xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 7fb39dfa7c4d9997d967d6daaae2d65cfa7af2ef)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Bitcode/BitCodes.h"
29 #include "llvm/Bitcode/BitstreamWriter.h"
30 #include "llvm/Bitcode/LLVMBitCodes.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/UseListOrder.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/MC/StringTableBuilder.h"
61 #include "llvm/Object/IRSymtab.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Endian.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/SHA1.h"
70 #include "llvm/Support/TargetRegistry.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <memory>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 static cl::opt<unsigned>
86     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
87                    cl::desc("Number of metadatas above which we emit an index "
88                             "to enable lazy-loading"));
89 
90 cl::opt<bool> WriteRelBFToSummary(
91     "write-relbf-to-summary", cl::Hidden, cl::init(false),
92     cl::desc("Write relative block frequency to function summary "));
93 
94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
95 
96 namespace {
97 
98 /// These are manifest constants used by the bitcode writer. They do not need to
99 /// be kept in sync with the reader, but need to be consistent within this file.
100 enum {
101   // VALUE_SYMTAB_BLOCK abbrev id's.
102   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
103   VST_ENTRY_7_ABBREV,
104   VST_ENTRY_6_ABBREV,
105   VST_BBENTRY_6_ABBREV,
106 
107   // CONSTANTS_BLOCK abbrev id's.
108   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
109   CONSTANTS_INTEGER_ABBREV,
110   CONSTANTS_CE_CAST_Abbrev,
111   CONSTANTS_NULL_Abbrev,
112 
113   // FUNCTION_BLOCK abbrev id's.
114   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
115   FUNCTION_INST_BINOP_ABBREV,
116   FUNCTION_INST_BINOP_FLAGS_ABBREV,
117   FUNCTION_INST_CAST_ABBREV,
118   FUNCTION_INST_RET_VOID_ABBREV,
119   FUNCTION_INST_RET_VAL_ABBREV,
120   FUNCTION_INST_UNREACHABLE_ABBREV,
121   FUNCTION_INST_GEP_ABBREV,
122 };
123 
124 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
125 /// file type.
126 class BitcodeWriterBase {
127 protected:
128   /// The stream created and owned by the client.
129   BitstreamWriter &Stream;
130 
131   StringTableBuilder &StrtabBuilder;
132 
133 public:
134   /// Constructs a BitcodeWriterBase object that writes to the provided
135   /// \p Stream.
136   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
137       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
138 
139 protected:
140   void writeBitcodeHeader();
141   void writeModuleVersion();
142 };
143 
144 void BitcodeWriterBase::writeModuleVersion() {
145   // VERSION: [version#]
146   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
147 }
148 
149 /// Base class to manage the module bitcode writing, currently subclassed for
150 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
151 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
152 protected:
153   /// The Module to write to bitcode.
154   const Module &M;
155 
156   /// Enumerates ids for all values in the module.
157   ValueEnumerator VE;
158 
159   /// Optional per-module index to write for ThinLTO.
160   const ModuleSummaryIndex *Index;
161 
162   /// Map that holds the correspondence between GUIDs in the summary index,
163   /// that came from indirect call profiles, and a value id generated by this
164   /// class to use in the VST and summary block records.
165   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
166 
167   /// Tracks the last value id recorded in the GUIDToValueMap.
168   unsigned GlobalValueId;
169 
170   /// Saves the offset of the VSTOffset record that must eventually be
171   /// backpatched with the offset of the actual VST.
172   uint64_t VSTOffsetPlaceholder = 0;
173 
174 public:
175   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
176   /// writing to the provided \p Buffer.
177   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
178                           BitstreamWriter &Stream,
179                           bool ShouldPreserveUseListOrder,
180                           const ModuleSummaryIndex *Index)
181       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
182         VE(M, ShouldPreserveUseListOrder), Index(Index) {
183     // Assign ValueIds to any callee values in the index that came from
184     // indirect call profiles and were recorded as a GUID not a Value*
185     // (which would have been assigned an ID by the ValueEnumerator).
186     // The starting ValueId is just after the number of values in the
187     // ValueEnumerator, so that they can be emitted in the VST.
188     GlobalValueId = VE.getValues().size();
189     if (!Index)
190       return;
191     for (const auto &GUIDSummaryLists : *Index)
192       // Examine all summaries for this GUID.
193       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
194         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
195           // For each call in the function summary, see if the call
196           // is to a GUID (which means it is for an indirect call,
197           // otherwise we would have a Value for it). If so, synthesize
198           // a value id.
199           for (auto &CallEdge : FS->calls())
200             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
201               assignValueId(CallEdge.first.getGUID());
202   }
203 
204 protected:
205   void writePerModuleGlobalValueSummary();
206 
207 private:
208   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
209                                            GlobalValueSummary *Summary,
210                                            unsigned ValueID,
211                                            unsigned FSCallsAbbrev,
212                                            unsigned FSCallsProfileAbbrev,
213                                            const Function &F);
214   void writeModuleLevelReferences(const GlobalVariable &V,
215                                   SmallVector<uint64_t, 64> &NameVals,
216                                   unsigned FSModRefsAbbrev);
217 
218   void assignValueId(GlobalValue::GUID ValGUID) {
219     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
220   }
221 
222   unsigned getValueId(GlobalValue::GUID ValGUID) {
223     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
224     // Expect that any GUID value had a value Id assigned by an
225     // earlier call to assignValueId.
226     assert(VMI != GUIDToValueIdMap.end() &&
227            "GUID does not have assigned value Id");
228     return VMI->second;
229   }
230 
231   // Helper to get the valueId for the type of value recorded in VI.
232   unsigned getValueId(ValueInfo VI) {
233     if (!VI.haveGVs() || !VI.getValue())
234       return getValueId(VI.getGUID());
235     return VE.getValueID(VI.getValue());
236   }
237 
238   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
239 };
240 
241 /// Class to manage the bitcode writing for a module.
242 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
243   /// Pointer to the buffer allocated by caller for bitcode writing.
244   const SmallVectorImpl<char> &Buffer;
245 
246   /// True if a module hash record should be written.
247   bool GenerateHash;
248 
249   /// If non-null, when GenerateHash is true, the resulting hash is written
250   /// into ModHash.
251   ModuleHash *ModHash;
252 
253   SHA1 Hasher;
254 
255   /// The start bit of the identification block.
256   uint64_t BitcodeStartBit;
257 
258 public:
259   /// Constructs a ModuleBitcodeWriter object for the given Module,
260   /// writing to the provided \p Buffer.
261   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
262                       StringTableBuilder &StrtabBuilder,
263                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
264                       const ModuleSummaryIndex *Index, bool GenerateHash,
265                       ModuleHash *ModHash = nullptr)
266       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
267                                 ShouldPreserveUseListOrder, Index),
268         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
269         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
270 
271   /// Emit the current module to the bitstream.
272   void write();
273 
274 private:
275   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
276 
277   size_t addToStrtab(StringRef Str);
278 
279   void writeAttributeGroupTable();
280   void writeAttributeTable();
281   void writeTypeTable();
282   void writeComdats();
283   void writeValueSymbolTableForwardDecl();
284   void writeModuleInfo();
285   void writeValueAsMetadata(const ValueAsMetadata *MD,
286                             SmallVectorImpl<uint64_t> &Record);
287   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
288                     unsigned Abbrev);
289   unsigned createDILocationAbbrev();
290   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
291                        unsigned &Abbrev);
292   unsigned createGenericDINodeAbbrev();
293   void writeGenericDINode(const GenericDINode *N,
294                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
295   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
296                        unsigned Abbrev);
297   void writeDIEnumerator(const DIEnumerator *N,
298                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
299   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
300                         unsigned Abbrev);
301   void writeDIDerivedType(const DIDerivedType *N,
302                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
303   void writeDICompositeType(const DICompositeType *N,
304                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
305   void writeDISubroutineType(const DISubroutineType *N,
306                              SmallVectorImpl<uint64_t> &Record,
307                              unsigned Abbrev);
308   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
309                    unsigned Abbrev);
310   void writeDICompileUnit(const DICompileUnit *N,
311                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
312   void writeDISubprogram(const DISubprogram *N,
313                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
314   void writeDILexicalBlock(const DILexicalBlock *N,
315                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
317                                SmallVectorImpl<uint64_t> &Record,
318                                unsigned Abbrev);
319   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
320                         unsigned Abbrev);
321   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
322                     unsigned Abbrev);
323   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
324                         unsigned Abbrev);
325   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
326                      unsigned Abbrev);
327   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
328                                     SmallVectorImpl<uint64_t> &Record,
329                                     unsigned Abbrev);
330   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
331                                      SmallVectorImpl<uint64_t> &Record,
332                                      unsigned Abbrev);
333   void writeDIGlobalVariable(const DIGlobalVariable *N,
334                              SmallVectorImpl<uint64_t> &Record,
335                              unsigned Abbrev);
336   void writeDILocalVariable(const DILocalVariable *N,
337                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
338   void writeDILabel(const DILabel *N,
339                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
340   void writeDIExpression(const DIExpression *N,
341                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
342   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
343                                        SmallVectorImpl<uint64_t> &Record,
344                                        unsigned Abbrev);
345   void writeDIObjCProperty(const DIObjCProperty *N,
346                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
347   void writeDIImportedEntity(const DIImportedEntity *N,
348                              SmallVectorImpl<uint64_t> &Record,
349                              unsigned Abbrev);
350   unsigned createNamedMetadataAbbrev();
351   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
352   unsigned createMetadataStringsAbbrev();
353   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
354                             SmallVectorImpl<uint64_t> &Record);
355   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
356                             SmallVectorImpl<uint64_t> &Record,
357                             std::vector<unsigned> *MDAbbrevs = nullptr,
358                             std::vector<uint64_t> *IndexPos = nullptr);
359   void writeModuleMetadata();
360   void writeFunctionMetadata(const Function &F);
361   void writeFunctionMetadataAttachment(const Function &F);
362   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
363   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
364                                     const GlobalObject &GO);
365   void writeModuleMetadataKinds();
366   void writeOperandBundleTags();
367   void writeSyncScopeNames();
368   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
369   void writeModuleConstants();
370   bool pushValueAndType(const Value *V, unsigned InstID,
371                         SmallVectorImpl<unsigned> &Vals);
372   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
373   void pushValue(const Value *V, unsigned InstID,
374                  SmallVectorImpl<unsigned> &Vals);
375   void pushValueSigned(const Value *V, unsigned InstID,
376                        SmallVectorImpl<uint64_t> &Vals);
377   void writeInstruction(const Instruction &I, unsigned InstID,
378                         SmallVectorImpl<unsigned> &Vals);
379   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
380   void writeGlobalValueSymbolTable(
381       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
382   void writeUseList(UseListOrder &&Order);
383   void writeUseListBlock(const Function *F);
384   void
385   writeFunction(const Function &F,
386                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
387   void writeBlockInfo();
388   void writeModuleHash(size_t BlockStartPos);
389 
390   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
391     return unsigned(SSID);
392   }
393 };
394 
395 /// Class to manage the bitcode writing for a combined index.
396 class IndexBitcodeWriter : public BitcodeWriterBase {
397   /// The combined index to write to bitcode.
398   const ModuleSummaryIndex &Index;
399 
400   /// When writing a subset of the index for distributed backends, client
401   /// provides a map of modules to the corresponding GUIDs/summaries to write.
402   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
403 
404   /// Map that holds the correspondence between the GUID used in the combined
405   /// index and a value id generated by this class to use in references.
406   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
407 
408   /// Tracks the last value id recorded in the GUIDToValueMap.
409   unsigned GlobalValueId = 0;
410 
411 public:
412   /// Constructs a IndexBitcodeWriter object for the given combined index,
413   /// writing to the provided \p Buffer. When writing a subset of the index
414   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
415   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
416                      const ModuleSummaryIndex &Index,
417                      const std::map<std::string, GVSummaryMapTy>
418                          *ModuleToSummariesForIndex = nullptr)
419       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
420         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
421     // Assign unique value ids to all summaries to be written, for use
422     // in writing out the call graph edges. Save the mapping from GUID
423     // to the new global value id to use when writing those edges, which
424     // are currently saved in the index in terms of GUID.
425     forEachSummary([&](GVInfo I, bool) {
426       GUIDToValueIdMap[I.first] = ++GlobalValueId;
427     });
428   }
429 
430   /// The below iterator returns the GUID and associated summary.
431   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
432 
433   /// Calls the callback for each value GUID and summary to be written to
434   /// bitcode. This hides the details of whether they are being pulled from the
435   /// entire index or just those in a provided ModuleToSummariesForIndex map.
436   template<typename Functor>
437   void forEachSummary(Functor Callback) {
438     if (ModuleToSummariesForIndex) {
439       for (auto &M : *ModuleToSummariesForIndex)
440         for (auto &Summary : M.second) {
441           Callback(Summary, false);
442           // Ensure aliasee is handled, e.g. for assigning a valueId,
443           // even if we are not importing the aliasee directly (the
444           // imported alias will contain a copy of aliasee).
445           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
446             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
447         }
448     } else {
449       for (auto &Summaries : Index)
450         for (auto &Summary : Summaries.second.SummaryList)
451           Callback({Summaries.first, Summary.get()}, false);
452     }
453   }
454 
455   /// Calls the callback for each entry in the modulePaths StringMap that
456   /// should be written to the module path string table. This hides the details
457   /// of whether they are being pulled from the entire index or just those in a
458   /// provided ModuleToSummariesForIndex map.
459   template <typename Functor> void forEachModule(Functor Callback) {
460     if (ModuleToSummariesForIndex) {
461       for (const auto &M : *ModuleToSummariesForIndex) {
462         const auto &MPI = Index.modulePaths().find(M.first);
463         if (MPI == Index.modulePaths().end()) {
464           // This should only happen if the bitcode file was empty, in which
465           // case we shouldn't be importing (the ModuleToSummariesForIndex
466           // would only include the module we are writing and index for).
467           assert(ModuleToSummariesForIndex->size() == 1);
468           continue;
469         }
470         Callback(*MPI);
471       }
472     } else {
473       for (const auto &MPSE : Index.modulePaths())
474         Callback(MPSE);
475     }
476   }
477 
478   /// Main entry point for writing a combined index to bitcode.
