1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 namespace { 103 104 /// These are manifest constants used by the bitcode writer. They do not need to 105 /// be kept in sync with the reader, but need to be consistent within this file. 106 enum { 107 // VALUE_SYMTAB_BLOCK abbrev id's. 108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 VST_ENTRY_7_ABBREV, 110 VST_ENTRY_6_ABBREV, 111 VST_BBENTRY_6_ABBREV, 112 113 // CONSTANTS_BLOCK abbrev id's. 114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 CONSTANTS_INTEGER_ABBREV, 116 CONSTANTS_CE_CAST_Abbrev, 117 CONSTANTS_NULL_Abbrev, 118 119 // FUNCTION_BLOCK abbrev id's. 120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 FUNCTION_INST_UNOP_ABBREV, 122 FUNCTION_INST_UNOP_FLAGS_ABBREV, 123 FUNCTION_INST_BINOP_ABBREV, 124 FUNCTION_INST_BINOP_FLAGS_ABBREV, 125 FUNCTION_INST_CAST_ABBREV, 126 FUNCTION_INST_CAST_FLAGS_ABBREV, 127 FUNCTION_INST_RET_VOID_ABBREV, 128 FUNCTION_INST_RET_VAL_ABBREV, 129 FUNCTION_INST_UNREACHABLE_ABBREV, 130 FUNCTION_INST_GEP_ABBREV, 131 }; 132 133 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 134 /// file type. 135 class BitcodeWriterBase { 136 protected: 137 /// The stream created and owned by the client. 138 BitstreamWriter &Stream; 139 140 StringTableBuilder &StrtabBuilder; 141 142 public: 143 /// Constructs a BitcodeWriterBase object that writes to the provided 144 /// \p Stream. 145 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 146 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 147 148 protected: 149 void writeModuleVersion(); 150 }; 151 152 void BitcodeWriterBase::writeModuleVersion() { 153 // VERSION: [version#] 154 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 155 } 156 157 /// Base class to manage the module bitcode writing, currently subclassed for 158 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 159 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 160 protected: 161 /// The Module to write to bitcode. 162 const Module &M; 163 164 /// Enumerates ids for all values in the module. 165 ValueEnumerator VE; 166 167 /// Optional per-module index to write for ThinLTO. 168 const ModuleSummaryIndex *Index; 169 170 /// Map that holds the correspondence between GUIDs in the summary index, 171 /// that came from indirect call profiles, and a value id generated by this 172 /// class to use in the VST and summary block records. 173 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 174 175 /// Tracks the last value id recorded in the GUIDToValueMap. 176 unsigned GlobalValueId; 177 178 /// Saves the offset of the VSTOffset record that must eventually be 179 /// backpatched with the offset of the actual VST. 180 uint64_t VSTOffsetPlaceholder = 0; 181 182 public: 183 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 184 /// writing to the provided \p Buffer. 185 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 186 BitstreamWriter &Stream, 187 bool ShouldPreserveUseListOrder, 188 const ModuleSummaryIndex *Index) 189 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 190 VE(M, ShouldPreserveUseListOrder), Index(Index) { 191 // Assign ValueIds to any callee values in the index that came from 192 // indirect call profiles and were recorded as a GUID not a Value* 193 // (which would have been assigned an ID by the ValueEnumerator). 194 // The starting ValueId is just after the number of values in the 195 // ValueEnumerator, so that they can be emitted in the VST. 196 GlobalValueId = VE.getValues().size(); 197 if (!Index) 198 return; 199 for (const auto &GUIDSummaryLists : *Index) 200 // Examine all summaries for this GUID. 201 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 202 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 203 // For each call in the function summary, see if the call 204 // is to a GUID (which means it is for an indirect call, 205 // otherwise we would have a Value for it). If so, synthesize 206 // a value id. 207 for (auto &CallEdge : FS->calls()) 208 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 209 assignValueId(CallEdge.first.getGUID()); 210 } 211 212 protected: 213 void writePerModuleGlobalValueSummary(); 214 215 private: 216 void writePerModuleFunctionSummaryRecord( 217 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 218 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 219 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIGlobalVariable(const DIGlobalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDILocalVariable(const DILocalVariable *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDILabel(const DILabel *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIExpression(const DIExpression *N, 358 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 359 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 360 SmallVectorImpl<uint64_t> &Record, 361 unsigned Abbrev); 362 void writeDIObjCProperty(const DIObjCProperty *N, 363 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 364 void writeDIImportedEntity(const DIImportedEntity *N, 365 SmallVectorImpl<uint64_t> &Record, 366 unsigned Abbrev); 367 unsigned createNamedMetadataAbbrev(); 368 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 369 unsigned createMetadataStringsAbbrev(); 370 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 371 SmallVectorImpl<uint64_t> &Record); 372 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 373 SmallVectorImpl<uint64_t> &Record, 374 std::vector<unsigned> *MDAbbrevs = nullptr, 375 std::vector<uint64_t> *IndexPos = nullptr); 376 void writeModuleMetadata(); 377 void writeFunctionMetadata(const Function &F); 378 void writeFunctionMetadataAttachment(const Function &F); 379 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 380 const GlobalObject &GO); 381 void writeModuleMetadataKinds(); 382 void writeOperandBundleTags(); 383 void writeSyncScopeNames(); 384 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 385 void writeModuleConstants(); 386 bool pushValueAndType(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void writeOperandBundles(const CallBase &CB, unsigned InstID); 389 void pushValue(const Value *V, unsigned InstID, 390 SmallVectorImpl<unsigned> &Vals); 391 void pushValueSigned(const Value *V, unsigned InstID, 392 SmallVectorImpl<uint64_t> &Vals); 393 void writeInstruction(const Instruction &I, unsigned InstID, 394 SmallVectorImpl<unsigned> &Vals); 395 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 396 void writeGlobalValueSymbolTable( 397 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 398 void writeUseList(UseListOrder &&Order); 399 void writeUseListBlock(const Function *F); 400 void 401 writeFunction(const Function &F, 402 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 403 void writeBlockInfo(); 404 void writeModuleHash(size_t BlockStartPos); 405 406 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 407 return unsigned(SSID); 408 } 409 410 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 411 }; 412 413 /// Class to manage the bitcode writing for a combined index. 414 class IndexBitcodeWriter : public BitcodeWriterBase { 415 /// The combined index to write to bitcode. 416 const ModuleSummaryIndex &Index; 417 418 /// When writing a subset of the index for distributed backends, client 419 /// provides a map of modules to the corresponding GUIDs/summaries to write. 420 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 421 422 /// Map that holds the correspondence between the GUID used in the combined 423 /// index and a value id generated by this class to use in references. 424 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 425 426 // The sorted stack id indices actually used in the summary entries being 427 // written, which will be a subset of those in the full index in the case of 428 // distributed indexes. 429 std::vector<unsigned> StackIdIndices; 430 431 /// Tracks the last value id recorded in the GUIDToValueMap. 432 unsigned GlobalValueId = 0; 433 434 /// Tracks the assignment of module paths in the module path string table to 435 /// an id assigned for use in summary references to the module path. 436 DenseMap<StringRef, uint64_t> ModuleIdMap; 437 438 public: 439 /// Constructs a IndexBitcodeWriter object for the given combined index, 440 /// writing to the provided \p Buffer. When writing a subset of the index 441 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 442 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 443 const ModuleSummaryIndex &Index, 444 const std::map<std::string, GVSummaryMapTy> 445 *ModuleToSummariesForIndex = nullptr) 446 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 447 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 448 // Assign unique value ids to all summaries to be written, for use 449 // in writing out the call graph edges. Save the mapping from GUID 450 // to the new global value id to use when writing those edges, which 451 // are currently saved in the index in terms of GUID. 452 forEachSummary([&](GVInfo I, bool IsAliasee) { 453 GUIDToValueIdMap[I.first] = ++GlobalValueId; 454 if (IsAliasee) 455 return; 456 auto *FS = dyn_cast<FunctionSummary>(I.second); 457 if (!FS) 458 return; 459 // Record all stack id indices actually used in the summary entries being 460 // written, so that we can compact them in the case of distributed ThinLTO 461 // indexes. 462 for (auto &CI : FS->callsites()) { 463 // If the stack id list is empty, this callsite info was synthesized for 464 // a missing tail call frame. Ensure that the callee's GUID gets a value 465 // id. Normally we only generate these for defined summaries, which in 466 // the case of distributed ThinLTO is only the functions already defined 467 // in the module or that we want to import. We don't bother to include 468 // all the callee symbols as they aren't normally needed in the backend. 469 // However, for the synthesized callsite infos we do need the callee 470 // GUID in the backend so that we can correlate the identified callee 471 // with this callsite info (which for non-tail calls is done by the 472 // ordering of the callsite infos and verified via stack ids). 473 if (CI.StackIdIndices.empty()) { 474 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 475 continue; 476 } 477 for (auto Idx : CI.StackIdIndices) 478 StackIdIndices.push_back(Idx); 479 } 480 for (auto &AI : FS->allocs()) 481 for (auto &MIB : AI.MIBs) 482 for (auto Idx : MIB.StackIdIndices) 483 StackIdIndices.push_back(Idx); 484 }); 485 llvm::sort(StackIdIndices); 486 StackIdIndices.erase( 487 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 488 StackIdIndices.end()); 489 } 490 491 /// The below iterator returns the GUID and associated summary. 492 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 493 494 /// Calls the callback for each value GUID and summary to be written to 495 /// bitcode. This hides the details of whether they are being pulled from the 496 /// entire index or just those in a provided ModuleToSummariesForIndex map. 497 template<typename Functor> 498 void forEachSummary(Functor Callback) { 499 if (ModuleToSummariesForIndex) { 500 for (auto &M : *ModuleToSummariesForIndex) 501 for (auto &Summary : M.second) { 502 Callback(Summary, false); 503 // Ensure aliasee is handled, e.g. for assigning a valueId, 504 // even if we are not importing the aliasee directly (the 505 // imported alias will contain a copy of aliasee). 506 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 507 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 508 } 509 } else { 510 for (auto &Summaries : Index) 511 for (auto &Summary : Summaries.second.SummaryList) 512 Callback({Summaries.first, Summary.get()}, false); 513 } 514 } 515 516 /// Calls the callback for each entry in the modulePaths StringMap that 517 /// should be written to the module path string table. This hides the details 518 /// of whether they are being pulled from the entire index or just those in a 519 /// provided ModuleToSummariesForIndex map. 520 template <typename Functor> void forEachModule(Functor Callback) { 521 if (ModuleToSummariesForIndex) { 522 for (const auto &M : *ModuleToSummariesForIndex) { 523 const auto &MPI = Index.modulePaths().find(M.first); 524 if (MPI == Index.modulePaths().end()) { 525 // This should only happen if the bitcode file was empty, in which 526 // case we shouldn't be importing (the ModuleToSummariesForIndex 527 // would only include the module we are writing and index for). 528 assert(ModuleToSummariesForIndex->size() == 1); 529 continue; 530 } 531 Callback(*MPI); 532 } 533 } else { 534 // Since StringMap iteration order isn't guaranteed, order by path string 535 // first. 536 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 537 // map lookup. 538 std::vector<StringRef> ModulePaths; 539 for (auto &[ModPath, _] : Index.modulePaths()) 540 ModulePaths.push_back(ModPath); 541 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 542 for (auto &ModPath : ModulePaths) 543 Callback(*Index.modulePaths().find(ModPath)); 544 } 545 } 546 547 /// Main entry point for writing a combined index to bitcode. 548 void write(); 549 550 private: 551 void writeModStrings(); 552 void writeCombinedGlobalValueSummary(); 553 554 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 555 auto VMI = GUIDToValueIdMap.find(ValGUID); 556 if (VMI == GUIDToValueIdMap.end()) 557 return std::nullopt; 558 return VMI->second; 559 } 560 561 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 562 }; 563 564 } // end anonymous namespace 565 566 static unsigned getEncodedCastOpcode(unsigned Opcode) { 567 switch (Opcode) { 568 default: llvm_unreachable("Unknown cast instruction!"); 569 case Instruction::Trunc : return bitc::CAST_TRUNC; 570 case Instruction::ZExt : return bitc::CAST_ZEXT; 571 case Instruction::SExt : return bitc::CAST_SEXT; 572 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 573 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 574 case Instruction::UIToFP : return bitc::CAST_UITOFP; 575 case Instruction::SIToFP : return bitc::CAST_SITOFP; 576 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 577 case Instruction::FPExt : return bitc::CAST_FPEXT; 578 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 579 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 580 case Instruction::BitCast : return bitc::CAST_BITCAST; 581 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 582 } 583 } 584 585 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 586 switch (Opcode) { 587 default: llvm_unreachable("Unknown binary instruction!"); 588 case Instruction::FNeg: return bitc::UNOP_FNEG; 589 } 590 } 591 592 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 593 switch (Opcode) { 594 default: llvm_unreachable("Unknown binary instruction!"); 595 case Instruction::Add: 596 case Instruction::FAdd: return bitc::BINOP_ADD; 597 case Instruction::Sub: 598 case Instruction::FSub: return bitc::BINOP_SUB; 599 case Instruction::Mul: 600 case Instruction::FMul: return bitc::BINOP_MUL; 601 case Instruction::UDiv: return bitc::BINOP_UDIV; 602 case Instruction::FDiv: 603 case Instruction::SDiv: return bitc::BINOP_SDIV; 604 case Instruction::URem: return bitc::BINOP_UREM; 605 case Instruction::FRem: 606 case Instruction::SRem: return bitc::BINOP_SREM; 607 case Instruction::Shl: return bitc::BINOP_SHL; 608 case Instruction::LShr: return bitc::BINOP_LSHR; 609 case Instruction::AShr: return bitc::BINOP_ASHR; 610 case Instruction::And: return bitc::BINOP_AND; 611 case Instruction::Or: return bitc::BINOP_OR; 612 case Instruction::Xor: return bitc::BINOP_XOR; 613 } 614 } 615 616 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 617 switch (Op) { 618 default: llvm_unreachable("Unknown RMW operation!"); 619 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 620 case AtomicRMWInst::Add: return bitc::RMW_ADD; 621 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 622 case AtomicRMWInst::And: return bitc::RMW_AND; 623 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 624 case AtomicRMWInst::Or: return bitc::RMW_OR; 625 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 626 case AtomicRMWInst::Max: return bitc::RMW_MAX; 627 case AtomicRMWInst::Min: return bitc::RMW_MIN; 628 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 629 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 630 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 631 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 632 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 633 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 634 case AtomicRMWInst::UIncWrap: 635 return bitc::RMW_UINC_WRAP; 636 case AtomicRMWInst::UDecWrap: 637 return bitc::RMW_UDEC_WRAP; 638 } 639 } 640 641 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 642 switch (Ordering) { 643 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 644 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 645 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 646 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 647 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 648 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 649 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 650 } 651 llvm_unreachable("Invalid ordering"); 652 } 653 654 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 655 StringRef Str, unsigned AbbrevToUse) { 656 SmallVector<unsigned, 64> Vals; 657 658 // Code: [strchar x N] 659 for (char C : Str) { 660 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 661 AbbrevToUse = 0; 662 Vals.push_back(C); 663 } 664 665 // Emit the finished record. 666 Stream.EmitRecord(Code, Vals, AbbrevToUse); 667 } 668 669 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 670 switch (Kind) { 671 case Attribute::Alignment: 672 return bitc::ATTR_KIND_ALIGNMENT; 673 case Attribute::AllocAlign: 674 return bitc::ATTR_KIND_ALLOC_ALIGN; 675 case Attribute::AllocSize: 676 return bitc::ATTR_KIND_ALLOC_SIZE; 677 case Attribute::AlwaysInline: 678 return bitc::ATTR_KIND_ALWAYS_INLINE; 679 case Attribute::Builtin: 680 return bitc::ATTR_KIND_BUILTIN; 681 case Attribute::ByVal: 682 return bitc::ATTR_KIND_BY_VAL; 683 case Attribute::Convergent: 684 return bitc::ATTR_KIND_CONVERGENT; 685 case Attribute::InAlloca: 686 return bitc::ATTR_KIND_IN_ALLOCA; 687 case Attribute::Cold: 688 return bitc::ATTR_KIND_COLD; 689 case Attribute::DisableSanitizerInstrumentation: 690 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 691 case Attribute::FnRetThunkExtern: 692 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 693 case Attribute::Hot: 694 return bitc::ATTR_KIND_HOT; 695 case Attribute::ElementType: 696 return bitc::ATTR_KIND_ELEMENTTYPE; 697 case Attribute::InlineHint: 698 return bitc::ATTR_KIND_INLINE_HINT; 699 case Attribute::InReg: 700 return bitc::ATTR_KIND_IN_REG; 701 case Attribute::JumpTable: 702 return bitc::ATTR_KIND_JUMP_TABLE; 703 case Attribute::MinSize: 704 return bitc::ATTR_KIND_MIN_SIZE; 705 case Attribute::AllocatedPointer: 706 return bitc::ATTR_KIND_ALLOCATED_POINTER; 707 case Attribute::AllocKind: 708 return bitc::ATTR_KIND_ALLOC_KIND; 709 case Attribute::Memory: 710 return bitc::ATTR_KIND_MEMORY; 711 case Attribute::NoFPClass: 712 return bitc::ATTR_KIND_NOFPCLASS; 713 case Attribute::Naked: 714 return bitc::ATTR_KIND_NAKED; 715 case Attribute::Nest: 716 return bitc::ATTR_KIND_NEST; 717 case Attribute::NoAlias: 718 return bitc::ATTR_KIND_NO_ALIAS; 719 case Attribute::NoBuiltin: 720 return bitc::ATTR_KIND_NO_BUILTIN; 721 case Attribute::NoCallback: 722 return bitc::ATTR_KIND_NO_CALLBACK; 723 case Attribute::NoCapture: 724 return bitc::ATTR_KIND_NO_CAPTURE; 725 case Attribute::NoDuplicate: 726 return bitc::ATTR_KIND_NO_DUPLICATE; 727 case Attribute::NoFree: 728 return bitc::ATTR_KIND_NOFREE; 729 case Attribute::NoImplicitFloat: 730 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 731 case Attribute::NoInline: 732 return bitc::ATTR_KIND_NO_INLINE; 733 case Attribute::NoRecurse: 734 return bitc::ATTR_KIND_NO_RECURSE; 735 case Attribute::NoMerge: 736 return bitc::ATTR_KIND_NO_MERGE; 737 case Attribute::NonLazyBind: 738 return bitc::ATTR_KIND_NON_LAZY_BIND; 739 case Attribute::NonNull: 740 return bitc::ATTR_KIND_NON_NULL; 741 case Attribute::Dereferenceable: 742 return bitc::ATTR_KIND_DEREFERENCEABLE; 743 case Attribute::DereferenceableOrNull: 744 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 745 case Attribute::NoRedZone: 746 return bitc::ATTR_KIND_NO_RED_ZONE; 747 case Attribute::NoReturn: 748 return bitc::ATTR_KIND_NO_RETURN; 749 case Attribute::NoSync: 750 return bitc::ATTR_KIND_NOSYNC; 751 case Attribute::NoCfCheck: 752 return bitc::ATTR_KIND_NOCF_CHECK; 753 case Attribute::NoProfile: 754 return bitc::ATTR_KIND_NO_PROFILE; 755 case Attribute::SkipProfile: 756 return bitc::ATTR_KIND_SKIP_PROFILE; 757 case Attribute::NoUnwind: 758 return bitc::ATTR_KIND_NO_UNWIND; 759 case Attribute::NoSanitizeBounds: 760 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 761 case Attribute::NoSanitizeCoverage: 762 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 763 case Attribute::NullPointerIsValid: 764 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 765 case Attribute::OptimizeForDebugging: 766 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 767 case Attribute::OptForFuzzing: 768 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 769 case Attribute::OptimizeForSize: 770 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 771 case Attribute::OptimizeNone: 772 return bitc::ATTR_KIND_OPTIMIZE_NONE; 773 case Attribute::ReadNone: 774 return bitc::ATTR_KIND_READ_NONE; 775 case Attribute::ReadOnly: 776 return bitc::ATTR_KIND_READ_ONLY; 777 case Attribute::Returned: 778 return bitc::ATTR_KIND_RETURNED; 779 case Attribute::ReturnsTwice: 780 return bitc::ATTR_KIND_RETURNS_TWICE; 781 case Attribute::SExt: 782 return bitc::ATTR_KIND_S_EXT; 783 case Attribute::Speculatable: 784 return bitc::ATTR_KIND_SPECULATABLE; 785 case Attribute::StackAlignment: 786 return bitc::ATTR_KIND_STACK_ALIGNMENT; 787 case Attribute::StackProtect: 788 return bitc::ATTR_KIND_STACK_PROTECT; 789 case Attribute::StackProtectReq: 790 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 791 case Attribute::StackProtectStrong: 792 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 793 case Attribute::SafeStack: 794 return bitc::ATTR_KIND_SAFESTACK; 795 case Attribute::ShadowCallStack: 796 return bitc::ATTR_KIND_SHADOWCALLSTACK; 797 case Attribute::StrictFP: 798 return bitc::ATTR_KIND_STRICT_FP; 799 case Attribute::StructRet: 800 return bitc::ATTR_KIND_STRUCT_RET; 801 case Attribute::SanitizeAddress: 802 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 803 case Attribute::SanitizeHWAddress: 804 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 805 case Attribute::SanitizeThread: 806 return bitc::ATTR_KIND_SANITIZE_THREAD; 807 case Attribute::SanitizeMemory: 808 return bitc::ATTR_KIND_SANITIZE_MEMORY; 809 case Attribute::SpeculativeLoadHardening: 810 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 811 case Attribute::SwiftError: 812 return bitc::ATTR_KIND_SWIFT_ERROR; 813 case Attribute::SwiftSelf: 814 return bitc::ATTR_KIND_SWIFT_SELF; 815 case Attribute::SwiftAsync: 816 return bitc::ATTR_KIND_SWIFT_ASYNC; 817 case Attribute::UWTable: 818 return bitc::ATTR_KIND_UW_TABLE; 819 case Attribute::VScaleRange: 820 return bitc::ATTR_KIND_VSCALE_RANGE; 821 case Attribute::WillReturn: 822 return bitc::ATTR_KIND_WILLRETURN; 823 case Attribute::WriteOnly: 824 return bitc::ATTR_KIND_WRITEONLY; 825 case Attribute::ZExt: 826 return bitc::ATTR_KIND_Z_EXT; 827 case Attribute::ImmArg: 828 return bitc::ATTR_KIND_IMMARG; 829 case Attribute::SanitizeMemTag: 830 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 831 case Attribute::Preallocated: 832 return bitc::ATTR_KIND_PREALLOCATED; 833 case Attribute::NoUndef: 834 return bitc::ATTR_KIND_NOUNDEF; 835 case Attribute::ByRef: 836 return bitc::ATTR_KIND_BYREF; 837 case Attribute::MustProgress: 838 return bitc::ATTR_KIND_MUSTPROGRESS; 839 case Attribute::PresplitCoroutine: 840 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 841 case Attribute::Writable: 842 return bitc::ATTR_KIND_WRITABLE; 843 case Attribute::CoroDestroyOnlyWhenComplete: 844 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 845 case Attribute::DeadOnUnwind: 846 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 847 case Attribute::EndAttrKinds: 848 llvm_unreachable("Can not encode end-attribute kinds marker."); 849 case Attribute::None: 850 llvm_unreachable("Can not encode none-attribute."); 851 case Attribute::EmptyKey: 852 case Attribute::TombstoneKey: 853 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 854 } 855 856 llvm_unreachable("Trying to encode unknown attribute"); 857 } 858 859 void ModuleBitcodeWriter::writeAttributeGroupTable() { 860 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 861 VE.getAttributeGroups(); 862 if (AttrGrps.empty()) return; 863 864 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 865 866 SmallVector<uint64_t, 64> Record; 867 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 868 unsigned AttrListIndex = Pair.first; 869 AttributeSet AS = Pair.second; 870 Record.push_back(VE.getAttributeGroupID(Pair)); 871 Record.push_back(AttrListIndex); 872 873 for (Attribute Attr : AS) { 874 if (Attr.isEnumAttribute()) { 875 Record.push_back(0); 876 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 877 } else if (Attr.isIntAttribute()) { 878 Record.push_back(1); 879 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 880 Record.push_back(Attr.getValueAsInt()); 881 } else if (Attr.isStringAttribute()) { 882 StringRef Kind = Attr.getKindAsString(); 883 StringRef Val = Attr.getValueAsString(); 884 885 Record.push_back(Val.empty() ? 