089 if (Flags != 0) 3090 Vals64.push_back(Flags); 3091 3092 // Emit a Vals64 vector and exit. 3093 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3094 Vals64.clear(); 3095 return; 3096 } 3097 3098 case Instruction::LandingPad: { 3099 const LandingPadInst &LP = cast<LandingPadInst>(I); 3100 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3101 Vals.push_back(VE.getTypeID(LP.getType())); 3102 Vals.push_back(LP.isCleanup()); 3103 Vals.push_back(LP.getNumClauses()); 3104 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3105 if (LP.isCatch(I)) 3106 Vals.push_back(LandingPadInst::Catch); 3107 else 3108 Vals.push_back(LandingPadInst::Filter); 3109 pushValueAndType(LP.getClause(I), InstID, Vals); 3110 } 3111 break; 3112 } 3113 3114 case Instruction::Alloca: { 3115 Code = bitc::FUNC_CODE_INST_ALLOCA; 3116 const AllocaInst &AI = cast<AllocaInst>(I); 3117 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3118 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3119 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3120 using APV = AllocaPackedValues; 3121 unsigned Record = 0; 3122 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3123 Bitfield::set<APV::AlignLower>( 3124 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3125 Bitfield::set<APV::AlignUpper>(Record, 3126 EncodedAlign >> APV::AlignLower::Bits); 3127 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3128 Bitfield::set<APV::ExplicitType>(Record, true); 3129 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3130 Vals.push_back(Record); 3131 3132 unsigned AS = AI.getAddressSpace(); 3133 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3134 Vals.push_back(AS); 3135 break; 3136 } 3137 3138 case Instruction::Load: 3139 if (cast<LoadInst>(I).isAtomic()) { 3140 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3141 pushValueAndType(I.getOperand(0), InstID, Vals); 3142 } else { 3143 Code = bitc::FUNC_CODE_INST_LOAD; 3144 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3145 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3146 } 3147 Vals.push_back(VE.getTypeID(I.getType())); 3148 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3149 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3150 if (cast<LoadInst>(I).isAtomic()) { 3151 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3152 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3153 } 3154 break; 3155 case Instruction::Store: 3156 if (cast<StoreInst>(I).isAtomic()) 3157 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3158 else 3159 Code = bitc::FUNC_CODE_INST_STORE; 3160 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3161 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3162 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3163 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3164 if (cast<StoreInst>(I).isAtomic()) { 3165 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3166 Vals.push_back( 3167 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3168 } 3169 break; 3170 case Instruction::AtomicCmpXchg: 3171 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3172 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3173 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3174 pushValue(I.getOperand(2), InstID, Vals); // newval. 3175 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3176 Vals.push_back( 3177 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3178 Vals.push_back( 3179 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3180 Vals.push_back( 3181 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3182 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3183 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3184 break; 3185 case Instruction::AtomicRMW: 3186 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3187 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3188 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3189 Vals.push_back( 3190 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3191 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3192 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3193 Vals.push_back( 3194 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3195 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3196 break; 3197 case Instruction::Fence: 3198 Code = bitc::FUNC_CODE_INST_FENCE; 3199 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3200 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3201 break; 3202 case Instruction::Call: { 3203 const CallInst &CI = cast<CallInst>(I); 3204 FunctionType *FTy = CI.getFunctionType(); 3205 3206 if (CI.hasOperandBundles()) 3207 writeOperandBundles(CI, InstID); 3208 3209 Code = bitc::FUNC_CODE_INST_CALL; 3210 3211 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3212 3213 unsigned Flags = getOptimizationFlags(&I); 3214 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3215 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3216 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3217 1 << bitc::CALL_EXPLICIT_TYPE | 3218 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3219 unsigned(Flags != 0) << bitc::CALL_FMF); 3220 if (Flags != 0) 3221 Vals.push_back(Flags); 3222 3223 Vals.push_back(VE.getTypeID(FTy)); 3224 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3225 3226 // Emit value #'s for the fixed parameters. 3227 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3228 // Check for labels (can happen with asm labels). 3229 if (FTy->getParamType(i)->isLabelTy()) 3230 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3231 else 3232 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3233 } 3234 3235 // Emit type/value pairs for varargs params. 3236 if (FTy->isVarArg()) { 3237 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3238 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3239 } 3240 break; 3241 } 3242 case Instruction::VAArg: 3243 Code = bitc::FUNC_CODE_INST_VAARG; 3244 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3245 pushValue(I.getOperand(0), InstID, Vals); // valist. 3246 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3247 break; 3248 case Instruction::Freeze: 3249 Code = bitc::FUNC_CODE_INST_FREEZE; 3250 pushValueAndType(I.getOperand(0), InstID, Vals); 3251 break; 3252 } 3253 3254 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3255 Vals.clear(); 3256 } 3257 3258 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3259 /// to allow clients to efficiently find the function body. 3260 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3261 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3262 // Get the offset of the VST we are writing, and backpatch it into 3263 // the VST forward declaration record. 3264 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3265 // The BitcodeStartBit was the stream offset of the identification block. 3266 VSTOffset -= bitcodeStartBit(); 3267 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3268 // Note that we add 1 here because the offset is relative to one word 3269 // before the start of the identification block, which was historically 3270 // always the start of the regular bitcode header. 3271 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3272 3273 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3274 3275 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3276 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3279 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3280 3281 for (const Function &F : M) { 3282 uint64_t Record[2]; 3283 3284 if (F.isDeclaration()) 3285 continue; 3286 3287 Record[0] = VE.getValueID(&F); 3288 3289 // Save the word offset of the function (from the start of the 3290 // actual bitcode written to the stream). 3291 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3292 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3293 // Note that we add 1 here because the offset is relative to one word 3294 // before the start of the identification block, which was historically 3295 // always the start of the regular bitcode header. 3296 Record[1] = BitcodeIndex / 32 + 1; 3297 3298 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3299 } 3300 3301 Stream.ExitBlock(); 3302 } 3303 3304 /// Emit names for arguments, instructions and basic blocks in a function. 3305 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3306 const ValueSymbolTable &VST) { 3307 if (VST.empty()) 3308 return; 3309 3310 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3311 3312 // FIXME: Set up the abbrev, we know how many values there are! 3313 // FIXME: We know if the type names can use 7-bit ascii. 3314 SmallVector<uint64_t, 64> NameVals; 3315 3316 for (const ValueName &Name : VST) { 3317 // Figure out the encoding to use for the name. 3318 StringEncoding Bits = getStringEncoding(Name.getKey()); 3319 3320 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3321 NameVals.push_back(VE.getValueID(Name.getValue())); 3322 3323 // VST_CODE_ENTRY: [valueid, namechar x N] 3324 // VST_CODE_BBENTRY: [bbid, namechar x N] 3325 unsigned Code; 3326 if (isa<BasicBlock>(Name.getValue())) { 3327 Code = bitc::VST_CODE_BBENTRY; 3328 if (Bits == SE_Char6) 3329 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3330 } else { 3331 Code = bitc::VST_CODE_ENTRY; 3332 if (Bits == SE_Char6) 3333 AbbrevToUse = VST_ENTRY_6_ABBREV; 3334 else if (Bits == SE_Fixed7) 3335 AbbrevToUse = VST_ENTRY_7_ABBREV; 3336 } 3337 3338 for (const auto P : Name.getKey()) 3339 NameVals.push_back((unsigned char)P); 3340 3341 // Emit the finished record. 