1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeBitcodeHeader(); 146 void writeModuleVersion(); 147 }; 148 149 void BitcodeWriterBase::writeModuleVersion() { 150 // VERSION: [version#] 151 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 152 } 153 154 /// Base class to manage the module bitcode writing, currently subclassed for 155 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 156 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 157 protected: 158 /// The Module to write to bitcode. 159 const Module &M; 160 161 /// Enumerates ids for all values in the module. 162 ValueEnumerator VE; 163 164 /// Optional per-module index to write for ThinLTO. 165 const ModuleSummaryIndex *Index; 166 167 /// Map that holds the correspondence between GUIDs in the summary index, 168 /// that came from indirect call profiles, and a value id generated by this 169 /// class to use in the VST and summary block records. 170 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 171 172 /// Tracks the last value id recorded in the GUIDToValueMap. 173 unsigned GlobalValueId; 174 175 /// Saves the offset of the VSTOffset record that must eventually be 176 /// backpatched with the offset of the actual VST. 177 uint64_t VSTOffsetPlaceholder = 0; 178 179 public: 180 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 181 /// writing to the provided \p Buffer. 182 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 183 BitstreamWriter &Stream, 184 bool ShouldPreserveUseListOrder, 185 const ModuleSummaryIndex *Index) 186 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 187 VE(M, ShouldPreserveUseListOrder), Index(Index) { 188 // Assign ValueIds to any callee values in the index that came from 189 // indirect call profiles and were recorded as a GUID not a Value* 190 // (which would have been assigned an ID by the ValueEnumerator). 191 // The starting ValueId is just after the number of values in the 192 // ValueEnumerator, so that they can be emitted in the VST. 193 GlobalValueId = VE.getValues().size(); 194 if (!Index) 195 return; 196 for (const auto &GUIDSummaryLists : *Index) 197 // Examine all summaries for this GUID. 198 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 199 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 200 // For each call in the function summary, see if the call 201 // is to a GUID (which means it is for an indirect call, 202 // otherwise we would have a Value for it). If so, synthesize 203 // a value id. 204 for (auto &CallEdge : FS->calls()) 205 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 206 assignValueId(CallEdge.first.getGUID()); 207 } 208 209 protected: 210 void writePerModuleGlobalValueSummary(); 211 212 private: 213 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 214 GlobalValueSummary *Summary, 215 unsigned ValueID, 216 unsigned FSCallsAbbrev, 217 unsigned FSCallsProfileAbbrev, 218 const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIGenericSubrange(const DIGenericSubrange *N, 304 SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDIEnumerator(const DIEnumerator *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIStringType(const DIStringType *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDIDerivedType(const DIDerivedType *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDICompositeType(const DICompositeType *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDISubroutineType(const DISubroutineType *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICompileUnit(const DICompileUnit *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDISubprogram(const DISubprogram *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDILexicalBlock(const DILexicalBlock *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDICommonBlock(const DICommonBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 341 SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 344 SmallVectorImpl<uint64_t> &Record, 345 unsigned Abbrev); 346 void writeDIGlobalVariable(const DIGlobalVariable *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDILocalVariable(const DILocalVariable *N, 350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 351 void writeDILabel(const DILabel *N, 352 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 353 void writeDIExpression(const DIExpression *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 356 SmallVectorImpl<uint64_t> &Record, 357 unsigned Abbrev); 358 void writeDIObjCProperty(const DIObjCProperty *N, 359 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 360 void writeDIImportedEntity(const DIImportedEntity *N, 361 SmallVectorImpl<uint64_t> &Record, 362 unsigned Abbrev); 363 unsigned createNamedMetadataAbbrev(); 364 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 365 unsigned createMetadataStringsAbbrev(); 366 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 367 SmallVectorImpl<uint64_t> &Record); 368 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 369 SmallVectorImpl<uint64_t> &Record, 370 std::vector<unsigned> *MDAbbrevs = nullptr, 371 std::vector<uint64_t> *IndexPos = nullptr); 372 void writeModuleMetadata(); 373 void writeFunctionMetadata(const Function &F); 374 void writeFunctionMetadataAttachment(const Function &F); 375 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 376 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 377 const GlobalObject &GO); 378 void writeModuleMetadataKinds(); 379 void writeOperandBundleTags(); 380 void writeSyncScopeNames(); 381 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 382 void writeModuleConstants(); 383 bool pushValueAndType(const Value *V, unsigned InstID, 384 SmallVectorImpl<unsigned> &Vals); 385 void writeOperandBundles(const CallBase &CB, unsigned InstID); 386 void pushValue(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void pushValueSigned(const Value *V, unsigned InstID, 389 SmallVectorImpl<uint64_t> &Vals); 390 void writeInstruction(const Instruction &I, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 393 void writeGlobalValueSymbolTable( 394 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 395 void writeUseList(UseListOrder &&Order); 396 void writeUseListBlock(const Function *F); 397 void 398 writeFunction(const Function &F, 399 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 400 void writeBlockInfo(); 401 void writeModuleHash(size_t BlockStartPos); 402 403 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 404 return unsigned(SSID); 405 } 406 407 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 408 }; 409 410 /// Class to manage the bitcode writing for a combined index. 411 class IndexBitcodeWriter : public BitcodeWriterBase { 412 /// The combined index to write to bitcode. 413 const ModuleSummaryIndex &Index; 414 415 /// When writing a subset of the index for distributed backends, client 416 /// provides a map of modules to the corresponding GUIDs/summaries to write. 417 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 418 419 /// Map that holds the correspondence between the GUID used in the combined 420 /// index and a value id generated by this class to use in references. 421 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 422 423 /// Tracks the last value id recorded in the GUIDToValueMap. 424 unsigned GlobalValueId = 0; 425 426 public: 427 /// Constructs a IndexBitcodeWriter object for the given combined index, 428 /// writing to the provided \p Buffer. When writing a subset of the index 429 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 430 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 431 const ModuleSummaryIndex &Index, 432 const std::map<std::string, GVSummaryMapTy> 433 *ModuleToSummariesForIndex = nullptr) 434 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 435 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 436 // Assign unique value ids to all summaries to be written, for use 437 // in writing out the call graph edges. Save the mapping from GUID 438 // to the new global value id to use when writing those edges, which 439 // are currently saved in the index in terms of GUID. 440 forEachSummary([&](GVInfo I, bool) { 441 GUIDToValueIdMap[I.first] = ++GlobalValueId; 442 }); 443 } 444 445 /// The below iterator returns the GUID and associated summary. 446 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 447 448 /// Calls the callback for each value GUID and summary to be written to 449 /// bitcode. This hides the details of whether they are being pulled from the 450 /// entire index or just those in a provided ModuleToSummariesForIndex map. 451 template<typename Functor> 452 void forEachSummary(Functor Callback) { 453 if (ModuleToSummariesForIndex) { 454 for (auto &M : *ModuleToSummariesForIndex) 455 for (auto &Summary : M.second) { 456 Callback(Summary, false); 457 // Ensure aliasee is handled, e.g. for assigning a valueId, 458 // even if we are not importing the aliasee directly (the 459 // imported alias will contain a copy of aliasee). 460 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 461 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 462 } 463 } else { 464 for (auto &Summaries : Index) 465 for (auto &Summary : Summaries.second.SummaryList) 466 Callback({Summaries.first, Summary.get()}, false); 467 } 468 } 469 470 /// Calls the callback for each entry in the modulePaths StringMap that 471 /// should be written to the module path string table. This hides the details 472 /// of whether they are being pulled from the entire index or just those in a 473 /// provided ModuleToSummariesForIndex map. 474 template <typename Functor> void forEachModule(Functor Callback) { 475 if (ModuleToSummariesForIndex) { 476 for (const auto &M : *ModuleToSummariesForIndex) { 477 const auto &MPI = Index.modulePaths().find(M.first); 478 if (MPI == Index.modulePaths().end()) { 479 // This should only happen if the bitcode file was empty, in which 480 // case we shouldn't be importing (the ModuleToSummariesForIndex 481 // would only include the module we are writing and index for). 482 assert(ModuleToSummariesForIndex->size() == 1); 483 continue; 484 } 485 Callback(*MPI); 486 } 487 } else { 488 for (const auto &MPSE : Index.modulePaths()) 489 Callback(MPSE); 490 } 491 } 492 493 /// Main entry point for writing a combined index to bitcode. 494 void write(); 495 496 private: 497 void writeModStrings(); 498 void writeCombinedGlobalValueSummary(); 499 500 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 501 auto VMI = GUIDToValueIdMap.find(ValGUID); 502 if (VMI == GUIDToValueIdMap.end()) 503 return None; 504 return VMI->second; 505 } 506 507 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 508 }; 509 510 } // end anonymous namespace 511 512 static unsigned getEncodedCastOpcode(unsigned Opcode) { 513 switch (Opcode) { 514 default: llvm_unreachable("Unknown cast instruction!"); 515 case Instruction::Trunc : return bitc::CAST_TRUNC; 516 case Instruction::ZExt : return bitc::CAST_ZEXT; 517 case Instruction::SExt : return bitc::CAST_SEXT; 518 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 519 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 520 case Instruction::UIToFP : return bitc::CAST_UITOFP; 521 case Instruction::SIToFP : return bitc::CAST_SITOFP; 522 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 523 case Instruction::FPExt : return bitc::CAST_FPEXT; 524 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 525 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 526 case Instruction::BitCast : return bitc::CAST_BITCAST; 527 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 528 } 529 } 530 531 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 532 switch (Opcode) { 533 default: llvm_unreachable("Unknown binary instruction!"); 534 case Instruction::FNeg: return bitc::UNOP_FNEG; 535 } 536 } 537 538 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 539 switch (Opcode) { 540 default: llvm_unreachable("Unknown binary instruction!"); 541 case Instruction::Add: 542 case Instruction::FAdd: return bitc::BINOP_ADD; 543 case Instruction::Sub: 544 case Instruction::FSub: return bitc::BINOP_SUB; 545 case Instruction::Mul: 546 case Instruction::FMul: return bitc::BINOP_MUL; 547 case Instruction::UDiv: return bitc::BINOP_UDIV; 548 case Instruction::FDiv: 549 case Instruction::SDiv: return bitc::BINOP_SDIV; 550 case Instruction::URem: return bitc::BINOP_UREM; 551 case Instruction::FRem: 552 case Instruction::SRem: return bitc::BINOP_SREM; 553 case Instruction::Shl: return bitc::BINOP_SHL; 554 case Instruction::LShr: return bitc::BINOP_LSHR; 555 case Instruction::AShr: return bitc::BINOP_ASHR; 556 case Instruction::And: return bitc::BINOP_AND; 557 case Instruction::Or: return bitc::BINOP_OR; 558 case Instruction::Xor: return bitc::BINOP_XOR; 559 } 560 } 561 562 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 563 switch (Op) { 564 default: llvm_unreachable("Unknown RMW operation!"); 565 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 566 case AtomicRMWInst::Add: return bitc::RMW_ADD; 567 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 568 case AtomicRMWInst::And: return bitc::RMW_AND; 569 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 570 case AtomicRMWInst::Or: return bitc::RMW_OR; 571 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 572 case AtomicRMWInst::Max: return bitc::RMW_MAX; 573 case AtomicRMWInst::Min: return bitc::RMW_MIN; 574 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 575 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 576 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 577 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 578 } 579 } 580 581 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 582 switch (Ordering) { 583 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 584 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 585 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 586 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 587 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 588 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 589 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 590 } 591 llvm_unreachable("Invalid ordering"); 592 } 593 594 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 595 StringRef Str, unsigned AbbrevToUse) { 596 SmallVector<unsigned, 64> Vals; 597 598 // Code: [strchar x N] 599 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 600 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 601 AbbrevToUse = 0; 602 Vals.push_back(Str[i]); 603 } 604 605 // Emit the finished record. 606 Stream.EmitRecord(Code, Vals, AbbrevToUse); 607 } 608 609 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 610 switch (Kind) { 611 case Attribute::Alignment: 612 return bitc::ATTR_KIND_ALIGNMENT; 613 case Attribute::AllocSize: 614 return bitc::ATTR_KIND_ALLOC_SIZE; 615 case Attribute::AlwaysInline: 616 return bitc::ATTR_KIND_ALWAYS_INLINE; 617 case Attribute::ArgMemOnly: 618 return bitc::ATTR_KIND_ARGMEMONLY; 619 case Attribute::Builtin: 620 return bitc::ATTR_KIND_BUILTIN; 621 case Attribute::ByVal: 622 return bitc::ATTR_KIND_BY_VAL; 623 case Attribute::Convergent: 624 return bitc::ATTR_KIND_CONVERGENT; 625 case Attribute::InAlloca: 626 return bitc::ATTR_KIND_IN_ALLOCA; 627 case Attribute::Cold: 628 return bitc::ATTR_KIND_COLD; 629 case Attribute::Hot: 630 return bitc::ATTR_KIND_HOT; 631 case Attribute::InaccessibleMemOnly: 632 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 633 case Attribute::InaccessibleMemOrArgMemOnly: 634 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 635 case Attribute::InlineHint: 636 return bitc::ATTR_KIND_INLINE_HINT; 637 case Attribute::InReg: 638 return bitc::ATTR_KIND_IN_REG; 639 case Attribute::JumpTable: 640 return bitc::ATTR_KIND_JUMP_TABLE; 641 case Attribute::MinSize: 642 return bitc::ATTR_KIND_MIN_SIZE; 643 case Attribute::Naked: 644 return bitc::ATTR_KIND_NAKED; 645 case Attribute::Nest: 646 return bitc::ATTR_KIND_NEST; 647 case Attribute::NoAlias: 648 return bitc::ATTR_KIND_NO_ALIAS; 649 case Attribute::NoBuiltin: 650 return bitc::ATTR_KIND_NO_BUILTIN; 651 case Attribute::NoCallback: 652 return bitc::ATTR_KIND_NO_CALLBACK; 653 case Attribute::NoCapture: 654 return bitc::ATTR_KIND_NO_CAPTURE; 655 case Attribute::NoDuplicate: 656 return bitc::ATTR_KIND_NO_DUPLICATE; 657 case Attribute::NoFree: 658 return bitc::ATTR_KIND_NOFREE; 659 case Attribute::NoImplicitFloat: 660 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 661 case Attribute::NoInline: 662 return bitc::ATTR_KIND_NO_INLINE; 663 case Attribute::NoRecurse: 664 return bitc::ATTR_KIND_NO_RECURSE; 665 case Attribute::NoMerge: 666 return bitc::ATTR_KIND_NO_MERGE; 667 case Attribute::NonLazyBind: 668 return bitc::ATTR_KIND_NON_LAZY_BIND; 669 case Attribute::NonNull: 670 return bitc::ATTR_KIND_NON_NULL; 671 case Attribute::Dereferenceable: 672 return bitc::ATTR_KIND_DEREFERENCEABLE; 673 case Attribute::DereferenceableOrNull: 674 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 675 case Attribute::NoRedZone: 676 return bitc::ATTR_KIND_NO_RED_ZONE; 677 case Attribute::NoReturn: 678 return bitc::ATTR_KIND_NO_RETURN; 679 case Attribute::NoSync: 680 return bitc::ATTR_KIND_NOSYNC; 681 case Attribute::NoCfCheck: 682 return bitc::ATTR_KIND_NOCF_CHECK; 683 case Attribute::NoUnwind: 684 return bitc::ATTR_KIND_NO_UNWIND; 685 case Attribute::NullPointerIsValid: 686 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 687 case Attribute::OptForFuzzing: 688 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 689 case Attribute::OptimizeForSize: 690 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 691 case Attribute::OptimizeNone: 692 return bitc::ATTR_KIND_OPTIMIZE_NONE; 693 case Attribute::ReadNone: 694 return bitc::ATTR_KIND_READ_NONE; 695 case Attribute::ReadOnly: 696 return bitc::ATTR_KIND_READ_ONLY; 697 case Attribute::Returned: 698 return bitc::ATTR_KIND_RETURNED; 699 case Attribute::ReturnsTwice: 700 return bitc::ATTR_KIND_RETURNS_TWICE; 701 case Attribute::SExt: 702 return bitc::ATTR_KIND_S_EXT; 703 case Attribute::Speculatable: 704 return bitc::ATTR_KIND_SPECULATABLE; 705 case Attribute::StackAlignment: 706 return bitc::ATTR_KIND_STACK_ALIGNMENT; 707 case Attribute::StackProtect: 708 return bitc::ATTR_KIND_STACK_PROTECT; 709 case Attribute::StackProtectReq: 710 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 711 case Attribute::StackProtectStrong: 712 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 713 case Attribute::SafeStack: 714 return bitc::ATTR_KIND_SAFESTACK; 715 case Attribute::ShadowCallStack: 716 return bitc::ATTR_KIND_SHADOWCALLSTACK; 717 case Attribute::StrictFP: 718 return bitc::ATTR_KIND_STRICT_FP; 719 case Attribute::StructRet: 720 return bitc::ATTR_KIND_STRUCT_RET; 721 case Attribute::SanitizeAddress: 722 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 723 case Attribute::SanitizeHWAddress: 724 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 725 case Attribute::SanitizeThread: 726 return bitc::ATTR_KIND_SANITIZE_THREAD; 727 case Attribute::SanitizeMemory: 728 return bitc::ATTR_KIND_SANITIZE_MEMORY; 729 case Attribute::SpeculativeLoadHardening: 730 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 731 case Attribute::SwiftError: 732 return bitc::ATTR_KIND_SWIFT_ERROR; 733 case Attribute::SwiftSelf: 734 return bitc::ATTR_KIND_SWIFT_SELF; 735 case Attribute::UWTable: 736 return bitc::ATTR_KIND_UW_TABLE; 737 case Attribute::WillReturn: 738 return bitc::ATTR_KIND_WILLRETURN; 739 case Attribute::WriteOnly: 740 return bitc::ATTR_KIND_WRITEONLY; 741 case Attribute::ZExt: 742 return bitc::ATTR_KIND_Z_EXT; 743 case Attribute::ImmArg: 744 return bitc::ATTR_KIND_IMMARG; 745 case Attribute::SanitizeMemTag: 746 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 747 case Attribute::Preallocated: 748 return bitc::ATTR_KIND_PREALLOCATED; 749 case Attribute::NoUndef: 750 return bitc::ATTR_KIND_NOUNDEF; 751 case Attribute::ByRef: 752 return bitc::ATTR_KIND_BYREF; 753 case Attribute::MustProgress: 754 return bitc::ATTR_KIND_MUSTPROGRESS; 755 case Attribute::EndAttrKinds: 756 llvm_unreachable("Can not encode end-attribute kinds marker."); 757 case Attribute::None: 758 llvm_unreachable("Can not encode none-attribute."); 759 case Attribute::EmptyKey: 760 case Attribute::TombstoneKey: 761 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 762 } 763 764 llvm_unreachable("Trying to encode unknown attribute"); 765 } 766 767 void ModuleBitcodeWriter::writeAttributeGroupTable() { 768 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 769 VE.getAttributeGroups(); 770 if (AttrGrps.empty()) return; 771 772 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 773 774 SmallVector<uint64_t, 64> Record; 775 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 776 unsigned AttrListIndex = Pair.first; 777 AttributeSet AS = Pair.second; 778 Record.push_back(VE.getAttributeGroupID(Pair)); 779 Record.push_back(AttrListIndex); 780 781 for (Attribute Attr : AS) { 782 if (Attr.isEnumAttribute()) { 783 Record.push_back(0); 784 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 785 } else if (Attr.isIntAttribute()) { 786 Record.push_back(1); 787 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 788 Record.push_back(Attr.getValueAsInt()); 789 } else if (Attr.isStringAttribute()) { 790 StringRef Kind = Attr.getKindAsString(); 791 StringRef Val = Attr.getValueAsString(); 792 793 Record.push_back(Val.empty() ? 