3 : 4); 886 Record.append(Kind.begin(), Kind.end()); 887 Record.push_back(0); 888 if (!Val.empty()) { 889 Record.append(Val.begin(), Val.end()); 890 Record.push_back(0); 891 } 892 } else { 893 assert(Attr.isTypeAttribute()); 894 Type *Ty = Attr.getValueAsType(); 895 Record.push_back(Ty ? 6 : 5); 896 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 897 if (Ty) 898 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 899 } 900 } 901 902 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 903 Record.clear(); 904 } 905 906 Stream.ExitBlock(); 907 } 908 909 void ModuleBitcodeWriter::writeAttributeTable() { 910 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 911 if (Attrs.empty()) return; 912 913 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 914 915 SmallVector<uint64_t, 64> Record; 916 for (const AttributeList &AL : Attrs) { 917 for (unsigned i : AL.indexes()) { 918 AttributeSet AS = AL.getAttributes(i); 919 if (AS.hasAttributes()) 920 Record.push_back(VE.getAttributeGroupID({i, AS})); 921 } 922 923 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 924 Record.clear(); 925 } 926 927 Stream.ExitBlock(); 928 } 929 930 /// WriteTypeTable - Write out the type table for a module. 931 void ModuleBitcodeWriter::writeTypeTable() { 932 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 933 934 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 935 SmallVector<uint64_t, 64> TypeVals; 936 937 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 938 939 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 940 auto Abbv = std::make_shared<BitCodeAbbrev>(); 941 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 942 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 943 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 944 945 // Abbrev for TYPE_CODE_FUNCTION. 946 Abbv = std::make_shared<BitCodeAbbrev>(); 947 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 951 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 952 953 // Abbrev for TYPE_CODE_STRUCT_ANON. 954 Abbv = std::make_shared<BitCodeAbbrev>(); 955 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 959 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 960 961 // Abbrev for TYPE_CODE_STRUCT_NAME. 962 Abbv = std::make_shared<BitCodeAbbrev>(); 963 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 966 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 967 968 // Abbrev for TYPE_CODE_STRUCT_NAMED. 969 Abbv = std::make_shared<BitCodeAbbrev>(); 970 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 974 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 975 976 // Abbrev for TYPE_CODE_ARRAY. 977 Abbv = std::make_shared<BitCodeAbbrev>(); 978 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 981 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 982 983 // Emit an entry count so the reader can reserve space. 984 TypeVals.push_back(TypeList.size()); 985 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 986 TypeVals.clear(); 987 988 // Loop over all of the types, emitting each in turn. 989 for (Type *T : TypeList) { 990 int AbbrevToUse = 0; 991 unsigned Code = 0; 992 993 switch (T->getTypeID()) { 994 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 995 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 996 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 997 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 998 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 999 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1000 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1001 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1002 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1003 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 1004 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 1005 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1006 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1007 case Type::IntegerTyID: 1008 // INTEGER: [width] 1009 Code = bitc::TYPE_CODE_INTEGER; 1010 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1011 break; 1012 case Type::PointerTyID: { 1013 PointerType *PTy = cast<PointerType>(T); 1014 unsigned AddressSpace = PTy->getAddressSpace(); 1015 // OPAQUE_POINTER: [address space] 1016 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1017 TypeVals.push_back(AddressSpace); 1018 if (AddressSpace == 0) 1019 AbbrevToUse = OpaquePtrAbbrev; 1020 break; 1021 } 1022 case Type::FunctionTyID: { 1023 FunctionType *FT = cast<FunctionType>(T); 1024 // FUNCTION: [isvararg, retty, paramty x N] 1025 Code = bitc::TYPE_CODE_FUNCTION; 1026 TypeVals.push_back(FT->isVarArg()); 1027 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1028 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1029 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1030 AbbrevToUse = FunctionAbbrev; 1031 break; 1032 } 1033 case Type::StructTyID: { 1034 StructType *ST = cast<StructType>(T); 1035 // STRUCT: [ispacked, eltty x N] 1036 TypeVals.push_back(ST->isPacked()); 1037 // Output all of the element types. 1038 for (Type *ET : ST->elements()) 1039 TypeVals.push_back(VE.getTypeID(ET)); 1040 1041 if (ST->isLiteral()) { 1042 Code = bitc::TYPE_CODE_STRUCT_ANON; 1043 AbbrevToUse = StructAnonAbbrev; 1044 } else { 1045 if (ST->isOpaque()) { 1046 Code = bitc::TYPE_CODE_OPAQUE; 1047 } else { 1048 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1049 AbbrevToUse = StructNamedAbbrev; 1050 } 1051 1052 // Emit the name if it is present. 1053 if (!ST->getName().empty()) 1054 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1055 StructNameAbbrev); 1056 } 1057 break; 1058 } 1059 case Type::ArrayTyID: { 1060 ArrayType *AT = cast<ArrayType>(T); 1061 // ARRAY: [numelts, eltty] 1062 Code = bitc::TYPE_CODE_ARRAY; 1063 TypeVals.push_back(AT->getNumElements()); 1064 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1065 AbbrevToUse = ArrayAbbrev; 1066 break; 1067 } 1068 case Type::FixedVectorTyID: 1069 case Type::ScalableVectorTyID: { 1070 VectorType *VT = cast<VectorType>(T); 1071 // VECTOR [numelts, eltty] or 1072 // [numelts, eltty, scalable] 1073 Code = bitc::TYPE_CODE_VECTOR; 1074 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1075 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1076 if (isa<ScalableVectorType>(VT)) 1077 TypeVals.push_back(true); 1078 break; 1079 } 1080 case Type::TargetExtTyID: { 1081 TargetExtType *TET = cast<TargetExtType>(T); 1082 Code = bitc::TYPE_CODE_TARGET_TYPE; 1083 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1084 StructNameAbbrev); 1085 TypeVals.push_back(TET->getNumTypeParameters()); 1086 for (Type *InnerTy : TET->type_params()) 1087 TypeVals.push_back(VE.getTypeID(InnerTy)); 1088 for (unsigned IntParam : TET->int_params()) 1089 TypeVals.push_back(IntParam); 1090 break; 1091 } 1092 case Type::TypedPointerTyID: 1093 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1094 } 1095 1096 // Emit the finished record. 1097 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1098 TypeVals.clear(); 1099 } 1100 1101 Stream.ExitBlock(); 1102 } 1103 1104 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1105 switch (Linkage) { 1106 case GlobalValue::ExternalLinkage: 1107 return 0; 1108 case GlobalValue::WeakAnyLinkage: 1109 return 16; 1110 case GlobalValue::AppendingLinkage: 1111 return 2; 1112 case GlobalValue::InternalLinkage: 1113 return 3; 1114 case GlobalValue::LinkOnceAnyLinkage: 1115 return 18; 1116 case GlobalValue::ExternalWeakLinkage: 1117 return 7; 1118 case GlobalValue::CommonLinkage: 1119 return 8; 1120 case GlobalValue::PrivateLinkage: 1121 return 9; 1122 case GlobalValue::WeakODRLinkage: 1123 return 17; 1124 case GlobalValue::LinkOnceODRLinkage: 1125 return 19; 1126 case GlobalValue::AvailableExternallyLinkage: 1127 return 12; 1128 } 1129 llvm_unreachable("Invalid linkage"); 1130 } 1131 1132 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1133 return getEncodedLinkage(GV.getLinkage()); 1134 } 1135 1136 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1137 uint64_t RawFlags = 0; 1138 RawFlags |= Flags.ReadNone; 1139 RawFlags |= (Flags.ReadOnly << 1); 1140 RawFlags |= (Flags.NoRecurse << 2); 1141 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1142 RawFlags |= (Flags.NoInline << 4); 1143 RawFlags |= (Flags.AlwaysInline << 5); 1144 RawFlags |= (Flags.NoUnwind << 6); 1145 RawFlags |= (Flags.MayThrow << 7); 1146 RawFlags |= (Flags.HasUnknownCall << 8); 1147 RawFlags |= (Flags.MustBeUnreachable << 9); 1148 return RawFlags; 1149 } 1150 1151 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1152 // in BitcodeReader.cpp. 1153 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1154 uint64_t RawFlags = 0; 1155 1156 RawFlags |= Flags.NotEligibleToImport; // bool 1157 RawFlags |= (Flags.Live << 1); 1158 RawFlags |= (Flags.DSOLocal << 2); 1159 RawFlags |= (Flags.CanAutoHide << 3); 1160 1161 // Linkage don't need to be remapped at that time for the summary. Any future 1162 // change to the getEncodedLinkage() function will need to be taken into 1163 // account here as well. 1164 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1165 1166 RawFlags |= (Flags.Visibility << 8); // 2 bits 1167 1168 return RawFlags; 1169 } 1170 1171 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1172 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1173 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1174 return RawFlags; 1175 } 1176 1177 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1178 uint64_t RawFlags = 0; 1179 1180 RawFlags |= CI.Hotness; // 3 bits 1181 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1182 1183 return RawFlags; 1184 } 1185 1186 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1187 uint64_t RawFlags = 0; 1188 1189 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1190 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1191 1192 return RawFlags; 1193 } 1194 1195 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1196 switch (GV.getVisibility()) { 1197 case GlobalValue::DefaultVisibility: return 0; 1198 case GlobalValue::HiddenVisibility: return 1; 1199 case GlobalValue::ProtectedVisibility: return 2; 1200 } 1201 llvm_unreachable("Invalid visibility"); 1202 } 1203 1204 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1205 switch (GV.getDLLStorageClass()) { 1206 case GlobalValue::DefaultStorageClass: return 0; 1207 case GlobalValue::DLLImportStorageClass: return 1; 1208 case GlobalValue::DLLExportStorageClass: return 2; 1209 } 1210 llvm_unreachable("Invalid DLL storage class"); 1211 } 1212 1213 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1214 switch (GV.getThreadLocalMode()) { 1215 case GlobalVariable::NotThreadLocal: return 0; 1216 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1217 case GlobalVariable::LocalDynamicTLSModel: return 2; 1218 case GlobalVariable::InitialExecTLSModel: return 3; 1219 case GlobalVariable::LocalExecTLSModel: return 4; 1220 } 1221 llvm_unreachable("Invalid TLS model"); 1222 } 1223 1224 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1225 switch (C.getSelectionKind()) { 1226 case Comdat::Any: 1227 return bitc::COMDAT_SELECTION_KIND_ANY; 1228 case Comdat::ExactMatch: 1229 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1230 case Comdat::Largest: 1231 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1232 case Comdat::NoDeduplicate: 1233 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1234 case Comdat::SameSize: 1235 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1236 } 1237 llvm_unreachable("Invalid selection kind"); 1238 } 1239 1240 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1241 switch (GV.getUnnamedAddr()) { 1242 case GlobalValue::UnnamedAddr::None: return 0; 1243 case GlobalValue::UnnamedAddr::Local: return 2; 1244 case GlobalValue::UnnamedAddr::Global: return 1; 1245 } 1246 llvm_unreachable("Invalid unnamed_addr"); 1247 } 1248 1249 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1250 if (GenerateHash) 1251 Hasher.update(Str); 1252 return StrtabBuilder.add(Str); 1253 } 1254 1255 void ModuleBitcodeWriter::writeComdats() { 1256 SmallVector<unsigned, 64> Vals; 1257 for (const Comdat *C : VE.getComdats()) { 1258 // COMDAT: [strtab offset, strtab size, selection_kind] 1259 Vals.push_back(addToStrtab(C->getName())); 1260 Vals.push_back(C->getName().size()); 1261 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1262 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1263 Vals.clear(); 1264 } 1265 } 1266 1267 /// Write a record that will eventually hold the word offset of the 1268 /// module-level VST. For now the offset is 0, which will be backpatched 1269 /// after the real VST is written. Saves the bit offset to backpatch. 1270 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1271 // Write a placeholder value in for the offset of the real VST, 1272 // which is written after the function blocks so that it can include 1273 // the offset of each function. The placeholder offset will be 1274 // updated when the real VST is written. 1275 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1276 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1277 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1278 // hold the real VST offset. Must use fixed instead of VBR as we don't 1279 // know how many VBR chunks to reserve ahead of time. 1280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1281 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1282 1283 // Emit the placeholder 1284 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1285 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1286 1287 // Compute and save the bit offset to the placeholder, which will be 1288 // patched when the real VST is written. We can simply subtract the 32-bit 1289 // fixed size from the current bit number to get the location to backpatch. 1290 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1291 } 1292 1293 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1294 1295 /// Determine the encoding to use for the given string name and length. 1296 static StringEncoding getStringEncoding(StringRef Str) { 1297 bool isChar6 = true; 1298 for (char C : Str) { 1299 if (isChar6) 1300 isChar6 = BitCodeAbbrevOp::isChar6(C); 1301 if ((unsigned char)C & 128) 1302 // don't bother scanning the rest. 1303 return SE_Fixed8; 1304 } 1305 if (isChar6) 1306 return SE_Char6; 1307 return SE_Fixed7; 1308 } 1309 1310 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1311 "Sanitizer Metadata is too large for naive serialization."); 1312 static unsigned 1313 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1314 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1315 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1316 } 1317 1318 /// Emit top-level description of module, including target triple, inline asm, 1319 /// descriptors for global variables, and function prototype info. 1320 /// Returns the bit offset to backpatch with the location of the real VST. 1321 void ModuleBitcodeWriter::writeModuleInfo() { 1322 // Emit various pieces of data attached to a module. 1323 if (!M.getTargetTriple().empty()) 1324 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1325 0 /*TODO*/); 1326 const std::string &DL = M.getDataLayoutStr(); 1327 if (!DL.empty()) 1328 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1329 if (!M.getModuleInlineAsm().empty()) 1330 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1331 0 /*TODO*/); 1332 1333 // Emit information about sections and GC, computing how many there are. Also 1334 // compute the maximum alignment value. 1335 std::map<std::string, unsigned> SectionMap; 1336 std::map<std::string, unsigned> GCMap; 1337 MaybeAlign MaxAlignment; 1338 unsigned MaxGlobalType = 0; 1339 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1340 if (A) 1341 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1342 }; 1343 for (const GlobalVariable &GV : M.globals()) { 1344 UpdateMaxAlignment(GV.getAlign()); 1345 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1346 if (GV.hasSection()) { 1347 // Give section names unique ID's. 1348 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1349 if (!Entry) { 1350 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1351 0 /*TODO*/); 1352 Entry = SectionMap.size(); 1353 } 1354 } 1355 } 1356 for (const Function &F : M) { 1357 UpdateMaxAlignment(F.getAlign()); 1358 if (F.hasSection()) { 1359 // Give section names unique ID's. 1360 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1361 if (!Entry) { 1362 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1363 0 /*TODO*/); 1364 Entry = SectionMap.size(); 1365 } 1366 } 1367 if (F.hasGC()) { 1368 // Same for GC names. 1369 unsigned &Entry = GCMap[F.getGC()]; 1370 if (!Entry) { 1371 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1372 0 /*TODO*/); 1373 Entry = GCMap.size(); 1374 } 1375 } 1376 } 1377 1378 // Emit abbrev for globals, now that we know # sections and max alignment. 1379 unsigned SimpleGVarAbbrev = 0; 1380 if (!M.global_empty()) { 1381 // Add an abbrev for common globals with no visibility or thread localness. 1382 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1383 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1387 Log2_32_Ceil(MaxGlobalType+1))); 1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1389 //| explicitType << 1 1390 //| constant 1391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1393 if (!MaxAlignment) // Alignment. 1394 Abbv->Add(BitCodeAbbrevOp(0)); 1395 else { 1396 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1398 Log2_32_Ceil(MaxEncAlignment+1))); 1399 } 1400 if (SectionMap.empty()) // Section. 1401 Abbv->Add(BitCodeAbbrevOp(0)); 1402 else 1403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1404 Log2_32_Ceil(SectionMap.size()+1))); 1405 // Don't bother emitting vis + thread local. 1406 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1407 } 1408 1409 SmallVector<unsigned, 64> Vals; 1410 // Emit the module's source file name. 1411 { 1412 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1413 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1414 if (Bits == SE_Char6) 1415 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1416 else if (Bits == SE_Fixed7) 1417 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1418 1419 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1420 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1421 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1423 Abbv->Add(AbbrevOpToUse); 1424 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1425 1426 for (const auto P : M.getSourceFileName()) 1427 Vals.push_back((unsigned char)P); 1428 1429 // Emit the finished record. 1430 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1431 Vals.clear(); 1432 } 1433 1434 // Emit the global variable information. 1435 for (const GlobalVariable &GV : M.globals()) { 1436 unsigned AbbrevToUse = 0; 1437 1438 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1439 // linkage, alignment, section, visibility, threadlocal, 1440 // unnamed_addr, externally_initialized, dllstorageclass, 1441 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1442 Vals.push_back(addToStrtab(GV.getName())); 1443 Vals.push_back(GV.getName().size()); 1444 Vals.push_back(VE.getTypeID(GV.getValueType())); 1445 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1446 Vals.push_back(GV.isDeclaration() ? 