479   void write();
480 
481 private:
482   void writeModStrings();
483   void writeCombinedGlobalValueSummary();
484 
485   Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
486     auto VMI = GUIDToValueIdMap.find(ValGUID);
487     if (VMI == GUIDToValueIdMap.end())
488       return None;
489     return VMI->second;
490   }
491 
492   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
493 };
494 
495 } // end anonymous namespace
496 
497 static unsigned getEncodedCastOpcode(unsigned Opcode) {
498   switch (Opcode) {
499   default: llvm_unreachable("Unknown cast instruction!");
500   case Instruction::Trunc   : return bitc::CAST_TRUNC;
501   case Instruction::ZExt    : return bitc::CAST_ZEXT;
502   case Instruction::SExt    : return bitc::CAST_SEXT;
503   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
504   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
505   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
506   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
507   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
508   case Instruction::FPExt   : return bitc::CAST_FPEXT;
509   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
510   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
511   case Instruction::BitCast : return bitc::CAST_BITCAST;
512   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
513   }
514 }
515 
516 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
517   switch (Opcode) {
518   default: llvm_unreachable("Unknown binary instruction!");
519   case Instruction::Add:
520   case Instruction::FAdd: return bitc::BINOP_ADD;
521   case Instruction::Sub:
522   case Instruction::FSub: return bitc::BINOP_SUB;
523   case Instruction::Mul:
524   case Instruction::FMul: return bitc::BINOP_MUL;
525   case Instruction::UDiv: return bitc::BINOP_UDIV;
526   case Instruction::FDiv:
527   case Instruction::SDiv: return bitc::BINOP_SDIV;
528   case Instruction::URem: return bitc::BINOP_UREM;
529   case Instruction::FRem:
530   case Instruction::SRem: return bitc::BINOP_SREM;
531   case Instruction::Shl:  return bitc::BINOP_SHL;
532   case Instruction::LShr: return bitc::BINOP_LSHR;
533   case Instruction::AShr: return bitc::BINOP_ASHR;
534   case Instruction::And:  return bitc::BINOP_AND;
535   case Instruction::Or:   return bitc::BINOP_OR;
536   case Instruction::Xor:  return bitc::BINOP_XOR;
537   }
538 }
539 
540 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
541   switch (Op) {
542   default: llvm_unreachable("Unknown RMW operation!");
543   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
544   case AtomicRMWInst::Add: return bitc::RMW_ADD;
545   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
546   case AtomicRMWInst::And: return bitc::RMW_AND;
547   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
548   case AtomicRMWInst::Or: return bitc::RMW_OR;
549   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
550   case AtomicRMWInst::Max: return bitc::RMW_MAX;
551   case AtomicRMWInst::Min: return bitc::RMW_MIN;
552   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
553   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
554   }
555 }
556 
557 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
558   switch (Ordering) {
559   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
560   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
561   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
562   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
563   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
564   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
565   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
566   }
567   llvm_unreachable("Invalid ordering");
568 }
569 
570 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
571                               StringRef Str, unsigned AbbrevToUse) {
572   SmallVector<unsigned, 64> Vals;
573 
574   // Code: [strchar x N]
575   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
576     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
577       AbbrevToUse = 0;
578     Vals.push_back(Str[i]);
579   }
580 
581   // Emit the finished record.
582   Stream.EmitRecord(Code, Vals, AbbrevToUse);
583 }
584 
585 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
586   switch (Kind) {
587   case Attribute::Alignment:
588     return bitc::ATTR_KIND_ALIGNMENT;
589   case Attribute::AllocSize:
590     return bitc::ATTR_KIND_ALLOC_SIZE;
591   case Attribute::AlwaysInline:
592     return bitc::ATTR_KIND_ALWAYS_INLINE;
593   case Attribute::ArgMemOnly:
594     return bitc::ATTR_KIND_ARGMEMONLY;
595   case Attribute::Builtin:
596     return bitc::ATTR_KIND_BUILTIN;
597   case Attribute::ByVal:
598     return bitc::ATTR_KIND_BY_VAL;
599   case Attribute::Convergent:
600     return bitc::ATTR_KIND_CONVERGENT;
601   case Attribute::InAlloca:
602     return bitc::ATTR_KIND_IN_ALLOCA;
603   case Attribute::Cold:
604     return bitc::ATTR_KIND_COLD;
605   case Attribute::InaccessibleMemOnly:
606     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
607   case Attribute::InaccessibleMemOrArgMemOnly:
608     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
609   case Attribute::InlineHint:
610     return bitc::ATTR_KIND_INLINE_HINT;
611   case Attribute::InReg:
612     return bitc::ATTR_KIND_IN_REG;
613   case Attribute::JumpTable:
614     return bitc::ATTR_KIND_JUMP_TABLE;
615   case Attribute::MinSize:
616     return bitc::ATTR_KIND_MIN_SIZE;
617   case Attribute::Naked:
618     return bitc::ATTR_KIND_NAKED;
619   case Attribute::Nest:
620     return bitc::ATTR_KIND_NEST;
621   case Attribute::NoAlias:
622     return bitc::ATTR_KIND_NO_ALIAS;
623   case Attribute::NoBuiltin:
624     return bitc::ATTR_KIND_NO_BUILTIN;
625   case Attribute::NoCapture:
626     return bitc::ATTR_KIND_NO_CAPTURE;
627   case Attribute::NoDuplicate:
628     return bitc::ATTR_KIND_NO_DUPLICATE;
629   case Attribute::NoImplicitFloat:
630     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
631   case Attribute::NoInline:
632     return bitc::ATTR_KIND_NO_INLINE;
633   case Attribute::NoRecurse:
634     return bitc::ATTR_KIND_NO_RECURSE;
635   case Attribute::NonLazyBind:
636     return bitc::ATTR_KIND_NON_LAZY_BIND;
637   case Attribute::NonNull:
638     return bitc::ATTR_KIND_NON_NULL;
639   case Attribute::Dereferenceable:
640     return bitc::ATTR_KIND_DEREFERENCEABLE;
641   case Attribute::DereferenceableOrNull:
642     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
643   case Attribute::NoRedZone:
644     return bitc::ATTR_KIND_NO_RED_ZONE;
645   case Attribute::NoReturn:
646     return bitc::ATTR_KIND_NO_RETURN;
647   case Attribute::NoCfCheck:
648     return bitc::ATTR_KIND_NOCF_CHECK;
649   case Attribute::NoUnwind:
650     return bitc::ATTR_KIND_NO_UNWIND;
651   case Attribute::OptForFuzzing:
652     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
653   case Attribute::OptimizeForSize:
654     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
655   case Attribute::OptimizeNone:
656     return bitc::ATTR_KIND_OPTIMIZE_NONE;
657   case Attribute::ReadNone:
658     return bitc::ATTR_KIND_READ_NONE;
659   case Attribute::ReadOnly:
660     return bitc::ATTR_KIND_READ_ONLY;
661   case Attribute::Returned:
662     return bitc::ATTR_KIND_RETURNED;
663   case Attribute::ReturnsTwice:
664     return bitc::ATTR_KIND_RETURNS_TWICE;
665   case Attribute::SExt:
666     return bitc::ATTR_KIND_S_EXT;
667   case Attribute::Speculatable:
668     return bitc::ATTR_KIND_SPECULATABLE;
669   case Attribute::StackAlignment:
670     return bitc::ATTR_KIND_STACK_ALIGNMENT;
671   case Attribute::StackProtect:
672     return bitc::ATTR_KIND_STACK_PROTECT;
673   case Attribute::StackProtectReq:
674     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
675   case Attribute::StackProtectStrong:
676     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
677   case Attribute::SafeStack:
678     return bitc::ATTR_KIND_SAFESTACK;
679   case Attribute::ShadowCallStack:
680     return bitc::ATTR_KIND_SHADOWCALLSTACK;
681   case Attribute::StrictFP:
682     return bitc::ATTR_KIND_STRICT_FP;
683   case Attribute::StructRet:
684     return bitc::ATTR_KIND_STRUCT_RET;
685   case Attribute::SanitizeAddress:
686     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
687   case Attribute::SanitizeHWAddress:
688     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
689   case Attribute::SanitizeThread:
690     return bitc::ATTR_KIND_SANITIZE_THREAD;
691   case Attribute::SanitizeMemory:
692     return bitc::ATTR_KIND_SANITIZE_MEMORY;
693   case Attribute::SpeculativeLoadHardening:
694     return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
695   case Attribute::SwiftError:
696     return bitc::ATTR_KIND_SWIFT_ERROR;
697   case Attribute::SwiftSelf:
698     return bitc::ATTR_KIND_SWIFT_SELF;
699   case Attribute::UWTable:
700     return bitc::ATTR_KIND_UW_TABLE;
701   case Attribute::WriteOnly:
702     return bitc::ATTR_KIND_WRITEONLY;
703   case Attribute::ZExt:
704     return bitc::ATTR_KIND_Z_EXT;
705   case Attribute::EndAttrKinds:
706     llvm_unreachable("Can not encode end-attribute kinds marker.");
707   case Attribute::None:
708     llvm_unreachable("Can not encode none-attribute.");
709   }
710 
711   llvm_unreachable("Trying to encode unknown attribute");
712 }
713 
714 void ModuleBitcodeWriter::writeAttributeGroupTable() {
715   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
716       VE.getAttributeGroups();
717   if (AttrGrps.empty()) return;
718 
719   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
720 
721   SmallVector<uint64_t, 64> Record;
722   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
723     unsigned AttrListIndex = Pair.first;
724     AttributeSet AS = Pair.second;
725     Record.push_back(VE.getAttributeGroupID(Pair));
726     Record.push_back(AttrListIndex);
727 
728     for (Attribute Attr : AS) {
729       if (Attr.isEnumAttribute()) {
730         Record.push_back(0);
731         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
732       } else if (Attr.isIntAttribute()) {
733         Record.push_back(1);
734         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
735         Record.push_back(Attr.getValueAsInt());
736       } else {
737         StringRef Kind = Attr.getKindAsString();
738         StringRef Val = Attr.getValueAsString();
739 
740         Record.push_back(Val.empty() ? 3 : 4);
741         Record.append(Kind.begin(), Kind.end());
742         Record.push_back(0);
743         if (!Val.empty()) {
744           Record.append(Val.begin(), Val.end());
745           Record.push_back(0);
746         }
747       }
748     }
749 
750     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
751     Record.clear();
752   }
753 
754   Stream.ExitBlock();
755 }
756 
757 void ModuleBitcodeWriter::writeAttributeTable() {
758   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
759   if (Attrs.empty()) return;
760 
761   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
762 
763   SmallVector<uint64_t, 64> Record;
764   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
765     AttributeList AL = Attrs[i];
766     for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
767       AttributeSet AS = AL.getAttributes(i);
768       if (AS.hasAttributes())
769         Record.push_back(VE.getAttributeGroupID({i, AS}));
770     }
771 
772     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
773     Record.clear();
774   }
775 
776   Stream.ExitBlock();
777 }
778 
779 /// WriteTypeTable - Write out the type table for a module.
780 void ModuleBitcodeWriter::writeTypeTable() {
781   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
782 
783   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
784   SmallVector<uint64_t, 64> TypeVals;
785 
786   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
787 
788   // Abbrev for TYPE_CODE_POINTER.
789   auto Abbv = std::make_shared<BitCodeAbbrev>();
790   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
791   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
792   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
793   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
794 
795   // Abbrev for TYPE_CODE_FUNCTION.
796   Abbv = std::make_shared<BitCodeAbbrev>();
797   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
798   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
799   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
800   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
801   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
802 
803   // Abbrev for TYPE_CODE_STRUCT_ANON.
804   Abbv = std::make_shared<BitCodeAbbrev>();
805   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
806   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
807   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
808   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
809   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
810 
811   // Abbrev for TYPE_CODE_STRUCT_NAME.
812   Abbv = std::make_shared<BitCodeAbbrev>();
813   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
814   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
815   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
816   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
817 
818   // Abbrev for TYPE_CODE_STRUCT_NAMED.
819   Abbv = std::make_shared<BitCodeAbbrev>();
820   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
821   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
822   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
823   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
824   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
825 
826   // Abbrev for TYPE_CODE_ARRAY.
827   Abbv = std::make_shared<BitCodeAbbrev>();
828   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
829   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
830   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
831   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
832 
833   // Emit an entry count so the reader can reserve space.
834   TypeVals.push_back(TypeList.size());
835   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
836   TypeVals.clear();
837 
838   // Loop over all of the types, emitting each in turn.
839   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
840     Type *T = TypeList[i];
841     int AbbrevToUse = 0;
842     unsigned Code = 0;
843 
844     switch (T->getTypeID()) {
845     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
846     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
847     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
848     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
849     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
850     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
851     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
852     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
853     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
854     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
855     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
856     case Type::IntegerTyID:
857       // INTEGER: [width]
858       Code = bitc::TYPE_CODE_INTEGER;
859       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
860       break;
861     case Type::PointerTyID: {
862       PointerType *PTy = cast<PointerType>(T);
863       // POINTER: [pointee type, address space]
864       Code = bitc::TYPE_CODE_POINTER;
865       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
866       unsigned AddressSpace = PTy->getAddressSpace();
867       TypeVals.push_back(AddressSpace);
868       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
869       break;
870     }
871     case Type::FunctionTyID: {
872       FunctionType *FT = cast<FunctionType>(T);
873       // FUNCTION: [isvararg, retty, paramty x N]
874       Code = bitc::TYPE_CODE_FUNCTION;
875       TypeVals.push_back(FT->isVarArg());
876       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
877       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
878         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
879       AbbrevToUse = FunctionAbbrev;
880       break;
881     }
882     case Type::StructTyID: {
883       StructType *ST = cast<StructType>(T);
884       // STRUCT: [ispacked, eltty x N]
885       TypeVals.push_back(ST->isPacked());
886       // Output all of the element types.
887       for (StructType::element_iterator I = ST->element_begin(),
888            E = ST->element_end(); I != E; ++I)
889         TypeVals.push_back(VE.getTypeID(*I));
890 
891       if (ST->isLiteral()) {
892         Code = bitc::TYPE_CODE_STRUCT_ANON;
893         AbbrevToUse = StructAnonAbbrev;
894       } else {
895         if (ST->isOpaque()) {
896           Code = bitc::TYPE_CODE_OPAQUE;
897         } else {
898           Code = bitc::TYPE_CODE_STRUCT_NAMED;
899           AbbrevToUse = StructNamedAbbrev;
900         }
901 
902         // Emit the name if it is present.
903         if (!ST->getName().empty())
904           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
905                             StructNameAbbrev);
906       }
907       break;
908     }
909     case Type::ArrayTyID: {
910       ArrayType *AT = cast<ArrayType>(T);
911       // ARRAY: [numelts, eltty]
912       Code = bitc::TYPE_CODE_ARRAY;
913       TypeVals.push_back(AT->getNumElements());
914       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
915       AbbrevToUse = ArrayAbbrev;
916       break;
917     }
918     case Type::VectorTyID: {
919       VectorType *VT = cast<VectorType>(T);
920       // VECTOR [numelts, eltty]
921       Code = bitc::TYPE_CODE_VECTOR;
922       TypeVals.push_back(VT->getNumElements());
923       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
924       break;
925     }
926     }
927 
928     // Emit the finished record.