3342 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3343 NameVals.clear(); 3344 } 3345 3346 Stream.ExitBlock(); 3347 } 3348 3349 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3350 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3351 unsigned Code; 3352 if (isa<BasicBlock>(Order.V)) 3353 Code = bitc::USELIST_CODE_BB; 3354 else 3355 Code = bitc::USELIST_CODE_DEFAULT; 3356 3357 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3358 Record.push_back(VE.getValueID(Order.V)); 3359 Stream.EmitRecord(Code, Record); 3360 } 3361 3362 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3363 assert(VE.shouldPreserveUseListOrder() && 3364 "Expected to be preserving use-list order"); 3365 3366 auto hasMore = [&]() { 3367 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3368 }; 3369 if (!hasMore()) 3370 // Nothing to do. 3371 return; 3372 3373 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3374 while (hasMore()) { 3375 writeUseList(std::move(VE.UseListOrders.back())); 3376 VE.UseListOrders.pop_back(); 3377 } 3378 Stream.ExitBlock(); 3379 } 3380 3381 /// Emit a function body to the module stream. 3382 void ModuleBitcodeWriter::writeFunction( 3383 const Function &F, 3384 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3385 // Save the bitcode index of the start of this function block for recording 3386 // in the VST. 3387 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3388 3389 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3390 VE.incorporateFunction(F); 3391 3392 SmallVector<unsigned, 64> Vals; 3393 3394 // Emit the number of basic blocks, so the reader can create them ahead of 3395 // time. 3396 Vals.push_back(VE.getBasicBlocks().size()); 3397 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3398 Vals.clear(); 3399 3400 // If there are function-local constants, emit them now. 3401 unsigned CstStart, CstEnd; 3402 VE.getFunctionConstantRange(CstStart, CstEnd); 3403 writeConstants(CstStart, CstEnd, false); 3404 3405 // If there is function-local metadata, emit it now. 3406 writeFunctionMetadata(F); 3407 3408 // Keep a running idea of what the instruction ID is. 3409 unsigned InstID = CstEnd; 3410 3411 bool NeedsMetadataAttachment = F.hasMetadata(); 3412 3413 DILocation *LastDL = nullptr; 3414 SmallSetVector<Function *, 4> BlockAddressUsers; 3415 3416 // Finally, emit all the instructions, in order. 3417 for (const BasicBlock &BB : F) { 3418 for (const Instruction &I : BB) { 3419 writeInstruction(I, InstID, Vals); 3420 3421 if (!I.getType()->isVoidTy()) 3422 ++InstID; 3423 3424 // If the instruction has metadata, write a metadata attachment later. 3425 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3426 3427 // If the instruction has a debug location, emit it. 3428 DILocation *DL = I.getDebugLoc(); 3429 if (!DL) 3430 continue; 3431 3432 if (DL == LastDL) { 3433 // Just repeat the same debug loc as last time. 3434 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3435 continue; 3436 } 3437 3438 Vals.push_back(DL->getLine()); 3439 Vals.push_back(DL->getColumn()); 3440 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3441 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3442 Vals.push_back(DL->isImplicitCode()); 3443 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3444 Vals.clear(); 3445 3446 LastDL = DL; 3447 } 3448 3449 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3450 SmallVector<Value *> Worklist{BA}; 3451 SmallPtrSet<Value *, 8> Visited{BA}; 3452 while (!Worklist.empty()) { 3453 Value *V = Worklist.pop_back_val(); 3454 for (User *U : V->users()) { 3455 if (auto *I = dyn_cast<Instruction>(U)) { 3456 Function *P = I->getFunction(); 3457 if (P != &F) 3458 BlockAddressUsers.insert(P); 3459 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3460 Visited.insert(U).second) 3461 Worklist.push_back(U); 3462 } 3463 } 3464 } 3465 } 3466 3467 if (!BlockAddressUsers.empty()) { 3468 Vals.resize(BlockAddressUsers.size()); 3469 for (auto I : llvm::enumerate(BlockAddressUsers)) 3470 Vals[I.index()] = VE.getValueID(I.value()); 3471 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3472 Vals.clear(); 3473 } 3474 3475 // Emit names for all the instructions etc. 3476 if (auto *Symtab = F.getValueSymbolTable()) 3477 writeFunctionLevelValueSymbolTable(*Symtab); 3478 3479 if (NeedsMetadataAttachment) 3480 writeFunctionMetadataAttachment(F); 3481 if (VE.shouldPreserveUseListOrder()) 3482 writeUseListBlock(&F); 3483 VE.purgeFunction(); 3484 Stream.ExitBlock(); 3485 } 3486 3487 // Emit blockinfo, which defines the standard abbreviations etc. 3488 void ModuleBitcodeWriter::writeBlockInfo() { 3489 // We only want to emit block info records for blocks that have multiple 3490 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3491 // Other blocks can define their abbrevs inline. 3492 Stream.EnterBlockInfoBlock(); 3493 3494 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3495 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3500 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3501 VST_ENTRY_8_ABBREV) 3502 llvm_unreachable("Unexpected abbrev ordering!"); 3503 } 3504 3505 { // 7-bit fixed width VST_CODE_ENTRY strings. 3506 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3507 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3511 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3512 VST_ENTRY_7_ABBREV) 3513 llvm_unreachable("Unexpected abbrev ordering!"); 3514 } 3515 { // 6-bit char6 VST_CODE_ENTRY strings. 3516 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3517 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3521 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3522 VST_ENTRY_6_ABBREV) 3523 llvm_unreachable("Unexpected abbrev ordering!"); 3524 } 3525 { // 6-bit char6 VST_CODE_BBENTRY strings. 3526 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3527 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3531 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3532 VST_BBENTRY_6_ABBREV) 3533 llvm_unreachable("Unexpected abbrev ordering!"); 3534 } 3535 3536 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3537 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3538 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3540 VE.computeBitsRequiredForTypeIndicies())); 3541 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3542 CONSTANTS_SETTYPE_ABBREV) 3543 llvm_unreachable("Unexpected abbrev ordering!"); 3544 } 3545 3546 { // INTEGER abbrev for CONSTANTS_BLOCK. 3547 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3548 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3550 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3551 CONSTANTS_INTEGER_ABBREV) 3552 llvm_unreachable("Unexpected abbrev ordering!"); 3553 } 3554 3555 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3556 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3557 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3560 VE.computeBitsRequiredForTypeIndicies())); 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3562 3563 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3564 CONSTANTS_CE_CAST_Abbrev) 3565 llvm_unreachable("Unexpected abbrev ordering!"); 3566 } 3567 { // NULL abbrev for CONSTANTS_BLOCK. 3568 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3569 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3570 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3571 CONSTANTS_NULL_Abbrev) 3572 llvm_unreachable("Unexpected abbrev ordering!"); 3573 } 3574 3575 // FIXME: This should only use space for first class types! 3576 3577 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3578 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3579 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3582 VE.computeBitsRequiredForTypeIndicies())); 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3585 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3586 FUNCTION_INST_LOAD_ABBREV) 3587 llvm_unreachable("Unexpected abbrev ordering!"); 3588 } 3589 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3590 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3591 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3594 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3595 FUNCTION_INST_UNOP_ABBREV) 3596 llvm_unreachable("Unexpected abbrev ordering!"); 3597 } 3598 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3599 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3600 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3604 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3605 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3606 llvm_unreachable("Unexpected abbrev ordering!"); 3607 } 3608 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3609 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3610 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3614 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3615 FUNCTION_INST_BINOP_ABBREV) 3616 llvm_unreachable("Unexpected abbrev ordering!"); 3617 } 3618 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3619 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3620 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3625 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3626 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3627 llvm_unreachable("Unexpected abbrev ordering!"); 3628 } 3629 { // INST_CAST abbrev for FUNCTION_BLOCK. 