xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 94aa38d5684d8b21d8b2337f75cdd7637771138c)
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/Streams.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/System/Program.h"
29 using namespace llvm;
30 
31 /// These are manifest constants used by the bitcode writer. They do not need to
32 /// be kept in sync with the reader, but need to be consistent within this file.
33 enum {
34   CurVersion = 0,
35 
36   // VALUE_SYMTAB_BLOCK abbrev id's.
37   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
38   VST_ENTRY_7_ABBREV,
39   VST_ENTRY_6_ABBREV,
40   VST_BBENTRY_6_ABBREV,
41 
42   // CONSTANTS_BLOCK abbrev id's.
43   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
44   CONSTANTS_INTEGER_ABBREV,
45   CONSTANTS_CE_CAST_Abbrev,
46   CONSTANTS_NULL_Abbrev,
47 
48   // FUNCTION_BLOCK abbrev id's.
49   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
50   FUNCTION_INST_BINOP_ABBREV,
51   FUNCTION_INST_CAST_ABBREV,
52   FUNCTION_INST_RET_VOID_ABBREV,
53   FUNCTION_INST_RET_VAL_ABBREV,
54   FUNCTION_INST_UNREACHABLE_ABBREV
55 };
56 
57 
58 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
59   switch (Opcode) {
60   default: assert(0 && "Unknown cast instruction!");
61   case Instruction::Trunc   : return bitc::CAST_TRUNC;
62   case Instruction::ZExt    : return bitc::CAST_ZEXT;
63   case Instruction::SExt    : return bitc::CAST_SEXT;
64   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
65   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
66   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
67   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
68   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
69   case Instruction::FPExt   : return bitc::CAST_FPEXT;
70   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
71   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
72   case Instruction::BitCast : return bitc::CAST_BITCAST;
73   }
74 }
75 
76 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
77   switch (Opcode) {
78   default: assert(0 && "Unknown binary instruction!");
79   case Instruction::Add:  return bitc::BINOP_ADD;
80   case Instruction::Sub:  return bitc::BINOP_SUB;
81   case Instruction::Mul:  return bitc::BINOP_MUL;
82   case Instruction::UDiv: return bitc::BINOP_UDIV;
83   case Instruction::FDiv:
84   case Instruction::SDiv: return bitc::BINOP_SDIV;
85   case Instruction::URem: return bitc::BINOP_UREM;
86   case Instruction::FRem:
87   case Instruction::SRem: return bitc::BINOP_SREM;
88   case Instruction::Shl:  return bitc::BINOP_SHL;
89   case Instruction::LShr: return bitc::BINOP_LSHR;
90   case Instruction::AShr: return bitc::BINOP_ASHR;
91   case Instruction::And:  return bitc::BINOP_AND;
92   case Instruction::Or:   return bitc::BINOP_OR;
93   case Instruction::Xor:  return bitc::BINOP_XOR;
94   }
95 }
96 
97 
98 
99 static void WriteStringRecord(unsigned Code, const std::string &Str,
100                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
101   SmallVector<unsigned, 64> Vals;
102 
103   // Code: [strchar x N]
104   for (unsigned i = 0, e = Str.size(); i != e; ++i)
105     Vals.push_back(Str[i]);
106 
107   // Emit the finished record.
108   Stream.EmitRecord(Code, Vals, AbbrevToUse);
109 }
110 
111 // Emit information about parameter attributes.
112 static void WriteAttributeTable(const ValueEnumerator &VE,
113                                 BitstreamWriter &Stream) {
114   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
115   if (Attrs.empty()) return;
116 
117   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
118 
119   SmallVector<uint64_t, 64> Record;
120   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
121     const AttrListPtr &A = Attrs[i];
122     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
123       const AttributeWithIndex &PAWI = A.getSlot(i);
124       Record.push_back(PAWI.Index);
125 
126       // FIXME: remove in LLVM 3.0
127       // Store the alignment in the bitcode as a 16-bit raw value instead of a
128       // 5-bit log2 encoded value. Shift the bits above the alignment up by
129       // 11 bits.
130       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
131       if (PAWI.Attrs & Attribute::Alignment)
132         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
133       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
134 
135       Record.push_back(FauxAttr);
136     }
137 
138     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
139     Record.clear();
140   }
141 
142   Stream.ExitBlock();
143 }
144 
145 /// WriteTypeTable - Write out the type table for a module.
146 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
147   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
148 
149   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
150   SmallVector<uint64_t, 64> TypeVals;
151 
152   // Abbrev for TYPE_CODE_POINTER.
153   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
154   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
155   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
156                             Log2_32_Ceil(VE.getTypes().size()+1)));
157   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
158   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
159 
160   // Abbrev for TYPE_CODE_FUNCTION.
161   Abbv = new BitCodeAbbrev();
162   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
163   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
164   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
165   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
166   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
167                             Log2_32_Ceil(VE.getTypes().size()+1)));
168   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
169 
170   // Abbrev for TYPE_CODE_STRUCT.
171   Abbv = new BitCodeAbbrev();
172   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
174   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
175   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
176                             Log2_32_Ceil(VE.getTypes().size()+1)));
177   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
178 
179   // Abbrev for TYPE_CODE_ARRAY.
180   Abbv = new BitCodeAbbrev();
181   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
182   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
183   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
184                             Log2_32_Ceil(VE.getTypes().size()+1)));
185   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
186 
187   // Emit an entry count so the reader can reserve space.
188   TypeVals.push_back(TypeList.size());
189   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
190   TypeVals.clear();
191 
192   // Loop over all of the types, emitting each in turn.