0 : 1447 (VE.getValueID(GV.getInitializer()) + 1)); 1448 Vals.push_back(getEncodedLinkage(GV)); 1449 Vals.push_back(getEncodedAlign(GV.getAlign())); 1450 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1451 : 0); 1452 if (GV.isThreadLocal() || 1453 GV.getVisibility() != GlobalValue::DefaultVisibility || 1454 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1455 GV.isExternallyInitialized() || 1456 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1457 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1458 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1459 Vals.push_back(getEncodedVisibility(GV)); 1460 Vals.push_back(getEncodedThreadLocalMode(GV)); 1461 Vals.push_back(getEncodedUnnamedAddr(GV)); 1462 Vals.push_back(GV.isExternallyInitialized()); 1463 Vals.push_back(getEncodedDLLStorageClass(GV)); 1464 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1465 1466 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1467 Vals.push_back(VE.getAttributeListID(AL)); 1468 1469 Vals.push_back(GV.isDSOLocal()); 1470 Vals.push_back(addToStrtab(GV.getPartition())); 1471 Vals.push_back(GV.getPartition().size()); 1472 1473 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1474 GV.getSanitizerMetadata()) 1475 : 0)); 1476 Vals.push_back(GV.getCodeModelRaw()); 1477 } else { 1478 AbbrevToUse = SimpleGVarAbbrev; 1479 } 1480 1481 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1482 Vals.clear(); 1483 } 1484 1485 // Emit the function proto information. 1486 for (const Function &F : M) { 1487 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1488 // linkage, paramattrs, alignment, section, visibility, gc, 1489 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1490 // prefixdata, personalityfn, DSO_Local, addrspace] 1491 Vals.push_back(addToStrtab(F.getName())); 1492 Vals.push_back(F.getName().size()); 1493 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1494 Vals.push_back(F.getCallingConv()); 1495 Vals.push_back(F.isDeclaration()); 1496 Vals.push_back(getEncodedLinkage(F)); 1497 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1498 Vals.push_back(getEncodedAlign(F.getAlign())); 1499 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1500 : 0); 1501 Vals.push_back(getEncodedVisibility(F)); 1502 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1503 Vals.push_back(getEncodedUnnamedAddr(F)); 1504 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1505 : 0); 1506 Vals.push_back(getEncodedDLLStorageClass(F)); 1507 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1508 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1509 : 0); 1510 Vals.push_back( 1511 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1512 1513 Vals.push_back(F.isDSOLocal()); 1514 Vals.push_back(F.getAddressSpace()); 1515 Vals.push_back(addToStrtab(F.getPartition())); 1516 Vals.push_back(F.getPartition().size()); 1517 1518 unsigned AbbrevToUse = 0; 1519 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1520 Vals.clear(); 1521 } 1522 1523 // Emit the alias information. 1524 for (const GlobalAlias &A : M.aliases()) { 1525 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1526 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1527 // DSO_Local] 1528 Vals.push_back(addToStrtab(A.getName())); 1529 Vals.push_back(A.getName().size()); 1530 Vals.push_back(VE.getTypeID(A.getValueType())); 1531 Vals.push_back(A.getType()->getAddressSpace()); 1532 Vals.push_back(VE.getValueID(A.getAliasee())); 1533 Vals.push_back(getEncodedLinkage(A)); 1534 Vals.push_back(getEncodedVisibility(A)); 1535 Vals.push_back(getEncodedDLLStorageClass(A)); 1536 Vals.push_back(getEncodedThreadLocalMode(A)); 1537 Vals.push_back(getEncodedUnnamedAddr(A)); 1538 Vals.push_back(A.isDSOLocal()); 1539 Vals.push_back(addToStrtab(A.getPartition())); 1540 Vals.push_back(A.getPartition().size()); 1541 1542 unsigned AbbrevToUse = 0; 1543 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1544 Vals.clear(); 1545 } 1546 1547 // Emit the ifunc information. 1548 for (const GlobalIFunc &I : M.ifuncs()) { 1549 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1550 // val#, linkage, visibility, DSO_Local] 1551 Vals.push_back(addToStrtab(I.getName())); 1552 Vals.push_back(I.getName().size()); 1553 Vals.push_back(VE.getTypeID(I.getValueType())); 1554 Vals.push_back(I.getType()->getAddressSpace()); 1555 Vals.push_back(VE.getValueID(I.getResolver())); 1556 Vals.push_back(getEncodedLinkage(I)); 1557 Vals.push_back(getEncodedVisibility(I)); 1558 Vals.push_back(I.isDSOLocal()); 1559 Vals.push_back(addToStrtab(I.getPartition())); 1560 Vals.push_back(I.getPartition().size()); 1561 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1562 Vals.clear(); 1563 } 1564 1565 writeValueSymbolTableForwardDecl(); 1566 } 1567 1568 static uint64_t getOptimizationFlags(const Value *V) { 1569 uint64_t Flags = 0; 1570 1571 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1572 if (OBO->hasNoSignedWrap()) 1573 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1574 if (OBO->hasNoUnsignedWrap()) 1575 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1576 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1577 if (PEO->isExact()) 1578 Flags |= 1 << bitc::PEO_EXACT; 1579 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1580 if (PDI->isDisjoint()) 1581 Flags |= 1 << bitc::PDI_DISJOINT; 1582 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1583 if (FPMO->hasAllowReassoc()) 1584 Flags |= bitc::AllowReassoc; 1585 if (FPMO->hasNoNaNs()) 1586 Flags |= bitc::NoNaNs; 1587 if (FPMO->hasNoInfs()) 1588 Flags |= bitc::NoInfs; 1589 if (FPMO->hasNoSignedZeros()) 1590 Flags |= bitc::NoSignedZeros; 1591 if (FPMO->hasAllowReciprocal()) 1592 Flags |= bitc::AllowReciprocal; 1593 if (FPMO->hasAllowContract()) 1594 Flags |= bitc::AllowContract; 1595 if (FPMO->hasApproxFunc()) 1596 Flags |= bitc::ApproxFunc; 1597 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1598 if (NNI->hasNonNeg()) 1599 Flags |= 1 << bitc::PNNI_NON_NEG; 1600 } 1601 1602 return Flags; 1603 } 1604 1605 void ModuleBitcodeWriter::writeValueAsMetadata( 1606 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1607 // Mimic an MDNode with a value as one operand. 1608 Value *V = MD->getValue(); 1609 Record.push_back(VE.getTypeID(V->getType())); 1610 Record.push_back(VE.getValueID(V)); 1611 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1612 Record.clear(); 1613 } 1614 1615 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1616 SmallVectorImpl<uint64_t> &Record, 1617 unsigned Abbrev) { 1618 for (const MDOperand &MDO : N->operands()) { 1619 Metadata *MD = MDO; 1620 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1621 "Unexpected function-local metadata"); 1622 Record.push_back(VE.getMetadataOrNullID(MD)); 1623 } 1624 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1625 : bitc::METADATA_NODE, 1626 Record, Abbrev); 1627 Record.clear(); 1628 } 1629 1630 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1631 // Assume the column is usually under 128, and always output the inlined-at 1632 // location (it's never more expensive than building an array size 1). 1633 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1634 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1641 return Stream.EmitAbbrev(std::move(Abbv)); 1642 } 1643 1644 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1645 SmallVectorImpl<uint64_t> &Record, 1646 unsigned &Abbrev) { 1647 if (!Abbrev) 1648 Abbrev = createDILocationAbbrev(); 1649 1650 Record.push_back(N->isDistinct()); 1651 Record.push_back(N->getLine()); 1652 Record.push_back(N->getColumn()); 1653 Record.push_back(VE.getMetadataID(N->getScope())); 1654 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1655 Record.push_back(N->isImplicitCode()); 1656 1657 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1658 Record.clear(); 1659 } 1660 1661 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1662 // Assume the column is usually under 128, and always output the inlined-at 1663 // location (it's never more expensive than building an array size 1). 1664 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1665 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1672 return Stream.EmitAbbrev(std::move(Abbv)); 1673 } 1674 1675 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1676 SmallVectorImpl<uint64_t> &Record, 1677 unsigned &Abbrev) { 1678 if (!Abbrev) 1679 Abbrev = createGenericDINodeAbbrev(); 1680 1681 Record.push_back(N->isDistinct()); 1682 Record.push_back(N->getTag()); 1683 Record.push_back(0); // Per-tag version field; unused for now. 1684 1685 for (auto &I : N->operands()) 1686 Record.push_back(VE.getMetadataOrNullID(I)); 1687 1688 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1689 Record.clear(); 1690 } 1691 1692 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1693 SmallVectorImpl<uint64_t> &Record, 1694 unsigned Abbrev) { 1695 const uint64_t Version = 2 << 1; 1696 Record.push_back((uint64_t)N->isDistinct() | Version); 1697 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1698 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1699 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1700 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1701 1702 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1703 Record.clear(); 1704 } 1705 1706 void ModuleBitcodeWriter::writeDIGenericSubrange( 1707 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1708 unsigned Abbrev) { 1709 Record.push_back((uint64_t)N->isDistinct()); 1710 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1713 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1714 1715 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1716 Record.clear(); 1717 } 1718 1719 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1720 if ((int64_t)V >= 0) 1721 Vals.push_back(V << 1); 1722 else 1723 Vals.push_back((-V << 1) | 1); 1724 } 1725 1726 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1727 // We have an arbitrary precision integer value to write whose 1728 // bit width is > 64. However, in canonical unsigned integer 1729 // format it is likely that the high bits are going to be zero. 1730 // So, we only write the number of active words. 1731 unsigned NumWords = A.getActiveWords(); 1732 const uint64_t *RawData = A.getRawData(); 1733 for (unsigned i = 0; i < NumWords; i++) 1734 emitSignedInt64(Vals, RawData[i]); 1735 } 1736 1737 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1738 SmallVectorImpl<uint64_t> &Record, 1739 unsigned Abbrev) { 1740 const uint64_t IsBigInt = 1 << 2; 1741 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1742 Record.push_back(N->getValue().getBitWidth()); 1743 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1744 emitWideAPInt(Record, N->getValue()); 1745 1746 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1747 Record.clear(); 1748 } 1749 1750 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1751 SmallVectorImpl<uint64_t> &Record, 1752 unsigned Abbrev) { 1753 Record.push_back(N->isDistinct()); 1754 Record.push_back(N->getTag()); 1755 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1756 Record.push_back(N->getSizeInBits()); 1757 Record.push_back(N->getAlignInBits()); 1758 Record.push_back(N->getEncoding()); 1759 Record.push_back(N->getFlags()); 1760 1761 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1762 Record.clear(); 1763 } 1764 1765 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1766 SmallVectorImpl<uint64_t> &Record, 1767 unsigned Abbrev) { 1768 Record.push_back(N->isDistinct()); 1769 Record.push_back(N->getTag()); 1770 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1771 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1772 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1773 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1774 Record.push_back(N->getSizeInBits()); 1775 Record.push_back(N->getAlignInBits()); 1776 Record.push_back(N->getEncoding()); 1777 1778 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1779 Record.clear(); 1780 } 1781 1782 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1783 SmallVectorImpl<uint64_t> &Record, 1784 unsigned Abbrev) { 1785 Record.push_back(N->isDistinct()); 1786 Record.push_back(N->getTag()); 1787 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1788 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1789 Record.push_back(N->getLine()); 1790 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1791 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1792 Record.push_back(N->getSizeInBits()); 1793 Record.push_back(N->getAlignInBits()); 1794 Record.push_back(N->getOffsetInBits()); 1795 Record.push_back(N->getFlags()); 1796 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1797 1798 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1799 // that there is no DWARF address space associated with DIDerivedType. 1800 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1801 Record.push_back(*DWARFAddressSpace + 1); 1802 else 1803 Record.push_back(0); 1804 1805 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1806 1807 if (auto PtrAuthData = N->getPtrAuthData()) 1808 Record.push_back(PtrAuthData->Payload.RawData); 1809 else 1810 Record.push_back(0); 1811 1812 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1813 Record.clear(); 1814 } 1815 1816 void ModuleBitcodeWriter::writeDICompositeType( 1817 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1818 unsigned Abbrev) { 1819 const unsigned IsNotUsedInOldTypeRef = 0x2; 1820 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1821 Record.push_back(N->getTag()); 1822 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1823 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1824 Record.push_back(N->getLine()); 1825 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1826 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1827 Record.push_back(N->getSizeInBits()); 1828 Record.push_back(N->getAlignInBits()); 1829 Record.push_back(N->getOffsetInBits()); 1830 Record.push_back(N->getFlags()); 1831 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1832 Record.push_back(N->getRuntimeLang()); 1833 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1834 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1835 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1836 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1837 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1838 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1839 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1840 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1841 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1842 1843 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1844 Record.clear(); 1845 } 1846 1847 void ModuleBitcodeWriter::writeDISubroutineType( 1848 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1849 unsigned Abbrev) { 1850 const unsigned HasNoOldTypeRefs = 0x2; 1851 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1852 Record.push_back(N->getFlags()); 1853 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1854 Record.push_back(N->getCC()); 1855 1856 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1857 Record.clear(); 1858 } 1859 1860 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1861 SmallVectorImpl<uint64_t> &Record, 1862 unsigned Abbrev) { 1863 Record.push_back(N->isDistinct()); 1864 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1865 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1866 if (N->getRawChecksum()) { 1867 Record.push_back(N->getRawChecksum()->Kind); 1868 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1869 } else { 1870 // Maintain backwards compatibility with the old internal representation of 1871 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1872 Record.push_back(0); 1873 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1874 } 1875 auto Source = N->getRawSource(); 1876 if (Source) 1877 Record.push_back(VE.getMetadataOrNullID(Source)); 1878 1879 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1880 Record.clear(); 1881 } 1882 1883 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1884 SmallVectorImpl<uint64_t> &Record, 1885 unsigned Abbrev) { 1886 assert(N->isDistinct() && "Expected distinct compile units"); 1887 Record.push_back(/* IsDistinct */ true); 1888 Record.push_back(N->getSourceLanguage()); 1889 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1890 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1891 Record.push_back(N->isOptimized()); 1892 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1893 Record.push_back(N->getRuntimeVersion()); 1894 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1895 Record.push_back(N->getEmissionKind()); 1896 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1897 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1898 Record.push_back(/* subprograms */ 0); 1899 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1900 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1901 Record.push_back(N->getDWOId()); 1902 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1903 Record.push_back(N->getSplitDebugInlining()); 1904 Record.push_back(N->getDebugInfoForProfiling()); 1905 Record.push_back((unsigned)N->getNameTableKind()); 1906 Record.push_back(N->getRangesBaseAddress()); 1907 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1908 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1909 1910 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1911 Record.clear(); 1912 } 1913 1914 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1915 SmallVectorImpl<uint64_t> &Record, 1916 unsigned Abbrev) { 1917 const uint64_t HasUnitFlag = 1 << 1; 1918 const uint64_t HasSPFlagsFlag = 1 << 2; 1919 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1920 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1921 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1922 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1923 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1924 Record.push_back(N->getLine()); 1925 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1926 Record.push_back(N->getScopeLine()); 1927 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1928 Record.push_back(N->getSPFlags()); 1929 Record.push_back(N->getVirtualIndex()); 1930 Record.push_back(N->getFlags()); 1931 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1932 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1933 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1934 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1935 Record.push_back(N->getThisAdjustment()); 1936 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1937 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1938 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1939 1940 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1941 Record.clear(); 1942 } 1943 1944 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1945 SmallVectorImpl<uint64_t> &Record, 1946 unsigned Abbrev) { 1947 Record.push_back(N->isDistinct()); 1948 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1949 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1950 Record.push_back(N->getLine()); 1951 Record.push_back(N->getColumn()); 1952 1953 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1954 Record.clear(); 1955 } 1956 1957 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1958 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1959 unsigned Abbrev) { 1960 Record.push_back(N->isDistinct()); 1961 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1962 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1963 Record.push_back(N->getDiscriminator()); 1964 1965 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1966 Record.clear(); 1967 } 1968 1969 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1970 SmallVectorImpl<uint64_t> &Record, 1971 unsigned Abbrev) { 1972 Record.push_back(N->isDistinct()); 1973 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1974 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1975 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1976 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1977 Record.push_back(N->getLineNo()); 1978 1979 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1980 Record.clear(); 1981 } 1982 1983 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1984 SmallVectorImpl<uint64_t> &Record, 1985 unsigned Abbrev) { 1986 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1987 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1988 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1989 1990 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1991 Record.clear(); 1992 } 1993 1994 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1995 SmallVectorImpl<uint64_t> &Record, 1996 unsigned Abbrev) { 1997 Record.push_back(N->isDistinct()); 1998 Record.push_back(N->getMacinfoType()); 1999 Record.push_back(N->getLine()); 2000 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2001 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2002 2003 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2004 Record.clear(); 2005 } 2006 2007 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2008 SmallVectorImpl<uint64_t> &Record, 2009 unsigned Abbrev) { 2010 Record.push_back(N->isDistinct()); 2011 Record.push_back(N->getMacinfoType()); 2012 Record.push_back(N->getLine()); 2013 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2014 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2015 2016 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2017 Record.clear(); 2018 } 2019 2020 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2021 SmallVectorImpl<uint64_t> &Record) { 2022 Record.reserve(N->getArgs().size()); 2023 for (ValueAsMetadata *MD : N->getArgs()) 2024 Record.push_back(VE.getMetadataID(MD)); 2025 2026 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2027 Record.clear(); 2028 } 2029 2030 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2031 SmallVectorImpl<uint64_t> &Record, 2032 unsigned Abbrev) { 2033 Record.push_back(N->isDistinct()); 2034 for (auto &I : N->operands()) 2035 Record.push_back(VE.getMetadataOrNullID(I)); 2036 Record.push_back(N->getLineNo()); 2037 Record.push_back(N->getIsDecl()); 2038 2039 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2040 Record.clear(); 2041 } 2042 2043 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2044 SmallVectorImpl<uint64_t> &Record, 2045 unsigned Abbrev) { 2046 // There are no arguments for this metadata type. 2047 Record.push_back(N->isDistinct()); 2048 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2049 Record.clear(); 2050 } 2051 2052 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2053 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2054 unsigned Abbrev) { 2055 Record.push_back(N->isDistinct()); 2056 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2057 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2058 Record.push_back(N->isDefault()); 2059 2060 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2061 Record.clear(); 2062 } 2063 2064 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2065 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2066 unsigned Abbrev) { 2067 Record.push_back(N->isDistinct()); 2068 Record.push_back(N->getTag()); 2069 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2070 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2071 Record.push_back(N->isDefault()); 2072 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2073 2074 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2075 Record.clear(); 2076 } 2077 2078 void ModuleBitcodeWriter::writeDIGlobalVariable( 2079 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2080 unsigned Abbrev) { 2081 const uint64_t Version = 2 << 1; 2082 Record.push_back((uint64_t)N->isDistinct() | Version); 2083 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2084 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2085 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2086 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2087 Record.push_back(N->getLine()); 2088 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2089 Record.push_back(N->isLocalToUnit()); 2090 Record.push_back(N->isDefinition()); 2091 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2092 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2093 Record.push_back(N->getAlignInBits()); 2094 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2095 2096 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2097 Record.clear(); 2098 } 2099 2100 void ModuleBitcodeWriter::writeDILocalVariable( 2101 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2102 unsigned Abbrev) { 2103 // In order to support all possible bitcode formats in BitcodeReader we need 2104 // to distinguish the following cases: 2105 // 1) Record has no artificial tag (Record[1]), 2106 // has no obsolete inlinedAt field (Record[9]). 