3630 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3631 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3634 VE.computeBitsRequiredForTypeIndicies())); 3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3636 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3637 FUNCTION_INST_CAST_ABBREV) 3638 llvm_unreachable("Unexpected abbrev ordering!"); 3639 } 3640 3641 { // INST_RET abbrev for FUNCTION_BLOCK. 3642 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3643 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3644 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3645 FUNCTION_INST_RET_VOID_ABBREV) 3646 llvm_unreachable("Unexpected abbrev ordering!"); 3647 } 3648 { // INST_RET abbrev for FUNCTION_BLOCK. 3649 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3650 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3652 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3653 FUNCTION_INST_RET_VAL_ABBREV) 3654 llvm_unreachable("Unexpected abbrev ordering!"); 3655 } 3656 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3657 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3658 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3659 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3660 FUNCTION_INST_UNREACHABLE_ABBREV) 3661 llvm_unreachable("Unexpected abbrev ordering!"); 3662 } 3663 { 3664 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3665 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3668 Log2_32_Ceil(VE.getTypes().size() + 1))); 3669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3671 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3672 FUNCTION_INST_GEP_ABBREV) 3673 llvm_unreachable("Unexpected abbrev ordering!"); 3674 } 3675 3676 Stream.ExitBlock(); 3677 } 3678 3679 /// Write the module path strings, currently only used when generating 3680 /// a combined index file. 3681 void IndexBitcodeWriter::writeModStrings() { 3682 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3683 3684 // TODO: See which abbrev sizes we actually need to emit 3685 3686 // 8-bit fixed-width MST_ENTRY strings. 3687 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3688 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3692 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3693 3694 // 7-bit fixed width MST_ENTRY strings. 3695 Abbv = std::make_shared<BitCodeAbbrev>(); 3696 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3700 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3701 3702 // 6-bit char6 MST_ENTRY strings. 3703 Abbv = std::make_shared<BitCodeAbbrev>(); 3704 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3708 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3709 3710 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3711 Abbv = std::make_shared<BitCodeAbbrev>(); 3712 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3718 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3719 3720 SmallVector<unsigned, 64> Vals; 3721 forEachModule( 3722 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3723 StringRef Key = MPSE.getKey(); 3724 const auto &Value = MPSE.getValue(); 3725 StringEncoding Bits = getStringEncoding(Key); 3726 unsigned AbbrevToUse = Abbrev8Bit; 3727 if (Bits == SE_Char6) 3728 AbbrevToUse = Abbrev6Bit; 3729 else if (Bits == SE_Fixed7) 3730 AbbrevToUse = Abbrev7Bit; 3731 3732 Vals.push_back(Value.first); 3733 Vals.append(Key.begin(), Key.end()); 3734 3735 // Emit the finished record. 3736 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3737 3738 // Emit an optional hash for the module now 3739 const auto &Hash = Value.second; 3740 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3741 Vals.assign(Hash.begin(), Hash.end()); 3742 // Emit the hash record. 3743 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3744 } 3745 3746 Vals.clear(); 3747 }); 3748 Stream.ExitBlock(); 3749 } 3750 3751 /// Write the function type metadata related records that need to appear before 3752 /// a function summary entry (whether per-module or combined). 3753 template <typename Fn> 3754 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3755 FunctionSummary *FS, 3756 Fn GetValueID) { 3757 if (!FS->type_tests().empty()) 3758 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3759 3760 SmallVector<uint64_t, 64> Record; 3761 3762 auto WriteVFuncIdVec = [&](uint64_t Ty, 3763 ArrayRef<FunctionSummary::VFuncId> VFs) { 3764 if (VFs.empty()) 3765 return; 3766 Record.clear(); 3767 for (auto &VF : VFs) { 3768 Record.push_back(VF.GUID); 3769 Record.push_back(VF.Offset); 3770 } 3771 Stream.EmitRecord(Ty, Record); 3772 }; 3773 3774 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3775 FS->type_test_assume_vcalls()); 3776 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3777 FS->type_checked_load_vcalls()); 3778 3779 auto WriteConstVCallVec = [&](uint64_t Ty, 3780 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3781 for (auto &VC : VCs) { 3782 Record.clear(); 3783 Record.push_back(VC.VFunc.GUID); 3784 Record.push_back(VC.VFunc.Offset); 3785 llvm::append_range(Record, VC.Args); 3786 Stream.EmitRecord(Ty, Record); 3787 } 3788 }; 3789 3790 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3791 FS->type_test_assume_const_vcalls()); 3792 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3793 FS->type_checked_load_const_vcalls()); 3794 3795 auto WriteRange = [&](ConstantRange Range) { 3796 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3797 assert(Range.getLower().getNumWords() == 1); 3798 assert(Range.getUpper().getNumWords() == 1); 3799 emitSignedInt64(Record, *Range.getLower().getRawData()); 3800 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3801 }; 3802 3803 if (!FS->paramAccesses().empty()) { 3804 Record.clear(); 3805 for (auto &Arg : FS->paramAccesses()) { 3806 size_t UndoSize = Record.size(); 3807 Record.push_back(Arg.ParamNo); 3808 WriteRange(Arg.Use); 3809 Record.push_back(Arg.Calls.size()); 3810 for (auto &Call : Arg.Calls) { 3811 Record.push_back(Call.ParamNo); 3812 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3813 if (!ValueID) { 3814 // If ValueID is unknown we can't drop just this call, we must drop 3815 // entire parameter. 3816 Record.resize(UndoSize); 3817 break; 3818 } 3819 Record.push_back(*ValueID); 3820 WriteRange(Call.Offsets); 3821 } 3822 } 3823 if (!Record.empty()) 3824 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3825 } 3826 } 3827 3828 /// Collect type IDs from type tests used by function. 3829 static void 3830 getReferencedTypeIds(FunctionSummary *FS, 3831 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3832 if (!FS->type_tests().empty()) 3833 for (auto &TT : FS->type_tests()) 3834 ReferencedTypeIds.insert(TT); 3835 3836 auto GetReferencedTypesFromVFuncIdVec = 3837 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3838 for (auto &VF : VFs) 3839 ReferencedTypeIds.insert(VF.GUID); 3840 }; 3841 3842 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3843 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3844 3845 auto GetReferencedTypesFromConstVCallVec = 3846 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3847 for (auto &VC : VCs) 3848 ReferencedTypeIds.insert(VC.VFunc.GUID); 3849 }; 3850 3851 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3852 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3853 } 3854 3855 static void writeWholeProgramDevirtResolutionByArg( 3856 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3857 const WholeProgramDevirtResolution::ByArg &ByArg) { 3858 NameVals.push_back(args.size()); 3859 llvm::append_range(NameVals, args); 3860 3861 NameVals.push_back(ByArg.TheKind); 3862 NameVals.push_back(ByArg.Info); 3863 NameVals.push_back(ByArg.Byte); 3864 NameVals.push_back(ByArg.Bit); 3865 } 3866 3867 static void writeWholeProgramDevirtResolution( 3868 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3869 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3870 NameVals.push_back(Id); 3871 3872 NameVals.push_back(Wpd.TheKind); 3873 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3874 NameVals.push_back(Wpd.SingleImplName.size()); 3875 3876 NameVals.push_back(Wpd.ResByArg.size()); 3877 for (auto &A : Wpd.ResByArg) 3878 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3879 } 3880 3881 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3882 StringTableBuilder &StrtabBuilder, 3883 const std::string &Id, 3884 const TypeIdSummary &Summary) { 3885 