1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Object/IRSymtab.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/Program.h" 36 #include "llvm/Support/SHA1.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <cctype> 40 #include <map> 41 using namespace llvm; 42 43 namespace { 44 45 cl::opt<unsigned> 46 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 47 cl::desc("Number of metadatas above which we emit an index " 48 "to enable lazy-loading")); 49 /// These are manifest constants used by the bitcode writer. They do not need to 50 /// be kept in sync with the reader, but need to be consistent within this file. 51 enum { 52 // VALUE_SYMTAB_BLOCK abbrev id's. 53 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 VST_ENTRY_7_ABBREV, 55 VST_ENTRY_6_ABBREV, 56 VST_BBENTRY_6_ABBREV, 57 58 // CONSTANTS_BLOCK abbrev id's. 59 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 60 CONSTANTS_INTEGER_ABBREV, 61 CONSTANTS_CE_CAST_Abbrev, 62 CONSTANTS_NULL_Abbrev, 63 64 // FUNCTION_BLOCK abbrev id's. 65 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 66 FUNCTION_INST_BINOP_ABBREV, 67 FUNCTION_INST_BINOP_FLAGS_ABBREV, 68 FUNCTION_INST_CAST_ABBREV, 69 FUNCTION_INST_RET_VOID_ABBREV, 70 FUNCTION_INST_RET_VAL_ABBREV, 71 FUNCTION_INST_UNREACHABLE_ABBREV, 72 FUNCTION_INST_GEP_ABBREV, 73 }; 74 75 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 76 /// file type. 77 class BitcodeWriterBase { 78 protected: 79 /// The stream created and owned by the client. 80 BitstreamWriter &Stream; 81 82 StringTableBuilder &StrtabBuilder; 83 84 public: 85 /// Constructs a BitcodeWriterBase object that writes to the provided 86 /// \p Stream. 87 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 88 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 89 90 protected: 91 void writeBitcodeHeader(); 92 void writeModuleVersion(); 93 }; 94 95 void BitcodeWriterBase::writeModuleVersion() { 96 // VERSION: [version#] 97 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 98 } 99 100 /// Class to manage the bitcode writing for a module. 101 class ModuleBitcodeWriter : public BitcodeWriterBase { 102 /// Pointer to the buffer allocated by caller for bitcode writing. 103 const SmallVectorImpl<char> &Buffer; 104 105 /// The Module to write to bitcode. 106 const Module &M; 107 108 /// Enumerates ids for all values in the module. 109 ValueEnumerator VE; 110 111 /// Optional per-module index to write for ThinLTO. 112 const ModuleSummaryIndex *Index; 113 114 /// True if a module hash record should be written. 115 bool GenerateHash; 116 117 /// If non-null, when GenerateHash is true, the resulting hash is written 118 /// into ModHash. When GenerateHash is false, that specified value 119 /// is used as the hash instead of computing from the generated bitcode. 120 /// Can be used to produce the same module hash for a minimized bitcode 121 /// used just for the thin link as in the regular full bitcode that will 122 /// be used in the backend. 123 ModuleHash *ModHash; 124 125 /// The start bit of the identification block. 126 uint64_t BitcodeStartBit; 127 128 /// Map that holds the correspondence between GUIDs in the summary index, 129 /// that came from indirect call profiles, and a value id generated by this 130 /// class to use in the VST and summary block records. 131 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 132 133 /// Tracks the last value id recorded in the GUIDToValueMap. 134 unsigned GlobalValueId; 135 136 /// Saves the offset of the VSTOffset record that must eventually be 137 /// backpatched with the offset of the actual VST. 138 uint64_t VSTOffsetPlaceholder = 0; 139 140 public: 141 /// Constructs a ModuleBitcodeWriter object for the given Module, 142 /// writing to the provided \p Buffer. 143 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 144 StringTableBuilder &StrtabBuilder, 145 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 146 const ModuleSummaryIndex *Index, bool GenerateHash, 147 ModuleHash *ModHash = nullptr) 148 : BitcodeWriterBase(Stream, StrtabBuilder), Buffer(Buffer), M(*M), 149 VE(*M, ShouldPreserveUseListOrder), Index(Index), 150 GenerateHash(GenerateHash), ModHash(ModHash), 151 BitcodeStartBit(Stream.GetCurrentBitNo()) { 152 // Assign ValueIds to any callee values in the index that came from 153 // indirect call profiles and were recorded as a GUID not a Value* 154 // (which would have been assigned an ID by the ValueEnumerator). 155 // The starting ValueId is just after the number of values in the 156 // ValueEnumerator, so that they can be emitted in the VST. 157 GlobalValueId = VE.getValues().size(); 158 if (!Index) 159 return; 160 for (const auto &GUIDSummaryLists : *Index) 161 // Examine all summaries for this GUID. 162 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 163 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 164 // For each call in the function summary, see if the call 165 // is to a GUID (which means it is for an indirect call, 166 // otherwise we would have a Value for it). If so, synthesize 167 // a value id. 168 for (auto &CallEdge : FS->calls()) 169 if (!CallEdge.first.getValue()) 170 assignValueId(CallEdge.first.getGUID()); 171 } 172 173 /// Emit the current module to the bitstream. 174 void write(); 175 176 private: 177 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 178 179 void writeAttributeGroupTable(); 180 void writeAttributeTable(); 181 void writeTypeTable(); 182 void writeComdats(); 183 void writeValueSymbolTableForwardDecl(); 184 void writeModuleInfo(); 185 void writeValueAsMetadata(const ValueAsMetadata *MD, 186 SmallVectorImpl<uint64_t> &Record); 187 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 188 unsigned Abbrev); 189 unsigned createDILocationAbbrev(); 190 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 191 unsigned &Abbrev); 192 unsigned createGenericDINodeAbbrev(); 193 void writeGenericDINode(const GenericDINode *N, 194 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 195 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 196 unsigned Abbrev); 197 void writeDIEnumerator(const DIEnumerator *N, 198 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 199 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 200 unsigned Abbrev); 201 void writeDIDerivedType(const DIDerivedType *N, 202 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 203 void writeDICompositeType(const DICompositeType *N, 204 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 205 void writeDISubroutineType(const DISubroutineType *N, 206 SmallVectorImpl<uint64_t> &Record, 207 unsigned Abbrev); 208 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 209 unsigned Abbrev); 210 void writeDICompileUnit(const DICompileUnit *N, 211 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 212 void writeDISubprogram(const DISubprogram *N, 213 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 214 void writeDILexicalBlock(const DILexicalBlock *N, 215 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 216 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 217 SmallVectorImpl<uint64_t> &Record, 218 unsigned Abbrev); 219 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 220 unsigned Abbrev); 221 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 222 unsigned Abbrev); 223 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 224 unsigned Abbrev); 225 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 226 unsigned Abbrev); 227 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 228 SmallVectorImpl<uint64_t> &Record, 229 unsigned Abbrev); 230 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 231 SmallVectorImpl<uint64_t> &Record, 232 unsigned Abbrev); 233 void writeDIGlobalVariable(const DIGlobalVariable *N, 234 SmallVectorImpl<uint64_t> &Record, 235 unsigned Abbrev); 236 void writeDILocalVariable(const DILocalVariable *N, 237 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 238 void writeDIExpression(const DIExpression *N, 239 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 240 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 241 SmallVectorImpl<uint64_t> &Record, 242 unsigned Abbrev); 243 void writeDIObjCProperty(const DIObjCProperty *N, 244 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 245 void writeDIImportedEntity(const DIImportedEntity *N, 246 SmallVectorImpl<uint64_t> &Record, 247 unsigned Abbrev); 248 unsigned createNamedMetadataAbbrev(); 249 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 250 unsigned createMetadataStringsAbbrev(); 251 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 252 SmallVectorImpl<uint64_t> &Record); 253 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 254 SmallVectorImpl<uint64_t> &Record, 255 std::vector<unsigned> *MDAbbrevs = nullptr, 256 std::vector<uint64_t> *IndexPos = nullptr); 257 void writeModuleMetadata(); 258 void writeFunctionMetadata(const Function &F); 259 void writeFunctionMetadataAttachment(const Function &F); 260 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 261 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 262 const GlobalObject &GO); 263 void writeModuleMetadataKinds(); 264 void writeOperandBundleTags(); 265 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 266 void writeModuleConstants(); 267 bool pushValueAndType(const Value *V, unsigned InstID, 268 SmallVectorImpl<unsigned> &Vals); 269 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 270 void pushValue(const Value *V, unsigned InstID, 271 SmallVectorImpl<unsigned> &Vals); 272 void pushValueSigned(const Value *V, unsigned InstID, 273 SmallVectorImpl<uint64_t> &Vals); 274 void writeInstruction(const Instruction &I, unsigned InstID, 275 SmallVectorImpl<unsigned> &Vals); 276 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 277 void writeGlobalValueSymbolTable( 278 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 279 void writeUseList(UseListOrder &&Order); 280 void writeUseListBlock(const Function *F); 281 void 282 writeFunction(const Function &F, 283 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 284 void writeBlockInfo(); 285 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 286 GlobalValueSummary *Summary, 287 unsigned ValueID, 288 unsigned FSCallsAbbrev, 289 unsigned FSCallsProfileAbbrev, 290 const Function &F); 291 void writeModuleLevelReferences(const GlobalVariable &V, 292 SmallVector<uint64_t, 64> &NameVals, 293 unsigned FSModRefsAbbrev); 294 void writePerModuleGlobalValueSummary(); 295 void writeModuleHash(size_t BlockStartPos); 296 297 void assignValueId(GlobalValue::GUID ValGUID) { 298 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 299 } 300 unsigned getValueId(GlobalValue::GUID ValGUID) { 301 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 302 // Expect that any GUID value had a value Id assigned by an 303 // earlier call to assignValueId. 304 assert(VMI != GUIDToValueIdMap.end() && 305 "GUID does not have assigned value Id"); 306 return VMI->second; 307 } 308 // Helper to get the valueId for the type of value recorded in VI. 309 unsigned getValueId(ValueInfo VI) { 310 if (!VI.getValue()) 311 return getValueId(VI.getGUID()); 312 return VE.getValueID(VI.getValue()); 313 } 314 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 315 }; 316 317 /// Class to manage the bitcode writing for a combined index. 318 class IndexBitcodeWriter : public BitcodeWriterBase { 319 /// The combined index to write to bitcode. 320 const ModuleSummaryIndex &Index; 321 322 /// When writing a subset of the index for distributed backends, client 323 /// provides a map of modules to the corresponding GUIDs/summaries to write. 324 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 325 326 /// Map that holds the correspondence between the GUID used in the combined 327 /// index and a value id generated by this class to use in references. 328 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 329 330 /// Tracks the last value id recorded in the GUIDToValueMap. 331 unsigned GlobalValueId = 0; 332 333 public: 334 /// Constructs a IndexBitcodeWriter object for the given combined index, 335 /// writing to the provided \p Buffer. When writing a subset of the index 336 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 337 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 338 const ModuleSummaryIndex &Index, 339 const std::map<std::string, GVSummaryMapTy> 340 *ModuleToSummariesForIndex = nullptr) 341 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 342 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 343 // Assign unique value ids to all summaries to be written, for use 344 // in writing out the call graph edges. Save the mapping from GUID 345 // to the new global value id to use when writing those edges, which 346 // are currently saved in the index in terms of GUID. 347 forEachSummary([&](GVInfo I) { 348 GUIDToValueIdMap[I.first] = ++GlobalValueId; 349 }); 350 } 351 352 /// The below iterator returns the GUID and associated summary. 353 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 354 355 /// Calls the callback for each value GUID and summary to be written to 356 /// bitcode. This hides the details of whether they are being pulled from the 357 /// entire index or just those in a provided ModuleToSummariesForIndex map. 358 template<typename Functor> 359 void forEachSummary(Functor Callback) { 360 if (ModuleToSummariesForIndex) { 361 for (auto &M : *ModuleToSummariesForIndex) 362 for (auto &Summary : M.second) 363 Callback(Summary); 364 } else { 365 for (auto &Summaries : Index) 366 for (auto &Summary : Summaries.second.SummaryList) 367 Callback({Summaries.first, Summary.get()}); 368 } 369 } 370 371 /// Calls the callback for each entry in the modulePaths StringMap that 372 /// should be written to the module path string table. This hides the details 373 /// of whether they are being pulled from the entire index or just those in a 374 /// provided ModuleToSummariesForIndex map. 375 template <typename Functor> void forEachModule(Functor Callback) { 376 if (ModuleToSummariesForIndex) { 377 for (const auto &M : *ModuleToSummariesForIndex) { 378 const auto &MPI = Index.modulePaths().find(M.first); 379 if (MPI == Index.modulePaths().end()) { 380 // This should only happen if the bitcode file was empty, in which 381 // case we shouldn't be importing (the ModuleToSummariesForIndex 382 // would only include the module we are writing and index for). 383 assert(ModuleToSummariesForIndex->size() == 1); 384 continue; 385 } 386 Callback(*MPI); 387 } 388 } else { 389 for (const auto &MPSE : Index.modulePaths()) 390 Callback(MPSE); 391 } 392 } 393 394 /// Main entry point for writing a combined index to bitcode. 395 void write(); 396 397 private: 398 void writeModStrings(); 399 void writeCombinedGlobalValueSummary(); 400 401 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 402 auto VMI = GUIDToValueIdMap.find(ValGUID); 403 if (VMI == GUIDToValueIdMap.end()) 404 return None; 405 return VMI->second; 406 } 407 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 408 }; 409 } // end anonymous namespace 410 411 static unsigned getEncodedCastOpcode(unsigned Opcode) { 412 switch (Opcode) { 413 default: llvm_unreachable("Unknown cast instruction!"); 414 case Instruction::Trunc : return bitc::CAST_TRUNC; 415 case Instruction::ZExt : return bitc::CAST_ZEXT; 416 case Instruction::SExt : return bitc::CAST_SEXT; 417 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 418 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 419 case Instruction::UIToFP : return bitc::CAST_UITOFP; 420 case Instruction::SIToFP : return bitc::CAST_SITOFP; 421 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 422 case Instruction::FPExt : return bitc::CAST_FPEXT; 423 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 424 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 425 case Instruction::BitCast : return bitc::CAST_BITCAST; 426 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 427 } 428 } 429 430 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 431 switch (Opcode) { 432 default: llvm_unreachable("Unknown binary instruction!"); 433 case Instruction::Add: 434 case Instruction::FAdd: return bitc::BINOP_ADD; 435 case Instruction::Sub: 436 case Instruction::FSub: return bitc::BINOP_SUB; 437 case Instruction::Mul: 438 case Instruction::FMul: return bitc::BINOP_MUL; 439 case Instruction::UDiv: return bitc::BINOP_UDIV; 440 case Instruction::FDiv: 441 case Instruction::SDiv: return bitc::BINOP_SDIV; 442 case Instruction::URem: return bitc::BINOP_UREM; 443 case Instruction::FRem: 444 case Instruction::SRem: return bitc::BINOP_SREM; 445 case Instruction::Shl: return bitc::BINOP_SHL; 446 case Instruction::LShr: return bitc::BINOP_LSHR; 447 case Instruction::AShr: return bitc::BINOP_ASHR; 448 case Instruction::And: return bitc::BINOP_AND; 449 case Instruction::Or: return bitc::BINOP_OR; 450 case Instruction::Xor: return bitc::BINOP_XOR; 451 } 452 } 453 454 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 455 switch (Op) { 456 default: llvm_unreachable("Unknown RMW operation!"); 457 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 458 case AtomicRMWInst::Add: return bitc::RMW_ADD; 459 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 460 case AtomicRMWInst::And: return bitc::RMW_AND; 461 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 462 case AtomicRMWInst::Or: return bitc::RMW_OR; 463 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 464 case AtomicRMWInst::Max: return bitc::RMW_MAX; 465 case AtomicRMWInst::Min: return bitc::RMW_MIN; 466 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 467 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 468 } 469 } 470 471 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 472 switch (Ordering) { 473 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 474 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 475 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 476 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 477 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 478 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 479 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 480 } 481 llvm_unreachable("Invalid ordering"); 482 } 483 484 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 485 switch (SynchScope) { 486 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 487 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 488 } 489 llvm_unreachable("Invalid synch scope"); 490 } 491 492 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 493 StringRef Str, unsigned AbbrevToUse) { 494 SmallVector<unsigned, 64> Vals; 495 496 // Code: [strchar x N] 497 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 498 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 499 AbbrevToUse = 0; 500 Vals.push_back(Str[i]); 501 } 502 503 // Emit the finished record. 