2107 // In this case Record size will be 8, HasAlignment flag is false. 2108 // 2) Record has artificial tag (Record[1]), 2109 // has no obsolete inlignedAt field (Record[9]). 2110 // In this case Record size will be 9, HasAlignment flag is false. 2111 // 3) Record has both artificial tag (Record[1]) and 2112 // obsolete inlignedAt field (Record[9]). 2113 // In this case Record size will be 10, HasAlignment flag is false. 2114 // 4) Record has neither artificial tag, nor inlignedAt field, but 2115 // HasAlignment flag is true and Record[8] contains alignment value. 2116 const uint64_t HasAlignmentFlag = 1 << 1; 2117 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2118 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2119 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2120 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2121 Record.push_back(N->getLine()); 2122 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2123 Record.push_back(N->getArg()); 2124 Record.push_back(N->getFlags()); 2125 Record.push_back(N->getAlignInBits()); 2126 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2127 2128 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2129 Record.clear(); 2130 } 2131 2132 void ModuleBitcodeWriter::writeDILabel( 2133 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2134 unsigned Abbrev) { 2135 Record.push_back((uint64_t)N->isDistinct()); 2136 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2137 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2138 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2139 Record.push_back(N->getLine()); 2140 2141 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2142 Record.clear(); 2143 } 2144 2145 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2146 SmallVectorImpl<uint64_t> &Record, 2147 unsigned Abbrev) { 2148 Record.reserve(N->getElements().size() + 1); 2149 const uint64_t Version = 3 << 1; 2150 Record.push_back((uint64_t)N->isDistinct() | Version); 2151 Record.append(N->elements_begin(), N->elements_end()); 2152 2153 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2154 Record.clear(); 2155 } 2156 2157 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2158 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2159 unsigned Abbrev) { 2160 Record.push_back(N->isDistinct()); 2161 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2162 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2163 2164 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2165 Record.clear(); 2166 } 2167 2168 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2169 SmallVectorImpl<uint64_t> &Record, 2170 unsigned Abbrev) { 2171 Record.push_back(N->isDistinct()); 2172 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2173 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2174 Record.push_back(N->getLine()); 2175 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2176 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2177 Record.push_back(N->getAttributes()); 2178 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2179 2180 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2181 Record.clear(); 2182 } 2183 2184 void ModuleBitcodeWriter::writeDIImportedEntity( 2185 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2186 unsigned Abbrev) { 2187 Record.push_back(N->isDistinct()); 2188 Record.push_back(N->getTag()); 2189 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2190 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2191 Record.push_back(N->getLine()); 2192 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2193 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2194 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2195 2196 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2197 Record.clear(); 2198 } 2199 2200 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2201 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2202 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2205 return Stream.EmitAbbrev(std::move(Abbv)); 2206 } 2207 2208 void ModuleBitcodeWriter::writeNamedMetadata( 2209 SmallVectorImpl<uint64_t> &Record) { 2210 if (M.named_metadata_empty()) 2211 return; 2212 2213 unsigned Abbrev = createNamedMetadataAbbrev(); 2214 for (const NamedMDNode &NMD : M.named_metadata()) { 2215 // Write name. 2216 StringRef Str = NMD.getName(); 2217 Record.append(Str.bytes_begin(), Str.bytes_end()); 2218 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2219 Record.clear(); 2220 2221 // Write named metadata operands. 2222 for (const MDNode *N : NMD.operands()) 2223 Record.push_back(VE.getMetadataID(N)); 2224 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2225 Record.clear(); 2226 } 2227 } 2228 2229 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2230 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2231 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2235 return Stream.EmitAbbrev(std::move(Abbv)); 2236 } 2237 2238 /// Write out a record for MDString. 2239 /// 2240 /// All the metadata strings in a metadata block are emitted in a single 2241 /// record. The sizes and strings themselves are shoved into a blob. 2242 void ModuleBitcodeWriter::writeMetadataStrings( 2243 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2244 if (Strings.empty()) 2245 return; 2246 2247 // Start the record with the number of strings. 2248 Record.push_back(bitc::METADATA_STRINGS); 2249 Record.push_back(Strings.size()); 2250 2251 // Emit the sizes of the strings in the blob. 2252 SmallString<256> Blob; 2253 { 2254 BitstreamWriter W(Blob); 2255 for (const Metadata *MD : Strings) 2256 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2257 W.FlushToWord(); 2258 } 2259 2260 // Add the offset to the strings to the record. 2261 Record.push_back(Blob.size()); 2262 2263 // Add the strings to the blob. 2264 for (const Metadata *MD : Strings) 2265 Blob.append(cast<MDString>(MD)->getString()); 2266 2267 // Emit the final record. 2268 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2269 Record.clear(); 2270 } 2271 2272 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2273 enum MetadataAbbrev : unsigned { 2274 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2275 #include "llvm/IR/Metadata.def" 2276 LastPlusOne 2277 }; 2278 2279 void ModuleBitcodeWriter::writeMetadataRecords( 2280 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2281 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2282 if (MDs.empty()) 2283 return; 2284 2285 // Initialize MDNode abbreviations. 2286 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2287 #include "llvm/IR/Metadata.def" 2288 2289 for (const Metadata *MD : MDs) { 2290 if (IndexPos) 2291 IndexPos->push_back(Stream.GetCurrentBitNo()); 2292 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2293 assert(N->isResolved() && "Expected forward references to be resolved"); 2294 2295 switch (N->getMetadataID()) { 2296 default: 2297 llvm_unreachable("Invalid MDNode subclass"); 2298 #define HANDLE_MDNODE_LEAF(CLASS) \ 2299 case Metadata::CLASS##Kind: \ 2300 if (MDAbbrevs) \ 2301 write##CLASS(cast<CLASS>(N), Record, \ 2302 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2303 else \ 2304 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2305 continue; 2306 #include "llvm/IR/Metadata.def" 2307 } 2308 } 2309 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2310 writeDIArgList(AL, Record); 2311 continue; 2312 } 2313 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2314 } 2315 } 2316 2317 void ModuleBitcodeWriter::writeModuleMetadata() { 2318 if (!VE.hasMDs() && M.named_metadata_empty()) 2319 return; 2320 2321 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2322 SmallVector<uint64_t, 64> Record; 2323 2324 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2325 // block and load any metadata. 2326 std::vector<unsigned> MDAbbrevs; 2327 2328 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2329 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2330 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2331 createGenericDINodeAbbrev(); 2332 2333 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2334 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2337 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2338 2339 Abbv = std::make_shared<BitCodeAbbrev>(); 2340 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2343 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2344 2345 // Emit MDStrings together upfront. 2346 writeMetadataStrings(VE.getMDStrings(), Record); 2347 2348 // We only emit an index for the metadata record if we have more than a given 2349 // (naive) threshold of metadatas, otherwise it is not worth it. 2350 if (VE.getNonMDStrings().size() > IndexThreshold) { 2351 // Write a placeholder value in for the offset of the metadata index, 2352 // which is written after the records, so that it can include 2353 // the offset of each entry. The placeholder offset will be 2354 // updated after all records are emitted. 2355 uint64_t Vals[] = {0, 0}; 2356 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2357 } 2358 2359 // Compute and save the bit offset to the current position, which will be 2360 // patched when we emit the index later. We can simply subtract the 64-bit 2361 // fixed size from the current bit number to get the location to backpatch. 2362 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2363 2364 // This index will contain the bitpos for each individual record. 2365 std::vector<uint64_t> IndexPos; 2366 IndexPos.reserve(VE.getNonMDStrings().size()); 2367 2368 // Write all the records 2369 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2370 2371 if (VE.getNonMDStrings().size() > IndexThreshold) { 2372 // Now that we have emitted all the records we will emit the index. But 2373 // first 2374 // backpatch the forward reference so that the reader can skip the records 2375 // efficiently. 2376 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2377 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2378 2379 // Delta encode the index. 2380 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2381 for (auto &Elt : IndexPos) { 2382 auto EltDelta = Elt - PreviousValue; 2383 PreviousValue = Elt; 2384 Elt = EltDelta; 2385 } 2386 // Emit the index record. 2387 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2388 IndexPos.clear(); 2389 } 2390 2391 // Write the named metadata now. 2392 writeNamedMetadata(Record); 2393 2394 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2395 SmallVector<uint64_t, 4> Record; 2396 Record.push_back(VE.getValueID(&GO)); 2397 pushGlobalMetadataAttachment(Record, GO); 2398 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2399 }; 2400 for (const Function &F : M) 2401 if (F.isDeclaration() && F.hasMetadata()) 2402 AddDeclAttachedMetadata(F); 2403 // FIXME: Only store metadata for declarations here, and move data for global 2404 // variable definitions to a separate block (PR28134). 2405 for (const GlobalVariable &GV : M.globals()) 2406 if (GV.hasMetadata()) 2407 AddDeclAttachedMetadata(GV); 2408 2409 Stream.ExitBlock(); 2410 } 2411 2412 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2413 if (!VE.hasMDs()) 2414 return; 2415 2416 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2417 SmallVector<uint64_t, 64> Record; 2418 writeMetadataStrings(VE.getMDStrings(), Record); 2419 writeMetadataRecords(VE.getNonMDStrings(), Record); 2420 Stream.ExitBlock(); 2421 } 2422 2423 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2424 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2425 // [n x [id, mdnode]] 2426 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2427 GO.getAllMetadata(MDs); 2428 for (const auto &I : MDs) { 2429 Record.push_back(I.first); 2430 Record.push_back(VE.getMetadataID(I.second)); 2431 } 2432 } 2433 2434 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2435 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2436 2437 SmallVector<uint64_t, 64> Record; 2438 2439 if (F.hasMetadata()) { 2440 pushGlobalMetadataAttachment(Record, F); 2441 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2442 Record.clear(); 2443 } 2444 2445 // Write metadata attachments 2446 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2447 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2448 for (const BasicBlock &BB : F) 2449 for (const Instruction &I : BB) { 2450 MDs.clear(); 2451 I.getAllMetadataOtherThanDebugLoc(MDs); 2452 2453 // If no metadata, ignore instruction. 2454 if (MDs.empty()) continue; 2455 2456 Record.push_back(VE.getInstructionID(&I)); 2457 2458 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2459 Record.push_back(MDs[i].first); 2460 Record.push_back(VE.getMetadataID(MDs[i].second)); 2461 } 2462 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2463 Record.clear(); 2464 } 2465 2466 Stream.ExitBlock(); 2467 } 2468 2469 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2470 SmallVector<uint64_t, 64> Record; 2471 2472 // Write metadata kinds 2473 // METADATA_KIND - [n x [id, name]] 2474 SmallVector<StringRef, 8> Names; 2475 M.getMDKindNames(Names); 2476 2477 if (Names.empty()) return; 2478 2479 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2480 2481 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2482 Record.push_back(MDKindID); 2483 StringRef KName = Names[MDKindID]; 2484 Record.append(KName.begin(), KName.end()); 2485 2486 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2487 Record.clear(); 2488 } 2489 2490 Stream.ExitBlock(); 2491 } 2492 2493 void ModuleBitcodeWriter::writeOperandBundleTags() { 2494 // Write metadata kinds 2495 // 2496 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2497 // 2498 // OPERAND_BUNDLE_TAG - [strchr x N] 2499 2500 SmallVector<StringRef, 8> Tags; 2501 M.getOperandBundleTags(Tags); 2502 2503 if (Tags.empty()) 2504 return; 2505 2506 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2507 2508 SmallVector<uint64_t, 64> Record; 2509 2510 for (auto Tag : Tags) { 2511 Record.append(Tag.begin(), Tag.end()); 2512 2513 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2514 Record.clear(); 2515 } 2516 2517 Stream.ExitBlock(); 2518 } 2519 2520 void ModuleBitcodeWriter::writeSyncScopeNames() { 2521 SmallVector<StringRef, 8> SSNs; 2522 M.getContext().getSyncScopeNames(SSNs); 2523 if (SSNs.empty()) 2524 return; 2525 2526 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2527 2528 SmallVector<uint64_t, 64> Record; 2529 for (auto SSN : SSNs) { 2530 Record.append(SSN.begin(), SSN.end()); 2531 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2532 Record.clear(); 2533 } 2534 2535 Stream.ExitBlock(); 2536 } 2537 2538 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2539 bool isGlobal) { 2540 if (FirstVal == LastVal) return; 2541 2542 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2543 2544 unsigned AggregateAbbrev = 0; 2545 unsigned String8Abbrev = 0; 2546 unsigned CString7Abbrev = 0; 2547 unsigned CString6Abbrev = 0; 2548 // If this is a constant pool for the module, emit module-specific abbrevs. 2549 if (isGlobal) { 2550 // Abbrev for CST_CODE_AGGREGATE. 2551 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2552 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2555 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2556 2557 // Abbrev for CST_CODE_STRING. 2558 Abbv = std::make_shared<BitCodeAbbrev>(); 2559 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2562 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2563 // Abbrev for CST_CODE_CSTRING. 2564 Abbv = std::make_shared<BitCodeAbbrev>(); 2565 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2568 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2569 // Abbrev for CST_CODE_CSTRING. 2570 Abbv = std::make_shared<BitCodeAbbrev>(); 2571 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2574 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2575 } 2576 2577 SmallVector<uint64_t, 64> Record; 2578 2579 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2580 Type *LastTy = nullptr; 2581 for (unsigned i = FirstVal; i != LastVal; ++i) { 2582 const Value *V = Vals[i].first; 2583 // If we need to switch types, do so now. 2584 if (V->getType() != LastTy) { 2585 LastTy = V->getType(); 2586 Record.push_back(VE.getTypeID(LastTy)); 2587 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2588 CONSTANTS_SETTYPE_ABBREV); 2589 Record.clear(); 2590 } 2591 2592 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2593 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2594 Record.push_back( 2595 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2596 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2597 2598 // Add the asm string. 2599 const std::string &AsmStr = IA->getAsmString(); 2600 Record.push_back(AsmStr.size()); 2601 Record.append(AsmStr.begin(), AsmStr.end()); 2602 2603 // Add the constraint string. 2604 const std::string &ConstraintStr = IA->getConstraintString(); 2605 Record.push_back(ConstraintStr.size()); 2606 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2607 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2608 Record.clear(); 2609 continue; 2610 } 2611 const Constant *C = cast<Constant>(V); 2612 unsigned Code = -1U; 2613 unsigned AbbrevToUse = 0; 2614 if (C->isNullValue()) { 2615 Code = bitc::CST_CODE_NULL; 2616 } else if (isa<PoisonValue>(C)) { 2617 Code = bitc::CST_CODE_POISON; 2618 } else if (isa<UndefValue>(C)) { 2619 Code = bitc::CST_CODE_UNDEF; 2620 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2621 if (IV->getBitWidth() <= 64) { 2622 uint64_t V = IV->getSExtValue(); 2623 emitSignedInt64(Record, V); 2624 Code = bitc::CST_CODE_INTEGER; 2625 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2626 } else { // Wide integers, > 64 bits in size. 2627 emitWideAPInt(Record, IV->getValue()); 2628 Code = bitc::CST_CODE_WIDE_INTEGER; 2629 } 2630 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2631 Code = bitc::CST_CODE_FLOAT; 2632 Type *Ty = CFP->getType()->getScalarType(); 2633 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2634 Ty->isDoubleTy()) { 2635 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2636 } else if (Ty->isX86_FP80Ty()) { 2637 // api needed to prevent premature destruction 2638 // bits are not in the same order as a normal i80 APInt, compensate. 2639 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2640 const uint64_t *p = api.getRawData(); 2641 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2642 Record.push_back(p[0] & 0xffffLL); 2643 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2644 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2645 const uint64_t *p = api.getRawData(); 2646 Record.push_back(p[0]); 2647 Record.push_back(p[1]); 2648 } else { 2649 assert(0 && "Unknown FP type!"); 2650 } 2651 } else if (isa<ConstantDataSequential>(C) && 2652 cast<ConstantDataSequential>(C)->isString()) { 2653 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2654 // Emit constant strings specially. 2655 unsigned NumElts = Str->getNumElements(); 2656 // If this is a null-terminated string, use the denser CSTRING encoding. 2657 if (Str->isCString()) { 2658 Code = bitc::CST_CODE_CSTRING; 2659 --NumElts; // Don't encode the null, which isn't allowed by char6. 