193   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
194     const Type *T = TypeList[i].first;
195     int AbbrevToUse = 0;
196     unsigned Code = 0;
197 
198     switch (T->getTypeID()) {
199     default: assert(0 && "Unknown type!");
200     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
201     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
202     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
203     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
204     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
205     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
206     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
207     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
208     case Type::IntegerTyID:
209       // INTEGER: [width]
210       Code = bitc::TYPE_CODE_INTEGER;
211       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
212       break;
213     case Type::PointerTyID: {
214       const PointerType *PTy = cast<PointerType>(T);
215       // POINTER: [pointee type, address space]
216       Code = bitc::TYPE_CODE_POINTER;
217       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
218       unsigned AddressSpace = PTy->getAddressSpace();
219       TypeVals.push_back(AddressSpace);
220       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
221       break;
222     }
223     case Type::FunctionTyID: {
224       const FunctionType *FT = cast<FunctionType>(T);
225       // FUNCTION: [isvararg, attrid, retty, paramty x N]
226       Code = bitc::TYPE_CODE_FUNCTION;
227       TypeVals.push_back(FT->isVarArg());
228       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
229       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
230       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
231         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
232       AbbrevToUse = FunctionAbbrev;
233       break;
234     }
235     case Type::StructTyID: {
236       const StructType *ST = cast<StructType>(T);
237       // STRUCT: [ispacked, eltty x N]
238       Code = bitc::TYPE_CODE_STRUCT;
239       TypeVals.push_back(ST->isPacked());
240       // Output all of the element types.
241       for (StructType::element_iterator I = ST->element_begin(),
242            E = ST->element_end(); I != E; ++I)
243         TypeVals.push_back(VE.getTypeID(*I));
244       AbbrevToUse = StructAbbrev;
245       break;
246     }
247     case Type::ArrayTyID: {
248       const ArrayType *AT = cast<ArrayType>(T);
249       // ARRAY: [numelts, eltty]
250       Code = bitc::TYPE_CODE_ARRAY;
251       TypeVals.push_back(AT->getNumElements());
252       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
253       AbbrevToUse = ArrayAbbrev;
254       break;
255     }
256     case Type::VectorTyID: {
257       const VectorType *VT = cast<VectorType>(T);
258       // VECTOR [numelts, eltty]
259       Code = bitc::TYPE_CODE_VECTOR;
260       TypeVals.push_back(VT->getNumElements());
261       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
262       break;
263     }
264     }
265 
266     // Emit the finished record.
267     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
268     TypeVals.clear();
269   }
270 
271   Stream.ExitBlock();
272 }
273 
274 static unsigned getEncodedLinkage(const GlobalValue *GV) {
275   switch (GV->getLinkage()) {
276   default: assert(0 && "Invalid linkage!");
277   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
278   case GlobalValue::ExternalLinkage:     return 0;
279   case GlobalValue::WeakLinkage:         return 1;
280   case GlobalValue::AppendingLinkage:    return 2;
281   case GlobalValue::InternalLinkage:     return 3;
282   case GlobalValue::LinkOnceLinkage:     return 4;
283   case GlobalValue::DLLImportLinkage:    return 5;
284   case GlobalValue::DLLExportLinkage:    return 6;
285   case GlobalValue::ExternalWeakLinkage: return 7;
286   case GlobalValue::CommonLinkage:       return 8;
287   case GlobalValue::PrivateLinkage:      return 9;
288   }
289 }
290 
291 static unsigned getEncodedVisibility(const GlobalValue *GV) {
292   switch (GV->getVisibility()) {
293   default: assert(0 && "Invalid visibility!");
294   case GlobalValue::DefaultVisibility:   return 0;
295   case GlobalValue::HiddenVisibility:    return 1;
296   case GlobalValue::ProtectedVisibility: return 2;
297   }
298 }
299 
300 // Emit top-level description of module, including target triple, inline asm,
301 // descriptors for global variables, and function prototype info.
302 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
303                             BitstreamWriter &Stream) {
304   // Emit the list of dependent libraries for the Module.
305   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
306     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
307 
308   // Emit various pieces of data attached to a module.
309   if (!M->getTargetTriple().empty())
310     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
311                       0/*TODO*/, Stream);
312   if (!M->getDataLayout().empty())
313     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
314                       0/*TODO*/, Stream);
315   if (!M->getModuleInlineAsm().empty())
316     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
317                       0/*TODO*/, Stream);
318 
319   // Emit information about sections and GC, computing how many there are. Also
320   // compute the maximum alignment value.
321   std::map<std::string, unsigned> SectionMap;
322   std::map<std::string, unsigned> GCMap;
323   unsigned MaxAlignment = 0;
324   unsigned MaxGlobalType = 0;
325   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
326        GV != E; ++GV) {
327     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
328     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
329 
330     if (!GV->hasSection()) continue;
331     // Give section names unique ID's.
332     unsigned &Entry = SectionMap[GV->getSection()];
333     if (Entry != 0) continue;
334     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
335                       0/*TODO*/, Stream);
336     Entry = SectionMap.size();
337   }
338   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
339     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
340     if (F->hasSection()) {
341       // Give section names unique ID's.
342       unsigned &Entry = SectionMap[F->getSection()];
343       if (!Entry) {
344         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
345                           0/*TODO*/, Stream);
346         Entry = SectionMap.size();
347       }
348     }
349     if (F->hasGC()) {
350       // Same for GC names.
351       unsigned &Entry = GCMap[F->getGC()];
352       if (!Entry) {
353         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
354                           0/*TODO*/, Stream);
355         Entry = GCMap.size();
356       }
357     }
358   }
359 
360   // Emit abbrev for globals, now that we know # sections and max alignment.