NameVals.push_back(StrtabBuilder.add(Id)); 3886 NameVals.push_back(Id.size()); 3887 3888 NameVals.push_back(Summary.TTRes.TheKind); 3889 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3890 NameVals.push_back(Summary.TTRes.AlignLog2); 3891 NameVals.push_back(Summary.TTRes.SizeM1); 3892 NameVals.push_back(Summary.TTRes.BitMask); 3893 NameVals.push_back(Summary.TTRes.InlineBits); 3894 3895 for (auto &W : Summary.WPDRes) 3896 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3897 W.second); 3898 } 3899 3900 static void writeTypeIdCompatibleVtableSummaryRecord( 3901 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3902 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3903 ValueEnumerator &VE) { 3904 NameVals.push_back(StrtabBuilder.add(Id)); 3905 NameVals.push_back(Id.size()); 3906 3907 for (auto &P : Summary) { 3908 NameVals.push_back(P.AddressPointOffset); 3909 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3910 } 3911 } 3912 3913 static void writeFunctionHeapProfileRecords( 3914 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 3915 unsigned AllocAbbrev, bool PerModule, 3916 std::function<unsigned(const ValueInfo &VI)> GetValueID, 3917 std::function<unsigned(unsigned)> GetStackIndex) { 3918 SmallVector<uint64_t> Record; 3919 3920 for (auto &CI : FS->callsites()) { 3921 Record.clear(); 3922 // Per module callsite clones should always have a single entry of 3923 // value 0. 3924 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 3925 Record.push_back(GetValueID(CI.Callee)); 3926 if (!PerModule) { 3927 Record.push_back(CI.StackIdIndices.size()); 3928 Record.push_back(CI.Clones.size()); 3929 } 3930 for (auto Id : CI.StackIdIndices) 3931 Record.push_back(GetStackIndex(Id)); 3932 if (!PerModule) { 3933 for (auto V : CI.Clones) 3934 Record.push_back(V); 3935 } 3936 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 3937 : bitc::FS_COMBINED_CALLSITE_INFO, 3938 Record, CallsiteAbbrev); 3939 } 3940 3941 for (auto &AI : FS->allocs()) { 3942 Record.clear(); 3943 // Per module alloc versions should always have a single entry of 3944 // value 0. 3945 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 3946 if (!PerModule) { 3947 Record.push_back(AI.MIBs.size()); 3948 Record.push_back(AI.Versions.size()); 3949 } 3950 for (auto &MIB : AI.MIBs) { 3951 Record.push_back((uint8_t)MIB.AllocType); 3952 Record.push_back(MIB.StackIdIndices.size()); 3953 for (auto Id : MIB.StackIdIndices) 3954 Record.push_back(GetStackIndex(Id)); 3955 } 3956 if (!PerModule) { 3957 for (auto V : AI.Versions) 3958 Record.push_back(V); 3959 } 3960 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 3961 : bitc::FS_COMBINED_ALLOC_INFO, 3962 Record, AllocAbbrev); 3963 } 3964 } 3965 3966 // Helper to emit a single function summary record. 3967 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3968 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3969 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3970 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) { 3971 NameVals.push_back(ValueID); 3972 3973 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3974 3975 writeFunctionTypeMetadataRecords( 3976 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3977 return {VE.getValueID(VI.getValue())}; 3978 }); 3979 3980 writeFunctionHeapProfileRecords( 3981 Stream, FS, CallsiteAbbrev, AllocAbbrev, 3982 /*PerModule*/ true, 3983 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 3984 /*GetStackIndex*/ [&](unsigned I) { return I; }); 3985 3986 auto SpecialRefCnts = FS->specialRefCounts(); 3987 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3988 NameVals.push_back(FS->instCount()); 3989 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3990 NameVals.push_back(FS->refs().size()); 3991 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3992 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3993 3994 for (auto &RI : FS->refs()) 3995 NameVals.push_back(VE.getValueID(RI.getValue())); 3996 3997 bool HasProfileData = 3998 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3999 for (auto &ECI : FS->calls()) { 4000 NameVals.push_back(getValueId(ECI.first)); 4001 if (HasProfileData) 4002 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 4003 else if (WriteRelBFToSummary) 4004 NameVals.push_back(ECI.second.RelBlockFreq); 4005 } 4006 4007 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4008 unsigned Code = 4009 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 4010 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 4011 : bitc::FS_PERMODULE)); 4012 4013 // Emit the finished record. 4014 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4015 NameVals.clear(); 4016 } 4017 4018 // Collect the global value references in the given variable's initializer, 4019 // and emit them in a summary record. 4020 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4021 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4022 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4023 auto VI = Index->getValueInfo(V.getGUID()); 4024 if (!VI || VI.getSummaryList().empty()) { 4025 // Only declarations should not have a summary (a declaration might however 4026 // have a summary if the def was in module level asm). 4027 assert(V.isDeclaration()); 4028 return; 4029 } 4030 auto *Summary = VI.getSummaryList()[0].get(); 4031 NameVals.push_back(VE.getValueID(&V)); 4032 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4033 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4034 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4035 4036 auto VTableFuncs = VS->vTableFuncs(); 4037 if (!VTableFuncs.empty()) 4038 NameVals.push_back(VS->refs().size()); 4039 4040 unsigned SizeBeforeRefs = NameVals.size(); 4041 for (auto &RI : VS->refs()) 4042 NameVals.push_back(VE.getValueID(RI.getValue())); 4043 // Sort the refs for determinism output, the vector returned by FS->refs() has 4044 // been initialized from a DenseSet. 4045 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4046 4047 if (VTableFuncs.empty()) 4048 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4049 FSModRefsAbbrev); 4050 else { 4051 // VTableFuncs pairs should already be sorted by offset. 4052 for (auto &P : VTableFuncs) { 4053 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4054 NameVals.push_back(P.VTableOffset); 4055 } 4056 4057 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4058 FSModVTableRefsAbbrev); 4059 } 4060 NameVals.clear(); 4061 } 4062 4063 /// Emit the per-module summary section alongside the rest of 4064 /// the module's bitcode. 4065 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4066 // By default we compile with ThinLTO if the module has a summary, but the 4067 // client can request full LTO with a module flag. 4068 bool IsThinLTO = true; 4069 if (auto *MD = 4070 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4071 IsThinLTO = MD->getZExtValue(); 4072 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4073 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4074 4); 4075 4076 Stream.EmitRecord( 4077 bitc::FS_VERSION, 4078 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4079 4080 // Write the index flags. 4081 uint64_t Flags = 0; 4082 // Bits 1-3 are set only in the combined index, skip them. 4083 if (Index->enableSplitLTOUnit()) 4084 Flags |= 0x8; 4085 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4086 4087 if (Index->begin() == Index->end()) { 4088 Stream.ExitBlock(); 4089 return; 4090 } 4091 4092 for (const auto &GVI : valueIds()) { 4093 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4094 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4095 } 4096 4097 if (!Index->stackIds().empty()) { 4098 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4099 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4100 // numids x stackid 4101 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4102 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4103 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4104 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4105 } 4106 4107 // Abbrev for FS_PERMODULE_PROFILE. 4108 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4109 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4117 // numrefs x valueid, n x (valueid, hotness) 4118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4120 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4121 4122 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4123 Abbv = std::make_shared<BitCodeAbbrev>(); 4124 if (WriteRelBFToSummary) 4125 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4126 else 4127 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4135 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4138 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4139 4140 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4141 Abbv = std::make_shared<BitCodeAbbrev>(); 4142 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4147 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4148 4149 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4150 Abbv = std::make_shared<BitCodeAbbrev>(); 4151 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4155 // numrefs x valueid, n x (valueid , offset) 4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4158 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4159 4160 // Abbrev for FS_ALIAS. 