1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/SHA1.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeModuleVersion(); 146 }; 147 148 void BitcodeWriterBase::writeModuleVersion() { 149 // VERSION: [version#] 150 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 151 } 152 153 /// Base class to manage the module bitcode writing, currently subclassed for 154 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 155 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 156 protected: 157 /// The Module to write to bitcode. 158 const Module &M; 159 160 /// Enumerates ids for all values in the module. 161 ValueEnumerator VE; 162 163 /// Optional per-module index to write for ThinLTO. 164 const ModuleSummaryIndex *Index; 165 166 /// Map that holds the correspondence between GUIDs in the summary index, 167 /// that came from indirect call profiles, and a value id generated by this 168 /// class to use in the VST and summary block records. 169 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 170 171 /// Tracks the last value id recorded in the GUIDToValueMap. 172 unsigned GlobalValueId; 173 174 /// Saves the offset of the VSTOffset record that must eventually be 175 /// backpatched with the offset of the actual VST. 176 uint64_t VSTOffsetPlaceholder = 0; 177 178 public: 179 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 180 /// writing to the provided \p Buffer. 181 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 182 BitstreamWriter &Stream, 183 bool ShouldPreserveUseListOrder, 184 const ModuleSummaryIndex *Index) 185 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 186 VE(M, ShouldPreserveUseListOrder), Index(Index) { 187 // Assign ValueIds to any callee values in the index that came from 188 // indirect call profiles and were recorded as a GUID not a Value* 189 // (which would have been assigned an ID by the ValueEnumerator). 190 // The starting ValueId is just after the number of values in the 191 // ValueEnumerator, so that they can be emitted in the VST. 192 GlobalValueId = VE.getValues().size(); 193 if (!Index) 194 return; 195 for (const auto &GUIDSummaryLists : *Index) 196 // Examine all summaries for this GUID. 197 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 198 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 199 // For each call in the function summary, see if the call 200 // is to a GUID (which means it is for an indirect call, 201 // otherwise we would have a Value for it). If so, synthesize 202 // a value id. 203 for (auto &CallEdge : FS->calls()) 204 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 205 assignValueId(CallEdge.first.getGUID()); 206 } 207 208 protected: 209 void writePerModuleGlobalValueSummary(); 210 211 private: 212 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 213 GlobalValueSummary *Summary, 214 unsigned ValueID, 215 unsigned FSCallsAbbrev, 216 unsigned FSCallsProfileAbbrev, 217 const Function &F); 218 void writeModuleLevelReferences(const GlobalVariable &V, 219 SmallVector<uint64_t, 64> &NameVals, 220 unsigned FSModRefsAbbrev, 221 unsigned FSModVTableRefsAbbrev); 222 223 void assignValueId(GlobalValue::GUID ValGUID) { 224 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 225 } 226 227 unsigned getValueId(GlobalValue::GUID ValGUID) { 228 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 229 // Expect that any GUID value had a value Id assigned by an 230 // earlier call to assignValueId. 231 assert(VMI != GUIDToValueIdMap.end() && 232 "GUID does not have assigned value Id"); 233 return VMI->second; 234 } 235 236 // Helper to get the valueId for the type of value recorded in VI. 237 unsigned getValueId(ValueInfo VI) { 238 if (!VI.haveGVs() || !VI.getValue()) 239 return getValueId(VI.getGUID()); 240 return VE.getValueID(VI.getValue()); 241 } 242 243 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 244 }; 245 246 /// Class to manage the bitcode writing for a module. 247 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 248 /// Pointer to the buffer allocated by caller for bitcode writing. 249 const SmallVectorImpl<char> &Buffer; 250 251 /// True if a module hash record should be written. 252 bool GenerateHash; 253 254 /// If non-null, when GenerateHash is true, the resulting hash is written 255 /// into ModHash. 256 ModuleHash *ModHash; 257 258 SHA1 Hasher; 259 260 /// The start bit of the identification block. 261 uint64_t BitcodeStartBit; 262 263 public: 264 /// Constructs a ModuleBitcodeWriter object for the given Module, 265 /// writing to the provided \p Buffer. 266 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 267 StringTableBuilder &StrtabBuilder, 268 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 269 const ModuleSummaryIndex *Index, bool GenerateHash, 270 ModuleHash *ModHash = nullptr) 271 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 272 ShouldPreserveUseListOrder, Index), 273 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 274 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 275 276 /// Emit the current module to the bitstream. 277 void write(); 278 279 private: 280 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 281 282 size_t addToStrtab(StringRef Str); 283 284 void writeAttributeGroupTable(); 285 void writeAttributeTable(); 286 void writeTypeTable(); 287 void writeComdats(); 288 void writeValueSymbolTableForwardDecl(); 289 void writeModuleInfo(); 290 void writeValueAsMetadata(const ValueAsMetadata *MD, 291 SmallVectorImpl<uint64_t> &Record); 292 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 unsigned createDILocationAbbrev(); 295 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned &Abbrev); 297 unsigned createGenericDINodeAbbrev(); 298 void writeGenericDINode(const GenericDINode *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 300 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIGenericSubrange(const DIGenericSubrange *N, 303 SmallVectorImpl<uint64_t> &Record, 304 unsigned Abbrev); 305 void writeDIEnumerator(const DIEnumerator *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIStringType(const DIStringType *N, 310 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 311 void writeDIDerivedType(const DIDerivedType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDICompositeType(const DICompositeType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubroutineType(const DISubroutineType *N, 316 SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDICompileUnit(const DICompileUnit *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDISubprogram(const DISubprogram *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDILexicalBlock(const DILexicalBlock *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDICommonBlock(const DICommonBlock *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 342 SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIGlobalVariable(const DIGlobalVariable *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDILocalVariable(const DILocalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDILabel(const DILabel *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDIExpression(const DIExpression *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 357 SmallVectorImpl<uint64_t> &Record, 358 unsigned Abbrev); 359 void writeDIObjCProperty(const DIObjCProperty *N, 360 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 361 void writeDIImportedEntity(const DIImportedEntity *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 unsigned createNamedMetadataAbbrev(); 365 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 366 unsigned createMetadataStringsAbbrev(); 367 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 368 SmallVectorImpl<uint64_t> &Record); 369 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 370 SmallVectorImpl<uint64_t> &Record, 371 std::vector<unsigned> *MDAbbrevs = nullptr, 372 std::vector<uint64_t> *IndexPos = nullptr); 373 void writeModuleMetadata(); 374 void writeFunctionMetadata(const Function &F); 375 void writeFunctionMetadataAttachment(const Function &F); 376 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 377 const GlobalObject &GO); 378 void writeModuleMetadataKinds(); 379 void writeOperandBundleTags(); 380 void writeSyncScopeNames(); 381 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 382 void writeModuleConstants(); 383 bool pushValueAndType(const Value *V, unsigned InstID, 384 SmallVectorImpl<unsigned> &Vals); 385 void writeOperandBundles(const CallBase &CB, unsigned InstID); 386 void pushValue(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void pushValueSigned(const Value *V, unsigned InstID, 389 SmallVectorImpl<uint64_t> &Vals); 390 void writeInstruction(const Instruction &I, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 393 void writeGlobalValueSymbolTable( 394 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 395 void writeUseList(UseListOrder &&Order); 396 void writeUseListBlock(const Function *F); 397 void 398 writeFunction(const Function &F, 399 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 400 void writeBlockInfo(); 401 void writeModuleHash(size_t BlockStartPos); 402 403 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 404 return unsigned(SSID); 405 } 406 407 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 408 }; 409 410 /// Class to manage the bitcode writing for a combined index. 411 class IndexBitcodeWriter : public BitcodeWriterBase { 412 /// The combined index to write to bitcode. 413 const ModuleSummaryIndex &Index; 414 415 /// When writing a subset of the index for distributed backends, client 416 /// provides a map of modules to the corresponding GUIDs/summaries to write. 417 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 418 419 /// Map that holds the correspondence between the GUID used in the combined 420 /// index and a value id generated by this class to use in references. 421 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 422 423 /// Tracks the last value id recorded in the GUIDToValueMap. 424 unsigned GlobalValueId = 0; 425 426 public: 427 /// Constructs a IndexBitcodeWriter object for the given combined index, 428 /// writing to the provided \p Buffer. When writing a subset of the index 429 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 430 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 431 const ModuleSummaryIndex &Index, 432 const std::map<std::string, GVSummaryMapTy> 433 *ModuleToSummariesForIndex = nullptr) 434 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 435 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 436 // Assign unique value ids to all summaries to be written, for use 437 // in writing out the call graph edges. Save the mapping from GUID 438 // to the new global value id to use when writing those edges, which 439 // are currently saved in the index in terms of GUID. 440 forEachSummary([&](GVInfo I, bool) { 441 GUIDToValueIdMap[I.first] = ++GlobalValueId; 442 }); 443 } 444 445 /// The below iterator returns the GUID and associated summary. 446 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 447 448 /// Calls the callback for each value GUID and summary to be written to 449 /// bitcode. This hides the details of whether they are being pulled from the 450 /// entire index or just those in a provided ModuleToSummariesForIndex map. 451 template<typename Functor> 452 void forEachSummary(Functor Callback) { 453 if (ModuleToSummariesForIndex) { 454 for (auto &M : *ModuleToSummariesForIndex) 455 for (auto &Summary : M.second) { 456 Callback(Summary, false); 457 // Ensure aliasee is handled, e.g. for assigning a valueId, 458 // even if we are not importing the aliasee directly (the 459 // imported alias will contain a copy of aliasee). 460 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 461 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 462 } 463 } else { 464 for (auto &Summaries : Index) 465 for (auto &Summary : Summaries.second.SummaryList) 466 Callback({Summaries.first, Summary.get()}, false); 467 } 468 } 469 470 /// Calls the callback for each entry in the modulePaths StringMap that 471 /// should be written to the module path string table. This hides the details 472 /// of whether they are being pulled from the entire index or just those in a 473 /// provided ModuleToSummariesForIndex map. 474 template <typename Functor> void forEachModule(Functor Callback) { 475 if (ModuleToSummariesForIndex) { 476 for (const auto &M : *ModuleToSummariesForIndex) { 477 const auto &MPI = Index.modulePaths().find(M.first); 478 if (MPI == Index.modulePaths().end()) { 479 // This should only happen if the bitcode file was empty, in which 480 // case we shouldn't be importing (the ModuleToSummariesForIndex 481 // would only include the module we are writing and index for). 482 assert(ModuleToSummariesForIndex->size() == 1); 483 continue; 484 } 485 Callback(*MPI); 486 } 487 } else { 488 for (const auto &MPSE : Index.modulePaths()) 489 Callback(MPSE); 490 } 491 } 492 493 /// Main entry point for writing a combined index to bitcode. 494 void write(); 495 496 private: 497 void writeModStrings(); 498 void writeCombinedGlobalValueSummary(); 499 500 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 501 auto VMI = GUIDToValueIdMap.find(ValGUID); 502 if (VMI == GUIDToValueIdMap.end()) 503 return None; 504 return VMI->second; 505 } 506 507 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 508 }; 509 510 } // end anonymous namespace 511 512 static unsigned getEncodedCastOpcode(unsigned Opcode) { 513 switch (Opcode) { 514 default: llvm_unreachable("Unknown cast instruction!"); 515 case Instruction::Trunc : return bitc::CAST_TRUNC; 516 case Instruction::ZExt : return bitc::CAST_ZEXT; 517 case Instruction::SExt : return bitc::CAST_SEXT; 518 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 519 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 520 case Instruction::UIToFP : return bitc::CAST_UITOFP; 521 case Instruction::SIToFP : return bitc::CAST_SITOFP; 522 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 523 case Instruction::FPExt : return bitc::CAST_FPEXT; 524 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 525 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 526 case Instruction::BitCast : return bitc::CAST_BITCAST; 527 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 528 } 529 } 530 531 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 532 switch (Opcode) { 533 default: llvm_unreachable("Unknown binary instruction!"); 534 case Instruction::FNeg: return bitc::UNOP_FNEG; 535 } 536 } 537 538 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 539 switch (Opcode) { 540 default: llvm_unreachable("Unknown binary instruction!"); 541 case Instruction::Add: 542 case Instruction::FAdd: return bitc::BINOP_ADD; 543 case Instruction::Sub: 544 case Instruction::FSub: return bitc::BINOP_SUB; 545 case Instruction::Mul: 546 case Instruction::FMul: return bitc::BINOP_MUL; 547 case Instruction::UDiv: return bitc::BINOP_UDIV; 548 case Instruction::FDiv: 549 case Instruction::SDiv: return bitc::BINOP_SDIV; 550 case Instruction::URem: return bitc::BINOP_UREM; 551 case Instruction::FRem: 552 case Instruction::SRem: return bitc::BINOP_SREM; 553 case Instruction::Shl: return bitc::BINOP_SHL; 554 case Instruction::LShr: return bitc::BINOP_LSHR; 555 case Instruction::AShr: return bitc::BINOP_ASHR; 556 case Instruction::And: return bitc::BINOP_AND; 557 case Instruction::Or: return bitc::BINOP_OR; 558 case Instruction::Xor: return bitc::BINOP_XOR; 559 } 560 } 561 562 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 563 switch (Op) { 564 default: llvm_unreachable("Unknown RMW operation!"); 565 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 566 case AtomicRMWInst::Add: return bitc::RMW_ADD; 567 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 568 case AtomicRMWInst::And: return bitc::RMW_AND; 569 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 570 case AtomicRMWInst::Or: return bitc::RMW_OR; 571 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 572 case AtomicRMWInst::Max: return bitc::RMW_MAX; 573 case AtomicRMWInst::Min: return bitc::RMW_MIN; 574 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 575 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 576 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 577 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 578 } 579 } 580 581 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 582 switch (Ordering) { 583 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 584 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 585 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 586 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 587 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 588 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 589 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 590 } 591 llvm_unreachable("Invalid ordering"); 592 } 593 594 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 595 StringRef Str, unsigned AbbrevToUse) { 596 SmallVector<unsigned, 64> Vals; 597 598 // Code: [strchar x N] 599 for (char C : Str) { 600 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 601 AbbrevToUse = 0; 602 Vals.push_back(C); 603 } 604 605 // Emit the finished record. 606 Stream.EmitRecord(Code, Vals, AbbrevToUse); 607 } 608 609 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 610 switch (Kind) { 611 case Attribute::Alignment: 612 return bitc::ATTR_KIND_ALIGNMENT; 613 case Attribute::AllocAlign: 614 return bitc::ATTR_KIND_ALLOC_ALIGN; 615 case Attribute::AllocSize: 616 return bitc::ATTR_KIND_ALLOC_SIZE; 617 case Attribute::AlwaysInline: 618 return bitc::ATTR_KIND_ALWAYS_INLINE; 619 case Attribute::ArgMemOnly: 620 return bitc::ATTR_KIND_ARGMEMONLY; 621 case Attribute::Builtin: 622 return bitc::ATTR_KIND_BUILTIN; 623 case Attribute::ByVal: 624 return bitc::ATTR_KIND_BY_VAL; 625 case Attribute::Convergent: 626 return bitc::ATTR_KIND_CONVERGENT; 627 case Attribute::InAlloca: 628 return bitc::ATTR_KIND_IN_ALLOCA; 629 case Attribute::Cold: 630 return bitc::ATTR_KIND_COLD; 631 case Attribute::DisableSanitizerInstrumentation: 632 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 633 case Attribute::Hot: 634 return bitc::ATTR_KIND_HOT; 635 case Attribute::ElementType: 636 return bitc::ATTR_KIND_ELEMENTTYPE; 637 case Attribute::InaccessibleMemOnly: 638 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 639 case Attribute::InaccessibleMemOrArgMemOnly: 640 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 641 case Attribute::InlineHint: 642 return bitc::ATTR_KIND_INLINE_HINT; 643 case Attribute::InReg: 644 return bitc::ATTR_KIND_IN_REG; 645 case Attribute::JumpTable: 646 return bitc::ATTR_KIND_JUMP_TABLE; 647 case Attribute::MinSize: 648 return bitc::ATTR_KIND_MIN_SIZE; 649 case Attribute::Naked: 650 return bitc::ATTR_KIND_NAKED; 651 case Attribute::Nest: 652 return bitc::ATTR_KIND_NEST; 653 case Attribute::NoAlias: 654 return bitc::ATTR_KIND_NO_ALIAS; 655 case Attribute::NoBuiltin: 656 return bitc::ATTR_KIND_NO_BUILTIN; 657 case Attribute::NoCallback: 658 return bitc::ATTR_KIND_NO_CALLBACK; 659 case Attribute::NoCapture: 660 return bitc::ATTR_KIND_NO_CAPTURE; 661 case Attribute::NoDuplicate: 662 return bitc::ATTR_KIND_NO_DUPLICATE; 663 case Attribute::NoFree: 664 return bitc::ATTR_KIND_NOFREE; 665 case Attribute::NoImplicitFloat: 666 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 667 case Attribute::NoInline: 668 return bitc::ATTR_KIND_NO_INLINE; 669 case Attribute::NoRecurse: 670 return bitc::ATTR_KIND_NO_RECURSE; 671 case Attribute::NoMerge: 672 return bitc::ATTR_KIND_NO_MERGE; 673 case Attribute::NonLazyBind: 674 return bitc::ATTR_KIND_NON_LAZY_BIND; 675 case Attribute::NonNull: 676 return bitc::ATTR_KIND_NON_NULL; 677 case Attribute::Dereferenceable: 678 return bitc::ATTR_KIND_DEREFERENCEABLE; 679 case Attribute::DereferenceableOrNull: 680 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 681 case Attribute::NoRedZone: 682 return bitc::ATTR_KIND_NO_RED_ZONE; 683 case Attribute::NoReturn: 684 return bitc::ATTR_KIND_NO_RETURN; 685 case Attribute::NoSync: 686 return bitc::ATTR_KIND_NOSYNC; 687 case Attribute::NoCfCheck: 688 return bitc::ATTR_KIND_NOCF_CHECK; 689 case Attribute::NoProfile: 690 return bitc::ATTR_KIND_NO_PROFILE; 691 case Attribute::NoUnwind: 692 return bitc::ATTR_KIND_NO_UNWIND; 693 case Attribute::NoSanitizeBounds: 694 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 695 case Attribute::NoSanitizeCoverage: 696 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 697 case Attribute::NullPointerIsValid: 698 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 699 case Attribute::OptForFuzzing: 700 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 701 case Attribute::OptimizeForSize: 702 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 703 case Attribute::OptimizeNone: 704 return bitc::ATTR_KIND_OPTIMIZE_NONE; 705 case Attribute::ReadNone: 706 return bitc::ATTR_KIND_READ_NONE; 707 case Attribute::ReadOnly: 708 return bitc::ATTR_KIND_READ_ONLY; 709 case Attribute::Returned: 710 return bitc::ATTR_KIND_RETURNED; 711 case Attribute::ReturnsTwice: 712 return bitc::ATTR_KIND_RETURNS_TWICE; 713 case Attribute::SExt: 714 return bitc::ATTR_KIND_S_EXT; 715 case Attribute::Speculatable: 716 return bitc::ATTR_KIND_SPECULATABLE; 717 case Attribute::StackAlignment: 718 return bitc::ATTR_KIND_STACK_ALIGNMENT; 719 case