1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/TypeSymbolTable.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/Streams.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/System/Program.h" 29 using namespace llvm; 30 31 /// These are manifest constants used by the bitcode writer. They do not need to 32 /// be kept in sync with the reader, but need to be consistent within this file. 33 enum { 34 CurVersion = 0, 35 36 // VALUE_SYMTAB_BLOCK abbrev id's. 37 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 38 VST_ENTRY_7_ABBREV, 39 VST_ENTRY_6_ABBREV, 40 VST_BBENTRY_6_ABBREV, 41 42 // CONSTANTS_BLOCK abbrev id's. 43 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 44 CONSTANTS_INTEGER_ABBREV, 45 CONSTANTS_CE_CAST_Abbrev, 46 CONSTANTS_NULL_Abbrev, 47 48 // FUNCTION_BLOCK abbrev id's. 49 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 50 FUNCTION_INST_BINOP_ABBREV, 51 FUNCTION_INST_CAST_ABBREV, 52 FUNCTION_INST_RET_VOID_ABBREV, 53 FUNCTION_INST_RET_VAL_ABBREV, 54 FUNCTION_INST_UNREACHABLE_ABBREV 55 }; 56 57 58 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 59 switch (Opcode) { 60 default: assert(0 && "Unknown cast instruction!"); 61 case Instruction::Trunc : return bitc::CAST_TRUNC; 62 case Instruction::ZExt : return bitc::CAST_ZEXT; 63 case Instruction::SExt : return bitc::CAST_SEXT; 64 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 65 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 66 case Instruction::UIToFP : return bitc::CAST_UITOFP; 67 case Instruction::SIToFP : return bitc::CAST_SITOFP; 68 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 69 case Instruction::FPExt : return bitc::CAST_FPEXT; 70 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 71 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 72 case Instruction::BitCast : return bitc::CAST_BITCAST; 73 } 74 } 75 76 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 77 switch (Opcode) { 78 default: assert(0 && "Unknown binary instruction!"); 79 case Instruction::Add: return bitc::BINOP_ADD; 80 case Instruction::Sub: return bitc::BINOP_SUB; 81 case Instruction::Mul: return bitc::BINOP_MUL; 82 case Instruction::UDiv: return bitc::BINOP_UDIV; 83 case Instruction::FDiv: 84 case Instruction::SDiv: return bitc::BINOP_SDIV; 85 case Instruction::URem: return bitc::BINOP_UREM; 86 case Instruction::FRem: 87 case Instruction::SRem: return bitc::BINOP_SREM; 88 case Instruction::Shl: return bitc::BINOP_SHL; 89 case Instruction::LShr: return bitc::BINOP_LSHR; 90 case Instruction::AShr: return bitc::BINOP_ASHR; 91 case Instruction::And: return bitc::BINOP_AND; 92 case Instruction::Or: return bitc::BINOP_OR; 93 case Instruction::Xor: return bitc::BINOP_XOR; 94 } 95 } 96 97 98 99 static void WriteStringRecord(unsigned Code, const std::string &Str, 100 unsigned AbbrevToUse, BitstreamWriter &Stream) { 101 SmallVector<unsigned, 64> Vals; 102 103 // Code: [strchar x N] 104 for (unsigned i = 0, e = Str.size(); i != e; ++i) 105 Vals.push_back(Str[i]); 106 107 // Emit the finished record. 108 Stream.EmitRecord(Code, Vals, AbbrevToUse); 109 } 110 111 // Emit information about parameter attributes. 112 static void WriteAttributeTable(const ValueEnumerator &VE, 113 BitstreamWriter &Stream) { 114 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 115 if (Attrs.empty()) return; 116 117 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 118 119 SmallVector<uint64_t, 64> Record; 120 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 121 const AttrListPtr &A = Attrs[i]; 122 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 123 const AttributeWithIndex &PAWI = A.getSlot(i); 124 Record.push_back(PAWI.Index); 125 126 // FIXME: remove in LLVM 3.0 127 // Store the alignment in the bitcode as a 16-bit raw value instead of a 128 // 5-bit log2 encoded value. Shift the bits above the alignment up by 129 // 11 bits. 130 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 131 if (PAWI.Attrs & Attribute::Alignment) 132 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 133 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 134 135 Record.push_back(FauxAttr); 136 } 137 138 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 139 Record.clear(); 140 } 141 142 Stream.ExitBlock(); 143 } 144 145 /// WriteTypeTable - Write out the type table for a module. 146 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 147 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 148 149 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 150 SmallVector<uint64_t, 64> TypeVals; 151 152 // Abbrev for TYPE_CODE_POINTER. 153 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 154 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 156 Log2_32_Ceil(VE.getTypes().size()+1))); 157 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 158 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 159 160 // Abbrev for TYPE_CODE_FUNCTION. 161 Abbv = new BitCodeAbbrev(); 162 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 164 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 167 Log2_32_Ceil(VE.getTypes().size()+1))); 168 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 169 170 // Abbrev for TYPE_CODE_STRUCT. 171 Abbv = new BitCodeAbbrev(); 172 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 176 Log2_32_Ceil(VE.getTypes().size()+1))); 177 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 178 179 // Abbrev for TYPE_CODE_ARRAY. 180 Abbv = new BitCodeAbbrev(); 181 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 184 Log2_32_Ceil(VE.getTypes().size()+1))); 185 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 186 187 // Emit an entry count so the reader can reserve space. 