504 Stream.EmitRecord(Code, Vals, AbbrevToUse); 505 } 506 507 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 508 switch (Kind) { 509 case Attribute::Alignment: 510 return bitc::ATTR_KIND_ALIGNMENT; 511 case Attribute::AllocSize: 512 return bitc::ATTR_KIND_ALLOC_SIZE; 513 case Attribute::AlwaysInline: 514 return bitc::ATTR_KIND_ALWAYS_INLINE; 515 case Attribute::ArgMemOnly: 516 return bitc::ATTR_KIND_ARGMEMONLY; 517 case Attribute::Builtin: 518 return bitc::ATTR_KIND_BUILTIN; 519 case Attribute::ByVal: 520 return bitc::ATTR_KIND_BY_VAL; 521 case Attribute::Convergent: 522 return bitc::ATTR_KIND_CONVERGENT; 523 case Attribute::InAlloca: 524 return bitc::ATTR_KIND_IN_ALLOCA; 525 case Attribute::Cold: 526 return bitc::ATTR_KIND_COLD; 527 case Attribute::InaccessibleMemOnly: 528 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 529 case Attribute::InaccessibleMemOrArgMemOnly: 530 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 531 case Attribute::InlineHint: 532 return bitc::ATTR_KIND_INLINE_HINT; 533 case Attribute::InReg: 534 return bitc::ATTR_KIND_IN_REG; 535 case Attribute::JumpTable: 536 return bitc::ATTR_KIND_JUMP_TABLE; 537 case Attribute::MinSize: 538 return bitc::ATTR_KIND_MIN_SIZE; 539 case Attribute::Naked: 540 return bitc::ATTR_KIND_NAKED; 541 case Attribute::Nest: 542 return bitc::ATTR_KIND_NEST; 543 case Attribute::NoAlias: 544 return bitc::ATTR_KIND_NO_ALIAS; 545 case Attribute::NoBuiltin: 546 return bitc::ATTR_KIND_NO_BUILTIN; 547 case Attribute::NoCapture: 548 return bitc::ATTR_KIND_NO_CAPTURE; 549 case Attribute::NoDuplicate: 550 return bitc::ATTR_KIND_NO_DUPLICATE; 551 case Attribute::NoImplicitFloat: 552 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 553 case Attribute::NoInline: 554 return bitc::ATTR_KIND_NO_INLINE; 555 case Attribute::NoRecurse: 556 return bitc::ATTR_KIND_NO_RECURSE; 557 case Attribute::NonLazyBind: 558 return bitc::ATTR_KIND_NON_LAZY_BIND; 559 case Attribute::NonNull: 560 return bitc::ATTR_KIND_NON_NULL; 561 case Attribute::Dereferenceable: 562 return bitc::ATTR_KIND_DEREFERENCEABLE; 563 case Attribute::DereferenceableOrNull: 564 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 565 case Attribute::NoRedZone: 566 return bitc::ATTR_KIND_NO_RED_ZONE; 567 case Attribute::NoReturn: 568 return bitc::ATTR_KIND_NO_RETURN; 569 case Attribute::NoUnwind: 570 return bitc::ATTR_KIND_NO_UNWIND; 571 case Attribute::OptimizeForSize: 572 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 573 case Attribute::OptimizeNone: 574 return bitc::ATTR_KIND_OPTIMIZE_NONE; 575 case Attribute::ReadNone: 576 return bitc::ATTR_KIND_READ_NONE; 577 case Attribute::ReadOnly: 578 return bitc::ATTR_KIND_READ_ONLY; 579 case Attribute::Returned: 580 return bitc::ATTR_KIND_RETURNED; 581 case Attribute::ReturnsTwice: 582 return bitc::ATTR_KIND_RETURNS_TWICE; 583 case Attribute::SExt: 584 return bitc::ATTR_KIND_S_EXT; 585 case Attribute::Speculatable: 586 return bitc::ATTR_KIND_SPECULATABLE; 587 case Attribute::StackAlignment: 588 return bitc::ATTR_KIND_STACK_ALIGNMENT; 589 case Attribute::StackProtect: 590 return bitc::ATTR_KIND_STACK_PROTECT; 591 case Attribute::StackProtectReq: 592 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 593 case Attribute::StackProtectStrong: 594 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 595 case Attribute::SafeStack: 596 return bitc::ATTR_KIND_SAFESTACK; 597 case Attribute::StructRet: 598 return bitc::ATTR_KIND_STRUCT_RET; 599 case Attribute::SanitizeAddress: 600 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 601 case Attribute::SanitizeThread: 602 return bitc::ATTR_KIND_SANITIZE_THREAD; 603 case Attribute::SanitizeMemory: 604 return bitc::ATTR_KIND_SANITIZE_MEMORY; 605 case Attribute::SwiftError: 606 return bitc::ATTR_KIND_SWIFT_ERROR; 607 case Attribute::SwiftSelf: 608 return bitc::ATTR_KIND_SWIFT_SELF; 609 case Attribute::UWTable: 610 return bitc::ATTR_KIND_UW_TABLE; 611 case Attribute::WriteOnly: 612 return bitc::ATTR_KIND_WRITEONLY; 613 case Attribute::ZExt: 614 return bitc::ATTR_KIND_Z_EXT; 615 case Attribute::EndAttrKinds: 616 llvm_unreachable("Can not encode end-attribute kinds marker."); 617 case Attribute::None: 618 llvm_unreachable("Can not encode none-attribute."); 619 } 620 621 llvm_unreachable("Trying to encode unknown attribute"); 622 } 623 624 void ModuleBitcodeWriter::writeAttributeGroupTable() { 625 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 626 VE.getAttributeGroups(); 627 if (AttrGrps.empty()) return; 628 629 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 630 631 SmallVector<uint64_t, 64> Record; 632 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 633 unsigned AttrListIndex = Pair.first; 634 AttributeSet AS = Pair.second; 635 Record.push_back(VE.getAttributeGroupID(Pair)); 636 Record.push_back(AttrListIndex); 637 638 for (Attribute Attr : AS) { 639 if (Attr.isEnumAttribute()) { 640 Record.push_back(0); 641 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 642 } else if (Attr.isIntAttribute()) { 643 Record.push_back(1); 644 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 645 Record.push_back(Attr.getValueAsInt()); 646 } else { 647 StringRef Kind = Attr.getKindAsString(); 648 StringRef Val = Attr.getValueAsString(); 649 650 Record.push_back(Val.empty() ? 3 : 4); 651 Record.append(Kind.begin(), Kind.end()); 652 Record.push_back(0); 653 if (!Val.empty()) { 654 Record.append(Val.begin(), Val.end()); 655 Record.push_back(0); 656 } 657 } 658 } 659 660 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 661 Record.clear(); 662 } 663 664 Stream.ExitBlock(); 665 } 666 667 void ModuleBitcodeWriter::writeAttributeTable() { 668 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 669 if (Attrs.empty()) return; 670 671 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 672 673 SmallVector<uint64_t, 64> Record; 674 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 675 AttributeList AL = Attrs[i]; 676 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 677 AttributeSet AS = AL.getAttributes(i); 678 if (AS.hasAttributes()) 679 Record.push_back(VE.getAttributeGroupID({i, AS})); 680 } 681 682 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 683 Record.clear(); 684 } 685 686 Stream.ExitBlock(); 687 } 688 689 /// WriteTypeTable - Write out the type table for a module. 690 void ModuleBitcodeWriter::writeTypeTable() { 691 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 692 693 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 694 SmallVector<uint64_t, 64> TypeVals; 695 696 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 697 698 // Abbrev for TYPE_CODE_POINTER. 699 auto Abbv = std::make_shared<BitCodeAbbrev>(); 700 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 702 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 703 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 704 705 // Abbrev for TYPE_CODE_FUNCTION. 706 Abbv = std::make_shared<BitCodeAbbrev>(); 707 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 711 712 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 713 714 // Abbrev for TYPE_CODE_STRUCT_ANON. 715 Abbv = std::make_shared<BitCodeAbbrev>(); 716 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 720 721 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 722 723 // Abbrev for TYPE_CODE_STRUCT_NAME. 724 Abbv = std::make_shared<BitCodeAbbrev>(); 725 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 728 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 729 730 // Abbrev for TYPE_CODE_STRUCT_NAMED. 731 Abbv = std::make_shared<BitCodeAbbrev>(); 732 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 736 737 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 738 739 // Abbrev for TYPE_CODE_ARRAY. 740 Abbv = std::make_shared<BitCodeAbbrev>(); 741 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 744 745 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 746 747 // Emit an entry count so the reader can reserve space. 748 TypeVals.push_back(TypeList.size()); 749 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 750 TypeVals.clear(); 751 752 // Loop over all of the types, emitting each in turn. 753 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 754 Type *T = TypeList[i]; 755 int AbbrevToUse = 0; 756 unsigned Code = 0; 757 758 switch (T->getTypeID()) { 759 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 760 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 761 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 762 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 763 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 764 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 765 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 766 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 767 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 768 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 769 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 770 case Type::IntegerTyID: 771 // INTEGER: [width] 772 Code = bitc::TYPE_CODE_INTEGER; 773 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 774 break; 775 case Type::PointerTyID: { 776 PointerType *PTy = cast<PointerType>(T); 777 // POINTER: [pointee type, address space] 778 Code = bitc::TYPE_CODE_POINTER; 779 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 780 unsigned AddressSpace = PTy->getAddressSpace(); 781 TypeVals.push_back(AddressSpace); 782 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 783 break; 784 } 785 case Type::FunctionTyID: { 786 FunctionType *FT = cast<FunctionType>(T); 787 // FUNCTION: [isvararg, retty, paramty x N] 788 Code = bitc::TYPE_CODE_FUNCTION; 789 TypeVals.push_back(FT->isVarArg()); 790 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 791 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 792 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 793 AbbrevToUse = FunctionAbbrev; 794 break; 795 } 796 case Type::StructTyID: { 797 StructType *ST = cast<StructType>(T); 798 // STRUCT: [ispacked, eltty x N] 799 TypeVals.push_back(ST->isPacked()); 800 // Output all of the element types. 801 for (StructType::element_iterator I = ST->element_begin(), 802 E = ST->element_end(); I != E; ++I) 803 TypeVals.push_back(VE.getTypeID(*I)); 804 805 if (ST->isLiteral()) { 806 Code = bitc::TYPE_CODE_STRUCT_ANON; 807 AbbrevToUse = StructAnonAbbrev; 808 } else { 809 if (ST->isOpaque()) { 810 Code = bitc::TYPE_CODE_OPAQUE; 811 } else { 812 Code = bitc::TYPE_CODE_STRUCT_NAMED; 813 AbbrevToUse = StructNamedAbbrev; 814 } 815 816 // Emit the name if it is present. 817 if (!ST->getName().empty()) 818 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 819 StructNameAbbrev); 820 } 821 break; 822 } 823 case Type::ArrayTyID: { 824 ArrayType *AT = cast<ArrayType>(T); 825 // ARRAY: [numelts, eltty] 826 Code = bitc::TYPE_CODE_ARRAY; 827 TypeVals.push_back(AT->getNumElements()); 828 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 829 AbbrevToUse = ArrayAbbrev; 830 break; 831 } 832 case Type::VectorTyID: { 833 VectorType *VT = cast<VectorType>(T); 834 // VECTOR [numelts, eltty] 835 Code = bitc::TYPE_CODE_VECTOR; 836 TypeVals.push_back(VT->getNumElements()); 837 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 838 break; 839 } 840 } 841 842 // Emit the finished record. 843 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 844 TypeVals.clear(); 845 } 846 847 Stream.ExitBlock(); 848 } 849 850 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 851 switch (Linkage) { 852 case GlobalValue::ExternalLinkage: 853 return 0; 854 case GlobalValue::WeakAnyLinkage: 855 return 16; 856 case GlobalValue::AppendingLinkage: 857 return 2; 858 case GlobalValue::InternalLinkage: 859 return 3; 860 case GlobalValue::LinkOnceAnyLinkage: 861 return 18; 862 case GlobalValue::ExternalWeakLinkage: 863 return 7; 864 case GlobalValue::CommonLinkage: 865 return 8; 866 case GlobalValue::PrivateLinkage: 867 return 9; 868 case GlobalValue::WeakODRLinkage: 869 return 17; 870 case GlobalValue::LinkOnceODRLinkage: 871 return 19; 872 case GlobalValue::AvailableExternallyLinkage: 873 return 12; 874 } 875 llvm_unreachable("Invalid linkage"); 876 } 877 878 static unsigned getEncodedLinkage(const GlobalValue &GV) { 879 return getEncodedLinkage(GV.getLinkage()); 880 } 881 882 // Decode the flags for GlobalValue in the summary 883 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 884 uint64_t RawFlags = 0; 885 886 RawFlags |= Flags.NotEligibleToImport; // bool 887 RawFlags |= (Flags.Live << 1); 888 // Linkage don't need to be remapped at that time for the summary. Any future 889 // change to the getEncodedLinkage() function will need to be taken into 890 // account here as well. 891 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 892 893 return RawFlags; 894 } 895 896 static unsigned getEncodedVisibility(const GlobalValue &GV) { 897 switch (GV.getVisibility()) { 898 case GlobalValue::DefaultVisibility: return 0; 899 case GlobalValue::HiddenVisibility: return 1; 900 case GlobalValue::ProtectedVisibility: return 2; 901 } 902 llvm_unreachable("Invalid visibility"); 903 } 904 905 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 906 switch (GV.getDLLStorageClass()) { 907 case GlobalValue::DefaultStorageClass: return 0; 908 case GlobalValue::DLLImportStorageClass: return 1; 909 case GlobalValue::DLLExportStorageClass: return 2; 910 } 911 llvm_unreachable("Invalid DLL storage class"); 912 } 913 914 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 915 switch (GV.getThreadLocalMode()) { 916 case GlobalVariable::NotThreadLocal: return 0; 917 case GlobalVariable::GeneralDynamicTLSModel: return 1; 918 case GlobalVariable::LocalDynamicTLSModel: return 2; 919 case GlobalVariable::InitialExecTLSModel: return 3; 920 case GlobalVariable::LocalExecTLSModel: return 4; 921 } 922 llvm_unreachable("Invalid TLS model"); 923 } 924 925 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 926 switch (C.getSelectionKind()) { 927 case Comdat::Any: 928 return bitc::COMDAT_SELECTION_KIND_ANY; 929 case Comdat::ExactMatch: 930 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 931 case Comdat::Largest: 932 return bitc::COMDAT_SELECTION_KIND_LARGEST; 933 case Comdat::NoDuplicates: 934 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 935 case Comdat::SameSize: 936 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 937 } 938 llvm_unreachable("Invalid selection kind"); 939 } 940 941 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 942 switch (GV.getUnnamedAddr()) { 943 case GlobalValue::UnnamedAddr::None: return 0; 944 case GlobalValue::UnnamedAddr::Local: return 2; 945 case GlobalValue::UnnamedAddr::Global: return 1; 946 } 947 llvm_unreachable("Invalid unnamed_addr"); 948 } 949 950 void ModuleBitcodeWriter::writeComdats() { 951 SmallVector<unsigned, 64> Vals; 952 for (const Comdat *C : VE.getComdats()) { 953 // COMDAT: [strtab offset, strtab size, selection_kind] 954 Vals.push_back(StrtabBuilder.add(C->getName())); 955 Vals.push_back(C->getName().size()); 956 Vals.push_back(getEncodedComdatSelectionKind(*C)); 957 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 958 Vals.clear(); 959 } 960 } 961 962 /// Write a record that will eventually hold the word offset of the 963 /// module-level VST. For now the offset is 0, which will be backpatched 964 /// after the real VST is written. Saves the bit offset to backpatch. 965 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 966 // Write a placeholder value in for the offset of the real VST, 967 // which is written after the function blocks so that it can include 968 // the offset of each function. The placeholder offset will be 969 // updated when the real VST is written. 970 auto Abbv = std::make_shared<BitCodeAbbrev>(); 971 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 972 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 973 // hold the real VST offset. Must use fixed instead of VBR as we don't 974 // know how many VBR chunks to reserve ahead of time. 975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 976 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 977 978 // Emit the placeholder 979 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 980 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 981 982 // Compute and save the bit offset to the placeholder, which will be 983 // patched when the real VST is written. We can simply subtract the 32-bit 984 // fixed size from the current bit number to get the location to backpatch. 