929     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
930     TypeVals.clear();
931   }
932 
933   Stream.ExitBlock();
934 }
935 
936 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
937   switch (Linkage) {
938   case GlobalValue::ExternalLinkage:
939     return 0;
940   case GlobalValue::WeakAnyLinkage:
941     return 16;
942   case GlobalValue::AppendingLinkage:
943     return 2;
944   case GlobalValue::InternalLinkage:
945     return 3;
946   case GlobalValue::LinkOnceAnyLinkage:
947     return 18;
948   case GlobalValue::ExternalWeakLinkage:
949     return 7;
950   case GlobalValue::CommonLinkage:
951     return 8;
952   case GlobalValue::PrivateLinkage:
953     return 9;
954   case GlobalValue::WeakODRLinkage:
955     return 17;
956   case GlobalValue::LinkOnceODRLinkage:
957     return 19;
958   case GlobalValue::AvailableExternallyLinkage:
959     return 12;
960   }
961   llvm_unreachable("Invalid linkage");
962 }
963 
964 static unsigned getEncodedLinkage(const GlobalValue &GV) {
965   return getEncodedLinkage(GV.getLinkage());
966 }
967 
968 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
969   uint64_t RawFlags = 0;
970   RawFlags |= Flags.ReadNone;
971   RawFlags |= (Flags.ReadOnly << 1);
972   RawFlags |= (Flags.NoRecurse << 2);
973   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
974   return RawFlags;
975 }
976 
977 // Decode the flags for GlobalValue in the summary
978 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
979   uint64_t RawFlags = 0;
980 
981   RawFlags |= Flags.NotEligibleToImport; // bool
982   RawFlags |= (Flags.Live << 1);
983   RawFlags |= (Flags.DSOLocal << 2);
984 
985   // Linkage don't need to be remapped at that time for the summary. Any future
986   // change to the getEncodedLinkage() function will need to be taken into
987   // account here as well.
988   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
989 
990   return RawFlags;
991 }
992 
993 static unsigned getEncodedVisibility(const GlobalValue &GV) {
994   switch (GV.getVisibility()) {
995   case GlobalValue::DefaultVisibility:   return 0;
996   case GlobalValue::HiddenVisibility:    return 1;
997   case GlobalValue::ProtectedVisibility: return 2;
998   }
999   llvm_unreachable("Invalid visibility");
1000 }
1001 
1002 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1003   switch (GV.getDLLStorageClass()) {
1004   case GlobalValue::DefaultStorageClass:   return 0;
1005   case GlobalValue::DLLImportStorageClass: return 1;
1006   case GlobalValue::DLLExportStorageClass: return 2;
1007   }
1008   llvm_unreachable("Invalid DLL storage class");
1009 }
1010 
1011 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1012   switch (GV.getThreadLocalMode()) {
1013     case GlobalVariable::NotThreadLocal:         return 0;
1014     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1015     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1016     case GlobalVariable::InitialExecTLSModel:    return 3;
1017     case GlobalVariable::LocalExecTLSModel:      return 4;
1018   }
1019   llvm_unreachable("Invalid TLS model");
1020 }
1021 
1022 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1023   switch (C.getSelectionKind()) {
1024   case Comdat::Any:
1025     return bitc::COMDAT_SELECTION_KIND_ANY;
1026   case Comdat::ExactMatch:
1027     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1028   case Comdat::Largest:
1029     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1030   case Comdat::NoDuplicates:
1031     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1032   case Comdat::SameSize:
1033     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1034   }
1035   llvm_unreachable("Invalid selection kind");
1036 }
1037 
1038 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1039   switch (GV.getUnnamedAddr()) {
1040   case GlobalValue::UnnamedAddr::None:   return 0;
1041   case GlobalValue::UnnamedAddr::Local:  return 2;
1042   case GlobalValue::UnnamedAddr::Global: return 1;
1043   }
1044   llvm_unreachable("Invalid unnamed_addr");
1045 }
1046 
1047 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1048   if (GenerateHash)
1049     Hasher.update(Str);
1050   return StrtabBuilder.add(Str);
1051 }
1052 
1053 void ModuleBitcodeWriter::writeComdats() {
1054   SmallVector<unsigned, 64> Vals;
1055   for (const Comdat *C : VE.getComdats()) {
1056     // COMDAT: [strtab offset, strtab size, selection_kind]
1057     Vals.push_back(addToStrtab(C->getName()));
1058     Vals.push_back(C->getName().size());
1059     Vals.push_back(getEncodedComdatSelectionKind(*C));
1060     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1061     Vals.clear();
1062   }
1063 }
1064 
1065 /// Write a record that will eventually hold the word offset of the
1066 /// module-level VST. For now the offset is 0, which will be backpatched
1067 /// after the real VST is written. Saves the bit offset to backpatch.
1068 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1069   // Write a placeholder value in for the offset of the real VST,
1070   // which is written after the function blocks so that it can include
1071   // the offset of each function. The placeholder offset will be
1072   // updated when the real VST is written.
1073   auto Abbv = std::make_shared<BitCodeAbbrev>();
1074   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1075   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1076   // hold the real VST offset. Must use fixed instead of VBR as we don't
1077   // know how many VBR chunks to reserve ahead of time.
1078   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1079   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1080 
1081   // Emit the placeholder
1082   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1083   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1084 
1085   // Compute and save the bit offset to the placeholder, which will be
1086   // patched when the real VST is written. We can simply subtract the 32-bit
1087   // fixed size from the current bit number to get the location to backpatch.
1088   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1089 }
1090 
1091 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1092 
1093 /// Determine the encoding to use for the given string name and length.
1094 static StringEncoding getStringEncoding(StringRef Str) {
1095   bool isChar6 = true;
1096   for (char C : Str) {
1097     if (isChar6)
1098       isChar6 = BitCodeAbbrevOp::isChar6(C);
1099     if ((unsigned char)C & 128)
1100       // don't bother scanning the rest.
1101       return SE_Fixed8;
1102   }
1103   if (isChar6)
1104     return SE_Char6;
1105   return SE_Fixed7;
1106 }
1107 
1108 /// Emit top-level description of module, including target triple, inline asm,
1109 /// descriptors for global variables, and function prototype info.
1110 /// Returns the bit offset to backpatch with the location of the real VST.
1111 void ModuleBitcodeWriter::writeModuleInfo() {
1112   // Emit various pieces of data attached to a module.
1113   if (!M.getTargetTriple().empty())
1114     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1115                       0 /*TODO*/);
1116   const std::string &DL = M.getDataLayoutStr();
1117   if (!DL.empty())
1118     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1119   if (!M.getModuleInlineAsm().empty())
1120     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1121                       0 /*TODO*/);
1122 
1123   // Emit information about sections and GC, computing how many there are. Also
1124   // compute the maximum alignment value.
1125   std::map<std::string, unsigned> SectionMap;
1126   std::map<std::string, unsigned> GCMap;
1127   unsigned MaxAlignment = 0;
1128   unsigned MaxGlobalType = 0;
1129   for (const GlobalValue &GV : M.globals()) {
1130     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1131     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1132     if (GV.hasSection()) {
1133       // Give section names unique ID's.
1134       unsigned &Entry = SectionMap[GV.getSection()];
1135       if (!Entry) {
1136         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1137                           0 /*TODO*/);
1138         Entry = SectionMap.size();
1139       }
1140     }
1141   }
1142   for (const Function &F : M) {
1143     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1144     if (F.hasSection()) {
1145       // Give section names unique ID's.
1146       unsigned &Entry = SectionMap[F.getSection()];
1147       if (!Entry) {
1148         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1149                           0 /*TODO*/);
1150         Entry = SectionMap.size();
1151       }
1152     }
1153     if (F.hasGC()) {
1154       // Same for GC names.
1155       unsigned &Entry = GCMap[F.getGC()];
1156       if (!Entry) {
1157         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1158                           0 /*TODO*/);
1159         Entry = GCMap.size();
1160       }
1161     }
1162   }
1163 
1164   // Emit abbrev for globals, now that we know # sections and max alignment.
1165   unsigned SimpleGVarAbbrev = 0;
1166   if (!M.global_empty()) {
1167     // Add an abbrev for common globals with no visibility or thread localness.
1168     auto Abbv = std::make_shared<BitCodeAbbrev>();
1169     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1170     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1171     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1172     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1173                               Log2_32_Ceil(MaxGlobalType+1)));
1174     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1175                                                            //| explicitType << 1
1176                                                            //| constant
1177     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1178     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1179     if (MaxAlignment == 0)                                 // Alignment.
1180       Abbv->Add(BitCodeAbbrevOp(0));
1181     else {
1182       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1183       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1184                                Log2_32_Ceil(MaxEncAlignment+1)));
1185     }
1186     if (SectionMap.empty())                                    // Section.
1187       Abbv->Add(BitCodeAbbrevOp(0));
1188     else
1189       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1190                                Log2_32_Ceil(SectionMap.size()+1)));
1191     // Don't bother emitting vis + thread local.
1192     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1193   }
1194 
1195   SmallVector<unsigned, 64> Vals;
1196   // Emit the module's source file name.
1197   {
1198     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1199     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1200     if (Bits == SE_Char6)
1201       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1202     else if (Bits == SE_Fixed7)
1203       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1204 
1205     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1206     auto Abbv = std::make_shared<BitCodeAbbrev>();
1207     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1208     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1209     Abbv->Add(AbbrevOpToUse);
1210     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1211 
1212     for (const auto P : M.getSourceFileName())
1213       Vals.push_back((unsigned char)P);
1214 
1215     // Emit the finished record.
1216     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1217     Vals.clear();
1218   }
1219 
1220   // Emit the global variable information.
1221   for (const GlobalVariable &GV : M.globals()) {
1222     unsigned AbbrevToUse = 0;
1223 
1224     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1225     //             linkage, alignment, section, visibility, threadlocal,
1226     //             unnamed_addr, externally_initialized, dllstorageclass,
1227     //             comdat, attributes, DSO_Local]
1228     Vals.push_back(addToStrtab(GV.getName()));
1229     Vals.push_back(GV.getName().size());
1230     Vals.push_back(VE.getTypeID(GV.getValueType()));
1231     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1232     Vals.push_back(GV.isDeclaration() ? 0 :
1233                    (VE.getValueID(GV.getInitializer()) + 1));
1234     Vals.push_back(getEncodedLinkage(GV));
1235     Vals.push_back(Log2_32(GV.getAlignment())+1);
1236     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1237     if (GV.isThreadLocal() ||
1238         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1239         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1240         GV.isExternallyInitialized() ||
1241         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1242         GV.hasComdat() ||
1243         GV.hasAttributes() ||
1244         GV.isDSOLocal()) {
1245       Vals.push_back(getEncodedVisibility(GV));
1246       Vals.push_back(getEncodedThreadLocalMode(GV));
1247       Vals.push_back(getEncodedUnnamedAddr(GV));
1248       Vals.push_back(GV.isExternallyInitialized());
1249       Vals.push_back(getEncodedDLLStorageClass(GV));
1250       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1251 
1252       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1253       Vals.push_back(VE.getAttributeListID(AL));
1254 
1255       Vals.push_back(GV.isDSOLocal());
1256     } else {
1257       AbbrevToUse = SimpleGVarAbbrev;
1258     }
1259 
1260     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1261     Vals.clear();
1262   }
1263 
1264   // Emit the function proto information.
1265   for (const Function &F : M) {
1266     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1267     //             linkage, paramattrs, alignment, section, visibility, gc,
1268     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1269     //             prefixdata, personalityfn, DSO_Local, addrspace]
1270     Vals.push_back(addToStrtab(F.getName()));
1271     Vals.push_back(F.getName().size());
1272     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1273     Vals.push_back(F.getCallingConv());
1274     Vals.push_back(F.isDeclaration());
1275     Vals.push_back(getEncodedLinkage(F));
1276     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1277     Vals.push_back(Log2_32(F.getAlignment())+1);
1278     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1279     Vals.push_back(getEncodedVisibility(F));
1280     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1281     Vals.push_back(getEncodedUnnamedAddr(F));
1282     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1283                                        : 0);
1284     Vals.push_back(getEncodedDLLStorageClass(F));
1285     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1286     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1287                                      : 0);
1288     Vals.push_back(
1289         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1290 
1291     Vals.push_back(F.isDSOLocal());
1292     Vals.push_back(F.getAddressSpace());
1293 
1294     unsigned AbbrevToUse = 0;
1295     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1296     Vals.clear();
1297   }
1298 
1299   // Emit the alias information.
1300   for (const GlobalAlias &A : M.aliases()) {
1301     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1302     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1303     //         DSO_Local]
1304     Vals.push_back(addToStrtab(A.getName()));
1305     Vals.push_back(A.getName().size());
1306     Vals.push_back(VE.getTypeID(A.getValueType()));
1307     Vals.push_back(A.getType()->getAddressSpace());
1308     Vals.push_back(VE.getValueID(A.getAliasee()));
1309     Vals.push_back(getEncodedLinkage(A));
1310     Vals.push_back(getEncodedVisibility(A));
1311     Vals.push_back(getEncodedDLLStorageClass(A));
1312     Vals.push_back(getEncodedThreadLocalMode(A));
1313     Vals.push_back(getEncodedUnnamedAddr(A));
1314     Vals.push_back(A.isDSOLocal());
1315 
1316     unsigned AbbrevToUse = 0;
1317     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1318     Vals.clear();
1319   }
1320 
1321   // Emit the ifunc information.
1322   for (const GlobalIFunc &I : M.ifuncs()) {
1323     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1324     //         val#, linkage, visibility, DSO_Local]
1325     Vals.push_back(addToStrtab(I.getName()));
1326     Vals.push_back(I.getName().size());
1327     Vals.push_back(VE.getTypeID(I.getValueType()));
1328     Vals.push_back(I.getType()->getAddressSpace());
1329     Vals.push_back(VE.getValueID(I.getResolver()));
1330     Vals.push_back(getEncodedLinkage(I));
1331     Vals.push_back(getEncodedVisibility(I));
1332     Vals.push_back(I.isDSOLocal());
1333     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1334     Vals.clear();
1335   }
1336 
1337   writeValueSymbolTableForwardDecl();
1338 }
1339 
1340 static uint64_t getOptimizationFlags(const Value *V) {
1341   uint64_t Flags = 0;
1342 
1343   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1344     if (OBO->hasNoSignedWrap())
1345       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1346     if (OBO->hasNoUnsignedWrap())
1347       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1348   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1349     if (PEO->isExact())
1350       Flags |= 1 << bitc::PEO_EXACT;
1351   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1352     if (FPMO->hasAllowReassoc())
1353       Flags |= bitc::AllowReassoc;
1354     if (FPMO->hasNoNaNs())
1355       Flags |= bitc::NoNaNs;
1356     if (FPMO->hasNoInfs())
1357       Flags |= bitc::NoInfs;
1358     if (FPMO->hasNoSignedZeros())
1359       Flags |= bitc::NoSignedZeros;
1360     if (FPMO->hasAllowReciprocal())
1361       Flags |= bitc::AllowReciprocal;
1362     if (FPMO->hasAllowContract())
1363       Flags |= bitc::AllowContract;
1364     if (FPMO->hasApproxFunc())
1365       Flags |= bitc::ApproxFunc;
1366   }
1367 
1368   return Flags;
1369 }
1370 
1371 void ModuleBitcodeWriter::writeValueAsMetadata(
1372     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1373   // Mimic an MDNode with a value as one operand.