188 TypeVals.push_back(TypeList.size()); 189 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 190 TypeVals.clear(); 191 192 // Loop over all of the types, emitting each in turn. 193 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 194 const Type *T = TypeList[i].first; 195 int AbbrevToUse = 0; 196 unsigned Code = 0; 197 198 switch (T->getTypeID()) { 199 default: assert(0 && "Unknown type!"); 200 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 201 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 202 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 203 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 204 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 205 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 206 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 207 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 208 case Type::IntegerTyID: 209 // INTEGER: [width] 210 Code = bitc::TYPE_CODE_INTEGER; 211 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 212 break; 213 case Type::PointerTyID: { 214 const PointerType *PTy = cast<PointerType>(T); 215 // POINTER: [pointee type, address space] 216 Code = bitc::TYPE_CODE_POINTER; 217 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 218 unsigned AddressSpace = PTy->getAddressSpace(); 219 TypeVals.push_back(AddressSpace); 220 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 221 break; 222 } 223 case Type::FunctionTyID: { 224 const FunctionType *FT = cast<FunctionType>(T); 225 // FUNCTION: [isvararg, attrid, retty, paramty x N] 226 Code = bitc::TYPE_CODE_FUNCTION; 227 TypeVals.push_back(FT->isVarArg()); 228 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 229 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 230 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 231 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 232 AbbrevToUse = FunctionAbbrev; 233 break; 234 } 235 case Type::StructTyID: { 236 const StructType *ST = cast<StructType>(T); 237 // STRUCT: [ispacked, eltty x N] 238 Code = bitc::TYPE_CODE_STRUCT; 239 TypeVals.push_back(ST->isPacked()); 240 // Output all of the element types. 241 for (StructType::element_iterator I = ST->element_begin(), 242 E = ST->element_end(); I != E; ++I) 243 TypeVals.push_back(VE.getTypeID(*I)); 244 AbbrevToUse = StructAbbrev; 245 break; 246 } 247 case Type::ArrayTyID: { 248 const ArrayType *AT = cast<ArrayType>(T); 249 // ARRAY: [numelts, eltty] 250 Code = bitc::TYPE_CODE_ARRAY; 251 TypeVals.push_back(AT->getNumElements()); 252 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 253 AbbrevToUse = ArrayAbbrev; 254 break; 255 } 256 case Type::VectorTyID: { 257 const VectorType *VT = cast<VectorType>(T); 258 // VECTOR [numelts, eltty] 259 Code = bitc::TYPE_CODE_VECTOR; 260 TypeVals.push_back(VT->getNumElements()); 261 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 262 break; 263 } 264 } 265 266 // Emit the finished record. 267 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 268 TypeVals.clear(); 269 } 270 271 Stream.ExitBlock(); 272 } 273 274 static unsigned getEncodedLinkage(const GlobalValue *GV) { 275 switch (GV->getLinkage()) { 276 default: assert(0 && "Invalid linkage!"); 277 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 278 case GlobalValue::ExternalLinkage: return 0; 279 case GlobalValue::WeakLinkage: return 1; 280 case GlobalValue::AppendingLinkage: return 2; 281 case GlobalValue::InternalLinkage: return 3; 282 case GlobalValue::LinkOnceLinkage: return 4; 283 case GlobalValue::DLLImportLinkage: return 5; 284 case GlobalValue::DLLExportLinkage: return 6; 285 case GlobalValue::ExternalWeakLinkage: return 7; 286 case GlobalValue::CommonLinkage: return 8; 287 case GlobalValue::PrivateLinkage: return 9; 288 } 289 } 290 291 static unsigned getEncodedVisibility(const GlobalValue *GV) { 292 switch (GV->getVisibility()) { 293 default: assert(0 && "Invalid visibility!"); 294 case GlobalValue::DefaultVisibility: return 0; 295 case GlobalValue::HiddenVisibility: return 1; 296 case GlobalValue::ProtectedVisibility: return 2; 297 } 298 } 299 300 // Emit top-level description of module, including target triple, inline asm, 301 // descriptors for global variables, and function prototype info. 302 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 303 BitstreamWriter &Stream) { 304 // Emit the list of dependent libraries for the Module. 305 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 306 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 307 308 // Emit various pieces of data attached to a module. 309 if (!M->getTargetTriple().empty()) 310 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 311 0/*TODO*/, Stream); 312 if (!M->getDataLayout().empty()) 313 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 314 0/*TODO*/, Stream); 315 if (!M->getModuleInlineAsm().empty()) 316 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 317 0/*TODO*/, Stream); 318 319 // Emit information about sections and GC, computing how many there are. Also 320 // compute the maximum alignment value. 321 std::map<std::string, unsigned> SectionMap; 322 std::map<std::string, unsigned> GCMap; 323 unsigned MaxAlignment = 0; 324 unsigned MaxGlobalType = 0; 325 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 326 GV != E; ++GV) { 327 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 328 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 329 330 if (!GV->hasSection()) continue; 331 // Give section names unique ID's. 332 unsigned &Entry = SectionMap[GV->getSection()]; 333 if (Entry != 0) continue; 334 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 335 0/*TODO*/, Stream); 336 Entry = SectionMap.size(); 337 } 338 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 339 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 340 if (F->hasSection()) { 341 // Give section names unique ID's. 342 unsigned &Entry = SectionMap[F->getSection()]; 343 if (!Entry) { 344 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 345 0/*TODO*/, Stream); 346 Entry = SectionMap.size(); 347 } 348 } 349 if (F->hasGC()) { 350 // Same for GC names. 351 unsigned &Entry = GCMap[F->getGC()]; 352 if (!Entry) { 353 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 354 0/*TODO*/, Stream); 355 Entry = GCMap.size(); 356 } 357 } 358 } 359 360 // Emit abbrev for globals, now that we know # sections and max alignment. 361 unsigned SimpleGVarAbbrev = 0; 362 if (!M->global_empty()) { 363 // Add an abbrev for common globals with no visibility or thread localness. 