985 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 986 } 987 988 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 989 990 /// Determine the encoding to use for the given string name and length. 991 static StringEncoding getStringEncoding(StringRef Str) { 992 bool isChar6 = true; 993 for (char C : Str) { 994 if (isChar6) 995 isChar6 = BitCodeAbbrevOp::isChar6(C); 996 if ((unsigned char)C & 128) 997 // don't bother scanning the rest. 998 return SE_Fixed8; 999 } 1000 if (isChar6) 1001 return SE_Char6; 1002 return SE_Fixed7; 1003 } 1004 1005 /// Emit top-level description of module, including target triple, inline asm, 1006 /// descriptors for global variables, and function prototype info. 1007 /// Returns the bit offset to backpatch with the location of the real VST. 1008 void ModuleBitcodeWriter::writeModuleInfo() { 1009 // Emit various pieces of data attached to a module. 1010 if (!M.getTargetTriple().empty()) 1011 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1012 0 /*TODO*/); 1013 const std::string &DL = M.getDataLayoutStr(); 1014 if (!DL.empty()) 1015 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1016 if (!M.getModuleInlineAsm().empty()) 1017 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1018 0 /*TODO*/); 1019 1020 // Emit information about sections and GC, computing how many there are. Also 1021 // compute the maximum alignment value. 1022 std::map<std::string, unsigned> SectionMap; 1023 std::map<std::string, unsigned> GCMap; 1024 unsigned MaxAlignment = 0; 1025 unsigned MaxGlobalType = 0; 1026 for (const GlobalValue &GV : M.globals()) { 1027 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1028 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1029 if (GV.hasSection()) { 1030 // Give section names unique ID's. 1031 unsigned &Entry = SectionMap[GV.getSection()]; 1032 if (!Entry) { 1033 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1034 0 /*TODO*/); 1035 Entry = SectionMap.size(); 1036 } 1037 } 1038 } 1039 for (const Function &F : M) { 1040 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1041 if (F.hasSection()) { 1042 // Give section names unique ID's. 1043 unsigned &Entry = SectionMap[F.getSection()]; 1044 if (!Entry) { 1045 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1046 0 /*TODO*/); 1047 Entry = SectionMap.size(); 1048 } 1049 } 1050 if (F.hasGC()) { 1051 // Same for GC names. 1052 unsigned &Entry = GCMap[F.getGC()]; 1053 if (!Entry) { 1054 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1055 0 /*TODO*/); 1056 Entry = GCMap.size(); 1057 } 1058 } 1059 } 1060 1061 // Emit abbrev for globals, now that we know # sections and max alignment. 1062 unsigned SimpleGVarAbbrev = 0; 1063 if (!M.global_empty()) { 1064 // Add an abbrev for common globals with no visibility or thread localness. 1065 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1066 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1070 Log2_32_Ceil(MaxGlobalType+1))); 1071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1072 //| explicitType << 1 1073 //| constant 1074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1076 if (MaxAlignment == 0) // Alignment. 1077 Abbv->Add(BitCodeAbbrevOp(0)); 1078 else { 1079 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1081 Log2_32_Ceil(MaxEncAlignment+1))); 1082 } 1083 if (SectionMap.empty()) // Section. 1084 Abbv->Add(BitCodeAbbrevOp(0)); 1085 else 1086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1087 Log2_32_Ceil(SectionMap.size()+1))); 1088 // Don't bother emitting vis + thread local. 1089 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1090 } 1091 1092 SmallVector<unsigned, 64> Vals; 1093 // Emit the module's source file name. 1094 { 1095 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1096 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1097 if (Bits == SE_Char6) 1098 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1099 else if (Bits == SE_Fixed7) 1100 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1101 1102 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1103 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1104 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1106 Abbv->Add(AbbrevOpToUse); 1107 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1108 1109 for (const auto P : M.getSourceFileName()) 1110 Vals.push_back((unsigned char)P); 1111 1112 // Emit the finished record. 1113 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1114 Vals.clear(); 1115 } 1116 1117 // Emit the global variable information. 1118 for (const GlobalVariable &GV : M.globals()) { 1119 unsigned AbbrevToUse = 0; 1120 1121 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1122 // linkage, alignment, section, visibility, threadlocal, 1123 // unnamed_addr, externally_initialized, dllstorageclass, 1124 // comdat, attributes] 1125 Vals.push_back(StrtabBuilder.add(GV.getName())); 1126 Vals.push_back(GV.getName().size()); 1127 Vals.push_back(VE.getTypeID(GV.getValueType())); 1128 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1129 Vals.push_back(GV.isDeclaration() ? 0 : 1130 (VE.getValueID(GV.getInitializer()) + 1)); 1131 Vals.push_back(getEncodedLinkage(GV)); 1132 Vals.push_back(Log2_32(GV.getAlignment())+1); 1133 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1134 if (GV.isThreadLocal() || 1135 GV.getVisibility() != GlobalValue::DefaultVisibility || 1136 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1137 GV.isExternallyInitialized() || 1138 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1139 GV.hasComdat() || 1140 GV.hasAttributes()) { 1141 Vals.push_back(getEncodedVisibility(GV)); 1142 Vals.push_back(getEncodedThreadLocalMode(GV)); 1143 Vals.push_back(getEncodedUnnamedAddr(GV)); 1144 Vals.push_back(GV.isExternallyInitialized()); 1145 Vals.push_back(getEncodedDLLStorageClass(GV)); 1146 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1147 1148 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1149 Vals.push_back(VE.getAttributeListID(AL)); 1150 } else { 1151 AbbrevToUse = SimpleGVarAbbrev; 1152 } 1153 1154 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1155 Vals.clear(); 1156 } 1157 1158 // Emit the function proto information. 1159 for (const Function &F : M) { 1160 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1161 // linkage, paramattrs, alignment, section, visibility, gc, 1162 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1163 // prefixdata, personalityfn] 1164 Vals.push_back(StrtabBuilder.add(F.getName())); 1165 Vals.push_back(F.getName().size()); 1166 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1167 Vals.push_back(F.getCallingConv()); 1168 Vals.push_back(F.isDeclaration()); 1169 Vals.push_back(getEncodedLinkage(F)); 1170 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1171 Vals.push_back(Log2_32(F.getAlignment())+1); 1172 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1173 Vals.push_back(getEncodedVisibility(F)); 1174 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1175 Vals.push_back(getEncodedUnnamedAddr(F)); 1176 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1177 : 0); 1178 Vals.push_back(getEncodedDLLStorageClass(F)); 1179 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1180 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1181 : 0); 1182 Vals.push_back( 1183 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1184 1185 unsigned AbbrevToUse = 0; 1186 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1187 Vals.clear(); 1188 } 1189 1190 // Emit the alias information. 1191 for (const GlobalAlias &A : M.aliases()) { 1192 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1193 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1194 Vals.push_back(StrtabBuilder.add(A.getName())); 1195 Vals.push_back(A.getName().size()); 1196 Vals.push_back(VE.getTypeID(A.getValueType())); 1197 Vals.push_back(A.getType()->getAddressSpace()); 1198 Vals.push_back(VE.getValueID(A.getAliasee())); 1199 Vals.push_back(getEncodedLinkage(A)); 1200 Vals.push_back(getEncodedVisibility(A)); 1201 Vals.push_back(getEncodedDLLStorageClass(A)); 1202 Vals.push_back(getEncodedThreadLocalMode(A)); 1203 Vals.push_back(getEncodedUnnamedAddr(A)); 1204 unsigned AbbrevToUse = 0; 1205 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1206 Vals.clear(); 1207 } 1208 1209 // Emit the ifunc information. 1210 for (const GlobalIFunc &I : M.ifuncs()) { 1211 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1212 // val#, linkage, visibility] 1213 Vals.push_back(StrtabBuilder.add(I.getName())); 1214 Vals.push_back(I.getName().size()); 1215 Vals.push_back(VE.getTypeID(I.getValueType())); 1216 Vals.push_back(I.getType()->getAddressSpace()); 1217 Vals.push_back(VE.getValueID(I.getResolver())); 1218 Vals.push_back(getEncodedLinkage(I)); 1219 Vals.push_back(getEncodedVisibility(I)); 1220 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1221 Vals.clear(); 1222 } 1223 1224 writeValueSymbolTableForwardDecl(); 1225 } 1226 1227 static uint64_t getOptimizationFlags(const Value *V) { 1228 uint64_t Flags = 0; 1229 1230 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1231 if (OBO->hasNoSignedWrap()) 1232 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1233 if (OBO->hasNoUnsignedWrap()) 1234 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1235 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1236 if (PEO->isExact()) 1237 Flags |= 1 << bitc::PEO_EXACT; 1238 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1239 if (FPMO->hasUnsafeAlgebra()) 1240 Flags |= FastMathFlags::UnsafeAlgebra; 1241 if (FPMO->hasNoNaNs()) 1242 Flags |= FastMathFlags::NoNaNs; 1243 if (FPMO->hasNoInfs()) 1244 Flags |= FastMathFlags::NoInfs; 1245 if (FPMO->hasNoSignedZeros()) 1246 Flags |= FastMathFlags::NoSignedZeros; 1247 if (FPMO->hasAllowReciprocal()) 1248 Flags |= FastMathFlags::AllowReciprocal; 1249 if (FPMO->hasAllowContract()) 1250 Flags |= FastMathFlags::AllowContract; 1251 } 1252 1253 return Flags; 1254 } 1255 1256 void ModuleBitcodeWriter::writeValueAsMetadata( 1257 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1258 // Mimic an MDNode with a value as one operand. 1259 Value *V = MD->getValue(); 1260 Record.push_back(VE.getTypeID(V->getType())); 1261 Record.push_back(VE.getValueID(V)); 1262 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1263 Record.clear(); 1264 } 1265 1266 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1267 SmallVectorImpl<uint64_t> &Record, 1268 unsigned Abbrev) { 1269 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1270 Metadata *MD = N->getOperand(i); 1271 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1272 "Unexpected function-local metadata"); 1273 Record.push_back(VE.getMetadataOrNullID(MD)); 1274 } 1275 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1276 : bitc::METADATA_NODE, 1277 Record, Abbrev); 1278 Record.clear(); 1279 } 1280 1281 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1282 // Assume the column is usually under 128, and always output the inlined-at 1283 // location (it's never more expensive than building an array size 1). 1284 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1285 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1291 return Stream.EmitAbbrev(std::move(Abbv)); 1292 } 1293 1294 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1295 SmallVectorImpl<uint64_t> &Record, 1296 unsigned &Abbrev) { 1297 if (!Abbrev) 1298 Abbrev = createDILocationAbbrev(); 1299 1300 Record.push_back(N->isDistinct()); 1301 Record.push_back(N->getLine()); 1302 Record.push_back(N->getColumn()); 1303 Record.push_back(VE.getMetadataID(N->getScope())); 1304 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1305 1306 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1307 Record.clear(); 1308 } 1309 1310 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1311 // Assume the column is usually under 128, and always output the inlined-at 1312 // location (it's never more expensive than building an array size 1). 1313 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1314 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1321 return Stream.EmitAbbrev(std::move(Abbv)); 1322 } 1323 1324 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1325 SmallVectorImpl<uint64_t> &Record, 1326 unsigned &Abbrev) { 1327 if (!Abbrev) 1328 Abbrev = createGenericDINodeAbbrev(); 1329 1330 Record.push_back(N->isDistinct()); 1331 Record.push_back(N->getTag()); 1332 Record.push_back(0); // Per-tag version field; unused for now. 1333 1334 for (auto &I : N->operands()) 1335 Record.push_back(VE.getMetadataOrNullID(I)); 1336 1337 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1338 Record.clear(); 1339 } 1340 1341 static uint64_t rotateSign(int64_t I) { 1342 uint64_t U = I; 1343 return I < 0 ? ~(U << 1) : U << 1; 1344 } 1345 1346 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1347 SmallVectorImpl<uint64_t> &Record, 1348 unsigned Abbrev) { 1349 Record.push_back(N->isDistinct()); 1350 Record.push_back(N->getCount()); 1351 Record.push_back(rotateSign(N->getLowerBound())); 1352 1353 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1354 Record.clear(); 1355 } 1356 1357 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1358 SmallVectorImpl<uint64_t> &Record, 1359 unsigned Abbrev) { 1360 Record.push_back(N->isDistinct()); 1361 Record.push_back(rotateSign(N->getValue())); 1362 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1363 1364 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1365 Record.clear(); 1366 } 1367 1368 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1369 SmallVectorImpl<uint64_t> &Record, 1370 unsigned Abbrev) { 1371 Record.push_back(N->isDistinct()); 1372 Record.push_back(N->getTag()); 1373 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1374 Record.push_back(N->getSizeInBits()); 1375 Record.push_back(N->getAlignInBits()); 1376 Record.push_back(N->getEncoding()); 1377 1378 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1379 Record.clear(); 1380 } 1381 1382 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1383 SmallVectorImpl<uint64_t> &Record, 1384 unsigned Abbrev) { 1385 Record.push_back(N->isDistinct()); 1386 Record.push_back(N->getTag()); 1387 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1388 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1389 Record.push_back(N->getLine()); 1390 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1391 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1392 Record.push_back(N->getSizeInBits()); 1393 Record.push_back(N->getAlignInBits()); 1394 Record.push_back(N->getOffsetInBits()); 1395 Record.push_back(N->getFlags()); 1396 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1397 1398 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1399 // that there is no DWARF address space associated with DIDerivedType. 