1374   Value *V = MD->getValue();
1375   Record.push_back(VE.getTypeID(V->getType()));
1376   Record.push_back(VE.getValueID(V));
1377   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1378   Record.clear();
1379 }
1380 
1381 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1382                                        SmallVectorImpl<uint64_t> &Record,
1383                                        unsigned Abbrev) {
1384   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1385     Metadata *MD = N->getOperand(i);
1386     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1387            "Unexpected function-local metadata");
1388     Record.push_back(VE.getMetadataOrNullID(MD));
1389   }
1390   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1391                                     : bitc::METADATA_NODE,
1392                     Record, Abbrev);
1393   Record.clear();
1394 }
1395 
1396 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1397   // Assume the column is usually under 128, and always output the inlined-at
1398   // location (it's never more expensive than building an array size 1).
1399   auto Abbv = std::make_shared<BitCodeAbbrev>();
1400   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1401   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1402   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1403   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1404   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1405   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1406   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1407   return Stream.EmitAbbrev(std::move(Abbv));
1408 }
1409 
1410 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1411                                           SmallVectorImpl<uint64_t> &Record,
1412                                           unsigned &Abbrev) {
1413   if (!Abbrev)
1414     Abbrev = createDILocationAbbrev();
1415 
1416   Record.push_back(N->isDistinct());
1417   Record.push_back(N->getLine());
1418   Record.push_back(N->getColumn());
1419   Record.push_back(VE.getMetadataID(N->getScope()));
1420   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1421   Record.push_back(N->isImplicitCode());
1422 
1423   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1424   Record.clear();
1425 }
1426 
1427 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1428   // Assume the column is usually under 128, and always output the inlined-at
1429   // location (it's never more expensive than building an array size 1).
1430   auto Abbv = std::make_shared<BitCodeAbbrev>();
1431   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1432   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1433   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1434   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1435   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1436   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1437   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1438   return Stream.EmitAbbrev(std::move(Abbv));
1439 }
1440 
1441 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1442                                              SmallVectorImpl<uint64_t> &Record,
1443                                              unsigned &Abbrev) {
1444   if (!Abbrev)
1445     Abbrev = createGenericDINodeAbbrev();
1446 
1447   Record.push_back(N->isDistinct());
1448   Record.push_back(N->getTag());
1449   Record.push_back(0); // Per-tag version field; unused for now.
1450 
1451   for (auto &I : N->operands())
1452     Record.push_back(VE.getMetadataOrNullID(I));
1453 
1454   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1455   Record.clear();
1456 }
1457 
1458 static uint64_t rotateSign(int64_t I) {
1459   uint64_t U = I;
1460   return I < 0 ? ~(U << 1) : U << 1;
1461 }
1462 
1463 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1464                                           SmallVectorImpl<uint64_t> &Record,
1465                                           unsigned Abbrev) {
1466   const uint64_t Version = 1 << 1;
1467   Record.push_back((uint64_t)N->isDistinct() | Version);
1468   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1469   Record.push_back(rotateSign(N->getLowerBound()));
1470 
1471   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1472   Record.clear();
1473 }
1474 
1475 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1476                                             SmallVectorImpl<uint64_t> &Record,
1477                                             unsigned Abbrev) {
1478   Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1479   Record.push_back(rotateSign(N->getValue()));
1480   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1481 
1482   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1483   Record.clear();
1484 }
1485 
1486 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1487                                            SmallVectorImpl<uint64_t> &Record,
1488                                            unsigned Abbrev) {
1489   Record.push_back(N->isDistinct());
1490   Record.push_back(N->getTag());
1491   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1492   Record.push_back(N->getSizeInBits());
1493   Record.push_back(N->getAlignInBits());
1494   Record.push_back(N->getEncoding());
1495   Record.push_back(N->getFlags());
1496 
1497   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1498   Record.clear();
1499 }
1500 
1501 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1502                                              SmallVectorImpl<uint64_t> &Record,
1503                                              unsigned Abbrev) {
1504   Record.push_back(N->isDistinct());
1505   Record.push_back(N->getTag());
1506   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1507   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1508   Record.push_back(N->getLine());
1509   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1510   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1511   Record.push_back(N->getSizeInBits());
1512   Record.push_back(N->getAlignInBits());
1513   Record.push_back(N->getOffsetInBits());
1514   Record.push_back(N->getFlags());
1515   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1516 
1517   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1518   // that there is no DWARF address space associated with DIDerivedType.
1519   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1520     Record.push_back(*DWARFAddressSpace + 1);
1521   else
1522     Record.push_back(0);
1523 
1524   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1525   Record.clear();
1526 }
1527 
1528 void ModuleBitcodeWriter::writeDICompositeType(
1529     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1530     unsigned Abbrev) {
1531   const unsigned IsNotUsedInOldTypeRef = 0x2;
1532   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1533   Record.push_back(N->getTag());
1534   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1535   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1536   Record.push_back(N->getLine());
1537   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1538   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1539   Record.push_back(N->getSizeInBits());
1540   Record.push_back(N->getAlignInBits());
1541   Record.push_back(N->getOffsetInBits());
1542   Record.push_back(N->getFlags());
1543   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1544   Record.push_back(N->getRuntimeLang());
1545   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1546   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1547   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1548   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1549 
1550   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1551   Record.clear();
1552 }
1553 
1554 void ModuleBitcodeWriter::writeDISubroutineType(
1555     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1556     unsigned Abbrev) {
1557   const unsigned HasNoOldTypeRefs = 0x2;
1558   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1559   Record.push_back(N->getFlags());
1560   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1561   Record.push_back(N->getCC());
1562 
1563   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1564   Record.clear();
1565 }
1566 
1567 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1568                                       SmallVectorImpl<uint64_t> &Record,
1569                                       unsigned Abbrev) {
1570   Record.push_back(N->isDistinct());
1571   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1572   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1573   if (N->getRawChecksum()) {
1574     Record.push_back(N->getRawChecksum()->Kind);
1575     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1576   } else {
1577     // Maintain backwards compatibility with the old internal representation of
1578     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1579     Record.push_back(0);
1580     Record.push_back(VE.getMetadataOrNullID(nullptr));
1581   }
1582   auto Source = N->getRawSource();
1583   if (Source)
1584     Record.push_back(VE.getMetadataOrNullID(*Source));
1585 
1586   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1587   Record.clear();
1588 }
1589 
1590 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1591                                              SmallVectorImpl<uint64_t> &Record,
1592                                              unsigned Abbrev) {
1593   assert(N->isDistinct() && "Expected distinct compile units");
1594   Record.push_back(/* IsDistinct */ true);
1595   Record.push_back(N->getSourceLanguage());
1596   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1597   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1598   Record.push_back(N->isOptimized());
1599   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1600   Record.push_back(N->getRuntimeVersion());
1601   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1602   Record.push_back(N->getEmissionKind());
1603   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1604   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1605   Record.push_back(/* subprograms */ 0);
1606   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1607   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1608   Record.push_back(N->getDWOId());
1609   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1610   Record.push_back(N->getSplitDebugInlining());
1611   Record.push_back(N->getDebugInfoForProfiling());
1612   Record.push_back((unsigned)N->getNameTableKind());
1613 
1614   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1615   Record.clear();
1616 }
1617 
1618 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1619                                             SmallVectorImpl<uint64_t> &Record,
1620                                             unsigned Abbrev) {
1621   uint64_t HasUnitFlag = 1 << 1;
1622   Record.push_back(N->isDistinct() | HasUnitFlag);
1623   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1624   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1625   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1626   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1627   Record.push_back(N->getLine());
1628   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1629   Record.push_back(N->isLocalToUnit());
1630   Record.push_back(N->isDefinition());
1631   Record.push_back(N->getScopeLine());
1632   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1633   Record.push_back(N->getVirtuality());
1634   Record.push_back(N->getVirtualIndex());
1635   Record.push_back(N->getFlags());
1636   Record.push_back(N->isOptimized());
1637   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1638   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1639   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1640   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1641   Record.push_back(N->getThisAdjustment());
1642   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1643 
1644   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1645   Record.clear();
1646 }
1647 
1648 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1649                                               SmallVectorImpl<uint64_t> &Record,
1650                                               unsigned Abbrev) {
1651   Record.push_back(N->isDistinct());
1652   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1653   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1654   Record.push_back(N->getLine());
1655   Record.push_back(N->getColumn());
1656 
1657   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1658   Record.clear();
1659 }
1660 
1661 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1662     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1663     unsigned Abbrev) {
1664   Record.push_back(N->isDistinct());
1665   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1666   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1667   Record.push_back(N->getDiscriminator());
1668 
1669   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1670   Record.clear();
1671 }
1672 
1673 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1674                                            SmallVectorImpl<uint64_t> &Record,
1675                                            unsigned Abbrev) {
1676   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1677   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1678   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1679 
1680   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1681   Record.clear();
1682 }
1683 
1684 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1685                                        SmallVectorImpl<uint64_t> &Record,
1686                                        unsigned Abbrev) {
1687   Record.push_back(N->isDistinct());
1688   Record.push_back(N->getMacinfoType());
1689   Record.push_back(N->getLine());
1690   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1691   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1692 
1693   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1694   Record.clear();
1695 }
1696 
1697 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1698                                            SmallVectorImpl<uint64_t> &Record,
1699                                            unsigned Abbrev) {
1700   Record.push_back(N->isDistinct());
1701   Record.push_back(N->getMacinfoType());
1702   Record.push_back(N->getLine());
1703   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1704   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1705 
1706   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1707   Record.clear();
1708 }
1709 
1710 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1711                                         SmallVectorImpl<uint64_t> &Record,
1712                                         unsigned Abbrev) {
1713   Record.push_back(N->isDistinct());
1714   for (auto &I : N->operands())
1715     Record.push_back(VE.getMetadataOrNullID(I));
1716 
1717   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1718   Record.clear();
1719 }
1720 
1721 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1722     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1723     unsigned Abbrev) {
1724   Record.push_back(N->isDistinct());
1725   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1726   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1727 
1728   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1729   Record.clear();
1730 }
1731 
1732 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1733     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1734     unsigned Abbrev) {
1735   Record.push_back(N->isDistinct());
1736   Record.push_back(N->getTag());
1737   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1738   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1739   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1740 
1741   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1742   Record.clear();
1743 }
1744 
1745 void ModuleBitcodeWriter::writeDIGlobalVariable(
1746     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1747     unsigned Abbrev) {
1748   const uint64_t Version = 1 << 1;
1749   Record.push_back((uint64_t)N->isDistinct() | Version);
1750   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1751   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1752   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1753   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1754   Record.push_back(N->getLine());
1755   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1756   Record.push_back(N->isLocalToUnit());
1757   Record.push_back(N->isDefinition());
1758   Record.push_back(/* expr */ 0);
1759   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1760   Record.push_back(N->getAlignInBits());
1761 
1762   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1763   Record.clear();
1764 }
1765 
1766 void ModuleBitcodeWriter::writeDILocalVariable(
1767     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1768     unsigned Abbrev) {
1769   // In order to support all possible bitcode formats in BitcodeReader we need
1770   // to distinguish the following cases:
1771   // 1) Record has no artificial tag (Record[1]),
1772   //   has no obsolete inlinedAt field (Record[9]).
1773   //   In this case Record size will be 8, HasAlignment flag is false.
1774   // 2) Record has artificial tag (Record[1]),
1775   //   has no obsolete inlignedAt field (Record[9]).
1776   //   In this case Record size will be 9, HasAlignment flag is false.
1777   // 3) Record has both artificial tag (Record[1]) and
1778   //   obsolete inlignedAt field (Record[9]).
1779   //   In this case Record size will be 10, HasAlignment flag is false.
1780   // 4) Record has neither artificial tag, nor inlignedAt field, but
1781   //   HasAlignment flag is true and Record[8] contains alignment value.
1782   const uint64_t HasAlignmentFlag = 1 << 1;
1783   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1784   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1785   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1786   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1787   Record.push_back(N->getLine());
1788   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1789   Record.push_back(N->getArg());
1790   Record.push_back(N->getFlags());
1791   Record.push_back(N->getAlignInBits());
1792 
1793   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1794   Record.clear();
1795 }
1796 
1797 void ModuleBitcodeWriter::writeDILabel(
1798     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1799     unsigned Abbrev) {
1800   Record.push_back((uint64_t)N->isDistinct());
1801   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1802   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1803   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1804   Record.push_back(N->getLine());
1805 
1806   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
1807   Record.clear();
1808 }
1809 
1810 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1811                                             SmallVectorImpl<uint64_t> &Record,
1812                                             unsigned Abbrev) {
1813   Record.reserve(N->getElements().size() + 1);
1814   const uint64_t Version = 3 << 1;
1815   Record.push_back((uint64_t)N->isDistinct() | Version);
1816   Record.append(N->elements_begin(), N->elements_end());
1817 
1818   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1819   Record.clear();
1820 }
1821 
1822 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1823     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1824     unsigned Abbrev) {
1825   Record.push_back(N->isDistinct());
1826   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1827   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1828 
1829   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1830   Record.clear();
1831 }
1832 
1833 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1834                                               SmallVectorImpl<uint64_t> &Record,
1835                                               unsigned Abbrev) {
1836   Record.push_back(N->isDistinct());
1837   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1838   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1839   Record.push_back(N->getLine());
1840   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1841   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1842   Record.push_back(N->getAttributes());
1843   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1844 
1845   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1846   Record.clear();
1847 }
1848 
1849 void ModuleBitcodeWriter::writeDIImportedEntity(
1850     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1851     unsigned Abbrev) {
1852   Record.push_back(N->isDistinct());
1853   Record.push_back(N->getTag());
1854   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1855   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1856   Record.push_back(N->getLine());
1857   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1858   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1859 
1860   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1861   Record.clear();
1862 }
1863 
1864 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1865   auto Abbv = std::make_shared<BitCodeAbbrev>();
1866   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1867   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1868   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1869   return Stream.EmitAbbrev(std::move(Abbv));
1870 }
1871 
1872 void ModuleBitcodeWriter::writeNamedMetadata(
1873     SmallVectorImpl<uint64_t> &Record) {
1874   if (M.named_metadata_empty())
1875     return;
1876 
1877   unsigned Abbrev = createNamedMetadataAbbrev();
1878   for (const NamedMDNode &NMD : M.named_metadata()) {
1879     // Write name.