Attribute::StackProtect: 720 return bitc::ATTR_KIND_STACK_PROTECT; 721 case Attribute::StackProtectReq: 722 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 723 case Attribute::StackProtectStrong: 724 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 725 case Attribute::SafeStack: 726 return bitc::ATTR_KIND_SAFESTACK; 727 case Attribute::ShadowCallStack: 728 return bitc::ATTR_KIND_SHADOWCALLSTACK; 729 case Attribute::StrictFP: 730 return bitc::ATTR_KIND_STRICT_FP; 731 case Attribute::StructRet: 732 return bitc::ATTR_KIND_STRUCT_RET; 733 case Attribute::SanitizeAddress: 734 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 735 case Attribute::SanitizeHWAddress: 736 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 737 case Attribute::SanitizeThread: 738 return bitc::ATTR_KIND_SANITIZE_THREAD; 739 case Attribute::SanitizeMemory: 740 return bitc::ATTR_KIND_SANITIZE_MEMORY; 741 case Attribute::SpeculativeLoadHardening: 742 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 743 case Attribute::SwiftError: 744 return bitc::ATTR_KIND_SWIFT_ERROR; 745 case Attribute::SwiftSelf: 746 return bitc::ATTR_KIND_SWIFT_SELF; 747 case Attribute::SwiftAsync: 748 return bitc::ATTR_KIND_SWIFT_ASYNC; 749 case Attribute::UWTable: 750 return bitc::ATTR_KIND_UW_TABLE; 751 case Attribute::VScaleRange: 752 return bitc::ATTR_KIND_VSCALE_RANGE; 753 case Attribute::WillReturn: 754 return bitc::ATTR_KIND_WILLRETURN; 755 case Attribute::WriteOnly: 756 return bitc::ATTR_KIND_WRITEONLY; 757 case Attribute::ZExt: 758 return bitc::ATTR_KIND_Z_EXT; 759 case Attribute::ImmArg: 760 return bitc::ATTR_KIND_IMMARG; 761 case Attribute::SanitizeMemTag: 762 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 763 case Attribute::Preallocated: 764 return bitc::ATTR_KIND_PREALLOCATED; 765 case Attribute::NoUndef: 766 return bitc::ATTR_KIND_NOUNDEF; 767 case Attribute::ByRef: 768 return bitc::ATTR_KIND_BYREF; 769 case Attribute::MustProgress: 770 return bitc::ATTR_KIND_MUSTPROGRESS; 771 case Attribute::EndAttrKinds: 772 llvm_unreachable("Can not encode end-attribute kinds marker."); 773 case Attribute::None: 774 llvm_unreachable("Can not encode none-attribute."); 775 case Attribute::EmptyKey: 776 case Attribute::TombstoneKey: 777 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 778 } 779 780 llvm_unreachable("Trying to encode unknown attribute"); 781 } 782 783 void ModuleBitcodeWriter::writeAttributeGroupTable() { 784 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 785 VE.getAttributeGroups(); 786 if (AttrGrps.empty()) return; 787 788 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 789 790 SmallVector<uint64_t, 64> Record; 791 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 792 unsigned AttrListIndex = Pair.first; 793 AttributeSet AS = Pair.second; 794 Record.push_back(VE.getAttributeGroupID(Pair)); 795 Record.push_back(AttrListIndex); 796 797 for (Attribute Attr : AS) { 798 if (Attr.isEnumAttribute()) { 799 Record.push_back(0); 800 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 801 } else if (Attr.isIntAttribute()) { 802 Record.push_back(1); 803 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 804 Record.push_back(Attr.getValueAsInt()); 805 } else if (Attr.isStringAttribute()) { 806 StringRef Kind = Attr.getKindAsString(); 807 StringRef Val = Attr.getValueAsString(); 808 809 Record.push_back(Val.empty() ? 3 : 4); 810 Record.append(Kind.begin(), Kind.end()); 811 Record.push_back(0); 812 if (!Val.empty()) { 813 Record.append(Val.begin(), Val.end()); 814 Record.push_back(0); 815 } 816 } else { 817 assert(Attr.isTypeAttribute()); 818 Type *Ty = Attr.getValueAsType(); 819 Record.push_back(Ty ? 6 : 5); 820 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 821 if (Ty) 822 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 823 } 824 } 825 826 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 827 Record.clear(); 828 } 829 830 Stream.ExitBlock(); 831 } 832 833 void ModuleBitcodeWriter::writeAttributeTable() { 834 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 835 if (Attrs.empty()) return; 836 837 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 838 839 SmallVector<uint64_t, 64> Record; 840 for (const AttributeList &AL : Attrs) { 841 for (unsigned i : AL.indexes()) { 842 AttributeSet AS = AL.getAttributes(i); 843 if (AS.hasAttributes()) 844 Record.push_back(VE.getAttributeGroupID({i, AS})); 845 } 846 847 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 848 Record.clear(); 849 } 850 851 Stream.ExitBlock(); 852 } 853 854 /// WriteTypeTable - Write out the type table for a module. 855 void ModuleBitcodeWriter::writeTypeTable() { 856 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 857 858 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 859 SmallVector<uint64_t, 64> TypeVals; 860 861 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 862 863 // Abbrev for TYPE_CODE_POINTER. 864 auto Abbv = std::make_shared<BitCodeAbbrev>(); 865 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 867 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 868 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 869 870 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 871 Abbv = std::make_shared<BitCodeAbbrev>(); 872 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 873 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 874 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 875 876 // Abbrev for TYPE_CODE_FUNCTION. 877 Abbv = std::make_shared<BitCodeAbbrev>(); 878 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 882 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 883 884 // Abbrev for TYPE_CODE_STRUCT_ANON. 885 Abbv = std::make_shared<BitCodeAbbrev>(); 886 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 890 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 891 892 // Abbrev for TYPE_CODE_STRUCT_NAME. 893 Abbv = std::make_shared<BitCodeAbbrev>(); 894 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 897 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 898 899 // Abbrev for TYPE_CODE_STRUCT_NAMED. 900 Abbv = std::make_shared<BitCodeAbbrev>(); 901 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 905 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 906 907 // Abbrev for TYPE_CODE_ARRAY. 908 Abbv = std::make_shared<BitCodeAbbrev>(); 909 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 912 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 913 914 // Emit an entry count so the reader can reserve space. 915 TypeVals.push_back(TypeList.size()); 916 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 917 TypeVals.clear(); 918 919 // Loop over all of the types, emitting each in turn. 920 for (Type *T : TypeList) { 921 int AbbrevToUse = 0; 922 unsigned Code = 0; 923 924 switch (T->getTypeID()) { 925 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 926 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 927 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 928 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 929 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 930 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 931 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 932 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 933 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 934 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 935 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 936 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 937 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 938 case Type::IntegerTyID: 939 // INTEGER: [width] 940 Code = bitc::TYPE_CODE_INTEGER; 941 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 942 break; 943 case Type::PointerTyID: { 944 PointerType *PTy = cast<PointerType>(T); 945 unsigned AddressSpace = PTy->getAddressSpace(); 946 if (PTy->isOpaque()) { 947 // OPAQUE_POINTER: [address space] 948 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 949 TypeVals.push_back(AddressSpace); 950 if (AddressSpace == 0) 951 AbbrevToUse = OpaquePtrAbbrev; 952 } else { 953 // POINTER: [pointee type, address space] 954 Code = bitc::TYPE_CODE_POINTER; 955 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 956 TypeVals.push_back(AddressSpace); 957 if (AddressSpace == 0) 958 AbbrevToUse = PtrAbbrev; 959 } 960 break; 961 } 962 case Type::FunctionTyID: { 963 FunctionType *FT = cast<FunctionType>(T); 964 // FUNCTION: [isvararg, retty, paramty x N] 965 Code = bitc::TYPE_CODE_FUNCTION; 966 TypeVals.push_back(FT->isVarArg()); 967 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 968 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 969 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 970 AbbrevToUse = FunctionAbbrev; 971 break; 972 } 973 case Type::StructTyID: { 974 StructType *ST = cast<StructType>(T); 975 // STRUCT: [ispacked, eltty x N] 976 TypeVals.push_back(ST->isPacked()); 977 // Output all of the element types. 978 for (Type *ET : ST->elements()) 979 TypeVals.push_back(VE.getTypeID(ET)); 980 981 if (ST->isLiteral()) { 982 Code = bitc::TYPE_CODE_STRUCT_ANON; 983 AbbrevToUse = StructAnonAbbrev; 984 } else { 985 if (ST->isOpaque()) { 986 Code = bitc::TYPE_CODE_OPAQUE; 987 } else { 988 Code = bitc::TYPE_CODE_STRUCT_NAMED; 989 AbbrevToUse = StructNamedAbbrev; 990 } 991 992 // Emit the name if it is present. 993 if (!ST->getName().empty()) 994 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 995 StructNameAbbrev); 996 } 997 break; 998 } 999 case Type::ArrayTyID: { 1000 ArrayType *AT = cast<ArrayType>(T); 1001 // ARRAY: [numelts, eltty] 1002 Code = bitc::TYPE_CODE_ARRAY; 1003 TypeVals.push_back(AT->getNumElements()); 1004 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1005 AbbrevToUse = ArrayAbbrev; 1006 break; 1007 } 1008 case Type::FixedVectorTyID: 1009 case Type::ScalableVectorTyID: { 1010 VectorType *VT = cast<VectorType>(T); 1011 // VECTOR [numelts, eltty] or 1012 // [numelts, eltty, scalable] 1013 Code = bitc::TYPE_CODE_VECTOR; 1014 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1015 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1016 if (isa<ScalableVectorType>(VT)) 1017 TypeVals.push_back(true); 1018 break; 1019 } 1020 } 1021 1022 // Emit the finished record. 1023 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1024 TypeVals.clear(); 1025 } 1026 1027 Stream.ExitBlock(); 1028 } 1029 1030 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1031 switch (Linkage) { 1032 case GlobalValue::ExternalLinkage: 1033 return 0; 1034 case GlobalValue::WeakAnyLinkage: 1035 return 16; 1036 case GlobalValue::AppendingLinkage: 1037 return 2; 1038 case GlobalValue::InternalLinkage: 1039 return 3; 1040 case GlobalValue::LinkOnceAnyLinkage: 1041 return 18; 1042 case GlobalValue::ExternalWeakLinkage: 1043 return 7; 1044 case GlobalValue::CommonLinkage: 1045 return 8; 1046 case GlobalValue::PrivateLinkage: 1047 return 9; 1048 case GlobalValue::WeakODRLinkage: 1049 return 17; 1050 case GlobalValue::LinkOnceODRLinkage: 1051 return 19; 1052 case GlobalValue::AvailableExternallyLinkage: 1053 return 12; 1054 } 1055 llvm_unreachable("Invalid linkage"); 1056 } 1057 1058 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1059 return getEncodedLinkage(GV.getLinkage()); 1060 } 1061 1062 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1063 uint64_t RawFlags = 0; 1064 RawFlags |= Flags.ReadNone; 1065 RawFlags |= (Flags.ReadOnly << 1); 1066 RawFlags |= (Flags.NoRecurse << 2); 1067 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1068 RawFlags |= (Flags.NoInline << 4); 1069 RawFlags |= (Flags.AlwaysInline << 5); 1070 RawFlags |= (Flags.NoUnwind << 6); 1071 RawFlags |= (Flags.MayThrow << 7); 1072 RawFlags |= (Flags.HasUnknownCall << 8); 1073 RawFlags |= (Flags.MustBeUnreachable << 9); 1074 return RawFlags; 1075 } 1076 1077 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1078 // in BitcodeReader.cpp. 1079 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1080 uint64_t RawFlags = 0; 1081 1082 RawFlags |= Flags.NotEligibleToImport; // bool 1083 RawFlags |= (Flags.Live << 1); 1084 RawFlags |= (Flags.DSOLocal << 2); 1085 RawFlags |= (Flags.CanAutoHide << 3); 1086 1087 // Linkage don't need to be remapped at that time for the summary. Any future 1088 // change to the getEncodedLinkage() function will need to be taken into 1089 // account here as well. 1090 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1091 1092 RawFlags |= (Flags.Visibility << 8); // 2 bits 1093 1094 return RawFlags; 1095 } 1096 1097 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1098 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1099 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1100 return RawFlags; 1101 } 1102 1103 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1104 switch (GV.getVisibility()) { 1105 case GlobalValue::DefaultVisibility: return 0; 1106 case GlobalValue::HiddenVisibility: return 1; 1107 case GlobalValue::ProtectedVisibility: return 2; 1108 } 1109 llvm_unreachable("Invalid visibility"); 1110 } 1111 1112 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1113 switch (GV.getDLLStorageClass()) { 1114 case GlobalValue::DefaultStorageClass: return 0; 1115 case GlobalValue::DLLImportStorageClass: return 1; 1116 case GlobalValue::DLLExportStorageClass: return 2; 1117 } 1118 llvm_unreachable("Invalid DLL storage class"); 1119 } 1120 1121 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1122 switch (GV.getThreadLocalMode()) { 1123 case GlobalVariable::NotThreadLocal: return 0; 1124 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1125 case GlobalVariable::LocalDynamicTLSModel: return 2; 1126 case GlobalVariable::InitialExecTLSModel: return 3; 1127 case GlobalVariable::LocalExecTLSModel: return 4; 1128 } 1129 llvm_unreachable("Invalid TLS model"); 1130 } 1131 1132 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1133 switch (C.getSelectionKind()) { 1134 case Comdat::Any: 1135 return bitc::COMDAT_SELECTION_KIND_ANY; 1136 case Comdat::ExactMatch: 1137 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1138 case Comdat::Largest: 1139 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1140 case Comdat::NoDeduplicate: 1141 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1142 case Comdat::SameSize: 1143 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1144 } 1145 llvm_unreachable("Invalid selection kind"); 1146 } 1147 1148 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1149 switch (GV.getUnnamedAddr()) { 1150 case GlobalValue::UnnamedAddr::None: return 0; 1151 case GlobalValue::UnnamedAddr::Local: return 2; 1152 case GlobalValue::UnnamedAddr::Global: return 1; 1153 } 1154 llvm_unreachable("Invalid unnamed_addr"); 1155 } 1156 1157 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1158 if (GenerateHash) 1159 Hasher.update(Str); 1160 return StrtabBuilder.add(Str); 1161 } 1162 1163 void ModuleBitcodeWriter::writeComdats() { 1164 SmallVector<unsigned, 64> Vals; 1165 for (const Comdat *C : VE.getComdats()) { 1166 // COMDAT: [strtab offset, strtab size, selection_kind] 1167 Vals.push_back(addToStrtab(C->getName())); 1168 Vals.push_back(C->getName().size()); 1169 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1170 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1171 Vals.clear(); 1172 } 1173 } 1174 1175 /// Write a record that will eventually hold the word offset of the 1176 /// module-level VST. For now the offset is 0, which will be backpatched 1177 /// after the real VST is written. Saves the bit offset to backpatch. 1178 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1179 // Write a placeholder value in for the offset of the real VST, 1180 // which is written after the function blocks so that it can include 1181 // the offset of each function. The placeholder offset will be 1182 // updated when the real VST is written. 1183 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1184 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1185 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1186 // hold the real VST offset. Must use fixed instead of VBR as we don't 1187 // know how many VBR chunks to reserve ahead of time. 1188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1189 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1190 1191 // Emit the placeholder 1192 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1193 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1194 1195 // Compute and save the bit offset to the placeholder, which will be 1196 // patched when the real VST is written. We can simply subtract the 32-bit 1197 // fixed size from the current bit number to get the location to backpatch. 1198 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1199 } 1200 1201 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1202 1203 /// Determine the encoding to use for the given string name and length. 1204 static StringEncoding getStringEncoding(StringRef Str) { 1205 bool isChar6 = true; 1206 for (char C : Str) { 1207 if (isChar6) 1208 isChar6 = BitCodeAbbrevOp::isChar6(C); 1209 if ((unsigned char)C & 128) 1210 // don't bother scanning the rest. 1211 return SE_Fixed8; 1212 } 1213 if (isChar6) 1214 return SE_Char6; 1215 return SE_Fixed7; 1216 } 1217 1218 /// Emit top-level description of module, including target triple, inline asm, 1219 /// descriptors for global variables, and function prototype info. 1220 /// Returns the bit offset to backpatch with the location of the real VST. 1221 void ModuleBitcodeWriter::writeModuleInfo() { 1222 // Emit various pieces of data attached to a module. 1223 if (!M.getTargetTriple().empty()) 1224 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1225 0 /*TODO*/); 1226 const std::string &DL = M.getDataLayoutStr(); 1227 if (!DL.empty()) 1228 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1229 if (!M.getModuleInlineAsm().empty()) 1230 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1231 0 /*TODO*/); 1232 1233 // Emit information about sections and GC, computing how many there are. Also 1234 // compute the maximum alignment value. 1235 std::map<std::string, unsigned> SectionMap; 1236 std::map<std::string, unsigned> GCMap; 1237 MaybeAlign MaxAlignment; 1238 unsigned MaxGlobalType = 0; 1239 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1240 if (A) 1241 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1242 }; 1243 for (const GlobalVariable &GV : M.globals()) { 1244 UpdateMaxAlignment(GV.getAlign()); 1245 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1246 if (GV.hasSection()) { 1247 // Give section names unique ID's. 1248 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1249 if (!Entry) { 1250 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1251 0 /*TODO*/); 1252 Entry = SectionMap.size(); 1253 } 1254 } 1255 } 1256 for (const Function &F : M) { 1257 UpdateMaxAlignment(F.getAlign()); 1258 if (F.hasSection()) { 1259 // Give section names unique ID's. 1260 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1261 if (!Entry) { 1262 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1263 0 /*TODO*/); 1264 Entry = SectionMap.size(); 1265 } 1266 } 1267 if (F.hasGC()) { 1268 // Same for GC names. 1269 unsigned &Entry = GCMap[F.getGC()]; 1270 if (!Entry) { 1271 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1272 0 /*TODO*/); 1273 Entry = GCMap.size(); 1274 } 1275 } 1276 } 1277 1278 // Emit abbrev for globals, now that we know # sections and max alignment. 1279 unsigned SimpleGVarAbbrev = 0; 1280 if (!M.global_empty()) { 1281 // Add an abbrev for common globals with no visibility or thread localness. 1282 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1283 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1287 Log2_32_Ceil(MaxGlobalType+1))); 1288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1289 //| explicitType << 1 1290 //| constant 1291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1293 if (!MaxAlignment) // Alignment. 1294 Abbv->Add(BitCodeAbbrevOp(0)); 1295 else { 1296 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1298 Log2_32_Ceil(MaxEncAlignment+1))); 1299 } 1300 if (SectionMap.empty()) // Section. 1301 Abbv->Add(BitCodeAbbrevOp(0)); 1302 else 1303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1304 Log2_32_Ceil(SectionMap.size()+1))); 1305 // Don't bother emitting vis + thread local. 1306 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1307 } 1308 1309 SmallVector<unsigned, 64> Vals; 1310 // Emit the module's source file name. 1311 { 1312 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1313 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1314 if (Bits == SE_Char6) 1315 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1316 else if (Bits == SE_Fixed7) 1317 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1318 1319 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1320 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1321 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1323 Abbv->Add(AbbrevOpToUse); 1324 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1325 1326 for (const auto P : M.getSourceFileName()) 1327 Vals.push_back((unsigned char)P); 1328 1329 // Emit the finished record. 1330 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1331 Vals.clear(); 1332 } 1333 1334 // Emit the global variable information. 