2660 } else { 2661 Code = bitc::CST_CODE_STRING; 2662 AbbrevToUse = String8Abbrev; 2663 } 2664 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2665 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2666 for (unsigned i = 0; i != NumElts; ++i) { 2667 unsigned char V = Str->getElementAsInteger(i); 2668 Record.push_back(V); 2669 isCStr7 &= (V & 128) == 0; 2670 if (isCStrChar6) 2671 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2672 } 2673 2674 if (isCStrChar6) 2675 AbbrevToUse = CString6Abbrev; 2676 else if (isCStr7) 2677 AbbrevToUse = CString7Abbrev; 2678 } else if (const ConstantDataSequential *CDS = 2679 dyn_cast<ConstantDataSequential>(C)) { 2680 Code = bitc::CST_CODE_DATA; 2681 Type *EltTy = CDS->getElementType(); 2682 if (isa<IntegerType>(EltTy)) { 2683 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2684 Record.push_back(CDS->getElementAsInteger(i)); 2685 } else { 2686 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2687 Record.push_back( 2688 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2689 } 2690 } else if (isa<ConstantAggregate>(C)) { 2691 Code = bitc::CST_CODE_AGGREGATE; 2692 for (const Value *Op : C->operands()) 2693 Record.push_back(VE.getValueID(Op)); 2694 AbbrevToUse = AggregateAbbrev; 2695 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2696 switch (CE->getOpcode()) { 2697 default: 2698 if (Instruction::isCast(CE->getOpcode())) { 2699 Code = bitc::CST_CODE_CE_CAST; 2700 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2701 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2702 Record.push_back(VE.getValueID(C->getOperand(0))); 2703 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2704 } else { 2705 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2706 Code = bitc::CST_CODE_CE_BINOP; 2707 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2708 Record.push_back(VE.getValueID(C->getOperand(0))); 2709 Record.push_back(VE.getValueID(C->getOperand(1))); 2710 uint64_t Flags = getOptimizationFlags(CE); 2711 if (Flags != 0) 2712 Record.push_back(Flags); 2713 } 2714 break; 2715 case Instruction::FNeg: { 2716 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2717 Code = bitc::CST_CODE_CE_UNOP; 2718 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2719 Record.push_back(VE.getValueID(C->getOperand(0))); 2720 uint64_t Flags = getOptimizationFlags(CE); 2721 if (Flags != 0) 2722 Record.push_back(Flags); 2723 break; 2724 } 2725 case Instruction::GetElementPtr: { 2726 Code = bitc::CST_CODE_CE_GEP; 2727 const auto *GO = cast<GEPOperator>(C); 2728 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2729 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { 2730 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2731 Record.push_back((*Idx << 1) | GO->isInBounds()); 2732 } else if (GO->isInBounds()) 2733 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2734 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2735 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2736 Record.push_back(VE.getValueID(C->getOperand(i))); 2737 } 2738 break; 2739 } 2740 case Instruction::ExtractElement: 2741 Code = bitc::CST_CODE_CE_EXTRACTELT; 2742 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2743 Record.push_back(VE.getValueID(C->getOperand(0))); 2744 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2745 Record.push_back(VE.getValueID(C->getOperand(1))); 2746 break; 2747 case Instruction::InsertElement: 2748 Code = bitc::CST_CODE_CE_INSERTELT; 2749 Record.push_back(VE.getValueID(C->getOperand(0))); 2750 Record.push_back(VE.getValueID(C->getOperand(1))); 2751 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2752 Record.push_back(VE.getValueID(C->getOperand(2))); 2753 break; 2754 case Instruction::ShuffleVector: 2755 // If the return type and argument types are the same, this is a 2756 // standard shufflevector instruction. If the types are different, 2757 // then the shuffle is widening or truncating the input vectors, and 2758 // the argument type must also be encoded. 2759 if (C->getType() == C->getOperand(0)->getType()) { 2760 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2761 } else { 2762 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2763 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2764 } 2765 Record.push_back(VE.getValueID(C->getOperand(0))); 2766 Record.push_back(VE.getValueID(C->getOperand(1))); 2767 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2768 break; 2769 case Instruction::ICmp: 2770 case Instruction::FCmp: 2771 Code = bitc::CST_CODE_CE_CMP; 2772 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2773 Record.push_back(VE.getValueID(C->getOperand(0))); 2774 Record.push_back(VE.getValueID(C->getOperand(1))); 2775 Record.push_back(CE->getPredicate()); 2776 break; 2777 } 2778 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2779 Code = bitc::CST_CODE_BLOCKADDRESS; 2780 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2781 Record.push_back(VE.getValueID(BA->getFunction())); 2782 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2783 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2784 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2785 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2786 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2787 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2788 Code = bitc::CST_CODE_NO_CFI_VALUE; 2789 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2790 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2791 } else { 2792 #ifndef NDEBUG 2793 C->dump(); 2794 #endif 2795 llvm_unreachable("Unknown constant!"); 2796 } 2797 Stream.EmitRecord(Code, Record, AbbrevToUse); 2798 Record.clear(); 2799 } 2800 2801 Stream.ExitBlock(); 2802 } 2803 2804 void ModuleBitcodeWriter::writeModuleConstants() { 2805 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2806 2807 // Find the first constant to emit, which is the first non-globalvalue value. 2808 // We know globalvalues have been emitted by WriteModuleInfo. 2809 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2810 if (!isa<GlobalValue>(Vals[i].first)) { 2811 writeConstants(i, Vals.size(), true); 2812 return; 2813 } 2814 } 2815 } 2816 2817 /// pushValueAndType - The file has to encode both the value and type id for 2818 /// many values, because we need to know what type to create for forward 2819 /// references. However, most operands are not forward references, so this type 2820 /// field is not needed. 2821 /// 2822 /// This function adds V's value ID to Vals. If the value ID is higher than the 2823 /// instruction ID, then it is a forward reference, and it also includes the 2824 /// type ID. The value ID that is written is encoded relative to the InstID. 2825 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2826 SmallVectorImpl<unsigned> &Vals) { 2827 unsigned ValID = VE.getValueID(V); 2828 // Make encoding relative to the InstID. 2829 Vals.push_back(InstID - ValID); 2830 if (ValID >= InstID) { 2831 Vals.push_back(VE.getTypeID(V->getType())); 2832 return true; 2833 } 2834 return false; 2835 } 2836 2837 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2838 unsigned InstID) { 2839 SmallVector<unsigned, 64> Record; 2840 LLVMContext &C = CS.getContext(); 2841 2842 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2843 const auto &Bundle = CS.getOperandBundleAt(i); 2844 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2845 2846 for (auto &Input : Bundle.Inputs) 2847 pushValueAndType(Input, InstID, Record); 2848 2849 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2850 Record.clear(); 2851 } 2852 } 2853 2854 /// pushValue - Like pushValueAndType, but where the type of the value is 2855 /// omitted (perhaps it was already encoded in an earlier operand). 2856 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2857 SmallVectorImpl<unsigned> &Vals) { 2858 unsigned ValID = VE.getValueID(V); 2859 Vals.push_back(InstID - ValID); 2860 } 2861 2862 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2863 SmallVectorImpl<uint64_t> &Vals) { 2864 unsigned ValID = VE.getValueID(V); 2865 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2866 emitSignedInt64(Vals, diff); 2867 } 2868 2869 /// WriteInstruction - Emit an instruction to the specified stream. 2870 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2871 unsigned InstID, 2872 SmallVectorImpl<unsigned> &Vals) { 2873 unsigned Code = 0; 2874 unsigned AbbrevToUse = 0; 2875 VE.setInstructionID(&I); 2876 switch (I.getOpcode()) { 2877 default: 2878 if (Instruction::isCast(I.getOpcode())) { 2879 Code = bitc::FUNC_CODE_INST_CAST; 2880 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2881 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2882 Vals.push_back(VE.getTypeID(I.getType())); 2883 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2884 uint64_t Flags = getOptimizationFlags(&I); 2885 if (Flags != 0) { 2886 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2887 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2888 Vals.push_back(Flags); 2889 } 2890 } else { 2891 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2892 Code = bitc::FUNC_CODE_INST_BINOP; 2893 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2894 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2895 pushValue(I.getOperand(1), InstID, Vals); 2896 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2897 uint64_t Flags = getOptimizationFlags(&I); 2898 if (Flags != 0) { 2899 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2900 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2901 Vals.push_back(Flags); 2902 } 2903 } 2904 break; 2905 case Instruction::FNeg: { 2906 Code = bitc::FUNC_CODE_INST_UNOP; 2907 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2908 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2909 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2910 uint64_t Flags = getOptimizationFlags(&I); 2911 if (Flags != 0) { 2912 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2913 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2914 Vals.push_back(Flags); 2915 } 2916 break; 2917 } 2918 case Instruction::GetElementPtr: { 2919 Code = bitc::FUNC_CODE_INST_GEP; 2920 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2921 auto &GEPInst = cast<GetElementPtrInst>(I); 2922 Vals.push_back(GEPInst.isInBounds()); 2923 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2924 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2925 pushValueAndType(I.getOperand(i), InstID, Vals); 2926 break; 2927 } 2928 case Instruction::ExtractValue: { 2929 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2930 pushValueAndType(I.getOperand(0), InstID, Vals); 2931 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2932 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2933 break; 2934 } 2935 case Instruction::InsertValue: { 2936 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2937 pushValueAndType(I.getOperand(0), InstID, Vals); 2938 pushValueAndType(I.getOperand(1), InstID, Vals); 2939 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2940 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2941 break; 2942 } 2943 case Instruction::Select: { 2944 Code = bitc::FUNC_CODE_INST_VSELECT; 2945 pushValueAndType(I.getOperand(1), InstID, Vals); 2946 pushValue(I.getOperand(2), InstID, Vals); 2947 pushValueAndType(I.getOperand(0), InstID, Vals); 2948 uint64_t Flags = getOptimizationFlags(&I); 2949 if (Flags != 0) 2950 Vals.push_back(Flags); 2951 break; 2952 } 2953 case Instruction::ExtractElement: 2954 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2955 pushValueAndType(I.getOperand(0), InstID, Vals); 2956 pushValueAndType(I.getOperand(1), InstID, Vals); 2957 break; 2958 case Instruction::InsertElement: 2959 Code = bitc::FUNC_CODE_INST_INSERTELT; 2960 pushValueAndType(I.getOperand(0), InstID, Vals); 2961 pushValue(I.getOperand(1), InstID, Vals); 2962 pushValueAndType(I.getOperand(2), InstID, Vals); 2963 break; 2964 case Instruction::ShuffleVector: 2965 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2966 pushValueAndType(I.getOperand(0), InstID, Vals); 2967 pushValue(I.getOperand(1), InstID, Vals); 2968 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2969 Vals); 2970 break; 2971 case Instruction::ICmp: 2972 case Instruction::FCmp: { 2973 // compare returning Int1Ty or vector of Int1Ty 2974 Code = bitc::FUNC_CODE_INST_CMP2; 2975 pushValueAndType(I.getOperand(0), InstID, Vals); 2976 pushValue(I.getOperand(1), InstID, Vals); 2977 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2978 uint64_t Flags = getOptimizationFlags(&I); 2979 if (Flags != 0) 2980 Vals.push_back(Flags); 2981 break; 2982 } 2983 2984 case Instruction::Ret: 2985 { 2986 Code = bitc::FUNC_CODE_INST_RET; 2987 unsigned NumOperands = I.getNumOperands(); 2988 if (NumOperands == 0) 2989 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2990 else if (NumOperands == 1) { 2991 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2992 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2993 } else { 2994 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2995 pushValueAndType(I.getOperand(i), InstID, Vals); 2996 } 2997 } 2998 break; 2999 case Instruction::Br: 3000 { 3001 Code = bitc::FUNC_CODE_INST_BR; 3002 const BranchInst &II = cast<BranchInst>(I); 3003 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3004 if (II.isConditional()) { 3005 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3006 pushValue(II.getCondition(), InstID, Vals); 3007 } 3008 } 3009 break; 3010 case Instruction::Switch: 3011 { 3012 Code = bitc::FUNC_CODE_INST_SWITCH; 3013 const SwitchInst &SI = cast<SwitchInst>(I); 3014 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3015 pushValue(SI.getCondition(), InstID, Vals); 3016 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3017 for (auto Case : SI.cases()) { 3018 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3019 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3020 } 3021 } 3022 break; 3023 case Instruction::IndirectBr: 3024 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3025 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3026 // Encode the address operand as relative, but not the basic blocks. 3027 pushValue(I.getOperand(0), InstID, Vals); 3028 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 3029 Vals.push_back(VE.getValueID(I.getOperand(i))); 3030 break; 3031 3032 case Instruction::Invoke: { 3033 const InvokeInst *II = cast<InvokeInst>(&I); 3034 const Value *Callee = II->getCalledOperand(); 3035 FunctionType *FTy = II->getFunctionType(); 3036 3037 if (II->hasOperandBundles()) 3038 writeOperandBundles(*II, InstID); 3039 3040 Code = bitc::FUNC_CODE_INST_INVOKE; 3041 3042 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3043 Vals.push_back(II->getCallingConv() | 1 << 13); 3044 Vals.push_back(VE.getValueID(II->getNormalDest())); 3045 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3046 Vals.push_back(VE.getTypeID(FTy)); 3047 pushValueAndType(Callee, InstID, Vals); 3048 3049 // Emit value #'s for the fixed parameters. 3050 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3051 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3052 3053 // Emit type/value pairs for varargs params. 3054 if (FTy->isVarArg()) { 3055 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3056 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3057 } 3058 break; 3059 } 3060 case Instruction::Resume: 3061 Code = bitc::FUNC_CODE_INST_RESUME; 3062 pushValueAndType(I.getOperand(0), InstID, Vals); 3063 break; 3064 case Instruction::CleanupRet: { 3065 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3066 const auto &CRI = cast<CleanupReturnInst>(I); 3067 pushValue(CRI.getCleanupPad(), InstID, Vals); 3068 if (CRI.hasUnwindDest()) 3069 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3070 break; 3071 } 3072 case Instruction::CatchRet: { 3073 Code = bitc::FUNC_CODE_INST_CATCHRET; 3074 const auto &CRI = cast<CatchReturnInst>(I); 3075 pushValue(CRI.getCatchPad(), InstID, Vals); 3076 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3077 break; 3078 } 3079 case Instruction::CleanupPad: 3080 case Instruction::CatchPad: { 3081 const auto &FuncletPad = cast<FuncletPadInst>(I); 3082 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3083 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3084 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3085 3086 unsigned NumArgOperands = FuncletPad.arg_size(); 3087 Vals.push_back(NumArgOperands); 3088 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3089 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3090 break; 3091 } 3092 case Instruction::CatchSwitch: { 3093 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3094 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3095 3096 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3097 3098 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3099 Vals.push_back(NumHandlers); 3100 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3101 Vals.push_back(VE.getValueID(CatchPadBB)); 3102 3103 if (CatchSwitch.hasUnwindDest()) 3104 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3105 break; 3106 } 3107 case Instruction::CallBr: { 3108 const CallBrInst *CBI = cast<CallBrInst>(&I); 3109 const Value *Callee = CBI->getCalledOperand(); 3110 FunctionType *FTy = CBI->getFunctionType(); 3111 3112 if (CBI->hasOperandBundles()) 3113 writeOperandBundles(*CBI, InstID); 3114 3115 Code = bitc::FUNC_CODE_INST_CALLBR; 3116 3117 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3118 3119 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3120 1 << bitc::CALL_EXPLICIT_TYPE); 3121 3122 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3123 Vals.push_back(CBI->getNumIndirectDests()); 3124 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3125 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3126 3127 Vals.push_back(VE.getTypeID(FTy)); 3128 pushValueAndType(Callee, InstID, Vals); 3129 3130 // Emit value #'s for the fixed parameters. 3131 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3132 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3133 3134 // Emit type/value pairs for varargs params. 3135 if (FTy->isVarArg()) { 3136 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3137 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3138 } 3139 break; 3140 } 3141 case Instruction::Unreachable: 3142 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3143 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3144 break; 3145 3146 case Instruction::PHI: { 3147 const PHINode &PN = cast<PHINode>(I); 3148 Code = bitc::FUNC_CODE_INST_PHI; 3149 // With the newer instruction encoding, forward references could give 3150 // negative valued IDs. This is most common for PHIs, so we use 3151 // signed VBRs. 3152 SmallVector<uint64_t, 128> Vals64; 3153 Vals64.push_back(VE.getTypeID(PN.getType())); 3154 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3155 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3156 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3157 } 3158 3159 uint64_t Flags = getOptimizationFlags(&I); 3160 if (Flags != 0) 3161 Vals64.push_back(Flags); 3162 3163 // Emit a Vals64 vector and exit. 3164 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3165 Vals64.clear(); 3166 return; 3167 } 3168 3169 case Instruction::LandingPad: { 3170 const LandingPadInst &LP = cast<LandingPadInst>(I); 3171 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3172 Vals.push_back(VE.getTypeID(LP.getType())); 3173 Vals.push_back(LP.isCleanup()); 3174 Vals.push_back(LP.getNumClauses()); 3175 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3176 if (LP.isCatch(I)) 3177 Vals.push_back(LandingPadInst::Catch); 3178 else 3179 Vals.push_back(LandingPadInst::Filter); 3180 pushValueAndType(LP.getClause(I), InstID, Vals); 3181 } 3182 break; 3183 } 3184 3185 case Instruction::Alloca: { 3186 Code = bitc::FUNC_CODE_INST_ALLOCA; 3187 const AllocaInst &AI = cast<AllocaInst>(I); 3188 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3189 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3190 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3191 using APV = AllocaPackedValues; 3192 unsigned Record = 0; 3193 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3194 Bitfield::set<APV::AlignLower>( 3195 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3196 Bitfield::set<APV::AlignUpper>(Record, 3197 EncodedAlign >> APV::AlignLower::Bits); 3198 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3199 Bitfield::set<APV::ExplicitType>(Record, true); 3200 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3201 Vals.push_back(Record); 3202 3203 unsigned AS = AI.getAddressSpace(); 3204 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3205 Vals.push_back(AS); 3206 break; 3207 } 3208 3209 case Instruction::Load: 3210 if (cast<LoadInst>(I).isAtomic()) { 3211 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3212 pushValueAndType(I.getOperand(0), InstID, Vals); 3213 } else { 3214 Code = bitc::FUNC_CODE_INST_LOAD; 3215 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3216 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3217 } 3218 Vals.push_back(VE.getTypeID(I.getType())); 3219 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3220 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3221 if (cast<LoadInst>(I).isAtomic()) { 3222 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3223 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3224 } 3225 break; 3226 case Instruction::Store: 3227 if (cast<StoreInst>(I).isAtomic()) 3228 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3229 else 3230 Code = bitc::FUNC_CODE_INST_STORE; 3231 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3232 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3233 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3234 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3235 if (cast<StoreInst>(I).isAtomic()) { 3236 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3237 Vals.push_back( 3238 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3239 } 3240 break; 3241 case Instruction::AtomicCmpXchg: 3242 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3243 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3244 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3245 pushValue(I.getOperand(2), InstID, Vals); // newval. 3246 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3247 Vals.push_back( 3248 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3249 Vals.push_back( 3250 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3251 Vals.push_back( 3252 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3253 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3254 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3255 break; 3256 case Instruction::AtomicRMW: 3257 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3258 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3259 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3260 Vals.push_back( 3261 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3262 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3263 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3264 Vals.push_back( 3265 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3266 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3267 break; 3268 case Instruction::Fence: 3269 Code = bitc::FUNC_CODE_INST_FENCE; 3270 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3271 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3272 break; 3273 case Instruction::Call: { 3274 const CallInst &CI = cast<CallInst>(I); 3275 FunctionType *FTy = CI.getFunctionType(); 3276 3277 if (CI.hasOperandBundles()) 3278 writeOperandBundles(CI, InstID); 3279 3280 Code = bitc::FUNC_CODE_INST_CALL; 3281 3282 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3283 3284 unsigned Flags = getOptimizationFlags(&I); 3285 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3286 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3287 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3288 1 << bitc::CALL_EXPLICIT_TYPE | 3289 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3290 unsigned(Flags != 0) << bitc::CALL_FMF); 3291 if (Flags != 0) 3292 Vals.push_back(Flags); 3293 3294 Vals.push_back(VE.getTypeID(FTy)); 3295 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3296 3297 // Emit value #'s for the fixed parameters. 