1880     StringRef Str = NMD.getName();
1881     Record.append(Str.bytes_begin(), Str.bytes_end());
1882     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1883     Record.clear();
1884 
1885     // Write named metadata operands.
1886     for (const MDNode *N : NMD.operands())
1887       Record.push_back(VE.getMetadataID(N));
1888     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1889     Record.clear();
1890   }
1891 }
1892 
1893 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1894   auto Abbv = std::make_shared<BitCodeAbbrev>();
1895   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1896   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1897   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1898   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1899   return Stream.EmitAbbrev(std::move(Abbv));
1900 }
1901 
1902 /// Write out a record for MDString.
1903 ///
1904 /// All the metadata strings in a metadata block are emitted in a single
1905 /// record.  The sizes and strings themselves are shoved into a blob.
1906 void ModuleBitcodeWriter::writeMetadataStrings(
1907     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1908   if (Strings.empty())
1909     return;
1910 
1911   // Start the record with the number of strings.
1912   Record.push_back(bitc::METADATA_STRINGS);
1913   Record.push_back(Strings.size());
1914 
1915   // Emit the sizes of the strings in the blob.
1916   SmallString<256> Blob;
1917   {
1918     BitstreamWriter W(Blob);
1919     for (const Metadata *MD : Strings)
1920       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1921     W.FlushToWord();
1922   }
1923 
1924   // Add the offset to the strings to the record.
1925   Record.push_back(Blob.size());
1926 
1927   // Add the strings to the blob.
1928   for (const Metadata *MD : Strings)
1929     Blob.append(cast<MDString>(MD)->getString());
1930 
1931   // Emit the final record.
1932   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1933   Record.clear();
1934 }
1935 
1936 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1937 enum MetadataAbbrev : unsigned {
1938 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1939 #include "llvm/IR/Metadata.def"
1940   LastPlusOne
1941 };
1942 
1943 void ModuleBitcodeWriter::writeMetadataRecords(
1944     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
1945     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
1946   if (MDs.empty())
1947     return;
1948 
1949   // Initialize MDNode abbreviations.
1950 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1951 #include "llvm/IR/Metadata.def"
1952 
1953   for (const Metadata *MD : MDs) {
1954     if (IndexPos)
1955       IndexPos->push_back(Stream.GetCurrentBitNo());
1956     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1957       assert(N->isResolved() && "Expected forward references to be resolved");
1958 
1959       switch (N->getMetadataID()) {
1960       default:
1961         llvm_unreachable("Invalid MDNode subclass");
1962 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1963   case Metadata::CLASS##Kind:                                                  \
1964     if (MDAbbrevs)                                                             \
1965       write##CLASS(cast<CLASS>(N), Record,                                     \
1966                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1967     else                                                                       \
1968       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1969     continue;
1970 #include "llvm/IR/Metadata.def"
1971       }
1972     }
1973     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1974   }
1975 }
1976 
1977 void ModuleBitcodeWriter::writeModuleMetadata() {
1978   if (!VE.hasMDs() && M.named_metadata_empty())
1979     return;
1980 
1981   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1982   SmallVector<uint64_t, 64> Record;
1983 
1984   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1985   // block and load any metadata.
1986   std::vector<unsigned> MDAbbrevs;
1987 
1988   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1989   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1990   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1991       createGenericDINodeAbbrev();
1992 
1993   auto Abbv = std::make_shared<BitCodeAbbrev>();
1994   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
1995   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1996   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1997   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1998 
1999   Abbv = std::make_shared<BitCodeAbbrev>();
2000   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2001   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2002   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2003   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2004 
2005   // Emit MDStrings together upfront.
2006   writeMetadataStrings(VE.getMDStrings(), Record);
2007 
2008   // We only emit an index for the metadata record if we have more than a given
2009   // (naive) threshold of metadatas, otherwise it is not worth it.
2010   if (VE.getNonMDStrings().size() > IndexThreshold) {
2011     // Write a placeholder value in for the offset of the metadata index,
2012     // which is written after the records, so that it can include
2013     // the offset of each entry. The placeholder offset will be
2014     // updated after all records are emitted.
2015     uint64_t Vals[] = {0, 0};
2016     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2017   }
2018 
2019   // Compute and save the bit offset to the current position, which will be
2020   // patched when we emit the index later. We can simply subtract the 64-bit
2021   // fixed size from the current bit number to get the location to backpatch.
2022   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2023 
2024   // This index will contain the bitpos for each individual record.
2025   std::vector<uint64_t> IndexPos;
2026   IndexPos.reserve(VE.getNonMDStrings().size());
2027 
2028   // Write all the records
2029   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2030 
2031   if (VE.getNonMDStrings().size() > IndexThreshold) {
2032     // Now that we have emitted all the records we will emit the index. But
2033     // first
2034     // backpatch the forward reference so that the reader can skip the records
2035     // efficiently.
2036     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2037                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2038 
2039     // Delta encode the index.
2040     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2041     for (auto &Elt : IndexPos) {
2042       auto EltDelta = Elt - PreviousValue;
2043       PreviousValue = Elt;
2044       Elt = EltDelta;
2045     }
2046     // Emit the index record.
2047     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2048     IndexPos.clear();
2049   }
2050 
2051   // Write the named metadata now.
2052   writeNamedMetadata(Record);
2053 
2054   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2055     SmallVector<uint64_t, 4> Record;
2056     Record.push_back(VE.getValueID(&GO));
2057     pushGlobalMetadataAttachment(Record, GO);
2058     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2059   };
2060   for (const Function &F : M)
2061     if (F.isDeclaration() && F.hasMetadata())
2062       AddDeclAttachedMetadata(F);
2063   // FIXME: Only store metadata for declarations here, and move data for global
2064   // variable definitions to a separate block (PR28134).
2065   for (const GlobalVariable &GV : M.globals())
2066     if (GV.hasMetadata())
2067       AddDeclAttachedMetadata(GV);
2068 
2069   Stream.ExitBlock();
2070 }
2071 
2072 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2073   if (!VE.hasMDs())
2074     return;
2075 
2076   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2077   SmallVector<uint64_t, 64> Record;
2078   writeMetadataStrings(VE.getMDStrings(), Record);
2079   writeMetadataRecords(VE.getNonMDStrings(), Record);
2080   Stream.ExitBlock();
2081 }
2082 
2083 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2084     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2085   // [n x [id, mdnode]]
2086   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2087   GO.getAllMetadata(MDs);
2088   for (const auto &I : MDs) {
2089     Record.push_back(I.first);
2090     Record.push_back(VE.getMetadataID(I.second));
2091   }
2092 }
2093 
2094 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2095   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2096 
2097   SmallVector<uint64_t, 64> Record;
2098 
2099   if (F.hasMetadata()) {
2100     pushGlobalMetadataAttachment(Record, F);
2101     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2102     Record.clear();
2103   }
2104 
2105   // Write metadata attachments
2106   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2107   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2108   for (const BasicBlock &BB : F)
2109     for (const Instruction &I : BB) {
2110       MDs.clear();
2111       I.getAllMetadataOtherThanDebugLoc(MDs);
2112 
2113       // If no metadata, ignore instruction.
2114       if (MDs.empty()) continue;
2115 
2116       Record.push_back(VE.getInstructionID(&I));
2117 
2118       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2119         Record.push_back(MDs[i].first);
2120         Record.push_back(VE.getMetadataID(MDs[i].second));
2121       }
2122       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2123       Record.clear();
2124     }
2125 
2126   Stream.ExitBlock();
2127 }
2128 
2129 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2130   SmallVector<uint64_t, 64> Record;
2131 
2132   // Write metadata kinds
2133   // METADATA_KIND - [n x [id, name]]
2134   SmallVector<StringRef, 8> Names;
2135   M.getMDKindNames(Names);
2136 
2137   if (Names.empty()) return;
2138 
2139   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2140 
2141   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2142     Record.push_back(MDKindID);
2143     StringRef KName = Names[MDKindID];
2144     Record.append(KName.begin(), KName.end());
2145 
2146     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2147     Record.clear();
2148   }
2149 
2150   Stream.ExitBlock();
2151 }
2152 
2153 void ModuleBitcodeWriter::writeOperandBundleTags() {
2154   // Write metadata kinds
2155   //
2156   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2157   //
2158   // OPERAND_BUNDLE_TAG - [strchr x N]
2159 
2160   SmallVector<StringRef, 8> Tags;
2161   M.getOperandBundleTags(Tags);
2162 
2163   if (Tags.empty())
2164     return;
2165 
2166   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2167 
2168   SmallVector<uint64_t, 64> Record;
2169 
2170   for (auto Tag : Tags) {
2171     Record.append(Tag.begin(), Tag.end());
2172 
2173     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2174     Record.clear();
2175   }
2176 
2177   Stream.ExitBlock();
2178 }
2179 
2180 void ModuleBitcodeWriter::writeSyncScopeNames() {
2181   SmallVector<StringRef, 8> SSNs;
2182   M.getContext().getSyncScopeNames(SSNs);
2183   if (SSNs.empty())
2184     return;
2185 
2186   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2187 
2188   SmallVector<uint64_t, 64> Record;
2189   for (auto SSN : SSNs) {
2190     Record.append(SSN.begin(), SSN.end());
2191     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2192     Record.clear();
2193   }
2194 
2195   Stream.ExitBlock();
2196 }
2197 
2198 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2199   if ((int64_t)V >= 0)
2200     Vals.push_back(V << 1);
2201   else
2202     Vals.push_back((-V << 1) | 1);
2203 }
2204 
2205 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2206                                          bool isGlobal) {
2207   if (FirstVal == LastVal) return;
2208 
2209   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2210 
2211   unsigned AggregateAbbrev = 0;
2212   unsigned String8Abbrev = 0;
2213   unsigned CString7Abbrev = 0;
2214   unsigned CString6Abbrev = 0;
2215   // If this is a constant pool for the module, emit module-specific abbrevs.
2216   if (isGlobal) {
2217     // Abbrev for CST_CODE_AGGREGATE.
2218     auto Abbv = std::make_shared<BitCodeAbbrev>();
2219     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2220     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2221     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2222     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2223 
2224     // Abbrev for CST_CODE_STRING.
2225     Abbv = std::make_shared<BitCodeAbbrev>();
2226     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2227     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2228     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2229     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2230     // Abbrev for CST_CODE_CSTRING.
2231     Abbv = std::make_shared<BitCodeAbbrev>();
2232     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2233     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2234     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2235     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2236     // Abbrev for CST_CODE_CSTRING.
2237     Abbv = std::make_shared<BitCodeAbbrev>();
2238     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2239     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2240     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2241     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2242   }
2243 
2244   SmallVector<uint64_t, 64> Record;
2245 
2246   const ValueEnumerator::ValueList &Vals = VE.getValues();
2247   Type *LastTy = nullptr;
2248   for (unsigned i = FirstVal; i != LastVal; ++i) {
2249     const Value *V = Vals[i].first;
2250     // If we need to switch types, do so now.
2251     if (V->getType() != LastTy) {
2252       LastTy = V->getType();
2253       Record.push_back(VE.getTypeID(LastTy));
2254       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2255                         CONSTANTS_SETTYPE_ABBREV);
2256       Record.clear();
2257     }
2258 
2259     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2260       Record.push_back(unsigned(IA->hasSideEffects()) |
2261                        unsigned(IA->isAlignStack()) << 1 |
2262                        unsigned(IA->getDialect()&1) << 2);
2263 
2264       // Add the asm string.
2265       const std::string &AsmStr = IA->getAsmString();
2266       Record.push_back(AsmStr.size());
2267       Record.append(AsmStr.begin(), AsmStr.end());
2268 
2269       // Add the constraint string.
2270       const std::string &ConstraintStr = IA->getConstraintString();
2271       Record.push_back(ConstraintStr.size());
2272       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2273       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2274       Record.clear();
2275       continue;
2276     }
2277     const Constant *C = cast<Constant>(V);
2278     unsigned Code = -1U;
2279     unsigned AbbrevToUse = 0;
2280     if (C->isNullValue()) {
2281       Code = bitc::CST_CODE_NULL;
2282     } else if (isa<UndefValue>(C)) {
2283       Code = bitc::CST_CODE_UNDEF;
2284     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2285       if (IV->getBitWidth() <= 64) {
2286         uint64_t V = IV->getSExtValue();
2287         emitSignedInt64(Record, V);
2288         Code = bitc::CST_CODE_INTEGER;
2289         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2290       } else {                             // Wide integers, > 64 bits in size.
2291         // We have an arbitrary precision integer value to write whose
2292         // bit width is > 64. However, in canonical unsigned integer
2293         // format it is likely that the high bits are going to be zero.
2294         // So, we only write the number of active words.
2295         unsigned NWords = IV->getValue().getActiveWords();
2296         const uint64_t *RawWords = IV->getValue().getRawData();
2297         for (unsigned i = 0; i != NWords; ++i) {
2298           emitSignedInt64(Record, RawWords[i]);
2299         }
2300         Code = bitc::CST_CODE_WIDE_INTEGER;
2301       }
2302     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2303       Code = bitc::CST_CODE_FLOAT;
2304       Type *Ty = CFP->getType();
2305       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2306         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2307       } else if (Ty->isX86_FP80Ty()) {
2308         // api needed to prevent premature destruction
2309         // bits are not in the same order as a normal i80 APInt, compensate.
2310         APInt api = CFP->getValueAPF().bitcastToAPInt();
2311         const uint64_t *p = api.getRawData();
2312         Record.push_back((p[1] << 48) | (p[0] >> 16));
2313         Record.push_back(p[0] & 0xffffLL);
2314       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2315         APInt api = CFP->getValueAPF().bitcastToAPInt();
2316         const uint64_t *p = api.getRawData();
2317         Record.push_back(p[0]);
2318         Record.push_back(p[1]);
2319       } else {
2320         assert(0 && "Unknown FP type!");
2321       }
2322     } else if (isa<ConstantDataSequential>(C) &&
2323                cast<ConstantDataSequential>(C)->isString()) {
2324       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2325       // Emit constant strings specially.
2326       unsigned NumElts = Str->getNumElements();
2327       // If this is a null-terminated string, use the denser CSTRING encoding.