4161 Abbv = std::make_shared<BitCodeAbbrev>(); 4162 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4166 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4167 4168 // Abbrev for FS_TYPE_ID_METADATA 4169 Abbv = std::make_shared<BitCodeAbbrev>(); 4170 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4173 // n x (valueid , offset) 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4176 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4177 4178 Abbv = std::make_shared<BitCodeAbbrev>(); 4179 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4181 // n x stackidindex 4182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4184 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4185 4186 Abbv = std::make_shared<BitCodeAbbrev>(); 4187 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4188 // n x (alloc type, numstackids, numstackids x stackidindex) 4189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4191 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4192 4193 SmallVector<uint64_t, 64> NameVals; 4194 // Iterate over the list of functions instead of the Index to 4195 // ensure the ordering is stable. 4196 for (const Function &F : M) { 4197 // Summary emission does not support anonymous functions, they have to 4198 // renamed using the anonymous function renaming pass. 4199 if (!F.hasName()) 4200 report_fatal_error("Unexpected anonymous function when writing summary"); 4201 4202 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4203 if (!VI || VI.getSummaryList().empty()) { 4204 // Only declarations should not have a summary (a declaration might 4205 // however have a summary if the def was in module level asm). 4206 assert(F.isDeclaration()); 4207 continue; 4208 } 4209 auto *Summary = VI.getSummaryList()[0].get(); 4210 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4211 FSCallsAbbrev, FSCallsProfileAbbrev, 4212 CallsiteAbbrev, AllocAbbrev, F); 4213 } 4214 4215 // Capture references from GlobalVariable initializers, which are outside 4216 // of a function scope. 4217 for (const GlobalVariable &G : M.globals()) 4218 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4219 FSModVTableRefsAbbrev); 4220 4221 for (const GlobalAlias &A : M.aliases()) { 4222 auto *Aliasee = A.getAliaseeObject(); 4223 // Skip ifunc and nameless functions which don't have an entry in the 4224 // summary. 4225 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4226 continue; 4227 auto AliasId = VE.getValueID(&A); 4228 auto AliaseeId = VE.getValueID(Aliasee); 4229 NameVals.push_back(AliasId); 4230 auto *Summary = Index->getGlobalValueSummary(A); 4231 AliasSummary *AS = cast<AliasSummary>(Summary); 4232 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4233 NameVals.push_back(AliaseeId); 4234 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4235 NameVals.clear(); 4236 } 4237 4238 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4239 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4240 S.second, VE); 4241 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4242 TypeIdCompatibleVtableAbbrev); 4243 NameVals.clear(); 4244 } 4245 4246 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4247 ArrayRef<uint64_t>{Index->getBlockCount()}); 4248 4249 Stream.ExitBlock(); 4250 } 4251 4252 /// Emit the combined summary section into the combined index file. 4253 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4254 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4255 Stream.EmitRecord( 4256 bitc::FS_VERSION, 4257 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4258 4259 // Write the index flags. 4260 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4261 4262 for (const auto &GVI : valueIds()) { 4263 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4264 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4265 } 4266 4267 if (!StackIdIndices.empty()) { 4268 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4269 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4270 // numids x stackid 4271 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4272 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4273 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4274 // Write the stack ids used by this index, which will be a subset of those in 4275 // the full index in the case of distributed indexes. 4276 std::vector<uint64_t> StackIds; 4277 for (auto &I : StackIdIndices) 4278 StackIds.push_back(Index.getStackIdAtIndex(I)); 4279 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4280 } 4281 4282 // Abbrev for FS_COMBINED. 4283 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4284 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4294 // numrefs x valueid, n x (valueid) 4295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4297 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4298 4299 // Abbrev for FS_COMBINED_PROFILE. 4300 Abbv = std::make_shared<BitCodeAbbrev>(); 4301 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4311 // numrefs x valueid, n x (valueid, hotness) 4312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4314 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4315 4316 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4317 Abbv = std::make_shared<BitCodeAbbrev>(); 4318 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4324 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4325 4326 // Abbrev for FS_COMBINED_ALIAS. 4327 Abbv = std::make_shared<BitCodeAbbrev>(); 4328 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4333 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4334 4335 Abbv = std::make_shared<BitCodeAbbrev>(); 4336 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4340 // numstackindices x stackidindex, numver x version 4341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4343 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4344 4345 Abbv = std::make_shared<BitCodeAbbrev>(); 4346 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4349 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4350 // numver x version 4351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4353 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4354 4355 // The aliases are emitted as a post-pass, and will point to the value 4356 // id of the aliasee. Save them in a vector for post-processing. 4357 SmallVector<AliasSummary *, 64> Aliases; 4358 4359 // Save the value id for each summary for alias emission. 4360 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4361 4362 SmallVector<uint64_t, 64> NameVals; 4363 4364 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4365 // with the type ids referenced by this index file. 4366 std::set<GlobalValue::GUID> ReferencedTypeIds; 4367 4368 // For local linkage, we also emit the original name separately 4369 // immediately after the record. 4370 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4371 // We don't need to emit the original name if we are writing the index for 4372 // distributed backends (in which case ModuleToSummariesForIndex is 4373 // non-null). The original name is only needed during the thin link, since 4374 // for SamplePGO the indirect call targets for local functions have 4375 // have the original name annotated in profile. 4376 // Continue to emit it when writing out the entire combined index, which is 4377 // used in testing the thin link via llvm-lto. 4378 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4379 return; 4380 NameVals.push_back(S.getOriginalName()); 4381 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4382 NameVals.clear(); 4383 }; 4384 4385 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4386 forEachSummary([&](GVInfo I, bool IsAliasee) { 4387 GlobalValueSummary *S = I.second; 4388 assert(S); 4389 DefOrUseGUIDs.insert(I.first); 4390 for (const ValueInfo &VI : S->refs()) 4391 DefOrUseGUIDs.insert(VI.getGUID()); 4392 4393 auto ValueId = getValueId(I.first); 4394 assert(ValueId); 4395 SummaryToValueIdMap[S] = *ValueId; 4396 4397 // If this is invoked for an aliasee, we want to record the above 4398 // mapping, but then not emit a summary entry (if the aliasee is 4399 // to be imported, we will invoke this separately with IsAliasee=false). 4400 if (IsAliasee) 4401 return; 4402 4403 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4404 // Will process aliases as a post-pass because the reader wants all 4405 // global to be loaded first. 4406 Aliases.push_back(AS); 4407 return; 4408 } 4409 4410 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4411 NameVals.push_back(*ValueId); 4412 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4413 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4414 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4415 for (auto &RI : VS->refs()) { 4416 auto RefValueId = getValueId(RI.getGUID()); 4417 if (!RefValueId) 4418 continue; 4419 NameVals.push_back(*RefValueId); 4420 } 4421 4422 // Emit the finished record. 