1335 for (const GlobalVariable &GV : M.globals()) { 1336 unsigned AbbrevToUse = 0; 1337 1338 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1339 // linkage, alignment, section, visibility, threadlocal, 1340 // unnamed_addr, externally_initialized, dllstorageclass, 1341 // comdat, attributes, DSO_Local] 1342 Vals.push_back(addToStrtab(GV.getName())); 1343 Vals.push_back(GV.getName().size()); 1344 Vals.push_back(VE.getTypeID(GV.getValueType())); 1345 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1346 Vals.push_back(GV.isDeclaration() ? 0 : 1347 (VE.getValueID(GV.getInitializer()) + 1)); 1348 Vals.push_back(getEncodedLinkage(GV)); 1349 Vals.push_back(getEncodedAlign(GV.getAlign())); 1350 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1351 : 0); 1352 if (GV.isThreadLocal() || 1353 GV.getVisibility() != GlobalValue::DefaultVisibility || 1354 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1355 GV.isExternallyInitialized() || 1356 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1357 GV.hasComdat() || 1358 GV.hasAttributes() || 1359 GV.isDSOLocal() || 1360 GV.hasPartition()) { 1361 Vals.push_back(getEncodedVisibility(GV)); 1362 Vals.push_back(getEncodedThreadLocalMode(GV)); 1363 Vals.push_back(getEncodedUnnamedAddr(GV)); 1364 Vals.push_back(GV.isExternallyInitialized()); 1365 Vals.push_back(getEncodedDLLStorageClass(GV)); 1366 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1367 1368 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1369 Vals.push_back(VE.getAttributeListID(AL)); 1370 1371 Vals.push_back(GV.isDSOLocal()); 1372 Vals.push_back(addToStrtab(GV.getPartition())); 1373 Vals.push_back(GV.getPartition().size()); 1374 } else { 1375 AbbrevToUse = SimpleGVarAbbrev; 1376 } 1377 1378 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1379 Vals.clear(); 1380 } 1381 1382 // Emit the function proto information. 1383 for (const Function &F : M) { 1384 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1385 // linkage, paramattrs, alignment, section, visibility, gc, 1386 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1387 // prefixdata, personalityfn, DSO_Local, addrspace] 1388 Vals.push_back(addToStrtab(F.getName())); 1389 Vals.push_back(F.getName().size()); 1390 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1391 Vals.push_back(F.getCallingConv()); 1392 Vals.push_back(F.isDeclaration()); 1393 Vals.push_back(getEncodedLinkage(F)); 1394 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1395 Vals.push_back(getEncodedAlign(F.getAlign())); 1396 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1397 : 0); 1398 Vals.push_back(getEncodedVisibility(F)); 1399 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1400 Vals.push_back(getEncodedUnnamedAddr(F)); 1401 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1402 : 0); 1403 Vals.push_back(getEncodedDLLStorageClass(F)); 1404 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1405 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1406 : 0); 1407 Vals.push_back( 1408 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1409 1410 Vals.push_back(F.isDSOLocal()); 1411 Vals.push_back(F.getAddressSpace()); 1412 Vals.push_back(addToStrtab(F.getPartition())); 1413 Vals.push_back(F.getPartition().size()); 1414 1415 unsigned AbbrevToUse = 0; 1416 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1417 Vals.clear(); 1418 } 1419 1420 // Emit the alias information. 1421 for (const GlobalAlias &A : M.aliases()) { 1422 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1423 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1424 // DSO_Local] 1425 Vals.push_back(addToStrtab(A.getName())); 1426 Vals.push_back(A.getName().size()); 1427 Vals.push_back(VE.getTypeID(A.getValueType())); 1428 Vals.push_back(A.getType()->getAddressSpace()); 1429 Vals.push_back(VE.getValueID(A.getAliasee())); 1430 Vals.push_back(getEncodedLinkage(A)); 1431 Vals.push_back(getEncodedVisibility(A)); 1432 Vals.push_back(getEncodedDLLStorageClass(A)); 1433 Vals.push_back(getEncodedThreadLocalMode(A)); 1434 Vals.push_back(getEncodedUnnamedAddr(A)); 1435 Vals.push_back(A.isDSOLocal()); 1436 Vals.push_back(addToStrtab(A.getPartition())); 1437 Vals.push_back(A.getPartition().size()); 1438 1439 unsigned AbbrevToUse = 0; 1440 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1441 Vals.clear(); 1442 } 1443 1444 // Emit the ifunc information. 1445 for (const GlobalIFunc &I : M.ifuncs()) { 1446 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1447 // val#, linkage, visibility, DSO_Local] 1448 Vals.push_back(addToStrtab(I.getName())); 1449 Vals.push_back(I.getName().size()); 1450 Vals.push_back(VE.getTypeID(I.getValueType())); 1451 Vals.push_back(I.getType()->getAddressSpace()); 1452 Vals.push_back(VE.getValueID(I.getResolver())); 1453 Vals.push_back(getEncodedLinkage(I)); 1454 Vals.push_back(getEncodedVisibility(I)); 1455 Vals.push_back(I.isDSOLocal()); 1456 Vals.push_back(addToStrtab(I.getPartition())); 1457 Vals.push_back(I.getPartition().size()); 1458 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1459 Vals.clear(); 1460 } 1461 1462 writeValueSymbolTableForwardDecl(); 1463 } 1464 1465 static uint64_t getOptimizationFlags(const Value *V) { 1466 uint64_t Flags = 0; 1467 1468 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1469 if (OBO->hasNoSignedWrap()) 1470 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1471 if (OBO->hasNoUnsignedWrap()) 1472 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1473 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1474 if (PEO->isExact()) 1475 Flags |= 1 << bitc::PEO_EXACT; 1476 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1477 if (FPMO->hasAllowReassoc()) 1478 Flags |= bitc::AllowReassoc; 1479 if (FPMO->hasNoNaNs()) 1480 Flags |= bitc::NoNaNs; 1481 if (FPMO->hasNoInfs()) 1482 Flags |= bitc::NoInfs; 1483 if (FPMO->hasNoSignedZeros()) 1484 Flags |= bitc::NoSignedZeros; 1485 if (FPMO->hasAllowReciprocal()) 1486 Flags |= bitc::AllowReciprocal; 1487 if (FPMO->hasAllowContract()) 1488 Flags |= bitc::AllowContract; 1489 if (FPMO->hasApproxFunc()) 1490 Flags |= bitc::ApproxFunc; 1491 } 1492 1493 return Flags; 1494 } 1495 1496 void ModuleBitcodeWriter::writeValueAsMetadata( 1497 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1498 // Mimic an MDNode with a value as one operand. 1499 Value *V = MD->getValue(); 1500 Record.push_back(VE.getTypeID(V->getType())); 1501 Record.push_back(VE.getValueID(V)); 1502 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1503 Record.clear(); 1504 } 1505 1506 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1507 SmallVectorImpl<uint64_t> &Record, 1508 unsigned Abbrev) { 1509 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1510 Metadata *MD = N->getOperand(i); 1511 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1512 "Unexpected function-local metadata"); 1513 Record.push_back(VE.getMetadataOrNullID(MD)); 1514 } 1515 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1516 : bitc::METADATA_NODE, 1517 Record, Abbrev); 1518 Record.clear(); 1519 } 1520 1521 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1522 // Assume the column is usually under 128, and always output the inlined-at 1523 // location (it's never more expensive than building an array size 1). 1524 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1525 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1532 return Stream.EmitAbbrev(std::move(Abbv)); 1533 } 1534 1535 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1536 SmallVectorImpl<uint64_t> &Record, 1537 unsigned &Abbrev) { 1538 if (!Abbrev) 1539 Abbrev = createDILocationAbbrev(); 1540 1541 Record.push_back(N->isDistinct()); 1542 Record.push_back(N->getLine()); 1543 Record.push_back(N->getColumn()); 1544 Record.push_back(VE.getMetadataID(N->getScope())); 1545 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1546 Record.push_back(N->isImplicitCode()); 1547 1548 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1549 Record.clear(); 1550 } 1551 1552 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1553 // Assume the column is usually under 128, and always output the inlined-at 1554 // location (it's never more expensive than building an array size 1). 1555 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1556 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1563 return Stream.EmitAbbrev(std::move(Abbv)); 1564 } 1565 1566 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1567 SmallVectorImpl<uint64_t> &Record, 1568 unsigned &Abbrev) { 1569 if (!Abbrev) 1570 Abbrev = createGenericDINodeAbbrev(); 1571 1572 Record.push_back(N->isDistinct()); 1573 Record.push_back(N->getTag()); 1574 Record.push_back(0); // Per-tag version field; unused for now. 1575 1576 for (auto &I : N->operands()) 1577 Record.push_back(VE.getMetadataOrNullID(I)); 1578 1579 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1580 Record.clear(); 1581 } 1582 1583 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1584 SmallVectorImpl<uint64_t> &Record, 1585 unsigned Abbrev) { 1586 const uint64_t Version = 2 << 1; 1587 Record.push_back((uint64_t)N->isDistinct() | Version); 1588 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1589 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1590 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1591 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1592 1593 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1594 Record.clear(); 1595 } 1596 1597 void ModuleBitcodeWriter::writeDIGenericSubrange( 1598 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1599 unsigned Abbrev) { 1600 Record.push_back((uint64_t)N->isDistinct()); 1601 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1602 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1603 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1604 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1605 1606 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1607 Record.clear(); 1608 } 1609 1610 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1611 if ((int64_t)V >= 0) 1612 Vals.push_back(V << 1); 1613 else 1614 Vals.push_back((-V << 1) | 1); 1615 } 1616 1617 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1618 // We have an arbitrary precision integer value to write whose 1619 // bit width is > 64. However, in canonical unsigned integer 1620 // format it is likely that the high bits are going to be zero. 1621 // So, we only write the number of active words. 1622 unsigned NumWords = A.getActiveWords(); 1623 const uint64_t *RawData = A.getRawData(); 1624 for (unsigned i = 0; i < NumWords; i++) 1625 emitSignedInt64(Vals, RawData[i]); 1626 } 1627 1628 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1629 SmallVectorImpl<uint64_t> &Record, 1630 unsigned Abbrev) { 1631 const uint64_t IsBigInt = 1 << 2; 1632 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1633 Record.push_back(N->getValue().getBitWidth()); 1634 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1635 emitWideAPInt(Record, N->getValue()); 1636 1637 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1638 Record.clear(); 1639 } 1640 1641 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1642 SmallVectorImpl<uint64_t> &Record, 1643 unsigned Abbrev) { 1644 Record.push_back(N->isDistinct()); 1645 Record.push_back(N->getTag()); 1646 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1647 Record.push_back(N->getSizeInBits()); 1648 Record.push_back(N->getAlignInBits()); 1649 Record.push_back(N->getEncoding()); 1650 Record.push_back(N->getFlags()); 1651 1652 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1653 Record.clear(); 1654 } 1655 1656 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1657 SmallVectorImpl<uint64_t> &Record, 1658 unsigned Abbrev) { 1659 Record.push_back(N->isDistinct()); 1660 Record.push_back(N->getTag()); 1661 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1662 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1663 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1664 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1665 Record.push_back(N->getSizeInBits()); 1666 Record.push_back(N->getAlignInBits()); 1667 Record.push_back(N->getEncoding()); 1668 1669 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1670 Record.clear(); 1671 } 1672 1673 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1674 SmallVectorImpl<uint64_t> &Record, 1675 unsigned Abbrev) { 1676 Record.push_back(N->isDistinct()); 1677 Record.push_back(N->getTag()); 1678 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1679 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1680 Record.push_back(N->getLine()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1682 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1683 Record.push_back(N->getSizeInBits()); 1684 Record.push_back(N->getAlignInBits()); 1685 Record.push_back(N->getOffsetInBits()); 1686 Record.push_back(N->getFlags()); 1687 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1688 1689 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1690 // that there is no DWARF address space associated with DIDerivedType. 1691 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1692 Record.push_back(*DWARFAddressSpace + 1); 1693 else 1694 Record.push_back(0); 1695 1696 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1697 1698 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1699 Record.clear(); 1700 } 1701 1702 void ModuleBitcodeWriter::writeDICompositeType( 1703 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1704 unsigned Abbrev) { 1705 const unsigned IsNotUsedInOldTypeRef = 0x2; 1706 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1707 Record.push_back(N->getTag()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1710 Record.push_back(N->getLine()); 1711 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1713 Record.push_back(N->getSizeInBits()); 1714 Record.push_back(N->getAlignInBits()); 1715 Record.push_back(N->getOffsetInBits()); 1716 Record.push_back(N->getFlags()); 1717 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1718 Record.push_back(N->getRuntimeLang()); 1719 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1726 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1727 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1728 1729 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1730 Record.clear(); 1731 } 1732 1733 void ModuleBitcodeWriter::writeDISubroutineType( 1734 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1735 unsigned Abbrev) { 1736 const unsigned HasNoOldTypeRefs = 0x2; 1737 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1738 Record.push_back(N->getFlags()); 1739 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1740 Record.push_back(N->getCC()); 1741 1742 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1743 Record.clear(); 1744 } 1745 1746 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1747 SmallVectorImpl<uint64_t> &Record, 1748 unsigned Abbrev) { 1749 Record.push_back(N->isDistinct()); 1750 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1752 if (N->getRawChecksum()) { 1753 Record.push_back(N->getRawChecksum()->Kind); 1754 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1755 } else { 1756 // Maintain backwards compatibility with the old internal representation of 1757 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1758 Record.push_back(0); 1759 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1760 } 1761 auto Source = N->getRawSource(); 1762 if (Source) 1763 Record.push_back(VE.getMetadataOrNullID(*Source)); 1764 1765 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1766 Record.clear(); 1767 } 1768 1769 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1770 SmallVectorImpl<uint64_t> &Record, 1771 unsigned Abbrev) { 1772 assert(N->isDistinct() && "Expected distinct compile units"); 1773 Record.push_back(/* IsDistinct */ true); 1774 Record.push_back(N->getSourceLanguage()); 1775 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1776 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1777 Record.push_back(N->isOptimized()); 1778 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1779 Record.push_back(N->getRuntimeVersion()); 1780 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1781 Record.push_back(N->getEmissionKind()); 1782 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1783 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1784 Record.push_back(/* subprograms */ 0); 1785 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1786 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1787 Record.push_back(N->getDWOId()); 1788 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1789 Record.push_back(N->getSplitDebugInlining()); 1790 Record.push_back(N->getDebugInfoForProfiling()); 1791 Record.push_back((unsigned)N->getNameTableKind()); 1792 Record.push_back(N->getRangesBaseAddress()); 1793 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1795 1796 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1797 Record.clear(); 1798 } 1799 1800 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1801 SmallVectorImpl<uint64_t> &Record, 1802 unsigned Abbrev) { 1803 const uint64_t HasUnitFlag = 1 << 1; 1804 const uint64_t HasSPFlagsFlag = 1 << 2; 1805 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1806 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1807 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1808 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1809 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1810 Record.push_back(N->getLine()); 1811 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1812 Record.push_back(N->getScopeLine()); 1813 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1814 Record.push_back(N->getSPFlags()); 1815 Record.push_back(N->getVirtualIndex()); 1816 Record.push_back(N->getFlags()); 1817 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1818 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1819 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1820 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1821 Record.push_back(N->getThisAdjustment()); 1822 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1823 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1824 1825 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1826 Record.clear(); 1827 } 1828 1829 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1830 SmallVectorImpl<uint64_t> &Record, 1831 unsigned Abbrev) { 1832 Record.push_back(N->isDistinct()); 1833 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1834 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1835 Record.push_back(N->getLine()); 1836 Record.push_back(N->getColumn()); 1837 1838 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1839 Record.clear(); 1840 } 1841 1842 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1843 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1844 unsigned Abbrev) { 1845 Record.push_back(N->isDistinct()); 1846 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1847 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1848 Record.push_back(N->getDiscriminator()); 1849 1850 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1851 Record.clear(); 1852 } 1853 1854 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1855 SmallVectorImpl<uint64_t> &Record, 1856 unsigned Abbrev) { 1857 Record.push_back(N->isDistinct()); 1858 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1859 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1860 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1861 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1862 Record.push_back(N->getLineNo()); 1863 1864 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1865 Record.clear(); 1866 } 1867 1868 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1869 SmallVectorImpl<uint64_t> &Record, 1870 unsigned Abbrev) { 1871 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1872 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1873 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1874 1875 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1876 Record.clear(); 1877 } 1878 1879 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1880 SmallVectorImpl<uint64_t> &Record, 1881 unsigned Abbrev) { 1882 Record.push_back(N->isDistinct()); 1883 Record.push_back(N->getMacinfoType()); 1884 Record.push_back(N->getLine()); 1885 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1886 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1887 1888 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1889 Record.clear(); 1890 } 1891 1892 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1893 SmallVectorImpl<uint64_t> &Record, 1894 unsigned Abbrev) { 1895 Record.push_back(N->isDistinct()); 1896 Record.push_back(N->getMacinfoType()); 1897 Record.push_back(N->getLine()); 1898 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1899 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1900 1901 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1902 Record.clear(); 1903 } 1904 1905 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1906 SmallVectorImpl<uint64_t> &Record, 1907 unsigned Abbrev) { 1908 Record.reserve(N->getArgs().size()); 1909 for (ValueAsMetadata *MD : N->getArgs()) 1910 Record.push_back(VE.getMetadataID(MD)); 1911 1912 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1913 Record.clear(); 1914 } 1915 1916 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1917 SmallVectorImpl<uint64_t> &Record, 1918 unsigned Abbrev) { 1919 Record.push_back(N->isDistinct()); 1920 for (auto &I : N->operands()) 1921 Record.push_back(VE.getMetadataOrNullID(I)); 1922 Record.push_back(N->getLineNo()); 1923 Record.push_back(N->getIsDecl()); 1924 1925 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1926 Record.clear(); 1927 } 1928 1929 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1930 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1931 unsigned Abbrev) { 1932 Record.push_back(N->isDistinct()); 1933 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1934 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1935 Record.push_back(N->isDefault()); 1936 1937 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1938 Record.clear(); 1939 } 1940 1941 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1942 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1943 unsigned Abbrev) { 1944 Record.push_back(N->isDistinct()); 1945 Record.push_back(N->getTag()); 1946 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1947 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1948 Record.push_back(N->isDefault()); 1949 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1950 1951 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1952 Record.clear(); 1953 } 1954 1955 void ModuleBitcodeWriter::writeDIGlobalVariable( 1956 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1957 unsigned Abbrev) { 1958 const uint64_t Version = 2 << 1; 1959 Record.push_back((uint64_t)N->isDistinct() | Version); 1960 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1961 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1962 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1963 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1964 Record.push_back(N->getLine()); 1965 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1966 Record.push_back(N->isLocalToUnit()); 1967 Record.push_back(N->isDefinition()); 1968 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1969 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1970 Record.push_back(N->getAlignInBits()); 1971 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1972 1973 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1974 Record.clear(); 1975 } 1976 1977 void ModuleBitcodeWriter::writeDILocalVariable( 1978 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1979 unsigned Abbrev) { 1980 // In order to support all possible bitcode formats in BitcodeReader we need 1981 // to distinguish the following cases: 1982 // 1) Record has no artificial tag (Record[1]), 1983 // has no obsolete inlinedAt field (Record[9]). 