2328       if (Str->isCString()) {
2329         Code = bitc::CST_CODE_CSTRING;
2330         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2331       } else {
2332         Code = bitc::CST_CODE_STRING;
2333         AbbrevToUse = String8Abbrev;
2334       }
2335       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2336       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2337       for (unsigned i = 0; i != NumElts; ++i) {
2338         unsigned char V = Str->getElementAsInteger(i);
2339         Record.push_back(V);
2340         isCStr7 &= (V & 128) == 0;
2341         if (isCStrChar6)
2342           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2343       }
2344 
2345       if (isCStrChar6)
2346         AbbrevToUse = CString6Abbrev;
2347       else if (isCStr7)
2348         AbbrevToUse = CString7Abbrev;
2349     } else if (const ConstantDataSequential *CDS =
2350                   dyn_cast<ConstantDataSequential>(C)) {
2351       Code = bitc::CST_CODE_DATA;
2352       Type *EltTy = CDS->getType()->getElementType();
2353       if (isa<IntegerType>(EltTy)) {
2354         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2355           Record.push_back(CDS->getElementAsInteger(i));
2356       } else {
2357         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2358           Record.push_back(
2359               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2360       }
2361     } else if (isa<ConstantAggregate>(C)) {
2362       Code = bitc::CST_CODE_AGGREGATE;
2363       for (const Value *Op : C->operands())
2364         Record.push_back(VE.getValueID(Op));
2365       AbbrevToUse = AggregateAbbrev;
2366     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2367       switch (CE->getOpcode()) {
2368       default:
2369         if (Instruction::isCast(CE->getOpcode())) {
2370           Code = bitc::CST_CODE_CE_CAST;
2371           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2372           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2373           Record.push_back(VE.getValueID(C->getOperand(0)));
2374           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2375         } else {
2376           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2377           Code = bitc::CST_CODE_CE_BINOP;
2378           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2379           Record.push_back(VE.getValueID(C->getOperand(0)));
2380           Record.push_back(VE.getValueID(C->getOperand(1)));
2381           uint64_t Flags = getOptimizationFlags(CE);
2382           if (Flags != 0)
2383             Record.push_back(Flags);
2384         }
2385         break;
2386       case Instruction::GetElementPtr: {
2387         Code = bitc::CST_CODE_CE_GEP;
2388         const auto *GO = cast<GEPOperator>(C);
2389         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2390         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2391           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2392           Record.push_back((*Idx << 1) | GO->isInBounds());
2393         } else if (GO->isInBounds())
2394           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2395         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2396           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2397           Record.push_back(VE.getValueID(C->getOperand(i)));
2398         }
2399         break;
2400       }
2401       case Instruction::Select:
2402         Code = bitc::CST_CODE_CE_SELECT;
2403         Record.push_back(VE.getValueID(C->getOperand(0)));
2404         Record.push_back(VE.getValueID(C->getOperand(1)));
2405         Record.push_back(VE.getValueID(C->getOperand(2)));
2406         break;
2407       case Instruction::ExtractElement:
2408         Code = bitc::CST_CODE_CE_EXTRACTELT;
2409         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2410         Record.push_back(VE.getValueID(C->getOperand(0)));
2411         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2412         Record.push_back(VE.getValueID(C->getOperand(1)));
2413         break;
2414       case Instruction::InsertElement:
2415         Code = bitc::CST_CODE_CE_INSERTELT;
2416         Record.push_back(VE.getValueID(C->getOperand(0)));
2417         Record.push_back(VE.getValueID(C->getOperand(1)));
2418         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2419         Record.push_back(VE.getValueID(C->getOperand(2)));
2420         break;
2421       case Instruction::ShuffleVector:
2422         // If the return type and argument types are the same, this is a
2423         // standard shufflevector instruction.  If the types are different,
2424         // then the shuffle is widening or truncating the input vectors, and
2425         // the argument type must also be encoded.
2426         if (C->getType() == C->getOperand(0)->getType()) {
2427           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2428         } else {
2429           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2430           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2431         }
2432         Record.push_back(VE.getValueID(C->getOperand(0)));
2433         Record.push_back(VE.getValueID(C->getOperand(1)));
2434         Record.push_back(VE.getValueID(C->getOperand(2)));
2435         break;
2436       case Instruction::ICmp:
2437       case Instruction::FCmp:
2438         Code = bitc::CST_CODE_CE_CMP;
2439         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2440         Record.push_back(VE.getValueID(C->getOperand(0)));
2441         Record.push_back(VE.getValueID(C->getOperand(1)));
2442         Record.push_back(CE->getPredicate());
2443         break;
2444       }
2445     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2446       Code = bitc::CST_CODE_BLOCKADDRESS;
2447       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2448       Record.push_back(VE.getValueID(BA->getFunction()));
2449       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2450     } else {
2451 #ifndef NDEBUG
2452       C->dump();
2453 #endif
2454       llvm_unreachable("Unknown constant!");
2455     }
2456     Stream.EmitRecord(Code, Record, AbbrevToUse);
2457     Record.clear();
2458   }
2459 
2460   Stream.ExitBlock();
2461 }
2462 
2463 void ModuleBitcodeWriter::writeModuleConstants() {
2464   const ValueEnumerator::ValueList &Vals = VE.getValues();
2465 
2466   // Find the first constant to emit, which is the first non-globalvalue value.
2467   // We know globalvalues have been emitted by WriteModuleInfo.
2468   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2469     if (!isa<GlobalValue>(Vals[i].first)) {
2470       writeConstants(i, Vals.size(), true);
2471       return;
2472     }
2473   }
2474 }
2475 
2476 /// pushValueAndType - The file has to encode both the value and type id for
2477 /// many values, because we need to know what type to create for forward
2478 /// references.  However, most operands are not forward references, so this type
2479 /// field is not needed.
2480 ///
2481 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2482 /// instruction ID, then it is a forward reference, and it also includes the
2483 /// type ID.  The value ID that is written is encoded relative to the InstID.
2484 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2485                                            SmallVectorImpl<unsigned> &Vals) {
2486   unsigned ValID = VE.getValueID(V);
2487   // Make encoding relative to the InstID.
2488   Vals.push_back(InstID - ValID);
2489   if (ValID >= InstID) {
2490     Vals.push_back(VE.getTypeID(V->getType()));
2491     return true;
2492   }
2493   return false;
2494 }
2495 
2496 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2497                                               unsigned InstID) {
2498   SmallVector<unsigned, 64> Record;
2499   LLVMContext &C = CS.getInstruction()->getContext();
2500 
2501   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2502     const auto &Bundle = CS.getOperandBundleAt(i);
2503     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2504 
2505     for (auto &Input : Bundle.Inputs)
2506       pushValueAndType(Input, InstID, Record);
2507 
2508     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2509     Record.clear();
2510   }
2511 }
2512 
2513 /// pushValue - Like pushValueAndType, but where the type of the value is
2514 /// omitted (perhaps it was already encoded in an earlier operand).
2515 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2516                                     SmallVectorImpl<unsigned> &Vals) {
2517   unsigned ValID = VE.getValueID(V);
2518   Vals.push_back(InstID - ValID);
2519 }
2520 
2521 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2522                                           SmallVectorImpl<uint64_t> &Vals) {
2523   unsigned ValID = VE.getValueID(V);
2524   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2525   emitSignedInt64(Vals, diff);
2526 }
2527 
2528 /// WriteInstruction - Emit an instruction to the specified stream.
2529 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2530                                            unsigned InstID,
2531                                            SmallVectorImpl<unsigned> &Vals) {
2532   unsigned Code = 0;
2533   unsigned AbbrevToUse = 0;
2534   VE.setInstructionID(&I);
2535   switch (I.getOpcode()) {
2536   default:
2537     if (Instruction::isCast(I.getOpcode())) {
2538       Code = bitc::FUNC_CODE_INST_CAST;
2539       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2540         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2541       Vals.push_back(VE.getTypeID(I.getType()));
2542       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2543     } else {
2544       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2545       Code = bitc::FUNC_CODE_INST_BINOP;
2546       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2547         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2548       pushValue(I.getOperand(1), InstID, Vals);
2549       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2550       uint64_t Flags = getOptimizationFlags(&I);
2551       if (Flags != 0) {
2552         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2553           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2554         Vals.push_back(Flags);
2555       }
2556     }
2557     break;
2558 
2559   case Instruction::GetElementPtr: {
2560     Code = bitc::FUNC_CODE_INST_GEP;
2561     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2562     auto &GEPInst = cast<GetElementPtrInst>(I);
2563     Vals.push_back(GEPInst.isInBounds());
2564     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2565     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2566       pushValueAndType(I.getOperand(i), InstID, Vals);
2567     break;
2568   }
2569   case Instruction::ExtractValue: {
2570     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2571     pushValueAndType(I.getOperand(0), InstID, Vals);
2572     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2573     Vals.append(EVI->idx_begin(), EVI->idx_end());
2574     break;
2575   }
2576   case Instruction::InsertValue: {
2577     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2578     pushValueAndType(I.getOperand(0), InstID, Vals);
2579     pushValueAndType(I.getOperand(1), InstID, Vals);
2580     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2581     Vals.append(IVI->idx_begin(), IVI->idx_end());
2582     break;
2583   }
2584   case Instruction::Select:
2585     Code = bitc::FUNC_CODE_INST_VSELECT;
2586     pushValueAndType(I.getOperand(1), InstID, Vals);
2587     pushValue(I.getOperand(2), InstID, Vals);
2588     pushValueAndType(I.getOperand(0), InstID, Vals);
2589     break;
2590   case Instruction::ExtractElement:
2591     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2592     pushValueAndType(I.getOperand(0), InstID, Vals);
2593     pushValueAndType(I.getOperand(1), InstID, Vals);
2594     break;
2595   case Instruction::InsertElement:
2596     Code = bitc::FUNC_CODE_INST_INSERTELT;
2597     pushValueAndType(I.getOperand(0), InstID, Vals);
2598     pushValue(I.getOperand(1), InstID, Vals);
2599     pushValueAndType(I.getOperand(2), InstID, Vals);
2600     break;
2601   case Instruction::ShuffleVector:
2602     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2603     pushValueAndType(I.getOperand(0), InstID, Vals);
2604     pushValue(I.getOperand(1), InstID, Vals);
2605     pushValue(I.getOperand(2), InstID, Vals);
2606     break;
2607   case Instruction::ICmp:
2608   case Instruction::FCmp: {
2609     // compare returning Int1Ty or vector of Int1Ty
2610     Code = bitc::FUNC_CODE_INST_CMP2;
2611     pushValueAndType(I.getOperand(0), InstID, Vals);
2612     pushValue(I.getOperand(1), InstID, Vals);
2613     Vals.push_back(cast<CmpInst>(I).getPredicate());
2614     uint64_t Flags = getOptimizationFlags(&I);
2615     if (Flags != 0)
2616       Vals.push_back(Flags);
2617     break;
2618   }
2619 
2620   case Instruction::Ret:
2621     {
2622       Code = bitc::FUNC_CODE_INST_RET;
2623       unsigned NumOperands = I.getNumOperands();
2624       if (NumOperands == 0)
2625         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2626       else if (NumOperands == 1) {
2627         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2628           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2629       } else {
2630         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2631           pushValueAndType(I.getOperand(i), InstID, Vals);
2632       }
2633     }
2634     break;
2635   case Instruction::Br:
2636     {
2637       Code = bitc::FUNC_CODE_INST_BR;
2638       const BranchInst &II = cast<BranchInst>(I);
2639       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2640       if (II.isConditional()) {
2641         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2642         pushValue(II.getCondition(), InstID, Vals);
2643       }
2644     }
2645     break;
2646   case Instruction::Switch:
2647     {
2648       Code = bitc::FUNC_CODE_INST_SWITCH;
2649       const SwitchInst &SI = cast<SwitchInst>(I);
2650       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2651       pushValue(SI.getCondition(), InstID, Vals);
2652       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2653       for (auto Case : SI.cases()) {
2654         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2655         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2656       }
2657     }
2658     break;
2659   case Instruction::IndirectBr:
2660     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2661     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2662     // Encode the address operand as relative, but not the basic blocks.
2663     pushValue(I.getOperand(0), InstID, Vals);
2664     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2665       Vals.push_back(VE.getValueID(I.getOperand(i)));
2666     break;
2667 
2668   case Instruction::Invoke: {
2669     const InvokeInst *II = cast<InvokeInst>(&I);
2670     const Value *Callee = II->getCalledValue();
2671     FunctionType *FTy = II->getFunctionType();
2672 
2673     if (II->hasOperandBundles())
2674       writeOperandBundles(II, InstID);
2675 
2676     Code = bitc::FUNC_CODE_INST_INVOKE;
2677 
2678     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2679     Vals.push_back(II->getCallingConv() | 1 << 13);
2680     Vals.push_back(VE.getValueID(II->getNormalDest()));
2681     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2682     Vals.push_back(VE.getTypeID(FTy));
2683     pushValueAndType(Callee, InstID, Vals);
2684 
2685     // Emit value #'s for the fixed parameters.
2686     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2687       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2688 
2689     // Emit type/value pairs for varargs params.
2690     if (FTy->isVarArg()) {
2691       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2692            i != e; ++i)
2693         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2694     }
2695     break;
2696   }
2697   case Instruction::Resume:
2698     Code = bitc::FUNC_CODE_INST_RESUME;
2699     pushValueAndType(I.getOperand(0), InstID, Vals);
2700     break;
2701   case Instruction::CleanupRet: {
2702     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2703     const auto &CRI = cast<CleanupReturnInst>(I);
2704     pushValue(CRI.getCleanupPad(), InstID, Vals);
2705     if (CRI.hasUnwindDest())
2706       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2707     break;
2708   }
2709   case Instruction::CatchRet: {
2710     Code = bitc::FUNC_CODE_INST_CATCHRET;
2711     const auto &CRI = cast<CatchReturnInst>(I);
2712     pushValue(CRI.getCatchPad(), InstID, Vals);
2713     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2714     break;
2715   }
2716   case Instruction::CleanupPad:
2717   case Instruction::CatchPad: {
2718     const auto &FuncletPad = cast<FuncletPadInst>(I);
2719     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2720                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2721     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2722 
2723     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2724     Vals.push_back(NumArgOperands);
2725     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2726       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2727     break;
2728   }
2729   case Instruction::CatchSwitch: {
2730     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2731     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2732 
2733     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2734 
2735     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2736     Vals.push_back(NumHandlers);
2737     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2738       Vals.push_back(VE.getValueID(CatchPadBB));
2739 
2740     if (CatchSwitch.hasUnwindDest())
2741       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2742     break;
2743   }
2744   case Instruction::Unreachable:
2745     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2746     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2747     break;
2748 
2749   case Instruction::PHI: {
2750     const PHINode &PN = cast<PHINode>(I);
2751     Code = bitc::FUNC_CODE_INST_PHI;
2752     // With the newer instruction encoding, forward references could give
2753     // negative valued IDs.  This is most common for PHIs, so we use
2754     // signed VBRs.