364 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 365 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 367 Log2_32_Ceil(MaxGlobalType+1))); 368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 371 if (MaxAlignment == 0) // Alignment. 372 Abbv->Add(BitCodeAbbrevOp(0)); 373 else { 374 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 376 Log2_32_Ceil(MaxEncAlignment+1))); 377 } 378 if (SectionMap.empty()) // Section. 379 Abbv->Add(BitCodeAbbrevOp(0)); 380 else 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 382 Log2_32_Ceil(SectionMap.size()+1))); 383 // Don't bother emitting vis + thread local. 384 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 385 } 386 387 // Emit the global variable information. 388 SmallVector<unsigned, 64> Vals; 389 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 390 GV != E; ++GV) { 391 unsigned AbbrevToUse = 0; 392 393 // GLOBALVAR: [type, isconst, initid, 394 // linkage, alignment, section, visibility, threadlocal] 395 Vals.push_back(VE.getTypeID(GV->getType())); 396 Vals.push_back(GV->isConstant()); 397 Vals.push_back(GV->isDeclaration() ? 0 : 398 (VE.getValueID(GV->getInitializer()) + 1)); 399 Vals.push_back(getEncodedLinkage(GV)); 400 Vals.push_back(Log2_32(GV->getAlignment())+1); 401 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 402 if (GV->isThreadLocal() || 403 GV->getVisibility() != GlobalValue::DefaultVisibility) { 404 Vals.push_back(getEncodedVisibility(GV)); 405 Vals.push_back(GV->isThreadLocal()); 406 } else { 407 AbbrevToUse = SimpleGVarAbbrev; 408 } 409 410 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 411 Vals.clear(); 412 } 413 414 // Emit the function proto information. 415 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 416 // FUNCTION: [type, callingconv, isproto, paramattr, 417 // linkage, alignment, section, visibility, gc] 418 Vals.push_back(VE.getTypeID(F->getType())); 419 Vals.push_back(F->getCallingConv()); 420 Vals.push_back(F->isDeclaration()); 421 Vals.push_back(getEncodedLinkage(F)); 422 Vals.push_back(VE.getAttributeID(F->getAttributes())); 423 Vals.push_back(Log2_32(F->getAlignment())+1); 424 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 425 Vals.push_back(getEncodedVisibility(F)); 426 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 427 428 unsigned AbbrevToUse = 0; 429 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 430 Vals.clear(); 431 } 432 433 434 // Emit the alias information. 435 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 436 AI != E; ++AI) { 437 Vals.push_back(VE.getTypeID(AI->getType())); 438 Vals.push_back(VE.getValueID(AI->getAliasee())); 439 Vals.push_back(getEncodedLinkage(AI)); 440 Vals.push_back(getEncodedVisibility(AI)); 441 unsigned AbbrevToUse = 0; 442 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 443 Vals.clear(); 444 } 445 } 446 447 448 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 449 const ValueEnumerator &VE, 450 BitstreamWriter &Stream, bool isGlobal) { 451 if (FirstVal == LastVal) return; 452 453 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 454 455 unsigned AggregateAbbrev = 0; 456 unsigned String8Abbrev = 0; 457 unsigned CString7Abbrev = 0; 458 unsigned CString6Abbrev = 0; 459 // If this is a constant pool for the module, emit module-specific abbrevs. 460 if (isGlobal) { 461 // Abbrev for CST_CODE_AGGREGATE. 462 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 463 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 466 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 467 468 // Abbrev for CST_CODE_STRING. 469 Abbv = new BitCodeAbbrev(); 470 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 473 String8Abbrev = Stream.EmitAbbrev(Abbv); 474 // Abbrev for CST_CODE_CSTRING. 475 Abbv = new BitCodeAbbrev(); 476 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 479 CString7Abbrev = Stream.EmitAbbrev(Abbv); 480 // Abbrev for CST_CODE_CSTRING. 481 Abbv = new BitCodeAbbrev(); 482 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 485 CString6Abbrev = Stream.EmitAbbrev(Abbv); 486 } 487 488 SmallVector<uint64_t, 64> Record; 489 490 const ValueEnumerator::ValueList &Vals = VE.getValues(); 491 const Type *LastTy = 0; 492 for (unsigned i = FirstVal; i != LastVal; ++i) { 493 const Value *V = Vals[i].first; 494 // If we need to switch types, do so now. 495 if (V->getType() != LastTy) { 496 LastTy = V->getType(); 497 Record.push_back(VE.getTypeID(LastTy)); 498 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 499 CONSTANTS_SETTYPE_ABBREV); 500 Record.clear(); 501 } 502 503 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 504 Record.push_back(unsigned(IA->hasSideEffects())); 505 506 // Add the asm string. 507 const std::string &AsmStr = IA->getAsmString(); 508 Record.push_back(AsmStr.size()); 509 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 510 Record.push_back(AsmStr[i]); 511 512 // Add the constraint string. 513 const std::string &ConstraintStr = IA->getConstraintString(); 514 Record.push_back(ConstraintStr.size()); 515 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 516 Record.push_back(ConstraintStr[i]); 517 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 518 Record.clear(); 519 continue; 520 } 521 const Constant *C = cast<Constant>(V); 522 unsigned Code = -1U; 523 unsigned AbbrevToUse = 0; 524 if (C->isNullValue()) { 525 Code = bitc::CST_CODE_NULL; 526 } else if (isa<UndefValue>(C)) { 527 Code = bitc::CST_CODE_UNDEF; 528 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 529 if (IV->getBitWidth() <= 64) { 530 int64_t V = IV->getSExtValue(); 531 if (V >= 0) 532 Record.push_back(V << 1); 533 else 534 Record.push_back((-V << 1) | 1); 535 Code = bitc::CST_CODE_INTEGER; 536 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 537 } else { // Wide integers, > 64 bits in size. 538 // We have an arbitrary precision integer value to write whose 539 // bit width is > 64. However, in canonical unsigned integer 540 // format it is likely that the high bits are going to be zero. 541 // So, we only write the number of active words. 