3298 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3299 // Check for labels (can happen with asm labels). 3300 if (FTy->getParamType(i)->isLabelTy()) 3301 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3302 else 3303 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3304 } 3305 3306 // Emit type/value pairs for varargs params. 3307 if (FTy->isVarArg()) { 3308 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3309 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3310 } 3311 break; 3312 } 3313 case Instruction::VAArg: 3314 Code = bitc::FUNC_CODE_INST_VAARG; 3315 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3316 pushValue(I.getOperand(0), InstID, Vals); // valist. 3317 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3318 break; 3319 case Instruction::Freeze: 3320 Code = bitc::FUNC_CODE_INST_FREEZE; 3321 pushValueAndType(I.getOperand(0), InstID, Vals); 3322 break; 3323 } 3324 3325 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3326 Vals.clear(); 3327 } 3328 3329 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3330 /// to allow clients to efficiently find the function body. 3331 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3332 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3333 // Get the offset of the VST we are writing, and backpatch it into 3334 // the VST forward declaration record. 3335 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3336 // The BitcodeStartBit was the stream offset of the identification block. 3337 VSTOffset -= bitcodeStartBit(); 3338 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3339 // Note that we add 1 here because the offset is relative to one word 3340 // before the start of the identification block, which was historically 3341 // always the start of the regular bitcode header. 3342 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3343 3344 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3345 3346 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3347 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3350 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3351 3352 for (const Function &F : M) { 3353 uint64_t Record[2]; 3354 3355 if (F.isDeclaration()) 3356 continue; 3357 3358 Record[0] = VE.getValueID(&F); 3359 3360 // Save the word offset of the function (from the start of the 3361 // actual bitcode written to the stream). 3362 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3363 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3364 // Note that we add 1 here because the offset is relative to one word 3365 // before the start of the identification block, which was historically 3366 // always the start of the regular bitcode header. 3367 Record[1] = BitcodeIndex / 32 + 1; 3368 3369 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3370 } 3371 3372 Stream.ExitBlock(); 3373 } 3374 3375 /// Emit names for arguments, instructions and basic blocks in a function. 3376 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3377 const ValueSymbolTable &VST) { 3378 if (VST.empty()) 3379 return; 3380 3381 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3382 3383 // FIXME: Set up the abbrev, we know how many values there are! 3384 // FIXME: We know if the type names can use 7-bit ascii. 3385 SmallVector<uint64_t, 64> NameVals; 3386 3387 for (const ValueName &Name : VST) { 3388 // Figure out the encoding to use for the name. 3389 StringEncoding Bits = getStringEncoding(Name.getKey()); 3390 3391 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3392 NameVals.push_back(VE.getValueID(Name.getValue())); 3393 3394 // VST_CODE_ENTRY: [valueid, namechar x N] 3395 // VST_CODE_BBENTRY: [bbid, namechar x N] 3396 unsigned Code; 3397 if (isa<BasicBlock>(Name.getValue())) { 3398 Code = bitc::VST_CODE_BBENTRY; 3399 if (Bits == SE_Char6) 3400 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3401 } else { 3402 Code = bitc::VST_CODE_ENTRY; 3403 if (Bits == SE_Char6) 3404 AbbrevToUse = VST_ENTRY_6_ABBREV; 3405 else if (Bits == SE_Fixed7) 3406 AbbrevToUse = VST_ENTRY_7_ABBREV; 3407 } 3408 3409 for (const auto P : Name.getKey()) 3410 NameVals.push_back((unsigned char)P); 3411 3412 // Emit the finished record. 3413 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3414 NameVals.clear(); 3415 } 3416 3417 Stream.ExitBlock(); 3418 } 3419 3420 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3421 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3422 unsigned Code; 3423 if (isa<BasicBlock>(Order.V)) 3424 Code = bitc::USELIST_CODE_BB; 3425 else 3426 Code = bitc::USELIST_CODE_DEFAULT; 3427 3428 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3429 Record.push_back(VE.getValueID(Order.V)); 3430 Stream.EmitRecord(Code, Record); 3431 } 3432 3433 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3434 assert(VE.shouldPreserveUseListOrder() && 3435 "Expected to be preserving use-list order"); 3436 3437 auto hasMore = [&]() { 3438 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3439 }; 3440 if (!hasMore()) 3441 // Nothing to do. 3442 return; 3443 3444 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3445 while (hasMore()) { 3446 writeUseList(std::move(VE.UseListOrders.back())); 3447 VE.UseListOrders.pop_back(); 3448 } 3449 Stream.ExitBlock(); 3450 } 3451 3452 /// Emit a function body to the module stream. 3453 void ModuleBitcodeWriter::writeFunction( 3454 const Function &F, 3455 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3456 // Save the bitcode index of the start of this function block for recording 3457 // in the VST. 3458 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3459 3460 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3461 VE.incorporateFunction(F); 3462 3463 SmallVector<unsigned, 64> Vals; 3464 3465 // Emit the number of basic blocks, so the reader can create them ahead of 3466 // time. 3467 Vals.push_back(VE.getBasicBlocks().size()); 3468 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3469 Vals.clear(); 3470 3471 // If there are function-local constants, emit them now. 3472 unsigned CstStart, CstEnd; 3473 VE.getFunctionConstantRange(CstStart, CstEnd); 3474 writeConstants(CstStart, CstEnd, false); 3475 3476 // If there is function-local metadata, emit it now. 3477 writeFunctionMetadata(F); 3478 3479 // Keep a running idea of what the instruction ID is. 3480 unsigned InstID = CstEnd; 3481 3482 bool NeedsMetadataAttachment = F.hasMetadata(); 3483 3484 DILocation *LastDL = nullptr; 3485 SmallSetVector<Function *, 4> BlockAddressUsers; 3486 3487 // Finally, emit all the instructions, in order. 3488 for (const BasicBlock &BB : F) { 3489 for (const Instruction &I : BB) { 3490 writeInstruction(I, InstID, Vals); 3491 3492 if (!I.getType()->isVoidTy()) 3493 ++InstID; 3494 3495 // If the instruction has metadata, write a metadata attachment later. 3496 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3497 3498 // If the instruction has a debug location, emit it. 3499 DILocation *DL = I.getDebugLoc(); 3500 if (!DL) 3501 continue; 3502 3503 if (DL == LastDL) { 3504 // Just repeat the same debug loc as last time. 3505 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3506 continue; 3507 } 3508 3509 Vals.push_back(DL->getLine()); 3510 Vals.push_back(DL->getColumn()); 3511 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3512 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3513 Vals.push_back(DL->isImplicitCode()); 3514 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3515 Vals.clear(); 3516 3517 LastDL = DL; 3518 } 3519 3520 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3521 SmallVector<Value *> Worklist{BA}; 3522 SmallPtrSet<Value *, 8> Visited{BA}; 3523 while (!Worklist.empty()) { 3524 Value *V = Worklist.pop_back_val(); 3525 for (User *U : V->users()) { 3526 if (auto *I = dyn_cast<Instruction>(U)) { 3527 Function *P = I->getFunction(); 3528 if (P != &F) 3529 BlockAddressUsers.insert(P); 3530 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3531 Visited.insert(U).second) 3532 Worklist.push_back(U); 3533 } 3534 } 3535 } 3536 } 3537 3538 if (!BlockAddressUsers.empty()) { 3539 Vals.resize(BlockAddressUsers.size()); 3540 for (auto I : llvm::enumerate(BlockAddressUsers)) 3541 Vals[I.index()] = VE.getValueID(I.value()); 3542 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3543 Vals.clear(); 3544 } 3545 3546 // Emit names for all the instructions etc. 3547 if (auto *Symtab = F.getValueSymbolTable()) 3548 writeFunctionLevelValueSymbolTable(*Symtab); 3549 3550 if (NeedsMetadataAttachment) 3551 writeFunctionMetadataAttachment(F); 3552 if (VE.shouldPreserveUseListOrder()) 3553 writeUseListBlock(&F); 3554 VE.purgeFunction(); 3555 Stream.ExitBlock(); 3556 } 3557 3558 // Emit blockinfo, which defines the standard abbreviations etc. 3559 void ModuleBitcodeWriter::writeBlockInfo() { 3560 // We only want to emit block info records for blocks that have multiple 3561 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3562 // Other blocks can define their abbrevs inline. 3563 Stream.EnterBlockInfoBlock(); 3564 3565 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3566 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3571 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3572 VST_ENTRY_8_ABBREV) 3573 llvm_unreachable("Unexpected abbrev ordering!"); 3574 } 3575 3576 { // 7-bit fixed width VST_CODE_ENTRY strings. 3577 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3578 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3582 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3583 VST_ENTRY_7_ABBREV) 3584 llvm_unreachable("Unexpected abbrev ordering!"); 3585 } 3586 { // 6-bit char6 VST_CODE_ENTRY strings. 3587 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3588 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3592 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3593 VST_ENTRY_6_ABBREV) 3594 llvm_unreachable("Unexpected abbrev ordering!"); 3595 } 3596 { // 6-bit char6 VST_CODE_BBENTRY strings. 3597 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3598 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3602 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3603 VST_BBENTRY_6_ABBREV) 3604 llvm_unreachable("Unexpected abbrev ordering!"); 3605 } 3606 3607 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3608 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3609 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3611 VE.computeBitsRequiredForTypeIndicies())); 3612 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3613 CONSTANTS_SETTYPE_ABBREV) 3614 llvm_unreachable("Unexpected abbrev ordering!"); 3615 } 3616 3617 { // INTEGER abbrev for CONSTANTS_BLOCK. 3618 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3619 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3621 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3622 CONSTANTS_INTEGER_ABBREV) 3623 llvm_unreachable("Unexpected abbrev ordering!"); 3624 } 3625 3626 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3627 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3628 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3631 VE.computeBitsRequiredForTypeIndicies())); 3632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3633 3634 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3635 CONSTANTS_CE_CAST_Abbrev) 3636 llvm_unreachable("Unexpected abbrev ordering!"); 3637 } 3638 { // NULL abbrev for CONSTANTS_BLOCK. 3639 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3640 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3641 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3642 CONSTANTS_NULL_Abbrev) 3643 llvm_unreachable("Unexpected abbrev ordering!"); 3644 } 3645 3646 // FIXME: This should only use space for first class types! 3647 3648 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3649 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3650 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3653 VE.computeBitsRequiredForTypeIndicies())); 3654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3656 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3657 FUNCTION_INST_LOAD_ABBREV) 3658 llvm_unreachable("Unexpected abbrev ordering!"); 3659 } 3660 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3661 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3662 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3665 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3666 FUNCTION_INST_UNOP_ABBREV) 3667 llvm_unreachable("Unexpected abbrev ordering!"); 3668 } 3669 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3670 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3671 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3675 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3676 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3677 llvm_unreachable("Unexpected abbrev ordering!"); 3678 } 3679 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3680 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3681 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3685 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3686 FUNCTION_INST_BINOP_ABBREV) 3687 llvm_unreachable("Unexpected abbrev ordering!"); 3688 } 3689 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3690 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3691 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3696 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3697 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3698 llvm_unreachable("Unexpected abbrev ordering!"); 3699 } 3700 { // INST_CAST abbrev for FUNCTION_BLOCK. 3701 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3702 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3705 VE.computeBitsRequiredForTypeIndicies())); 3706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3707 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3708 FUNCTION_INST_CAST_ABBREV) 3709 llvm_unreachable("Unexpected abbrev ordering!"); 3710 } 3711 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3712 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3713 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3716 VE.computeBitsRequiredForTypeIndicies())); 3717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3719 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3720 FUNCTION_INST_CAST_FLAGS_ABBREV) 3721 llvm_unreachable("Unexpected abbrev ordering!"); 3722 } 3723 3724 { // INST_RET abbrev for FUNCTION_BLOCK. 3725 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3726 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3727 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3728 FUNCTION_INST_RET_VOID_ABBREV) 3729 llvm_unreachable("Unexpected abbrev ordering!"); 3730 } 3731 { // INST_RET abbrev for FUNCTION_BLOCK. 3732 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3733 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3735 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3736 FUNCTION_INST_RET_VAL_ABBREV) 3737 llvm_unreachable("Unexpected abbrev ordering!"); 3738 } 3739 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3740 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3741 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3742 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3743 FUNCTION_INST_UNREACHABLE_ABBREV) 3744 llvm_unreachable("Unexpected abbrev ordering!"); 3745 } 3746 { 3747 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3748 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3751 Log2_32_Ceil(VE.getTypes().size() + 1))); 3752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3754 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3755 FUNCTION_INST_GEP_ABBREV) 3756 llvm_unreachable("Unexpected abbrev ordering!"); 3757 } 3758 3759 Stream.ExitBlock(); 3760 } 3761 3762 /// Write the module path strings, currently only used when generating 3763 /// a combined index file. 3764 void IndexBitcodeWriter::writeModStrings() { 3765 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3766 3767 // TODO: See which abbrev sizes we actually need to emit 3768 3769 // 8-bit fixed-width MST_ENTRY strings. 3770 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3771 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3775 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3776 3777 // 7-bit fixed width MST_ENTRY strings. 3778 Abbv = std::make_shared<BitCodeAbbrev>(); 3779 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3783 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3784 3785 // 6-bit char6 MST_ENTRY strings. 3786 Abbv = std::make_shared<BitCodeAbbrev>(); 3787 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3791 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3792 3793 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3794 Abbv = std::make_shared<BitCodeAbbrev>(); 3795 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3801 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3802 3803 SmallVector<unsigned, 64> Vals; 3804 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3805 StringRef Key = MPSE.getKey(); 3806 const auto &Hash = MPSE.getValue(); 3807 StringEncoding Bits = getStringEncoding(Key); 3808 unsigned AbbrevToUse = Abbrev8Bit; 3809 if (Bits == SE_Char6) 3810 AbbrevToUse = Abbrev6Bit; 3811 else if (Bits == SE_Fixed7) 3812 AbbrevToUse = Abbrev7Bit; 3813 3814 auto ModuleId = ModuleIdMap.size(); 3815 ModuleIdMap[Key] = ModuleId; 3816 Vals.push_back(ModuleId); 3817 Vals.append(Key.begin(), Key.end()); 3818 3819 // Emit the finished record. 3820 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3821 3822 // Emit an optional hash for the module now 3823 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3824 Vals.assign(Hash.begin(), Hash.end()); 3825 // Emit the hash record. 3826 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3827 } 3828 3829 Vals.clear(); 3830 }); 3831 Stream.ExitBlock(); 3832 } 3833 3834 /// Write the function type metadata related records that need to appear before 3835 /// a function summary entry (whether per-module or combined). 3836 template <typename Fn> 3837 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3838 FunctionSummary *FS, 3839 Fn GetValueID) { 3840 if (!FS->type_tests().empty()) 3841 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3842 3843 SmallVector<uint64_t, 64> Record; 3844 3845 auto WriteVFuncIdVec = [&](uint64_t Ty, 3846 ArrayRef<FunctionSummary::VFuncId> VFs) { 3847 if (VFs.empty()) 3848 return; 3849 Record.clear(); 3850 for (auto &VF : VFs) { 3851 Record.push_back(VF.GUID); 3852 Record.push_back(VF.Offset); 3853 } 3854 Stream.EmitRecord(Ty, Record); 3855 }; 3856 3857 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3858 FS->type_test_assume_vcalls()); 3859 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3860 FS->type_checked_load_vcalls()); 3861 3862 auto WriteConstVCallVec = [&](uint64_t Ty, 3863 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3864 for (auto &VC : VCs) { 3865 Record.clear(); 3866 Record.push_back(VC.VFunc.GUID); 3867 Record.push_back(VC.VFunc.Offset); 3868 llvm::append_range(Record, VC.Args); 3869 Stream.EmitRecord(Ty, Record); 3870 } 3871 }; 3872 3873 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3874 FS->type_test_assume_const_vcalls()); 3875 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3876 FS->type_checked_load_const_vcalls()); 3877 3878 auto WriteRange = [&](ConstantRange Range) { 3879 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3880 assert(Range.getLower().getNumWords() == 1); 3881 assert(Range.getUpper().getNumWords() == 1); 3882 emitSignedInt64(Record, *Range.getLower().getRawData()); 3883 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3884 }; 3885 3886 if (!FS->paramAccesses().empty()) { 3887 Record.clear(); 3888 for (auto &Arg : FS->paramAccesses()) { 3889 size_t UndoSize = Record.size(); 3890 Record.push_back(Arg.ParamNo); 3891 WriteRange(Arg.Use); 3892 Record.push_back(Arg.Calls.size()); 3893 for (auto &Call : Arg.Calls) { 3894 Record.push_back(Call.ParamNo); 3895 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 3896 if (!ValueID) { 3897 // If ValueID is unknown we can't drop just this call, we must drop 3898 // entire parameter. 3899 Record.resize(UndoSize); 3900 break; 3901 } 3902 Record.push_back(*ValueID); 3903 WriteRange(Call.Offsets); 3904 } 3905 } 3906 if (!Record.empty()) 3907 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3908 } 3909 } 3910 3911 /// Collect type IDs from type tests used by function. 