2755     SmallVector<uint64_t, 128> Vals64;
2756     Vals64.push_back(VE.getTypeID(PN.getType()));
2757     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2758       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2759       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2760     }
2761     // Emit a Vals64 vector and exit.
2762     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2763     Vals64.clear();
2764     return;
2765   }
2766 
2767   case Instruction::LandingPad: {
2768     const LandingPadInst &LP = cast<LandingPadInst>(I);
2769     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2770     Vals.push_back(VE.getTypeID(LP.getType()));
2771     Vals.push_back(LP.isCleanup());
2772     Vals.push_back(LP.getNumClauses());
2773     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2774       if (LP.isCatch(I))
2775         Vals.push_back(LandingPadInst::Catch);
2776       else
2777         Vals.push_back(LandingPadInst::Filter);
2778       pushValueAndType(LP.getClause(I), InstID, Vals);
2779     }
2780     break;
2781   }
2782 
2783   case Instruction::Alloca: {
2784     Code = bitc::FUNC_CODE_INST_ALLOCA;
2785     const AllocaInst &AI = cast<AllocaInst>(I);
2786     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2787     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2788     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2789     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2790     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2791            "not enough bits for maximum alignment");
2792     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2793     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2794     AlignRecord |= 1 << 6;
2795     AlignRecord |= AI.isSwiftError() << 7;
2796     Vals.push_back(AlignRecord);
2797     break;
2798   }
2799 
2800   case Instruction::Load:
2801     if (cast<LoadInst>(I).isAtomic()) {
2802       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2803       pushValueAndType(I.getOperand(0), InstID, Vals);
2804     } else {
2805       Code = bitc::FUNC_CODE_INST_LOAD;
2806       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2807         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2808     }
2809     Vals.push_back(VE.getTypeID(I.getType()));
2810     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2811     Vals.push_back(cast<LoadInst>(I).isVolatile());
2812     if (cast<LoadInst>(I).isAtomic()) {
2813       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2814       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2815     }
2816     break;
2817   case Instruction::Store:
2818     if (cast<StoreInst>(I).isAtomic())
2819       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2820     else
2821       Code = bitc::FUNC_CODE_INST_STORE;
2822     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2823     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2824     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2825     Vals.push_back(cast<StoreInst>(I).isVolatile());
2826     if (cast<StoreInst>(I).isAtomic()) {
2827       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2828       Vals.push_back(
2829           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2830     }
2831     break;
2832   case Instruction::AtomicCmpXchg:
2833     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2834     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2835     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2836     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2837     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2838     Vals.push_back(
2839         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2840     Vals.push_back(
2841         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2842     Vals.push_back(
2843         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2844     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2845     break;
2846   case Instruction::AtomicRMW:
2847     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2848     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2849     pushValue(I.getOperand(1), InstID, Vals);        // val.
2850     Vals.push_back(
2851         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2852     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2853     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2854     Vals.push_back(
2855         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2856     break;
2857   case Instruction::Fence:
2858     Code = bitc::FUNC_CODE_INST_FENCE;
2859     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2860     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2861     break;
2862   case Instruction::Call: {
2863     const CallInst &CI = cast<CallInst>(I);
2864     FunctionType *FTy = CI.getFunctionType();
2865 
2866     if (CI.hasOperandBundles())
2867       writeOperandBundles(&CI, InstID);
2868 
2869     Code = bitc::FUNC_CODE_INST_CALL;
2870 
2871     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2872 
2873     unsigned Flags = getOptimizationFlags(&I);
2874     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2875                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2876                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2877                    1 << bitc::CALL_EXPLICIT_TYPE |
2878                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2879                    unsigned(Flags != 0) << bitc::CALL_FMF);
2880     if (Flags != 0)
2881       Vals.push_back(Flags);
2882 
2883     Vals.push_back(VE.getTypeID(FTy));
2884     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2885 
2886     // Emit value #'s for the fixed parameters.
2887     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2888       // Check for labels (can happen with asm labels).
2889       if (FTy->getParamType(i)->isLabelTy())
2890         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2891       else
2892         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2893     }
2894 
2895     // Emit type/value pairs for varargs params.
2896     if (FTy->isVarArg()) {
2897       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2898            i != e; ++i)
2899         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2900     }
2901     break;
2902   }
2903   case Instruction::VAArg:
2904     Code = bitc::FUNC_CODE_INST_VAARG;
2905     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2906     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2907     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2908     break;
2909   }
2910 
2911   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2912   Vals.clear();
2913 }
2914 
2915 /// Write a GlobalValue VST to the module. The purpose of this data structure is
2916 /// to allow clients to efficiently find the function body.
2917 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
2918   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2919   // Get the offset of the VST we are writing, and backpatch it into
2920   // the VST forward declaration record.
2921   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2922   // The BitcodeStartBit was the stream offset of the identification block.
2923   VSTOffset -= bitcodeStartBit();
2924   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2925   // Note that we add 1 here because the offset is relative to one word
2926   // before the start of the identification block, which was historically
2927   // always the start of the regular bitcode header.
2928   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
2929 
2930   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2931 
2932   auto Abbv = std::make_shared<BitCodeAbbrev>();
2933   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2934   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2935   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2936   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2937 
2938   for (const Function &F : M) {
2939     uint64_t Record[2];
2940 
2941     if (F.isDeclaration())
2942       continue;
2943 
2944     Record[0] = VE.getValueID(&F);
2945 
2946     // Save the word offset of the function (from the start of the
2947     // actual bitcode written to the stream).
2948     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
2949     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2950     // Note that we add 1 here because the offset is relative to one word
2951     // before the start of the identification block, which was historically
2952     // always the start of the regular bitcode header.
2953     Record[1] = BitcodeIndex / 32 + 1;
2954 
2955     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
2956   }
2957 
2958   Stream.ExitBlock();
2959 }
2960 
2961 /// Emit names for arguments, instructions and basic blocks in a function.
2962 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
2963     const ValueSymbolTable &VST) {
2964   if (VST.empty())
2965     return;
2966 
2967   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2968 
2969   // FIXME: Set up the abbrev, we know how many values there are!
2970   // FIXME: We know if the type names can use 7-bit ascii.
2971   SmallVector<uint64_t, 64> NameVals;
2972 
2973   for (const ValueName &Name : VST) {
2974     // Figure out the encoding to use for the name.
2975     StringEncoding Bits = getStringEncoding(Name.getKey());
2976 
2977     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2978     NameVals.push_back(VE.getValueID(Name.getValue()));
2979 
2980     // VST_CODE_ENTRY:   [valueid, namechar x N]
2981     // VST_CODE_BBENTRY: [bbid, namechar x N]
2982     unsigned Code;
2983     if (isa<BasicBlock>(Name.getValue())) {
2984       Code = bitc::VST_CODE_BBENTRY;
2985       if (Bits == SE_Char6)
2986         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2987     } else {
2988       Code = bitc::VST_CODE_ENTRY;
2989       if (Bits == SE_Char6)
2990         AbbrevToUse = VST_ENTRY_6_ABBREV;
2991       else if (Bits == SE_Fixed7)
2992         AbbrevToUse = VST_ENTRY_7_ABBREV;
2993     }
2994 
2995     for (const auto P : Name.getKey())
2996       NameVals.push_back((unsigned char)P);
2997 
2998     // Emit the finished record.
2999     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3000     NameVals.clear();
3001   }
3002 
3003   Stream.ExitBlock();
3004 }
3005 
3006 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3007   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3008   unsigned Code;
3009   if (isa<BasicBlock>(Order.V))
3010     Code = bitc::USELIST_CODE_BB;
3011   else
3012     Code = bitc::USELIST_CODE_DEFAULT;
3013 
3014   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3015   Record.push_back(VE.getValueID(Order.V));
3016   Stream.EmitRecord(Code, Record);
3017 }
3018 
3019 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3020   assert(VE.shouldPreserveUseListOrder() &&
3021          "Expected to be preserving use-list order");
3022 
3023   auto hasMore = [&]() {
3024     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3025   };
3026   if (!hasMore())
3027     // Nothing to do.
3028     return;
3029 
3030   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3031   while (hasMore()) {
3032     writeUseList(std::move(VE.UseListOrders.back()));
3033     VE.UseListOrders.pop_back();
3034   }
3035   Stream.ExitBlock();
3036 }
3037 
3038 /// Emit a function body to the module stream.
3039 void ModuleBitcodeWriter::writeFunction(
3040     const Function &F,
3041     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3042   // Save the bitcode index of the start of this function block for recording
3043   // in the VST.
3044   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3045 
3046   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3047   VE.incorporateFunction(F);
3048 
3049   SmallVector<unsigned, 64> Vals;
3050 
3051   // Emit the number of basic blocks, so the reader can create them ahead of
3052   // time.
3053   Vals.push_back(VE.getBasicBlocks().size());
3054   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3055   Vals.clear();
3056 
3057   // If there are function-local constants, emit them now.
3058   unsigned CstStart, CstEnd;
3059   VE.getFunctionConstantRange(CstStart, CstEnd);
3060   writeConstants(CstStart, CstEnd, false);
3061 
3062   // If there is function-local metadata, emit it now.
3063   writeFunctionMetadata(F);
3064 
3065   // Keep a running idea of what the instruction ID is.
3066   unsigned InstID = CstEnd;
3067 
3068   bool NeedsMetadataAttachment = F.hasMetadata();
3069 
3070   DILocation *LastDL = nullptr;
3071   // Finally, emit all the instructions, in order.
3072   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3073     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3074          I != E; ++I) {
3075       writeInstruction(*I, InstID, Vals);
3076 
3077       if (!I->getType()->isVoidTy())
3078         ++InstID;
3079 
3080       // If the instruction has metadata, write a metadata attachment later.
3081       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3082 
3083       // If the instruction has a debug location, emit it.
3084       DILocation *DL = I->getDebugLoc();
3085       if (!DL)
3086         continue;
3087 
3088       if (DL == LastDL) {
3089         // Just repeat the same debug loc as last time.
3090         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3091         continue;
3092       }
3093 
3094       Vals.push_back(DL->getLine());
3095       Vals.push_back(DL->getColumn());
3096       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3097       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3098       Vals.push_back(DL->isImplicitCode());
3099       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3100       Vals.clear();
3101 
3102       LastDL = DL;
3103     }
3104 
3105   // Emit names for all the instructions etc.
3106   if (auto *Symtab = F.getValueSymbolTable())
3107     writeFunctionLevelValueSymbolTable(*Symtab);
3108 
3109   if (NeedsMetadataAttachment)
3110     writeFunctionMetadataAttachment(F);
3111   if (VE.shouldPreserveUseListOrder())
3112     writeUseListBlock(&F);
3113   VE.purgeFunction();
3114   Stream.ExitBlock();
3115 }
3116 
3117 // Emit blockinfo, which defines the standard abbreviations etc.
3118 void ModuleBitcodeWriter::writeBlockInfo() {
3119   // We only want to emit block info records for blocks that have multiple
3120   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3121   // Other blocks can define their abbrevs inline.
3122   Stream.EnterBlockInfoBlock();
3123 
3124   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3125     auto Abbv = std::make_shared<BitCodeAbbrev>();
3126     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3127     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3128     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3129     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3130     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3131         VST_ENTRY_8_ABBREV)
3132       llvm_unreachable("Unexpected abbrev ordering!");
3133   }
3134 
3135   { // 7-bit fixed width VST_CODE_ENTRY strings.
3136     auto Abbv = std::make_shared<BitCodeAbbrev>();
3137     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3138     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3139     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3140     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3141     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3142         VST_ENTRY_7_ABBREV)
3143       llvm_unreachable("Unexpected abbrev ordering!");
3144   }
3145   { // 6-bit char6 VST_CODE_ENTRY strings.
3146     auto Abbv = std::make_shared<BitCodeAbbrev>();
3147     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3148     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3149     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3150     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3151     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3152         VST_ENTRY_6_ABBREV)
3153       llvm_unreachable("Unexpected abbrev ordering!");
3154   }
3155   { // 6-bit char6 VST_CODE_BBENTRY strings.
3156     auto Abbv = std::make_shared<BitCodeAbbrev>();
3157     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3158     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3159     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3160     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3161     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3162         VST_BBENTRY_6_ABBREV)
3163       llvm_unreachable("Unexpected abbrev ordering!");
3164   }
3165 
3166   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3167     auto Abbv = std::make_shared<BitCodeAbbrev>();
3168     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3169     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3170                               VE.computeBitsRequiredForTypeIndicies()));
3171     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3172         CONSTANTS_SETTYPE_ABBREV)
3173       llvm_unreachable("Unexpected abbrev ordering!");
3174   }
3175 
3176   { // INTEGER abbrev for CONSTANTS_BLOCK.
3177     auto Abbv = std::make_shared<BitCodeAbbrev>();
3178     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3179     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3180     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3181         CONSTANTS_INTEGER_ABBREV)
3182       llvm_unreachable("Unexpected abbrev ordering!");
3183   }
3184 
3185   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3186     auto Abbv = std::make_shared<BitCodeAbbrev>();
3187     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3188     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3189     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3190                               VE.computeBitsRequiredForTypeIndicies()));
3191     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3192 
3193     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3194         CONSTANTS_CE_CAST_Abbrev)
3195       llvm_unreachable("Unexpected abbrev ordering!");
3196   }
3197   { // NULL abbrev for CONSTANTS_BLOCK.
3198     auto Abbv = std::make_shared<BitCodeAbbrev>();
3199     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3200     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3201         CONSTANTS_NULL_Abbrev)
3202       llvm_unreachable("Unexpected abbrev ordering!");
3203   }
3204 
3205   // FIXME: This should only use space for first class types!
3206 
3207   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3208     auto Abbv = std::make_shared<BitCodeAbbrev>();
3209     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3210     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3211     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3212                               VE.computeBitsRequiredForTypeIndicies()));
3213     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3214     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3215     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3216         FUNCTION_INST_LOAD_ABBREV)
3217       llvm_unreachable("Unexpected abbrev ordering!");
3218   }
3219   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3220     auto Abbv = std::make_shared<BitCodeAbbrev>();
3221     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3222     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3223     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3224     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3225     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3226         FUNCTION_INST_BINOP_ABBREV)
3227       llvm_unreachable("Unexpected abbrev ordering!");
3228   }
3229   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3230     auto Abbv = std::make_shared<BitCodeAbbrev>();
3231     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3232     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3233     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3234     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3235     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3236     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3237         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3238       llvm_unreachable("Unexpected abbrev ordering!");
3239   }
3240   { // INST_CAST abbrev for FUNCTION_BLOCK.