1400 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1401 Record.push_back(*DWARFAddressSpace + 1); 1402 else 1403 Record.push_back(0); 1404 1405 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1406 Record.clear(); 1407 } 1408 1409 void ModuleBitcodeWriter::writeDICompositeType( 1410 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1411 unsigned Abbrev) { 1412 const unsigned IsNotUsedInOldTypeRef = 0x2; 1413 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1414 Record.push_back(N->getTag()); 1415 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1416 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1417 Record.push_back(N->getLine()); 1418 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1419 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1420 Record.push_back(N->getSizeInBits()); 1421 Record.push_back(N->getAlignInBits()); 1422 Record.push_back(N->getOffsetInBits()); 1423 Record.push_back(N->getFlags()); 1424 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1425 Record.push_back(N->getRuntimeLang()); 1426 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1427 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1428 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1429 1430 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1431 Record.clear(); 1432 } 1433 1434 void ModuleBitcodeWriter::writeDISubroutineType( 1435 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1436 unsigned Abbrev) { 1437 const unsigned HasNoOldTypeRefs = 0x2; 1438 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1439 Record.push_back(N->getFlags()); 1440 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1441 Record.push_back(N->getCC()); 1442 1443 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1444 Record.clear(); 1445 } 1446 1447 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1448 SmallVectorImpl<uint64_t> &Record, 1449 unsigned Abbrev) { 1450 Record.push_back(N->isDistinct()); 1451 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1452 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1453 Record.push_back(N->getChecksumKind()); 1454 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1455 1456 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1457 Record.clear(); 1458 } 1459 1460 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1461 SmallVectorImpl<uint64_t> &Record, 1462 unsigned Abbrev) { 1463 assert(N->isDistinct() && "Expected distinct compile units"); 1464 Record.push_back(/* IsDistinct */ true); 1465 Record.push_back(N->getSourceLanguage()); 1466 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1467 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1468 Record.push_back(N->isOptimized()); 1469 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1470 Record.push_back(N->getRuntimeVersion()); 1471 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1472 Record.push_back(N->getEmissionKind()); 1473 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1474 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1475 Record.push_back(/* subprograms */ 0); 1476 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1477 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1478 Record.push_back(N->getDWOId()); 1479 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1480 Record.push_back(N->getSplitDebugInlining()); 1481 Record.push_back(N->getDebugInfoForProfiling()); 1482 1483 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1484 Record.clear(); 1485 } 1486 1487 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1488 SmallVectorImpl<uint64_t> &Record, 1489 unsigned Abbrev) { 1490 uint64_t HasUnitFlag = 1 << 1; 1491 Record.push_back(N->isDistinct() | HasUnitFlag); 1492 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1493 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1494 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1495 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1496 Record.push_back(N->getLine()); 1497 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1498 Record.push_back(N->isLocalToUnit()); 1499 Record.push_back(N->isDefinition()); 1500 Record.push_back(N->getScopeLine()); 1501 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1502 Record.push_back(N->getVirtuality()); 1503 Record.push_back(N->getVirtualIndex()); 1504 Record.push_back(N->getFlags()); 1505 Record.push_back(N->isOptimized()); 1506 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1507 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1508 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1509 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1510 Record.push_back(N->getThisAdjustment()); 1511 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1512 1513 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1514 Record.clear(); 1515 } 1516 1517 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1518 SmallVectorImpl<uint64_t> &Record, 1519 unsigned Abbrev) { 1520 Record.push_back(N->isDistinct()); 1521 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1522 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1523 Record.push_back(N->getLine()); 1524 Record.push_back(N->getColumn()); 1525 1526 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1527 Record.clear(); 1528 } 1529 1530 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1531 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1532 unsigned Abbrev) { 1533 Record.push_back(N->isDistinct()); 1534 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1535 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1536 Record.push_back(N->getDiscriminator()); 1537 1538 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1539 Record.clear(); 1540 } 1541 1542 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1543 SmallVectorImpl<uint64_t> &Record, 1544 unsigned Abbrev) { 1545 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1546 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1547 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1548 1549 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1550 Record.clear(); 1551 } 1552 1553 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1554 SmallVectorImpl<uint64_t> &Record, 1555 unsigned Abbrev) { 1556 Record.push_back(N->isDistinct()); 1557 Record.push_back(N->getMacinfoType()); 1558 Record.push_back(N->getLine()); 1559 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1560 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1561 1562 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1563 Record.clear(); 1564 } 1565 1566 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1567 SmallVectorImpl<uint64_t> &Record, 1568 unsigned Abbrev) { 1569 Record.push_back(N->isDistinct()); 1570 Record.push_back(N->getMacinfoType()); 1571 Record.push_back(N->getLine()); 1572 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1573 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1574 1575 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1576 Record.clear(); 1577 } 1578 1579 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1580 SmallVectorImpl<uint64_t> &Record, 1581 unsigned Abbrev) { 1582 Record.push_back(N->isDistinct()); 1583 for (auto &I : N->operands()) 1584 Record.push_back(VE.getMetadataOrNullID(I)); 1585 1586 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1587 Record.clear(); 1588 } 1589 1590 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1591 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1592 unsigned Abbrev) { 1593 Record.push_back(N->isDistinct()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1596 1597 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1598 Record.clear(); 1599 } 1600 1601 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1602 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1603 unsigned Abbrev) { 1604 Record.push_back(N->isDistinct()); 1605 Record.push_back(N->getTag()); 1606 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1607 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1608 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1609 1610 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1611 Record.clear(); 1612 } 1613 1614 void ModuleBitcodeWriter::writeDIGlobalVariable( 1615 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1616 unsigned Abbrev) { 1617 const uint64_t Version = 1 << 1; 1618 Record.push_back((uint64_t)N->isDistinct() | Version); 1619 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1620 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1621 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1622 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1623 Record.push_back(N->getLine()); 1624 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1625 Record.push_back(N->isLocalToUnit()); 1626 Record.push_back(N->isDefinition()); 1627 Record.push_back(/* expr */ 0); 1628 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1629 Record.push_back(N->getAlignInBits()); 1630 1631 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1632 Record.clear(); 1633 } 1634 1635 void ModuleBitcodeWriter::writeDILocalVariable( 1636 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1637 unsigned Abbrev) { 1638 // In order to support all possible bitcode formats in BitcodeReader we need 1639 // to distinguish the following cases: 1640 // 1) Record has no artificial tag (Record[1]), 1641 // has no obsolete inlinedAt field (Record[9]). 1642 // In this case Record size will be 8, HasAlignment flag is false. 1643 // 2) Record has artificial tag (Record[1]), 1644 // has no obsolete inlignedAt field (Record[9]). 1645 // In this case Record size will be 9, HasAlignment flag is false. 1646 // 3) Record has both artificial tag (Record[1]) and 1647 // obsolete inlignedAt field (Record[9]). 1648 // In this case Record size will be 10, HasAlignment flag is false. 1649 // 4) Record has neither artificial tag, nor inlignedAt field, but 1650 // HasAlignment flag is true and Record[8] contains alignment value. 1651 const uint64_t HasAlignmentFlag = 1 << 1; 1652 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1653 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1654 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1655 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1656 Record.push_back(N->getLine()); 1657 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1658 Record.push_back(N->getArg()); 1659 Record.push_back(N->getFlags()); 1660 Record.push_back(N->getAlignInBits()); 1661 1662 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1663 Record.clear(); 1664 } 1665 1666 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1667 SmallVectorImpl<uint64_t> &Record, 1668 unsigned Abbrev) { 1669 Record.reserve(N->getElements().size() + 1); 1670 const uint64_t Version = 3 << 1; 1671 Record.push_back((uint64_t)N->isDistinct() | Version); 1672 Record.append(N->elements_begin(), N->elements_end()); 1673 1674 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1675 Record.clear(); 1676 } 1677 1678 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1679 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1680 unsigned Abbrev) { 1681 Record.push_back(N->isDistinct()); 1682 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1683 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1684 1685 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1686 Record.clear(); 1687 } 1688 1689 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1690 SmallVectorImpl<uint64_t> &Record, 1691 unsigned Abbrev) { 1692 Record.push_back(N->isDistinct()); 1693 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1694 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1695 Record.push_back(N->getLine()); 1696 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1698 Record.push_back(N->getAttributes()); 1699 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1700 1701 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1702 Record.clear(); 1703 } 1704 1705 void ModuleBitcodeWriter::writeDIImportedEntity( 1706 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1707 unsigned Abbrev) { 1708 Record.push_back(N->isDistinct()); 1709 Record.push_back(N->getTag()); 1710 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1712 Record.push_back(N->getLine()); 1713 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1714 1715 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1716 Record.clear(); 1717 } 1718 1719 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1720 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1721 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1724 return Stream.EmitAbbrev(std::move(Abbv)); 1725 } 1726 1727 void ModuleBitcodeWriter::writeNamedMetadata( 1728 SmallVectorImpl<uint64_t> &Record) { 1729 if (M.named_metadata_empty()) 1730 return; 1731 1732 unsigned Abbrev = createNamedMetadataAbbrev(); 1733 for (const NamedMDNode &NMD : M.named_metadata()) { 1734 // Write name. 1735 StringRef Str = NMD.getName(); 1736 Record.append(Str.bytes_begin(), Str.bytes_end()); 1737 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1738 Record.clear(); 1739 1740 // Write named metadata operands. 1741 for (const MDNode *N : NMD.operands()) 1742 Record.push_back(VE.getMetadataID(N)); 1743 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1744 Record.clear(); 1745 } 1746 } 1747 1748 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1749 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1750 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1754 return Stream.EmitAbbrev(std::move(Abbv)); 1755 } 1756 1757 /// Write out a record for MDString. 1758 /// 1759 /// All the metadata strings in a metadata block are emitted in a single 1760 /// record. The sizes and strings themselves are shoved into a blob. 1761 void ModuleBitcodeWriter::writeMetadataStrings( 1762 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1763 if (Strings.empty()) 1764 return; 1765 1766 // Start the record with the number of strings. 1767 Record.push_back(bitc::METADATA_STRINGS); 1768 Record.push_back(Strings.size()); 1769 1770 // Emit the sizes of the strings in the blob. 1771 SmallString<256> Blob; 1772 { 1773 BitstreamWriter W(Blob); 1774 for (const Metadata *MD : Strings) 1775 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1776 W.FlushToWord(); 1777 } 1778 1779 // Add the offset to the strings to the record. 1780 Record.push_back(Blob.size()); 1781 1782 // Add the strings to the blob. 1783 for (const Metadata *MD : Strings) 1784 Blob.append(cast<MDString>(MD)->getString()); 1785 1786 // Emit the final record. 1787 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1788 Record.clear(); 1789 } 1790 1791 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1792 enum MetadataAbbrev : unsigned { 1793 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1794 #include "llvm/IR/Metadata.def" 1795 LastPlusOne 1796 }; 1797 1798 void ModuleBitcodeWriter::writeMetadataRecords( 1799 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1800 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1801 if (MDs.empty()) 1802 return; 1803 1804 // Initialize MDNode abbreviations. 1805 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1806 #include "llvm/IR/Metadata.def" 1807 1808 for (const Metadata *MD : MDs) { 1809 if (IndexPos) 1810 IndexPos->push_back(Stream.GetCurrentBitNo()); 1811 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1812 assert(N->isResolved() && "Expected forward references to be resolved"); 1813 1814 switch (N->getMetadataID()) { 1815 default: 1816 llvm_unreachable("Invalid MDNode subclass"); 1817 #define HANDLE_MDNODE_LEAF(CLASS) \ 1818 case Metadata::CLASS##Kind: \ 1819 if (MDAbbrevs) \ 1820 write##CLASS(cast<CLASS>(N), Record, \ 1821 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1822 else \ 1823 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1824 continue; 1825 #include "llvm/IR/Metadata.def" 1826 } 1827 } 1828 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1829 } 1830 } 1831 1832 void ModuleBitcodeWriter::writeModuleMetadata() { 1833 if (!VE.hasMDs() && M.named_metadata_empty()) 1834 return; 1835 1836 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1837 SmallVector<uint64_t, 64> Record; 1838 1839 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1840 // block and load any metadata. 1841 std::vector<unsigned> MDAbbrevs; 1842 1843 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1844 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1845 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1846 createGenericDINodeAbbrev(); 1847 1848 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1849 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1852 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1853 1854 Abbv = std::make_shared<BitCodeAbbrev>(); 1855 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1858 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1859 1860 // Emit MDStrings together upfront. 1861 writeMetadataStrings(VE.getMDStrings(), Record); 1862 1863 // We only emit an index for the metadata record if we have more than a given 1864 // (naive) threshold of metadatas, otherwise it is not worth it. 1865 if (VE.getNonMDStrings().size() > IndexThreshold) { 1866 // Write a placeholder value in for the offset of the metadata index, 1867 // which is written after the records, so that it can include 1868 // the offset of each entry. The placeholder offset will be 1869 // updated after all records are emitted. 1870 uint64_t Vals[] = {0, 0}; 1871 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1872 } 1873 1874 // Compute and save the bit offset to the current position, which will be 1875 // patched when we emit the index later. We can simply subtract the 64-bit 1876 // fixed size from the current bit number to get the location to backpatch. 1877 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1878 1879 // This index will contain the bitpos for each individual record. 1880 std::vector<uint64_t> IndexPos; 1881 IndexPos.reserve(VE.getNonMDStrings().size()); 1882 1883 // Write all the records 1884 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1885 1886 if (VE.getNonMDStrings().size() > IndexThreshold) { 1887 // Now that we have emitted all the records we will emit the index. But 1888 // first 1889 // backpatch the forward reference so that the reader can skip the records 1890 // efficiently. 1891 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1892 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1893 1894 // Delta encode the index. 1895 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1896 for (auto &Elt : IndexPos) { 1897 auto EltDelta = Elt - PreviousValue; 1898 PreviousValue = Elt; 1899 Elt = EltDelta; 1900 } 1901 // Emit the index record. 1902 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1903 IndexPos.clear(); 1904 } 1905 1906 // Write the named metadata now. 1907 writeNamedMetadata(Record); 1908 1909 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1910 SmallVector<uint64_t, 4> Record; 1911 Record.push_back(VE.getValueID(&GO)); 1912 pushGlobalMetadataAttachment(Record, GO); 1913 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1914 }; 1915 for (const Function &F : M) 1916 if (F.isDeclaration() && F.hasMetadata()) 1917 AddDeclAttachedMetadata(F); 1918 // FIXME: Only store metadata for declarations here, and move data for global 1919 // variable definitions to a separate block (PR28134). 