542 unsigned NWords = IV->getValue().getActiveWords(); 543 const uint64_t *RawWords = IV->getValue().getRawData(); 544 for (unsigned i = 0; i != NWords; ++i) { 545 int64_t V = RawWords[i]; 546 if (V >= 0) 547 Record.push_back(V << 1); 548 else 549 Record.push_back((-V << 1) | 1); 550 } 551 Code = bitc::CST_CODE_WIDE_INTEGER; 552 } 553 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 554 Code = bitc::CST_CODE_FLOAT; 555 const Type *Ty = CFP->getType(); 556 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 557 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 558 } else if (Ty == Type::X86_FP80Ty) { 559 // api needed to prevent premature destruction 560 APInt api = CFP->getValueAPF().bitcastToAPInt(); 561 const uint64_t *p = api.getRawData(); 562 Record.push_back(p[0]); 563 Record.push_back((uint16_t)p[1]); 564 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 565 APInt api = CFP->getValueAPF().bitcastToAPInt(); 566 const uint64_t *p = api.getRawData(); 567 Record.push_back(p[0]); 568 Record.push_back(p[1]); 569 } else { 570 assert (0 && "Unknown FP type!"); 571 } 572 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 573 // Emit constant strings specially. 574 unsigned NumOps = C->getNumOperands(); 575 // If this is a null-terminated string, use the denser CSTRING encoding. 576 if (C->getOperand(NumOps-1)->isNullValue()) { 577 Code = bitc::CST_CODE_CSTRING; 578 --NumOps; // Don't encode the null, which isn't allowed by char6. 579 } else { 580 Code = bitc::CST_CODE_STRING; 581 AbbrevToUse = String8Abbrev; 582 } 583 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 584 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 585 for (unsigned i = 0; i != NumOps; ++i) { 586 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 587 Record.push_back(V); 588 isCStr7 &= (V & 128) == 0; 589 if (isCStrChar6) 590 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 591 } 592 593 if (isCStrChar6) 594 AbbrevToUse = CString6Abbrev; 595 else if (isCStr7) 596 AbbrevToUse = CString7Abbrev; 597 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 598 isa<ConstantVector>(V)) { 599 Code = bitc::CST_CODE_AGGREGATE; 600 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 601 Record.push_back(VE.getValueID(C->getOperand(i))); 602 AbbrevToUse = AggregateAbbrev; 603 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 604 switch (CE->getOpcode()) { 605 default: 606 if (Instruction::isCast(CE->getOpcode())) { 607 Code = bitc::CST_CODE_CE_CAST; 608 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 609 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 610 Record.push_back(VE.getValueID(C->getOperand(0))); 611 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 612 } else { 613 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 614 Code = bitc::CST_CODE_CE_BINOP; 615 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 616 Record.push_back(VE.getValueID(C->getOperand(0))); 617 Record.push_back(VE.getValueID(C->getOperand(1))); 618 } 619 break; 620 case Instruction::GetElementPtr: 621 Code = bitc::CST_CODE_CE_GEP; 622 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 623 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 624 Record.push_back(VE.getValueID(C->getOperand(i))); 625 } 626 break; 627 case Instruction::Select: 628 Code = bitc::CST_CODE_CE_SELECT; 629 Record.push_back(VE.getValueID(C->getOperand(0))); 630 Record.push_back(VE.getValueID(C->getOperand(1))); 631 Record.push_back(VE.getValueID(C->getOperand(2))); 632 break; 633 case Instruction::ExtractElement: 634 Code = bitc::CST_CODE_CE_EXTRACTELT; 635 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 636 Record.push_back(VE.getValueID(C->getOperand(0))); 637 Record.push_back(VE.getValueID(C->getOperand(1))); 638 break; 639 case Instruction::InsertElement: 640 Code = bitc::CST_CODE_CE_INSERTELT; 641 Record.push_back(VE.getValueID(C->getOperand(0))); 642 Record.push_back(VE.getValueID(C->getOperand(1))); 643 Record.push_back(VE.getValueID(C->getOperand(2))); 644 break; 645 case Instruction::ShuffleVector: 646 // If the return type and argument types are the same, this is a 647 // standard shufflevector instruction. If the types are different, 648 // then the shuffle is widening or truncating the input vectors, and 649 // the argument type must also be encoded. 650 if (C->getType() == C->getOperand(0)->getType()) { 651 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 652 } else { 653 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 654 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 655 } 656 Record.push_back(VE.getValueID(C->getOperand(0))); 657 Record.push_back(VE.getValueID(C->getOperand(1))); 658 Record.push_back(VE.getValueID(C->getOperand(2))); 659 break; 660 case Instruction::ICmp: 661 case Instruction::FCmp: 662 case Instruction::VICmp: 663 case Instruction::VFCmp: 664 if (isa<VectorType>(C->getOperand(0)->getType()) 665 && (CE->getOpcode() == Instruction::ICmp 666 || CE->getOpcode() == Instruction::FCmp)) { 667 // compare returning vector of Int1Ty 668 assert(0 && "Unsupported constant!"); 669 } else { 670 Code = bitc::CST_CODE_CE_CMP; 671 } 672 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 673 Record.push_back(VE.getValueID(C->getOperand(0))); 674 Record.push_back(VE.getValueID(C->getOperand(1))); 675 Record.push_back(CE->getPredicate()); 676 break; 677 } 678 } else { 679 assert(0 && "Unknown constant!"); 680 } 681 Stream.EmitRecord(Code, Record, AbbrevToUse); 682 Record.clear(); 683 } 684 685 Stream.ExitBlock(); 686 } 687 688 static void WriteModuleConstants(const ValueEnumerator &VE, 689 BitstreamWriter &Stream) { 690 const ValueEnumerator::ValueList &Vals = VE.getValues(); 691 692 // Find the first constant to emit, which is the first non-globalvalue value. 693 // We know globalvalues have been emitted by WriteModuleInfo. 694 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 695 if (!isa<GlobalValue>(Vals[i].first)) { 696 WriteConstants(i, Vals.size(), VE, Stream, true); 697 return; 698 } 699 } 700 } 701 702 /// PushValueAndType - The file has to encode both the value and type id for 703 /// many values, because we need to know what type to create for forward 704 /// references. However, most operands are not forward references, so this type 705 /// field is not needed. 