3 : 4); 794 Record.append(Kind.begin(), Kind.end()); 795 Record.push_back(0); 796 if (!Val.empty()) { 797 Record.append(Val.begin(), Val.end()); 798 Record.push_back(0); 799 } 800 } else { 801 assert(Attr.isTypeAttribute()); 802 Type *Ty = Attr.getValueAsType(); 803 Record.push_back(Ty ? 6 : 5); 804 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 805 if (Ty) 806 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 807 } 808 } 809 810 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 811 Record.clear(); 812 } 813 814 Stream.ExitBlock(); 815 } 816 817 void ModuleBitcodeWriter::writeAttributeTable() { 818 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 819 if (Attrs.empty()) return; 820 821 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 822 823 SmallVector<uint64_t, 64> Record; 824 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 825 AttributeList AL = Attrs[i]; 826 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 827 AttributeSet AS = AL.getAttributes(i); 828 if (AS.hasAttributes()) 829 Record.push_back(VE.getAttributeGroupID({i, AS})); 830 } 831 832 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 833 Record.clear(); 834 } 835 836 Stream.ExitBlock(); 837 } 838 839 /// WriteTypeTable - Write out the type table for a module. 840 void ModuleBitcodeWriter::writeTypeTable() { 841 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 842 843 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 844 SmallVector<uint64_t, 64> TypeVals; 845 846 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 847 848 // Abbrev for TYPE_CODE_POINTER. 849 auto Abbv = std::make_shared<BitCodeAbbrev>(); 850 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 852 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 853 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 854 855 // Abbrev for TYPE_CODE_FUNCTION. 856 Abbv = std::make_shared<BitCodeAbbrev>(); 857 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 861 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 862 863 // Abbrev for TYPE_CODE_STRUCT_ANON. 864 Abbv = std::make_shared<BitCodeAbbrev>(); 865 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 869 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 870 871 // Abbrev for TYPE_CODE_STRUCT_NAME. 872 Abbv = std::make_shared<BitCodeAbbrev>(); 873 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 876 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 877 878 // Abbrev for TYPE_CODE_STRUCT_NAMED. 879 Abbv = std::make_shared<BitCodeAbbrev>(); 880 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 884 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 885 886 // Abbrev for TYPE_CODE_ARRAY. 887 Abbv = std::make_shared<BitCodeAbbrev>(); 888 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 891 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 892 893 // Emit an entry count so the reader can reserve space. 894 TypeVals.push_back(TypeList.size()); 895 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 896 TypeVals.clear(); 897 898 // Loop over all of the types, emitting each in turn. 899 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 900 Type *T = TypeList[i]; 901 int AbbrevToUse = 0; 902 unsigned Code = 0; 903 904 switch (T->getTypeID()) { 905 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 906 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 907 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 908 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 909 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 910 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 911 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 912 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 913 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 914 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 915 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 916 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 917 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 918 case Type::IntegerTyID: 919 // INTEGER: [width] 920 Code = bitc::TYPE_CODE_INTEGER; 921 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 922 break; 923 case Type::PointerTyID: { 924 PointerType *PTy = cast<PointerType>(T); 925 // POINTER: [pointee type, address space] 926 Code = bitc::TYPE_CODE_POINTER; 927 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 928 unsigned AddressSpace = PTy->getAddressSpace(); 929 TypeVals.push_back(AddressSpace); 930 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 931 break; 932 } 933 case Type::FunctionTyID: { 934 FunctionType *FT = cast<FunctionType>(T); 935 // FUNCTION: [isvararg, retty, paramty x N] 936 Code = bitc::TYPE_CODE_FUNCTION; 937 TypeVals.push_back(FT->isVarArg()); 938 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 939 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 940 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 941 AbbrevToUse = FunctionAbbrev; 942 break; 943 } 944 case Type::StructTyID: { 945 StructType *ST = cast<StructType>(T); 946 // STRUCT: [ispacked, eltty x N] 947 TypeVals.push_back(ST->isPacked()); 948 // Output all of the element types. 949 for (StructType::element_iterator I = ST->element_begin(), 950 E = ST->element_end(); I != E; ++I) 951 TypeVals.push_back(VE.getTypeID(*I)); 952 953 if (ST->isLiteral()) { 954 Code = bitc::TYPE_CODE_STRUCT_ANON; 955 AbbrevToUse = StructAnonAbbrev; 956 } else { 957 if (ST->isOpaque()) { 958 Code = bitc::TYPE_CODE_OPAQUE; 959 } else { 960 Code = bitc::TYPE_CODE_STRUCT_NAMED; 961 AbbrevToUse = StructNamedAbbrev; 962 } 963 964 // Emit the name if it is present. 965 if (!ST->getName().empty()) 966 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 967 StructNameAbbrev); 968 } 969 break; 970 } 971 case Type::ArrayTyID: { 972 ArrayType *AT = cast<ArrayType>(T); 973 // ARRAY: [numelts, eltty] 974 Code = bitc::TYPE_CODE_ARRAY; 975 TypeVals.push_back(AT->getNumElements()); 976 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 977 AbbrevToUse = ArrayAbbrev; 978 break; 979 } 980 case Type::FixedVectorTyID: 981 case Type::ScalableVectorTyID: { 982 VectorType *VT = cast<VectorType>(T); 983 // VECTOR [numelts, eltty] or 984 // [numelts, eltty, scalable] 985 Code = bitc::TYPE_CODE_VECTOR; 986 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 987 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 988 if (isa<ScalableVectorType>(VT)) 989 TypeVals.push_back(true); 990 break; 991 } 992 } 993 994 // Emit the finished record. 995 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 996 TypeVals.clear(); 997 } 998 999 Stream.ExitBlock(); 1000 } 1001 1002 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1003 switch (Linkage) { 1004 case GlobalValue::ExternalLinkage: 1005 return 0; 1006 case GlobalValue::WeakAnyLinkage: 1007 return 16; 1008 case GlobalValue::AppendingLinkage: 1009 return 2; 1010 case GlobalValue::InternalLinkage: 1011 return 3; 1012 case GlobalValue::LinkOnceAnyLinkage: 1013 return 18; 1014 case GlobalValue::ExternalWeakLinkage: 1015 return 7; 1016 case GlobalValue::CommonLinkage: 1017 return 8; 1018 case GlobalValue::PrivateLinkage: 1019 return 9; 1020 case GlobalValue::WeakODRLinkage: 1021 return 17; 1022 case GlobalValue::LinkOnceODRLinkage: 1023 return 19; 1024 case GlobalValue::AvailableExternallyLinkage: 1025 return 12; 1026 } 1027 llvm_unreachable("Invalid linkage"); 1028 } 1029 1030 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1031 return getEncodedLinkage(GV.getLinkage()); 1032 } 1033 1034 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1035 uint64_t RawFlags = 0; 1036 RawFlags |= Flags.ReadNone; 1037 RawFlags |= (Flags.ReadOnly << 1); 1038 RawFlags |= (Flags.NoRecurse << 2); 1039 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1040 RawFlags |= (Flags.NoInline << 4); 1041 RawFlags |= (Flags.AlwaysInline << 5); 1042 return RawFlags; 1043 } 1044 1045 // Decode the flags for GlobalValue in the summary 1046 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1047 uint64_t RawFlags = 0; 1048 1049 RawFlags |= Flags.NotEligibleToImport; // bool 1050 RawFlags |= (Flags.Live << 1); 1051 RawFlags |= (Flags.DSOLocal << 2); 1052 RawFlags |= (Flags.CanAutoHide << 3); 1053 1054 // Linkage don't need to be remapped at that time for the summary. Any future 1055 // change to the getEncodedLinkage() function will need to be taken into 1056 // account here as well. 1057 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1058 1059 return RawFlags; 1060 } 1061 1062 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1063 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1064 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1065 return RawFlags; 1066 } 1067 1068 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1069 switch (GV.getVisibility()) { 1070 case GlobalValue::DefaultVisibility: return 0; 1071 case GlobalValue::HiddenVisibility: return 1; 1072 case GlobalValue::ProtectedVisibility: return 2; 1073 } 1074 llvm_unreachable("Invalid visibility"); 1075 } 1076 1077 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1078 switch (GV.getDLLStorageClass()) { 1079 case GlobalValue::DefaultStorageClass: return 0; 1080 case GlobalValue::DLLImportStorageClass: return 1; 1081 case GlobalValue::DLLExportStorageClass: return 2; 1082 } 1083 llvm_unreachable("Invalid DLL storage class"); 1084 } 1085 1086 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1087 switch (GV.getThreadLocalMode()) { 1088 case GlobalVariable::NotThreadLocal: return 0; 1089 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1090 case GlobalVariable::LocalDynamicTLSModel: return 2; 1091 case GlobalVariable::InitialExecTLSModel: return 3; 1092 case GlobalVariable::LocalExecTLSModel: return 4; 1093 } 1094 llvm_unreachable("Invalid TLS model"); 1095 } 1096 1097 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1098 switch (C.getSelectionKind()) { 1099 case Comdat::Any: 1100 return bitc::COMDAT_SELECTION_KIND_ANY; 1101 case Comdat::ExactMatch: 1102 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1103 case Comdat::Largest: 1104 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1105 case Comdat::NoDuplicates: 1106 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1107 case Comdat::SameSize: 1108 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1109 } 1110 llvm_unreachable("Invalid selection kind"); 1111 } 1112 1113 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1114 switch (GV.getUnnamedAddr()) { 1115 case GlobalValue::UnnamedAddr::None: return 0; 1116 case GlobalValue::UnnamedAddr::Local: return 2; 1117 case GlobalValue::UnnamedAddr::Global: return 1; 1118 } 1119 llvm_unreachable("Invalid unnamed_addr"); 1120 } 1121 1122 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1123 if (GenerateHash) 1124 Hasher.update(Str); 1125 return StrtabBuilder.add(Str); 1126 } 1127 1128 void ModuleBitcodeWriter::writeComdats() { 1129 SmallVector<unsigned, 64> Vals; 1130 for (const Comdat *C : VE.getComdats()) { 1131 // COMDAT: [strtab offset, strtab size, selection_kind] 1132 Vals.push_back(addToStrtab(C->getName())); 1133 Vals.push_back(C->getName().size()); 1134 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1135 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1136 Vals.clear(); 1137 } 1138 } 1139 1140 /// Write a record that will eventually hold the word offset of the 1141 /// module-level VST. For now the offset is 0, which will be backpatched 1142 /// after the real VST is written. Saves the bit offset to backpatch. 1143 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1144 // Write a placeholder value in for the offset of the real VST, 1145 // which is written after the function blocks so that it can include 1146 // the offset of each function. The placeholder offset will be 1147 // updated when the real VST is written. 1148 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1149 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1150 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1151 // hold the real VST offset. Must use fixed instead of VBR as we don't 1152 // know how many VBR chunks to reserve ahead of time. 1153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1154 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1155 1156 // Emit the placeholder 1157 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1158 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1159 1160 // Compute and save the bit offset to the placeholder, which will be 1161 // patched when the real VST is written. We can simply subtract the 32-bit 1162 // fixed size from the current bit number to get the location to backpatch. 1163 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1164 } 1165 1166 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1167 1168 /// Determine the encoding to use for the given string name and length. 1169 static StringEncoding getStringEncoding(StringRef Str) { 1170 bool isChar6 = true; 1171 for (char C : Str) { 1172 if (isChar6) 1173 isChar6 = BitCodeAbbrevOp::isChar6(C); 1174 if ((unsigned char)C & 128) 1175 // don't bother scanning the rest. 1176 return SE_Fixed8; 1177 } 1178 if (isChar6) 1179 return SE_Char6; 1180 return SE_Fixed7; 1181 } 1182 1183 /// Emit top-level description of module, including target triple, inline asm, 1184 /// descriptors for global variables, and function prototype info. 1185 /// Returns the bit offset to backpatch with the location of the real VST. 1186 void ModuleBitcodeWriter::writeModuleInfo() { 1187 // Emit various pieces of data attached to a module. 1188 if (!M.getTargetTriple().empty()) 1189 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1190 0 /*TODO*/); 1191 const std::string &DL = M.getDataLayoutStr(); 1192 if (!DL.empty()) 1193 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1194 if (!M.getModuleInlineAsm().empty()) 1195 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1196 0 /*TODO*/); 1197 1198 // Emit information about sections and GC, computing how many there are. Also 1199 // compute the maximum alignment value. 1200 std::map<std::string, unsigned> SectionMap; 1201 std::map<std::string, unsigned> GCMap; 1202 MaybeAlign MaxAlignment; 1203 unsigned MaxGlobalType = 0; 1204 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1205 if (A) 1206 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1207 }; 1208 for (const GlobalVariable &GV : M.globals()) { 1209 UpdateMaxAlignment(GV.getAlign()); 1210 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1211 if (GV.hasSection()) { 1212 // Give section names unique ID's. 1213 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1214 if (!Entry) { 1215 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1216 0 /*TODO*/); 1217 Entry = SectionMap.size(); 1218 } 1219 } 1220 } 1221 for (const Function &F : M) { 1222 UpdateMaxAlignment(F.getAlign()); 1223 if (F.hasSection()) { 1224 // Give section names unique ID's. 1225 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1226 if (!Entry) { 1227 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1228 0 /*TODO*/); 1229 Entry = SectionMap.size(); 1230 } 1231 } 1232 if (F.hasGC()) { 1233 // Same for GC names. 1234 unsigned &Entry = GCMap[F.getGC()]; 1235 if (!Entry) { 1236 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1237 0 /*TODO*/); 1238 Entry = GCMap.size(); 1239 } 1240 } 1241 } 1242 1243 // Emit abbrev for globals, now that we know # sections and max alignment. 1244 unsigned SimpleGVarAbbrev = 0; 1245 if (!M.global_empty()) { 1246 // Add an abbrev for common globals with no visibility or thread localness. 1247 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1248 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1252 Log2_32_Ceil(MaxGlobalType+1))); 1253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1254 //| explicitType << 1 1255 //| constant 1256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1258 if (!MaxAlignment) // Alignment. 1259 Abbv->Add(BitCodeAbbrevOp(0)); 1260 else { 1261 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1263 Log2_32_Ceil(MaxEncAlignment+1))); 1264 } 1265 if (SectionMap.empty()) // Section. 1266 Abbv->Add(BitCodeAbbrevOp(0)); 1267 else 1268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1269 Log2_32_Ceil(SectionMap.size()+1))); 1270 // Don't bother emitting vis + thread local. 1271 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1272 } 1273 1274 SmallVector<unsigned, 64> Vals; 1275 // Emit the module's source file name. 1276 { 1277 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1278 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1279 if (Bits == SE_Char6) 1280 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1281 else if (Bits == SE_Fixed7) 1282 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1283 1284 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1285 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1286 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1288 Abbv->Add(AbbrevOpToUse); 1289 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1290 1291 for (const auto P : M.getSourceFileName()) 1292 Vals.push_back((unsigned char)P); 1293 1294 // Emit the finished record. 1295 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1296 Vals.clear(); 1297 } 1298 1299 // Emit the global variable information. 1300 for (const GlobalVariable &GV : M.globals()) { 1301 unsigned AbbrevToUse = 0; 1302 1303 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1304 // linkage, alignment, section, visibility, threadlocal, 1305 // unnamed_addr, externally_initialized, dllstorageclass, 1306 // comdat, attributes, DSO_Local] 1307 Vals.push_back(addToStrtab(GV.getName())); 1308 Vals.push_back(GV.getName().size()); 1309 Vals.push_back(VE.getTypeID(GV.getValueType())); 1310 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1311 Vals.push_back(GV.isDeclaration() ? 0 : 1312 (VE.getValueID(GV.getInitializer()) + 1)); 1313 Vals.push_back(getEncodedLinkage(GV)); 1314 Vals.push_back(getEncodedAlign(GV.getAlign())); 1315 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1316 : 0); 1317 if (GV.isThreadLocal() || 1318 GV.getVisibility() != GlobalValue::DefaultVisibility || 1319 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1320 GV.isExternallyInitialized() || 1321 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1322 GV.hasComdat() || 1323 GV.hasAttributes() || 1324 GV.isDSOLocal() || 1325 GV.hasPartition()) { 1326 Vals.push_back(getEncodedVisibility(GV)); 1327 Vals.push_back(getEncodedThreadLocalMode(GV)); 1328 Vals.push_back(getEncodedUnnamedAddr(GV)); 1329 Vals.push_back(GV.isExternallyInitialized()); 1330 Vals.push_back(getEncodedDLLStorageClass(GV)); 1331 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1332 1333 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1334 Vals.push_back(VE.getAttributeListID(AL)); 1335 1336 Vals.push_back(GV.isDSOLocal()); 1337 Vals.push_back(addToStrtab(GV.getPartition())); 1338 Vals.push_back(GV.getPartition().size()); 1339 } else { 1340 AbbrevToUse = SimpleGVarAbbrev; 1341 } 1342 1343 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1344 Vals.clear(); 1345 } 1346 1347 // Emit the function proto information. 1348 for (const Function &F : M) { 1349 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1350 // linkage, paramattrs, alignment, section, visibility, gc, 1351 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1352 // prefixdata, personalityfn, DSO_Local, addrspace] 1353 Vals.push_back(addToStrtab(F.getName())); 1354 Vals.push_back(F.getName().size()); 1355 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1356 Vals.push_back(F.getCallingConv()); 1357 Vals.push_back(F.isDeclaration()); 1358 Vals.push_back(getEncodedLinkage(F)); 1359 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1360 Vals.push_back(getEncodedAlign(F.getAlign())); 1361 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1362 : 0); 1363 Vals.push_back(getEncodedVisibility(F)); 1364 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1365 Vals.push_back(getEncodedUnnamedAddr(F)); 1366 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1367 : 0); 1368 Vals.push_back(getEncodedDLLStorageClass(F)); 1369 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1370 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1371 : 0); 1372 Vals.push_back( 1373 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1374 1375 Vals.push_back(F.isDSOLocal()); 1376 Vals.push_back(F.getAddressSpace()); 1377 Vals.push_back(addToStrtab(F.getPartition())); 1378 Vals.push_back(F.getPartition().size()); 1379 1380 unsigned AbbrevToUse = 0; 1381 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1382 Vals.clear(); 1383 } 1384 1385 // Emit the alias information. 