361   unsigned SimpleGVarAbbrev = 0;
362   if (!M->global_empty()) {
363     // Add an abbrev for common globals with no visibility or thread localness.
364     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
365     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
366     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
367                               Log2_32_Ceil(MaxGlobalType+1)));
368     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
369     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
370     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
371     if (MaxAlignment == 0)                                      // Alignment.
372       Abbv->Add(BitCodeAbbrevOp(0));
373     else {
374       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
375       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
376                                Log2_32_Ceil(MaxEncAlignment+1)));
377     }
378     if (SectionMap.empty())                                    // Section.
379       Abbv->Add(BitCodeAbbrevOp(0));
380     else
381       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
382                                Log2_32_Ceil(SectionMap.size()+1)));
383     // Don't bother emitting vis + thread local.
384     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
385   }
386 
387   // Emit the global variable information.
388   SmallVector<unsigned, 64> Vals;
389   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
390        GV != E; ++GV) {
391     unsigned AbbrevToUse = 0;
392 
393     // GLOBALVAR: [type, isconst, initid,
394     //             linkage, alignment, section, visibility, threadlocal]
395     Vals.push_back(VE.getTypeID(GV->getType()));
396     Vals.push_back(GV->isConstant());
397     Vals.push_back(GV->isDeclaration() ? 0 :
398                    (VE.getValueID(GV->getInitializer()) + 1));
399     Vals.push_back(getEncodedLinkage(GV));
400     Vals.push_back(Log2_32(GV->getAlignment())+1);
401     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
402     if (GV->isThreadLocal() ||
403         GV->getVisibility() != GlobalValue::DefaultVisibility) {
404       Vals.push_back(getEncodedVisibility(GV));
405       Vals.push_back(GV->isThreadLocal());
406     } else {
407       AbbrevToUse = SimpleGVarAbbrev;
408     }
409 
410     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
411     Vals.clear();
412   }
413 
414   // Emit the function proto information.
415   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
416     // FUNCTION:  [type, callingconv, isproto, paramattr,
417     //             linkage, alignment, section, visibility, gc]
418     Vals.push_back(VE.getTypeID(F->getType()));
419     Vals.push_back(F->getCallingConv());
420     Vals.push_back(F->isDeclaration());
421     Vals.push_back(getEncodedLinkage(F));
422     Vals.push_back(VE.getAttributeID(F->getAttributes()));
423     Vals.push_back(Log2_32(F->getAlignment())+1);
424     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
425     Vals.push_back(getEncodedVisibility(F));
426     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
427 
428     unsigned AbbrevToUse = 0;
429     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
430     Vals.clear();
431   }
432 
433 
434   // Emit the alias information.
435   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
436        AI != E; ++AI) {
437     Vals.push_back(VE.getTypeID(AI->getType()));
438     Vals.push_back(VE.getValueID(AI->getAliasee()));
439     Vals.push_back(getEncodedLinkage(AI));
440     Vals.push_back(getEncodedVisibility(AI));
441     unsigned AbbrevToUse = 0;
442     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
443     Vals.clear();
444   }
445 }
446 
447 
448 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
449                            const ValueEnumerator &VE,
450                            BitstreamWriter &Stream, bool isGlobal) {
451   if (FirstVal == LastVal) return;
452 
453   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
454 
455   unsigned AggregateAbbrev = 0;
456   unsigned String8Abbrev = 0;
457   unsigned CString7Abbrev = 0;
458   unsigned CString6Abbrev = 0;
459   // If this is a constant pool for the module, emit module-specific abbrevs.
460   if (isGlobal) {
461     // Abbrev for CST_CODE_AGGREGATE.
462     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
463     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
464     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
465     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
466     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
467 
468     // Abbrev for CST_CODE_STRING.
469     Abbv = new BitCodeAbbrev();
470     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
471     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
472     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
473     String8Abbrev = Stream.EmitAbbrev(Abbv);
474     // Abbrev for CST_CODE_CSTRING.
475     Abbv = new BitCodeAbbrev();
476     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
477     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
478     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
479     CString7Abbrev = Stream.EmitAbbrev(Abbv);
480     // Abbrev for CST_CODE_CSTRING.
481     Abbv = new BitCodeAbbrev();
482     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
483     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
484     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
485     CString6Abbrev = Stream.EmitAbbrev(Abbv);
486   }
487 
488   SmallVector<uint64_t, 64> Record;
489 
490   const ValueEnumerator::ValueList &Vals = VE.getValues();
491   const Type *LastTy = 0;
492   for (unsigned i = FirstVal; i != LastVal; ++i) {
493     const Value *V = Vals[i].first;
494     // If we need to switch types, do so now.
495     if (V->getType() != LastTy) {
496       LastTy = V->getType();
497       Record.push_back(VE.getTypeID(LastTy));
498       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
499                         CONSTANTS_SETTYPE_ABBREV);
500       Record.clear();
501     }
502 
503     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
504       Record.push_back(unsigned(IA->hasSideEffects()));
505 
506       // Add the asm string.
507       const std::string &AsmStr = IA->getAsmString();
508       Record.push_back(AsmStr.size());
509       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
510         Record.push_back(AsmStr[i]);
511 
512       // Add the constraint string.