4423 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4424 FSModRefsAbbrev); 4425 NameVals.clear(); 4426 MaybeEmitOriginalName(*S); 4427 return; 4428 } 4429 4430 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4431 if (!VI) 4432 return None; 4433 return getValueId(VI.getGUID()); 4434 }; 4435 4436 auto *FS = cast<FunctionSummary>(S); 4437 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4438 getReferencedTypeIds(FS, ReferencedTypeIds); 4439 4440 writeFunctionHeapProfileRecords( 4441 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4442 /*PerModule*/ false, 4443 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4444 Optional<unsigned> ValueID = GetValueId(VI); 4445 // This can happen in shared index files for distributed ThinLTO if 4446 // the callee function summary is not included. Record 0 which we 4447 // will have to deal with conservatively when doing any kind of 4448 // validation in the ThinLTO backends. 4449 if (!ValueID) 4450 return 0; 4451 return *ValueID; 4452 }, 4453 /*GetStackIndex*/ [&](unsigned I) { 4454 // Get the corresponding index into the list of StackIdIndices 4455 // actually being written for this combined index (which may be a 4456 // subset in the case of distributed indexes). 4457 auto Lower = llvm::lower_bound(StackIdIndices, I); 4458 return std::distance(StackIdIndices.begin(), Lower); 4459 }); 4460 4461 NameVals.push_back(*ValueId); 4462 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4463 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4464 NameVals.push_back(FS->instCount()); 4465 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4466 NameVals.push_back(FS->entryCount()); 4467 4468 // Fill in below 4469 NameVals.push_back(0); // numrefs 4470 NameVals.push_back(0); // rorefcnt 4471 NameVals.push_back(0); // worefcnt 4472 4473 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4474 for (auto &RI : FS->refs()) { 4475 auto RefValueId = getValueId(RI.getGUID()); 4476 if (!RefValueId) 4477 continue; 4478 NameVals.push_back(*RefValueId); 4479 if (RI.isReadOnly()) 4480 RORefCnt++; 4481 else if (RI.isWriteOnly()) 4482 WORefCnt++; 4483 Count++; 4484 } 4485 NameVals[6] = Count; 4486 NameVals[7] = RORefCnt; 4487 NameVals[8] = WORefCnt; 4488 4489 bool HasProfileData = false; 4490 for (auto &EI : FS->calls()) { 4491 HasProfileData |= 4492 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4493 if (HasProfileData) 4494 break; 4495 } 4496 4497 for (auto &EI : FS->calls()) { 4498 // If this GUID doesn't have a value id, it doesn't have a function 4499 // summary and we don't need to record any calls to it. 4500 Optional<unsigned> CallValueId = GetValueId(EI.first); 4501 if (!CallValueId) 4502 continue; 4503 NameVals.push_back(*CallValueId); 4504 if (HasProfileData) 4505 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4506 } 4507 4508 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4509 unsigned Code = 4510 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4511 4512 // Emit the finished record. 4513 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4514 NameVals.clear(); 4515 MaybeEmitOriginalName(*S); 4516 }); 4517 4518 for (auto *AS : Aliases) { 4519 auto AliasValueId = SummaryToValueIdMap[AS]; 4520 assert(AliasValueId); 4521 NameVals.push_back(AliasValueId); 4522 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4523 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4524 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4525 assert(AliaseeValueId); 4526 NameVals.push_back(AliaseeValueId); 4527 4528 // Emit the finished record. 4529 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4530 NameVals.clear(); 4531 MaybeEmitOriginalName(*AS); 4532 4533 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4534 getReferencedTypeIds(FS, ReferencedTypeIds); 4535 } 4536 4537 if (!Index.cfiFunctionDefs().empty()) { 4538 for (auto &S : Index.cfiFunctionDefs()) { 4539 if (DefOrUseGUIDs.count( 4540 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4541 NameVals.push_back(StrtabBuilder.add(S)); 4542 NameVals.push_back(S.size()); 4543 } 4544 } 4545 if (!NameVals.empty()) { 4546 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4547 NameVals.clear(); 4548 } 4549 } 4550 4551 if (!Index.cfiFunctionDecls().empty()) { 4552 for (auto &S : Index.cfiFunctionDecls()) { 4553 if (DefOrUseGUIDs.count( 4554 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4555 NameVals.push_back(StrtabBuilder.add(S)); 4556 NameVals.push_back(S.size()); 4557 } 4558 } 4559 if (!NameVals.empty()) { 4560 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4561 NameVals.clear(); 4562 } 4563 } 4564 4565 // Walk the GUIDs that were referenced, and write the 4566 // corresponding type id records. 4567 for (auto &T : ReferencedTypeIds) { 4568 auto TidIter = Index.typeIds().equal_range(T); 4569 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4570 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4571 It->second.second); 4572 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4573 NameVals.clear(); 4574 } 4575 } 4576 4577 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4578 ArrayRef<uint64_t>{Index.getBlockCount()}); 4579 4580 Stream.ExitBlock(); 4581 } 4582 4583 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4584 /// current llvm version, and a record for the epoch number. 4585 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4586 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4587 4588 // Write the "user readable" string identifying the bitcode producer 4589 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4590 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4593 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4594 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4595 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4596 4597 // Write the epoch version 4598 Abbv = std::make_shared<BitCodeAbbrev>(); 4599 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4601 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4602 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4603 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4604 Stream.ExitBlock(); 4605 } 4606 4607 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4608 // Emit the module's hash. 4609 // MODULE_CODE_HASH: [5*i32] 4610 if (GenerateHash) { 4611 uint32_t Vals[5]; 4612 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4613 Buffer.size() - BlockStartPos)); 4614 std::array<uint8_t, 20> Hash = Hasher.result(); 4615 for (int Pos = 0; Pos < 20; Pos += 4) { 4616 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4617 } 4618 4619 // Emit the finished record. 4620 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4621 4622 if (ModHash) 4623 // Save the written hash value. 4624 llvm::copy(Vals, std::begin(*ModHash)); 4625 } 4626 } 4627 4628 void ModuleBitcodeWriter::write() { 4629 writeIdentificationBlock(Stream); 4630 4631 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4632 size_t BlockStartPos = Buffer.size(); 4633 4634 writeModuleVersion(); 4635 4636 // Emit blockinfo, which defines the standard abbreviations etc. 4637 writeBlockInfo(); 4638 4639 // Emit information describing all of the types in the module. 4640 writeTypeTable(); 4641 4642 // Emit information about attribute groups. 4643 writeAttributeGroupTable(); 4644 4645 // Emit information about parameter attributes. 4646 writeAttributeTable(); 4647 4648 writeComdats(); 4649 4650 // Emit top-level description of module, including target triple, inline asm, 4651 // descriptors for global variables, and function prototype info. 4652 writeModuleInfo(); 4653 4654 // Emit constants. 4655 writeModuleConstants(); 4656 4657 // Emit metadata kind names. 4658 writeModuleMetadataKinds(); 4659 4660 // Emit metadata. 4661 writeModuleMetadata(); 4662 4663 // Emit module-level use-lists. 4664 if (VE.shouldPreserveUseListOrder()) 4665 writeUseListBlock(nullptr); 4666 4667 writeOperandBundleTags(); 4668 writeSyncScopeNames(); 4669 4670 // Emit function bodies. 4671 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4672 for (const Function &F : M) 4673 if (!F.isDeclaration()) 4674 writeFunction(F, FunctionToBitcodeIndex); 4675 4676 // Need to write after the above call to WriteFunction which populates 4677 // the summary information in the index. 4678 if (Index) 4679 writePerModuleGlobalValueSummary(); 4680 4681 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4682 4683 writeModuleHash(BlockStartPos); 4684 4685 Stream.ExitBlock(); 4686 } 4687 4688 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4689 uint32_t &Position) { 4690 support::endian::write32le(&Buffer[Position], Value); 4691 Position += 4; 4692 } 4693 4694 /// If generating a bc file on darwin, we have to emit a 4695 /// header and trailer to make it compatible with the system archiver. To do 4696 /// this we emit the following header, and then emit a trailer that pads the 4697 /// file out to be a multiple of 16 bytes. 4698 /// 4699 /// struct bc_header { 4700 /// uint32_t Magic; // 0x0B17C0DE 4701 /// uint32_t Version; // Version, currently always 0. 