1386 for (const GlobalAlias &A : M.aliases()) { 1387 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1388 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1389 // DSO_Local] 1390 Vals.push_back(addToStrtab(A.getName())); 1391 Vals.push_back(A.getName().size()); 1392 Vals.push_back(VE.getTypeID(A.getValueType())); 1393 Vals.push_back(A.getType()->getAddressSpace()); 1394 Vals.push_back(VE.getValueID(A.getAliasee())); 1395 Vals.push_back(getEncodedLinkage(A)); 1396 Vals.push_back(getEncodedVisibility(A)); 1397 Vals.push_back(getEncodedDLLStorageClass(A)); 1398 Vals.push_back(getEncodedThreadLocalMode(A)); 1399 Vals.push_back(getEncodedUnnamedAddr(A)); 1400 Vals.push_back(A.isDSOLocal()); 1401 Vals.push_back(addToStrtab(A.getPartition())); 1402 Vals.push_back(A.getPartition().size()); 1403 1404 unsigned AbbrevToUse = 0; 1405 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1406 Vals.clear(); 1407 } 1408 1409 // Emit the ifunc information. 1410 for (const GlobalIFunc &I : M.ifuncs()) { 1411 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1412 // val#, linkage, visibility, DSO_Local] 1413 Vals.push_back(addToStrtab(I.getName())); 1414 Vals.push_back(I.getName().size()); 1415 Vals.push_back(VE.getTypeID(I.getValueType())); 1416 Vals.push_back(I.getType()->getAddressSpace()); 1417 Vals.push_back(VE.getValueID(I.getResolver())); 1418 Vals.push_back(getEncodedLinkage(I)); 1419 Vals.push_back(getEncodedVisibility(I)); 1420 Vals.push_back(I.isDSOLocal()); 1421 Vals.push_back(addToStrtab(I.getPartition())); 1422 Vals.push_back(I.getPartition().size()); 1423 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1424 Vals.clear(); 1425 } 1426 1427 writeValueSymbolTableForwardDecl(); 1428 } 1429 1430 static uint64_t getOptimizationFlags(const Value *V) { 1431 uint64_t Flags = 0; 1432 1433 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1434 if (OBO->hasNoSignedWrap()) 1435 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1436 if (OBO->hasNoUnsignedWrap()) 1437 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1438 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1439 if (PEO->isExact()) 1440 Flags |= 1 << bitc::PEO_EXACT; 1441 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1442 if (FPMO->hasAllowReassoc()) 1443 Flags |= bitc::AllowReassoc; 1444 if (FPMO->hasNoNaNs()) 1445 Flags |= bitc::NoNaNs; 1446 if (FPMO->hasNoInfs()) 1447 Flags |= bitc::NoInfs; 1448 if (FPMO->hasNoSignedZeros()) 1449 Flags |= bitc::NoSignedZeros; 1450 if (FPMO->hasAllowReciprocal()) 1451 Flags |= bitc::AllowReciprocal; 1452 if (FPMO->hasAllowContract()) 1453 Flags |= bitc::AllowContract; 1454 if (FPMO->hasApproxFunc()) 1455 Flags |= bitc::ApproxFunc; 1456 } 1457 1458 return Flags; 1459 } 1460 1461 void ModuleBitcodeWriter::writeValueAsMetadata( 1462 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1463 // Mimic an MDNode with a value as one operand. 1464 Value *V = MD->getValue(); 1465 Record.push_back(VE.getTypeID(V->getType())); 1466 Record.push_back(VE.getValueID(V)); 1467 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1468 Record.clear(); 1469 } 1470 1471 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1472 SmallVectorImpl<uint64_t> &Record, 1473 unsigned Abbrev) { 1474 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1475 Metadata *MD = N->getOperand(i); 1476 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1477 "Unexpected function-local metadata"); 1478 Record.push_back(VE.getMetadataOrNullID(MD)); 1479 } 1480 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1481 : bitc::METADATA_NODE, 1482 Record, Abbrev); 1483 Record.clear(); 1484 } 1485 1486 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1487 // Assume the column is usually under 128, and always output the inlined-at 1488 // location (it's never more expensive than building an array size 1). 1489 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1490 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1497 return Stream.EmitAbbrev(std::move(Abbv)); 1498 } 1499 1500 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1501 SmallVectorImpl<uint64_t> &Record, 1502 unsigned &Abbrev) { 1503 if (!Abbrev) 1504 Abbrev = createDILocationAbbrev(); 1505 1506 Record.push_back(N->isDistinct()); 1507 Record.push_back(N->getLine()); 1508 Record.push_back(N->getColumn()); 1509 Record.push_back(VE.getMetadataID(N->getScope())); 1510 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1511 Record.push_back(N->isImplicitCode()); 1512 1513 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1514 Record.clear(); 1515 } 1516 1517 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1518 // Assume the column is usually under 128, and always output the inlined-at 1519 // location (it's never more expensive than building an array size 1). 1520 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1521 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1528 return Stream.EmitAbbrev(std::move(Abbv)); 1529 } 1530 1531 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1532 SmallVectorImpl<uint64_t> &Record, 1533 unsigned &Abbrev) { 1534 if (!Abbrev) 1535 Abbrev = createGenericDINodeAbbrev(); 1536 1537 Record.push_back(N->isDistinct()); 1538 Record.push_back(N->getTag()); 1539 Record.push_back(0); // Per-tag version field; unused for now. 1540 1541 for (auto &I : N->operands()) 1542 Record.push_back(VE.getMetadataOrNullID(I)); 1543 1544 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1545 Record.clear(); 1546 } 1547 1548 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1549 SmallVectorImpl<uint64_t> &Record, 1550 unsigned Abbrev) { 1551 const uint64_t Version = 2 << 1; 1552 Record.push_back((uint64_t)N->isDistinct() | Version); 1553 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1554 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1555 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1556 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1557 1558 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1559 Record.clear(); 1560 } 1561 1562 void ModuleBitcodeWriter::writeDIGenericSubrange( 1563 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1564 unsigned Abbrev) { 1565 Record.push_back((uint64_t)N->isDistinct()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1567 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1568 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1569 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1570 1571 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1572 Record.clear(); 1573 } 1574 1575 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1576 if ((int64_t)V >= 0) 1577 Vals.push_back(V << 1); 1578 else 1579 Vals.push_back((-V << 1) | 1); 1580 } 1581 1582 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1583 // We have an arbitrary precision integer value to write whose 1584 // bit width is > 64. However, in canonical unsigned integer 1585 // format it is likely that the high bits are going to be zero. 1586 // So, we only write the number of active words. 1587 unsigned NumWords = A.getActiveWords(); 1588 const uint64_t *RawData = A.getRawData(); 1589 for (unsigned i = 0; i < NumWords; i++) 1590 emitSignedInt64(Vals, RawData[i]); 1591 } 1592 1593 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1594 SmallVectorImpl<uint64_t> &Record, 1595 unsigned Abbrev) { 1596 const uint64_t IsBigInt = 1 << 2; 1597 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1598 Record.push_back(N->getValue().getBitWidth()); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1600 emitWideAPInt(Record, N->getValue()); 1601 1602 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1603 Record.clear(); 1604 } 1605 1606 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1607 SmallVectorImpl<uint64_t> &Record, 1608 unsigned Abbrev) { 1609 Record.push_back(N->isDistinct()); 1610 Record.push_back(N->getTag()); 1611 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1612 Record.push_back(N->getSizeInBits()); 1613 Record.push_back(N->getAlignInBits()); 1614 Record.push_back(N->getEncoding()); 1615 Record.push_back(N->getFlags()); 1616 1617 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1618 Record.clear(); 1619 } 1620 1621 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1622 SmallVectorImpl<uint64_t> &Record, 1623 unsigned Abbrev) { 1624 Record.push_back(N->isDistinct()); 1625 Record.push_back(N->getTag()); 1626 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1627 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1628 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1629 Record.push_back(N->getSizeInBits()); 1630 Record.push_back(N->getAlignInBits()); 1631 Record.push_back(N->getEncoding()); 1632 1633 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1634 Record.clear(); 1635 } 1636 1637 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1638 SmallVectorImpl<uint64_t> &Record, 1639 unsigned Abbrev) { 1640 Record.push_back(N->isDistinct()); 1641 Record.push_back(N->getTag()); 1642 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1643 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1644 Record.push_back(N->getLine()); 1645 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1646 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1647 Record.push_back(N->getSizeInBits()); 1648 Record.push_back(N->getAlignInBits()); 1649 Record.push_back(N->getOffsetInBits()); 1650 Record.push_back(N->getFlags()); 1651 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1652 1653 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1654 // that there is no DWARF address space associated with DIDerivedType. 1655 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1656 Record.push_back(*DWARFAddressSpace + 1); 1657 else 1658 Record.push_back(0); 1659 1660 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1661 Record.clear(); 1662 } 1663 1664 void ModuleBitcodeWriter::writeDICompositeType( 1665 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1666 unsigned Abbrev) { 1667 const unsigned IsNotUsedInOldTypeRef = 0x2; 1668 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1669 Record.push_back(N->getTag()); 1670 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1671 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1672 Record.push_back(N->getLine()); 1673 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1674 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1675 Record.push_back(N->getSizeInBits()); 1676 Record.push_back(N->getAlignInBits()); 1677 Record.push_back(N->getOffsetInBits()); 1678 Record.push_back(N->getFlags()); 1679 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1680 Record.push_back(N->getRuntimeLang()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1682 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1683 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1684 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1686 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1687 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1688 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1689 1690 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1691 Record.clear(); 1692 } 1693 1694 void ModuleBitcodeWriter::writeDISubroutineType( 1695 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1696 unsigned Abbrev) { 1697 const unsigned HasNoOldTypeRefs = 0x2; 1698 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1699 Record.push_back(N->getFlags()); 1700 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1701 Record.push_back(N->getCC()); 1702 1703 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1704 Record.clear(); 1705 } 1706 1707 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1708 SmallVectorImpl<uint64_t> &Record, 1709 unsigned Abbrev) { 1710 Record.push_back(N->isDistinct()); 1711 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1713 if (N->getRawChecksum()) { 1714 Record.push_back(N->getRawChecksum()->Kind); 1715 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1716 } else { 1717 // Maintain backwards compatibility with the old internal representation of 1718 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1719 Record.push_back(0); 1720 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1721 } 1722 auto Source = N->getRawSource(); 1723 if (Source) 1724 Record.push_back(VE.getMetadataOrNullID(*Source)); 1725 1726 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1727 Record.clear(); 1728 } 1729 1730 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1731 SmallVectorImpl<uint64_t> &Record, 1732 unsigned Abbrev) { 1733 assert(N->isDistinct() && "Expected distinct compile units"); 1734 Record.push_back(/* IsDistinct */ true); 1735 Record.push_back(N->getSourceLanguage()); 1736 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1737 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1738 Record.push_back(N->isOptimized()); 1739 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1740 Record.push_back(N->getRuntimeVersion()); 1741 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1742 Record.push_back(N->getEmissionKind()); 1743 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1744 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1745 Record.push_back(/* subprograms */ 0); 1746 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1747 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1748 Record.push_back(N->getDWOId()); 1749 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1750 Record.push_back(N->getSplitDebugInlining()); 1751 Record.push_back(N->getDebugInfoForProfiling()); 1752 Record.push_back((unsigned)N->getNameTableKind()); 1753 Record.push_back(N->getRangesBaseAddress()); 1754 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1755 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1756 1757 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1758 Record.clear(); 1759 } 1760 1761 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1762 SmallVectorImpl<uint64_t> &Record, 1763 unsigned Abbrev) { 1764 const uint64_t HasUnitFlag = 1 << 1; 1765 const uint64_t HasSPFlagsFlag = 1 << 2; 1766 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1767 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1768 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1769 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1770 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1771 Record.push_back(N->getLine()); 1772 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1773 Record.push_back(N->getScopeLine()); 1774 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1775 Record.push_back(N->getSPFlags()); 1776 Record.push_back(N->getVirtualIndex()); 1777 Record.push_back(N->getFlags()); 1778 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1781 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1782 Record.push_back(N->getThisAdjustment()); 1783 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1784 1785 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1786 Record.clear(); 1787 } 1788 1789 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1790 SmallVectorImpl<uint64_t> &Record, 1791 unsigned Abbrev) { 1792 Record.push_back(N->isDistinct()); 1793 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1795 Record.push_back(N->getLine()); 1796 Record.push_back(N->getColumn()); 1797 1798 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1799 Record.clear(); 1800 } 1801 1802 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1803 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1804 unsigned Abbrev) { 1805 Record.push_back(N->isDistinct()); 1806 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1807 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1808 Record.push_back(N->getDiscriminator()); 1809 1810 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1811 Record.clear(); 1812 } 1813 1814 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1815 SmallVectorImpl<uint64_t> &Record, 1816 unsigned Abbrev) { 1817 Record.push_back(N->isDistinct()); 1818 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1819 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1820 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1821 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1822 Record.push_back(N->getLineNo()); 1823 1824 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1825 Record.clear(); 1826 } 1827 1828 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1829 SmallVectorImpl<uint64_t> &Record, 1830 unsigned Abbrev) { 1831 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1832 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1833 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1834 1835 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1836 Record.clear(); 1837 } 1838 1839 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1840 SmallVectorImpl<uint64_t> &Record, 1841 unsigned Abbrev) { 1842 Record.push_back(N->isDistinct()); 1843 Record.push_back(N->getMacinfoType()); 1844 Record.push_back(N->getLine()); 1845 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1846 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1847 1848 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1849 Record.clear(); 1850 } 1851 1852 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1853 SmallVectorImpl<uint64_t> &Record, 1854 unsigned Abbrev) { 1855 Record.push_back(N->isDistinct()); 1856 Record.push_back(N->getMacinfoType()); 1857 Record.push_back(N->getLine()); 1858 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1859 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1860 1861 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1862 Record.clear(); 1863 } 1864 1865 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1866 SmallVectorImpl<uint64_t> &Record, 1867 unsigned Abbrev) { 1868 Record.push_back(N->isDistinct()); 1869 for (auto &I : N->operands()) 1870 Record.push_back(VE.getMetadataOrNullID(I)); 1871 Record.push_back(N->getLineNo()); 1872 Record.push_back(N->getIsDecl()); 1873 1874 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1875 Record.clear(); 1876 } 1877 1878 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1879 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1880 unsigned Abbrev) { 1881 Record.push_back(N->isDistinct()); 1882 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1883 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1884 Record.push_back(N->isDefault()); 1885 1886 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1887 Record.clear(); 1888 } 1889 1890 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1891 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1892 unsigned Abbrev) { 1893 Record.push_back(N->isDistinct()); 1894 Record.push_back(N->getTag()); 1895 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1896 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1897 Record.push_back(N->isDefault()); 1898 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1899 1900 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1901 Record.clear(); 1902 } 1903 1904 void ModuleBitcodeWriter::writeDIGlobalVariable( 1905 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1906 unsigned Abbrev) { 1907 const uint64_t Version = 2 << 1; 1908 Record.push_back((uint64_t)N->isDistinct() | Version); 1909 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1910 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1911 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1912 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1913 Record.push_back(N->getLine()); 1914 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1915 Record.push_back(N->isLocalToUnit()); 1916 Record.push_back(N->isDefinition()); 1917 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1918 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1919 Record.push_back(N->getAlignInBits()); 1920 1921 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1922 Record.clear(); 1923 } 1924 1925 void ModuleBitcodeWriter::writeDILocalVariable( 1926 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1927 unsigned Abbrev) { 1928 // In order to support all possible bitcode formats in BitcodeReader we need 1929 // to distinguish the following cases: 1930 // 1) Record has no artificial tag (Record[1]), 1931 // has no obsolete inlinedAt field (Record[9]). 