513       const std::string &ConstraintStr = IA->getConstraintString();
514       Record.push_back(ConstraintStr.size());
515       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
516         Record.push_back(ConstraintStr[i]);
517       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
518       Record.clear();
519       continue;
520     }
521     const Constant *C = cast<Constant>(V);
522     unsigned Code = -1U;
523     unsigned AbbrevToUse = 0;
524     if (C->isNullValue()) {
525       Code = bitc::CST_CODE_NULL;
526     } else if (isa<UndefValue>(C)) {
527       Code = bitc::CST_CODE_UNDEF;
528     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
529       if (IV->getBitWidth() <= 64) {
530         int64_t V = IV->getSExtValue();
531         if (V >= 0)
532           Record.push_back(V << 1);
533         else
534           Record.push_back((-V << 1) | 1);
535         Code = bitc::CST_CODE_INTEGER;
536         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
537       } else {                             // Wide integers, > 64 bits in size.
538         // We have an arbitrary precision integer value to write whose
539         // bit width is > 64. However, in canonical unsigned integer
540         // format it is likely that the high bits are going to be zero.
541         // So, we only write the number of active words.
542         unsigned NWords = IV->getValue().getActiveWords();
543         const uint64_t *RawWords = IV->getValue().getRawData();
544         for (unsigned i = 0; i != NWords; ++i) {
545           int64_t V = RawWords[i];
546           if (V >= 0)
547             Record.push_back(V << 1);
548           else
549             Record.push_back((-V << 1) | 1);
550         }
551         Code = bitc::CST_CODE_WIDE_INTEGER;
552       }
553     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
554       Code = bitc::CST_CODE_FLOAT;
555       const Type *Ty = CFP->getType();
556       if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
557         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
558       } else if (Ty == Type::X86_FP80Ty) {
559         // api needed to prevent premature destruction
560         APInt api = CFP->getValueAPF().bitcastToAPInt();
561         const uint64_t *p = api.getRawData();
562         Record.push_back(p[0]);
563         Record.push_back((uint16_t)p[1]);
564       } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
565         APInt api = CFP->getValueAPF().bitcastToAPInt();
566         const uint64_t *p = api.getRawData();
567         Record.push_back(p[0]);
568         Record.push_back(p[1]);
569       } else {
570         assert (0 && "Unknown FP type!");
571       }
572     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
573       // Emit constant strings specially.
574       unsigned NumOps = C->getNumOperands();
575       // If this is a null-terminated string, use the denser CSTRING encoding.
576       if (C->getOperand(NumOps-1)->isNullValue()) {
577         Code = bitc::CST_CODE_CSTRING;
578         --NumOps;  // Don't encode the null, which isn't allowed by char6.
579       } else {
580         Code = bitc::CST_CODE_STRING;
581         AbbrevToUse = String8Abbrev;
582       }
583       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
584       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
585       for (unsigned i = 0; i != NumOps; ++i) {
586         unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
587         Record.push_back(V);
588         isCStr7 &= (V & 128) == 0;
589         if (isCStrChar6)
590           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
591       }
592 
593       if (isCStrChar6)
594         AbbrevToUse = CString6Abbrev;
595       else if (isCStr7)
596         AbbrevToUse = CString7Abbrev;
597     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
598                isa<ConstantVector>(V)) {
599       Code = bitc::CST_CODE_AGGREGATE;
600       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
601         Record.push_back(VE.getValueID(C->getOperand(i)));
602       AbbrevToUse = AggregateAbbrev;
603     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
604       switch (CE->getOpcode()) {
605       default:
606         if (Instruction::isCast(CE->getOpcode())) {
607           Code = bitc::CST_CODE_CE_CAST;
608           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
609           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
610           Record.push_back(VE.getValueID(C->getOperand(0)));
611           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
612         } else {
613           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
614           Code = bitc::CST_CODE_CE_BINOP;
615           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
616           Record.push_back(VE.getValueID(C->getOperand(0)));
617           Record.push_back(VE.getValueID(C->getOperand(1)));
618         }
619         break;
620       case Instruction::GetElementPtr:
621         Code = bitc::CST_CODE_CE_GEP;
622         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
623           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
624           Record.push_back(VE.getValueID(C->getOperand(i)));
625         }
626         break;
627       case Instruction::Select:
628         Code = bitc::CST_CODE_CE_SELECT;
629         Record.push_back(VE.getValueID(C->getOperand(0)));
630         Record.push_back(VE.getValueID(C->getOperand(1)));
631         Record.push_back(VE.getValueID(C->getOperand(2)));
632         break;
633       case Instruction::ExtractElement:
634         Code = bitc::CST_CODE_CE_EXTRACTELT;
635         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
636         Record.push_back(VE.getValueID(C->getOperand(0)));
637         Record.push_back(VE.getValueID(C->getOperand(1)));
638         break;
639       case Instruction::InsertElement:
640         Code = bitc::CST_CODE_CE_INSERTELT;
641         Record.push_back(VE.getValueID(C->getOperand(0)));
642         Record.push_back(VE.getValueID(C->getOperand(1)));
643         Record.push_back(VE.getValueID(C->getOperand(2)));
644         break;
645       case Instruction::ShuffleVector:
646         // If the return type and argument types are the same, this is a
647         // standard shufflevector instruction.  If the types are different,
648         // then the shuffle is widening or truncating the input vectors, and
649         // the argument type must also be encoded.