1984 // In this case Record size will be 8, HasAlignment flag is false. 1985 // 2) Record has artificial tag (Record[1]), 1986 // has no obsolete inlignedAt field (Record[9]). 1987 // In this case Record size will be 9, HasAlignment flag is false. 1988 // 3) Record has both artificial tag (Record[1]) and 1989 // obsolete inlignedAt field (Record[9]). 1990 // In this case Record size will be 10, HasAlignment flag is false. 1991 // 4) Record has neither artificial tag, nor inlignedAt field, but 1992 // HasAlignment flag is true and Record[8] contains alignment value. 1993 const uint64_t HasAlignmentFlag = 1 << 1; 1994 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1995 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1996 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1997 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1998 Record.push_back(N->getLine()); 1999 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2000 Record.push_back(N->getArg()); 2001 Record.push_back(N->getFlags()); 2002 Record.push_back(N->getAlignInBits()); 2003 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2004 2005 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2006 Record.clear(); 2007 } 2008 2009 void ModuleBitcodeWriter::writeDILabel( 2010 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2011 unsigned Abbrev) { 2012 Record.push_back((uint64_t)N->isDistinct()); 2013 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2014 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2015 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2016 Record.push_back(N->getLine()); 2017 2018 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2019 Record.clear(); 2020 } 2021 2022 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2023 SmallVectorImpl<uint64_t> &Record, 2024 unsigned Abbrev) { 2025 Record.reserve(N->getElements().size() + 1); 2026 const uint64_t Version = 3 << 1; 2027 Record.push_back((uint64_t)N->isDistinct() | Version); 2028 Record.append(N->elements_begin(), N->elements_end()); 2029 2030 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2031 Record.clear(); 2032 } 2033 2034 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2035 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2036 unsigned Abbrev) { 2037 Record.push_back(N->isDistinct()); 2038 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2039 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2040 2041 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2042 Record.clear(); 2043 } 2044 2045 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2046 SmallVectorImpl<uint64_t> &Record, 2047 unsigned Abbrev) { 2048 Record.push_back(N->isDistinct()); 2049 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2050 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2051 Record.push_back(N->getLine()); 2052 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2053 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2054 Record.push_back(N->getAttributes()); 2055 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2056 2057 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2058 Record.clear(); 2059 } 2060 2061 void ModuleBitcodeWriter::writeDIImportedEntity( 2062 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2063 unsigned Abbrev) { 2064 Record.push_back(N->isDistinct()); 2065 Record.push_back(N->getTag()); 2066 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2067 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2068 Record.push_back(N->getLine()); 2069 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2070 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2071 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2072 2073 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2074 Record.clear(); 2075 } 2076 2077 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2078 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2079 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2082 return Stream.EmitAbbrev(std::move(Abbv)); 2083 } 2084 2085 void ModuleBitcodeWriter::writeNamedMetadata( 2086 SmallVectorImpl<uint64_t> &Record) { 2087 if (M.named_metadata_empty()) 2088 return; 2089 2090 unsigned Abbrev = createNamedMetadataAbbrev(); 2091 for (const NamedMDNode &NMD : M.named_metadata()) { 2092 // Write name. 2093 StringRef Str = NMD.getName(); 2094 Record.append(Str.bytes_begin(), Str.bytes_end()); 2095 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2096 Record.clear(); 2097 2098 // Write named metadata operands. 2099 for (const MDNode *N : NMD.operands()) 2100 Record.push_back(VE.getMetadataID(N)); 2101 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2102 Record.clear(); 2103 } 2104 } 2105 2106 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2107 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2108 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2112 return Stream.EmitAbbrev(std::move(Abbv)); 2113 } 2114 2115 /// Write out a record for MDString. 2116 /// 2117 /// All the metadata strings in a metadata block are emitted in a single 2118 /// record. The sizes and strings themselves are shoved into a blob. 2119 void ModuleBitcodeWriter::writeMetadataStrings( 2120 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2121 if (Strings.empty()) 2122 return; 2123 2124 // Start the record with the number of strings. 2125 Record.push_back(bitc::METADATA_STRINGS); 2126 Record.push_back(Strings.size()); 2127 2128 // Emit the sizes of the strings in the blob. 2129 SmallString<256> Blob; 2130 { 2131 BitstreamWriter W(Blob); 2132 for (const Metadata *MD : Strings) 2133 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2134 W.FlushToWord(); 2135 } 2136 2137 // Add the offset to the strings to the record. 2138 Record.push_back(Blob.size()); 2139 2140 // Add the strings to the blob. 2141 for (const Metadata *MD : Strings) 2142 Blob.append(cast<MDString>(MD)->getString()); 2143 2144 // Emit the final record. 2145 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2146 Record.clear(); 2147 } 2148 2149 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2150 enum MetadataAbbrev : unsigned { 2151 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2152 #include "llvm/IR/Metadata.def" 2153 LastPlusOne 2154 }; 2155 2156 void ModuleBitcodeWriter::writeMetadataRecords( 2157 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2158 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2159 if (MDs.empty()) 2160 return; 2161 2162 // Initialize MDNode abbreviations. 2163 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2164 #include "llvm/IR/Metadata.def" 2165 2166 for (const Metadata *MD : MDs) { 2167 if (IndexPos) 2168 IndexPos->push_back(Stream.GetCurrentBitNo()); 2169 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2170 assert(N->isResolved() && "Expected forward references to be resolved"); 2171 2172 switch (N->getMetadataID()) { 2173 default: 2174 llvm_unreachable("Invalid MDNode subclass"); 2175 #define HANDLE_MDNODE_LEAF(CLASS) \ 2176 case Metadata::CLASS##Kind: \ 2177 if (MDAbbrevs) \ 2178 write##CLASS(cast<CLASS>(N), Record, \ 2179 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2180 else \ 2181 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2182 continue; 2183 #include "llvm/IR/Metadata.def" 2184 } 2185 } 2186 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2187 } 2188 } 2189 2190 void ModuleBitcodeWriter::writeModuleMetadata() { 2191 if (!VE.hasMDs() && M.named_metadata_empty()) 2192 return; 2193 2194 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2195 SmallVector<uint64_t, 64> Record; 2196 2197 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2198 // block and load any metadata. 2199 std::vector<unsigned> MDAbbrevs; 2200 2201 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2202 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2203 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2204 createGenericDINodeAbbrev(); 2205 2206 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2207 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2210 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2211 2212 Abbv = std::make_shared<BitCodeAbbrev>(); 2213 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2216 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2217 2218 // Emit MDStrings together upfront. 2219 writeMetadataStrings(VE.getMDStrings(), Record); 2220 2221 // We only emit an index for the metadata record if we have more than a given 2222 // (naive) threshold of metadatas, otherwise it is not worth it. 2223 if (VE.getNonMDStrings().size() > IndexThreshold) { 2224 // Write a placeholder value in for the offset of the metadata index, 2225 // which is written after the records, so that it can include 2226 // the offset of each entry. The placeholder offset will be 2227 // updated after all records are emitted. 2228 uint64_t Vals[] = {0, 0}; 2229 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2230 } 2231 2232 // Compute and save the bit offset to the current position, which will be 2233 // patched when we emit the index later. We can simply subtract the 64-bit 2234 // fixed size from the current bit number to get the location to backpatch. 2235 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2236 2237 // This index will contain the bitpos for each individual record. 2238 std::vector<uint64_t> IndexPos; 2239 IndexPos.reserve(VE.getNonMDStrings().size()); 2240 2241 // Write all the records 2242 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2243 2244 if (VE.getNonMDStrings().size() > IndexThreshold) { 2245 // Now that we have emitted all the records we will emit the index. But 2246 // first 2247 // backpatch the forward reference so that the reader can skip the records 2248 // efficiently. 2249 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2250 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2251 2252 // Delta encode the index. 2253 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2254 for (auto &Elt : IndexPos) { 2255 auto EltDelta = Elt - PreviousValue; 2256 PreviousValue = Elt; 2257 Elt = EltDelta; 2258 } 2259 // Emit the index record. 2260 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2261 IndexPos.clear(); 2262 } 2263 2264 // Write the named metadata now. 2265 writeNamedMetadata(Record); 2266 2267 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2268 SmallVector<uint64_t, 4> Record; 2269 Record.push_back(VE.getValueID(&GO)); 2270 pushGlobalMetadataAttachment(Record, GO); 2271 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2272 }; 2273 for (const Function &F : M) 2274 if (F.isDeclaration() && F.hasMetadata()) 2275 AddDeclAttachedMetadata(F); 2276 // FIXME: Only store metadata for declarations here, and move data for global 2277 // variable definitions to a separate block (PR28134). 2278 for (const GlobalVariable &GV : M.globals()) 2279 if (GV.hasMetadata()) 2280 AddDeclAttachedMetadata(GV); 2281 2282 Stream.ExitBlock(); 2283 } 2284 2285 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2286 if (!VE.hasMDs()) 2287 return; 2288 2289 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2290 SmallVector<uint64_t, 64> Record; 2291 writeMetadataStrings(VE.getMDStrings(), Record); 2292 writeMetadataRecords(VE.getNonMDStrings(), Record); 2293 Stream.ExitBlock(); 2294 } 2295 2296 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2297 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2298 // [n x [id, mdnode]] 2299 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2300 GO.getAllMetadata(MDs); 2301 for (const auto &I : MDs) { 2302 Record.push_back(I.first); 2303 Record.push_back(VE.getMetadataID(I.second)); 2304 } 2305 } 2306 2307 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2308 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2309 2310 SmallVector<uint64_t, 64> Record; 2311 2312 if (F.hasMetadata()) { 2313 pushGlobalMetadataAttachment(Record, F); 2314 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2315 Record.clear(); 2316 } 2317 2318 // Write metadata attachments 2319 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2320 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2321 for (const BasicBlock &BB : F) 2322 for (const Instruction &I : BB) { 2323 MDs.clear(); 2324 I.getAllMetadataOtherThanDebugLoc(MDs); 2325 2326 // If no metadata, ignore instruction. 2327 if (MDs.empty()) continue; 2328 2329 Record.push_back(VE.getInstructionID(&I)); 2330 2331 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2332 Record.push_back(MDs[i].first); 2333 Record.push_back(VE.getMetadataID(MDs[i].second)); 2334 } 2335 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2336 Record.clear(); 2337 } 2338 2339 Stream.ExitBlock(); 2340 } 2341 2342 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2343 SmallVector<uint64_t, 64> Record; 2344 2345 // Write metadata kinds 2346 // METADATA_KIND - [n x [id, name]] 2347 SmallVector<StringRef, 8> Names; 2348 M.getMDKindNames(Names); 2349 2350 if (Names.empty()) return; 2351 2352 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2353 2354 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2355 Record.push_back(MDKindID); 2356 StringRef KName = Names[MDKindID]; 2357 Record.append(KName.begin(), KName.end()); 2358 2359 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2360 Record.clear(); 2361 } 2362 2363 Stream.ExitBlock(); 2364 } 2365 2366 void ModuleBitcodeWriter::writeOperandBundleTags() { 2367 // Write metadata kinds 2368 // 2369 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2370 // 2371 // OPERAND_BUNDLE_TAG - [strchr x N] 2372 2373 SmallVector<StringRef, 8> Tags; 2374 M.getOperandBundleTags(Tags); 2375 2376 if (Tags.empty()) 2377 return; 2378 2379 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2380 2381 SmallVector<uint64_t, 64> Record; 2382 2383 for (auto Tag : Tags) { 2384 Record.append(Tag.begin(), Tag.end()); 2385 2386 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2387 Record.clear(); 2388 } 2389 2390 Stream.ExitBlock(); 2391 } 2392 2393 void ModuleBitcodeWriter::writeSyncScopeNames() { 2394 SmallVector<StringRef, 8> SSNs; 2395 M.getContext().getSyncScopeNames(SSNs); 2396 if (SSNs.empty()) 2397 return; 2398 2399 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2400 2401 SmallVector<uint64_t, 64> Record; 2402 for (auto SSN : SSNs) { 2403 Record.append(SSN.begin(), SSN.end()); 2404 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2405 Record.clear(); 2406 } 2407 2408 Stream.ExitBlock(); 2409 } 2410 2411 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2412 bool isGlobal) { 2413 if (FirstVal == LastVal) return; 2414 2415 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2416 2417 unsigned AggregateAbbrev = 0; 2418 unsigned String8Abbrev = 0; 2419 unsigned CString7Abbrev = 0; 2420 unsigned CString6Abbrev = 0; 2421 // If this is a constant pool for the module, emit module-specific abbrevs. 2422 if (isGlobal) { 2423 // Abbrev for CST_CODE_AGGREGATE. 2424 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2425 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2428 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2429 2430 // Abbrev for CST_CODE_STRING. 2431 Abbv = std::make_shared<BitCodeAbbrev>(); 2432 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2435 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2436 // Abbrev for CST_CODE_CSTRING. 2437 Abbv = std::make_shared<BitCodeAbbrev>(); 2438 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2441 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2442 // Abbrev for CST_CODE_CSTRING. 2443 Abbv = std::make_shared<BitCodeAbbrev>(); 2444 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2447 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2448 } 2449 2450 SmallVector<uint64_t, 64> Record; 2451 2452 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2453 Type *LastTy = nullptr; 2454 for (unsigned i = FirstVal; i != LastVal; ++i) { 2455 const Value *V = Vals[i].first; 2456 // If we need to switch types, do so now. 2457 if (V->getType() != LastTy) { 2458 LastTy = V->getType(); 2459 Record.push_back(VE.getTypeID(LastTy)); 2460 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2461 CONSTANTS_SETTYPE_ABBREV); 2462 Record.clear(); 2463 } 2464 2465 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2466 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2467 Record.push_back( 2468 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2469 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2470 2471 // Add the asm string. 2472 const std::string &AsmStr = IA->getAsmString(); 2473 Record.push_back(AsmStr.size()); 2474 Record.append(AsmStr.begin(), AsmStr.end()); 2475 2476 // Add the constraint string. 2477 const std::string &ConstraintStr = IA->getConstraintString(); 2478 Record.push_back(ConstraintStr.size()); 2479 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2480 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2481 Record.clear(); 2482 continue; 2483 } 2484 const Constant *C = cast<Constant>(V); 2485 unsigned Code = -1U; 2486 unsigned AbbrevToUse = 0; 2487 if (C->isNullValue()) { 2488 Code = bitc::CST_CODE_NULL; 2489 } else if (isa<PoisonValue>(C)) { 2490 Code = bitc::CST_CODE_POISON; 2491 } else if (isa<UndefValue>(C)) { 2492 Code = bitc::CST_CODE_UNDEF; 2493 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2494 if (IV->getBitWidth() <= 64) { 2495 uint64_t V = IV->getSExtValue(); 2496 emitSignedInt64(Record, V); 2497 Code = bitc::CST_CODE_INTEGER; 2498 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2499 } else { // Wide integers, > 64 bits in size. 2500 emitWideAPInt(Record, IV->getValue()); 2501 Code = bitc::CST_CODE_WIDE_INTEGER; 2502 } 2503 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2504 Code = bitc::CST_CODE_FLOAT; 2505 Type *Ty = CFP->getType(); 2506 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2507 Ty->isDoubleTy()) { 2508 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2509 } else if (Ty->isX86_FP80Ty()) { 2510 // api needed to prevent premature destruction 2511 // bits are not in the same order as a normal i80 APInt, compensate. 2512 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2513 const uint64_t *p = api.getRawData(); 2514 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2515 Record.push_back(p[0] & 0xffffLL); 2516 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2517 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2518 const uint64_t *p = api.getRawData(); 2519 Record.push_back(p[0]); 2520 Record.push_back(p[1]); 2521 } else { 2522 assert(0 && "Unknown FP type!"); 2523 } 2524 } else if (isa<ConstantDataSequential>(C) && 2525 cast<ConstantDataSequential>(C)->isString()) { 2526 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2527 // Emit constant strings specially. 2528 unsigned NumElts = Str->getNumElements(); 2529 // If this is a null-terminated string, use the denser CSTRING encoding. 