1932 // In this case Record size will be 8, HasAlignment flag is false. 1933 // 2) Record has artificial tag (Record[1]), 1934 // has no obsolete inlignedAt field (Record[9]). 1935 // In this case Record size will be 9, HasAlignment flag is false. 1936 // 3) Record has both artificial tag (Record[1]) and 1937 // obsolete inlignedAt field (Record[9]). 1938 // In this case Record size will be 10, HasAlignment flag is false. 1939 // 4) Record has neither artificial tag, nor inlignedAt field, but 1940 // HasAlignment flag is true and Record[8] contains alignment value. 1941 const uint64_t HasAlignmentFlag = 1 << 1; 1942 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1943 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1944 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1945 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1946 Record.push_back(N->getLine()); 1947 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1948 Record.push_back(N->getArg()); 1949 Record.push_back(N->getFlags()); 1950 Record.push_back(N->getAlignInBits()); 1951 1952 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1953 Record.clear(); 1954 } 1955 1956 void ModuleBitcodeWriter::writeDILabel( 1957 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1958 unsigned Abbrev) { 1959 Record.push_back((uint64_t)N->isDistinct()); 1960 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1961 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1962 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1963 Record.push_back(N->getLine()); 1964 1965 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1966 Record.clear(); 1967 } 1968 1969 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1970 SmallVectorImpl<uint64_t> &Record, 1971 unsigned Abbrev) { 1972 Record.reserve(N->getElements().size() + 1); 1973 const uint64_t Version = 3 << 1; 1974 Record.push_back((uint64_t)N->isDistinct() | Version); 1975 Record.append(N->elements_begin(), N->elements_end()); 1976 1977 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1978 Record.clear(); 1979 } 1980 1981 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1982 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1983 unsigned Abbrev) { 1984 Record.push_back(N->isDistinct()); 1985 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1986 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1987 1988 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1989 Record.clear(); 1990 } 1991 1992 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1993 SmallVectorImpl<uint64_t> &Record, 1994 unsigned Abbrev) { 1995 Record.push_back(N->isDistinct()); 1996 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1997 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1998 Record.push_back(N->getLine()); 1999 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2000 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2001 Record.push_back(N->getAttributes()); 2002 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2003 2004 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2005 Record.clear(); 2006 } 2007 2008 void ModuleBitcodeWriter::writeDIImportedEntity( 2009 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2010 unsigned Abbrev) { 2011 Record.push_back(N->isDistinct()); 2012 Record.push_back(N->getTag()); 2013 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2014 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2015 Record.push_back(N->getLine()); 2016 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2017 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2018 2019 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2020 Record.clear(); 2021 } 2022 2023 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2024 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2025 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2028 return Stream.EmitAbbrev(std::move(Abbv)); 2029 } 2030 2031 void ModuleBitcodeWriter::writeNamedMetadata( 2032 SmallVectorImpl<uint64_t> &Record) { 2033 if (M.named_metadata_empty()) 2034 return; 2035 2036 unsigned Abbrev = createNamedMetadataAbbrev(); 2037 for (const NamedMDNode &NMD : M.named_metadata()) { 2038 // Write name. 2039 StringRef Str = NMD.getName(); 2040 Record.append(Str.bytes_begin(), Str.bytes_end()); 2041 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2042 Record.clear(); 2043 2044 // Write named metadata operands. 2045 for (const MDNode *N : NMD.operands()) 2046 Record.push_back(VE.getMetadataID(N)); 2047 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2048 Record.clear(); 2049 } 2050 } 2051 2052 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2053 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2054 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2058 return Stream.EmitAbbrev(std::move(Abbv)); 2059 } 2060 2061 /// Write out a record for MDString. 2062 /// 2063 /// All the metadata strings in a metadata block are emitted in a single 2064 /// record. The sizes and strings themselves are shoved into a blob. 2065 void ModuleBitcodeWriter::writeMetadataStrings( 2066 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2067 if (Strings.empty()) 2068 return; 2069 2070 // Start the record with the number of strings. 2071 Record.push_back(bitc::METADATA_STRINGS); 2072 Record.push_back(Strings.size()); 2073 2074 // Emit the sizes of the strings in the blob. 2075 SmallString<256> Blob; 2076 { 2077 BitstreamWriter W(Blob); 2078 for (const Metadata *MD : Strings) 2079 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2080 W.FlushToWord(); 2081 } 2082 2083 // Add the offset to the strings to the record. 2084 Record.push_back(Blob.size()); 2085 2086 // Add the strings to the blob. 2087 for (const Metadata *MD : Strings) 2088 Blob.append(cast<MDString>(MD)->getString()); 2089 2090 // Emit the final record. 2091 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2092 Record.clear(); 2093 } 2094 2095 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2096 enum MetadataAbbrev : unsigned { 2097 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2098 #include "llvm/IR/Metadata.def" 2099 LastPlusOne 2100 }; 2101 2102 void ModuleBitcodeWriter::writeMetadataRecords( 2103 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2104 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2105 if (MDs.empty()) 2106 return; 2107 2108 // Initialize MDNode abbreviations. 2109 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2110 #include "llvm/IR/Metadata.def" 2111 2112 for (const Metadata *MD : MDs) { 2113 if (IndexPos) 2114 IndexPos->push_back(Stream.GetCurrentBitNo()); 2115 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2116 assert(N->isResolved() && "Expected forward references to be resolved"); 2117 2118 switch (N->getMetadataID()) { 2119 default: 2120 llvm_unreachable("Invalid MDNode subclass"); 2121 #define HANDLE_MDNODE_LEAF(CLASS) \ 2122 case Metadata::CLASS##Kind: \ 2123 if (MDAbbrevs) \ 2124 write##CLASS(cast<CLASS>(N), Record, \ 2125 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2126 else \ 2127 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2128 continue; 2129 #include "llvm/IR/Metadata.def" 2130 } 2131 } 2132 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2133 } 2134 } 2135 2136 void ModuleBitcodeWriter::writeModuleMetadata() { 2137 if (!VE.hasMDs() && M.named_metadata_empty()) 2138 return; 2139 2140 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2141 SmallVector<uint64_t, 64> Record; 2142 2143 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2144 // block and load any metadata. 2145 std::vector<unsigned> MDAbbrevs; 2146 2147 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2148 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2149 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2150 createGenericDINodeAbbrev(); 2151 2152 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2153 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2156 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2157 2158 Abbv = std::make_shared<BitCodeAbbrev>(); 2159 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2162 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2163 2164 // Emit MDStrings together upfront. 2165 writeMetadataStrings(VE.getMDStrings(), Record); 2166 2167 // We only emit an index for the metadata record if we have more than a given 2168 // (naive) threshold of metadatas, otherwise it is not worth it. 2169 if (VE.getNonMDStrings().size() > IndexThreshold) { 2170 // Write a placeholder value in for the offset of the metadata index, 2171 // which is written after the records, so that it can include 2172 // the offset of each entry. The placeholder offset will be 2173 // updated after all records are emitted. 2174 uint64_t Vals[] = {0, 0}; 2175 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2176 } 2177 2178 // Compute and save the bit offset to the current position, which will be 2179 // patched when we emit the index later. We can simply subtract the 64-bit 2180 // fixed size from the current bit number to get the location to backpatch. 2181 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2182 2183 // This index will contain the bitpos for each individual record. 2184 std::vector<uint64_t> IndexPos; 2185 IndexPos.reserve(VE.getNonMDStrings().size()); 2186 2187 // Write all the records 2188 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2189 2190 if (VE.getNonMDStrings().size() > IndexThreshold) { 2191 // Now that we have emitted all the records we will emit the index. But 2192 // first 2193 // backpatch the forward reference so that the reader can skip the records 2194 // efficiently. 2195 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2196 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2197 2198 // Delta encode the index. 2199 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2200 for (auto &Elt : IndexPos) { 2201 auto EltDelta = Elt - PreviousValue; 2202 PreviousValue = Elt; 2203 Elt = EltDelta; 2204 } 2205 // Emit the index record. 2206 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2207 IndexPos.clear(); 2208 } 2209 2210 // Write the named metadata now. 2211 writeNamedMetadata(Record); 2212 2213 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2214 SmallVector<uint64_t, 4> Record; 2215 Record.push_back(VE.getValueID(&GO)); 2216 pushGlobalMetadataAttachment(Record, GO); 2217 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2218 }; 2219 for (const Function &F : M) 2220 if (F.isDeclaration() && F.hasMetadata()) 2221 AddDeclAttachedMetadata(F); 2222 // FIXME: Only store metadata for declarations here, and move data for global 2223 // variable definitions to a separate block (PR28134). 2224 for (const GlobalVariable &GV : M.globals()) 2225 if (GV.hasMetadata()) 2226 AddDeclAttachedMetadata(GV); 2227 2228 Stream.ExitBlock(); 2229 } 2230 2231 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2232 if (!VE.hasMDs()) 2233 return; 2234 2235 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2236 SmallVector<uint64_t, 64> Record; 2237 writeMetadataStrings(VE.getMDStrings(), Record); 2238 writeMetadataRecords(VE.getNonMDStrings(), Record); 2239 Stream.ExitBlock(); 2240 } 2241 2242 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2243 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2244 // [n x [id, mdnode]] 2245 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2246 GO.getAllMetadata(MDs); 2247 for (const auto &I : MDs) { 2248 Record.push_back(I.first); 2249 Record.push_back(VE.getMetadataID(I.second)); 2250 } 2251 } 2252 2253 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2254 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2255 2256 SmallVector<uint64_t, 64> Record; 2257 2258 if (F.hasMetadata()) { 2259 pushGlobalMetadataAttachment(Record, F); 2260 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2261 Record.clear(); 2262 } 2263 2264 // Write metadata attachments 2265 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2266 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2267 for (const BasicBlock &BB : F) 2268 for (const Instruction &I : BB) { 2269 MDs.clear(); 2270 I.getAllMetadataOtherThanDebugLoc(MDs); 2271 2272 // If no metadata, ignore instruction. 2273 if (MDs.empty()) continue; 2274 2275 Record.push_back(VE.getInstructionID(&I)); 2276 2277 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2278 Record.push_back(MDs[i].first); 2279 Record.push_back(VE.getMetadataID(MDs[i].second)); 2280 } 2281 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2282 Record.clear(); 2283 } 2284 2285 Stream.ExitBlock(); 2286 } 2287 2288 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2289 SmallVector<uint64_t, 64> Record; 2290 2291 // Write metadata kinds 2292 // METADATA_KIND - [n x [id, name]] 2293 SmallVector<StringRef, 8> Names; 2294 M.getMDKindNames(Names); 2295 2296 if (Names.empty()) return; 2297 2298 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2299 2300 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2301 Record.push_back(MDKindID); 2302 StringRef KName = Names[MDKindID]; 2303 Record.append(KName.begin(), KName.end()); 2304 2305 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2306 Record.clear(); 2307 } 2308 2309 Stream.ExitBlock(); 2310 } 2311 2312 void ModuleBitcodeWriter::writeOperandBundleTags() { 2313 // Write metadata kinds 2314 // 2315 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2316 // 2317 // OPERAND_BUNDLE_TAG - [strchr x N] 2318 2319 SmallVector<StringRef, 8> Tags; 2320 M.getOperandBundleTags(Tags); 2321 2322 if (Tags.empty()) 2323 return; 2324 2325 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2326 2327 SmallVector<uint64_t, 64> Record; 2328 2329 for (auto Tag : Tags) { 2330 Record.append(Tag.begin(), Tag.end()); 2331 2332 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2333 Record.clear(); 2334 } 2335 2336 Stream.ExitBlock(); 2337 } 2338 2339 void ModuleBitcodeWriter::writeSyncScopeNames() { 2340 SmallVector<StringRef, 8> SSNs; 2341 M.getContext().getSyncScopeNames(SSNs); 2342 if (SSNs.empty()) 2343 return; 2344 2345 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2346 2347 SmallVector<uint64_t, 64> Record; 2348 for (auto SSN : SSNs) { 2349 Record.append(SSN.begin(), SSN.end()); 2350 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2351 Record.clear(); 2352 } 2353 2354 Stream.ExitBlock(); 2355 } 2356 2357 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2358 bool isGlobal) { 2359 if (FirstVal == LastVal) return; 2360 2361 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2362 2363 unsigned AggregateAbbrev = 0; 2364 unsigned String8Abbrev = 0; 2365 unsigned CString7Abbrev = 0; 2366 unsigned CString6Abbrev = 0; 2367 // If this is a constant pool for the module, emit module-specific abbrevs. 2368 if (isGlobal) { 2369 // Abbrev for CST_CODE_AGGREGATE. 2370 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2371 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2374 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2375 2376 // Abbrev for CST_CODE_STRING. 2377 Abbv = std::make_shared<BitCodeAbbrev>(); 2378 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2381 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2382 // Abbrev for CST_CODE_CSTRING. 2383 Abbv = std::make_shared<BitCodeAbbrev>(); 2384 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2387 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2388 // Abbrev for CST_CODE_CSTRING. 2389 Abbv = std::make_shared<BitCodeAbbrev>(); 2390 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2393 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2394 } 2395 2396 SmallVector<uint64_t, 64> Record; 2397 2398 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2399 Type *LastTy = nullptr; 2400 for (unsigned i = FirstVal; i != LastVal; ++i) { 2401 const Value *V = Vals[i].first; 2402 // If we need to switch types, do so now. 2403 if (V->getType() != LastTy) { 2404 LastTy = V->getType(); 2405 Record.push_back(VE.getTypeID(LastTy)); 2406 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2407 CONSTANTS_SETTYPE_ABBREV); 2408 Record.clear(); 2409 } 2410 2411 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2412 Record.push_back(unsigned(IA->hasSideEffects()) | 2413 unsigned(IA->isAlignStack()) << 1 | 2414 unsigned(IA->getDialect()&1) << 2); 2415 2416 // Add the asm string. 2417 const std::string &AsmStr = IA->getAsmString(); 2418 Record.push_back(AsmStr.size()); 2419 Record.append(AsmStr.begin(), AsmStr.end()); 2420 2421 // Add the constraint string. 2422 const std::string &ConstraintStr = IA->getConstraintString(); 2423 Record.push_back(ConstraintStr.size()); 2424 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2425 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2426 Record.clear(); 2427 continue; 2428 } 2429 const Constant *C = cast<Constant>(V); 2430 unsigned Code = -1U; 2431 unsigned AbbrevToUse = 0; 2432 if (C->isNullValue()) { 2433 Code = bitc::CST_CODE_NULL; 2434 } else if (isa<PoisonValue>(C)) { 2435 Code = bitc::CST_CODE_POISON; 2436 } else if (isa<UndefValue>(C)) { 2437 Code = bitc::CST_CODE_UNDEF; 2438 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2439 if (IV->getBitWidth() <= 64) { 2440 uint64_t V = IV->getSExtValue(); 2441 emitSignedInt64(Record, V); 2442 Code = bitc::CST_CODE_INTEGER; 2443 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2444 } else { // Wide integers, > 64 bits in size. 2445 emitWideAPInt(Record, IV->getValue()); 2446 Code = bitc::CST_CODE_WIDE_INTEGER; 2447 } 2448 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2449 Code = bitc::CST_CODE_FLOAT; 2450 Type *Ty = CFP->getType(); 2451 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2452 Ty->isDoubleTy()) { 2453 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2454 } else if (Ty->isX86_FP80Ty()) { 2455 // api needed to prevent premature destruction 2456 // bits are not in the same order as a normal i80 APInt, compensate. 2457 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2458 const uint64_t *p = api.getRawData(); 2459 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2460 Record.push_back(p[0] & 0xffffLL); 2461 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2462 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2463 const uint64_t *p = api.getRawData(); 2464 Record.push_back(p[0]); 2465 Record.push_back(p[1]); 2466 } else { 2467 assert(0 && "Unknown FP type!"); 2468 } 2469 } else if (isa<ConstantDataSequential>(C) && 2470 cast<ConstantDataSequential>(C)->isString()) { 2471 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2472 // Emit constant strings specially. 2473 unsigned NumElts = Str->getNumElements(); 2474 // If this is a null-terminated string, use the denser CSTRING encoding. 2475 if (Str->isCString()) { 2476 Code = bitc::CST_CODE_CSTRING; 2477 --NumElts; // Don't encode the null, which isn't allowed by char6. 