706 /// 707 /// This function adds V's value ID to Vals. If the value ID is higher than the 708 /// instruction ID, then it is a forward reference, and it also includes the 709 /// type ID. 710 static bool PushValueAndType(const Value *V, unsigned InstID, 711 SmallVector<unsigned, 64> &Vals, 712 ValueEnumerator &VE) { 713 unsigned ValID = VE.getValueID(V); 714 Vals.push_back(ValID); 715 if (ValID >= InstID) { 716 Vals.push_back(VE.getTypeID(V->getType())); 717 return true; 718 } 719 return false; 720 } 721 722 /// WriteInstruction - Emit an instruction to the specified stream. 723 static void WriteInstruction(const Instruction &I, unsigned InstID, 724 ValueEnumerator &VE, BitstreamWriter &Stream, 725 SmallVector<unsigned, 64> &Vals) { 726 unsigned Code = 0; 727 unsigned AbbrevToUse = 0; 728 switch (I.getOpcode()) { 729 default: 730 if (Instruction::isCast(I.getOpcode())) { 731 Code = bitc::FUNC_CODE_INST_CAST; 732 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 733 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 734 Vals.push_back(VE.getTypeID(I.getType())); 735 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 736 } else { 737 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 738 Code = bitc::FUNC_CODE_INST_BINOP; 739 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 740 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 741 Vals.push_back(VE.getValueID(I.getOperand(1))); 742 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 743 } 744 break; 745 746 case Instruction::GetElementPtr: 747 Code = bitc::FUNC_CODE_INST_GEP; 748 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 749 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 750 break; 751 case Instruction::ExtractValue: { 752 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 753 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 754 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 755 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 756 Vals.push_back(*i); 757 break; 758 } 759 case Instruction::InsertValue: { 760 Code = bitc::FUNC_CODE_INST_INSERTVAL; 761 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 762 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 763 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 764 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 765 Vals.push_back(*i); 766 break; 767 } 768 case Instruction::Select: 769 Code = bitc::FUNC_CODE_INST_VSELECT; 770 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 771 Vals.push_back(VE.getValueID(I.getOperand(2))); 772 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 773 break; 774 case Instruction::ExtractElement: 775 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 776 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 777 Vals.push_back(VE.getValueID(I.getOperand(1))); 778 break; 779 case Instruction::InsertElement: 780 Code = bitc::FUNC_CODE_INST_INSERTELT; 781 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 782 Vals.push_back(VE.getValueID(I.getOperand(1))); 783 Vals.push_back(VE.getValueID(I.getOperand(2))); 784 break; 785 case Instruction::ShuffleVector: 786 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 787 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 788 Vals.push_back(VE.getValueID(I.getOperand(1))); 789 Vals.push_back(VE.getValueID(I.getOperand(2))); 790 break; 791 case Instruction::ICmp: 792 case Instruction::FCmp: 793 case Instruction::VICmp: 794 case Instruction::VFCmp: 795 if (I.getOpcode() == Instruction::ICmp 796 || I.getOpcode() == Instruction::FCmp) { 797 // compare returning Int1Ty or vector of Int1Ty 798 Code = bitc::FUNC_CODE_INST_CMP2; 799 } else { 800 Code = bitc::FUNC_CODE_INST_CMP; 801 } 802 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 803 Vals.push_back(VE.getValueID(I.getOperand(1))); 804 Vals.push_back(cast<CmpInst>(I).getPredicate()); 805 break; 806 807 case Instruction::Ret: 808 { 809 Code = bitc::FUNC_CODE_INST_RET; 810 unsigned NumOperands = I.getNumOperands(); 811 if (NumOperands == 0) 812 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 813 else if (NumOperands == 1) { 814 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 815 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 816 } else { 817 for (unsigned i = 0, e = NumOperands; i != e; ++i) 818 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 819 } 820 } 821 break; 822 case Instruction::Br: 823 { 824 Code = bitc::FUNC_CODE_INST_BR; 825 BranchInst &II(cast<BranchInst>(I)); 826 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 827 if (II.isConditional()) { 828 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 829 Vals.push_back(VE.getValueID(II.getCondition())); 830 } 831 } 832 break; 833 case Instruction::Switch: 834 Code = bitc::FUNC_CODE_INST_SWITCH; 835 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 836 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 837 Vals.push_back(VE.getValueID(I.getOperand(i))); 838 break; 839 case Instruction::Invoke: { 840 const InvokeInst *II = cast<InvokeInst>(&I); 841 const Value *Callee(II->getCalledValue()); 842 const PointerType *PTy = cast<PointerType>(Callee->getType()); 843 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 844 Code = bitc::FUNC_CODE_INST_INVOKE; 845 846 Vals.push_back(VE.getAttributeID(II->getAttributes())); 847 Vals.push_back(II->getCallingConv()); 848 Vals.push_back(VE.getValueID(II->getNormalDest())); 849 Vals.push_back(VE.getValueID(II->getUnwindDest())); 850 PushValueAndType(Callee, InstID, Vals, VE); 851 852 // Emit value #'s for the fixed parameters. 853 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 854 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 855 856 // Emit type/value pairs for varargs params. 