3912 static void 3913 getReferencedTypeIds(FunctionSummary *FS, 3914 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3915 if (!FS->type_tests().empty()) 3916 for (auto &TT : FS->type_tests()) 3917 ReferencedTypeIds.insert(TT); 3918 3919 auto GetReferencedTypesFromVFuncIdVec = 3920 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3921 for (auto &VF : VFs) 3922 ReferencedTypeIds.insert(VF.GUID); 3923 }; 3924 3925 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3926 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3927 3928 auto GetReferencedTypesFromConstVCallVec = 3929 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3930 for (auto &VC : VCs) 3931 ReferencedTypeIds.insert(VC.VFunc.GUID); 3932 }; 3933 3934 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3935 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3936 } 3937 3938 static void writeWholeProgramDevirtResolutionByArg( 3939 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3940 const WholeProgramDevirtResolution::ByArg &ByArg) { 3941 NameVals.push_back(args.size()); 3942 llvm::append_range(NameVals, args); 3943 3944 NameVals.push_back(ByArg.TheKind); 3945 NameVals.push_back(ByArg.Info); 3946 NameVals.push_back(ByArg.Byte); 3947 NameVals.push_back(ByArg.Bit); 3948 } 3949 3950 static void writeWholeProgramDevirtResolution( 3951 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3952 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3953 NameVals.push_back(Id); 3954 3955 NameVals.push_back(Wpd.TheKind); 3956 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3957 NameVals.push_back(Wpd.SingleImplName.size()); 3958 3959 NameVals.push_back(Wpd.ResByArg.size()); 3960 for (auto &A : Wpd.ResByArg) 3961 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3962 } 3963 3964 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3965 StringTableBuilder &StrtabBuilder, 3966 const std::string &Id, 3967 const TypeIdSummary &Summary) { 3968 NameVals.push_back(StrtabBuilder.add(Id)); 3969 NameVals.push_back(Id.size()); 3970 3971 NameVals.push_back(Summary.TTRes.TheKind); 3972 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3973 NameVals.push_back(Summary.TTRes.AlignLog2); 3974 NameVals.push_back(Summary.TTRes.SizeM1); 3975 NameVals.push_back(Summary.TTRes.BitMask); 3976 NameVals.push_back(Summary.TTRes.InlineBits); 3977 3978 for (auto &W : Summary.WPDRes) 3979 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3980 W.second); 3981 } 3982 3983 static void writeTypeIdCompatibleVtableSummaryRecord( 3984 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3985 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3986 ValueEnumerator &VE) { 3987 NameVals.push_back(StrtabBuilder.add(Id)); 3988 NameVals.push_back(Id.size()); 3989 3990 for (auto &P : Summary) { 3991 NameVals.push_back(P.AddressPointOffset); 3992 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3993 } 3994 } 3995 3996 static void writeFunctionHeapProfileRecords( 3997 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 3998 unsigned AllocAbbrev, bool PerModule, 3999 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4000 std::function<unsigned(unsigned)> GetStackIndex) { 4001 SmallVector<uint64_t> Record; 4002 4003 for (auto &CI : FS->callsites()) { 4004 Record.clear(); 4005 // Per module callsite clones should always have a single entry of 4006 // value 0. 4007 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4008 Record.push_back(GetValueID(CI.Callee)); 4009 if (!PerModule) { 4010 Record.push_back(CI.StackIdIndices.size()); 4011 Record.push_back(CI.Clones.size()); 4012 } 4013 for (auto Id : CI.StackIdIndices) 4014 Record.push_back(GetStackIndex(Id)); 4015 if (!PerModule) { 4016 for (auto V : CI.Clones) 4017 Record.push_back(V); 4018 } 4019 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4020 : bitc::FS_COMBINED_CALLSITE_INFO, 4021 Record, CallsiteAbbrev); 4022 } 4023 4024 for (auto &AI : FS->allocs()) { 4025 Record.clear(); 4026 // Per module alloc versions should always have a single entry of 4027 // value 0. 4028 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4029 if (!PerModule) { 4030 Record.push_back(AI.MIBs.size()); 4031 Record.push_back(AI.Versions.size()); 4032 } 4033 for (auto &MIB : AI.MIBs) { 4034 Record.push_back((uint8_t)MIB.AllocType); 4035 Record.push_back(MIB.StackIdIndices.size()); 4036 for (auto Id : MIB.StackIdIndices) 4037 Record.push_back(GetStackIndex(Id)); 4038 } 4039 if (!PerModule) { 4040 for (auto V : AI.Versions) 4041 Record.push_back(V); 4042 } 4043 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4044 : bitc::FS_COMBINED_ALLOC_INFO, 4045 Record, AllocAbbrev); 4046 } 4047 } 4048 4049 // Helper to emit a single function summary record. 4050 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4051 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4052 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4053 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4054 unsigned AllocAbbrev, const Function &F) { 4055 NameVals.push_back(ValueID); 4056 4057 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4058 4059 writeFunctionTypeMetadataRecords( 4060 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4061 return {VE.getValueID(VI.getValue())}; 4062 }); 4063 4064 writeFunctionHeapProfileRecords( 4065 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4066 /*PerModule*/ true, 4067 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4068 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4069 4070 auto SpecialRefCnts = FS->specialRefCounts(); 4071 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4072 NameVals.push_back(FS->instCount()); 4073 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4074 NameVals.push_back(FS->refs().size()); 4075 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4076 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4077 4078 for (auto &RI : FS->refs()) 4079 NameVals.push_back(VE.getValueID(RI.getValue())); 4080 4081 const bool UseRelBFRecord = 4082 WriteRelBFToSummary && !F.hasProfileData() && 4083 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4084 for (auto &ECI : FS->calls()) { 4085 NameVals.push_back(getValueId(ECI.first)); 4086 if (UseRelBFRecord) 4087 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4088 else 4089 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4090 } 4091 4092 unsigned FSAbbrev = 4093 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4094 unsigned Code = 4095 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4096 4097 // Emit the finished record. 4098 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4099 NameVals.clear(); 4100 } 4101 4102 // Collect the global value references in the given variable's initializer, 4103 // and emit them in a summary record. 4104 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4105 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4106 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4107 auto VI = Index->getValueInfo(V.getGUID()); 4108 if (!VI || VI.getSummaryList().empty()) { 4109 // Only declarations should not have a summary (a declaration might however 4110 // have a summary if the def was in module level asm). 4111 assert(V.isDeclaration()); 4112 return; 4113 } 4114 auto *Summary = VI.getSummaryList()[0].get(); 4115 NameVals.push_back(VE.getValueID(&V)); 4116 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4117 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4118 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4119 4120 auto VTableFuncs = VS->vTableFuncs(); 4121 if (!VTableFuncs.empty()) 4122 NameVals.push_back(VS->refs().size()); 4123 4124 unsigned SizeBeforeRefs = NameVals.size(); 4125 for (auto &RI : VS->refs()) 4126 NameVals.push_back(VE.getValueID(RI.getValue())); 4127 // Sort the refs for determinism output, the vector returned by FS->refs() has 4128 // been initialized from a DenseSet. 4129 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4130 4131 if (VTableFuncs.empty()) 4132 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4133 FSModRefsAbbrev); 4134 else { 4135 // VTableFuncs pairs should already be sorted by offset. 4136 for (auto &P : VTableFuncs) { 4137 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4138 NameVals.push_back(P.VTableOffset); 4139 } 4140 4141 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4142 FSModVTableRefsAbbrev); 4143 } 4144 NameVals.clear(); 4145 } 4146 4147 /// Emit the per-module summary section alongside the rest of 4148 /// the module's bitcode. 4149 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4150 // By default we compile with ThinLTO if the module has a summary, but the 4151 // client can request full LTO with a module flag. 4152 bool IsThinLTO = true; 4153 if (auto *MD = 4154 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4155 IsThinLTO = MD->getZExtValue(); 4156 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4157 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4158 4); 4159 4160 Stream.EmitRecord( 4161 bitc::FS_VERSION, 4162 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4163 4164 // Write the index flags. 4165 uint64_t Flags = 0; 4166 // Bits 1-3 are set only in the combined index, skip them. 4167 if (Index->enableSplitLTOUnit()) 4168 Flags |= 0x8; 4169 if (Index->hasUnifiedLTO()) 4170 Flags |= 0x200; 4171 4172 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4173 4174 if (Index->begin() == Index->end()) { 4175 Stream.ExitBlock(); 4176 return; 4177 } 4178 4179 for (const auto &GVI : valueIds()) { 4180 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4181 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4182 } 4183 4184 if (!Index->stackIds().empty()) { 4185 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4186 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4187 // numids x stackid 4188 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4189 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4190 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4191 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4192 } 4193 4194 // Abbrev for FS_PERMODULE_PROFILE. 4195 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4196 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4204 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4207 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4208 4209 // Abbrev for FS_PERMODULE_RELBF. 4210 Abbv = std::make_shared<BitCodeAbbrev>(); 4211 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4219 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4222 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4223 4224 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4225 Abbv = std::make_shared<BitCodeAbbrev>(); 4226 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4231 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4232 4233 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4234 Abbv = std::make_shared<BitCodeAbbrev>(); 4235 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4239 // numrefs x valueid, n x (valueid , offset) 4240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4242 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4243 4244 // Abbrev for FS_ALIAS. 4245 Abbv = std::make_shared<BitCodeAbbrev>(); 4246 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4250 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4251 4252 // Abbrev for FS_TYPE_ID_METADATA 4253 Abbv = std::make_shared<BitCodeAbbrev>(); 4254 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4257 // n x (valueid , offset) 4258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4260 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4261 4262 Abbv = std::make_shared<BitCodeAbbrev>(); 4263 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4265 // n x stackidindex 4266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4268 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4269 4270 Abbv = std::make_shared<BitCodeAbbrev>(); 4271 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4272 // n x (alloc type, numstackids, numstackids x stackidindex) 4273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4275 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4276 4277 SmallVector<uint64_t, 64> NameVals; 4278 // Iterate over the list of functions instead of the Index to 4279 // ensure the ordering is stable. 4280 for (const Function &F : M) { 4281 // Summary emission does not support anonymous functions, they have to 4282 // renamed using the anonymous function renaming pass. 4283 if (!F.hasName()) 4284 report_fatal_error("Unexpected anonymous function when writing summary"); 4285 4286 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4287 if (!VI || VI.getSummaryList().empty()) { 4288 // Only declarations should not have a summary (a declaration might 4289 // however have a summary if the def was in module level asm). 4290 assert(F.isDeclaration()); 4291 continue; 4292 } 4293 auto *Summary = VI.getSummaryList()[0].get(); 4294 writePerModuleFunctionSummaryRecord( 4295 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4296 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F); 4297 } 4298 4299 // Capture references from GlobalVariable initializers, which are outside 4300 // of a function scope. 4301 for (const GlobalVariable &G : M.globals()) 4302 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4303 FSModVTableRefsAbbrev); 4304 4305 for (const GlobalAlias &A : M.aliases()) { 4306 auto *Aliasee = A.getAliaseeObject(); 4307 // Skip ifunc and nameless functions which don't have an entry in the 4308 // summary. 4309 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4310 continue; 4311 auto AliasId = VE.getValueID(&A); 4312 auto AliaseeId = VE.getValueID(Aliasee); 4313 NameVals.push_back(AliasId); 4314 auto *Summary = Index->getGlobalValueSummary(A); 4315 AliasSummary *AS = cast<AliasSummary>(Summary); 4316 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4317 NameVals.push_back(AliaseeId); 4318 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4319 NameVals.clear(); 4320 } 4321 4322 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4323 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4324 S.second, VE); 4325 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4326 TypeIdCompatibleVtableAbbrev); 4327 NameVals.clear(); 4328 } 4329 4330 if (Index->getBlockCount()) 4331 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4332 ArrayRef<uint64_t>{Index->getBlockCount()}); 4333 4334 Stream.ExitBlock(); 4335 } 4336 4337 /// Emit the combined summary section into the combined index file. 4338 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4339 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4340 Stream.EmitRecord( 4341 bitc::FS_VERSION, 4342 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4343 4344 // Write the index flags. 4345 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4346 4347 for (const auto &GVI : valueIds()) { 4348 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4349 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4350 } 4351 4352 if (!StackIdIndices.empty()) { 4353 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4354 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4355 // numids x stackid 4356 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4357 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4358 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4359 // Write the stack ids used by this index, which will be a subset of those in 4360 // the full index in the case of distributed indexes. 4361 std::vector<uint64_t> StackIds; 4362 for (auto &I : StackIdIndices) 4363 StackIds.push_back(Index.getStackIdAtIndex(I)); 4364 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4365 } 4366 4367 // Abbrev for FS_COMBINED_PROFILE. 4368 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4369 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4379 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4382 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4383 4384 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4385 Abbv = std::make_shared<BitCodeAbbrev>(); 4386 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4392 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4393 4394 // Abbrev for FS_COMBINED_ALIAS. 4395 Abbv = std::make_shared<BitCodeAbbrev>(); 4396 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4401 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4402 4403 Abbv = std::make_shared<BitCodeAbbrev>(); 4404 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4408 // numstackindices x stackidindex, numver x version 4409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4411 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4412 4413 Abbv = std::make_shared<BitCodeAbbrev>(); 4414 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4417 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4418 // numver x version 4419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4421 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4422 4423 // The aliases are emitted as a post-pass, and will point to the value 4424 // id of the aliasee. Save them in a vector for post-processing. 4425 SmallVector<AliasSummary *, 64> Aliases; 4426 4427 // Save the value id for each summary for alias emission. 4428 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4429 4430 SmallVector<uint64_t, 64> NameVals; 4431 4432 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4433 // with the type ids referenced by this index file. 4434 std::set<GlobalValue::GUID> ReferencedTypeIds; 4435 4436 // For local linkage, we also emit the original name separately 4437 // immediately after the record. 4438 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4439 // We don't need to emit the original name if we are writing the index for 4440 // distributed backends (in which case ModuleToSummariesForIndex is 4441 // non-null). The original name is only needed during the thin link, since 4442 // for SamplePGO the indirect call targets for local functions have 4443 // have the original name annotated in profile. 4444 // Continue to emit it when writing out the entire combined index, which is 4445 // used in testing the thin link via llvm-lto. 4446 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4447 return; 4448 NameVals.push_back(S.getOriginalName()); 4449 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4450 NameVals.clear(); 4451 }; 4452 4453 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4454 forEachSummary([&](GVInfo I, bool IsAliasee) { 4455 GlobalValueSummary *S = I.second; 4456 assert(S); 4457 DefOrUseGUIDs.insert(I.first); 4458 for (const ValueInfo &VI : S->refs()) 4459 DefOrUseGUIDs.insert(VI.getGUID()); 4460 4461 auto ValueId = getValueId(I.first); 4462 assert(ValueId); 4463 SummaryToValueIdMap[S] = *ValueId; 4464 4465 // If this is invoked for an aliasee, we want to record the above 4466 // mapping, but then not emit a summary entry (if the aliasee is 4467 // to be imported, we will invoke this separately with IsAliasee=false). 4468 if (IsAliasee) 4469 return; 4470 4471 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4472 // Will process aliases as a post-pass because the reader wants all 4473 // global to be loaded first. 4474 Aliases.push_back(AS); 4475 return; 4476 } 4477 4478 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4479 NameVals.push_back(*ValueId); 4480 assert(ModuleIdMap.count(VS->modulePath())); 4481 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4482 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4483 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4484 for (auto &RI : VS->refs()) { 4485 auto RefValueId = getValueId(RI.getGUID()); 4486 if (!RefValueId) 4487 continue; 4488 NameVals.push_back(*RefValueId); 4489 } 4490 4491 // Emit the finished record. 4492 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4493 FSModRefsAbbrev); 4494 NameVals.clear(); 4495 MaybeEmitOriginalName(*S); 4496 return; 4497 } 4498 4499 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4500 if (!VI) 4501 return std::nullopt; 4502 return getValueId(VI.getGUID()); 4503 }; 4504 4505 auto *FS = cast<FunctionSummary>(S); 4506 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4507 getReferencedTypeIds(FS, ReferencedTypeIds); 4508 4509 writeFunctionHeapProfileRecords( 4510 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4511 /*PerModule*/ false, 4512 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4513 std::optional<unsigned> ValueID = GetValueId(VI); 4514 // This can happen in shared index files for distributed ThinLTO if 4515 // the callee function summary is not included. Record 0 which we 4516 // will have to deal with conservatively when doing any kind of 4517 // validation in the ThinLTO backends. 4518 if (!ValueID) 4519 return 0; 4520 return *ValueID; 4521 }, 4522 /*GetStackIndex*/ [&](unsigned I) { 4523 // Get the corresponding index into the list of StackIdIndices 4524 // actually being written for this combined index (which may be a 4525 // subset in the case of distributed indexes). 4526 auto Lower = llvm::lower_bound(StackIdIndices, I); 4527 return std::distance(StackIdIndices.begin(), Lower); 4528 }); 4529 4530 NameVals.push_back(*ValueId); 4531 assert(ModuleIdMap.count(FS->modulePath())); 4532 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4533 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4534 NameVals.push_back(FS->instCount()); 4535 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4536 NameVals.push_back(FS->entryCount()); 4537 4538 // Fill in below 4539 NameVals.push_back(0); // numrefs 4540 NameVals.push_back(0); // rorefcnt 4541 NameVals.push_back(0); // worefcnt 4542 4543 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4544 for (auto &RI : FS->refs()) { 4545 auto RefValueId = getValueId(RI.getGUID()); 4546 if (!RefValueId) 4547 continue; 4548 NameVals.push_back(*RefValueId); 4549 if (RI.isReadOnly()) 4550 RORefCnt++; 4551 else if (RI.isWriteOnly()) 4552 WORefCnt++; 4553 Count++; 4554 } 4555 NameVals[6] = Count; 4556 NameVals[7] = RORefCnt; 4557 NameVals[8] = WORefCnt; 4558 4559 for (auto &EI : FS->calls()) { 4560 // If this GUID doesn't have a value id, it doesn't have a function 4561 // summary and we don't need to record any calls to it. 4562 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4563 if (!CallValueId) 4564 continue; 4565 NameVals.push_back(*CallValueId); 4566 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4567 } 4568 4569 // Emit the finished record. 4570 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 4571 FSCallsProfileAbbrev); 4572 NameVals.clear(); 4573 MaybeEmitOriginalName(*S); 4574 }); 4575 4576 for (auto *AS : Aliases) { 4577 auto AliasValueId = SummaryToValueIdMap[AS]; 4578 assert(AliasValueId); 4579 NameVals.push_back(AliasValueId); 4580 assert(ModuleIdMap.count(AS->modulePath())); 4581 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4582 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4583 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4584 assert(AliaseeValueId); 4585 NameVals.push_back(AliaseeValueId); 4586 4587 // Emit the finished record. 4588 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4589 NameVals.clear(); 4590 MaybeEmitOriginalName(*AS); 4591 4592 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4593 getReferencedTypeIds(FS, ReferencedTypeIds); 4594 } 4595 4596 if (!Index.cfiFunctionDefs().empty()) { 4597 for (auto &S : Index.cfiFunctionDefs()) { 4598 if (DefOrUseGUIDs.count( 4599 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4600 NameVals.push_back(StrtabBuilder.add(S)); 4601 NameVals.push_back(S.size()); 4602 } 4603 } 4604 if (!NameVals.empty()) { 4605 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4606 NameVals.clear(); 4607 } 4608 } 4609 4610 if (!Index.cfiFunctionDecls().empty()) { 4611 for (auto &S : Index.cfiFunctionDecls()) { 4612 if (DefOrUseGUIDs.count( 4613 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4614 NameVals.push_back(StrtabBuilder.add(S)); 4615 NameVals.push_back(S.size()); 4616 } 4617 } 4618 if (!NameVals.empty()) { 4619 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4620 NameVals.clear(); 4621 } 4622 } 4623 4624 // Walk the GUIDs that were referenced, and write the 4625 // corresponding type id records. 