2478 } else { 2479 Code = bitc::CST_CODE_STRING; 2480 AbbrevToUse = String8Abbrev; 2481 } 2482 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2483 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2484 for (unsigned i = 0; i != NumElts; ++i) { 2485 unsigned char V = Str->getElementAsInteger(i); 2486 Record.push_back(V); 2487 isCStr7 &= (V & 128) == 0; 2488 if (isCStrChar6) 2489 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2490 } 2491 2492 if (isCStrChar6) 2493 AbbrevToUse = CString6Abbrev; 2494 else if (isCStr7) 2495 AbbrevToUse = CString7Abbrev; 2496 } else if (const ConstantDataSequential *CDS = 2497 dyn_cast<ConstantDataSequential>(C)) { 2498 Code = bitc::CST_CODE_DATA; 2499 Type *EltTy = CDS->getElementType(); 2500 if (isa<IntegerType>(EltTy)) { 2501 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2502 Record.push_back(CDS->getElementAsInteger(i)); 2503 } else { 2504 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2505 Record.push_back( 2506 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2507 } 2508 } else if (isa<ConstantAggregate>(C)) { 2509 Code = bitc::CST_CODE_AGGREGATE; 2510 for (const Value *Op : C->operands()) 2511 Record.push_back(VE.getValueID(Op)); 2512 AbbrevToUse = AggregateAbbrev; 2513 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2514 switch (CE->getOpcode()) { 2515 default: 2516 if (Instruction::isCast(CE->getOpcode())) { 2517 Code = bitc::CST_CODE_CE_CAST; 2518 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2519 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2520 Record.push_back(VE.getValueID(C->getOperand(0))); 2521 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2522 } else { 2523 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2524 Code = bitc::CST_CODE_CE_BINOP; 2525 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2526 Record.push_back(VE.getValueID(C->getOperand(0))); 2527 Record.push_back(VE.getValueID(C->getOperand(1))); 2528 uint64_t Flags = getOptimizationFlags(CE); 2529 if (Flags != 0) 2530 Record.push_back(Flags); 2531 } 2532 break; 2533 case Instruction::FNeg: { 2534 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2535 Code = bitc::CST_CODE_CE_UNOP; 2536 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2537 Record.push_back(VE.getValueID(C->getOperand(0))); 2538 uint64_t Flags = getOptimizationFlags(CE); 2539 if (Flags != 0) 2540 Record.push_back(Flags); 2541 break; 2542 } 2543 case Instruction::GetElementPtr: { 2544 Code = bitc::CST_CODE_CE_GEP; 2545 const auto *GO = cast<GEPOperator>(C); 2546 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2547 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2548 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2549 Record.push_back((*Idx << 1) | GO->isInBounds()); 2550 } else if (GO->isInBounds()) 2551 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2552 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2553 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2554 Record.push_back(VE.getValueID(C->getOperand(i))); 2555 } 2556 break; 2557 } 2558 case Instruction::Select: 2559 Code = bitc::CST_CODE_CE_SELECT; 2560 Record.push_back(VE.getValueID(C->getOperand(0))); 2561 Record.push_back(VE.getValueID(C->getOperand(1))); 2562 Record.push_back(VE.getValueID(C->getOperand(2))); 2563 break; 2564 case Instruction::ExtractElement: 2565 Code = bitc::CST_CODE_CE_EXTRACTELT; 2566 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2567 Record.push_back(VE.getValueID(C->getOperand(0))); 2568 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2569 Record.push_back(VE.getValueID(C->getOperand(1))); 2570 break; 2571 case Instruction::InsertElement: 2572 Code = bitc::CST_CODE_CE_INSERTELT; 2573 Record.push_back(VE.getValueID(C->getOperand(0))); 2574 Record.push_back(VE.getValueID(C->getOperand(1))); 2575 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2576 Record.push_back(VE.getValueID(C->getOperand(2))); 2577 break; 2578 case Instruction::ShuffleVector: 2579 // If the return type and argument types are the same, this is a 2580 // standard shufflevector instruction. If the types are different, 2581 // then the shuffle is widening or truncating the input vectors, and 2582 // the argument type must also be encoded. 2583 if (C->getType() == C->getOperand(0)->getType()) { 2584 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2585 } else { 2586 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2587 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2588 } 2589 Record.push_back(VE.getValueID(C->getOperand(0))); 2590 Record.push_back(VE.getValueID(C->getOperand(1))); 2591 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2592 break; 2593 case Instruction::ICmp: 2594 case Instruction::FCmp: 2595 Code = bitc::CST_CODE_CE_CMP; 2596 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2597 Record.push_back(VE.getValueID(C->getOperand(0))); 2598 Record.push_back(VE.getValueID(C->getOperand(1))); 2599 Record.push_back(CE->getPredicate()); 2600 break; 2601 } 2602 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2603 Code = bitc::CST_CODE_BLOCKADDRESS; 2604 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2605 Record.push_back(VE.getValueID(BA->getFunction())); 2606 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2607 } else { 2608 #ifndef NDEBUG 2609 C->dump(); 2610 #endif 2611 llvm_unreachable("Unknown constant!"); 2612 } 2613 Stream.EmitRecord(Code, Record, AbbrevToUse); 2614 Record.clear(); 2615 } 2616 2617 Stream.ExitBlock(); 2618 } 2619 2620 void ModuleBitcodeWriter::writeModuleConstants() { 2621 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2622 2623 // Find the first constant to emit, which is the first non-globalvalue value. 2624 // We know globalvalues have been emitted by WriteModuleInfo. 2625 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2626 if (!isa<GlobalValue>(Vals[i].first)) { 2627 writeConstants(i, Vals.size(), true); 2628 return; 2629 } 2630 } 2631 } 2632 2633 /// pushValueAndType - The file has to encode both the value and type id for 2634 /// many values, because we need to know what type to create for forward 2635 /// references. However, most operands are not forward references, so this type 2636 /// field is not needed. 2637 /// 2638 /// This function adds V's value ID to Vals. If the value ID is higher than the 2639 /// instruction ID, then it is a forward reference, and it also includes the 2640 /// type ID. The value ID that is written is encoded relative to the InstID. 2641 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2642 SmallVectorImpl<unsigned> &Vals) { 2643 unsigned ValID = VE.getValueID(V); 2644 // Make encoding relative to the InstID. 2645 Vals.push_back(InstID - ValID); 2646 if (ValID >= InstID) { 2647 Vals.push_back(VE.getTypeID(V->getType())); 2648 return true; 2649 } 2650 return false; 2651 } 2652 2653 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2654 unsigned InstID) { 2655 SmallVector<unsigned, 64> Record; 2656 LLVMContext &C = CS.getContext(); 2657 2658 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2659 const auto &Bundle = CS.getOperandBundleAt(i); 2660 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2661 2662 for (auto &Input : Bundle.Inputs) 2663 pushValueAndType(Input, InstID, Record); 2664 2665 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2666 Record.clear(); 2667 } 2668 } 2669 2670 /// pushValue - Like pushValueAndType, but where the type of the value is 2671 /// omitted (perhaps it was already encoded in an earlier operand). 2672 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2673 SmallVectorImpl<unsigned> &Vals) { 2674 unsigned ValID = VE.getValueID(V); 2675 Vals.push_back(InstID - ValID); 2676 } 2677 2678 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2679 SmallVectorImpl<uint64_t> &Vals) { 2680 unsigned ValID = VE.getValueID(V); 2681 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2682 emitSignedInt64(Vals, diff); 2683 } 2684 2685 /// WriteInstruction - Emit an instruction to the specified stream. 2686 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2687 unsigned InstID, 2688 SmallVectorImpl<unsigned> &Vals) { 2689 unsigned Code = 0; 2690 unsigned AbbrevToUse = 0; 2691 VE.setInstructionID(&I); 2692 switch (I.getOpcode()) { 2693 default: 2694 if (Instruction::isCast(I.getOpcode())) { 2695 Code = bitc::FUNC_CODE_INST_CAST; 2696 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2697 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2698 Vals.push_back(VE.getTypeID(I.getType())); 2699 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2700 } else { 2701 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2702 Code = bitc::FUNC_CODE_INST_BINOP; 2703 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2704 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2705 pushValue(I.getOperand(1), InstID, Vals); 2706 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2707 uint64_t Flags = getOptimizationFlags(&I); 2708 if (Flags != 0) { 2709 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2710 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2711 Vals.push_back(Flags); 2712 } 2713 } 2714 break; 2715 case Instruction::FNeg: { 2716 Code = bitc::FUNC_CODE_INST_UNOP; 2717 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2718 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2719 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2720 uint64_t Flags = getOptimizationFlags(&I); 2721 if (Flags != 0) { 2722 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2723 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2724 Vals.push_back(Flags); 2725 } 2726 break; 2727 } 2728 case Instruction::GetElementPtr: { 2729 Code = bitc::FUNC_CODE_INST_GEP; 2730 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2731 auto &GEPInst = cast<GetElementPtrInst>(I); 2732 Vals.push_back(GEPInst.isInBounds()); 2733 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2734 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2735 pushValueAndType(I.getOperand(i), InstID, Vals); 2736 break; 2737 } 2738 case Instruction::ExtractValue: { 2739 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2740 pushValueAndType(I.getOperand(0), InstID, Vals); 2741 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2742 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2743 break; 2744 } 2745 case Instruction::InsertValue: { 2746 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2747 pushValueAndType(I.getOperand(0), InstID, Vals); 2748 pushValueAndType(I.getOperand(1), InstID, Vals); 2749 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2750 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2751 break; 2752 } 2753 case Instruction::Select: { 2754 Code = bitc::FUNC_CODE_INST_VSELECT; 2755 pushValueAndType(I.getOperand(1), InstID, Vals); 2756 pushValue(I.getOperand(2), InstID, Vals); 2757 pushValueAndType(I.getOperand(0), InstID, Vals); 2758 uint64_t Flags = getOptimizationFlags(&I); 2759 if (Flags != 0) 2760 Vals.push_back(Flags); 2761 break; 2762 } 2763 case Instruction::ExtractElement: 2764 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2765 pushValueAndType(I.getOperand(0), InstID, Vals); 2766 pushValueAndType(I.getOperand(1), InstID, Vals); 2767 break; 2768 case Instruction::InsertElement: 2769 Code = bitc::FUNC_CODE_INST_INSERTELT; 2770 pushValueAndType(I.getOperand(0), InstID, Vals); 2771 pushValue(I.getOperand(1), InstID, Vals); 2772 pushValueAndType(I.getOperand(2), InstID, Vals); 2773 break; 2774 case Instruction::ShuffleVector: 2775 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2776 pushValueAndType(I.getOperand(0), InstID, Vals); 2777 pushValue(I.getOperand(1), InstID, Vals); 2778 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2779 Vals); 2780 break; 2781 case Instruction::ICmp: 2782 case Instruction::FCmp: { 2783 // compare returning Int1Ty or vector of Int1Ty 2784 Code = bitc::FUNC_CODE_INST_CMP2; 2785 pushValueAndType(I.getOperand(0), InstID, Vals); 2786 pushValue(I.getOperand(1), InstID, Vals); 2787 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2788 uint64_t Flags = getOptimizationFlags(&I); 2789 if (Flags != 0) 2790 Vals.push_back(Flags); 2791 break; 2792 } 2793 2794 case Instruction::Ret: 2795 { 2796 Code = bitc::FUNC_CODE_INST_RET; 2797 unsigned NumOperands = I.getNumOperands(); 2798 if (NumOperands == 0) 2799 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2800 else if (NumOperands == 1) { 2801 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2802 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2803 } else { 2804 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2805 pushValueAndType(I.getOperand(i), InstID, Vals); 2806 } 2807 } 2808 break; 2809 case Instruction::Br: 2810 { 2811 Code = bitc::FUNC_CODE_INST_BR; 2812 const BranchInst &II = cast<BranchInst>(I); 2813 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2814 if (II.isConditional()) { 2815 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2816 pushValue(II.getCondition(), InstID, Vals); 2817 } 2818 } 2819 break; 2820 case Instruction::Switch: 2821 { 2822 Code = bitc::FUNC_CODE_INST_SWITCH; 2823 const SwitchInst &SI = cast<SwitchInst>(I); 2824 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2825 pushValue(SI.getCondition(), InstID, Vals); 2826 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2827 for (auto Case : SI.cases()) { 2828 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2829 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2830 } 2831 } 2832 break; 2833 case Instruction::IndirectBr: 2834 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2835 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2836 // Encode the address operand as relative, but not the basic blocks. 2837 pushValue(I.getOperand(0), InstID, Vals); 2838 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2839 Vals.push_back(VE.getValueID(I.getOperand(i))); 2840 break; 2841 2842 case Instruction::Invoke: { 2843 const InvokeInst *II = cast<InvokeInst>(&I); 2844 const Value *Callee = II->getCalledOperand(); 2845 FunctionType *FTy = II->getFunctionType(); 2846 2847 if (II->hasOperandBundles()) 2848 writeOperandBundles(*II, InstID); 2849 2850 Code = bitc::FUNC_CODE_INST_INVOKE; 2851 2852 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2853 Vals.push_back(II->getCallingConv() | 1 << 13); 2854 Vals.push_back(VE.getValueID(II->getNormalDest())); 2855 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2856 Vals.push_back(VE.getTypeID(FTy)); 2857 pushValueAndType(Callee, InstID, Vals); 2858 2859 // Emit value #'s for the fixed parameters. 2860 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2861 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2862 2863 // Emit type/value pairs for varargs params. 2864 if (FTy->isVarArg()) { 2865 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2866 i != e; ++i) 2867 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2868 } 2869 break; 2870 } 2871 case Instruction::Resume: 2872 Code = bitc::FUNC_CODE_INST_RESUME; 2873 pushValueAndType(I.getOperand(0), InstID, Vals); 2874 break; 2875 case Instruction::CleanupRet: { 2876 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2877 const auto &CRI = cast<CleanupReturnInst>(I); 2878 pushValue(CRI.getCleanupPad(), InstID, Vals); 2879 if (CRI.hasUnwindDest()) 2880 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2881 break; 2882 } 2883 case Instruction::CatchRet: { 2884 Code = bitc::FUNC_CODE_INST_CATCHRET; 2885 const auto &CRI = cast<CatchReturnInst>(I); 2886 pushValue(CRI.getCatchPad(), InstID, Vals); 2887 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2888 break; 2889 } 2890 case Instruction::CleanupPad: 2891 case Instruction::CatchPad: { 2892 const auto &FuncletPad = cast<FuncletPadInst>(I); 2893 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2894 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2895 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2896 2897 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2898 Vals.push_back(NumArgOperands); 2899 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2900 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2901 break; 2902 } 2903 case Instruction::CatchSwitch: { 2904 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2905 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2906 2907 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2908 2909 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2910 Vals.push_back(NumHandlers); 2911 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2912 Vals.push_back(VE.getValueID(CatchPadBB)); 2913 2914 if (CatchSwitch.hasUnwindDest()) 2915 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2916 break; 2917 } 2918 case Instruction::CallBr: { 2919 const CallBrInst *CBI = cast<CallBrInst>(&I); 2920 const Value *Callee = CBI->getCalledOperand(); 2921 FunctionType *FTy = CBI->getFunctionType(); 2922 2923 if (CBI->hasOperandBundles()) 2924 writeOperandBundles(*CBI, InstID); 2925 2926 Code = bitc::FUNC_CODE_INST_CALLBR; 2927 2928 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2929 2930 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2931 1 << bitc::CALL_EXPLICIT_TYPE); 2932 2933 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2934 Vals.push_back(CBI->getNumIndirectDests()); 2935 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2936 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2937 2938 Vals.push_back(VE.getTypeID(FTy)); 2939 pushValueAndType(Callee, InstID, Vals); 2940 2941 // Emit value #'s for the fixed parameters. 2942 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2943 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2944 2945 // Emit type/value pairs for varargs params. 2946 if (FTy->isVarArg()) { 2947 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2948 i != e; ++i) 2949 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2950 } 2951 break; 2952 } 2953 case Instruction::Unreachable: 2954 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2955 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2956 break; 2957 2958 case Instruction::PHI: { 2959 const PHINode &PN = cast<PHINode>(I); 2960 Code = bitc::FUNC_CODE_INST_PHI; 2961 // With the newer instruction encoding, forward references could give 2962 // negative valued IDs. This is most common for PHIs, so we use 2963 // signed VBRs. 2964 SmallVector<uint64_t, 128> Vals64; 2965 Vals64.push_back(VE.getTypeID(PN.getType())); 2966 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2967 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2968 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2969 } 2970 2971 uint64_t Flags = getOptimizationFlags(&I); 2972 if (Flags != 0) 2973 Vals64.push_back(Flags); 2974 2975 // Emit a Vals64 vector and exit. 2976 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2977 Vals64.clear(); 2978 return; 2979 } 2980 2981 case Instruction::LandingPad: { 2982 const LandingPadInst &LP = cast<LandingPadInst>(I); 2983 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2984 Vals.push_back(VE.getTypeID(LP.getType())); 2985 Vals.push_back(LP.isCleanup()); 2986 Vals.push_back(LP.getNumClauses()); 2987 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2988 if (LP.isCatch(I)) 2989 Vals.push_back(LandingPadInst::Catch); 2990 else 2991 Vals.push_back(LandingPadInst::Filter); 2992 pushValueAndType(LP.getClause(I), InstID, Vals); 2993 } 2994 break; 2995 } 2996 2997 case Instruction::Alloca: { 2998 Code = bitc::FUNC_CODE_INST_ALLOCA; 2999 const AllocaInst &AI = cast<AllocaInst>(I); 3000 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3001 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3002 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3003 using APV = AllocaPackedValues; 3004 unsigned Record = 0; 3005 Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign())); 3006 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3007 Bitfield::set<APV::ExplicitType>(Record, true); 3008 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3009 Vals.push_back(Record); 3010 break; 3011 } 3012 3013 case Instruction::Load: 3014 if (cast<LoadInst>(I).isAtomic()) { 3015 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3016 pushValueAndType(I.getOperand(0), InstID, Vals); 3017 } else { 3018 Code = bitc::FUNC_CODE_INST_LOAD; 3019 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3020 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3021 } 3022 Vals.push_back(VE.getTypeID(I.getType())); 3023 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3024 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3025 if (cast<LoadInst>(I).isAtomic()) { 3026 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3027 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3028 } 3029 break; 3030 case Instruction::Store: 3031 if (cast<StoreInst>(I).isAtomic()) 3032 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3033 else 3034 Code = bitc::FUNC_CODE_INST_STORE; 3035 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3036 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3037 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3038 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3039 if (cast<StoreInst>(I).isAtomic()) { 3040 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3041 Vals.push_back( 3042 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3043 } 3044 break; 3045 case Instruction::AtomicCmpXchg: 3046 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3047 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3048 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3049 pushValue(I.getOperand(2), InstID, Vals); // newval. 3050 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3051 Vals.push_back( 3052 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3053 Vals.push_back( 3054 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3055 Vals.push_back( 3056 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3057 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3058 break; 3059 case Instruction::AtomicRMW: 3060 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3061 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3062 pushValue(I.getOperand(1), InstID, Vals); // val. 3063 Vals.push_back( 3064 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3065 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3066 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3067 Vals.push_back( 3068 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3069 break; 3070 case Instruction::Fence: 3071 Code = bitc::FUNC_CODE_INST_FENCE; 3072 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3073 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3074 break; 3075 case Instruction::Call: { 3076 const CallInst &CI = cast<CallInst>(I); 3077 FunctionType *FTy = CI.getFunctionType(); 3078 3079 if (CI.hasOperandBundles()) 3080 writeOperandBundles(CI, InstID); 3081 3082 Code = bitc::FUNC_CODE_INST_CALL; 3083 3084 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3085 3086 unsigned Flags = getOptimizationFlags(&I); 3087 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3088 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3089 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3090 1 << bitc::CALL_EXPLICIT_TYPE | 3091 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3092 unsigned(Flags != 0) << bitc::CALL_FMF); 3093 if (Flags != 0) 3094 Vals.push_back(Flags); 3095 3096 Vals.push_back(VE.getTypeID(FTy)); 3097 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3098 3099 // Emit value #'s for the fixed parameters. 