1920 for (const GlobalVariable &GV : M.globals()) 1921 if (GV.hasMetadata()) 1922 AddDeclAttachedMetadata(GV); 1923 1924 Stream.ExitBlock(); 1925 } 1926 1927 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1928 if (!VE.hasMDs()) 1929 return; 1930 1931 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1932 SmallVector<uint64_t, 64> Record; 1933 writeMetadataStrings(VE.getMDStrings(), Record); 1934 writeMetadataRecords(VE.getNonMDStrings(), Record); 1935 Stream.ExitBlock(); 1936 } 1937 1938 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1939 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1940 // [n x [id, mdnode]] 1941 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1942 GO.getAllMetadata(MDs); 1943 for (const auto &I : MDs) { 1944 Record.push_back(I.first); 1945 Record.push_back(VE.getMetadataID(I.second)); 1946 } 1947 } 1948 1949 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1950 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1951 1952 SmallVector<uint64_t, 64> Record; 1953 1954 if (F.hasMetadata()) { 1955 pushGlobalMetadataAttachment(Record, F); 1956 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1957 Record.clear(); 1958 } 1959 1960 // Write metadata attachments 1961 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1962 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1963 for (const BasicBlock &BB : F) 1964 for (const Instruction &I : BB) { 1965 MDs.clear(); 1966 I.getAllMetadataOtherThanDebugLoc(MDs); 1967 1968 // If no metadata, ignore instruction. 1969 if (MDs.empty()) continue; 1970 1971 Record.push_back(VE.getInstructionID(&I)); 1972 1973 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1974 Record.push_back(MDs[i].first); 1975 Record.push_back(VE.getMetadataID(MDs[i].second)); 1976 } 1977 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1978 Record.clear(); 1979 } 1980 1981 Stream.ExitBlock(); 1982 } 1983 1984 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 1985 SmallVector<uint64_t, 64> Record; 1986 1987 // Write metadata kinds 1988 // METADATA_KIND - [n x [id, name]] 1989 SmallVector<StringRef, 8> Names; 1990 M.getMDKindNames(Names); 1991 1992 if (Names.empty()) return; 1993 1994 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1995 1996 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1997 Record.push_back(MDKindID); 1998 StringRef KName = Names[MDKindID]; 1999 Record.append(KName.begin(), KName.end()); 2000 2001 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2002 Record.clear(); 2003 } 2004 2005 Stream.ExitBlock(); 2006 } 2007 2008 void ModuleBitcodeWriter::writeOperandBundleTags() { 2009 // Write metadata kinds 2010 // 2011 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2012 // 2013 // OPERAND_BUNDLE_TAG - [strchr x N] 2014 2015 SmallVector<StringRef, 8> Tags; 2016 M.getOperandBundleTags(Tags); 2017 2018 if (Tags.empty()) 2019 return; 2020 2021 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2022 2023 SmallVector<uint64_t, 64> Record; 2024 2025 for (auto Tag : Tags) { 2026 Record.append(Tag.begin(), Tag.end()); 2027 2028 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2029 Record.clear(); 2030 } 2031 2032 Stream.ExitBlock(); 2033 } 2034 2035 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2036 if ((int64_t)V >= 0) 2037 Vals.push_back(V << 1); 2038 else 2039 Vals.push_back((-V << 1) | 1); 2040 } 2041 2042 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2043 bool isGlobal) { 2044 if (FirstVal == LastVal) return; 2045 2046 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2047 2048 unsigned AggregateAbbrev = 0; 2049 unsigned String8Abbrev = 0; 2050 unsigned CString7Abbrev = 0; 2051 unsigned CString6Abbrev = 0; 2052 // If this is a constant pool for the module, emit module-specific abbrevs. 2053 if (isGlobal) { 2054 // Abbrev for CST_CODE_AGGREGATE. 2055 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2056 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2059 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2060 2061 // Abbrev for CST_CODE_STRING. 2062 Abbv = std::make_shared<BitCodeAbbrev>(); 2063 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2066 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2067 // Abbrev for CST_CODE_CSTRING. 2068 Abbv = std::make_shared<BitCodeAbbrev>(); 2069 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2072 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2073 // Abbrev for CST_CODE_CSTRING. 2074 Abbv = std::make_shared<BitCodeAbbrev>(); 2075 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2078 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2079 } 2080 2081 SmallVector<uint64_t, 64> Record; 2082 2083 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2084 Type *LastTy = nullptr; 2085 for (unsigned i = FirstVal; i != LastVal; ++i) { 2086 const Value *V = Vals[i].first; 2087 // If we need to switch types, do so now. 2088 if (V->getType() != LastTy) { 2089 LastTy = V->getType(); 2090 Record.push_back(VE.getTypeID(LastTy)); 2091 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2092 CONSTANTS_SETTYPE_ABBREV); 2093 Record.clear(); 2094 } 2095 2096 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2097 Record.push_back(unsigned(IA->hasSideEffects()) | 2098 unsigned(IA->isAlignStack()) << 1 | 2099 unsigned(IA->getDialect()&1) << 2); 2100 2101 // Add the asm string. 2102 const std::string &AsmStr = IA->getAsmString(); 2103 Record.push_back(AsmStr.size()); 2104 Record.append(AsmStr.begin(), AsmStr.end()); 2105 2106 // Add the constraint string. 2107 const std::string &ConstraintStr = IA->getConstraintString(); 2108 Record.push_back(ConstraintStr.size()); 2109 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2110 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2111 Record.clear(); 2112 continue; 2113 } 2114 const Constant *C = cast<Constant>(V); 2115 unsigned Code = -1U; 2116 unsigned AbbrevToUse = 0; 2117 if (C->isNullValue()) { 2118 Code = bitc::CST_CODE_NULL; 2119 } else if (isa<UndefValue>(C)) { 2120 Code = bitc::CST_CODE_UNDEF; 2121 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2122 if (IV->getBitWidth() <= 64) { 2123 uint64_t V = IV->getSExtValue(); 2124 emitSignedInt64(Record, V); 2125 Code = bitc::CST_CODE_INTEGER; 2126 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2127 } else { // Wide integers, > 64 bits in size. 2128 // We have an arbitrary precision integer value to write whose 2129 // bit width is > 64. However, in canonical unsigned integer 2130 // format it is likely that the high bits are going to be zero. 2131 // So, we only write the number of active words. 2132 unsigned NWords = IV->getValue().getActiveWords(); 2133 const uint64_t *RawWords = IV->getValue().getRawData(); 2134 for (unsigned i = 0; i != NWords; ++i) { 2135 emitSignedInt64(Record, RawWords[i]); 2136 } 2137 Code = bitc::CST_CODE_WIDE_INTEGER; 2138 } 2139 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2140 Code = bitc::CST_CODE_FLOAT; 2141 Type *Ty = CFP->getType(); 2142 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2143 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2144 } else if (Ty->isX86_FP80Ty()) { 2145 // api needed to prevent premature destruction 2146 // bits are not in the same order as a normal i80 APInt, compensate. 2147 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2148 const uint64_t *p = api.getRawData(); 2149 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2150 Record.push_back(p[0] & 0xffffLL); 2151 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2152 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2153 const uint64_t *p = api.getRawData(); 2154 Record.push_back(p[0]); 2155 Record.push_back(p[1]); 2156 } else { 2157 assert (0 && "Unknown FP type!"); 2158 } 2159 } else if (isa<ConstantDataSequential>(C) && 2160 cast<ConstantDataSequential>(C)->isString()) { 2161 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2162 // Emit constant strings specially. 2163 unsigned NumElts = Str->getNumElements(); 2164 // If this is a null-terminated string, use the denser CSTRING encoding. 2165 if (Str->isCString()) { 2166 Code = bitc::CST_CODE_CSTRING; 2167 --NumElts; // Don't encode the null, which isn't allowed by char6. 2168 } else { 2169 Code = bitc::CST_CODE_STRING; 2170 AbbrevToUse = String8Abbrev; 2171 } 2172 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2173 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2174 for (unsigned i = 0; i != NumElts; ++i) { 2175 unsigned char V = Str->getElementAsInteger(i); 2176 Record.push_back(V); 2177 isCStr7 &= (V & 128) == 0; 2178 if (isCStrChar6) 2179 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2180 } 2181 2182 if (isCStrChar6) 2183 AbbrevToUse = CString6Abbrev; 2184 else if (isCStr7) 2185 AbbrevToUse = CString7Abbrev; 2186 } else if (const ConstantDataSequential *CDS = 2187 dyn_cast<ConstantDataSequential>(C)) { 2188 Code = bitc::CST_CODE_DATA; 2189 Type *EltTy = CDS->getType()->getElementType(); 2190 if (isa<IntegerType>(EltTy)) { 2191 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2192 Record.push_back(CDS->getElementAsInteger(i)); 2193 } else { 2194 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2195 Record.push_back( 2196 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2197 } 2198 } else if (isa<ConstantAggregate>(C)) { 2199 Code = bitc::CST_CODE_AGGREGATE; 2200 for (const Value *Op : C->operands()) 2201 Record.push_back(VE.getValueID(Op)); 2202 AbbrevToUse = AggregateAbbrev; 2203 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2204 switch (CE->getOpcode()) { 2205 default: 2206 if (Instruction::isCast(CE->getOpcode())) { 2207 Code = bitc::CST_CODE_CE_CAST; 2208 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2209 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2210 Record.push_back(VE.getValueID(C->getOperand(0))); 2211 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2212 } else { 2213 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2214 Code = bitc::CST_CODE_CE_BINOP; 2215 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2216 Record.push_back(VE.getValueID(C->getOperand(0))); 2217 Record.push_back(VE.getValueID(C->getOperand(1))); 2218 uint64_t Flags = getOptimizationFlags(CE); 2219 if (Flags != 0) 2220 Record.push_back(Flags); 2221 } 2222 break; 2223 case Instruction::GetElementPtr: { 2224 Code = bitc::CST_CODE_CE_GEP; 2225 const auto *GO = cast<GEPOperator>(C); 2226 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2227 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2228 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2229 Record.push_back((*Idx << 1) | GO->isInBounds()); 2230 } else if (GO->isInBounds()) 2231 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2232 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2233 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2234 Record.push_back(VE.getValueID(C->getOperand(i))); 2235 } 2236 break; 2237 } 2238 case Instruction::Select: 2239 Code = bitc::CST_CODE_CE_SELECT; 2240 Record.push_back(VE.getValueID(C->getOperand(0))); 2241 Record.push_back(VE.getValueID(C->getOperand(1))); 2242 Record.push_back(VE.getValueID(C->getOperand(2))); 2243 break; 2244 case Instruction::ExtractElement: 2245 Code = bitc::CST_CODE_CE_EXTRACTELT; 2246 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2247 Record.push_back(VE.getValueID(C->getOperand(0))); 2248 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2249 Record.push_back(VE.getValueID(C->getOperand(1))); 2250 break; 2251 case Instruction::InsertElement: 2252 Code = bitc::CST_CODE_CE_INSERTELT; 2253 Record.push_back(VE.getValueID(C->getOperand(0))); 2254 Record.push_back(VE.getValueID(C->getOperand(1))); 2255 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2256 Record.push_back(VE.getValueID(C->getOperand(2))); 2257 break; 2258 case Instruction::ShuffleVector: 2259 // If the return type and argument types are the same, this is a 2260 // standard shufflevector instruction. If the types are different, 2261 // then the shuffle is widening or truncating the input vectors, and 2262 // the argument type must also be encoded. 2263 if (C->getType() == C->getOperand(0)->getType()) { 2264 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2265 } else { 2266 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2267 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2268 } 2269 Record.push_back(VE.getValueID(C->getOperand(0))); 2270 Record.push_back(VE.getValueID(C->getOperand(1))); 2271 Record.push_back(VE.getValueID(C->getOperand(2))); 2272 break; 2273 case Instruction::ICmp: 2274 case Instruction::FCmp: 2275 Code = bitc::CST_CODE_CE_CMP; 2276 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2277 Record.push_back(VE.getValueID(C->getOperand(0))); 2278 Record.push_back(VE.getValueID(C->getOperand(1))); 2279 Record.push_back(CE->getPredicate()); 2280 break; 2281 } 2282 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2283 Code = bitc::CST_CODE_BLOCKADDRESS; 2284 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2285 Record.push_back(VE.getValueID(BA->getFunction())); 2286 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2287 } else { 2288 #ifndef NDEBUG 2289 C->dump(); 2290 #endif 2291 llvm_unreachable("Unknown constant!"); 2292 } 2293 Stream.EmitRecord(Code, Record, AbbrevToUse); 2294 Record.clear(); 2295 } 2296 2297 Stream.ExitBlock(); 2298 } 2299 2300 void ModuleBitcodeWriter::writeModuleConstants() { 2301 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2302 2303 // Find the first constant to emit, which is the first non-globalvalue value. 2304 // We know globalvalues have been emitted by WriteModuleInfo. 2305 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2306 if (!isa<GlobalValue>(Vals[i].first)) { 2307 writeConstants(i, Vals.size(), true); 2308 return; 2309 } 2310 } 2311 } 2312 2313 /// pushValueAndType - The file has to encode both the value and type id for 2314 /// many values, because we need to know what type to create for forward 2315 /// references. However, most operands are not forward references, so this type 2316 /// field is not needed. 2317 /// 2318 /// This function adds V's value ID to Vals. If the value ID is higher than the 2319 /// instruction ID, then it is a forward reference, and it also includes the 2320 /// type ID. The value ID that is written is encoded relative to the InstID. 2321 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2322 SmallVectorImpl<unsigned> &Vals) { 2323 unsigned ValID = VE.getValueID(V); 2324 // Make encoding relative to the InstID. 2325 Vals.push_back(InstID - ValID); 2326 if (ValID >= InstID) { 2327 Vals.push_back(VE.getTypeID(V->getType())); 2328 return true; 2329 } 2330 return false; 2331 } 2332 2333 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2334 unsigned InstID) { 2335 SmallVector<unsigned, 64> Record; 2336 LLVMContext &C = CS.getInstruction()->getContext(); 2337 2338 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2339 const auto &Bundle = CS.getOperandBundleAt(i); 2340 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2341 2342 for (auto &Input : Bundle.Inputs) 2343 pushValueAndType(Input, InstID, Record); 2344 2345 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2346 Record.clear(); 2347 } 2348 } 2349 2350 /// pushValue - Like pushValueAndType, but where the type of the value is 2351 /// omitted (perhaps it was already encoded in an earlier operand). 2352 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2353 SmallVectorImpl<unsigned> &Vals) { 2354 unsigned ValID = VE.getValueID(V); 2355 Vals.push_back(InstID - ValID); 2356 } 2357 2358 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2359 SmallVectorImpl<uint64_t> &Vals) { 2360 unsigned ValID = VE.getValueID(V); 2361 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2362 emitSignedInt64(Vals, diff); 2363 } 2364 2365 /// WriteInstruction - Emit an instruction to the specified stream. 