650         if (C->getType() == C->getOperand(0)->getType()) {
651           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
652         } else {
653           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
654           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
655         }
656         Record.push_back(VE.getValueID(C->getOperand(0)));
657         Record.push_back(VE.getValueID(C->getOperand(1)));
658         Record.push_back(VE.getValueID(C->getOperand(2)));
659         break;
660       case Instruction::ICmp:
661       case Instruction::FCmp:
662       case Instruction::VICmp:
663       case Instruction::VFCmp:
664         if (isa<VectorType>(C->getOperand(0)->getType())
665             && (CE->getOpcode() == Instruction::ICmp
666                 || CE->getOpcode() == Instruction::FCmp)) {
667           // compare returning vector of Int1Ty
668           assert(0 && "Unsupported constant!");
669         } else {
670           Code = bitc::CST_CODE_CE_CMP;
671         }
672         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
673         Record.push_back(VE.getValueID(C->getOperand(0)));
674         Record.push_back(VE.getValueID(C->getOperand(1)));
675         Record.push_back(CE->getPredicate());
676         break;
677       }
678     } else {
679       assert(0 && "Unknown constant!");
680     }
681     Stream.EmitRecord(Code, Record, AbbrevToUse);
682     Record.clear();
683   }
684 
685   Stream.ExitBlock();
686 }
687 
688 static void WriteModuleConstants(const ValueEnumerator &VE,
689                                  BitstreamWriter &Stream) {
690   const ValueEnumerator::ValueList &Vals = VE.getValues();
691 
692   // Find the first constant to emit, which is the first non-globalvalue value.
693   // We know globalvalues have been emitted by WriteModuleInfo.
694   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
695     if (!isa<GlobalValue>(Vals[i].first)) {
696       WriteConstants(i, Vals.size(), VE, Stream, true);
697       return;
698     }
699   }
700 }
701 
702 /// PushValueAndType - The file has to encode both the value and type id for
703 /// many values, because we need to know what type to create for forward
704 /// references.  However, most operands are not forward references, so this type
705 /// field is not needed.
706 ///
707 /// This function adds V's value ID to Vals.  If the value ID is higher than the
708 /// instruction ID, then it is a forward reference, and it also includes the
709 /// type ID.
710 static bool PushValueAndType(const Value *V, unsigned InstID,
711                              SmallVector<unsigned, 64> &Vals,
712                              ValueEnumerator &VE) {
713   unsigned ValID = VE.getValueID(V);
714   Vals.push_back(ValID);
715   if (ValID >= InstID) {
716     Vals.push_back(VE.getTypeID(V->getType()));
717     return true;
718   }
719   return false;
720 }
721 
722 /// WriteInstruction - Emit an instruction to the specified stream.
723 static void WriteInstruction(const Instruction &I, unsigned InstID,
724                              ValueEnumerator &VE, BitstreamWriter &Stream,
725                              SmallVector<unsigned, 64> &Vals) {
726   unsigned Code = 0;
727   unsigned AbbrevToUse = 0;
728   switch (I.getOpcode()) {
729   default:
730     if (Instruction::isCast(I.getOpcode())) {
731       Code = bitc::FUNC_CODE_INST_CAST;
732       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
733         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
734       Vals.push_back(VE.getTypeID(I.getType()));
735       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
736     } else {
737       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
738       Code = bitc::FUNC_CODE_INST_BINOP;
739       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
740         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
741       Vals.push_back(VE.getValueID(I.getOperand(1)));
742       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
743     }
744     break;
745 
746   case Instruction::GetElementPtr:
747     Code = bitc::FUNC_CODE_INST_GEP;
748     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
749       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
750     break;
751   case Instruction::ExtractValue: {
752     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
753     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
754     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
755     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
756       Vals.push_back(*i);
757     break;
758   }
759   case Instruction::InsertValue: {
760     Code = bitc::FUNC_CODE_INST_INSERTVAL;
761     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
762     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
763     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
764     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
765       Vals.push_back(*i);
766     break;
767   }
768   case Instruction::Select:
769     Code = bitc::FUNC_CODE_INST_VSELECT;
770     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
771     Vals.push_back(VE.getValueID(I.getOperand(2)));
772     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
773     break;
774   case Instruction::ExtractElement:
775     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
776     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
777     Vals.push_back(VE.getValueID(I.getOperand(1)));
778     break;
779   case Instruction::InsertElement:
780     Code = bitc::FUNC_CODE_INST_INSERTELT;
781     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
782     Vals.push_back(VE.getValueID(I.getOperand(1)));
783     Vals.push_back(VE.getValueID(I.getOperand(2)));
784     break;
785   case Instruction::ShuffleVector:
786     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
787     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
788     Vals.push_back(VE.getValueID(I.getOperand(1)));
789     Vals.push_back(VE.getValueID(I.getOperand(2)));
790     break;
791   case Instruction::ICmp:
792   case Instruction::FCmp:
793   case Instruction::VICmp:
794   case Instruction::VFCmp:
795     if (I.getOpcode() == Instruction::ICmp
796         || I.getOpcode() == Instruction::FCmp) {
797       // compare returning Int1Ty or vector of Int1Ty
798       Code = bitc::FUNC_CODE_INST_CMP2;
799     } else {
800       Code = bitc::FUNC_CODE_INST_CMP;
801     }
802     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
803     Vals.push_back(VE.getValueID(I.getOperand(1)));
804     Vals.push_back(cast<CmpInst>(I).getPredicate());
805     break;
806 
807   case Instruction::Ret:
808     {
809       Code = bitc::FUNC_CODE_INST_RET;
810       unsigned NumOperands = I.getNumOperands();
811       if (NumOperands == 0)
812         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
813       else if (NumOperands == 1) {
814         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
815           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
816       } else {
817         for (unsigned i = 0, e = NumOperands; i != e; ++i)
818           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
819       }
820     }
821     break;
822   case Instruction::Br:
823     {
824       Code = bitc::FUNC_CODE_INST_BR;
825       BranchInst &II(cast<BranchInst>(I));
826       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
827       if (II.isConditional()) {
828         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
829         Vals.push_back(VE.getValueID(II.getCondition()));
830       }
831     }
832     break;
833   case Instruction::Switch:
834     Code = bitc::FUNC_CODE_INST_SWITCH;
835     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
836     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
837       Vals.push_back(VE.getValueID(I.getOperand(i)));
838     break;
839   case Instruction::Invoke: {
840     const InvokeInst *II = cast<InvokeInst>(&I);
841     const Value *Callee(II->getCalledValue());
842     const PointerType *PTy = cast<PointerType>(Callee->getType());
843     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
844     Code = bitc::FUNC_CODE_INST_INVOKE;
845 
846     Vals.push_back(VE.getAttributeID(II->getAttributes()));
847     Vals.push_back(II->getCallingConv());
848     Vals.push_back(VE.getValueID(II->getNormalDest()));
849     Vals.push_back(VE.getValueID(II->getUnwindDest()));
850     PushValueAndType(Callee, InstID, Vals, VE);
851 
852     // Emit value #'s for the fixed parameters.