2530 if (Str->isCString()) { 2531 Code = bitc::CST_CODE_CSTRING; 2532 --NumElts; // Don't encode the null, which isn't allowed by char6. 2533 } else { 2534 Code = bitc::CST_CODE_STRING; 2535 AbbrevToUse = String8Abbrev; 2536 } 2537 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2538 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2539 for (unsigned i = 0; i != NumElts; ++i) { 2540 unsigned char V = Str->getElementAsInteger(i); 2541 Record.push_back(V); 2542 isCStr7 &= (V & 128) == 0; 2543 if (isCStrChar6) 2544 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2545 } 2546 2547 if (isCStrChar6) 2548 AbbrevToUse = CString6Abbrev; 2549 else if (isCStr7) 2550 AbbrevToUse = CString7Abbrev; 2551 } else if (const ConstantDataSequential *CDS = 2552 dyn_cast<ConstantDataSequential>(C)) { 2553 Code = bitc::CST_CODE_DATA; 2554 Type *EltTy = CDS->getElementType(); 2555 if (isa<IntegerType>(EltTy)) { 2556 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2557 Record.push_back(CDS->getElementAsInteger(i)); 2558 } else { 2559 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2560 Record.push_back( 2561 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2562 } 2563 } else if (isa<ConstantAggregate>(C)) { 2564 Code = bitc::CST_CODE_AGGREGATE; 2565 for (const Value *Op : C->operands()) 2566 Record.push_back(VE.getValueID(Op)); 2567 AbbrevToUse = AggregateAbbrev; 2568 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2569 switch (CE->getOpcode()) { 2570 default: 2571 if (Instruction::isCast(CE->getOpcode())) { 2572 Code = bitc::CST_CODE_CE_CAST; 2573 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2574 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2575 Record.push_back(VE.getValueID(C->getOperand(0))); 2576 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2577 } else { 2578 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2579 Code = bitc::CST_CODE_CE_BINOP; 2580 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2581 Record.push_back(VE.getValueID(C->getOperand(0))); 2582 Record.push_back(VE.getValueID(C->getOperand(1))); 2583 uint64_t Flags = getOptimizationFlags(CE); 2584 if (Flags != 0) 2585 Record.push_back(Flags); 2586 } 2587 break; 2588 case Instruction::FNeg: { 2589 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2590 Code = bitc::CST_CODE_CE_UNOP; 2591 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2592 Record.push_back(VE.getValueID(C->getOperand(0))); 2593 uint64_t Flags = getOptimizationFlags(CE); 2594 if (Flags != 0) 2595 Record.push_back(Flags); 2596 break; 2597 } 2598 case Instruction::GetElementPtr: { 2599 Code = bitc::CST_CODE_CE_GEP; 2600 const auto *GO = cast<GEPOperator>(C); 2601 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2602 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2603 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2604 Record.push_back((*Idx << 1) | GO->isInBounds()); 2605 } else if (GO->isInBounds()) 2606 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2607 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2608 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2609 Record.push_back(VE.getValueID(C->getOperand(i))); 2610 } 2611 break; 2612 } 2613 case Instruction::Select: 2614 Code = bitc::CST_CODE_CE_SELECT; 2615 Record.push_back(VE.getValueID(C->getOperand(0))); 2616 Record.push_back(VE.getValueID(C->getOperand(1))); 2617 Record.push_back(VE.getValueID(C->getOperand(2))); 2618 break; 2619 case Instruction::ExtractElement: 2620 Code = bitc::CST_CODE_CE_EXTRACTELT; 2621 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2622 Record.push_back(VE.getValueID(C->getOperand(0))); 2623 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2624 Record.push_back(VE.getValueID(C->getOperand(1))); 2625 break; 2626 case Instruction::InsertElement: 2627 Code = bitc::CST_CODE_CE_INSERTELT; 2628 Record.push_back(VE.getValueID(C->getOperand(0))); 2629 Record.push_back(VE.getValueID(C->getOperand(1))); 2630 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2631 Record.push_back(VE.getValueID(C->getOperand(2))); 2632 break; 2633 case Instruction::ShuffleVector: 2634 // If the return type and argument types are the same, this is a 2635 // standard shufflevector instruction. If the types are different, 2636 // then the shuffle is widening or truncating the input vectors, and 2637 // the argument type must also be encoded. 2638 if (C->getType() == C->getOperand(0)->getType()) { 2639 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2640 } else { 2641 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2642 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2643 } 2644 Record.push_back(VE.getValueID(C->getOperand(0))); 2645 Record.push_back(VE.getValueID(C->getOperand(1))); 2646 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2647 break; 2648 case Instruction::ICmp: 2649 case Instruction::FCmp: 2650 Code = bitc::CST_CODE_CE_CMP; 2651 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2652 Record.push_back(VE.getValueID(C->getOperand(0))); 2653 Record.push_back(VE.getValueID(C->getOperand(1))); 2654 Record.push_back(CE->getPredicate()); 2655 break; 2656 case Instruction::ExtractValue: 2657 case Instruction::InsertValue: 2658 report_fatal_error("extractvalue/insertvalue constexprs not supported"); 2659 break; 2660 } 2661 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2662 Code = bitc::CST_CODE_BLOCKADDRESS; 2663 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2664 Record.push_back(VE.getValueID(BA->getFunction())); 2665 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2666 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2667 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2668 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2669 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2670 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2671 Code = bitc::CST_CODE_NO_CFI_VALUE; 2672 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2673 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2674 } else { 2675 #ifndef NDEBUG 2676 C->dump(); 2677 #endif 2678 llvm_unreachable("Unknown constant!"); 2679 } 2680 Stream.EmitRecord(Code, Record, AbbrevToUse); 2681 Record.clear(); 2682 } 2683 2684 Stream.ExitBlock(); 2685 } 2686 2687 void ModuleBitcodeWriter::writeModuleConstants() { 2688 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2689 2690 // Find the first constant to emit, which is the first non-globalvalue value. 2691 // We know globalvalues have been emitted by WriteModuleInfo. 2692 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2693 if (!isa<GlobalValue>(Vals[i].first)) { 2694 writeConstants(i, Vals.size(), true); 2695 return; 2696 } 2697 } 2698 } 2699 2700 /// pushValueAndType - The file has to encode both the value and type id for 2701 /// many values, because we need to know what type to create for forward 2702 /// references. However, most operands are not forward references, so this type 2703 /// field is not needed. 2704 /// 2705 /// This function adds V's value ID to Vals. If the value ID is higher than the 2706 /// instruction ID, then it is a forward reference, and it also includes the 2707 /// type ID. The value ID that is written is encoded relative to the InstID. 2708 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2709 SmallVectorImpl<unsigned> &Vals) { 2710 unsigned ValID = VE.getValueID(V); 2711 // Make encoding relative to the InstID. 2712 Vals.push_back(InstID - ValID); 2713 if (ValID >= InstID) { 2714 Vals.push_back(VE.getTypeID(V->getType())); 2715 return true; 2716 } 2717 return false; 2718 } 2719 2720 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2721 unsigned InstID) { 2722 SmallVector<unsigned, 64> Record; 2723 LLVMContext &C = CS.getContext(); 2724 2725 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2726 const auto &Bundle = CS.getOperandBundleAt(i); 2727 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2728 2729 for (auto &Input : Bundle.Inputs) 2730 pushValueAndType(Input, InstID, Record); 2731 2732 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2733 Record.clear(); 2734 } 2735 } 2736 2737 /// pushValue - Like pushValueAndType, but where the type of the value is 2738 /// omitted (perhaps it was already encoded in an earlier operand). 2739 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2740 SmallVectorImpl<unsigned> &Vals) { 2741 unsigned ValID = VE.getValueID(V); 2742 Vals.push_back(InstID - ValID); 2743 } 2744 2745 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2746 SmallVectorImpl<uint64_t> &Vals) { 2747 unsigned ValID = VE.getValueID(V); 2748 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2749 emitSignedInt64(Vals, diff); 2750 } 2751 2752 /// WriteInstruction - Emit an instruction to the specified stream. 2753 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2754 unsigned InstID, 2755 SmallVectorImpl<unsigned> &Vals) { 2756 unsigned Code = 0; 2757 unsigned AbbrevToUse = 0; 2758 VE.setInstructionID(&I); 2759 switch (I.getOpcode()) { 2760 default: 2761 if (Instruction::isCast(I.getOpcode())) { 2762 Code = bitc::FUNC_CODE_INST_CAST; 2763 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2764 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2765 Vals.push_back(VE.getTypeID(I.getType())); 2766 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2767 } else { 2768 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2769 Code = bitc::FUNC_CODE_INST_BINOP; 2770 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2771 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2772 pushValue(I.getOperand(1), InstID, Vals); 2773 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2774 uint64_t Flags = getOptimizationFlags(&I); 2775 if (Flags != 0) { 2776 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2777 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2778 Vals.push_back(Flags); 2779 } 2780 } 2781 break; 2782 case Instruction::FNeg: { 2783 Code = bitc::FUNC_CODE_INST_UNOP; 2784 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2785 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2786 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2787 uint64_t Flags = getOptimizationFlags(&I); 2788 if (Flags != 0) { 2789 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2790 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2791 Vals.push_back(Flags); 2792 } 2793 break; 2794 } 2795 case Instruction::GetElementPtr: { 2796 Code = bitc::FUNC_CODE_INST_GEP; 2797 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2798 auto &GEPInst = cast<GetElementPtrInst>(I); 2799 Vals.push_back(GEPInst.isInBounds()); 2800 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2801 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2802 pushValueAndType(I.getOperand(i), InstID, Vals); 2803 break; 2804 } 2805 case Instruction::ExtractValue: { 2806 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2807 pushValueAndType(I.getOperand(0), InstID, Vals); 2808 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2809 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2810 break; 2811 } 2812 case Instruction::InsertValue: { 2813 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2814 pushValueAndType(I.getOperand(0), InstID, Vals); 2815 pushValueAndType(I.getOperand(1), InstID, Vals); 2816 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2817 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2818 break; 2819 } 2820 case Instruction::Select: { 2821 Code = bitc::FUNC_CODE_INST_VSELECT; 2822 pushValueAndType(I.getOperand(1), InstID, Vals); 2823 pushValue(I.getOperand(2), InstID, Vals); 2824 pushValueAndType(I.getOperand(0), InstID, Vals); 2825 uint64_t Flags = getOptimizationFlags(&I); 2826 if (Flags != 0) 2827 Vals.push_back(Flags); 2828 break; 2829 } 2830 case Instruction::ExtractElement: 2831 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2832 pushValueAndType(I.getOperand(0), InstID, Vals); 2833 pushValueAndType(I.getOperand(1), InstID, Vals); 2834 break; 2835 case Instruction::InsertElement: 2836 Code = bitc::FUNC_CODE_INST_INSERTELT; 2837 pushValueAndType(I.getOperand(0), InstID, Vals); 2838 pushValue(I.getOperand(1), InstID, Vals); 2839 pushValueAndType(I.getOperand(2), InstID, Vals); 2840 break; 2841 case Instruction::ShuffleVector: 2842 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2843 pushValueAndType(I.getOperand(0), InstID, Vals); 2844 pushValue(I.getOperand(1), InstID, Vals); 2845 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2846 Vals); 2847 break; 2848 case Instruction::ICmp: 2849 case Instruction::FCmp: { 2850 // compare returning Int1Ty or vector of Int1Ty 2851 Code = bitc::FUNC_CODE_INST_CMP2; 2852 pushValueAndType(I.getOperand(0), InstID, Vals); 2853 pushValue(I.getOperand(1), InstID, Vals); 2854 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2855 uint64_t Flags = getOptimizationFlags(&I); 2856 if (Flags != 0) 2857 Vals.push_back(Flags); 2858 break; 2859 } 2860 2861 case Instruction::Ret: 2862 { 2863 Code = bitc::FUNC_CODE_INST_RET; 2864 unsigned NumOperands = I.getNumOperands(); 2865 if (NumOperands == 0) 2866 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2867 else if (NumOperands == 1) { 2868 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2869 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2870 } else { 2871 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2872 pushValueAndType(I.getOperand(i), InstID, Vals); 2873 } 2874 } 2875 break; 2876 case Instruction::Br: 2877 { 2878 Code = bitc::FUNC_CODE_INST_BR; 2879 const BranchInst &II = cast<BranchInst>(I); 2880 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2881 if (II.isConditional()) { 2882 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2883 pushValue(II.getCondition(), InstID, Vals); 2884 } 2885 } 2886 break; 2887 case Instruction::Switch: 2888 { 2889 Code = bitc::FUNC_CODE_INST_SWITCH; 2890 const SwitchInst &SI = cast<SwitchInst>(I); 2891 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2892 pushValue(SI.getCondition(), InstID, Vals); 2893 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2894 for (auto Case : SI.cases()) { 2895 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2896 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2897 } 2898 } 2899 break; 2900 case Instruction::IndirectBr: 2901 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2902 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2903 // Encode the address operand as relative, but not the basic blocks. 2904 pushValue(I.getOperand(0), InstID, Vals); 2905 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2906 Vals.push_back(VE.getValueID(I.getOperand(i))); 2907 break; 2908 2909 case Instruction::Invoke: { 2910 const InvokeInst *II = cast<InvokeInst>(&I); 2911 const Value *Callee = II->getCalledOperand(); 2912 FunctionType *FTy = II->getFunctionType(); 2913 2914 if (II->hasOperandBundles()) 2915 writeOperandBundles(*II, InstID); 2916 2917 Code = bitc::FUNC_CODE_INST_INVOKE; 2918 2919 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2920 Vals.push_back(II->getCallingConv() | 1 << 13); 2921 Vals.push_back(VE.getValueID(II->getNormalDest())); 2922 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2923 Vals.push_back(VE.getTypeID(FTy)); 2924 pushValueAndType(Callee, InstID, Vals); 2925 2926 // Emit value #'s for the fixed parameters. 2927 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2928 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2929 2930 // Emit type/value pairs for varargs params. 2931 if (FTy->isVarArg()) { 2932 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2933 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2934 } 2935 break; 2936 } 2937 case Instruction::Resume: 2938 Code = bitc::FUNC_CODE_INST_RESUME; 2939 pushValueAndType(I.getOperand(0), InstID, Vals); 2940 break; 2941 case Instruction::CleanupRet: { 2942 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2943 const auto &CRI = cast<CleanupReturnInst>(I); 2944 pushValue(CRI.getCleanupPad(), InstID, Vals); 2945 if (CRI.hasUnwindDest()) 2946 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2947 break; 2948 } 2949 case Instruction::CatchRet: { 2950 Code = bitc::FUNC_CODE_INST_CATCHRET; 2951 const auto &CRI = cast<CatchReturnInst>(I); 2952 pushValue(CRI.getCatchPad(), InstID, Vals); 2953 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2954 break; 2955 } 2956 case Instruction::CleanupPad: 2957 case Instruction::CatchPad: { 2958 const auto &FuncletPad = cast<FuncletPadInst>(I); 2959 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2960 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2961 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2962 2963 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2964 Vals.push_back(NumArgOperands); 2965 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2966 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2967 break; 2968 } 2969 case Instruction::CatchSwitch: { 2970 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2971 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2972 2973 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2974 2975 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2976 Vals.push_back(NumHandlers); 2977 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2978 Vals.push_back(VE.getValueID(CatchPadBB)); 2979 2980 if (CatchSwitch.hasUnwindDest()) 2981 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2982 break; 2983 } 2984 case Instruction::CallBr: { 2985 const CallBrInst *CBI = cast<CallBrInst>(&I); 2986 const Value *Callee = CBI->getCalledOperand(); 2987 FunctionType *FTy = CBI->getFunctionType(); 2988 2989 if (CBI->hasOperandBundles()) 2990 writeOperandBundles(*CBI, InstID); 2991 2992 Code = bitc::FUNC_CODE_INST_CALLBR; 2993 2994 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2995 2996 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2997 1 << bitc::CALL_EXPLICIT_TYPE); 2998 2999 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3000 Vals.push_back(CBI->getNumIndirectDests()); 3001 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3002 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3003 3004 Vals.push_back(VE.getTypeID(FTy)); 3005 pushValueAndType(Callee, InstID, Vals); 3006 3007 // Emit value #'s for the fixed parameters. 3008 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3009 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3010 3011 // Emit type/value pairs for varargs params. 3012 if (FTy->isVarArg()) { 3013 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3014 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3015 } 3016 break; 3017 } 3018 case Instruction::Unreachable: 3019 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3020 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3021 break; 3022 3023 case Instruction::PHI: { 3024 const PHINode &PN = cast<PHINode>(I); 3025 Code = bitc::FUNC_CODE_INST_PHI; 3026 // With the newer instruction encoding, forward references could give 3027 // negative valued IDs. This is most common for PHIs, so we use 3028 // signed VBRs. 3029 SmallVector<uint64_t, 128> Vals64; 3030 Vals64.push_back(VE.getTypeID(PN.getType())); 3031 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3032 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3033 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3034 } 3035 3036 uint64_t Flags = getOptimizationFlags(&I); 3037 if (Flags != 0) 3038 Vals64.push_back(Flags); 3039 3040 // Emit a Vals64 vector and exit. 3041 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3042 Vals64.clear(); 3043 return; 3044 } 3045 3046 case Instruction::LandingPad: { 3047 const LandingPadInst &LP = cast<LandingPadInst>(I); 3048 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3049 Vals.push_back(VE.getTypeID(LP.getType())); 3050 Vals.push_back(LP.isCleanup()); 3051 Vals.push_back(LP.getNumClauses()); 3052 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3053 if (LP.isCatch(I)) 3054 Vals.push_back(LandingPadInst::Catch); 3055 else 3056 Vals.push_back(LandingPadInst::Filter); 3057 pushValueAndType(LP.getClause(I), InstID, Vals); 3058 } 3059 break; 3060 } 3061 3062 case Instruction::Alloca: { 3063 Code = bitc::FUNC_CODE_INST_ALLOCA; 3064 const AllocaInst &AI = cast<AllocaInst>(I); 3065 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3066 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3067 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3068 using APV = AllocaPackedValues; 3069 unsigned Record = 0; 3070 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3071 Bitfield::set<APV::AlignLower>( 3072 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3073 Bitfield::set<APV::AlignUpper>(Record, 3074 EncodedAlign >> APV::AlignLower::Bits); 3075 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3076 Bitfield::set<APV::ExplicitType>(Record, true); 3077 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3078 Vals.push_back(Record); 3079 3080 unsigned AS = AI.getAddressSpace(); 3081 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3082 Vals.push_back(AS); 3083 break; 3084 } 3085 3086 case Instruction::Load: 3087 if (cast<LoadInst>(I).isAtomic()) { 3088 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3089 pushValueAndType(I.getOperand(0), InstID, Vals); 3090 } else { 3091 Code = bitc::FUNC_CODE_INST_LOAD; 3092 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3093 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3094 } 3095 Vals.push_back(VE.getTypeID(I.getType())); 3096 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3097 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3098 if (cast<LoadInst>(I).isAtomic()) { 3099 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3100 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3101 } 3102 break; 3103 case Instruction::Store: 3104 if (cast<StoreInst>(I).isAtomic()) 3105 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3106 else 3107 Code = bitc::FUNC_CODE_INST_STORE; 3108 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3109 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3110 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3111 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3112 if (cast<StoreInst>(I).isAtomic()) { 3113 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3114 Vals.push_back( 3115 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3116 } 3117 break; 3118 case Instruction::AtomicCmpXchg: 3119 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3120 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3121 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3122 pushValue(I.getOperand(2), InstID, Vals); // newval. 