2366 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2367 unsigned InstID, 2368 SmallVectorImpl<unsigned> &Vals) { 2369 unsigned Code = 0; 2370 unsigned AbbrevToUse = 0; 2371 VE.setInstructionID(&I); 2372 switch (I.getOpcode()) { 2373 default: 2374 if (Instruction::isCast(I.getOpcode())) { 2375 Code = bitc::FUNC_CODE_INST_CAST; 2376 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2377 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2378 Vals.push_back(VE.getTypeID(I.getType())); 2379 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2380 } else { 2381 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2382 Code = bitc::FUNC_CODE_INST_BINOP; 2383 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2384 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2385 pushValue(I.getOperand(1), InstID, Vals); 2386 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2387 uint64_t Flags = getOptimizationFlags(&I); 2388 if (Flags != 0) { 2389 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2390 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2391 Vals.push_back(Flags); 2392 } 2393 } 2394 break; 2395 2396 case Instruction::GetElementPtr: { 2397 Code = bitc::FUNC_CODE_INST_GEP; 2398 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2399 auto &GEPInst = cast<GetElementPtrInst>(I); 2400 Vals.push_back(GEPInst.isInBounds()); 2401 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2402 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2403 pushValueAndType(I.getOperand(i), InstID, Vals); 2404 break; 2405 } 2406 case Instruction::ExtractValue: { 2407 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2408 pushValueAndType(I.getOperand(0), InstID, Vals); 2409 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2410 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2411 break; 2412 } 2413 case Instruction::InsertValue: { 2414 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2415 pushValueAndType(I.getOperand(0), InstID, Vals); 2416 pushValueAndType(I.getOperand(1), InstID, Vals); 2417 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2418 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2419 break; 2420 } 2421 case Instruction::Select: 2422 Code = bitc::FUNC_CODE_INST_VSELECT; 2423 pushValueAndType(I.getOperand(1), InstID, Vals); 2424 pushValue(I.getOperand(2), InstID, Vals); 2425 pushValueAndType(I.getOperand(0), InstID, Vals); 2426 break; 2427 case Instruction::ExtractElement: 2428 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2429 pushValueAndType(I.getOperand(0), InstID, Vals); 2430 pushValueAndType(I.getOperand(1), InstID, Vals); 2431 break; 2432 case Instruction::InsertElement: 2433 Code = bitc::FUNC_CODE_INST_INSERTELT; 2434 pushValueAndType(I.getOperand(0), InstID, Vals); 2435 pushValue(I.getOperand(1), InstID, Vals); 2436 pushValueAndType(I.getOperand(2), InstID, Vals); 2437 break; 2438 case Instruction::ShuffleVector: 2439 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2440 pushValueAndType(I.getOperand(0), InstID, Vals); 2441 pushValue(I.getOperand(1), InstID, Vals); 2442 pushValue(I.getOperand(2), InstID, Vals); 2443 break; 2444 case Instruction::ICmp: 2445 case Instruction::FCmp: { 2446 // compare returning Int1Ty or vector of Int1Ty 2447 Code = bitc::FUNC_CODE_INST_CMP2; 2448 pushValueAndType(I.getOperand(0), InstID, Vals); 2449 pushValue(I.getOperand(1), InstID, Vals); 2450 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2451 uint64_t Flags = getOptimizationFlags(&I); 2452 if (Flags != 0) 2453 Vals.push_back(Flags); 2454 break; 2455 } 2456 2457 case Instruction::Ret: 2458 { 2459 Code = bitc::FUNC_CODE_INST_RET; 2460 unsigned NumOperands = I.getNumOperands(); 2461 if (NumOperands == 0) 2462 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2463 else if (NumOperands == 1) { 2464 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2465 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2466 } else { 2467 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2468 pushValueAndType(I.getOperand(i), InstID, Vals); 2469 } 2470 } 2471 break; 2472 case Instruction::Br: 2473 { 2474 Code = bitc::FUNC_CODE_INST_BR; 2475 const BranchInst &II = cast<BranchInst>(I); 2476 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2477 if (II.isConditional()) { 2478 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2479 pushValue(II.getCondition(), InstID, Vals); 2480 } 2481 } 2482 break; 2483 case Instruction::Switch: 2484 { 2485 Code = bitc::FUNC_CODE_INST_SWITCH; 2486 const SwitchInst &SI = cast<SwitchInst>(I); 2487 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2488 pushValue(SI.getCondition(), InstID, Vals); 2489 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2490 for (auto Case : SI.cases()) { 2491 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2492 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2493 } 2494 } 2495 break; 2496 case Instruction::IndirectBr: 2497 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2498 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2499 // Encode the address operand as relative, but not the basic blocks. 2500 pushValue(I.getOperand(0), InstID, Vals); 2501 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2502 Vals.push_back(VE.getValueID(I.getOperand(i))); 2503 break; 2504 2505 case Instruction::Invoke: { 2506 const InvokeInst *II = cast<InvokeInst>(&I); 2507 const Value *Callee = II->getCalledValue(); 2508 FunctionType *FTy = II->getFunctionType(); 2509 2510 if (II->hasOperandBundles()) 2511 writeOperandBundles(II, InstID); 2512 2513 Code = bitc::FUNC_CODE_INST_INVOKE; 2514 2515 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2516 Vals.push_back(II->getCallingConv() | 1 << 13); 2517 Vals.push_back(VE.getValueID(II->getNormalDest())); 2518 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2519 Vals.push_back(VE.getTypeID(FTy)); 2520 pushValueAndType(Callee, InstID, Vals); 2521 2522 // Emit value #'s for the fixed parameters. 2523 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2524 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2525 2526 // Emit type/value pairs for varargs params. 2527 if (FTy->isVarArg()) { 2528 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2529 i != e; ++i) 2530 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2531 } 2532 break; 2533 } 2534 case Instruction::Resume: 2535 Code = bitc::FUNC_CODE_INST_RESUME; 2536 pushValueAndType(I.getOperand(0), InstID, Vals); 2537 break; 2538 case Instruction::CleanupRet: { 2539 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2540 const auto &CRI = cast<CleanupReturnInst>(I); 2541 pushValue(CRI.getCleanupPad(), InstID, Vals); 2542 if (CRI.hasUnwindDest()) 2543 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2544 break; 2545 } 2546 case Instruction::CatchRet: { 2547 Code = bitc::FUNC_CODE_INST_CATCHRET; 2548 const auto &CRI = cast<CatchReturnInst>(I); 2549 pushValue(CRI.getCatchPad(), InstID, Vals); 2550 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2551 break; 2552 } 2553 case Instruction::CleanupPad: 2554 case Instruction::CatchPad: { 2555 const auto &FuncletPad = cast<FuncletPadInst>(I); 2556 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2557 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2558 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2559 2560 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2561 Vals.push_back(NumArgOperands); 2562 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2563 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2564 break; 2565 } 2566 case Instruction::CatchSwitch: { 2567 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2568 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2569 2570 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2571 2572 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2573 Vals.push_back(NumHandlers); 2574 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2575 Vals.push_back(VE.getValueID(CatchPadBB)); 2576 2577 if (CatchSwitch.hasUnwindDest()) 2578 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2579 break; 2580 } 2581 case Instruction::Unreachable: 2582 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2583 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2584 break; 2585 2586 case Instruction::PHI: { 2587 const PHINode &PN = cast<PHINode>(I); 2588 Code = bitc::FUNC_CODE_INST_PHI; 2589 // With the newer instruction encoding, forward references could give 2590 // negative valued IDs. This is most common for PHIs, so we use 2591 // signed VBRs. 2592 SmallVector<uint64_t, 128> Vals64; 2593 Vals64.push_back(VE.getTypeID(PN.getType())); 2594 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2595 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2596 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2597 } 2598 // Emit a Vals64 vector and exit. 2599 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2600 Vals64.clear(); 2601 return; 2602 } 2603 2604 case Instruction::LandingPad: { 2605 const LandingPadInst &LP = cast<LandingPadInst>(I); 2606 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2607 Vals.push_back(VE.getTypeID(LP.getType())); 2608 Vals.push_back(LP.isCleanup()); 2609 Vals.push_back(LP.getNumClauses()); 2610 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2611 if (LP.isCatch(I)) 2612 Vals.push_back(LandingPadInst::Catch); 2613 else 2614 Vals.push_back(LandingPadInst::Filter); 2615 pushValueAndType(LP.getClause(I), InstID, Vals); 2616 } 2617 break; 2618 } 2619 2620 case Instruction::Alloca: { 2621 Code = bitc::FUNC_CODE_INST_ALLOCA; 2622 const AllocaInst &AI = cast<AllocaInst>(I); 2623 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2624 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2625 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2626 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2627 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2628 "not enough bits for maximum alignment"); 2629 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2630 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2631 AlignRecord |= 1 << 6; 2632 AlignRecord |= AI.isSwiftError() << 7; 2633 Vals.push_back(AlignRecord); 2634 break; 2635 } 2636 2637 case Instruction::Load: 2638 if (cast<LoadInst>(I).isAtomic()) { 2639 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2640 pushValueAndType(I.getOperand(0), InstID, Vals); 2641 } else { 2642 Code = bitc::FUNC_CODE_INST_LOAD; 2643 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2644 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2645 } 2646 Vals.push_back(VE.getTypeID(I.getType())); 2647 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2648 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2649 if (cast<LoadInst>(I).isAtomic()) { 2650 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2651 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2652 } 2653 break; 2654 case Instruction::Store: 2655 if (cast<StoreInst>(I).isAtomic()) 2656 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2657 else 2658 Code = bitc::FUNC_CODE_INST_STORE; 2659 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2660 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2661 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2662 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2663 if (cast<StoreInst>(I).isAtomic()) { 2664 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2665 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2666 } 2667 break; 2668 case Instruction::AtomicCmpXchg: 2669 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2670 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2671 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2672 pushValue(I.getOperand(2), InstID, Vals); // newval. 2673 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2674 Vals.push_back( 2675 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2676 Vals.push_back( 2677 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2678 Vals.push_back( 2679 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2680 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2681 break; 2682 case Instruction::AtomicRMW: 2683 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2684 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2685 pushValue(I.getOperand(1), InstID, Vals); // val. 2686 Vals.push_back( 2687 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2688 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2689 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2690 Vals.push_back( 2691 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2692 break; 2693 case Instruction::Fence: 2694 Code = bitc::FUNC_CODE_INST_FENCE; 2695 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2696 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2697 break; 2698 case Instruction::Call: { 2699 const CallInst &CI = cast<CallInst>(I); 2700 FunctionType *FTy = CI.getFunctionType(); 2701 2702 if (CI.hasOperandBundles()) 2703 writeOperandBundles(&CI, InstID); 2704 2705 Code = bitc::FUNC_CODE_INST_CALL; 2706 2707 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2708 2709 unsigned Flags = getOptimizationFlags(&I); 2710 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2711 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2712 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2713 1 << bitc::CALL_EXPLICIT_TYPE | 2714 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2715 unsigned(Flags != 0) << bitc::CALL_FMF); 2716 if (Flags != 0) 2717 Vals.push_back(Flags); 2718 2719 Vals.push_back(VE.getTypeID(FTy)); 2720 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2721 2722 // Emit value #'s for the fixed parameters. 2723 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2724 // Check for labels (can happen with asm labels). 2725 if (FTy->getParamType(i)->isLabelTy()) 2726 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2727 else 2728 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2729 } 2730 2731 // Emit type/value pairs for varargs params. 2732 if (FTy->isVarArg()) { 2733 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2734 i != e; ++i) 2735 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2736 } 2737 break; 2738 } 2739 case Instruction::VAArg: 2740 Code = bitc::FUNC_CODE_INST_VAARG; 2741 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2742 pushValue(I.getOperand(0), InstID, Vals); // valist. 2743 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2744 break; 2745 } 2746 2747 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2748 Vals.clear(); 2749 } 2750 2751 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2752 /// to allow clients to efficiently find the function body. 2753 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2754 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2755 // Get the offset of the VST we are writing, and backpatch it into 2756 // the VST forward declaration record. 2757 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2758 // The BitcodeStartBit was the stream offset of the identification block. 2759 VSTOffset -= bitcodeStartBit(); 2760 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2761 // Note that we add 1 here because the offset is relative to one word 2762 // before the start of the identification block, which was historically 2763 // always the start of the regular bitcode header. 2764 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2765 2766 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2767 2768 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2769 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2772 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2773 2774 for (const Function &F : M) { 2775 uint64_t Record[2]; 2776 2777 if (F.isDeclaration()) 2778 continue; 2779 2780 Record[0] = VE.getValueID(&F); 2781 2782 // Save the word offset of the function (from the start of the 2783 // actual bitcode written to the stream). 2784 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2785 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2786 // Note that we add 1 here because the offset is relative to one word 2787 // before the start of the identification block, which was historically 2788 // always the start of the regular bitcode header. 2789 Record[1] = BitcodeIndex / 32 + 1; 2790 2791 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2792 } 2793 2794 Stream.ExitBlock(); 2795 } 2796 2797 /// Emit names for arguments, instructions and basic blocks in a function. 2798 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2799 const ValueSymbolTable &VST) { 2800 if (VST.empty()) 2801 return; 2802 2803 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2804 2805 // FIXME: Set up the abbrev, we know how many values there are! 2806 // FIXME: We know if the type names can use 7-bit ascii. 2807 SmallVector<uint64_t, 64> NameVals; 2808 2809 for (const ValueName &Name : VST) { 2810 // Figure out the encoding to use for the name. 2811 StringEncoding Bits = getStringEncoding(Name.getKey()); 2812 2813 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2814 NameVals.push_back(VE.getValueID(Name.getValue())); 2815 2816 // VST_CODE_ENTRY: [valueid, namechar x N] 2817 // VST_CODE_BBENTRY: [bbid, namechar x N] 2818 unsigned Code; 2819 if (isa<BasicBlock>(Name.getValue())) { 2820 Code = bitc::VST_CODE_BBENTRY; 2821 if (Bits == SE_Char6) 2822 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2823 } else { 2824 Code = bitc::VST_CODE_ENTRY; 2825 if (Bits == SE_Char6) 2826 AbbrevToUse = VST_ENTRY_6_ABBREV; 2827 else if (Bits == SE_Fixed7) 2828 AbbrevToUse = VST_ENTRY_7_ABBREV; 2829 } 2830 2831 for (const auto P : Name.getKey()) 2832 NameVals.push_back((unsigned char)P); 2833 2834 // Emit the finished record. 2835 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2836 NameVals.clear(); 2837 } 2838 2839 Stream.ExitBlock(); 2840 } 2841 2842 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2843 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2844 unsigned Code; 2845 if (isa<BasicBlock>(Order.V)) 2846 Code = bitc::USELIST_CODE_BB; 2847 else 2848 Code = bitc::USELIST_CODE_DEFAULT; 2849 2850 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2851 Record.push_back(VE.getValueID(Order.V)); 2852 Stream.EmitRecord(Code, Record); 2853 } 2854 2855 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2856 assert(VE.shouldPreserveUseListOrder() && 2857 "Expected to be preserving use-list order"); 2858 2859 auto hasMore = [&]() { 2860 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2861 }; 2862 if (!hasMore()) 2863 // Nothing to do. 2864 return; 2865 2866 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2867 while (hasMore()) { 2868 writeUseList(std::move(VE.UseListOrders.back())); 2869 VE.UseListOrders.pop_back(); 2870 } 2871 Stream.ExitBlock(); 2872 } 2873 2874 /// Emit a function body to the module stream. 2875 void ModuleBitcodeWriter::writeFunction( 2876 const Function &F, 2877 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2878 // Save the bitcode index of the start of this function block for recording 2879 // in the VST. 2880 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2881 2882 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2883 VE.incorporateFunction(F); 2884 2885 SmallVector<unsigned, 64> Vals; 2886 2887 // Emit the number of basic blocks, so the reader can create them ahead of 2888 // time. 2889 Vals.push_back(VE.getBasicBlocks().size()); 2890 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2891 Vals.clear(); 2892 2893 // If there are function-local constants, emit them now. 2894 unsigned CstStart, CstEnd; 2895 VE.getFunctionConstantRange(CstStart, CstEnd); 2896 writeConstants(CstStart, CstEnd, false); 2897 2898 // If there is function-local metadata, emit it now. 2899 writeFunctionMetadata(F); 2900 2901 // Keep a running idea of what the instruction ID is. 2902 unsigned InstID = CstEnd; 2903 2904 bool NeedsMetadataAttachment = F.hasMetadata(); 2905 2906 DILocation *LastDL = nullptr; 2907 // Finally, emit all the instructions, in order. 