857 if (FTy->isVarArg()) { 858 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 859 i != e; ++i) 860 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 861 } 862 break; 863 } 864 case Instruction::Unwind: 865 Code = bitc::FUNC_CODE_INST_UNWIND; 866 break; 867 case Instruction::Unreachable: 868 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 869 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 870 break; 871 872 case Instruction::PHI: 873 Code = bitc::FUNC_CODE_INST_PHI; 874 Vals.push_back(VE.getTypeID(I.getType())); 875 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 876 Vals.push_back(VE.getValueID(I.getOperand(i))); 877 break; 878 879 case Instruction::Malloc: 880 Code = bitc::FUNC_CODE_INST_MALLOC; 881 Vals.push_back(VE.getTypeID(I.getType())); 882 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 883 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 884 break; 885 886 case Instruction::Free: 887 Code = bitc::FUNC_CODE_INST_FREE; 888 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 889 break; 890 891 case Instruction::Alloca: 892 Code = bitc::FUNC_CODE_INST_ALLOCA; 893 Vals.push_back(VE.getTypeID(I.getType())); 894 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 895 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 896 break; 897 898 case Instruction::Load: 899 Code = bitc::FUNC_CODE_INST_LOAD; 900 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 901 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 902 903 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 904 Vals.push_back(cast<LoadInst>(I).isVolatile()); 905 break; 906 case Instruction::Store: 907 Code = bitc::FUNC_CODE_INST_STORE2; 908 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 909 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 910 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 911 Vals.push_back(cast<StoreInst>(I).isVolatile()); 912 break; 913 case Instruction::Call: { 914 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 915 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 916 917 Code = bitc::FUNC_CODE_INST_CALL; 918 919 const CallInst *CI = cast<CallInst>(&I); 920 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 921 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 922 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 923 924 // Emit value #'s for the fixed parameters. 925 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 926 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 927 928 // Emit type/value pairs for varargs params. 929 if (FTy->isVarArg()) { 930 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 931 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 932 i != e; ++i) 933 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 934 } 935 break; 936 } 937 case Instruction::VAArg: 938 Code = bitc::FUNC_CODE_INST_VAARG; 939 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 940 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 941 Vals.push_back(VE.getTypeID(I.getType())); // restype. 942 break; 943 } 944 945 Stream.EmitRecord(Code, Vals, AbbrevToUse); 946 Vals.clear(); 947 } 948 949 // Emit names for globals/functions etc. 950 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 951 const ValueEnumerator &VE, 952 BitstreamWriter &Stream) { 953 if (VST.empty()) return; 954 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 955 956 // FIXME: Set up the abbrev, we know how many values there are! 957 // FIXME: We know if the type names can use 7-bit ascii. 958 SmallVector<unsigned, 64> NameVals; 959 960 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 961 SI != SE; ++SI) { 962 963 const ValueName &Name = *SI; 964 965 // Figure out the encoding to use for the name. 966 bool is7Bit = true; 967 bool isChar6 = true; 968 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 969 C != E; ++C) { 970 if (isChar6) 971 isChar6 = BitCodeAbbrevOp::isChar6(*C); 972 if ((unsigned char)*C & 128) { 973 is7Bit = false; 974 break; // don't bother scanning the rest. 975 } 976 } 977 978 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 979 980 // VST_ENTRY: [valueid, namechar x N] 981 // VST_BBENTRY: [bbid, namechar x N] 982 unsigned Code; 983 if (isa<BasicBlock>(SI->getValue())) { 984 Code = bitc::VST_CODE_BBENTRY; 985 if (isChar6) 986 AbbrevToUse = VST_BBENTRY_6_ABBREV; 987 } else { 988 Code = bitc::VST_CODE_ENTRY; 989 if (isChar6) 990 AbbrevToUse = VST_ENTRY_6_ABBREV; 991 else if (is7Bit) 992 AbbrevToUse = VST_ENTRY_7_ABBREV; 993 } 994 995 NameVals.push_back(VE.getValueID(SI->getValue())); 996 for (const char *P = Name.getKeyData(), 997 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 998 NameVals.push_back((unsigned char)*P); 999 1000 // Emit the finished record. 1001 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1002 NameVals.clear(); 1003 } 1004 Stream.ExitBlock(); 1005 } 1006 1007 /// WriteFunction - Emit a function body to the module stream. 1008 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1009 BitstreamWriter &Stream) { 1010 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1011 VE.incorporateFunction(F); 1012 1013 SmallVector<unsigned, 64> Vals; 1014 1015 // Emit the number of basic blocks, so the reader can create them ahead of 1016 // time. 1017 Vals.push_back(VE.getBasicBlocks().size()); 1018 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1019 Vals.clear(); 1020 1021 // If there are function-local constants, emit them now. 1022 unsigned CstStart, CstEnd; 1023 VE.getFunctionConstantRange(CstStart, CstEnd); 1024 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1025 1026 // Keep a running idea of what the instruction ID is. 1027 unsigned InstID = CstEnd; 1028 1029 // Finally, emit all the instructions, in order. 1030 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1031 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1032 I != E; ++I) { 1033 WriteInstruction(*I, InstID, VE, Stream, Vals); 1034 if (I->getType() != Type::VoidTy) 1035 ++InstID; 1036 } 1037 1038 // Emit names for all the instructions etc. 1039 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1040 1041 VE.purgeFunction(); 1042 Stream.ExitBlock(); 1043 } 1044 1045 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1046 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1047 const ValueEnumerator &VE, 1048 BitstreamWriter &Stream) { 1049 if (TST.empty()) return; 1050 1051 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1052 1053 // 7-bit fixed width VST_CODE_ENTRY strings. 