853     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
854       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
855 
856     // Emit type/value pairs for varargs params.
857     if (FTy->isVarArg()) {
858       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
859            i != e; ++i)
860         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
861     }
862     break;
863   }
864   case Instruction::Unwind:
865     Code = bitc::FUNC_CODE_INST_UNWIND;
866     break;
867   case Instruction::Unreachable:
868     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
869     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
870     break;
871 
872   case Instruction::PHI:
873     Code = bitc::FUNC_CODE_INST_PHI;
874     Vals.push_back(VE.getTypeID(I.getType()));
875     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
876       Vals.push_back(VE.getValueID(I.getOperand(i)));
877     break;
878 
879   case Instruction::Malloc:
880     Code = bitc::FUNC_CODE_INST_MALLOC;
881     Vals.push_back(VE.getTypeID(I.getType()));
882     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
883     Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
884     break;
885 
886   case Instruction::Free:
887     Code = bitc::FUNC_CODE_INST_FREE;
888     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
889     break;
890 
891   case Instruction::Alloca:
892     Code = bitc::FUNC_CODE_INST_ALLOCA;
893     Vals.push_back(VE.getTypeID(I.getType()));
894     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
895     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
896     break;
897 
898   case Instruction::Load:
899     Code = bitc::FUNC_CODE_INST_LOAD;
900     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
901       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
902 
903     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
904     Vals.push_back(cast<LoadInst>(I).isVolatile());
905     break;
906   case Instruction::Store:
907     Code = bitc::FUNC_CODE_INST_STORE2;
908     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
909     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
910     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
911     Vals.push_back(cast<StoreInst>(I).isVolatile());
912     break;
913   case Instruction::Call: {
914     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
915     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
916 
917     Code = bitc::FUNC_CODE_INST_CALL;
918 
919     const CallInst *CI = cast<CallInst>(&I);
920     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
921     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
922     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
923 
924     // Emit value #'s for the fixed parameters.
925     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
926       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
927 
928     // Emit type/value pairs for varargs params.
929     if (FTy->isVarArg()) {
930       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
931       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
932            i != e; ++i)
933         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
934     }
935     break;
936   }
937   case Instruction::VAArg:
938     Code = bitc::FUNC_CODE_INST_VAARG;
939     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
940     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
941     Vals.push_back(VE.getTypeID(I.getType())); // restype.
942     break;
943   }
944 
945   Stream.EmitRecord(Code, Vals, AbbrevToUse);
946   Vals.clear();
947 }
948 
949 // Emit names for globals/functions etc.
950 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
951                                   const ValueEnumerator &VE,
952                                   BitstreamWriter &Stream) {
953   if (VST.empty()) return;
954   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
955 
956   // FIXME: Set up the abbrev, we know how many values there are!
957   // FIXME: We know if the type names can use 7-bit ascii.
958   SmallVector<unsigned, 64> NameVals;
959 
960   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
961        SI != SE; ++SI) {
962 
963     const ValueName &Name = *SI;
964 
965     // Figure out the encoding to use for the name.
966     bool is7Bit = true;
967     bool isChar6 = true;
968     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
969          C != E; ++C) {
970       if (isChar6)
971         isChar6 = BitCodeAbbrevOp::isChar6(*C);
972       if ((unsigned char)*C & 128) {
973         is7Bit = false;
974         break;  // don't bother scanning the rest.
975       }
976     }
977 
978     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
979 
980     // VST_ENTRY:   [valueid, namechar x N]
981     // VST_BBENTRY: [bbid, namechar x N]
982     unsigned Code;
983     if (isa<BasicBlock>(SI->getValue())) {
984       Code = bitc::VST_CODE_BBENTRY;
985       if (isChar6)
986         AbbrevToUse = VST_BBENTRY_6_ABBREV;
987     } else {
988       Code = bitc::VST_CODE_ENTRY;
989       if (isChar6)
990         AbbrevToUse = VST_ENTRY_6_ABBREV;
991       else if (is7Bit)
992         AbbrevToUse = VST_ENTRY_7_ABBREV;
993     }
994 
995     NameVals.push_back(VE.getValueID(SI->getValue()));
996     for (const char *P = Name.getKeyData(),
997          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
998       NameVals.push_back((unsigned char)*P);
999 
1000     // Emit the finished record.
1001     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1002     NameVals.clear();
1003   }
1004   Stream.ExitBlock();
1005 }
1006 
1007 /// WriteFunction - Emit a function body to the module stream.
1008 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1009                           BitstreamWriter &Stream) {
1010   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1011   VE.incorporateFunction(F);
1012 
1013   SmallVector<unsigned, 64> Vals;
1014 
1015   // Emit the number of basic blocks, so the reader can create them ahead of
1016   // time.