4702 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4703 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4704 /// uint32_t CPUType; // CPU specifier. 4705 /// ... potentially more later ... 4706 /// }; 4707 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4708 const Triple &TT) { 4709 unsigned CPUType = ~0U; 4710 4711 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4712 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4713 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4714 // specific constants here because they are implicitly part of the Darwin ABI. 4715 enum { 4716 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4717 DARWIN_CPU_TYPE_X86 = 7, 4718 DARWIN_CPU_TYPE_ARM = 12, 4719 DARWIN_CPU_TYPE_POWERPC = 18 4720 }; 4721 4722 Triple::ArchType Arch = TT.getArch(); 4723 if (Arch == Triple::x86_64) 4724 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4725 else if (Arch == Triple::x86) 4726 CPUType = DARWIN_CPU_TYPE_X86; 4727 else if (Arch == Triple::ppc) 4728 CPUType = DARWIN_CPU_TYPE_POWERPC; 4729 else if (Arch == Triple::ppc64) 4730 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4731 else if (Arch == Triple::arm || Arch == Triple::thumb) 4732 CPUType = DARWIN_CPU_TYPE_ARM; 4733 4734 // Traditional Bitcode starts after header. 4735 assert(Buffer.size() >= BWH_HeaderSize && 4736 "Expected header size to be reserved"); 4737 unsigned BCOffset = BWH_HeaderSize; 4738 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4739 4740 // Write the magic and version. 4741 unsigned Position = 0; 4742 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4743 writeInt32ToBuffer(0, Buffer, Position); // Version. 4744 writeInt32ToBuffer(BCOffset, Buffer, Position); 4745 writeInt32ToBuffer(BCSize, Buffer, Position); 4746 writeInt32ToBuffer(CPUType, Buffer, Position); 4747 4748 // If the file is not a multiple of 16 bytes, insert dummy padding. 4749 while (Buffer.size() & 15) 4750 Buffer.push_back(0); 4751 } 4752 4753 /// Helper to write the header common to all bitcode files. 4754 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4755 // Emit the file header. 4756 Stream.Emit((unsigned)'B', 8); 4757 Stream.Emit((unsigned)'C', 8); 4758 Stream.Emit(0x0, 4); 4759 Stream.Emit(0xC, 4); 4760 Stream.Emit(0xE, 4); 4761 Stream.Emit(0xD, 4); 4762 } 4763 4764 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4765 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4766 writeBitcodeHeader(*Stream); 4767 } 4768 4769 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4770 4771 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4772 Stream->EnterSubblock(Block, 3); 4773 4774 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4775 Abbv->Add(BitCodeAbbrevOp(Record)); 4776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4777 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4778 4779 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4780 4781 Stream->ExitBlock(); 4782 } 4783 4784 void BitcodeWriter::writeSymtab() { 4785 assert(!WroteStrtab && !WroteSymtab); 4786 4787 // If any module has module-level inline asm, we will require a registered asm 4788 // parser for the target so that we can create an accurate symbol table for 4789 // the module. 4790 for (Module *M : Mods) { 4791 if (M->getModuleInlineAsm().empty()) 4792 continue; 4793 4794 std::string Err; 4795 const Triple TT(M->getTargetTriple()); 4796 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4797 if (!T || !T->hasMCAsmParser()) 4798 return; 4799 } 4800 4801 WroteSymtab = true; 4802 SmallVector<char, 0> Symtab; 4803 // The irsymtab::build function may be unable to create a symbol table if the 4804 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4805 // table is not required for correctness, but we still want to be able to 4806 // write malformed modules to bitcode files, so swallow the error. 4807 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4808 consumeError(std::move(E)); 4809 return; 4810 } 4811 4812 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4813 {Symtab.data(), Symtab.size()}); 4814 } 4815 4816 void BitcodeWriter::writeStrtab() { 4817 assert(!WroteStrtab); 4818 4819 std::vector<char> Strtab; 4820 StrtabBuilder.finalizeInOrder(); 4821 Strtab.resize(StrtabBuilder.getSize()); 4822 StrtabBuilder.write((uint8_t *)Strtab.data()); 4823 4824 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4825 {Strtab.data(), Strtab.size()}); 4826 4827 WroteStrtab = true; 4828 } 4829 4830 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4831 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4832 WroteStrtab = true; 4833 } 4834 4835 void BitcodeWriter::writeModule(const Module &M, 4836 bool ShouldPreserveUseListOrder, 4837 const ModuleSummaryIndex *Index, 4838 bool GenerateHash, ModuleHash *ModHash) { 4839 assert(!WroteStrtab); 4840 4841 // The Mods vector is used by irsymtab::build, which requires non-const 4842 // Modules in case it needs to materialize metadata. But the bitcode writer 4843 // requires that the module is materialized, so we can cast to non-const here, 4844 // after checking that it is in fact materialized. 4845 assert(M.isMaterialized()); 4846 Mods.push_back(const_cast<Module *>(&M)); 4847 4848 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4849 ShouldPreserveUseListOrder, Index, 4850 GenerateHash, ModHash); 4851 ModuleWriter.write(); 4852 } 4853 4854 void BitcodeWriter::writeIndex( 4855 const ModuleSummaryIndex *Index, 4856 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4857 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4858 ModuleToSummariesForIndex); 4859 IndexWriter.write(); 4860 } 4861 4862 /// Write the specified module to the specified output stream. 4863 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4864 bool ShouldPreserveUseListOrder, 4865 const ModuleSummaryIndex *Index, 4866 bool GenerateHash, ModuleHash *ModHash) { 4867 SmallVector<char, 0> Buffer; 4868 Buffer.reserve(256*1024); 4869 4870 // If this is darwin or another generic macho target, reserve space for the 4871 // header. 4872 Triple TT(M.getTargetTriple()); 4873 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4874 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4875 4876 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4877 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4878 ModHash); 4879 Writer.writeSymtab(); 4880 Writer.writeStrtab(); 4881 4882 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4883 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4884 4885 // Write the generated bitstream to "Out". 4886 if (!Buffer.empty()) 4887 Out.write((char *)&Buffer.front(), Buffer.size()); 4888 } 4889 4890 void IndexBitcodeWriter::write() { 4891 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4892 4893 writeModuleVersion(); 4894 4895 // Write the module paths in the combined index. 4896 writeModStrings(); 4897 4898 // Write the summary combined index records. 4899 writeCombinedGlobalValueSummary(); 4900 4901 Stream.ExitBlock(); 4902 } 4903 4904 // Write the specified module summary index to the given raw output stream, 4905 // where it will be written in a new bitcode block. This is used when 4906 // writing the combined index file for ThinLTO. When writing a subset of the 4907 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4908 void llvm::writeIndexToFile( 4909 const ModuleSummaryIndex &Index, raw_ostream &Out, 4910 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4911 SmallVector<char, 0> Buffer; 4912 Buffer.reserve(256 * 1024); 4913 4914 BitcodeWriter Writer(Buffer); 4915 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4916 Writer.writeStrtab(); 4917 4918 Out.write((char *)&Buffer.front(), Buffer.size()); 4919 } 4920 4921 namespace { 4922 4923 /// Class to manage the bitcode writing for a thin link bitcode file. 4924 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4925 /// ModHash is for use in ThinLTO incremental build, generated while writing 4926 /// the module bitcode file. 4927 const ModuleHash *ModHash; 4928 4929 public: 4930 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4931 BitstreamWriter &Stream, 4932 const ModuleSummaryIndex &Index, 4933 const ModuleHash &ModHash) 4934 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4935 /*ShouldPreserveUseListOrder=*/false, &Index), 4936 ModHash(&ModHash) {} 4937 4938 void write(); 4939 4940 private: 4941 void writeSimplifiedModuleInfo(); 4942 }; 4943 4944 } // end anonymous namespace 4945 4946 // This function writes a simpilified module info for thin link bitcode file. 4947 // It only contains the source file name along with the name(the offset and 4948 // size in strtab) and linkage for global values. For the global value info 4949 // entry, in order to keep linkage at offset 5, there are three zeros used 4950 // as padding. 