3100 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3101 // Check for labels (can happen with asm labels). 3102 if (FTy->getParamType(i)->isLabelTy()) 3103 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3104 else 3105 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3106 } 3107 3108 // Emit type/value pairs for varargs params. 3109 if (FTy->isVarArg()) { 3110 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3111 i != e; ++i) 3112 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3113 } 3114 break; 3115 } 3116 case Instruction::VAArg: 3117 Code = bitc::FUNC_CODE_INST_VAARG; 3118 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3119 pushValue(I.getOperand(0), InstID, Vals); // valist. 3120 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3121 break; 3122 case Instruction::Freeze: 3123 Code = bitc::FUNC_CODE_INST_FREEZE; 3124 pushValueAndType(I.getOperand(0), InstID, Vals); 3125 break; 3126 } 3127 3128 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3129 Vals.clear(); 3130 } 3131 3132 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3133 /// to allow clients to efficiently find the function body. 3134 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3135 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3136 // Get the offset of the VST we are writing, and backpatch it into 3137 // the VST forward declaration record. 3138 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3139 // The BitcodeStartBit was the stream offset of the identification block. 3140 VSTOffset -= bitcodeStartBit(); 3141 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3142 // Note that we add 1 here because the offset is relative to one word 3143 // before the start of the identification block, which was historically 3144 // always the start of the regular bitcode header. 3145 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3146 3147 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3148 3149 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3150 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3153 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3154 3155 for (const Function &F : M) { 3156 uint64_t Record[2]; 3157 3158 if (F.isDeclaration()) 3159 continue; 3160 3161 Record[0] = VE.getValueID(&F); 3162 3163 // Save the word offset of the function (from the start of the 3164 // actual bitcode written to the stream). 3165 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3166 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3167 // Note that we add 1 here because the offset is relative to one word 3168 // before the start of the identification block, which was historically 3169 // always the start of the regular bitcode header. 3170 Record[1] = BitcodeIndex / 32 + 1; 3171 3172 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3173 } 3174 3175 Stream.ExitBlock(); 3176 } 3177 3178 /// Emit names for arguments, instructions and basic blocks in a function. 3179 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3180 const ValueSymbolTable &VST) { 3181 if (VST.empty()) 3182 return; 3183 3184 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3185 3186 // FIXME: Set up the abbrev, we know how many values there are! 3187 // FIXME: We know if the type names can use 7-bit ascii. 3188 SmallVector<uint64_t, 64> NameVals; 3189 3190 for (const ValueName &Name : VST) { 3191 // Figure out the encoding to use for the name. 3192 StringEncoding Bits = getStringEncoding(Name.getKey()); 3193 3194 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3195 NameVals.push_back(VE.getValueID(Name.getValue())); 3196 3197 // VST_CODE_ENTRY: [valueid, namechar x N] 3198 // VST_CODE_BBENTRY: [bbid, namechar x N] 3199 unsigned Code; 3200 if (isa<BasicBlock>(Name.getValue())) { 3201 Code = bitc::VST_CODE_BBENTRY; 3202 if (Bits == SE_Char6) 3203 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3204 } else { 3205 Code = bitc::VST_CODE_ENTRY; 3206 if (Bits == SE_Char6) 3207 AbbrevToUse = VST_ENTRY_6_ABBREV; 3208 else if (Bits == SE_Fixed7) 3209 AbbrevToUse = VST_ENTRY_7_ABBREV; 3210 } 3211 3212 for (const auto P : Name.getKey()) 3213 NameVals.push_back((unsigned char)P); 3214 3215 // Emit the finished record. 3216 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3217 NameVals.clear(); 3218 } 3219 3220 Stream.ExitBlock(); 3221 } 3222 3223 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3224 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3225 unsigned Code; 3226 if (isa<BasicBlock>(Order.V)) 3227 Code = bitc::USELIST_CODE_BB; 3228 else 3229 Code = bitc::USELIST_CODE_DEFAULT; 3230 3231 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3232 Record.push_back(VE.getValueID(Order.V)); 3233 Stream.EmitRecord(Code, Record); 3234 } 3235 3236 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3237 assert(VE.shouldPreserveUseListOrder() && 3238 "Expected to be preserving use-list order"); 3239 3240 auto hasMore = [&]() { 3241 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3242 }; 3243 if (!hasMore()) 3244 // Nothing to do. 3245 return; 3246 3247 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3248 while (hasMore()) { 3249 writeUseList(std::move(VE.UseListOrders.back())); 3250 VE.UseListOrders.pop_back(); 3251 } 3252 Stream.ExitBlock(); 3253 } 3254 3255 /// Emit a function body to the module stream. 3256 void ModuleBitcodeWriter::writeFunction( 3257 const Function &F, 3258 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3259 // Save the bitcode index of the start of this function block for recording 3260 // in the VST. 3261 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3262 3263 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3264 VE.incorporateFunction(F); 3265 3266 SmallVector<unsigned, 64> Vals; 3267 3268 // Emit the number of basic blocks, so the reader can create them ahead of 3269 // time. 3270 Vals.push_back(VE.getBasicBlocks().size()); 3271 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3272 Vals.clear(); 3273 3274 // If there are function-local constants, emit them now. 3275 unsigned CstStart, CstEnd; 3276 VE.getFunctionConstantRange(CstStart, CstEnd); 3277 writeConstants(CstStart, CstEnd, false); 3278 3279 // If there is function-local metadata, emit it now. 3280 writeFunctionMetadata(F); 3281 3282 // Keep a running idea of what the instruction ID is. 3283 unsigned InstID = CstEnd; 3284 3285 bool NeedsMetadataAttachment = F.hasMetadata(); 3286 3287 DILocation *LastDL = nullptr; 3288 // Finally, emit all the instructions, in order. 3289 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3290 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3291 I != E; ++I) { 3292 writeInstruction(*I, InstID, Vals); 3293 3294 if (!I->getType()->isVoidTy()) 3295 ++InstID; 3296 3297 // If the instruction has metadata, write a metadata attachment later. 3298 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3299 3300 // If the instruction has a debug location, emit it. 3301 DILocation *DL = I->getDebugLoc(); 3302 if (!DL) 3303 continue; 3304 3305 if (DL == LastDL) { 3306 // Just repeat the same debug loc as last time. 3307 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3308 continue; 3309 } 3310 3311 Vals.push_back(DL->getLine()); 3312 Vals.push_back(DL->getColumn()); 3313 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3314 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3315 Vals.push_back(DL->isImplicitCode()); 3316 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3317 Vals.clear(); 3318 3319 LastDL = DL; 3320 } 3321 3322 // Emit names for all the instructions etc. 3323 if (auto *Symtab = F.getValueSymbolTable()) 3324 writeFunctionLevelValueSymbolTable(*Symtab); 3325 3326 if (NeedsMetadataAttachment) 3327 writeFunctionMetadataAttachment(F); 3328 if (VE.shouldPreserveUseListOrder()) 3329 writeUseListBlock(&F); 3330 VE.purgeFunction(); 3331 Stream.ExitBlock(); 3332 } 3333 3334 // Emit blockinfo, which defines the standard abbreviations etc. 3335 void ModuleBitcodeWriter::writeBlockInfo() { 3336 // We only want to emit block info records for blocks that have multiple 3337 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3338 // Other blocks can define their abbrevs inline. 3339 Stream.EnterBlockInfoBlock(); 3340 3341 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3342 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3347 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3348 VST_ENTRY_8_ABBREV) 3349 llvm_unreachable("Unexpected abbrev ordering!"); 3350 } 3351 3352 { // 7-bit fixed width VST_CODE_ENTRY strings. 3353 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3354 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3358 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3359 VST_ENTRY_7_ABBREV) 3360 llvm_unreachable("Unexpected abbrev ordering!"); 3361 } 3362 { // 6-bit char6 VST_CODE_ENTRY strings. 3363 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3364 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3368 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3369 VST_ENTRY_6_ABBREV) 3370 llvm_unreachable("Unexpected abbrev ordering!"); 3371 } 3372 { // 6-bit char6 VST_CODE_BBENTRY strings. 3373 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3374 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3378 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3379 VST_BBENTRY_6_ABBREV) 3380 llvm_unreachable("Unexpected abbrev ordering!"); 3381 } 3382 3383 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3384 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3385 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3387 VE.computeBitsRequiredForTypeIndicies())); 3388 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3389 CONSTANTS_SETTYPE_ABBREV) 3390 llvm_unreachable("Unexpected abbrev ordering!"); 3391 } 3392 3393 { // INTEGER abbrev for CONSTANTS_BLOCK. 3394 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3395 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3397 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3398 CONSTANTS_INTEGER_ABBREV) 3399 llvm_unreachable("Unexpected abbrev ordering!"); 3400 } 3401 3402 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3403 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3404 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3407 VE.computeBitsRequiredForTypeIndicies())); 3408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3409 3410 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3411 CONSTANTS_CE_CAST_Abbrev) 3412 llvm_unreachable("Unexpected abbrev ordering!"); 3413 } 3414 { // NULL abbrev for CONSTANTS_BLOCK. 3415 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3416 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3417 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3418 CONSTANTS_NULL_Abbrev) 3419 llvm_unreachable("Unexpected abbrev ordering!"); 3420 } 3421 3422 // FIXME: This should only use space for first class types! 3423 3424 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3425 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3426 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3429 VE.computeBitsRequiredForTypeIndicies())); 3430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3432 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3433 FUNCTION_INST_LOAD_ABBREV) 3434 llvm_unreachable("Unexpected abbrev ordering!"); 3435 } 3436 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3437 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3438 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3441 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3442 FUNCTION_INST_UNOP_ABBREV) 3443 llvm_unreachable("Unexpected abbrev ordering!"); 3444 } 3445 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3446 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3447 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3451 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3452 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3453 llvm_unreachable("Unexpected abbrev ordering!"); 3454 } 3455 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3456 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3457 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3461 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3462 FUNCTION_INST_BINOP_ABBREV) 3463 llvm_unreachable("Unexpected abbrev ordering!"); 3464 } 3465 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3466 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3467 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3472 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3473 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3474 llvm_unreachable("Unexpected abbrev ordering!"); 3475 } 3476 { // INST_CAST abbrev for FUNCTION_BLOCK. 3477 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3478 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3481 VE.computeBitsRequiredForTypeIndicies())); 3482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3483 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3484 FUNCTION_INST_CAST_ABBREV) 3485 llvm_unreachable("Unexpected abbrev ordering!"); 3486 } 3487 3488 { // INST_RET abbrev for FUNCTION_BLOCK. 3489 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3490 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3491 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3492 FUNCTION_INST_RET_VOID_ABBREV) 3493 llvm_unreachable("Unexpected abbrev ordering!"); 3494 } 3495 { // INST_RET abbrev for FUNCTION_BLOCK. 3496 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3497 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3499 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3500 FUNCTION_INST_RET_VAL_ABBREV) 3501 llvm_unreachable("Unexpected abbrev ordering!"); 3502 } 3503 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3504 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3505 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3506 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3507 FUNCTION_INST_UNREACHABLE_ABBREV) 3508 llvm_unreachable("Unexpected abbrev ordering!"); 3509 } 3510 { 3511 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3512 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3515 Log2_32_Ceil(VE.getTypes().size() + 1))); 3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3518 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3519 FUNCTION_INST_GEP_ABBREV) 3520 llvm_unreachable("Unexpected abbrev ordering!"); 3521 } 3522 3523 Stream.ExitBlock(); 3524 } 3525 3526 /// Write the module path strings, currently only used when generating 3527 /// a combined index file. 3528 void IndexBitcodeWriter::writeModStrings() { 3529 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3530 3531 // TODO: See which abbrev sizes we actually need to emit 3532 3533 // 8-bit fixed-width MST_ENTRY strings. 3534 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3535 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3539 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3540 3541 // 7-bit fixed width MST_ENTRY strings. 3542 Abbv = std::make_shared<BitCodeAbbrev>(); 3543 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3547 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3548 3549 // 6-bit char6 MST_ENTRY strings. 3550 Abbv = std::make_shared<BitCodeAbbrev>(); 3551 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3555 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3556 3557 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3558 Abbv = std::make_shared<BitCodeAbbrev>(); 3559 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3565 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3566 3567 SmallVector<unsigned, 64> Vals; 3568 forEachModule( 3569 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3570 StringRef Key = MPSE.getKey(); 3571 const auto &Value = MPSE.getValue(); 3572 StringEncoding Bits = getStringEncoding(Key); 3573 unsigned AbbrevToUse = Abbrev8Bit; 3574 if (Bits == SE_Char6) 3575 AbbrevToUse = Abbrev6Bit; 3576 else if (Bits == SE_Fixed7) 3577 AbbrevToUse = Abbrev7Bit; 3578 3579 Vals.push_back(Value.first); 3580 Vals.append(Key.begin(), Key.end()); 3581 3582 // Emit the finished record. 3583 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3584 3585 // Emit an optional hash for the module now 3586 const auto &Hash = Value.second; 3587 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3588 Vals.assign(Hash.begin(), Hash.end()); 3589 // Emit the hash record. 3590 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3591 } 3592 3593 Vals.clear(); 3594 }); 3595 Stream.ExitBlock(); 3596 } 3597 3598 /// Write the function type metadata related records that need to appear before 3599 /// a function summary entry (whether per-module or combined). 3600 template <typename Fn> 3601 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3602 FunctionSummary *FS, 3603 Fn GetValueID) { 3604 if (!FS->type_tests().empty()) 3605 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3606 3607 SmallVector<uint64_t, 64> Record; 3608 3609 auto WriteVFuncIdVec = [&](uint64_t Ty, 3610 ArrayRef<FunctionSummary::VFuncId> VFs) { 3611 if (VFs.empty()) 3612 return; 3613 Record.clear(); 3614 for (auto &VF : VFs) { 3615 Record.push_back(VF.GUID); 3616 Record.push_back(VF.Offset); 3617 } 3618 Stream.EmitRecord(Ty, Record); 3619 }; 3620 3621 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3622 FS->type_test_assume_vcalls()); 3623 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3624 FS->type_checked_load_vcalls()); 3625 3626 auto WriteConstVCallVec = [&](uint64_t Ty, 3627 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3628 for (auto &VC : VCs) { 3629 Record.clear(); 3630 Record.push_back(VC.VFunc.GUID); 3631 Record.push_back(VC.VFunc.Offset); 3632 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3633 Stream.EmitRecord(Ty, Record); 3634 } 3635 }; 3636 3637 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3638 FS->type_test_assume_const_vcalls()); 3639 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3640 FS->type_checked_load_const_vcalls()); 3641 3642 auto WriteRange = [&](ConstantRange Range) { 3643 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3644 assert(Range.getLower().getNumWords() == 1); 3645 assert(Range.getUpper().getNumWords() == 1); 3646 emitSignedInt64(Record, *Range.getLower().getRawData()); 3647 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3648 }; 3649 3650 if (!FS->paramAccesses().empty()) { 3651 Record.clear(); 3652 for (auto &Arg : FS->paramAccesses()) { 3653 size_t UndoSize = Record.size(); 3654 Record.push_back(Arg.ParamNo); 3655 WriteRange(Arg.Use); 3656 Record.push_back(Arg.Calls.size()); 3657 for (auto &Call : Arg.Calls) { 3658 Record.push_back(Call.ParamNo); 3659 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3660 if (!ValueID) { 3661 // If ValueID is unknown we can't drop just this call, we must drop 3662 // entire parameter. 3663 Record.resize(UndoSize); 3664 break; 3665 } 3666 Record.push_back(*ValueID); 3667 WriteRange(Call.Offsets); 3668 } 3669 } 3670 if (!Record.empty()) 3671 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3672 } 3673 } 3674 3675 /// Collect type IDs from type tests used by function. 