4626 for (auto &T : ReferencedTypeIds) { 4627 auto TidIter = Index.typeIds().equal_range(T); 4628 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4629 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4630 It->second.second); 4631 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4632 NameVals.clear(); 4633 } 4634 } 4635 4636 if (Index.getBlockCount()) 4637 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4638 ArrayRef<uint64_t>{Index.getBlockCount()}); 4639 4640 Stream.ExitBlock(); 4641 } 4642 4643 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4644 /// current llvm version, and a record for the epoch number. 4645 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4646 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4647 4648 // Write the "user readable" string identifying the bitcode producer 4649 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4650 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4653 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4654 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4655 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4656 4657 // Write the epoch version 4658 Abbv = std::make_shared<BitCodeAbbrev>(); 4659 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4661 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4662 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4663 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4664 Stream.ExitBlock(); 4665 } 4666 4667 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4668 // Emit the module's hash. 4669 // MODULE_CODE_HASH: [5*i32] 4670 if (GenerateHash) { 4671 uint32_t Vals[5]; 4672 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4673 Buffer.size() - BlockStartPos)); 4674 std::array<uint8_t, 20> Hash = Hasher.result(); 4675 for (int Pos = 0; Pos < 20; Pos += 4) { 4676 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4677 } 4678 4679 // Emit the finished record. 4680 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4681 4682 if (ModHash) 4683 // Save the written hash value. 4684 llvm::copy(Vals, std::begin(*ModHash)); 4685 } 4686 } 4687 4688 void ModuleBitcodeWriter::write() { 4689 writeIdentificationBlock(Stream); 4690 4691 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4692 size_t BlockStartPos = Buffer.size(); 4693 4694 writeModuleVersion(); 4695 4696 // Emit blockinfo, which defines the standard abbreviations etc. 4697 writeBlockInfo(); 4698 4699 // Emit information describing all of the types in the module. 4700 writeTypeTable(); 4701 4702 // Emit information about attribute groups. 4703 writeAttributeGroupTable(); 4704 4705 // Emit information about parameter attributes. 4706 writeAttributeTable(); 4707 4708 writeComdats(); 4709 4710 // Emit top-level description of module, including target triple, inline asm, 4711 // descriptors for global variables, and function prototype info. 4712 writeModuleInfo(); 4713 4714 // Emit constants. 4715 writeModuleConstants(); 4716 4717 // Emit metadata kind names. 4718 writeModuleMetadataKinds(); 4719 4720 // Emit metadata. 4721 writeModuleMetadata(); 4722 4723 // Emit module-level use-lists. 4724 if (VE.shouldPreserveUseListOrder()) 4725 writeUseListBlock(nullptr); 4726 4727 writeOperandBundleTags(); 4728 writeSyncScopeNames(); 4729 4730 // Emit function bodies. 4731 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4732 for (const Function &F : M) 4733 if (!F.isDeclaration()) 4734 writeFunction(F, FunctionToBitcodeIndex); 4735 4736 // Need to write after the above call to WriteFunction which populates 4737 // the summary information in the index. 4738 if (Index) 4739 writePerModuleGlobalValueSummary(); 4740 4741 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4742 4743 writeModuleHash(BlockStartPos); 4744 4745 Stream.ExitBlock(); 4746 } 4747 4748 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4749 uint32_t &Position) { 4750 support::endian::write32le(&Buffer[Position], Value); 4751 Position += 4; 4752 } 4753 4754 /// If generating a bc file on darwin, we have to emit a 4755 /// header and trailer to make it compatible with the system archiver. To do 4756 /// this we emit the following header, and then emit a trailer that pads the 4757 /// file out to be a multiple of 16 bytes. 4758 /// 4759 /// struct bc_header { 4760 /// uint32_t Magic; // 0x0B17C0DE 4761 /// uint32_t Version; // Version, currently always 0. 4762 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4763 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4764 /// uint32_t CPUType; // CPU specifier. 4765 /// ... potentially more later ... 4766 /// }; 4767 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4768 const Triple &TT) { 4769 unsigned CPUType = ~0U; 4770 4771 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4772 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4773 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4774 // specific constants here because they are implicitly part of the Darwin ABI. 4775 enum { 4776 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4777 DARWIN_CPU_TYPE_X86 = 7, 4778 DARWIN_CPU_TYPE_ARM = 12, 4779 DARWIN_CPU_TYPE_POWERPC = 18 4780 }; 4781 4782 Triple::ArchType Arch = TT.getArch(); 4783 if (Arch == Triple::x86_64) 4784 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4785 else if (Arch == Triple::x86) 4786 CPUType = DARWIN_CPU_TYPE_X86; 4787 else if (Arch == Triple::ppc) 4788 CPUType = DARWIN_CPU_TYPE_POWERPC; 4789 else if (Arch == Triple::ppc64) 4790 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4791 else if (Arch == Triple::arm || Arch == Triple::thumb) 4792 CPUType = DARWIN_CPU_TYPE_ARM; 4793 4794 // Traditional Bitcode starts after header. 4795 assert(Buffer.size() >= BWH_HeaderSize && 4796 "Expected header size to be reserved"); 4797 unsigned BCOffset = BWH_HeaderSize; 4798 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4799 4800 // Write the magic and version. 4801 unsigned Position = 0; 4802 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4803 writeInt32ToBuffer(0, Buffer, Position); // Version. 4804 writeInt32ToBuffer(BCOffset, Buffer, Position); 4805 writeInt32ToBuffer(BCSize, Buffer, Position); 4806 writeInt32ToBuffer(CPUType, Buffer, Position); 4807 4808 // If the file is not a multiple of 16 bytes, insert dummy padding. 4809 while (Buffer.size() & 15) 4810 Buffer.push_back(0); 4811 } 4812 4813 /// Helper to write the header common to all bitcode files. 4814 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4815 // Emit the file header. 4816 Stream.Emit((unsigned)'B', 8); 4817 Stream.Emit((unsigned)'C', 8); 4818 Stream.Emit(0x0, 4); 4819 Stream.Emit(0xC, 4); 4820 Stream.Emit(0xE, 4); 4821 Stream.Emit(0xD, 4); 4822 } 4823 4824 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4825 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4826 writeBitcodeHeader(*Stream); 4827 } 4828 4829 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4830 4831 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4832 Stream->EnterSubblock(Block, 3); 4833 4834 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4835 Abbv->Add(BitCodeAbbrevOp(Record)); 4836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4837 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4838 4839 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4840 4841 Stream->ExitBlock(); 4842 } 4843 4844 void BitcodeWriter::writeSymtab() { 4845 assert(!WroteStrtab && !WroteSymtab); 4846 4847 // If any module has module-level inline asm, we will require a registered asm 4848 // parser for the target so that we can create an accurate symbol table for 4849 // the module. 4850 for (Module *M : Mods) { 4851 if (M->getModuleInlineAsm().empty()) 4852 continue; 4853 4854 std::string Err; 4855 const Triple TT(M->getTargetTriple()); 4856 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4857 if (!T || !T->hasMCAsmParser()) 4858 return; 4859 } 4860 4861 WroteSymtab = true; 4862 SmallVector<char, 0> Symtab; 4863 // The irsymtab::build function may be unable to create a symbol table if the 4864 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4865 // table is not required for correctness, but we still want to be able to 4866 // write malformed modules to bitcode files, so swallow the error. 4867 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4868 consumeError(std::move(E)); 4869 return; 4870 } 4871 4872 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4873 {Symtab.data(), Symtab.size()}); 4874 } 4875 4876 void BitcodeWriter::writeStrtab() { 4877 assert(!WroteStrtab); 4878 4879 std::vector<char> Strtab; 4880 StrtabBuilder.finalizeInOrder(); 4881 Strtab.resize(StrtabBuilder.getSize()); 4882 StrtabBuilder.write((uint8_t *)Strtab.data()); 4883 4884 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4885 {Strtab.data(), Strtab.size()}); 4886 4887 WroteStrtab = true; 4888 } 4889 4890 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4891 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4892 WroteStrtab = true; 4893 } 4894 4895 void BitcodeWriter::writeModule(const Module &M, 4896 bool ShouldPreserveUseListOrder, 4897 const ModuleSummaryIndex *Index, 4898 bool GenerateHash, ModuleHash *ModHash) { 4899 assert(!WroteStrtab); 4900 4901 // The Mods vector is used by irsymtab::build, which requires non-const 4902 // Modules in case it needs to materialize metadata. But the bitcode writer 4903 // requires that the module is materialized, so we can cast to non-const here, 4904 // after checking that it is in fact materialized. 4905 assert(M.isMaterialized()); 4906 Mods.push_back(const_cast<Module *>(&M)); 4907 4908 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4909 ShouldPreserveUseListOrder, Index, 4910 GenerateHash, ModHash); 4911 ModuleWriter.write(); 4912 } 4913 4914 void BitcodeWriter::writeIndex( 4915 const ModuleSummaryIndex *Index, 4916 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4917 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4918 ModuleToSummariesForIndex); 4919 IndexWriter.write(); 4920 } 4921 4922 /// Write the specified module to the specified output stream. 4923 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4924 bool ShouldPreserveUseListOrder, 4925 const ModuleSummaryIndex *Index, 4926 bool GenerateHash, ModuleHash *ModHash) { 4927 SmallVector<char, 0> Buffer; 4928 Buffer.reserve(256*1024); 4929 4930 // If this is darwin or another generic macho target, reserve space for the 4931 // header. 4932 Triple TT(M.getTargetTriple()); 4933 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4934 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4935 4936 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4937 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4938 ModHash); 4939 Writer.writeSymtab(); 4940 Writer.writeStrtab(); 4941 4942 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4943 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4944 4945 // Write the generated bitstream to "Out". 4946 if (!Buffer.empty()) 4947 Out.write((char *)&Buffer.front(), Buffer.size()); 4948 } 4949 4950 void IndexBitcodeWriter::write() { 4951 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4952 4953 writeModuleVersion(); 4954 4955 // Write the module paths in the combined index. 4956 writeModStrings(); 4957 4958 // Write the summary combined index records. 4959 writeCombinedGlobalValueSummary(); 4960 4961 Stream.ExitBlock(); 4962 } 4963 4964 // Write the specified module summary index to the given raw output stream, 4965 // where it will be written in a new bitcode block. This is used when 4966 // writing the combined index file for ThinLTO. When writing a subset of the 4967 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4968 void llvm::writeIndexToFile( 4969 const ModuleSummaryIndex &Index, raw_ostream &Out, 4970 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4971 SmallVector<char, 0> Buffer; 4972 Buffer.reserve(256 * 1024); 4973 4974 BitcodeWriter Writer(Buffer); 4975 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4976 Writer.writeStrtab(); 4977 4978 Out.write((char *)&Buffer.front(), Buffer.size()); 4979 } 4980 4981 namespace { 4982 4983 /// Class to manage the bitcode writing for a thin link bitcode file. 4984 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4985 /// ModHash is for use in ThinLTO incremental build, generated while writing 4986 /// the module bitcode file. 4987 const ModuleHash *ModHash; 4988 4989 public: 4990 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4991 BitstreamWriter &Stream, 4992 const ModuleSummaryIndex &Index, 4993 const ModuleHash &ModHash) 4994 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4995 /*ShouldPreserveUseListOrder=*/false, &Index), 4996 ModHash(&ModHash) {} 4997 4998 void write(); 4999 5000 private: 5001 void writeSimplifiedModuleInfo(); 5002 }; 5003 5004 } // end anonymous namespace 5005 5006 // This function writes a simpilified module info for thin link bitcode file. 5007 // It only contains the source file name along with the name(the offset and 5008 // size in strtab) and linkage for global values. For the global value info 5009 // entry, in order to keep linkage at offset 5, there are three zeros used 5010 // as padding. 5011 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5012 SmallVector<unsigned, 64> Vals; 5013 // Emit the module's source file name. 5014 { 5015 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5016 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5017 if (Bits == SE_Char6) 5018 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5019 else if (Bits == SE_Fixed7) 5020 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5021 5022 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5023 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5024 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5026 Abbv->Add(AbbrevOpToUse); 5027 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5028 5029 for (const auto P : M.getSourceFileName()) 5030 Vals.push_back((unsigned char)P); 5031 5032 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5033 Vals.clear(); 5034 } 5035 5036 // Emit the global variable information. 5037 for (const GlobalVariable &GV : M.globals()) { 5038 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5039 Vals.push_back(StrtabBuilder.add(GV.getName())); 5040 Vals.push_back(GV.getName().size()); 5041 Vals.push_back(0); 5042 Vals.push_back(0); 5043 Vals.push_back(0); 5044 Vals.push_back(getEncodedLinkage(GV)); 5045 5046 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5047 Vals.clear(); 5048 } 5049 5050 // Emit the function proto information. 5051 for (const Function &F : M) { 5052 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5053 Vals.push_back(StrtabBuilder.add(F.getName())); 5054 Vals.push_back(F.getName().size()); 5055 Vals.push_back(0); 5056 Vals.push_back(0); 5057 Vals.push_back(0); 5058 Vals.push_back(getEncodedLinkage(F)); 5059 5060 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5061 Vals.clear(); 5062 } 5063 5064 // Emit the alias information. 5065 for (const GlobalAlias &A : M.aliases()) { 5066 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5067 Vals.push_back(StrtabBuilder.add(A.getName())); 5068 Vals.push_back(A.getName().size()); 5069 Vals.push_back(0); 5070 Vals.push_back(0); 5071 Vals.push_back(0); 5072 Vals.push_back(getEncodedLinkage(A)); 5073 5074 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5075 Vals.clear(); 5076 } 5077 5078 // Emit the ifunc information. 5079 for (const GlobalIFunc &I : M.ifuncs()) { 5080 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5081 Vals.push_back(StrtabBuilder.add(I.getName())); 5082 Vals.push_back(I.getName().size()); 5083 Vals.push_back(0); 5084 Vals.push_back(0); 5085 Vals.push_back(0); 5086 Vals.push_back(getEncodedLinkage(I)); 5087 5088 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5089 Vals.clear(); 5090 } 5091 } 5092 5093 void ThinLinkBitcodeWriter::write() { 5094 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5095 5096 writeModuleVersion(); 5097 5098 writeSimplifiedModuleInfo(); 5099 5100 writePerModuleGlobalValueSummary(); 5101 5102 // Write module hash. 5103 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5104 5105 Stream.ExitBlock(); 5106 } 5107 5108 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5109 const ModuleSummaryIndex &Index, 5110 const ModuleHash &ModHash) { 5111 assert(!WroteStrtab); 5112 5113 // The Mods vector is used by irsymtab::build, which requires non-const 5114 // Modules in case it needs to materialize metadata. But the bitcode writer 5115 // requires that the module is materialized, so we can cast to non-const here, 5116 // after checking that it is in fact materialized. 5117 assert(M.isMaterialized()); 5118 Mods.push_back(const_cast<Module *>(&M)); 5119 5120 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5121 ModHash); 5122 ThinLinkWriter.write(); 5123 } 5124 5125 // Write the specified thin link bitcode file to the given raw output stream, 5126 // where it will be written in a new bitcode block. This is used when 5127 // writing the per-module index file for ThinLTO. 5128 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5129 const ModuleSummaryIndex &Index, 5130 const ModuleHash &ModHash) { 5131 SmallVector<char, 0> Buffer; 5132 Buffer.reserve(256 * 1024); 5133 5134 BitcodeWriter Writer(Buffer); 5135 Writer.writeThinLinkBitcode(M, Index, ModHash); 5136 Writer.writeSymtab(); 5137 Writer.writeStrtab(); 5138 5139 Out.write((char *)&Buffer.front(), Buffer.size()); 5140 } 5141 5142 static const char *getSectionNameForBitcode(const Triple &T) { 5143 switch (T.getObjectFormat()) { 5144 case Triple::MachO: 5145 return "__LLVM,__bitcode"; 5146 case Triple::COFF: 5147 case Triple::ELF: 5148 case Triple::Wasm: 5149 case Triple::UnknownObjectFormat: 5150 return ".llvmbc"; 5151 case Triple::GOFF: 5152 llvm_unreachable("GOFF is not yet implemented"); 5153 break; 5154 case Triple::SPIRV: 5155 llvm_unreachable("SPIRV is not yet implemented"); 5156 break; 5157 case Triple::XCOFF: 5158 llvm_unreachable("XCOFF is not yet implemented"); 5159 break; 5160 case Triple::DXContainer: 5161 llvm_unreachable("DXContainer is not yet implemented"); 5162 break; 5163 } 5164 llvm_unreachable("Unimplemented ObjectFormatType"); 5165 } 5166 5167 static const char *getSectionNameForCommandline(const Triple &T) { 5168 switch (T.getObjectFormat()) { 5169 case Triple::MachO: 5170 return "__LLVM,__cmdline"; 5171 case Triple::COFF: 5172 case Triple::ELF: 5173 case Triple::Wasm: 5174 case Triple::UnknownObjectFormat: 5175 return ".llvmcmd"; 5176 case Triple::GOFF: 5177 llvm_unreachable("GOFF is not yet implemented"); 5178 break; 5179 case Triple::SPIRV: 5180 llvm_unreachable("SPIRV is not yet implemented"); 5181 break; 5182 case Triple::XCOFF: 5183 llvm_unreachable("XCOFF is not yet implemented"); 5184 break; 5185 case Triple::DXContainer: 5186 llvm_unreachable("DXC is not yet implemented"); 5187 break; 5188 } 5189 llvm_unreachable("Unimplemented ObjectFormatType"); 5190 } 5191 5192 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5193 bool EmbedBitcode, bool EmbedCmdline, 5194 const std::vector<uint8_t> &CmdArgs) { 5195 // Save llvm.compiler.used and remove it. 5196 SmallVector<Constant *, 2> UsedArray; 5197 SmallVector<GlobalValue *, 4> UsedGlobals; 5198 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5199 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5200 for (auto *GV : UsedGlobals) { 5201 if (GV->getName() != "llvm.embedded.module" && 5202 GV->getName() != "llvm.cmdline") 5203 UsedArray.push_back( 5204 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5205 } 5206 if (Used) 5207 Used->eraseFromParent(); 5208 5209 // Embed the bitcode for the llvm module. 5210 std::string Data; 5211 ArrayRef<uint8_t> ModuleData; 5212 Triple T(M.getTargetTriple()); 5213 5214 if (EmbedBitcode) { 5215 if (Buf.getBufferSize() == 0 || 5216 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5217 (const unsigned char *)Buf.getBufferEnd())) { 5218 // If the input is LLVM Assembly, bitcode is produced by serializing 5219 // the module. Use-lists order need to be preserved in this case. 5220 llvm::raw_string_ostream OS(Data); 5221 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5222 ModuleData = 5223 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5224 } else 5225 // If the input is LLVM bitcode, write the input byte stream directly. 5226 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5227 Buf.getBufferSize()); 5228 } 5229 llvm::Constant *ModuleConstant = 5230 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5231 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5232 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5233 ModuleConstant); 5234 GV->setSection(getSectionNameForBitcode(T)); 5235 // Set alignment to 1 to prevent padding between two contributions from input 5236 // sections after linking. 5237 GV->setAlignment(Align(1)); 5238 UsedArray.push_back( 5239 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5240 if (llvm::GlobalVariable *Old = 5241 M.getGlobalVariable("llvm.embedded.module", true)) { 5242 assert(Old->hasZeroLiveUses() && 5243 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5244 GV->takeName(Old); 5245 Old->eraseFromParent(); 5246 } else { 5247 GV->setName("llvm.embedded.module"); 5248 } 5249 5250 // Skip if only bitcode needs to be embedded. 5251 if (EmbedCmdline) { 5252 // Embed command-line options. 5253 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5254 CmdArgs.size()); 5255 llvm::Constant *CmdConstant = 5256 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5257 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5258 llvm::GlobalValue::PrivateLinkage, 5259 CmdConstant); 5260 GV->setSection(getSectionNameForCommandline(T)); 5261 GV->setAlignment(Align(1)); 5262 UsedArray.push_back( 5263 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5264 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5265 assert(Old->hasZeroLiveUses() && 5266 "llvm.cmdline can only be used once in llvm.compiler.used"); 5267 GV->takeName(Old); 5268 Old->eraseFromParent(); 5269 } else { 5270 GV->setName("llvm.cmdline"); 5271 } 5272 } 5273 5274 if (UsedArray.empty()) 5275 return; 5276 5277 // Recreate llvm.compiler.used. 5278 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5279 auto *NewUsed = new GlobalVariable( 5280 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5281 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5282 NewUsed->setSection("llvm.metadata"); 5283 } 5284