1017   Vals.push_back(VE.getBasicBlocks().size());
1018   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1019   Vals.clear();
1020 
1021   // If there are function-local constants, emit them now.
1022   unsigned CstStart, CstEnd;
1023   VE.getFunctionConstantRange(CstStart, CstEnd);
1024   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1025 
1026   // Keep a running idea of what the instruction ID is.
1027   unsigned InstID = CstEnd;
1028 
1029   // Finally, emit all the instructions, in order.
1030   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1031     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1032          I != E; ++I) {
1033       WriteInstruction(*I, InstID, VE, Stream, Vals);
1034       if (I->getType() != Type::VoidTy)
1035         ++InstID;
1036     }
1037 
1038   // Emit names for all the instructions etc.
1039   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1040 
1041   VE.purgeFunction();
1042   Stream.ExitBlock();
1043 }
1044 
1045 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1046 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1047                                  const ValueEnumerator &VE,
1048                                  BitstreamWriter &Stream) {
1049   if (TST.empty()) return;
1050 
1051   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1052 
1053   // 7-bit fixed width VST_CODE_ENTRY strings.
1054   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1055   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1056   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1057                             Log2_32_Ceil(VE.getTypes().size()+1)));
1058   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1059   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1060   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1061 
1062   SmallVector<unsigned, 64> NameVals;
1063 
1064   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1065        TI != TE; ++TI) {
1066     // TST_ENTRY: [typeid, namechar x N]
1067     NameVals.push_back(VE.getTypeID(TI->second));
1068 
1069     const std::string &Str = TI->first;
1070     bool is7Bit = true;
1071     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1072       NameVals.push_back((unsigned char)Str[i]);
1073       if (Str[i] & 128)
1074         is7Bit = false;
1075     }
1076 
1077     // Emit the finished record.
1078     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1079     NameVals.clear();
1080   }
1081 
1082   Stream.ExitBlock();
1083 }
1084 
1085 // Emit blockinfo, which defines the standard abbreviations etc.
1086 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1087   // We only want to emit block info records for blocks that have multiple
1088   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1089   // blocks can defined their abbrevs inline.
1090   Stream.EnterBlockInfoBlock(2);
1091 
1092   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1093     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1094     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1095     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1096     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1097     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1098     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1099                                    Abbv) != VST_ENTRY_8_ABBREV)
1100       assert(0 && "Unexpected abbrev ordering!");
1101   }
1102 
1103   { // 7-bit fixed width VST_ENTRY strings.
1104     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1105     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1106     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1107     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1108     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1109     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1110                                    Abbv) != VST_ENTRY_7_ABBREV)
1111       assert(0 && "Unexpected abbrev ordering!");
1112   }
1113   { // 6-bit char6 VST_ENTRY strings.
1114     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1115     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1116     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1117     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1118     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1119     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1120                                    Abbv) != VST_ENTRY_6_ABBREV)
1121       assert(0 && "Unexpected abbrev ordering!");
1122   }
1123   { // 6-bit char6 VST_BBENTRY strings.
1124     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1125     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1126     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1127     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1128     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1129     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1130                                    Abbv) != VST_BBENTRY_6_ABBREV)
1131       assert(0 && "Unexpected abbrev ordering!");
1132   }
1133 
1134 
1135 
1136   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1137     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1138     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1139     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1140                               Log2_32_Ceil(VE.getTypes().size()+1)));
1141     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1142                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1143       assert(0 && "Unexpected abbrev ordering!");
1144   }
1145 
1146   { // INTEGER abbrev for CONSTANTS_BLOCK.
1147     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1148     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1149     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1150     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1151                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1152       assert(0 && "Unexpected abbrev ordering!");
1153   }
1154 
1155   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1156     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1157     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1158     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1159     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1160                               Log2_32_Ceil(VE.getTypes().size()+1)));
1161     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1162 
1163     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1164                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1165       assert(0 && "Unexpected abbrev ordering!");
1166   }
1167   { // NULL abbrev for CONSTANTS_BLOCK.
1168     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1169     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1170     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1171                                    Abbv) != CONSTANTS_NULL_Abbrev)
1172       assert(0 && "Unexpected abbrev ordering!");
1173   }
1174 
1175   // FIXME: This should only use space for first class types!
1176 
1177   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1178     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1179     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1180     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1181     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1182     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1183     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1184                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1185       assert(0 && "Unexpected abbrev ordering!");
1186   }
1187   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1188     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1189     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1190     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1191     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1192     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1193     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1194                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1195       assert(0 && "Unexpected abbrev ordering!");
1196   }
1197   { // INST_CAST abbrev for FUNCTION_BLOCK.
1198     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1199     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1200     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1201     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1202                               Log2_32_Ceil(VE.getTypes().size()+1)));
1203     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1204     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1205                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1206       assert(0 && "Unexpected abbrev ordering!");
1207   }
1208 
1209   { // INST_RET abbrev for FUNCTION_BLOCK.
1210     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1211     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1212     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1213                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1214       assert(0 && "Unexpected abbrev ordering!");
1215   }
1216   { // INST_RET abbrev for FUNCTION_BLOCK.
1217     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1218     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1219     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1220     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1221                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1222       assert(0 && "Unexpected abbrev ordering!");
1223   }
1224   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1225     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1226     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1227     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1228                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1229       assert(0 && "Unexpected abbrev ordering!");
1230   }
1231 
1232   Stream.ExitBlock();
1233 }
1234 
1235 
1236 /// WriteModule - Emit the specified module to the bitstream.
1237 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1238   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1239 
1240   // Emit the version number if it is non-zero.