2908 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2909 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2910 I != E; ++I) { 2911 writeInstruction(*I, InstID, Vals); 2912 2913 if (!I->getType()->isVoidTy()) 2914 ++InstID; 2915 2916 // If the instruction has metadata, write a metadata attachment later. 2917 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2918 2919 // If the instruction has a debug location, emit it. 2920 DILocation *DL = I->getDebugLoc(); 2921 if (!DL) 2922 continue; 2923 2924 if (DL == LastDL) { 2925 // Just repeat the same debug loc as last time. 2926 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2927 continue; 2928 } 2929 2930 Vals.push_back(DL->getLine()); 2931 Vals.push_back(DL->getColumn()); 2932 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2933 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2934 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2935 Vals.clear(); 2936 2937 LastDL = DL; 2938 } 2939 2940 // Emit names for all the instructions etc. 2941 if (auto *Symtab = F.getValueSymbolTable()) 2942 writeFunctionLevelValueSymbolTable(*Symtab); 2943 2944 if (NeedsMetadataAttachment) 2945 writeFunctionMetadataAttachment(F); 2946 if (VE.shouldPreserveUseListOrder()) 2947 writeUseListBlock(&F); 2948 VE.purgeFunction(); 2949 Stream.ExitBlock(); 2950 } 2951 2952 // Emit blockinfo, which defines the standard abbreviations etc. 2953 void ModuleBitcodeWriter::writeBlockInfo() { 2954 // We only want to emit block info records for blocks that have multiple 2955 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2956 // Other blocks can define their abbrevs inline. 2957 Stream.EnterBlockInfoBlock(); 2958 2959 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2960 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2965 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2966 VST_ENTRY_8_ABBREV) 2967 llvm_unreachable("Unexpected abbrev ordering!"); 2968 } 2969 2970 { // 7-bit fixed width VST_CODE_ENTRY strings. 2971 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2972 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2976 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2977 VST_ENTRY_7_ABBREV) 2978 llvm_unreachable("Unexpected abbrev ordering!"); 2979 } 2980 { // 6-bit char6 VST_CODE_ENTRY strings. 2981 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2982 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2986 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2987 VST_ENTRY_6_ABBREV) 2988 llvm_unreachable("Unexpected abbrev ordering!"); 2989 } 2990 { // 6-bit char6 VST_CODE_BBENTRY strings. 2991 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2992 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2996 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2997 VST_BBENTRY_6_ABBREV) 2998 llvm_unreachable("Unexpected abbrev ordering!"); 2999 } 3000 3001 3002 3003 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3004 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3005 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3007 VE.computeBitsRequiredForTypeIndicies())); 3008 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3009 CONSTANTS_SETTYPE_ABBREV) 3010 llvm_unreachable("Unexpected abbrev ordering!"); 3011 } 3012 3013 { // INTEGER abbrev for CONSTANTS_BLOCK. 3014 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3015 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3017 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3018 CONSTANTS_INTEGER_ABBREV) 3019 llvm_unreachable("Unexpected abbrev ordering!"); 3020 } 3021 3022 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3023 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3024 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3027 VE.computeBitsRequiredForTypeIndicies())); 3028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3029 3030 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3031 CONSTANTS_CE_CAST_Abbrev) 3032 llvm_unreachable("Unexpected abbrev ordering!"); 3033 } 3034 { // NULL abbrev for CONSTANTS_BLOCK. 3035 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3036 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3037 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3038 CONSTANTS_NULL_Abbrev) 3039 llvm_unreachable("Unexpected abbrev ordering!"); 3040 } 3041 3042 // FIXME: This should only use space for first class types! 3043 3044 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3045 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3046 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3049 VE.computeBitsRequiredForTypeIndicies())); 3050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3052 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3053 FUNCTION_INST_LOAD_ABBREV) 3054 llvm_unreachable("Unexpected abbrev ordering!"); 3055 } 3056 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3057 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3058 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3062 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3063 FUNCTION_INST_BINOP_ABBREV) 3064 llvm_unreachable("Unexpected abbrev ordering!"); 3065 } 3066 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3067 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3068 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3073 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3074 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3075 llvm_unreachable("Unexpected abbrev ordering!"); 3076 } 3077 { // INST_CAST abbrev for FUNCTION_BLOCK. 3078 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3079 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3082 VE.computeBitsRequiredForTypeIndicies())); 3083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3084 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3085 FUNCTION_INST_CAST_ABBREV) 3086 llvm_unreachable("Unexpected abbrev ordering!"); 3087 } 3088 3089 { // INST_RET abbrev for FUNCTION_BLOCK. 3090 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3091 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3092 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3093 FUNCTION_INST_RET_VOID_ABBREV) 3094 llvm_unreachable("Unexpected abbrev ordering!"); 3095 } 3096 { // INST_RET abbrev for FUNCTION_BLOCK. 3097 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3098 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3100 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3101 FUNCTION_INST_RET_VAL_ABBREV) 3102 llvm_unreachable("Unexpected abbrev ordering!"); 3103 } 3104 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3105 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3106 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3107 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3108 FUNCTION_INST_UNREACHABLE_ABBREV) 3109 llvm_unreachable("Unexpected abbrev ordering!"); 3110 } 3111 { 3112 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3113 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3116 Log2_32_Ceil(VE.getTypes().size() + 1))); 3117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3119 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3120 FUNCTION_INST_GEP_ABBREV) 3121 llvm_unreachable("Unexpected abbrev ordering!"); 3122 } 3123 3124 Stream.ExitBlock(); 3125 } 3126 3127 /// Write the module path strings, currently only used when generating 3128 /// a combined index file. 3129 void IndexBitcodeWriter::writeModStrings() { 3130 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3131 3132 // TODO: See which abbrev sizes we actually need to emit 3133 3134 // 8-bit fixed-width MST_ENTRY strings. 3135 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3136 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3140 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3141 3142 // 7-bit fixed width MST_ENTRY strings. 3143 Abbv = std::make_shared<BitCodeAbbrev>(); 3144 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3148 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3149 3150 // 6-bit char6 MST_ENTRY strings. 3151 Abbv = std::make_shared<BitCodeAbbrev>(); 3152 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3156 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3157 3158 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3159 Abbv = std::make_shared<BitCodeAbbrev>(); 3160 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3166 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3167 3168 SmallVector<unsigned, 64> Vals; 3169 forEachModule( 3170 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3171 StringRef Key = MPSE.getKey(); 3172 const auto &Value = MPSE.getValue(); 3173 StringEncoding Bits = getStringEncoding(Key); 3174 unsigned AbbrevToUse = Abbrev8Bit; 3175 if (Bits == SE_Char6) 3176 AbbrevToUse = Abbrev6Bit; 3177 else if (Bits == SE_Fixed7) 3178 AbbrevToUse = Abbrev7Bit; 3179 3180 Vals.push_back(Value.first); 3181 Vals.append(Key.begin(), Key.end()); 3182 3183 // Emit the finished record. 3184 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3185 3186 // Emit an optional hash for the module now 3187 const auto &Hash = Value.second; 3188 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3189 Vals.assign(Hash.begin(), Hash.end()); 3190 // Emit the hash record. 3191 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3192 } 3193 3194 Vals.clear(); 3195 }); 3196 Stream.ExitBlock(); 3197 } 3198 3199 /// Write the function type metadata related records that need to appear before 3200 /// a function summary entry (whether per-module or combined). 3201 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3202 FunctionSummary *FS) { 3203 if (!FS->type_tests().empty()) 3204 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3205 3206 SmallVector<uint64_t, 64> Record; 3207 3208 auto WriteVFuncIdVec = [&](uint64_t Ty, 3209 ArrayRef<FunctionSummary::VFuncId> VFs) { 3210 if (VFs.empty()) 3211 return; 3212 Record.clear(); 3213 for (auto &VF : VFs) { 3214 Record.push_back(VF.GUID); 3215 Record.push_back(VF.Offset); 3216 } 3217 Stream.EmitRecord(Ty, Record); 3218 }; 3219 3220 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3221 FS->type_test_assume_vcalls()); 3222 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3223 FS->type_checked_load_vcalls()); 3224 3225 auto WriteConstVCallVec = [&](uint64_t Ty, 3226 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3227 for (auto &VC : VCs) { 3228 Record.clear(); 3229 Record.push_back(VC.VFunc.GUID); 3230 Record.push_back(VC.VFunc.Offset); 3231 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3232 Stream.EmitRecord(Ty, Record); 3233 } 3234 }; 3235 3236 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3237 FS->type_test_assume_const_vcalls()); 3238 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3239 FS->type_checked_load_const_vcalls()); 3240 } 3241 3242 // Helper to emit a single function summary record. 3243 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3244 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3245 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3246 const Function &F) { 3247 NameVals.push_back(ValueID); 3248 3249 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3250 writeFunctionTypeMetadataRecords(Stream, FS); 3251 3252 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3253 NameVals.push_back(FS->instCount()); 3254 NameVals.push_back(FS->refs().size()); 3255 3256 for (auto &RI : FS->refs()) 3257 NameVals.push_back(VE.getValueID(RI.getValue())); 3258 3259 bool HasProfileData = F.getEntryCount().hasValue(); 3260 for (auto &ECI : FS->calls()) { 3261 NameVals.push_back(getValueId(ECI.first)); 3262 if (HasProfileData) 3263 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3264 } 3265 3266 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3267 unsigned Code = 3268 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3269 3270 // Emit the finished record. 3271 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3272 NameVals.clear(); 3273 } 3274 3275 // Collect the global value references in the given variable's initializer, 3276 // and emit them in a summary record. 3277 void ModuleBitcodeWriter::writeModuleLevelReferences( 3278 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3279 unsigned FSModRefsAbbrev) { 3280 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3281 if (!VI || VI.getSummaryList().empty()) { 3282 // Only declarations should not have a summary (a declaration might however 3283 // have a summary if the def was in module level asm). 3284 assert(V.isDeclaration()); 3285 return; 3286 } 3287 auto *Summary = VI.getSummaryList()[0].get(); 3288 NameVals.push_back(VE.getValueID(&V)); 3289 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3290 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3291 3292 unsigned SizeBeforeRefs = NameVals.size(); 3293 for (auto &RI : VS->refs()) 3294 NameVals.push_back(VE.getValueID(RI.getValue())); 3295 // Sort the refs for determinism output, the vector returned by FS->refs() has 3296 // been initialized from a DenseSet. 3297 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3298 3299 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3300 FSModRefsAbbrev); 3301 NameVals.clear(); 3302 } 3303 3304 // Current version for the summary. 3305 // This is bumped whenever we introduce changes in the way some record are 3306 // interpreted, like flags for instance. 3307 static const uint64_t INDEX_VERSION = 3; 3308 3309 /// Emit the per-module summary section alongside the rest of 3310 /// the module's bitcode. 3311 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3312 // By default we compile with ThinLTO if the module has a summary, but the 3313 // client can request full LTO with a module flag. 3314 bool IsThinLTO = true; 3315 if (auto *MD = 3316 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3317 IsThinLTO = MD->getZExtValue(); 3318 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3319 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3320 4); 3321 3322 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3323 3324 if (Index->begin() == Index->end()) { 3325 Stream.ExitBlock(); 3326 return; 3327 } 3328 3329 for (const auto &GVI : valueIds()) { 3330 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3331 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3332 } 3333 3334 // Abbrev for FS_PERMODULE. 3335 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3336 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3341 // numrefs x valueid, n x (valueid) 3342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3344 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3345 3346 // Abbrev for FS_PERMODULE_PROFILE. 3347 Abbv = std::make_shared<BitCodeAbbrev>(); 3348 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3353 // numrefs x valueid, n x (valueid, hotness) 3354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3356 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3357 3358 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3359 Abbv = std::make_shared<BitCodeAbbrev>(); 3360 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3365 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3366 3367 // Abbrev for FS_ALIAS. 3368 Abbv = std::make_shared<BitCodeAbbrev>(); 3369 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3373 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3374 3375 SmallVector<uint64_t, 64> NameVals; 3376 // Iterate over the list of functions instead of the Index to 3377 // ensure the ordering is stable. 3378 for (const Function &F : M) { 3379 // Summary emission does not support anonymous functions, they have to 3380 // renamed using the anonymous function renaming pass. 3381 if (!F.hasName()) 3382 report_fatal_error("Unexpected anonymous function when writing summary"); 3383 3384 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3385 if (!VI || VI.getSummaryList().empty()) { 3386 // Only declarations should not have a summary (a declaration might 3387 // however have a summary if the def was in module level asm). 3388 assert(F.isDeclaration()); 3389 continue; 3390 } 3391 auto *Summary = VI.getSummaryList()[0].get(); 3392 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3393 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3394 } 3395 3396 // Capture references from GlobalVariable initializers, which are outside 3397 // of a function scope. 3398 for (const GlobalVariable &G : M.globals()) 3399 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3400 3401 for (const GlobalAlias &A : M.aliases()) { 3402 auto *Aliasee = A.getBaseObject(); 3403 if (!Aliasee->hasName()) 3404 // Nameless function don't have an entry in the summary, skip it. 3405 continue; 3406 auto AliasId = VE.getValueID(&A); 3407 auto AliaseeId = VE.getValueID(Aliasee); 3408 NameVals.push_back(AliasId); 3409 auto *Summary = Index->getGlobalValueSummary(A); 3410 AliasSummary *AS = cast<AliasSummary>(Summary); 3411 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3412 NameVals.push_back(AliaseeId); 3413 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3414 NameVals.clear(); 3415 } 3416 3417 Stream.ExitBlock(); 3418 } 3419 3420 /// Emit the combined summary section into the combined index file. 3421 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3422 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3423 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3424 3425 for (const auto &GVI : valueIds()) { 3426 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3427 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3428 } 3429 3430 // Abbrev for FS_COMBINED. 