1054 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1055 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1057 Log2_32_Ceil(VE.getTypes().size()+1))); 1058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1060 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1061 1062 SmallVector<unsigned, 64> NameVals; 1063 1064 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1065 TI != TE; ++TI) { 1066 // TST_ENTRY: [typeid, namechar x N] 1067 NameVals.push_back(VE.getTypeID(TI->second)); 1068 1069 const std::string &Str = TI->first; 1070 bool is7Bit = true; 1071 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1072 NameVals.push_back((unsigned char)Str[i]); 1073 if (Str[i] & 128) 1074 is7Bit = false; 1075 } 1076 1077 // Emit the finished record. 1078 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1079 NameVals.clear(); 1080 } 1081 1082 Stream.ExitBlock(); 1083 } 1084 1085 // Emit blockinfo, which defines the standard abbreviations etc. 1086 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1087 // We only want to emit block info records for blocks that have multiple 1088 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1089 // blocks can defined their abbrevs inline. 1090 Stream.EnterBlockInfoBlock(2); 1091 1092 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1093 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1098 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1099 Abbv) != VST_ENTRY_8_ABBREV) 1100 assert(0 && "Unexpected abbrev ordering!"); 1101 } 1102 1103 { // 7-bit fixed width VST_ENTRY strings. 1104 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1105 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1109 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1110 Abbv) != VST_ENTRY_7_ABBREV) 1111 assert(0 && "Unexpected abbrev ordering!"); 1112 } 1113 { // 6-bit char6 VST_ENTRY strings. 1114 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1115 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1119 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1120 Abbv) != VST_ENTRY_6_ABBREV) 1121 assert(0 && "Unexpected abbrev ordering!"); 1122 } 1123 { // 6-bit char6 VST_BBENTRY strings. 1124 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1125 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1129 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1130 Abbv) != VST_BBENTRY_6_ABBREV) 1131 assert(0 && "Unexpected abbrev ordering!"); 1132 } 1133 1134 1135 1136 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1137 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1138 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1140 Log2_32_Ceil(VE.getTypes().size()+1))); 1141 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1142 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1143 assert(0 && "Unexpected abbrev ordering!"); 1144 } 1145 1146 { // INTEGER abbrev for CONSTANTS_BLOCK. 1147 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1148 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1150 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1151 Abbv) != CONSTANTS_INTEGER_ABBREV) 1152 assert(0 && "Unexpected abbrev ordering!"); 1153 } 1154 1155 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1156 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1157 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1160 Log2_32_Ceil(VE.getTypes().size()+1))); 1161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1162 1163 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1164 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1165 assert(0 && "Unexpected abbrev ordering!"); 1166 } 1167 { // NULL abbrev for CONSTANTS_BLOCK. 1168 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1169 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1170 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1171 Abbv) != CONSTANTS_NULL_Abbrev) 1172 assert(0 && "Unexpected abbrev ordering!"); 1173 } 1174 1175 // FIXME: This should only use space for first class types! 1176 1177 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1178 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1179 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1183 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1184 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1185 assert(0 && "Unexpected abbrev ordering!"); 1186 } 1187 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1188 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1189 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1193 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1194 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1195 assert(0 && "Unexpected abbrev ordering!"); 1196 } 1197 { // INST_CAST abbrev for FUNCTION_BLOCK. 1198 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1199 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1202 Log2_32_Ceil(VE.getTypes().size()+1))); 1203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1204 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1205 Abbv) != FUNCTION_INST_CAST_ABBREV) 1206 assert(0 && "Unexpected abbrev ordering!"); 1207 } 1208 1209 { // INST_RET abbrev for FUNCTION_BLOCK. 1210 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1211 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1212 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1213 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1214 assert(0 && "Unexpected abbrev ordering!"); 1215 } 1216 { // INST_RET abbrev for FUNCTION_BLOCK. 1217 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1218 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1220 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1221 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1222 assert(0 && "Unexpected abbrev ordering!"); 1223 } 1224 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1225 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1226 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1227 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1228 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1229 assert(0 && "Unexpected abbrev ordering!"); 1230 } 1231 1232 Stream.ExitBlock(); 1233 } 1234 1235 1236 /// WriteModule - Emit the specified module to the bitstream. 