1241   if (CurVersion) {
1242     SmallVector<unsigned, 1> Vals;
1243     Vals.push_back(CurVersion);
1244     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1245   }
1246 
1247   // Analyze the module, enumerating globals, functions, etc.
1248   ValueEnumerator VE(M);
1249 
1250   // Emit blockinfo, which defines the standard abbreviations etc.
1251   WriteBlockInfo(VE, Stream);
1252 
1253   // Emit information about parameter attributes.
1254   WriteAttributeTable(VE, Stream);
1255 
1256   // Emit information describing all of the types in the module.
1257   WriteTypeTable(VE, Stream);
1258 
1259   // Emit top-level description of module, including target triple, inline asm,
1260   // descriptors for global variables, and function prototype info.
1261   WriteModuleInfo(M, VE, Stream);
1262 
1263   // Emit constants.
1264   WriteModuleConstants(VE, Stream);
1265 
1266   // If we have any aggregate values in the value table, purge them - these can
1267   // only be used to initialize global variables.  Doing so makes the value
1268   // namespace smaller for code in functions.
1269   int NumNonAggregates = VE.PurgeAggregateValues();
1270   if (NumNonAggregates != -1) {
1271     SmallVector<unsigned, 1> Vals;
1272     Vals.push_back(NumNonAggregates);
1273     Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1274   }
1275 
1276   // Emit function bodies.
1277   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1278     if (!I->isDeclaration())
1279       WriteFunction(*I, VE, Stream);
1280 
1281   // Emit the type symbol table information.
1282   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1283 
1284   // Emit names for globals/functions etc.
1285   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1286 
1287   Stream.ExitBlock();
1288 }
1289 
1290 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1291 /// header and trailer to make it compatible with the system archiver.  To do
1292 /// this we emit the following header, and then emit a trailer that pads the
1293 /// file out to be a multiple of 16 bytes.
1294 ///
1295 /// struct bc_header {
1296 ///   uint32_t Magic;         // 0x0B17C0DE
1297 ///   uint32_t Version;       // Version, currently always 0.
1298 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1299 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1300 ///   uint32_t CPUType;       // CPU specifier.
1301 ///   ... potentially more later ...
1302 /// };
1303 enum {
1304   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1305   DarwinBCHeaderSize = 5*4
1306 };
1307 
1308 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1309                                const std::string &TT) {
1310   unsigned CPUType = ~0U;
1311 
1312   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1313   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1314   // specific constants here because they are implicitly part of the Darwin ABI.
1315   enum {
1316     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1317     DARWIN_CPU_TYPE_X86        = 7,
1318     DARWIN_CPU_TYPE_POWERPC    = 18
1319   };
1320 
1321   if (TT.find("x86_64-") == 0)
1322     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1323   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1324            TT[4] == '-' && TT[1] - '3' < 6)
1325     CPUType = DARWIN_CPU_TYPE_X86;
1326   else if (TT.find("powerpc-") == 0)
1327     CPUType = DARWIN_CPU_TYPE_POWERPC;
1328   else if (TT.find("powerpc64-") == 0)
1329     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1330 
1331   // Traditional Bitcode starts after header.
1332   unsigned BCOffset = DarwinBCHeaderSize;
1333 
1334   Stream.Emit(0x0B17C0DE, 32);
1335   Stream.Emit(0         , 32);  // Version.
1336   Stream.Emit(BCOffset  , 32);
1337   Stream.Emit(0         , 32);  // Filled in later.
1338   Stream.Emit(CPUType   , 32);
1339 }
1340 
1341 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1342 /// finalize the header.
1343 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1344   // Update the size field in the header.
1345   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1346 
1347   // If the file is not a multiple of 16 bytes, insert dummy padding.
1348   while (BufferSize & 15) {
1349     Stream.Emit(0, 8);
1350     ++BufferSize;
1351   }
1352 }
1353 
1354 
1355 /// WriteBitcodeToFile - Write the specified module to the specified output
1356 /// stream.
1357 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1358   raw_os_ostream RawOut(Out);
1359   // If writing to stdout, set binary mode.
1360   if (llvm::cout == Out)
1361     sys::Program::ChangeStdoutToBinary();
1362   WriteBitcodeToFile(M, RawOut);
1363 }
1364 
1365 /// WriteBitcodeToFile - Write the specified module to the specified output
1366 /// stream.
1367 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1368   std::vector<unsigned char> Buffer;
1369   BitstreamWriter Stream(Buffer);
1370 
1371   Buffer.reserve(256*1024);
1372 
1373   WriteBitcodeToStream( M, Stream );
1374 
1375   // If writing to stdout, set binary mode.
1376   if (&llvm::outs() == &Out)
1377     sys::Program::ChangeStdoutToBinary();
1378 
1379   // Write the generated bitstream to "Out".
1380   Out.write((char*)&Buffer.front(), Buffer.size());
1381 
1382   // Make sure it hits disk now.
1383   Out.flush();
1384 }
1385 
1386 /// WriteBitcodeToStream - Write the specified module to the specified output
1387 /// stream.
1388 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1389   // If this is darwin, emit a file header and trailer if needed.
1390   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1391   if (isDarwin)
1392     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1393 
1394   // Emit the file header.
1395   Stream.Emit((unsigned)'B', 8);
1396   Stream.Emit((unsigned)'C', 8);
1397   Stream.Emit(0x0, 4);
1398   Stream.Emit(0xC, 4);
1399   Stream.Emit(0xE, 4);
1400   Stream.Emit(0xD, 4);
1401 
1402   // Emit the module.
1403   WriteModule(M, Stream);
1404 
1405   if (isDarwin)
1406     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1407 }
1408