3676 static void 3677 getReferencedTypeIds(FunctionSummary *FS, 3678 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3679 if (!FS->type_tests().empty()) 3680 for (auto &TT : FS->type_tests()) 3681 ReferencedTypeIds.insert(TT); 3682 3683 auto GetReferencedTypesFromVFuncIdVec = 3684 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3685 for (auto &VF : VFs) 3686 ReferencedTypeIds.insert(VF.GUID); 3687 }; 3688 3689 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3690 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3691 3692 auto GetReferencedTypesFromConstVCallVec = 3693 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3694 for (auto &VC : VCs) 3695 ReferencedTypeIds.insert(VC.VFunc.GUID); 3696 }; 3697 3698 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3699 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3700 } 3701 3702 static void writeWholeProgramDevirtResolutionByArg( 3703 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3704 const WholeProgramDevirtResolution::ByArg &ByArg) { 3705 NameVals.push_back(args.size()); 3706 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3707 3708 NameVals.push_back(ByArg.TheKind); 3709 NameVals.push_back(ByArg.Info); 3710 NameVals.push_back(ByArg.Byte); 3711 NameVals.push_back(ByArg.Bit); 3712 } 3713 3714 static void writeWholeProgramDevirtResolution( 3715 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3716 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3717 NameVals.push_back(Id); 3718 3719 NameVals.push_back(Wpd.TheKind); 3720 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3721 NameVals.push_back(Wpd.SingleImplName.size()); 3722 3723 NameVals.push_back(Wpd.ResByArg.size()); 3724 for (auto &A : Wpd.ResByArg) 3725 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3726 } 3727 3728 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3729 StringTableBuilder &StrtabBuilder, 3730 const std::string &Id, 3731 const TypeIdSummary &Summary) { 3732 NameVals.push_back(StrtabBuilder.add(Id)); 3733 NameVals.push_back(Id.size()); 3734 3735 NameVals.push_back(Summary.TTRes.TheKind); 3736 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3737 NameVals.push_back(Summary.TTRes.AlignLog2); 3738 NameVals.push_back(Summary.TTRes.SizeM1); 3739 NameVals.push_back(Summary.TTRes.BitMask); 3740 NameVals.push_back(Summary.TTRes.InlineBits); 3741 3742 for (auto &W : Summary.WPDRes) 3743 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3744 W.second); 3745 } 3746 3747 static void writeTypeIdCompatibleVtableSummaryRecord( 3748 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3749 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3750 ValueEnumerator &VE) { 3751 NameVals.push_back(StrtabBuilder.add(Id)); 3752 NameVals.push_back(Id.size()); 3753 3754 for (auto &P : Summary) { 3755 NameVals.push_back(P.AddressPointOffset); 3756 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3757 } 3758 } 3759 3760 // Helper to emit a single function summary record. 3761 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3762 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3763 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3764 const Function &F) { 3765 NameVals.push_back(ValueID); 3766 3767 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3768 3769 writeFunctionTypeMetadataRecords( 3770 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3771 return {VE.getValueID(VI.getValue())}; 3772 }); 3773 3774 auto SpecialRefCnts = FS->specialRefCounts(); 3775 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3776 NameVals.push_back(FS->instCount()); 3777 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3778 NameVals.push_back(FS->refs().size()); 3779 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3780 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3781 3782 for (auto &RI : FS->refs()) 3783 NameVals.push_back(VE.getValueID(RI.getValue())); 3784 3785 bool HasProfileData = 3786 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3787 for (auto &ECI : FS->calls()) { 3788 NameVals.push_back(getValueId(ECI.first)); 3789 if (HasProfileData) 3790 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3791 else if (WriteRelBFToSummary) 3792 NameVals.push_back(ECI.second.RelBlockFreq); 3793 } 3794 3795 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3796 unsigned Code = 3797 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3798 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3799 : bitc::FS_PERMODULE)); 3800 3801 // Emit the finished record. 3802 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3803 NameVals.clear(); 3804 } 3805 3806 // Collect the global value references in the given variable's initializer, 3807 // and emit them in a summary record. 3808 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3809 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3810 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3811 auto VI = Index->getValueInfo(V.getGUID()); 3812 if (!VI || VI.getSummaryList().empty()) { 3813 // Only declarations should not have a summary (a declaration might however 3814 // have a summary if the def was in module level asm). 3815 assert(V.isDeclaration()); 3816 return; 3817 } 3818 auto *Summary = VI.getSummaryList()[0].get(); 3819 NameVals.push_back(VE.getValueID(&V)); 3820 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3821 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3822 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3823 3824 auto VTableFuncs = VS->vTableFuncs(); 3825 if (!VTableFuncs.empty()) 3826 NameVals.push_back(VS->refs().size()); 3827 3828 unsigned SizeBeforeRefs = NameVals.size(); 3829 for (auto &RI : VS->refs()) 3830 NameVals.push_back(VE.getValueID(RI.getValue())); 3831 // Sort the refs for determinism output, the vector returned by FS->refs() has 3832 // been initialized from a DenseSet. 3833 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3834 3835 if (VTableFuncs.empty()) 3836 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3837 FSModRefsAbbrev); 3838 else { 3839 // VTableFuncs pairs should already be sorted by offset. 3840 for (auto &P : VTableFuncs) { 3841 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3842 NameVals.push_back(P.VTableOffset); 3843 } 3844 3845 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3846 FSModVTableRefsAbbrev); 3847 } 3848 NameVals.clear(); 3849 } 3850 3851 /// Emit the per-module summary section alongside the rest of 3852 /// the module's bitcode. 3853 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3854 // By default we compile with ThinLTO if the module has a summary, but the 3855 // client can request full LTO with a module flag. 3856 bool IsThinLTO = true; 3857 if (auto *MD = 3858 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3859 IsThinLTO = MD->getZExtValue(); 3860 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3861 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3862 4); 3863 3864 Stream.EmitRecord( 3865 bitc::FS_VERSION, 3866 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3867 3868 // Write the index flags. 3869 uint64_t Flags = 0; 3870 // Bits 1-3 are set only in the combined index, skip them. 3871 if (Index->enableSplitLTOUnit()) 3872 Flags |= 0x8; 3873 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3874 3875 if (Index->begin() == Index->end()) { 3876 Stream.ExitBlock(); 3877 return; 3878 } 3879 3880 for (const auto &GVI : valueIds()) { 3881 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3882 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3883 } 3884 3885 // Abbrev for FS_PERMODULE_PROFILE. 3886 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3887 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3895 // numrefs x valueid, n x (valueid, hotness) 3896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3898 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3899 3900 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3901 Abbv = std::make_shared<BitCodeAbbrev>(); 3902 if (WriteRelBFToSummary) 3903 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3904 else 3905 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3913 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3916 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3917 3918 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3919 Abbv = std::make_shared<BitCodeAbbrev>(); 3920 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3925 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3926 3927 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3928 Abbv = std::make_shared<BitCodeAbbrev>(); 3929 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3933 // numrefs x valueid, n x (valueid , offset) 3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3936 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3937 3938 // Abbrev for FS_ALIAS. 3939 Abbv = std::make_shared<BitCodeAbbrev>(); 3940 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3944 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3945 3946 // Abbrev for FS_TYPE_ID_METADATA 3947 Abbv = std::make_shared<BitCodeAbbrev>(); 3948 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3951 // n x (valueid , offset) 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3954 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3955 3956 SmallVector<uint64_t, 64> NameVals; 3957 // Iterate over the list of functions instead of the Index to 3958 // ensure the ordering is stable. 3959 for (const Function &F : M) { 3960 // Summary emission does not support anonymous functions, they have to 3961 // renamed using the anonymous function renaming pass. 3962 if (!F.hasName()) 3963 report_fatal_error("Unexpected anonymous function when writing summary"); 3964 3965 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3966 if (!VI || VI.getSummaryList().empty()) { 3967 // Only declarations should not have a summary (a declaration might 3968 // however have a summary if the def was in module level asm). 3969 assert(F.isDeclaration()); 3970 continue; 3971 } 3972 auto *Summary = VI.getSummaryList()[0].get(); 3973 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3974 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3975 } 3976 3977 // Capture references from GlobalVariable initializers, which are outside 3978 // of a function scope. 3979 for (const GlobalVariable &G : M.globals()) 3980 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3981 FSModVTableRefsAbbrev); 3982 3983 for (const GlobalAlias &A : M.aliases()) { 3984 auto *Aliasee = A.getBaseObject(); 3985 if (!Aliasee->hasName()) 3986 // Nameless function don't have an entry in the summary, skip it. 3987 continue; 3988 auto AliasId = VE.getValueID(&A); 3989 auto AliaseeId = VE.getValueID(Aliasee); 3990 NameVals.push_back(AliasId); 3991 auto *Summary = Index->getGlobalValueSummary(A); 3992 AliasSummary *AS = cast<AliasSummary>(Summary); 3993 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3994 NameVals.push_back(AliaseeId); 3995 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3996 NameVals.clear(); 3997 } 3998 3999 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4000 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4001 S.second, VE); 4002 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4003 TypeIdCompatibleVtableAbbrev); 4004 NameVals.clear(); 4005 } 4006 4007 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4008 ArrayRef<uint64_t>{Index->getBlockCount()}); 4009 4010 Stream.ExitBlock(); 4011 } 4012 4013 /// Emit the combined summary section into the combined index file. 4014 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4015 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4016 Stream.EmitRecord( 4017 bitc::FS_VERSION, 4018 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4019 4020 // Write the index flags. 4021 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4022 4023 for (const auto &GVI : valueIds()) { 4024 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4025 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4026 } 4027 4028 // Abbrev for FS_COMBINED. 4029 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4030 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4040 // numrefs x valueid, n x (valueid) 4041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4043 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4044 4045 // Abbrev for FS_COMBINED_PROFILE. 4046 Abbv = std::make_shared<BitCodeAbbrev>(); 4047 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4057 // numrefs x valueid, n x (valueid, hotness) 4058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4060 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4061 4062 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4063 Abbv = std::make_shared<BitCodeAbbrev>(); 4064 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4070 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4071 4072 // Abbrev for FS_COMBINED_ALIAS. 4073 Abbv = std::make_shared<BitCodeAbbrev>(); 4074 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4079 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4080 4081 // The aliases are emitted as a post-pass, and will point to the value 4082 // id of the aliasee. Save them in a vector for post-processing. 4083 SmallVector<AliasSummary *, 64> Aliases; 4084 4085 // Save the value id for each summary for alias emission. 4086 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4087 4088 SmallVector<uint64_t, 64> NameVals; 4089 4090 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4091 // with the type ids referenced by this index file. 4092 std::set<GlobalValue::GUID> ReferencedTypeIds; 4093 4094 // For local linkage, we also emit the original name separately 4095 // immediately after the record. 4096 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4097 if (!GlobalValue::isLocalLinkage(S.linkage())) 4098 return; 4099 NameVals.push_back(S.getOriginalName()); 4100 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4101 NameVals.clear(); 4102 }; 4103 4104 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4105 forEachSummary([&](GVInfo I, bool IsAliasee) { 4106 GlobalValueSummary *S = I.second; 4107 assert(S); 4108 DefOrUseGUIDs.insert(I.first); 4109 for (const ValueInfo &VI : S->refs()) 4110 DefOrUseGUIDs.insert(VI.getGUID()); 4111 4112 auto ValueId = getValueId(I.first); 4113 assert(ValueId); 4114 SummaryToValueIdMap[S] = *ValueId; 4115 4116 // If this is invoked for an aliasee, we want to record the above 4117 // mapping, but then not emit a summary entry (if the aliasee is 4118 // to be imported, we will invoke this separately with IsAliasee=false). 4119 if (IsAliasee) 4120 return; 4121 4122 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4123 // Will process aliases as a post-pass because the reader wants all 4124 // global to be loaded first. 4125 Aliases.push_back(AS); 4126 return; 4127 } 4128 4129 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4130 NameVals.push_back(*ValueId); 4131 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4132 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4133 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4134 for (auto &RI : VS->refs()) { 4135 auto RefValueId = getValueId(RI.getGUID()); 4136 if (!RefValueId) 4137 continue; 4138 NameVals.push_back(*RefValueId); 4139 } 4140 4141 // Emit the finished record. 4142 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4143 FSModRefsAbbrev); 4144 NameVals.clear(); 4145 MaybeEmitOriginalName(*S); 4146 return; 4147 } 4148 4149 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4150 GlobalValue::GUID GUID = VI.getGUID(); 4151 Optional<unsigned> CallValueId = getValueId(GUID); 4152 if (CallValueId) 4153 return CallValueId; 4154 // For SamplePGO, the indirect call targets for local functions will 4155 // have its original name annotated in profile. We try to find the 4156 // corresponding PGOFuncName as the GUID. 4157 GUID = Index.getGUIDFromOriginalID(GUID); 4158 if (!GUID) 4159 return None; 4160 CallValueId = getValueId(GUID); 4161 if (!CallValueId) 4162 return None; 4163 // The mapping from OriginalId to GUID may return a GUID 4164 // that corresponds to a static variable. Filter it out here. 4165 // This can happen when 4166 // 1) There is a call to a library function which does not have 4167 // a CallValidId; 4168 // 2) There is a static variable with the OriginalGUID identical 4169 // to the GUID of the library function in 1); 4170 // When this happens, the logic for SamplePGO kicks in and 4171 // the static variable in 2) will be found, which needs to be 4172 // filtered out. 4173 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4174 if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4175 return None; 4176 return CallValueId; 4177 }; 4178 4179 auto *FS = cast<FunctionSummary>(S); 4180 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4181 getReferencedTypeIds(FS, ReferencedTypeIds); 4182 4183 NameVals.push_back(*ValueId); 4184 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4185 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4186 NameVals.push_back(FS->instCount()); 4187 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4188 NameVals.push_back(FS->entryCount()); 4189 4190 // Fill in below 4191 NameVals.push_back(0); // numrefs 4192 NameVals.push_back(0); // rorefcnt 4193 NameVals.push_back(0); // worefcnt 4194 4195 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4196 for (auto &RI : FS->refs()) { 4197 auto RefValueId = getValueId(RI.getGUID()); 4198 if (!RefValueId) 4199 continue; 4200 NameVals.push_back(*RefValueId); 4201 if (RI.isReadOnly()) 4202 RORefCnt++; 4203 else if (RI.isWriteOnly()) 4204 WORefCnt++; 4205 Count++; 4206 } 4207 NameVals[6] = Count; 4208 NameVals[7] = RORefCnt; 4209 NameVals[8] = WORefCnt; 4210 4211 bool HasProfileData = false; 4212 for (auto &EI : FS->calls()) { 4213 HasProfileData |= 4214 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4215 if (HasProfileData) 4216 break; 4217 } 4218 4219 for (auto &EI : FS->calls()) { 4220 // If this GUID doesn't have a value id, it doesn't have a function 4221 // summary and we don't need to record any calls to it. 4222 Optional<unsigned> CallValueId = GetValueId(EI.first); 4223 if (!CallValueId) 4224 continue; 4225 NameVals.push_back(*CallValueId); 4226 if (HasProfileData) 4227 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4228 } 4229 4230 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4231 unsigned Code = 4232 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4233 4234 // Emit the finished record. 4235 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4236 NameVals.clear(); 4237 MaybeEmitOriginalName(*S); 4238 }); 4239 4240 for (auto *AS : Aliases) { 4241 auto AliasValueId = SummaryToValueIdMap[AS]; 4242 assert(AliasValueId); 4243 NameVals.push_back(AliasValueId); 4244 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4245 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4246 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4247 assert(AliaseeValueId); 4248 NameVals.push_back(AliaseeValueId); 4249 4250 // Emit the finished record. 4251 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4252 NameVals.clear(); 4253 MaybeEmitOriginalName(*AS); 4254 4255 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4256 getReferencedTypeIds(FS, ReferencedTypeIds); 4257 } 4258 4259 if (!Index.cfiFunctionDefs().empty()) { 4260 for (auto &S : Index.cfiFunctionDefs()) { 4261 if (DefOrUseGUIDs.count( 4262 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4263 NameVals.push_back(StrtabBuilder.add(S)); 4264 NameVals.push_back(S.size()); 4265 } 4266 } 4267 if (!NameVals.empty()) { 4268 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4269 NameVals.clear(); 4270 } 4271 } 4272 4273 if (!Index.cfiFunctionDecls().empty()) { 4274 for (auto &S : Index.cfiFunctionDecls()) { 4275 if (DefOrUseGUIDs.count( 4276 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4277 NameVals.push_back(StrtabBuilder.add(S)); 4278 NameVals.push_back(S.size()); 4279 } 4280 } 4281 if (!NameVals.empty()) { 4282 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4283 NameVals.clear(); 4284 } 4285 } 4286 4287 // Walk the GUIDs that were referenced, and write the 4288 // corresponding type id records. 4289 for (auto &T : ReferencedTypeIds) { 4290 auto TidIter = Index.typeIds().equal_range(T); 4291 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4292 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4293 It->second.second); 4294 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4295 NameVals.clear(); 4296 } 4297 } 4298 4299 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4300 ArrayRef<uint64_t>{Index.getBlockCount()}); 4301 4302 Stream.ExitBlock(); 4303 } 4304 4305 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4306 /// current llvm version, and a record for the epoch number. 4307 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4308 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4309 4310 // Write the "user readable" string identifying the bitcode producer 4311 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4312 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4315 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4316 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4317 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4318 4319 // Write the epoch version 4320 Abbv = std::make_shared<BitCodeAbbrev>(); 4321 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4323 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4324 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4325 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4326 Stream.ExitBlock(); 4327 } 4328 4329 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4330 // Emit the module's hash. 4331 // MODULE_CODE_HASH: [5*i32] 4332 if (GenerateHash) { 4333 uint32_t Vals[5]; 4334 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4335 Buffer.size() - BlockStartPos)); 4336 StringRef Hash = Hasher.result(); 4337 for (int Pos = 0; Pos < 20; Pos += 4) { 4338 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4339 } 4340 4341 // Emit the finished record. 