1237 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1238 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1239 1240 // Emit the version number if it is non-zero. 1241 if (CurVersion) { 1242 SmallVector<unsigned, 1> Vals; 1243 Vals.push_back(CurVersion); 1244 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1245 } 1246 1247 // Analyze the module, enumerating globals, functions, etc. 1248 ValueEnumerator VE(M); 1249 1250 // Emit blockinfo, which defines the standard abbreviations etc. 1251 WriteBlockInfo(VE, Stream); 1252 1253 // Emit information about parameter attributes. 1254 WriteAttributeTable(VE, Stream); 1255 1256 // Emit information describing all of the types in the module. 1257 WriteTypeTable(VE, Stream); 1258 1259 // Emit top-level description of module, including target triple, inline asm, 1260 // descriptors for global variables, and function prototype info. 1261 WriteModuleInfo(M, VE, Stream); 1262 1263 // Emit constants. 1264 WriteModuleConstants(VE, Stream); 1265 1266 // If we have any aggregate values in the value table, purge them - these can 1267 // only be used to initialize global variables. Doing so makes the value 1268 // namespace smaller for code in functions. 1269 int NumNonAggregates = VE.PurgeAggregateValues(); 1270 if (NumNonAggregates != -1) { 1271 SmallVector<unsigned, 1> Vals; 1272 Vals.push_back(NumNonAggregates); 1273 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1274 } 1275 1276 // Emit function bodies. 1277 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1278 if (!I->isDeclaration()) 1279 WriteFunction(*I, VE, Stream); 1280 1281 // Emit the type symbol table information. 1282 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1283 1284 // Emit names for globals/functions etc. 1285 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1286 1287 Stream.ExitBlock(); 1288 } 1289 1290 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1291 /// header and trailer to make it compatible with the system archiver. To do 1292 /// this we emit the following header, and then emit a trailer that pads the 1293 /// file out to be a multiple of 16 bytes. 1294 /// 1295 /// struct bc_header { 1296 /// uint32_t Magic; // 0x0B17C0DE 1297 /// uint32_t Version; // Version, currently always 0. 1298 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1299 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1300 /// uint32_t CPUType; // CPU specifier. 1301 /// ... potentially more later ... 1302 /// }; 1303 enum { 1304 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1305 DarwinBCHeaderSize = 5*4 1306 }; 1307 1308 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1309 const std::string &TT) { 1310 unsigned CPUType = ~0U; 1311 1312 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1313 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1314 // specific constants here because they are implicitly part of the Darwin ABI. 1315 enum { 1316 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1317 DARWIN_CPU_TYPE_X86 = 7, 1318 DARWIN_CPU_TYPE_POWERPC = 18 1319 }; 1320 1321 if (TT.find("x86_64-") == 0) 1322 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1323 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1324 TT[4] == '-' && TT[1] - '3' < 6) 1325 CPUType = DARWIN_CPU_TYPE_X86; 1326 else if (TT.find("powerpc-") == 0) 1327 CPUType = DARWIN_CPU_TYPE_POWERPC; 1328 else if (TT.find("powerpc64-") == 0) 1329 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1330 1331 // Traditional Bitcode starts after header. 1332 unsigned BCOffset = DarwinBCHeaderSize; 1333 1334 Stream.Emit(0x0B17C0DE, 32); 1335 Stream.Emit(0 , 32); // Version. 1336 Stream.Emit(BCOffset , 32); 1337 Stream.Emit(0 , 32); // Filled in later. 1338 Stream.Emit(CPUType , 32); 1339 } 1340 1341 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1342 /// finalize the header. 1343 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1344 // Update the size field in the header. 1345 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1346 1347 // If the file is not a multiple of 16 bytes, insert dummy padding. 1348 while (BufferSize & 15) { 1349 Stream.Emit(0, 8); 1350 ++BufferSize; 1351 } 1352 } 1353 1354 1355 /// WriteBitcodeToFile - Write the specified module to the specified output 1356 /// stream. 1357 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1358 raw_os_ostream RawOut(Out); 1359 // If writing to stdout, set binary mode. 1360 if (llvm::cout == Out) 1361 sys::Program::ChangeStdoutToBinary(); 1362 WriteBitcodeToFile(M, RawOut); 1363 } 1364 1365 /// WriteBitcodeToFile - Write the specified module to the specified output 1366 /// stream. 1367 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1368 std::vector<unsigned char> Buffer; 1369 BitstreamWriter Stream(Buffer); 1370 1371 Buffer.reserve(256*1024); 1372 1373 WriteBitcodeToStream( M, Stream ); 1374 1375 // If writing to stdout, set binary mode. 1376 if (&llvm::outs() == &Out) 1377 sys::Program::ChangeStdoutToBinary(); 1378 1379 // Write the generated bitstream to "Out". 1380 Out.write((char*)&Buffer.front(), Buffer.size()); 1381 1382 // Make sure it hits disk now. 1383 Out.flush(); 1384 } 1385 1386 /// WriteBitcodeToStream - Write the specified module to the specified output 1387 /// stream. 1388 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1389 // If this is darwin, emit a file header and trailer if needed. 1390 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1391 if (isDarwin) 1392 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1393 1394 // Emit the file header. 1395 Stream.Emit((unsigned)'B', 8); 1396 Stream.Emit((unsigned)'C', 8); 1397 Stream.Emit(0x0, 4); 1398 Stream.Emit(0xC, 4); 1399 Stream.Emit(0xE, 4); 1400 Stream.Emit(0xD, 4); 1401 1402 // Emit the module. 1403 WriteModule(M, Stream); 1404 1405 if (isDarwin) 1406 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1407 } 1408