3123 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3124 Vals.push_back( 3125 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3126 Vals.push_back( 3127 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3128 Vals.push_back( 3129 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3130 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3131 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3132 break; 3133 case Instruction::AtomicRMW: 3134 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3135 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3136 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3137 Vals.push_back( 3138 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3139 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3140 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3141 Vals.push_back( 3142 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3143 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3144 break; 3145 case Instruction::Fence: 3146 Code = bitc::FUNC_CODE_INST_FENCE; 3147 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3148 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3149 break; 3150 case Instruction::Call: { 3151 const CallInst &CI = cast<CallInst>(I); 3152 FunctionType *FTy = CI.getFunctionType(); 3153 3154 if (CI.hasOperandBundles()) 3155 writeOperandBundles(CI, InstID); 3156 3157 Code = bitc::FUNC_CODE_INST_CALL; 3158 3159 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3160 3161 unsigned Flags = getOptimizationFlags(&I); 3162 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3163 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3164 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3165 1 << bitc::CALL_EXPLICIT_TYPE | 3166 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3167 unsigned(Flags != 0) << bitc::CALL_FMF); 3168 if (Flags != 0) 3169 Vals.push_back(Flags); 3170 3171 Vals.push_back(VE.getTypeID(FTy)); 3172 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3173 3174 // Emit value #'s for the fixed parameters. 3175 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3176 // Check for labels (can happen with asm labels). 3177 if (FTy->getParamType(i)->isLabelTy()) 3178 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3179 else 3180 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3181 } 3182 3183 // Emit type/value pairs for varargs params. 3184 if (FTy->isVarArg()) { 3185 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3186 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3187 } 3188 break; 3189 } 3190 case Instruction::VAArg: 3191 Code = bitc::FUNC_CODE_INST_VAARG; 3192 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3193 pushValue(I.getOperand(0), InstID, Vals); // valist. 3194 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3195 break; 3196 case Instruction::Freeze: 3197 Code = bitc::FUNC_CODE_INST_FREEZE; 3198 pushValueAndType(I.getOperand(0), InstID, Vals); 3199 break; 3200 } 3201 3202 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3203 Vals.clear(); 3204 } 3205 3206 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3207 /// to allow clients to efficiently find the function body. 3208 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3209 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3210 // Get the offset of the VST we are writing, and backpatch it into 3211 // the VST forward declaration record. 3212 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3213 // The BitcodeStartBit was the stream offset of the identification block. 3214 VSTOffset -= bitcodeStartBit(); 3215 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3216 // Note that we add 1 here because the offset is relative to one word 3217 // before the start of the identification block, which was historically 3218 // always the start of the regular bitcode header. 3219 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3220 3221 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3222 3223 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3224 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3227 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3228 3229 for (const Function &F : M) { 3230 uint64_t Record[2]; 3231 3232 if (F.isDeclaration()) 3233 continue; 3234 3235 Record[0] = VE.getValueID(&F); 3236 3237 // Save the word offset of the function (from the start of the 3238 // actual bitcode written to the stream). 3239 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3240 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3241 // Note that we add 1 here because the offset is relative to one word 3242 // before the start of the identification block, which was historically 3243 // always the start of the regular bitcode header. 3244 Record[1] = BitcodeIndex / 32 + 1; 3245 3246 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3247 } 3248 3249 Stream.ExitBlock(); 3250 } 3251 3252 /// Emit names for arguments, instructions and basic blocks in a function. 3253 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3254 const ValueSymbolTable &VST) { 3255 if (VST.empty()) 3256 return; 3257 3258 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3259 3260 // FIXME: Set up the abbrev, we know how many values there are! 3261 // FIXME: We know if the type names can use 7-bit ascii. 3262 SmallVector<uint64_t, 64> NameVals; 3263 3264 for (const ValueName &Name : VST) { 3265 // Figure out the encoding to use for the name. 3266 StringEncoding Bits = getStringEncoding(Name.getKey()); 3267 3268 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3269 NameVals.push_back(VE.getValueID(Name.getValue())); 3270 3271 // VST_CODE_ENTRY: [valueid, namechar x N] 3272 // VST_CODE_BBENTRY: [bbid, namechar x N] 3273 unsigned Code; 3274 if (isa<BasicBlock>(Name.getValue())) { 3275 Code = bitc::VST_CODE_BBENTRY; 3276 if (Bits == SE_Char6) 3277 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3278 } else { 3279 Code = bitc::VST_CODE_ENTRY; 3280 if (Bits == SE_Char6) 3281 AbbrevToUse = VST_ENTRY_6_ABBREV; 3282 else if (Bits == SE_Fixed7) 3283 AbbrevToUse = VST_ENTRY_7_ABBREV; 3284 } 3285 3286 for (const auto P : Name.getKey()) 3287 NameVals.push_back((unsigned char)P); 3288 3289 // Emit the finished record. 3290 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3291 NameVals.clear(); 3292 } 3293 3294 Stream.ExitBlock(); 3295 } 3296 3297 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3298 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3299 unsigned Code; 3300 if (isa<BasicBlock>(Order.V)) 3301 Code = bitc::USELIST_CODE_BB; 3302 else 3303 Code = bitc::USELIST_CODE_DEFAULT; 3304 3305 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3306 Record.push_back(VE.getValueID(Order.V)); 3307 Stream.EmitRecord(Code, Record); 3308 } 3309 3310 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3311 assert(VE.shouldPreserveUseListOrder() && 3312 "Expected to be preserving use-list order"); 3313 3314 auto hasMore = [&]() { 3315 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3316 }; 3317 if (!hasMore()) 3318 // Nothing to do. 3319 return; 3320 3321 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3322 while (hasMore()) { 3323 writeUseList(std::move(VE.UseListOrders.back())); 3324 VE.UseListOrders.pop_back(); 3325 } 3326 Stream.ExitBlock(); 3327 } 3328 3329 /// Emit a function body to the module stream. 3330 void ModuleBitcodeWriter::writeFunction( 3331 const Function &F, 3332 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3333 // Save the bitcode index of the start of this function block for recording 3334 // in the VST. 3335 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3336 3337 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3338 VE.incorporateFunction(F); 3339 3340 SmallVector<unsigned, 64> Vals; 3341 3342 // Emit the number of basic blocks, so the reader can create them ahead of 3343 // time. 3344 Vals.push_back(VE.getBasicBlocks().size()); 3345 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3346 Vals.clear(); 3347 3348 // If there are function-local constants, emit them now. 3349 unsigned CstStart, CstEnd; 3350 VE.getFunctionConstantRange(CstStart, CstEnd); 3351 writeConstants(CstStart, CstEnd, false); 3352 3353 // If there is function-local metadata, emit it now. 3354 writeFunctionMetadata(F); 3355 3356 // Keep a running idea of what the instruction ID is. 3357 unsigned InstID = CstEnd; 3358 3359 bool NeedsMetadataAttachment = F.hasMetadata(); 3360 3361 DILocation *LastDL = nullptr; 3362 // Finally, emit all the instructions, in order. 3363 for (const BasicBlock &BB : F) 3364 for (const Instruction &I : BB) { 3365 writeInstruction(I, InstID, Vals); 3366 3367 if (!I.getType()->isVoidTy()) 3368 ++InstID; 3369 3370 // If the instruction has metadata, write a metadata attachment later. 3371 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3372 3373 // If the instruction has a debug location, emit it. 3374 DILocation *DL = I.getDebugLoc(); 3375 if (!DL) 3376 continue; 3377 3378 if (DL == LastDL) { 3379 // Just repeat the same debug loc as last time. 3380 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3381 continue; 3382 } 3383 3384 Vals.push_back(DL->getLine()); 3385 Vals.push_back(DL->getColumn()); 3386 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3387 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3388 Vals.push_back(DL->isImplicitCode()); 3389 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3390 Vals.clear(); 3391 3392 LastDL = DL; 3393 } 3394 3395 // Emit names for all the instructions etc. 3396 if (auto *Symtab = F.getValueSymbolTable()) 3397 writeFunctionLevelValueSymbolTable(*Symtab); 3398 3399 if (NeedsMetadataAttachment) 3400 writeFunctionMetadataAttachment(F); 3401 if (VE.shouldPreserveUseListOrder()) 3402 writeUseListBlock(&F); 3403 VE.purgeFunction(); 3404 Stream.ExitBlock(); 3405 } 3406 3407 // Emit blockinfo, which defines the standard abbreviations etc. 3408 void ModuleBitcodeWriter::writeBlockInfo() { 3409 // We only want to emit block info records for blocks that have multiple 3410 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3411 // Other blocks can define their abbrevs inline. 3412 Stream.EnterBlockInfoBlock(); 3413 3414 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3415 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3420 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3421 VST_ENTRY_8_ABBREV) 3422 llvm_unreachable("Unexpected abbrev ordering!"); 3423 } 3424 3425 { // 7-bit fixed width VST_CODE_ENTRY strings. 3426 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3427 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3431 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3432 VST_ENTRY_7_ABBREV) 3433 llvm_unreachable("Unexpected abbrev ordering!"); 3434 } 3435 { // 6-bit char6 VST_CODE_ENTRY strings. 3436 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3437 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3441 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3442 VST_ENTRY_6_ABBREV) 3443 llvm_unreachable("Unexpected abbrev ordering!"); 3444 } 3445 { // 6-bit char6 VST_CODE_BBENTRY strings. 3446 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3447 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3451 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3452 VST_BBENTRY_6_ABBREV) 3453 llvm_unreachable("Unexpected abbrev ordering!"); 3454 } 3455 3456 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3457 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3458 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3460 VE.computeBitsRequiredForTypeIndicies())); 3461 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3462 CONSTANTS_SETTYPE_ABBREV) 3463 llvm_unreachable("Unexpected abbrev ordering!"); 3464 } 3465 3466 { // INTEGER abbrev for CONSTANTS_BLOCK. 3467 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3468 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3470 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3471 CONSTANTS_INTEGER_ABBREV) 3472 llvm_unreachable("Unexpected abbrev ordering!"); 3473 } 3474 3475 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3476 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3477 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3480 VE.computeBitsRequiredForTypeIndicies())); 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3482 3483 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3484 CONSTANTS_CE_CAST_Abbrev) 3485 llvm_unreachable("Unexpected abbrev ordering!"); 3486 } 3487 { // NULL abbrev for CONSTANTS_BLOCK. 3488 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3489 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3490 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3491 CONSTANTS_NULL_Abbrev) 3492 llvm_unreachable("Unexpected abbrev ordering!"); 3493 } 3494 3495 // FIXME: This should only use space for first class types! 3496 3497 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3498 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3499 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3502 VE.computeBitsRequiredForTypeIndicies())); 3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3505 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3506 FUNCTION_INST_LOAD_ABBREV) 3507 llvm_unreachable("Unexpected abbrev ordering!"); 3508 } 3509 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3510 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3511 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3514 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3515 FUNCTION_INST_UNOP_ABBREV) 3516 llvm_unreachable("Unexpected abbrev ordering!"); 3517 } 3518 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3519 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3520 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3524 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3525 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3526 llvm_unreachable("Unexpected abbrev ordering!"); 3527 } 3528 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3529 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3530 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3534 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3535 FUNCTION_INST_BINOP_ABBREV) 3536 llvm_unreachable("Unexpected abbrev ordering!"); 3537 } 3538 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3539 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3540 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3545 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3546 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3547 llvm_unreachable("Unexpected abbrev ordering!"); 3548 } 3549 { // INST_CAST abbrev for FUNCTION_BLOCK. 3550 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3551 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3554 VE.computeBitsRequiredForTypeIndicies())); 3555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3556 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3557 FUNCTION_INST_CAST_ABBREV) 3558 llvm_unreachable("Unexpected abbrev ordering!"); 3559 } 3560 3561 { // INST_RET abbrev for FUNCTION_BLOCK. 3562 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3563 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3564 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3565 FUNCTION_INST_RET_VOID_ABBREV) 3566 llvm_unreachable("Unexpected abbrev ordering!"); 3567 } 3568 { // INST_RET abbrev for FUNCTION_BLOCK. 3569 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3570 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3572 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3573 FUNCTION_INST_RET_VAL_ABBREV) 3574 llvm_unreachable("Unexpected abbrev ordering!"); 3575 } 3576 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3577 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3578 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3579 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3580 FUNCTION_INST_UNREACHABLE_ABBREV) 3581 llvm_unreachable("Unexpected abbrev ordering!"); 3582 } 3583 { 3584 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3585 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3588 Log2_32_Ceil(VE.getTypes().size() + 1))); 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3591 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3592 FUNCTION_INST_GEP_ABBREV) 3593 llvm_unreachable("Unexpected abbrev ordering!"); 3594 } 3595 3596 Stream.ExitBlock(); 3597 } 3598 3599 /// Write the module path strings, currently only used when generating 3600 /// a combined index file. 3601 void IndexBitcodeWriter::writeModStrings() { 3602 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3603 3604 // TODO: See which abbrev sizes we actually need to emit 3605 3606 // 8-bit fixed-width MST_ENTRY strings. 3607 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3608 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3612 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3613 3614 // 7-bit fixed width MST_ENTRY strings. 3615 Abbv = std::make_shared<BitCodeAbbrev>(); 3616 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3620 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3621 3622 // 6-bit char6 MST_ENTRY strings. 3623 Abbv = std::make_shared<BitCodeAbbrev>(); 3624 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3628 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3629 3630 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3631 Abbv = std::make_shared<BitCodeAbbrev>(); 3632 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3638 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3639 3640 SmallVector<unsigned, 64> Vals; 3641 forEachModule( 3642 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3643 StringRef Key = MPSE.getKey(); 3644 const auto &Value = MPSE.getValue(); 3645 StringEncoding Bits = getStringEncoding(Key); 3646 unsigned AbbrevToUse = Abbrev8Bit; 3647 if (Bits == SE_Char6) 3648 AbbrevToUse = Abbrev6Bit; 3649 else if (Bits == SE_Fixed7) 3650 AbbrevToUse = Abbrev7Bit; 3651 3652 Vals.push_back(Value.first); 3653 Vals.append(Key.begin(), Key.end()); 3654 3655 // Emit the finished record. 3656 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3657 3658 // Emit an optional hash for the module now 3659 const auto &Hash = Value.second; 3660 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3661 Vals.assign(Hash.begin(), Hash.end()); 3662 // Emit the hash record. 3663 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3664 } 3665 3666 Vals.clear(); 3667 }); 3668 Stream.ExitBlock(); 3669 } 3670 3671 /// Write the function type metadata related records that need to appear before 3672 /// a function summary entry (whether per-module or combined). 3673 template <typename Fn> 3674 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3675 FunctionSummary *FS, 3676 Fn GetValueID) { 3677 if (!FS->type_tests().empty()) 3678 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3679 3680 SmallVector<uint64_t, 64> Record; 3681 3682 auto WriteVFuncIdVec = [&](uint64_t Ty, 3683 ArrayRef<FunctionSummary::VFuncId> VFs) { 3684 if (VFs.empty()) 3685 return; 3686 Record.clear(); 3687 for (auto &VF : VFs) { 3688 Record.push_back(VF.GUID); 3689 Record.push_back(VF.Offset); 3690 } 3691 Stream.EmitRecord(Ty, Record); 3692 }; 3693 3694 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3695 FS->type_test_assume_vcalls()); 3696 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3697 FS->type_checked_load_vcalls()); 3698 3699 auto WriteConstVCallVec = [&](uint64_t Ty, 3700 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3701 for (auto &VC : VCs) { 3702 Record.clear(); 3703 Record.push_back(VC.VFunc.GUID); 3704 Record.push_back(VC.VFunc.Offset); 3705 llvm::append_range(Record, VC.Args); 3706 Stream.EmitRecord(Ty, Record); 3707 } 3708 }; 3709 3710 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3711 FS->type_test_assume_const_vcalls()); 3712 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3713 FS->type_checked_load_const_vcalls()); 3714 3715 auto WriteRange = [&](ConstantRange Range) { 3716 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3717 assert(Range.getLower().getNumWords() == 1); 3718 assert(Range.getUpper().getNumWords() == 1); 3719 emitSignedInt64(Record, *Range.getLower().getRawData()); 3720 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3721 }; 3722 3723 if (!FS->paramAccesses().empty()) { 3724 Record.clear(); 3725 for (auto &Arg : FS->paramAccesses()) { 3726 size_t UndoSize = Record.size(); 3727 Record.push_back(Arg.ParamNo); 3728 WriteRange(Arg.Use); 3729 Record.push_back(Arg.Calls.size()); 3730 for (auto &Call : Arg.Calls) { 3731 Record.push_back(Call.ParamNo); 3732 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3733 if (!ValueID) { 3734 // If ValueID is unknown we can't drop just this call, we must drop 3735 // entire parameter. 