4951 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4952 SmallVector<unsigned, 64> Vals; 4953 // Emit the module's source file name. 4954 { 4955 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4956 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4957 if (Bits == SE_Char6) 4958 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4959 else if (Bits == SE_Fixed7) 4960 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4961 4962 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4963 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4964 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4966 Abbv->Add(AbbrevOpToUse); 4967 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4968 4969 for (const auto P : M.getSourceFileName()) 4970 Vals.push_back((unsigned char)P); 4971 4972 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4973 Vals.clear(); 4974 } 4975 4976 // Emit the global variable information. 4977 for (const GlobalVariable &GV : M.globals()) { 4978 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4979 Vals.push_back(StrtabBuilder.add(GV.getName())); 4980 Vals.push_back(GV.getName().size()); 4981 Vals.push_back(0); 4982 Vals.push_back(0); 4983 Vals.push_back(0); 4984 Vals.push_back(getEncodedLinkage(GV)); 4985 4986 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4987 Vals.clear(); 4988 } 4989 4990 // Emit the function proto information. 4991 for (const Function &F : M) { 4992 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4993 Vals.push_back(StrtabBuilder.add(F.getName())); 4994 Vals.push_back(F.getName().size()); 4995 Vals.push_back(0); 4996 Vals.push_back(0); 4997 Vals.push_back(0); 4998 Vals.push_back(getEncodedLinkage(F)); 4999 5000 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5001 Vals.clear(); 5002 } 5003 5004 // Emit the alias information. 5005 for (const GlobalAlias &A : M.aliases()) { 5006 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5007 Vals.push_back(StrtabBuilder.add(A.getName())); 5008 Vals.push_back(A.getName().size()); 5009 Vals.push_back(0); 5010 Vals.push_back(0); 5011 Vals.push_back(0); 5012 Vals.push_back(getEncodedLinkage(A)); 5013 5014 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5015 Vals.clear(); 5016 } 5017 5018 // Emit the ifunc information. 5019 for (const GlobalIFunc &I : M.ifuncs()) { 5020 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5021 Vals.push_back(StrtabBuilder.add(I.getName())); 5022 Vals.push_back(I.getName().size()); 5023 Vals.push_back(0); 5024 Vals.push_back(0); 5025 Vals.push_back(0); 5026 Vals.push_back(getEncodedLinkage(I)); 5027 5028 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5029 Vals.clear(); 5030 } 5031 } 5032 5033 void ThinLinkBitcodeWriter::write() { 5034 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5035 5036 writeModuleVersion(); 5037 5038 writeSimplifiedModuleInfo(); 5039 5040 writePerModuleGlobalValueSummary(); 5041 5042 // Write module hash. 5043 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5044 5045 Stream.ExitBlock(); 5046 } 5047 5048 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5049 const ModuleSummaryIndex &Index, 5050 const ModuleHash &ModHash) { 5051 assert(!WroteStrtab); 5052 5053 // The Mods vector is used by irsymtab::build, which requires non-const 5054 // Modules in case it needs to materialize metadata. But the bitcode writer 5055 // requires that the module is materialized, so we can cast to non-const here, 5056 // after checking that it is in fact materialized. 5057 assert(M.isMaterialized()); 5058 Mods.push_back(const_cast<Module *>(&M)); 5059 5060 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5061 ModHash); 5062 ThinLinkWriter.write(); 5063 } 5064 5065 // Write the specified thin link bitcode file to the given raw output stream, 5066 // where it will be written in a new bitcode block. This is used when 5067 // writing the per-module index file for ThinLTO. 5068 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5069 const ModuleSummaryIndex &Index, 5070 const ModuleHash &ModHash) { 5071 SmallVector<char, 0> Buffer; 5072 Buffer.reserve(256 * 1024); 5073 5074 BitcodeWriter Writer(Buffer); 5075 Writer.writeThinLinkBitcode(M, Index, ModHash); 5076 Writer.writeSymtab(); 5077 Writer.writeStrtab(); 5078 5079 Out.write((char *)&Buffer.front(), Buffer.size()); 5080 } 5081 5082 static const char *getSectionNameForBitcode(const Triple &T) { 5083 switch (T.getObjectFormat()) { 5084 case Triple::MachO: 5085 return "__LLVM,__bitcode"; 5086 case Triple::COFF: 5087 case Triple::ELF: 5088 case Triple::Wasm: 5089 case Triple::UnknownObjectFormat: 5090 return ".llvmbc"; 5091 case Triple::GOFF: 5092 llvm_unreachable("GOFF is not yet implemented"); 5093 break; 5094 case Triple::SPIRV: 5095 llvm_unreachable("SPIRV is not yet implemented"); 5096 break; 5097 case Triple::XCOFF: 5098 llvm_unreachable("XCOFF is not yet implemented"); 5099 break; 5100 case Triple::DXContainer: 5101 llvm_unreachable("DXContainer is not yet implemented"); 5102 break; 5103 } 5104 llvm_unreachable("Unimplemented ObjectFormatType"); 5105 } 5106 5107 static const char *getSectionNameForCommandline(const Triple &T) { 5108 switch (T.getObjectFormat()) { 5109 case Triple::MachO: 5110 return "__LLVM,__cmdline"; 5111 case Triple::COFF: 5112 case Triple::ELF: 5113 case Triple::Wasm: 5114 case Triple::UnknownObjectFormat: 5115 return ".llvmcmd"; 5116 case Triple::GOFF: 5117 llvm_unreachable("GOFF is not yet implemented"); 5118 break; 5119 case Triple::SPIRV: 5120 llvm_unreachable("SPIRV is not yet implemented"); 5121 break; 5122 case Triple::XCOFF: 5123 llvm_unreachable("XCOFF is not yet implemented"); 5124 break; 5125 case Triple::DXContainer: 5126 llvm_unreachable("DXC is not yet implemented"); 5127 break; 5128 } 5129 llvm_unreachable("Unimplemented ObjectFormatType"); 5130 } 5131 5132 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5133 bool EmbedBitcode, bool EmbedCmdline, 5134 const std::vector<uint8_t> &CmdArgs) { 5135 // Save llvm.compiler.used and remove it. 5136 SmallVector<Constant *, 2> UsedArray; 5137 SmallVector<GlobalValue *, 4> UsedGlobals; 5138 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 5139 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5140 for (auto *GV : UsedGlobals) { 5141 if (GV->getName() != "llvm.embedded.module" && 5142 GV->getName() != "llvm.cmdline") 5143 UsedArray.push_back( 5144 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5145 } 5146 if (Used) 5147 Used->eraseFromParent(); 5148 5149 // Embed the bitcode for the llvm module. 5150 std::string Data; 5151 ArrayRef<uint8_t> ModuleData; 5152 Triple T(M.getTargetTriple()); 5153 5154 if (EmbedBitcode) { 5155 if (Buf.getBufferSize() == 0 || 5156 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5157 (const unsigned char *)Buf.getBufferEnd())) { 5158 // If the input is LLVM Assembly, bitcode is produced by serializing 5159 // the module. Use-lists order need to be preserved in this case. 5160 llvm::raw_string_ostream OS(Data); 5161 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5162 ModuleData = 5163 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5164 } else 5165 // If the input is LLVM bitcode, write the input byte stream directly. 5166 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5167 Buf.getBufferSize()); 5168 } 5169 llvm::Constant *ModuleConstant = 5170 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5171 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5172 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5173 ModuleConstant); 5174 GV->setSection(getSectionNameForBitcode(T)); 5175 // Set alignment to 1 to prevent padding between two contributions from input 5176 // sections after linking. 5177 GV->setAlignment(Align(1)); 5178 UsedArray.push_back( 5179 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5180 if (llvm::GlobalVariable *Old = 5181 M.getGlobalVariable("llvm.embedded.module", true)) { 5182 assert(Old->hasZeroLiveUses() && 5183 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5184 GV->takeName(Old); 5185 Old->eraseFromParent(); 5186 } else { 5187 GV->setName("llvm.embedded.module"); 5188 } 5189 5190 // Skip if only bitcode needs to be embedded. 5191 if (EmbedCmdline) { 5192 // Embed command-line options. 5193 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5194 CmdArgs.size()); 5195 llvm::Constant *CmdConstant = 5196 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5197 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5198 llvm::GlobalValue::PrivateLinkage, 5199 CmdConstant); 5200 GV->setSection(getSectionNameForCommandline(T)); 5201 GV->setAlignment(Align(1)); 5202 UsedArray.push_back( 5203 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5204 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5205 assert(Old->hasZeroLiveUses() && 5206 "llvm.cmdline can only be used once in llvm.compiler.used"); 5207 GV->takeName(Old); 5208 Old->eraseFromParent(); 5209 } else { 5210 GV->setName("llvm.cmdline"); 5211 } 5212 } 5213 5214 if (UsedArray.empty()) 5215 return; 5216 5217 // Recreate llvm.compiler.used. 5218 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5219 auto *NewUsed = new GlobalVariable( 5220 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5221 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5222 NewUsed->setSection("llvm.metadata"); 5223 } 5224