3431 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3432 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3438 // numrefs x valueid, n x (valueid) 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3441 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3442 3443 // Abbrev for FS_COMBINED_PROFILE. 3444 Abbv = std::make_shared<BitCodeAbbrev>(); 3445 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3451 // numrefs x valueid, n x (valueid, hotness) 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3454 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3455 3456 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3457 Abbv = std::make_shared<BitCodeAbbrev>(); 3458 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3464 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3465 3466 // Abbrev for FS_COMBINED_ALIAS. 3467 Abbv = std::make_shared<BitCodeAbbrev>(); 3468 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3473 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3474 3475 // The aliases are emitted as a post-pass, and will point to the value 3476 // id of the aliasee. Save them in a vector for post-processing. 3477 SmallVector<AliasSummary *, 64> Aliases; 3478 3479 // Save the value id for each summary for alias emission. 3480 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3481 3482 SmallVector<uint64_t, 64> NameVals; 3483 3484 // For local linkage, we also emit the original name separately 3485 // immediately after the record. 3486 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3487 if (!GlobalValue::isLocalLinkage(S.linkage())) 3488 return; 3489 NameVals.push_back(S.getOriginalName()); 3490 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3491 NameVals.clear(); 3492 }; 3493 3494 forEachSummary([&](GVInfo I) { 3495 GlobalValueSummary *S = I.second; 3496 assert(S); 3497 3498 auto ValueId = getValueId(I.first); 3499 assert(ValueId); 3500 SummaryToValueIdMap[S] = *ValueId; 3501 3502 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3503 // Will process aliases as a post-pass because the reader wants all 3504 // global to be loaded first. 3505 Aliases.push_back(AS); 3506 return; 3507 } 3508 3509 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3510 NameVals.push_back(*ValueId); 3511 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3512 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3513 for (auto &RI : VS->refs()) { 3514 auto RefValueId = getValueId(RI.getGUID()); 3515 if (!RefValueId) 3516 continue; 3517 NameVals.push_back(*RefValueId); 3518 } 3519 3520 // Emit the finished record. 3521 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3522 FSModRefsAbbrev); 3523 NameVals.clear(); 3524 MaybeEmitOriginalName(*S); 3525 return; 3526 } 3527 3528 auto *FS = cast<FunctionSummary>(S); 3529 writeFunctionTypeMetadataRecords(Stream, FS); 3530 3531 NameVals.push_back(*ValueId); 3532 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3533 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3534 NameVals.push_back(FS->instCount()); 3535 // Fill in below 3536 NameVals.push_back(0); 3537 3538 unsigned Count = 0; 3539 for (auto &RI : FS->refs()) { 3540 auto RefValueId = getValueId(RI.getGUID()); 3541 if (!RefValueId) 3542 continue; 3543 NameVals.push_back(*RefValueId); 3544 Count++; 3545 } 3546 NameVals[4] = Count; 3547 3548 bool HasProfileData = false; 3549 for (auto &EI : FS->calls()) { 3550 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3551 if (HasProfileData) 3552 break; 3553 } 3554 3555 for (auto &EI : FS->calls()) { 3556 // If this GUID doesn't have a value id, it doesn't have a function 3557 // summary and we don't need to record any calls to it. 3558 GlobalValue::GUID GUID = EI.first.getGUID(); 3559 auto CallValueId = getValueId(GUID); 3560 if (!CallValueId) { 3561 // For SamplePGO, the indirect call targets for local functions will 3562 // have its original name annotated in profile. We try to find the 3563 // corresponding PGOFuncName as the GUID. 3564 GUID = Index.getGUIDFromOriginalID(GUID); 3565 if (GUID == 0) 3566 continue; 3567 CallValueId = getValueId(GUID); 3568 if (!CallValueId) 3569 continue; 3570 } 3571 NameVals.push_back(*CallValueId); 3572 if (HasProfileData) 3573 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3574 } 3575 3576 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3577 unsigned Code = 3578 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3579 3580 // Emit the finished record. 3581 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3582 NameVals.clear(); 3583 MaybeEmitOriginalName(*S); 3584 }); 3585 3586 for (auto *AS : Aliases) { 3587 auto AliasValueId = SummaryToValueIdMap[AS]; 3588 assert(AliasValueId); 3589 NameVals.push_back(AliasValueId); 3590 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3591 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3592 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3593 assert(AliaseeValueId); 3594 NameVals.push_back(AliaseeValueId); 3595 3596 // Emit the finished record. 3597 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3598 NameVals.clear(); 3599 MaybeEmitOriginalName(*AS); 3600 } 3601 3602 if (!Index.cfiFunctionDefs().empty()) { 3603 for (auto &S : Index.cfiFunctionDefs()) { 3604 NameVals.push_back(StrtabBuilder.add(S)); 3605 NameVals.push_back(S.size()); 3606 } 3607 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3608 NameVals.clear(); 3609 } 3610 3611 if (!Index.cfiFunctionDecls().empty()) { 3612 for (auto &S : Index.cfiFunctionDecls()) { 3613 NameVals.push_back(StrtabBuilder.add(S)); 3614 NameVals.push_back(S.size()); 3615 } 3616 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3617 NameVals.clear(); 3618 } 3619 3620 Stream.ExitBlock(); 3621 } 3622 3623 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3624 /// current llvm version, and a record for the epoch number. 3625 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3626 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3627 3628 // Write the "user readable" string identifying the bitcode producer 3629 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3630 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3633 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3634 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3635 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3636 3637 // Write the epoch version 3638 Abbv = std::make_shared<BitCodeAbbrev>(); 3639 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3641 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3642 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3643 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3644 Stream.ExitBlock(); 3645 } 3646 3647 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3648 // Emit the module's hash. 3649 // MODULE_CODE_HASH: [5*i32] 3650 if (GenerateHash) { 3651 SHA1 Hasher; 3652 uint32_t Vals[5]; 3653 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3654 Buffer.size() - BlockStartPos)); 3655 StringRef Hash = Hasher.result(); 3656 for (int Pos = 0; Pos < 20; Pos += 4) { 3657 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3658 } 3659 3660 // Emit the finished record. 3661 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3662 3663 if (ModHash) 3664 // Save the written hash value. 3665 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3666 } else if (ModHash) 3667 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3668 } 3669 3670 void ModuleBitcodeWriter::write() { 3671 writeIdentificationBlock(Stream); 3672 3673 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3674 size_t BlockStartPos = Buffer.size(); 3675 3676 writeModuleVersion(); 3677 3678 // Emit blockinfo, which defines the standard abbreviations etc. 3679 writeBlockInfo(); 3680 3681 // Emit information about attribute groups. 3682 writeAttributeGroupTable(); 3683 3684 // Emit information about parameter attributes. 3685 writeAttributeTable(); 3686 3687 // Emit information describing all of the types in the module. 3688 writeTypeTable(); 3689 3690 writeComdats(); 3691 3692 // Emit top-level description of module, including target triple, inline asm, 3693 // descriptors for global variables, and function prototype info. 3694 writeModuleInfo(); 3695 3696 // Emit constants. 3697 writeModuleConstants(); 3698 3699 // Emit metadata kind names. 3700 writeModuleMetadataKinds(); 3701 3702 // Emit metadata. 3703 writeModuleMetadata(); 3704 3705 // Emit module-level use-lists. 3706 if (VE.shouldPreserveUseListOrder()) 3707 writeUseListBlock(nullptr); 3708 3709 writeOperandBundleTags(); 3710 3711 // Emit function bodies. 3712 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3713 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3714 if (!F->isDeclaration()) 3715 writeFunction(*F, FunctionToBitcodeIndex); 3716 3717 // Need to write after the above call to WriteFunction which populates 3718 // the summary information in the index. 3719 if (Index) 3720 writePerModuleGlobalValueSummary(); 3721 3722 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3723 3724 writeModuleHash(BlockStartPos); 3725 3726 Stream.ExitBlock(); 3727 } 3728 3729 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3730 uint32_t &Position) { 3731 support::endian::write32le(&Buffer[Position], Value); 3732 Position += 4; 3733 } 3734 3735 /// If generating a bc file on darwin, we have to emit a 3736 /// header and trailer to make it compatible with the system archiver. To do 3737 /// this we emit the following header, and then emit a trailer that pads the 3738 /// file out to be a multiple of 16 bytes. 3739 /// 3740 /// struct bc_header { 3741 /// uint32_t Magic; // 0x0B17C0DE 3742 /// uint32_t Version; // Version, currently always 0. 3743 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3744 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3745 /// uint32_t CPUType; // CPU specifier. 3746 /// ... potentially more later ... 3747 /// }; 3748 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3749 const Triple &TT) { 3750 unsigned CPUType = ~0U; 3751 3752 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3753 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3754 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3755 // specific constants here because they are implicitly part of the Darwin ABI. 3756 enum { 3757 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3758 DARWIN_CPU_TYPE_X86 = 7, 3759 DARWIN_CPU_TYPE_ARM = 12, 3760 DARWIN_CPU_TYPE_POWERPC = 18 3761 }; 3762 3763 Triple::ArchType Arch = TT.getArch(); 3764 if (Arch == Triple::x86_64) 3765 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3766 else if (Arch == Triple::x86) 3767 CPUType = DARWIN_CPU_TYPE_X86; 3768 else if (Arch == Triple::ppc) 3769 CPUType = DARWIN_CPU_TYPE_POWERPC; 3770 else if (Arch == Triple::ppc64) 3771 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3772 else if (Arch == Triple::arm || Arch == Triple::thumb) 3773 CPUType = DARWIN_CPU_TYPE_ARM; 3774 3775 // Traditional Bitcode starts after header. 3776 assert(Buffer.size() >= BWH_HeaderSize && 3777 "Expected header size to be reserved"); 3778 unsigned BCOffset = BWH_HeaderSize; 3779 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3780 3781 // Write the magic and version. 3782 unsigned Position = 0; 3783 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3784 writeInt32ToBuffer(0, Buffer, Position); // Version. 3785 writeInt32ToBuffer(BCOffset, Buffer, Position); 3786 writeInt32ToBuffer(BCSize, Buffer, Position); 3787 writeInt32ToBuffer(CPUType, Buffer, Position); 3788 3789 // If the file is not a multiple of 16 bytes, insert dummy padding. 3790 while (Buffer.size() & 15) 3791 Buffer.push_back(0); 3792 } 3793 3794 /// Helper to write the header common to all bitcode files. 3795 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3796 // Emit the file header. 3797 Stream.Emit((unsigned)'B', 8); 3798 Stream.Emit((unsigned)'C', 8); 3799 Stream.Emit(0x0, 4); 3800 Stream.Emit(0xC, 4); 3801 Stream.Emit(0xE, 4); 3802 Stream.Emit(0xD, 4); 3803 } 3804 3805 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3806 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3807 writeBitcodeHeader(*Stream); 3808 } 3809 3810 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3811 3812 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3813 Stream->EnterSubblock(Block, 3); 3814 3815 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3816 Abbv->Add(BitCodeAbbrevOp(Record)); 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3818 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3819 3820 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3821 3822 Stream->ExitBlock(); 3823 } 3824 3825 void BitcodeWriter::writeSymtab() { 3826 assert(!WroteStrtab && !WroteSymtab); 3827 3828 // If any module has module-level inline asm, we will require a registered asm 3829 // parser for the target so that we can create an accurate symbol table for 3830 // the module. 3831 for (Module *M : Mods) { 3832 if (M->getModuleInlineAsm().empty()) 3833 continue; 3834 3835 std::string Err; 3836 const Triple TT(M->getTargetTriple()); 3837 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 3838 if (!T || !T->hasMCAsmParser()) 3839 return; 3840 } 3841 3842 WroteSymtab = true; 3843 SmallVector<char, 0> Symtab; 3844 // The irsymtab::build function may be unable to create a symbol table if the 3845 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 3846 // table is not required for correctness, but we still want to be able to 3847 // write malformed modules to bitcode files, so swallow the error. 3848 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 3849 consumeError(std::move(E)); 3850 return; 3851 } 3852 3853 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 3854 {Symtab.data(), Symtab.size()}); 3855 } 3856 3857 void BitcodeWriter::writeStrtab() { 3858 assert(!WroteStrtab); 3859 3860 std::vector<char> Strtab; 3861 StrtabBuilder.finalizeInOrder(); 3862 Strtab.resize(StrtabBuilder.getSize()); 3863 StrtabBuilder.write((uint8_t *)Strtab.data()); 3864 3865 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3866 {Strtab.data(), Strtab.size()}); 3867 3868 WroteStrtab = true; 3869 } 3870 3871 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3872 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3873 WroteStrtab = true; 3874 } 3875 3876 void BitcodeWriter::writeModule(const Module *M, 3877 bool ShouldPreserveUseListOrder, 3878 const ModuleSummaryIndex *Index, 3879 bool GenerateHash, ModuleHash *ModHash) { 3880 assert(!WroteStrtab); 3881 3882 // The Mods vector is used by irsymtab::build, which requires non-const 3883 // Modules in case it needs to materialize metadata. But the bitcode writer 3884 // requires that the module is materialized, so we can cast to non-const here, 3885 // after checking that it is in fact materialized. 3886 assert(M->isMaterialized()); 3887 Mods.push_back(const_cast<Module *>(M)); 3888 3889 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3890 ShouldPreserveUseListOrder, Index, 3891 GenerateHash, ModHash); 3892 ModuleWriter.write(); 3893 } 3894 3895 void BitcodeWriter::writeIndex( 3896 const ModuleSummaryIndex *Index, 3897 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3898 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 3899 ModuleToSummariesForIndex); 3900 IndexWriter.write(); 3901 } 3902 3903 /// WriteBitcodeToFile - Write the specified module to the specified output 3904 /// stream. 3905 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3906 bool ShouldPreserveUseListOrder, 3907 const ModuleSummaryIndex *Index, 3908 bool GenerateHash, ModuleHash *ModHash) { 3909 SmallVector<char, 0> Buffer; 3910 Buffer.reserve(256*1024); 3911 3912 // If this is darwin or another generic macho target, reserve space for the 3913 // header. 3914 Triple TT(M->getTargetTriple()); 3915 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3916 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3917 3918 BitcodeWriter Writer(Buffer); 3919 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3920 ModHash); 3921 Writer.writeSymtab(); 3922 Writer.writeStrtab(); 3923 3924 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3925 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3926 3927 // Write the generated bitstream to "Out". 3928 Out.write((char*)&Buffer.front(), Buffer.size()); 3929 } 3930 3931 void IndexBitcodeWriter::write() { 3932 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3933 3934 writeModuleVersion(); 3935 3936 // Write the module paths in the combined index. 3937 writeModStrings(); 3938 3939 // Write the summary combined index records. 3940 writeCombinedGlobalValueSummary(); 3941 3942 Stream.ExitBlock(); 3943 } 3944 3945 // Write the specified module summary index to the given raw output stream, 3946 // where it will be written in a new bitcode block. This is used when 3947 // writing the combined index file for ThinLTO. When writing a subset of the 3948 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3949 void llvm::WriteIndexToFile( 3950 const ModuleSummaryIndex &Index, raw_ostream &Out, 3951 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3952 SmallVector<char, 0> Buffer; 3953 Buffer.reserve(256 * 1024); 3954 3955 BitcodeWriter Writer(Buffer); 3956 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 3957 Writer.writeStrtab(); 3958 3959 Out.write((char *)&Buffer.front(), Buffer.size()); 3960 } 3961