3736 Record.resize(UndoSize); 3737 break; 3738 } 3739 Record.push_back(*ValueID); 3740 WriteRange(Call.Offsets); 3741 } 3742 } 3743 if (!Record.empty()) 3744 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3745 } 3746 } 3747 3748 /// Collect type IDs from type tests used by function. 3749 static void 3750 getReferencedTypeIds(FunctionSummary *FS, 3751 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3752 if (!FS->type_tests().empty()) 3753 for (auto &TT : FS->type_tests()) 3754 ReferencedTypeIds.insert(TT); 3755 3756 auto GetReferencedTypesFromVFuncIdVec = 3757 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3758 for (auto &VF : VFs) 3759 ReferencedTypeIds.insert(VF.GUID); 3760 }; 3761 3762 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3763 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3764 3765 auto GetReferencedTypesFromConstVCallVec = 3766 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3767 for (auto &VC : VCs) 3768 ReferencedTypeIds.insert(VC.VFunc.GUID); 3769 }; 3770 3771 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3772 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3773 } 3774 3775 static void writeWholeProgramDevirtResolutionByArg( 3776 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3777 const WholeProgramDevirtResolution::ByArg &ByArg) { 3778 NameVals.push_back(args.size()); 3779 llvm::append_range(NameVals, args); 3780 3781 NameVals.push_back(ByArg.TheKind); 3782 NameVals.push_back(ByArg.Info); 3783 NameVals.push_back(ByArg.Byte); 3784 NameVals.push_back(ByArg.Bit); 3785 } 3786 3787 static void writeWholeProgramDevirtResolution( 3788 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3789 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3790 NameVals.push_back(Id); 3791 3792 NameVals.push_back(Wpd.TheKind); 3793 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3794 NameVals.push_back(Wpd.SingleImplName.size()); 3795 3796 NameVals.push_back(Wpd.ResByArg.size()); 3797 for (auto &A : Wpd.ResByArg) 3798 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3799 } 3800 3801 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3802 StringTableBuilder &StrtabBuilder, 3803 const std::string &Id, 3804 const TypeIdSummary &Summary) { 3805 NameVals.push_back(StrtabBuilder.add(Id)); 3806 NameVals.push_back(Id.size()); 3807 3808 NameVals.push_back(Summary.TTRes.TheKind); 3809 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3810 NameVals.push_back(Summary.TTRes.AlignLog2); 3811 NameVals.push_back(Summary.TTRes.SizeM1); 3812 NameVals.push_back(Summary.TTRes.BitMask); 3813 NameVals.push_back(Summary.TTRes.InlineBits); 3814 3815 for (auto &W : Summary.WPDRes) 3816 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3817 W.second); 3818 } 3819 3820 static void writeTypeIdCompatibleVtableSummaryRecord( 3821 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3822 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3823 ValueEnumerator &VE) { 3824 NameVals.push_back(StrtabBuilder.add(Id)); 3825 NameVals.push_back(Id.size()); 3826 3827 for (auto &P : Summary) { 3828 NameVals.push_back(P.AddressPointOffset); 3829 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3830 } 3831 } 3832 3833 // Helper to emit a single function summary record. 3834 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3835 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3836 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3837 const Function &F) { 3838 NameVals.push_back(ValueID); 3839 3840 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3841 3842 writeFunctionTypeMetadataRecords( 3843 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3844 return {VE.getValueID(VI.getValue())}; 3845 }); 3846 3847 auto SpecialRefCnts = FS->specialRefCounts(); 3848 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3849 NameVals.push_back(FS->instCount()); 3850 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3851 NameVals.push_back(FS->refs().size()); 3852 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3853 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3854 3855 for (auto &RI : FS->refs()) 3856 NameVals.push_back(VE.getValueID(RI.getValue())); 3857 3858 bool HasProfileData = 3859 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3860 for (auto &ECI : FS->calls()) { 3861 NameVals.push_back(getValueId(ECI.first)); 3862 if (HasProfileData) 3863 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3864 else if (WriteRelBFToSummary) 3865 NameVals.push_back(ECI.second.RelBlockFreq); 3866 } 3867 3868 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3869 unsigned Code = 3870 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3871 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3872 : bitc::FS_PERMODULE)); 3873 3874 // Emit the finished record. 3875 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3876 NameVals.clear(); 3877 } 3878 3879 // Collect the global value references in the given variable's initializer, 3880 // and emit them in a summary record. 3881 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3882 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3883 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3884 auto VI = Index->getValueInfo(V.getGUID()); 3885 if (!VI || VI.getSummaryList().empty()) { 3886 // Only declarations should not have a summary (a declaration might however 3887 // have a summary if the def was in module level asm). 3888 assert(V.isDeclaration()); 3889 return; 3890 } 3891 auto *Summary = VI.getSummaryList()[0].get(); 3892 NameVals.push_back(VE.getValueID(&V)); 3893 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3894 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3895 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3896 3897 auto VTableFuncs = VS->vTableFuncs(); 3898 if (!VTableFuncs.empty()) 3899 NameVals.push_back(VS->refs().size()); 3900 3901 unsigned SizeBeforeRefs = NameVals.size(); 3902 for (auto &RI : VS->refs()) 3903 NameVals.push_back(VE.getValueID(RI.getValue())); 3904 // Sort the refs for determinism output, the vector returned by FS->refs() has 3905 // been initialized from a DenseSet. 3906 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3907 3908 if (VTableFuncs.empty()) 3909 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3910 FSModRefsAbbrev); 3911 else { 3912 // VTableFuncs pairs should already be sorted by offset. 3913 for (auto &P : VTableFuncs) { 3914 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3915 NameVals.push_back(P.VTableOffset); 3916 } 3917 3918 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3919 FSModVTableRefsAbbrev); 3920 } 3921 NameVals.clear(); 3922 } 3923 3924 /// Emit the per-module summary section alongside the rest of 3925 /// the module's bitcode. 3926 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3927 // By default we compile with ThinLTO if the module has a summary, but the 3928 // client can request full LTO with a module flag. 3929 bool IsThinLTO = true; 3930 if (auto *MD = 3931 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3932 IsThinLTO = MD->getZExtValue(); 3933 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3934 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3935 4); 3936 3937 Stream.EmitRecord( 3938 bitc::FS_VERSION, 3939 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3940 3941 // Write the index flags. 3942 uint64_t Flags = 0; 3943 // Bits 1-3 are set only in the combined index, skip them. 3944 if (Index->enableSplitLTOUnit()) 3945 Flags |= 0x8; 3946 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3947 3948 if (Index->begin() == Index->end()) { 3949 Stream.ExitBlock(); 3950 return; 3951 } 3952 3953 for (const auto &GVI : valueIds()) { 3954 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3955 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3956 } 3957 3958 // Abbrev for FS_PERMODULE_PROFILE. 3959 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3960 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3968 // numrefs x valueid, n x (valueid, hotness) 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3971 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3972 3973 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3974 Abbv = std::make_shared<BitCodeAbbrev>(); 3975 if (WriteRelBFToSummary) 3976 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3977 else 3978 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3986 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3989 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3990 3991 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3992 Abbv = std::make_shared<BitCodeAbbrev>(); 3993 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3998 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3999 4000 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4001 Abbv = std::make_shared<BitCodeAbbrev>(); 4002 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4006 // numrefs x valueid, n x (valueid , offset) 4007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4009 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4010 4011 // Abbrev for FS_ALIAS. 4012 Abbv = std::make_shared<BitCodeAbbrev>(); 4013 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4017 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4018 4019 // Abbrev for FS_TYPE_ID_METADATA 4020 Abbv = std::make_shared<BitCodeAbbrev>(); 4021 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4024 // n x (valueid , offset) 4025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4027 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4028 4029 SmallVector<uint64_t, 64> NameVals; 4030 // Iterate over the list of functions instead of the Index to 4031 // ensure the ordering is stable. 4032 for (const Function &F : M) { 4033 // Summary emission does not support anonymous functions, they have to 4034 // renamed using the anonymous function renaming pass. 4035 if (!F.hasName()) 4036 report_fatal_error("Unexpected anonymous function when writing summary"); 4037 4038 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4039 if (!VI || VI.getSummaryList().empty()) { 4040 // Only declarations should not have a summary (a declaration might 4041 // however have a summary if the def was in module level asm). 4042 assert(F.isDeclaration()); 4043 continue; 4044 } 4045 auto *Summary = VI.getSummaryList()[0].get(); 4046 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4047 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4048 } 4049 4050 // Capture references from GlobalVariable initializers, which are outside 4051 // of a function scope. 4052 for (const GlobalVariable &G : M.globals()) 4053 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4054 FSModVTableRefsAbbrev); 4055 4056 for (const GlobalAlias &A : M.aliases()) { 4057 auto *Aliasee = A.getAliaseeObject(); 4058 if (!Aliasee->hasName()) 4059 // Nameless function don't have an entry in the summary, skip it. 4060 continue; 4061 auto AliasId = VE.getValueID(&A); 4062 auto AliaseeId = VE.getValueID(Aliasee); 4063 NameVals.push_back(AliasId); 4064 auto *Summary = Index->getGlobalValueSummary(A); 4065 AliasSummary *AS = cast<AliasSummary>(Summary); 4066 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4067 NameVals.push_back(AliaseeId); 4068 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4069 NameVals.clear(); 4070 } 4071 4072 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4073 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4074 S.second, VE); 4075 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4076 TypeIdCompatibleVtableAbbrev); 4077 NameVals.clear(); 4078 } 4079 4080 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4081 ArrayRef<uint64_t>{Index->getBlockCount()}); 4082 4083 Stream.ExitBlock(); 4084 } 4085 4086 /// Emit the combined summary section into the combined index file. 4087 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4088 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4089 Stream.EmitRecord( 4090 bitc::FS_VERSION, 4091 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4092 4093 // Write the index flags. 4094 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4095 4096 for (const auto &GVI : valueIds()) { 4097 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4098 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4099 } 4100 4101 // Abbrev for FS_COMBINED. 4102 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4103 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4113 // numrefs x valueid, n x (valueid) 4114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4116 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4117 4118 // Abbrev for FS_COMBINED_PROFILE. 4119 Abbv = std::make_shared<BitCodeAbbrev>(); 4120 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4130 // numrefs x valueid, n x (valueid, hotness) 4131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4133 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4134 4135 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4136 Abbv = std::make_shared<BitCodeAbbrev>(); 4137 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4143 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4144 4145 // Abbrev for FS_COMBINED_ALIAS. 4146 Abbv = std::make_shared<BitCodeAbbrev>(); 4147 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4152 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4153 4154 // The aliases are emitted as a post-pass, and will point to the value 4155 // id of the aliasee. Save them in a vector for post-processing. 4156 SmallVector<AliasSummary *, 64> Aliases; 4157 4158 // Save the value id for each summary for alias emission. 4159 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4160 4161 SmallVector<uint64_t, 64> NameVals; 4162 4163 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4164 // with the type ids referenced by this index file. 4165 std::set<GlobalValue::GUID> ReferencedTypeIds; 4166 4167 // For local linkage, we also emit the original name separately 4168 // immediately after the record. 4169 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4170 // We don't need to emit the original name if we are writing the index for 4171 // distributed backends (in which case ModuleToSummariesForIndex is 4172 // non-null). The original name is only needed during the thin link, since 4173 // for SamplePGO the indirect call targets for local functions have 4174 // have the original name annotated in profile. 4175 // Continue to emit it when writing out the entire combined index, which is 4176 // used in testing the thin link via llvm-lto. 4177 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4178 return; 4179 NameVals.push_back(S.getOriginalName()); 4180 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4181 NameVals.clear(); 4182 }; 4183 4184 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4185 forEachSummary([&](GVInfo I, bool IsAliasee) { 4186 GlobalValueSummary *S = I.second; 4187 assert(S); 4188 DefOrUseGUIDs.insert(I.first); 4189 for (const ValueInfo &VI : S->refs()) 4190 DefOrUseGUIDs.insert(VI.getGUID()); 4191 4192 auto ValueId = getValueId(I.first); 4193 assert(ValueId); 4194 SummaryToValueIdMap[S] = *ValueId; 4195 4196 // If this is invoked for an aliasee, we want to record the above 4197 // mapping, but then not emit a summary entry (if the aliasee is 4198 // to be imported, we will invoke this separately with IsAliasee=false). 4199 if (IsAliasee) 4200 return; 4201 4202 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4203 // Will process aliases as a post-pass because the reader wants all 4204 // global to be loaded first. 4205 Aliases.push_back(AS); 4206 return; 4207 } 4208 4209 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4210 NameVals.push_back(*ValueId); 4211 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4212 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4213 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4214 for (auto &RI : VS->refs()) { 4215 auto RefValueId = getValueId(RI.getGUID()); 4216 if (!RefValueId) 4217 continue; 4218 NameVals.push_back(*RefValueId); 4219 } 4220 4221 // Emit the finished record. 4222 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4223 FSModRefsAbbrev); 4224 NameVals.clear(); 4225 MaybeEmitOriginalName(*S); 4226 return; 4227 } 4228 4229 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4230 return getValueId(VI.getGUID()); 4231 }; 4232 4233 auto *FS = cast<FunctionSummary>(S); 4234 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4235 getReferencedTypeIds(FS, ReferencedTypeIds); 4236 4237 NameVals.push_back(*ValueId); 4238 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4239 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4240 NameVals.push_back(FS->instCount()); 4241 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4242 NameVals.push_back(FS->entryCount()); 4243 4244 // Fill in below 4245 NameVals.push_back(0); // numrefs 4246 NameVals.push_back(0); // rorefcnt 4247 NameVals.push_back(0); // worefcnt 4248 4249 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4250 for (auto &RI : FS->refs()) { 4251 auto RefValueId = getValueId(RI.getGUID()); 4252 if (!RefValueId) 4253 continue; 4254 NameVals.push_back(*RefValueId); 4255 if (RI.isReadOnly()) 4256 RORefCnt++; 4257 else if (RI.isWriteOnly()) 4258 WORefCnt++; 4259 Count++; 4260 } 4261 NameVals[6] = Count; 4262 NameVals[7] = RORefCnt; 4263 NameVals[8] = WORefCnt; 4264 4265 bool HasProfileData = false; 4266 for (auto &EI : FS->calls()) { 4267 HasProfileData |= 4268 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4269 if (HasProfileData) 4270 break; 4271 } 4272 4273 for (auto &EI : FS->calls()) { 4274 // If this GUID doesn't have a value id, it doesn't have a function 4275 // summary and we don't need to record any calls to it. 4276 Optional<unsigned> CallValueId = GetValueId(EI.first); 4277 if (!CallValueId) 4278 continue; 4279 NameVals.push_back(*CallValueId); 4280 if (HasProfileData) 4281 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4282 } 4283 4284 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4285 unsigned Code = 4286 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4287 4288 // Emit the finished record. 4289 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4290 NameVals.clear(); 4291 MaybeEmitOriginalName(*S); 4292 }); 4293 4294 for (auto *AS : Aliases) { 4295 auto AliasValueId = SummaryToValueIdMap[AS]; 4296 assert(AliasValueId); 4297 NameVals.push_back(AliasValueId); 4298 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4299 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4300 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4301 assert(AliaseeValueId); 4302 NameVals.push_back(AliaseeValueId); 4303 4304 // Emit the finished record. 4305 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4306 NameVals.clear(); 4307 MaybeEmitOriginalName(*AS); 4308 4309 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4310 getReferencedTypeIds(FS, ReferencedTypeIds); 4311 } 4312 4313 if (!Index.cfiFunctionDefs().empty()) { 4314 for (auto &S : Index.cfiFunctionDefs()) { 4315 if (DefOrUseGUIDs.count( 4316 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4317 NameVals.push_back(StrtabBuilder.add(S)); 4318 NameVals.push_back(S.size()); 4319 } 4320 } 4321 if (!NameVals.empty()) { 4322 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4323 NameVals.clear(); 4324 } 4325 } 4326 4327 if (!Index.cfiFunctionDecls().empty()) { 4328 for (auto &S : Index.cfiFunctionDecls()) { 4329 if (DefOrUseGUIDs.count( 4330 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4331 NameVals.push_back(StrtabBuilder.add(S)); 4332 NameVals.push_back(S.size()); 4333 } 4334 } 4335 if (!NameVals.empty()) { 4336 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4337 NameVals.clear(); 4338 } 4339 } 4340 4341 // Walk the GUIDs that were referenced, and write the 4342 // corresponding type id records. 4343 for (auto &T : ReferencedTypeIds) { 4344 auto TidIter = Index.typeIds().equal_range(T); 4345 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4346 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4347 It->second.second); 4348 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4349 NameVals.clear(); 4350 } 4351 } 4352 4353 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4354 ArrayRef<uint64_t>{Index.getBlockCount()}); 4355 4356 Stream.ExitBlock(); 4357 } 4358 4359 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4360 /// current llvm version, and a record for the epoch number. 