4342 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4343 4344 if (ModHash) 4345 // Save the written hash value. 4346 llvm::copy(Vals, std::begin(*ModHash)); 4347 } 4348 } 4349 4350 void ModuleBitcodeWriter::write() { 4351 writeIdentificationBlock(Stream); 4352 4353 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4354 size_t BlockStartPos = Buffer.size(); 4355 4356 writeModuleVersion(); 4357 4358 // Emit blockinfo, which defines the standard abbreviations etc. 4359 writeBlockInfo(); 4360 4361 // Emit information describing all of the types in the module. 4362 writeTypeTable(); 4363 4364 // Emit information about attribute groups. 4365 writeAttributeGroupTable(); 4366 4367 // Emit information about parameter attributes. 4368 writeAttributeTable(); 4369 4370 writeComdats(); 4371 4372 // Emit top-level description of module, including target triple, inline asm, 4373 // descriptors for global variables, and function prototype info. 4374 writeModuleInfo(); 4375 4376 // Emit constants. 4377 writeModuleConstants(); 4378 4379 // Emit metadata kind names. 4380 writeModuleMetadataKinds(); 4381 4382 // Emit metadata. 4383 writeModuleMetadata(); 4384 4385 // Emit module-level use-lists. 4386 if (VE.shouldPreserveUseListOrder()) 4387 writeUseListBlock(nullptr); 4388 4389 writeOperandBundleTags(); 4390 writeSyncScopeNames(); 4391 4392 // Emit function bodies. 4393 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4394 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4395 if (!F->isDeclaration()) 4396 writeFunction(*F, FunctionToBitcodeIndex); 4397 4398 // Need to write after the above call to WriteFunction which populates 4399 // the summary information in the index. 4400 if (Index) 4401 writePerModuleGlobalValueSummary(); 4402 4403 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4404 4405 writeModuleHash(BlockStartPos); 4406 4407 Stream.ExitBlock(); 4408 } 4409 4410 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4411 uint32_t &Position) { 4412 support::endian::write32le(&Buffer[Position], Value); 4413 Position += 4; 4414 } 4415 4416 /// If generating a bc file on darwin, we have to emit a 4417 /// header and trailer to make it compatible with the system archiver. To do 4418 /// this we emit the following header, and then emit a trailer that pads the 4419 /// file out to be a multiple of 16 bytes. 4420 /// 4421 /// struct bc_header { 4422 /// uint32_t Magic; // 0x0B17C0DE 4423 /// uint32_t Version; // Version, currently always 0. 4424 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4425 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4426 /// uint32_t CPUType; // CPU specifier. 4427 /// ... potentially more later ... 4428 /// }; 4429 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4430 const Triple &TT) { 4431 unsigned CPUType = ~0U; 4432 4433 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4434 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4435 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4436 // specific constants here because they are implicitly part of the Darwin ABI. 4437 enum { 4438 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4439 DARWIN_CPU_TYPE_X86 = 7, 4440 DARWIN_CPU_TYPE_ARM = 12, 4441 DARWIN_CPU_TYPE_POWERPC = 18 4442 }; 4443 4444 Triple::ArchType Arch = TT.getArch(); 4445 if (Arch == Triple::x86_64) 4446 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4447 else if (Arch == Triple::x86) 4448 CPUType = DARWIN_CPU_TYPE_X86; 4449 else if (Arch == Triple::ppc) 4450 CPUType = DARWIN_CPU_TYPE_POWERPC; 4451 else if (Arch == Triple::ppc64) 4452 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4453 else if (Arch == Triple::arm || Arch == Triple::thumb) 4454 CPUType = DARWIN_CPU_TYPE_ARM; 4455 4456 // Traditional Bitcode starts after header. 4457 assert(Buffer.size() >= BWH_HeaderSize && 4458 "Expected header size to be reserved"); 4459 unsigned BCOffset = BWH_HeaderSize; 4460 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4461 4462 // Write the magic and version. 4463 unsigned Position = 0; 4464 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4465 writeInt32ToBuffer(0, Buffer, Position); // Version. 4466 writeInt32ToBuffer(BCOffset, Buffer, Position); 4467 writeInt32ToBuffer(BCSize, Buffer, Position); 4468 writeInt32ToBuffer(CPUType, Buffer, Position); 4469 4470 // If the file is not a multiple of 16 bytes, insert dummy padding. 4471 while (Buffer.size() & 15) 4472 Buffer.push_back(0); 4473 } 4474 4475 /// Helper to write the header common to all bitcode files. 4476 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4477 // Emit the file header. 4478 Stream.Emit((unsigned)'B', 8); 4479 Stream.Emit((unsigned)'C', 8); 4480 Stream.Emit(0x0, 4); 4481 Stream.Emit(0xC, 4); 4482 Stream.Emit(0xE, 4); 4483 Stream.Emit(0xD, 4); 4484 } 4485 4486 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4487 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4488 writeBitcodeHeader(*Stream); 4489 } 4490 4491 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4492 4493 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4494 Stream->EnterSubblock(Block, 3); 4495 4496 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4497 Abbv->Add(BitCodeAbbrevOp(Record)); 4498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4499 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4500 4501 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4502 4503 Stream->ExitBlock(); 4504 } 4505 4506 void BitcodeWriter::writeSymtab() { 4507 assert(!WroteStrtab && !WroteSymtab); 4508 4509 // If any module has module-level inline asm, we will require a registered asm 4510 // parser for the target so that we can create an accurate symbol table for 4511 // the module. 4512 for (Module *M : Mods) { 4513 if (M->getModuleInlineAsm().empty()) 4514 continue; 4515 4516 std::string Err; 4517 const Triple TT(M->getTargetTriple()); 4518 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4519 if (!T || !T->hasMCAsmParser()) 4520 return; 4521 } 4522 4523 WroteSymtab = true; 4524 SmallVector<char, 0> Symtab; 4525 // The irsymtab::build function may be unable to create a symbol table if the 4526 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4527 // table is not required for correctness, but we still want to be able to 4528 // write malformed modules to bitcode files, so swallow the error. 4529 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4530 consumeError(std::move(E)); 4531 return; 4532 } 4533 4534 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4535 {Symtab.data(), Symtab.size()}); 4536 } 4537 4538 void BitcodeWriter::writeStrtab() { 4539 assert(!WroteStrtab); 4540 4541 std::vector<char> Strtab; 4542 StrtabBuilder.finalizeInOrder(); 4543 Strtab.resize(StrtabBuilder.getSize()); 4544 StrtabBuilder.write((uint8_t *)Strtab.data()); 4545 4546 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4547 {Strtab.data(), Strtab.size()}); 4548 4549 WroteStrtab = true; 4550 } 4551 4552 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4553 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4554 WroteStrtab = true; 4555 } 4556 4557 void BitcodeWriter::writeModule(const Module &M, 4558 bool ShouldPreserveUseListOrder, 4559 const ModuleSummaryIndex *Index, 4560 bool GenerateHash, ModuleHash *ModHash) { 4561 assert(!WroteStrtab); 4562 4563 // The Mods vector is used by irsymtab::build, which requires non-const 4564 // Modules in case it needs to materialize metadata. But the bitcode writer 4565 // requires that the module is materialized, so we can cast to non-const here, 4566 // after checking that it is in fact materialized. 4567 assert(M.isMaterialized()); 4568 Mods.push_back(const_cast<Module *>(&M)); 4569 4570 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4571 ShouldPreserveUseListOrder, Index, 4572 GenerateHash, ModHash); 4573 ModuleWriter.write(); 4574 } 4575 4576 void BitcodeWriter::writeIndex( 4577 const ModuleSummaryIndex *Index, 4578 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4579 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4580 ModuleToSummariesForIndex); 4581 IndexWriter.write(); 4582 } 4583 4584 /// Write the specified module to the specified output stream. 4585 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4586 bool ShouldPreserveUseListOrder, 4587 const ModuleSummaryIndex *Index, 4588 bool GenerateHash, ModuleHash *ModHash) { 4589 SmallVector<char, 0> Buffer; 4590 Buffer.reserve(256*1024); 4591 4592 // If this is darwin or another generic macho target, reserve space for the 4593 // header. 4594 Triple TT(M.getTargetTriple()); 4595 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4596 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4597 4598 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4599 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4600 ModHash); 4601 Writer.writeSymtab(); 4602 Writer.writeStrtab(); 4603 4604 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4605 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4606 4607 // Write the generated bitstream to "Out". 4608 if (!Buffer.empty()) 4609 Out.write((char *)&Buffer.front(), Buffer.size()); 4610 } 4611 4612 void IndexBitcodeWriter::write() { 4613 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4614 4615 writeModuleVersion(); 4616 4617 // Write the module paths in the combined index. 4618 writeModStrings(); 4619 4620 // Write the summary combined index records. 4621 writeCombinedGlobalValueSummary(); 4622 4623 Stream.ExitBlock(); 4624 } 4625 4626 // Write the specified module summary index to the given raw output stream, 4627 // where it will be written in a new bitcode block. This is used when 4628 // writing the combined index file for ThinLTO. When writing a subset of the 4629 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4630 void llvm::WriteIndexToFile( 4631 const ModuleSummaryIndex &Index, raw_ostream &Out, 4632 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4633 SmallVector<char, 0> Buffer; 4634 Buffer.reserve(256 * 1024); 4635 4636 BitcodeWriter Writer(Buffer); 4637 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4638 Writer.writeStrtab(); 4639 4640 Out.write((char *)&Buffer.front(), Buffer.size()); 4641 } 4642 4643 namespace { 4644 4645 /// Class to manage the bitcode writing for a thin link bitcode file. 4646 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4647 /// ModHash is for use in ThinLTO incremental build, generated while writing 4648 /// the module bitcode file. 4649 const ModuleHash *ModHash; 4650 4651 public: 4652 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4653 BitstreamWriter &Stream, 4654 const ModuleSummaryIndex &Index, 4655 const ModuleHash &ModHash) 4656 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4657 /*ShouldPreserveUseListOrder=*/false, &Index), 4658 ModHash(&ModHash) {} 4659 4660 void write(); 4661 4662 private: 4663 void writeSimplifiedModuleInfo(); 4664 }; 4665 4666 } // end anonymous namespace 4667 4668 // This function writes a simpilified module info for thin link bitcode file. 4669 // It only contains the source file name along with the name(the offset and 4670 // size in strtab) and linkage for global values. For the global value info 4671 // entry, in order to keep linkage at offset 5, there are three zeros used 4672 // as padding. 4673 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4674 SmallVector<unsigned, 64> Vals; 4675 // Emit the module's source file name. 4676 { 4677 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4678 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4679 if (Bits == SE_Char6) 4680 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4681 else if (Bits == SE_Fixed7) 4682 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4683 4684 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4685 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4686 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4688 Abbv->Add(AbbrevOpToUse); 4689 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4690 4691 for (const auto P : M.getSourceFileName()) 4692 Vals.push_back((unsigned char)P); 4693 4694 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4695 Vals.clear(); 4696 } 4697 4698 // Emit the global variable information. 4699 for (const GlobalVariable &GV : M.globals()) { 4700 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4701 Vals.push_back(StrtabBuilder.add(GV.getName())); 4702 Vals.push_back(GV.getName().size()); 4703 Vals.push_back(0); 4704 Vals.push_back(0); 4705 Vals.push_back(0); 4706 Vals.push_back(getEncodedLinkage(GV)); 4707 4708 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4709 Vals.clear(); 4710 } 4711 4712 // Emit the function proto information. 4713 for (const Function &F : M) { 4714 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4715 Vals.push_back(StrtabBuilder.add(F.getName())); 4716 Vals.push_back(F.getName().size()); 4717 Vals.push_back(0); 4718 Vals.push_back(0); 4719 Vals.push_back(0); 4720 Vals.push_back(getEncodedLinkage(F)); 4721 4722 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4723 Vals.clear(); 4724 } 4725 4726 // Emit the alias information. 4727 for (const GlobalAlias &A : M.aliases()) { 4728 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4729 Vals.push_back(StrtabBuilder.add(A.getName())); 4730 Vals.push_back(A.getName().size()); 4731 Vals.push_back(0); 4732 Vals.push_back(0); 4733 Vals.push_back(0); 4734 Vals.push_back(getEncodedLinkage(A)); 4735 4736 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4737 Vals.clear(); 4738 } 4739 4740 // Emit the ifunc information. 4741 for (const GlobalIFunc &I : M.ifuncs()) { 4742 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4743 Vals.push_back(StrtabBuilder.add(I.getName())); 4744 Vals.push_back(I.getName().size()); 4745 Vals.push_back(0); 4746 Vals.push_back(0); 4747 Vals.push_back(0); 4748 Vals.push_back(getEncodedLinkage(I)); 4749 4750 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4751 Vals.clear(); 4752 } 4753 } 4754 4755 void ThinLinkBitcodeWriter::write() { 4756 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4757 4758 writeModuleVersion(); 4759 4760 writeSimplifiedModuleInfo(); 4761 4762 writePerModuleGlobalValueSummary(); 4763 4764 // Write module hash. 4765 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4766 4767 Stream.ExitBlock(); 4768 } 4769 4770 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4771 const ModuleSummaryIndex &Index, 4772 const ModuleHash &ModHash) { 4773 assert(!WroteStrtab); 4774 4775 // The Mods vector is used by irsymtab::build, which requires non-const 4776 // Modules in case it needs to materialize metadata. But the bitcode writer 4777 // requires that the module is materialized, so we can cast to non-const here, 4778 // after checking that it is in fact materialized. 4779 assert(M.isMaterialized()); 4780 Mods.push_back(const_cast<Module *>(&M)); 4781 4782 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4783 ModHash); 4784 ThinLinkWriter.write(); 4785 } 4786 4787 // Write the specified thin link bitcode file to the given raw output stream, 4788 // where it will be written in a new bitcode block. This is used when 4789 // writing the per-module index file for ThinLTO. 4790 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4791 const ModuleSummaryIndex &Index, 4792 const ModuleHash &ModHash) { 4793 SmallVector<char, 0> Buffer; 4794 Buffer.reserve(256 * 1024); 4795 4796 BitcodeWriter Writer(Buffer); 4797 Writer.writeThinLinkBitcode(M, Index, ModHash); 4798 Writer.writeSymtab(); 4799 Writer.writeStrtab(); 4800 4801 Out.write((char *)&Buffer.front(), Buffer.size()); 4802 } 4803 4804 static const char *getSectionNameForBitcode(const Triple &T) { 4805 switch (T.getObjectFormat()) { 4806 case Triple::MachO: 4807 return "__LLVM,__bitcode"; 4808 case Triple::COFF: 4809 case Triple::ELF: 4810 case Triple::Wasm: 4811 case Triple::UnknownObjectFormat: 4812 return ".llvmbc"; 4813 case Triple::GOFF: 4814 llvm_unreachable("GOFF is not yet implemented"); 4815 break; 4816 case Triple::XCOFF: 4817 llvm_unreachable("XCOFF is not yet implemented"); 4818 break; 4819 } 4820 llvm_unreachable("Unimplemented ObjectFormatType"); 4821 } 4822 4823 static const char *getSectionNameForCommandline(const Triple &T) { 4824 switch (T.getObjectFormat()) { 4825 case Triple::MachO: 4826 return "__LLVM,__cmdline"; 4827 case Triple::COFF: 4828 case Triple::ELF: 4829 case Triple::Wasm: 4830 case Triple::UnknownObjectFormat: 4831 return ".llvmcmd"; 4832 case Triple::GOFF: 4833 llvm_unreachable("GOFF is not yet implemented"); 4834 break; 4835 case Triple::XCOFF: 4836 llvm_unreachable("XCOFF is not yet implemented"); 4837 break; 4838 } 4839 llvm_unreachable("Unimplemented ObjectFormatType"); 4840 } 4841 4842 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4843 bool EmbedBitcode, bool EmbedCmdline, 4844 const std::vector<uint8_t> &CmdArgs) { 4845 // Save llvm.compiler.used and remove it. 4846 SmallVector<Constant *, 2> UsedArray; 4847 SmallPtrSet<GlobalValue *, 4> UsedGlobals; 4848 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4849 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4850 for (auto *GV : UsedGlobals) { 4851 if (GV->getName() != "llvm.embedded.module" && 4852 GV->getName() != "llvm.cmdline") 4853 UsedArray.push_back( 4854 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4855 } 4856 if (Used) 4857 Used->eraseFromParent(); 4858 4859 // Embed the bitcode for the llvm module. 4860 std::string Data; 4861 ArrayRef<uint8_t> ModuleData; 4862 Triple T(M.getTargetTriple()); 4863 4864 if (EmbedBitcode) { 4865 if (Buf.getBufferSize() == 0 || 4866 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4867 (const unsigned char *)Buf.getBufferEnd())) { 4868 // If the input is LLVM Assembly, bitcode is produced by serializing 4869 // the module. Use-lists order need to be preserved in this case. 4870 llvm::raw_string_ostream OS(Data); 4871 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4872 ModuleData = 4873 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4874 } else 4875 // If the input is LLVM bitcode, write the input byte stream directly. 4876 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4877 Buf.getBufferSize()); 4878 } 4879 llvm::Constant *ModuleConstant = 4880 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4881 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4882 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4883 ModuleConstant); 4884 GV->setSection(getSectionNameForBitcode(T)); 4885 // Set alignment to 1 to prevent padding between two contributions from input 4886 // sections after linking. 4887 GV->setAlignment(Align(1)); 4888 UsedArray.push_back( 4889 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4890 if (llvm::GlobalVariable *Old = 4891 M.getGlobalVariable("llvm.embedded.module", true)) { 4892 assert(Old->hasOneUse() && 4893 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4894 GV->takeName(Old); 4895 Old->eraseFromParent(); 4896 } else { 4897 GV->setName("llvm.embedded.module"); 4898 } 4899 4900 // Skip if only bitcode needs to be embedded. 4901 if (EmbedCmdline) { 4902 // Embed command-line options. 4903 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4904 CmdArgs.size()); 4905 llvm::Constant *CmdConstant = 4906 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4907 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4908 llvm::GlobalValue::PrivateLinkage, 4909 CmdConstant); 4910 GV->setSection(getSectionNameForCommandline(T)); 4911 GV->setAlignment(Align(1)); 4912 UsedArray.push_back( 4913 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4914 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4915 assert(Old->hasOneUse() && 4916 "llvm.cmdline can only be used once in llvm.compiler.used"); 4917 GV->takeName(Old); 4918 Old->eraseFromParent(); 4919 } else { 4920 GV->setName("llvm.cmdline"); 4921 } 4922 } 4923 4924 if (UsedArray.empty()) 4925 return; 4926 4927 // Recreate llvm.compiler.used. 4928 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4929 auto *NewUsed = new GlobalVariable( 4930 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4931 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4932 NewUsed->setSection("llvm.metadata"); 4933 } 4934