4361 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4362 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4363 4364 // Write the "user readable" string identifying the bitcode producer 4365 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4366 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4369 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4370 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4371 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4372 4373 // Write the epoch version 4374 Abbv = std::make_shared<BitCodeAbbrev>(); 4375 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4377 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4378 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4379 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4380 Stream.ExitBlock(); 4381 } 4382 4383 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4384 // Emit the module's hash. 4385 // MODULE_CODE_HASH: [5*i32] 4386 if (GenerateHash) { 4387 uint32_t Vals[5]; 4388 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4389 Buffer.size() - BlockStartPos)); 4390 StringRef Hash = Hasher.result(); 4391 for (int Pos = 0; Pos < 20; Pos += 4) { 4392 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4393 } 4394 4395 // Emit the finished record. 4396 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4397 4398 if (ModHash) 4399 // Save the written hash value. 4400 llvm::copy(Vals, std::begin(*ModHash)); 4401 } 4402 } 4403 4404 void ModuleBitcodeWriter::write() { 4405 writeIdentificationBlock(Stream); 4406 4407 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4408 size_t BlockStartPos = Buffer.size(); 4409 4410 writeModuleVersion(); 4411 4412 // Emit blockinfo, which defines the standard abbreviations etc. 4413 writeBlockInfo(); 4414 4415 // Emit information describing all of the types in the module. 4416 writeTypeTable(); 4417 4418 // Emit information about attribute groups. 4419 writeAttributeGroupTable(); 4420 4421 // Emit information about parameter attributes. 4422 writeAttributeTable(); 4423 4424 writeComdats(); 4425 4426 // Emit top-level description of module, including target triple, inline asm, 4427 // descriptors for global variables, and function prototype info. 4428 writeModuleInfo(); 4429 4430 // Emit constants. 4431 writeModuleConstants(); 4432 4433 // Emit metadata kind names. 4434 writeModuleMetadataKinds(); 4435 4436 // Emit metadata. 4437 writeModuleMetadata(); 4438 4439 // Emit module-level use-lists. 4440 if (VE.shouldPreserveUseListOrder()) 4441 writeUseListBlock(nullptr); 4442 4443 writeOperandBundleTags(); 4444 writeSyncScopeNames(); 4445 4446 // Emit function bodies. 4447 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4448 for (const Function &F : M) 4449 if (!F.isDeclaration()) 4450 writeFunction(F, FunctionToBitcodeIndex); 4451 4452 // Need to write after the above call to WriteFunction which populates 4453 // the summary information in the index. 4454 if (Index) 4455 writePerModuleGlobalValueSummary(); 4456 4457 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4458 4459 writeModuleHash(BlockStartPos); 4460 4461 Stream.ExitBlock(); 4462 } 4463 4464 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4465 uint32_t &Position) { 4466 support::endian::write32le(&Buffer[Position], Value); 4467 Position += 4; 4468 } 4469 4470 /// If generating a bc file on darwin, we have to emit a 4471 /// header and trailer to make it compatible with the system archiver. To do 4472 /// this we emit the following header, and then emit a trailer that pads the 4473 /// file out to be a multiple of 16 bytes. 4474 /// 4475 /// struct bc_header { 4476 /// uint32_t Magic; // 0x0B17C0DE 4477 /// uint32_t Version; // Version, currently always 0. 4478 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4479 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4480 /// uint32_t CPUType; // CPU specifier. 4481 /// ... potentially more later ... 4482 /// }; 4483 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4484 const Triple &TT) { 4485 unsigned CPUType = ~0U; 4486 4487 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4488 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4489 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4490 // specific constants here because they are implicitly part of the Darwin ABI. 4491 enum { 4492 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4493 DARWIN_CPU_TYPE_X86 = 7, 4494 DARWIN_CPU_TYPE_ARM = 12, 4495 DARWIN_CPU_TYPE_POWERPC = 18 4496 }; 4497 4498 Triple::ArchType Arch = TT.getArch(); 4499 if (Arch == Triple::x86_64) 4500 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4501 else if (Arch == Triple::x86) 4502 CPUType = DARWIN_CPU_TYPE_X86; 4503 else if (Arch == Triple::ppc) 4504 CPUType = DARWIN_CPU_TYPE_POWERPC; 4505 else if (Arch == Triple::ppc64) 4506 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4507 else if (Arch == Triple::arm || Arch == Triple::thumb) 4508 CPUType = DARWIN_CPU_TYPE_ARM; 4509 4510 // Traditional Bitcode starts after header. 4511 assert(Buffer.size() >= BWH_HeaderSize && 4512 "Expected header size to be reserved"); 4513 unsigned BCOffset = BWH_HeaderSize; 4514 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4515 4516 // Write the magic and version. 4517 unsigned Position = 0; 4518 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4519 writeInt32ToBuffer(0, Buffer, Position); // Version. 4520 writeInt32ToBuffer(BCOffset, Buffer, Position); 4521 writeInt32ToBuffer(BCSize, Buffer, Position); 4522 writeInt32ToBuffer(CPUType, Buffer, Position); 4523 4524 // If the file is not a multiple of 16 bytes, insert dummy padding. 4525 while (Buffer.size() & 15) 4526 Buffer.push_back(0); 4527 } 4528 4529 /// Helper to write the header common to all bitcode files. 4530 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4531 // Emit the file header. 4532 Stream.Emit((unsigned)'B', 8); 4533 Stream.Emit((unsigned)'C', 8); 4534 Stream.Emit(0x0, 4); 4535 Stream.Emit(0xC, 4); 4536 Stream.Emit(0xE, 4); 4537 Stream.Emit(0xD, 4); 4538 } 4539 4540 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4541 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4542 writeBitcodeHeader(*Stream); 4543 } 4544 4545 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4546 4547 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4548 Stream->EnterSubblock(Block, 3); 4549 4550 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4551 Abbv->Add(BitCodeAbbrevOp(Record)); 4552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4553 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4554 4555 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4556 4557 Stream->ExitBlock(); 4558 } 4559 4560 void BitcodeWriter::writeSymtab() { 4561 assert(!WroteStrtab && !WroteSymtab); 4562 4563 // If any module has module-level inline asm, we will require a registered asm 4564 // parser for the target so that we can create an accurate symbol table for 4565 // the module. 4566 for (Module *M : Mods) { 4567 if (M->getModuleInlineAsm().empty()) 4568 continue; 4569 4570 std::string Err; 4571 const Triple TT(M->getTargetTriple()); 4572 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4573 if (!T || !T->hasMCAsmParser()) 4574 return; 4575 } 4576 4577 WroteSymtab = true; 4578 SmallVector<char, 0> Symtab; 4579 // The irsymtab::build function may be unable to create a symbol table if the 4580 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4581 // table is not required for correctness, but we still want to be able to 4582 // write malformed modules to bitcode files, so swallow the error. 4583 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4584 consumeError(std::move(E)); 4585 return; 4586 } 4587 4588 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4589 {Symtab.data(), Symtab.size()}); 4590 } 4591 4592 void BitcodeWriter::writeStrtab() { 4593 assert(!WroteStrtab); 4594 4595 std::vector<char> Strtab; 4596 StrtabBuilder.finalizeInOrder(); 4597 Strtab.resize(StrtabBuilder.getSize()); 4598 StrtabBuilder.write((uint8_t *)Strtab.data()); 4599 4600 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4601 {Strtab.data(), Strtab.size()}); 4602 4603 WroteStrtab = true; 4604 } 4605 4606 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4607 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4608 WroteStrtab = true; 4609 } 4610 4611 void BitcodeWriter::writeModule(const Module &M, 4612 bool ShouldPreserveUseListOrder, 4613 const ModuleSummaryIndex *Index, 4614 bool GenerateHash, ModuleHash *ModHash) { 4615 assert(!WroteStrtab); 4616 4617 // The Mods vector is used by irsymtab::build, which requires non-const 4618 // Modules in case it needs to materialize metadata. But the bitcode writer 4619 // requires that the module is materialized, so we can cast to non-const here, 4620 // after checking that it is in fact materialized. 4621 assert(M.isMaterialized()); 4622 Mods.push_back(const_cast<Module *>(&M)); 4623 4624 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4625 ShouldPreserveUseListOrder, Index, 4626 GenerateHash, ModHash); 4627 ModuleWriter.write(); 4628 } 4629 4630 void BitcodeWriter::writeIndex( 4631 const ModuleSummaryIndex *Index, 4632 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4633 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4634 ModuleToSummariesForIndex); 4635 IndexWriter.write(); 4636 } 4637 4638 /// Write the specified module to the specified output stream. 4639 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4640 bool ShouldPreserveUseListOrder, 4641 const ModuleSummaryIndex *Index, 4642 bool GenerateHash, ModuleHash *ModHash) { 4643 SmallVector<char, 0> Buffer; 4644 Buffer.reserve(256*1024); 4645 4646 // If this is darwin or another generic macho target, reserve space for the 4647 // header. 4648 Triple TT(M.getTargetTriple()); 4649 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4650 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4651 4652 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4653 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4654 ModHash); 4655 Writer.writeSymtab(); 4656 Writer.writeStrtab(); 4657 4658 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4659 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4660 4661 // Write the generated bitstream to "Out". 4662 if (!Buffer.empty()) 4663 Out.write((char *)&Buffer.front(), Buffer.size()); 4664 } 4665 4666 void IndexBitcodeWriter::write() { 4667 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4668 4669 writeModuleVersion(); 4670 4671 // Write the module paths in the combined index. 4672 writeModStrings(); 4673 4674 // Write the summary combined index records. 4675 writeCombinedGlobalValueSummary(); 4676 4677 Stream.ExitBlock(); 4678 } 4679 4680 // Write the specified module summary index to the given raw output stream, 4681 // where it will be written in a new bitcode block. This is used when 4682 // writing the combined index file for ThinLTO. When writing a subset of the 4683 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4684 void llvm::writeIndexToFile( 4685 const ModuleSummaryIndex &Index, raw_ostream &Out, 4686 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4687 SmallVector<char, 0> Buffer; 4688 Buffer.reserve(256 * 1024); 4689 4690 BitcodeWriter Writer(Buffer); 4691 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4692 Writer.writeStrtab(); 4693 4694 Out.write((char *)&Buffer.front(), Buffer.size()); 4695 } 4696 4697 namespace { 4698 4699 /// Class to manage the bitcode writing for a thin link bitcode file. 4700 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4701 /// ModHash is for use in ThinLTO incremental build, generated while writing 4702 /// the module bitcode file. 4703 const ModuleHash *ModHash; 4704 4705 public: 4706 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4707 BitstreamWriter &Stream, 4708 const ModuleSummaryIndex &Index, 4709 const ModuleHash &ModHash) 4710 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4711 /*ShouldPreserveUseListOrder=*/false, &Index), 4712 ModHash(&ModHash) {} 4713 4714 void write(); 4715 4716 private: 4717 void writeSimplifiedModuleInfo(); 4718 }; 4719 4720 } // end anonymous namespace 4721 4722 // This function writes a simpilified module info for thin link bitcode file. 4723 // It only contains the source file name along with the name(the offset and 4724 // size in strtab) and linkage for global values. For the global value info 4725 // entry, in order to keep linkage at offset 5, there are three zeros used 4726 // as padding. 4727 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4728 SmallVector<unsigned, 64> Vals; 4729 // Emit the module's source file name. 4730 { 4731 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4732 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4733 if (Bits == SE_Char6) 4734 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4735 else if (Bits == SE_Fixed7) 4736 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4737 4738 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4739 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4740 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4742 Abbv->Add(AbbrevOpToUse); 4743 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4744 4745 for (const auto P : M.getSourceFileName()) 4746 Vals.push_back((unsigned char)P); 4747 4748 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4749 Vals.clear(); 4750 } 4751 4752 // Emit the global variable information. 4753 for (const GlobalVariable &GV : M.globals()) { 4754 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4755 Vals.push_back(StrtabBuilder.add(GV.getName())); 4756 Vals.push_back(GV.getName().size()); 4757 Vals.push_back(0); 4758 Vals.push_back(0); 4759 Vals.push_back(0); 4760 Vals.push_back(getEncodedLinkage(GV)); 4761 4762 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4763 Vals.clear(); 4764 } 4765 4766 // Emit the function proto information. 4767 for (const Function &F : M) { 4768 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4769 Vals.push_back(StrtabBuilder.add(F.getName())); 4770 Vals.push_back(F.getName().size()); 4771 Vals.push_back(0); 4772 Vals.push_back(0); 4773 Vals.push_back(0); 4774 Vals.push_back(getEncodedLinkage(F)); 4775 4776 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4777 Vals.clear(); 4778 } 4779 4780 // Emit the alias information. 4781 for (const GlobalAlias &A : M.aliases()) { 4782 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4783 Vals.push_back(StrtabBuilder.add(A.getName())); 4784 Vals.push_back(A.getName().size()); 4785 Vals.push_back(0); 4786 Vals.push_back(0); 4787 Vals.push_back(0); 4788 Vals.push_back(getEncodedLinkage(A)); 4789 4790 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4791 Vals.clear(); 4792 } 4793 4794 // Emit the ifunc information. 4795 for (const GlobalIFunc &I : M.ifuncs()) { 4796 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4797 Vals.push_back(StrtabBuilder.add(I.getName())); 4798 Vals.push_back(I.getName().size()); 4799 Vals.push_back(0); 4800 Vals.push_back(0); 4801 Vals.push_back(0); 4802 Vals.push_back(getEncodedLinkage(I)); 4803 4804 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4805 Vals.clear(); 4806 } 4807 } 4808 4809 void ThinLinkBitcodeWriter::write() { 4810 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4811 4812 writeModuleVersion(); 4813 4814 writeSimplifiedModuleInfo(); 4815 4816 writePerModuleGlobalValueSummary(); 4817 4818 // Write module hash. 4819 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4820 4821 Stream.ExitBlock(); 4822 } 4823 4824 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4825 const ModuleSummaryIndex &Index, 4826 const ModuleHash &ModHash) { 4827 assert(!WroteStrtab); 4828 4829 // The Mods vector is used by irsymtab::build, which requires non-const 4830 // Modules in case it needs to materialize metadata. But the bitcode writer 4831 // requires that the module is materialized, so we can cast to non-const here, 4832 // after checking that it is in fact materialized. 4833 assert(M.isMaterialized()); 4834 Mods.push_back(const_cast<Module *>(&M)); 4835 4836 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4837 ModHash); 4838 ThinLinkWriter.write(); 4839 } 4840 4841 // Write the specified thin link bitcode file to the given raw output stream, 4842 // where it will be written in a new bitcode block. This is used when 4843 // writing the per-module index file for ThinLTO. 4844 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4845 const ModuleSummaryIndex &Index, 4846 const ModuleHash &ModHash) { 4847 SmallVector<char, 0> Buffer; 4848 Buffer.reserve(256 * 1024); 4849 4850 BitcodeWriter Writer(Buffer); 4851 Writer.writeThinLinkBitcode(M, Index, ModHash); 4852 Writer.writeSymtab(); 4853 Writer.writeStrtab(); 4854 4855 Out.write((char *)&Buffer.front(), Buffer.size()); 4856 } 4857 4858 static const char *getSectionNameForBitcode(const Triple &T) { 4859 switch (T.getObjectFormat()) { 4860 case Triple::MachO: 4861 return "__LLVM,__bitcode"; 4862 case Triple::COFF: 4863 case Triple::ELF: 4864 case Triple::Wasm: 4865 case Triple::UnknownObjectFormat: 4866 return ".llvmbc"; 4867 case Triple::GOFF: 4868 llvm_unreachable("GOFF is not yet implemented"); 4869 break; 4870 case Triple::XCOFF: 4871 llvm_unreachable("XCOFF is not yet implemented"); 4872 break; 4873 case Triple::DXContainer: 4874 llvm_unreachable("DXContainer is not yet implemented"); 4875 break; 4876 } 4877 llvm_unreachable("Unimplemented ObjectFormatType"); 4878 } 4879 4880 static const char *getSectionNameForCommandline(const Triple &T) { 4881 switch (T.getObjectFormat()) { 4882 case Triple::MachO: 4883 return "__LLVM,__cmdline"; 4884 case Triple::COFF: 4885 case Triple::ELF: 4886 case Triple::Wasm: 4887 case Triple::UnknownObjectFormat: 4888 return ".llvmcmd"; 4889 case Triple::GOFF: 4890 llvm_unreachable("GOFF is not yet implemented"); 4891 break; 4892 case Triple::XCOFF: 4893 llvm_unreachable("XCOFF is not yet implemented"); 4894 break; 4895 case Triple::DXContainer: 4896 llvm_unreachable("DXC is not yet implemented"); 4897 break; 4898 } 4899 llvm_unreachable("Unimplemented ObjectFormatType"); 4900 } 4901 4902 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4903 bool EmbedBitcode, bool EmbedCmdline, 4904 const std::vector<uint8_t> &CmdArgs) { 4905 // Save llvm.compiler.used and remove it. 4906 SmallVector<Constant *, 2> UsedArray; 4907 SmallVector<GlobalValue *, 4> UsedGlobals; 4908 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4909 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4910 for (auto *GV : UsedGlobals) { 4911 if (GV->getName() != "llvm.embedded.module" && 4912 GV->getName() != "llvm.cmdline") 4913 UsedArray.push_back( 4914 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4915 } 4916 if (Used) 4917 Used->eraseFromParent(); 4918 4919 // Embed the bitcode for the llvm module. 4920 std::string Data; 4921 ArrayRef<uint8_t> ModuleData; 4922 Triple T(M.getTargetTriple()); 4923 4924 if (EmbedBitcode) { 4925 if (Buf.getBufferSize() == 0 || 4926 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4927 (const unsigned char *)Buf.getBufferEnd())) { 4928 // If the input is LLVM Assembly, bitcode is produced by serializing 4929 // the module. Use-lists order need to be preserved in this case. 4930 llvm::raw_string_ostream OS(Data); 4931 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4932 ModuleData = 4933 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4934 } else 4935 // If the input is LLVM bitcode, write the input byte stream directly. 4936 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4937 Buf.getBufferSize()); 4938 } 4939 llvm::Constant *ModuleConstant = 4940 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4941 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4942 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4943 ModuleConstant); 4944 GV->setSection(getSectionNameForBitcode(T)); 4945 // Set alignment to 1 to prevent padding between two contributions from input 4946 // sections after linking. 4947 GV->setAlignment(Align(1)); 4948 UsedArray.push_back( 4949 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4950 if (llvm::GlobalVariable *Old = 4951 M.getGlobalVariable("llvm.embedded.module", true)) { 4952 assert(Old->hasZeroLiveUses() && 4953 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4954 GV->takeName(Old); 4955 Old->eraseFromParent(); 4956 } else { 4957 GV->setName("llvm.embedded.module"); 4958 } 4959 4960 // Skip if only bitcode needs to be embedded. 4961 if (EmbedCmdline) { 4962 // Embed command-line options. 4963 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4964 CmdArgs.size()); 4965 llvm::Constant *CmdConstant = 4966 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4967 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4968 llvm::GlobalValue::PrivateLinkage, 4969 CmdConstant); 4970 GV->setSection(getSectionNameForCommandline(T)); 4971 GV->setAlignment(Align(1)); 4972 UsedArray.push_back( 4973 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4974 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4975 assert(Old->hasZeroLiveUses() && 4976 "llvm.cmdline can only be used once in llvm.compiler.used"); 4977 GV->takeName(Old); 4978 Old->eraseFromParent(); 4979 } else { 4980 GV->setName("llvm.cmdline"); 4981 } 4982 } 4983 4984 if (UsedArray.empty()) 4985 return; 4986 4987 // Recreate llvm.compiler.used. 4988 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4989 auto *NewUsed = new GlobalVariable( 4990 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4991 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4992 NewUsed->setSection("llvm.metadata"); 4993 } 4994