3241     auto Abbv = std::make_shared<BitCodeAbbrev>();
3242     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3243     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3244     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3245                               VE.computeBitsRequiredForTypeIndicies()));
3246     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3247     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3248         FUNCTION_INST_CAST_ABBREV)
3249       llvm_unreachable("Unexpected abbrev ordering!");
3250   }
3251 
3252   { // INST_RET abbrev for FUNCTION_BLOCK.
3253     auto Abbv = std::make_shared<BitCodeAbbrev>();
3254     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3255     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3256         FUNCTION_INST_RET_VOID_ABBREV)
3257       llvm_unreachable("Unexpected abbrev ordering!");
3258   }
3259   { // INST_RET abbrev for FUNCTION_BLOCK.
3260     auto Abbv = std::make_shared<BitCodeAbbrev>();
3261     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3262     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3263     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3264         FUNCTION_INST_RET_VAL_ABBREV)
3265       llvm_unreachable("Unexpected abbrev ordering!");
3266   }
3267   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3268     auto Abbv = std::make_shared<BitCodeAbbrev>();
3269     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3270     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3271         FUNCTION_INST_UNREACHABLE_ABBREV)
3272       llvm_unreachable("Unexpected abbrev ordering!");
3273   }
3274   {
3275     auto Abbv = std::make_shared<BitCodeAbbrev>();
3276     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3277     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3278     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3279                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3280     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3281     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3282     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3283         FUNCTION_INST_GEP_ABBREV)
3284       llvm_unreachable("Unexpected abbrev ordering!");
3285   }
3286 
3287   Stream.ExitBlock();
3288 }
3289 
3290 /// Write the module path strings, currently only used when generating
3291 /// a combined index file.
3292 void IndexBitcodeWriter::writeModStrings() {
3293   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3294 
3295   // TODO: See which abbrev sizes we actually need to emit
3296 
3297   // 8-bit fixed-width MST_ENTRY strings.
3298   auto Abbv = std::make_shared<BitCodeAbbrev>();
3299   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3300   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3301   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3302   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3303   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3304 
3305   // 7-bit fixed width MST_ENTRY strings.
3306   Abbv = std::make_shared<BitCodeAbbrev>();
3307   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3308   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3309   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3310   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3311   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3312 
3313   // 6-bit char6 MST_ENTRY strings.
3314   Abbv = std::make_shared<BitCodeAbbrev>();
3315   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3316   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3317   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3318   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3319   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3320 
3321   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3322   Abbv = std::make_shared<BitCodeAbbrev>();
3323   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3324   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3325   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3326   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3327   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3328   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3329   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3330 
3331   SmallVector<unsigned, 64> Vals;
3332   forEachModule(
3333       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3334         StringRef Key = MPSE.getKey();
3335         const auto &Value = MPSE.getValue();
3336         StringEncoding Bits = getStringEncoding(Key);
3337         unsigned AbbrevToUse = Abbrev8Bit;
3338         if (Bits == SE_Char6)
3339           AbbrevToUse = Abbrev6Bit;
3340         else if (Bits == SE_Fixed7)
3341           AbbrevToUse = Abbrev7Bit;
3342 
3343         Vals.push_back(Value.first);
3344         Vals.append(Key.begin(), Key.end());
3345 
3346         // Emit the finished record.
3347         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3348 
3349         // Emit an optional hash for the module now
3350         const auto &Hash = Value.second;
3351         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3352           Vals.assign(Hash.begin(), Hash.end());
3353           // Emit the hash record.
3354           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3355         }
3356 
3357         Vals.clear();
3358       });
3359   Stream.ExitBlock();
3360 }
3361 
3362 /// Write the function type metadata related records that need to appear before
3363 /// a function summary entry (whether per-module or combined).
3364 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3365                                              FunctionSummary *FS) {
3366   if (!FS->type_tests().empty())
3367     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3368 
3369   SmallVector<uint64_t, 64> Record;
3370 
3371   auto WriteVFuncIdVec = [&](uint64_t Ty,
3372                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3373     if (VFs.empty())
3374       return;
3375     Record.clear();
3376     for (auto &VF : VFs) {
3377       Record.push_back(VF.GUID);
3378       Record.push_back(VF.Offset);
3379     }
3380     Stream.EmitRecord(Ty, Record);
3381   };
3382 
3383   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3384                   FS->type_test_assume_vcalls());
3385   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3386                   FS->type_checked_load_vcalls());
3387 
3388   auto WriteConstVCallVec = [&](uint64_t Ty,
3389                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3390     for (auto &VC : VCs) {
3391       Record.clear();
3392       Record.push_back(VC.VFunc.GUID);
3393       Record.push_back(VC.VFunc.Offset);
3394       Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3395       Stream.EmitRecord(Ty, Record);
3396     }
3397   };
3398 
3399   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3400                      FS->type_test_assume_const_vcalls());
3401   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3402                      FS->type_checked_load_const_vcalls());
3403 }
3404 
3405 /// Collect type IDs from type tests used by function.
3406 static void
3407 getReferencedTypeIds(FunctionSummary *FS,
3408                      std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3409   if (!FS->type_tests().empty())
3410     for (auto &TT : FS->type_tests())
3411       ReferencedTypeIds.insert(TT);
3412 
3413   auto GetReferencedTypesFromVFuncIdVec =
3414       [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3415         for (auto &VF : VFs)
3416           ReferencedTypeIds.insert(VF.GUID);
3417       };
3418 
3419   GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3420   GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3421 
3422   auto GetReferencedTypesFromConstVCallVec =
3423       [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3424         for (auto &VC : VCs)
3425           ReferencedTypeIds.insert(VC.VFunc.GUID);
3426       };
3427 
3428   GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3429   GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3430 }
3431 
3432 static void writeWholeProgramDevirtResolutionByArg(
3433     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3434     const WholeProgramDevirtResolution::ByArg &ByArg) {
3435   NameVals.push_back(args.size());
3436   NameVals.insert(NameVals.end(), args.begin(), args.end());
3437 
3438   NameVals.push_back(ByArg.TheKind);
3439   NameVals.push_back(ByArg.Info);
3440   NameVals.push_back(ByArg.Byte);
3441   NameVals.push_back(ByArg.Bit);
3442 }
3443 
3444 static void writeWholeProgramDevirtResolution(
3445     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3446     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3447   NameVals.push_back(Id);
3448 
3449   NameVals.push_back(Wpd.TheKind);
3450   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3451   NameVals.push_back(Wpd.SingleImplName.size());
3452 
3453   NameVals.push_back(Wpd.ResByArg.size());
3454   for (auto &A : Wpd.ResByArg)
3455     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3456 }
3457 
3458 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3459                                      StringTableBuilder &StrtabBuilder,
3460                                      const std::string &Id,
3461                                      const TypeIdSummary &Summary) {
3462   NameVals.push_back(StrtabBuilder.add(Id));
3463   NameVals.push_back(Id.size());
3464 
3465   NameVals.push_back(Summary.TTRes.TheKind);
3466   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3467   NameVals.push_back(Summary.TTRes.AlignLog2);
3468   NameVals.push_back(Summary.TTRes.SizeM1);
3469   NameVals.push_back(Summary.TTRes.BitMask);
3470   NameVals.push_back(Summary.TTRes.InlineBits);
3471 
3472   for (auto &W : Summary.WPDRes)
3473     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3474                                       W.second);
3475 }
3476 
3477 // Helper to emit a single function summary record.
3478 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3479     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3480     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3481     const Function &F) {
3482   NameVals.push_back(ValueID);
3483 
3484   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3485   writeFunctionTypeMetadataRecords(Stream, FS);
3486 
3487   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3488   NameVals.push_back(FS->instCount());
3489   NameVals.push_back(getEncodedFFlags(FS->fflags()));
3490   NameVals.push_back(FS->refs().size());
3491 
3492   for (auto &RI : FS->refs())
3493     NameVals.push_back(VE.getValueID(RI.getValue()));
3494 
3495   bool HasProfileData =
3496       F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3497   for (auto &ECI : FS->calls()) {
3498     NameVals.push_back(getValueId(ECI.first));
3499     if (HasProfileData)
3500       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3501     else if (WriteRelBFToSummary)
3502       NameVals.push_back(ECI.second.RelBlockFreq);
3503   }
3504 
3505   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3506   unsigned Code =
3507       (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3508                       : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3509                                              : bitc::FS_PERMODULE));
3510 
3511   // Emit the finished record.
3512   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3513   NameVals.clear();
3514 }
3515 
3516 // Collect the global value references in the given variable's initializer,
3517 // and emit them in a summary record.
3518 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3519     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3520     unsigned FSModRefsAbbrev) {
3521   auto VI = Index->getValueInfo(V.getGUID());
3522   if (!VI || VI.getSummaryList().empty()) {
3523     // Only declarations should not have a summary (a declaration might however
3524     // have a summary if the def was in module level asm).
3525     assert(V.isDeclaration());
3526     return;
3527   }
3528   auto *Summary = VI.getSummaryList()[0].get();
3529   NameVals.push_back(VE.getValueID(&V));
3530   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3531   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3532 
3533   unsigned SizeBeforeRefs = NameVals.size();
3534   for (auto &RI : VS->refs())
3535     NameVals.push_back(VE.getValueID(RI.getValue()));
3536   // Sort the refs for determinism output, the vector returned by FS->refs() has
3537   // been initialized from a DenseSet.
3538   llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3539 
3540   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3541                     FSModRefsAbbrev);
3542   NameVals.clear();
3543 }
3544 
3545 // Current version for the summary.
3546 // This is bumped whenever we introduce changes in the way some record are
3547 // interpreted, like flags for instance.
3548 static const uint64_t INDEX_VERSION = 4;
3549 
3550 /// Emit the per-module summary section alongside the rest of
3551 /// the module's bitcode.
3552 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3553   // By default we compile with ThinLTO if the module has a summary, but the
3554   // client can request full LTO with a module flag.
3555   bool IsThinLTO = true;
3556   if (auto *MD =
3557           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3558     IsThinLTO = MD->getZExtValue();
3559   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3560                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3561                        4);
3562 
3563   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3564 
3565   if (Index->begin() == Index->end()) {
3566     Stream.ExitBlock();
3567     return;
3568   }
3569 
3570   for (const auto &GVI : valueIds()) {
3571     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3572                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3573   }
3574 
3575   // Abbrev for FS_PERMODULE_PROFILE.
3576   auto Abbv = std::make_shared<BitCodeAbbrev>();
3577   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3578   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3579   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3580   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3581   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3582   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3583   // numrefs x valueid, n x (valueid, hotness)
3584   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3585   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3586   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3587 
3588   // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3589   Abbv = std::make_shared<BitCodeAbbrev>();
3590   if (WriteRelBFToSummary)
3591     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3592   else
3593     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3594   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3595   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3596   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3597   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3598   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3599   // numrefs x valueid, n x (valueid [, rel_block_freq])
3600   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3601   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3602   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3603 
3604   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3605   Abbv = std::make_shared<BitCodeAbbrev>();
3606   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3607   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3608   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3609   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3610   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3611   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3612 
3613   // Abbrev for FS_ALIAS.
3614   Abbv = std::make_shared<BitCodeAbbrev>();
3615   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3616   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3617   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3618   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3619   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3620 
3621   SmallVector<uint64_t, 64> NameVals;
3622   // Iterate over the list of functions instead of the Index to
3623   // ensure the ordering is stable.
3624   for (const Function &F : M) {
3625     // Summary emission does not support anonymous functions, they have to
3626     // renamed using the anonymous function renaming pass.
3627     if (!F.hasName())
3628       report_fatal_error("Unexpected anonymous function when writing summary");
3629 
3630     ValueInfo VI = Index->getValueInfo(F.getGUID());
3631     if (!VI || VI.getSummaryList().empty()) {
3632       // Only declarations should not have a summary (a declaration might
3633       // however have a summary if the def was in module level asm).
3634       assert(F.isDeclaration());
3635       continue;
3636     }
3637     auto *Summary = VI.getSummaryList()[0].get();
3638     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3639                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3640   }
3641 
3642   // Capture references from GlobalVariable initializers, which are outside
3643   // of a function scope.
3644   for (const GlobalVariable &G : M.globals())
3645     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3646 
3647   for (const GlobalAlias &A : M.aliases()) {
3648     auto *Aliasee = A.getBaseObject();
3649     if (!Aliasee->hasName())
3650       // Nameless function don't have an entry in the summary, skip it.
3651       continue;
3652     auto AliasId = VE.getValueID(&A);
3653     auto AliaseeId = VE.getValueID(Aliasee);
3654     NameVals.push_back(AliasId);
3655     auto *Summary = Index->getGlobalValueSummary(A);
3656     AliasSummary *AS = cast<AliasSummary>(Summary);
3657     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3658     NameVals.push_back(AliaseeId);
3659     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3660     NameVals.clear();
3661   }
3662 
3663   Stream.ExitBlock();
3664 }
3665 
3666 /// Emit the combined summary section into the combined index file.
3667 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3668   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3669   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3670 
3671   // Write the index flags.
3672   uint64_t Flags = 0;
3673   if (Index.withGlobalValueDeadStripping())
3674     Flags |= 0x1;
3675   if (Index.skipModuleByDistributedBackend())
3676     Flags |= 0x2;
3677   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3678 
3679   for (const auto &GVI : valueIds()) {
3680     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3681                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3682   }
3683 
3684   // Abbrev for FS_COMBINED.
3685   auto Abbv = std::make_shared<BitCodeAbbrev>();
3686   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3687   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3688   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3689   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3690   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3691   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3692   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3693   // numrefs x valueid, n x (valueid)
3694   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3695   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3696   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3697 
3698   // Abbrev for FS_COMBINED_PROFILE.
3699   Abbv = std::make_shared<BitCodeAbbrev>();
3700   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3701   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3702   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3703   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3704   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3705   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3706   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3707   // numrefs x valueid, n x (valueid, hotness)
3708   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3709   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3710   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3711 
3712   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3713   Abbv = std::make_shared<BitCodeAbbrev>();
3714   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3715   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3716   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3717   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3718   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3719   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3720   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3721 
3722   // Abbrev for FS_COMBINED_ALIAS.
3723   Abbv = std::make_shared<BitCodeAbbrev>();
3724   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3725   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3726   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3727   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3728   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3729   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3730 
3731   // The aliases are emitted as a post-pass, and will point to the value
3732   // id of the aliasee. Save them in a vector for post-processing.
3733   SmallVector<AliasSummary *, 64> Aliases;
3734 
3735   // Save the value id for each summary for alias emission.
3736   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3737 
3738   SmallVector<uint64_t, 64> NameVals;
3739 
3740   // Set that will be populated during call to writeFunctionTypeMetadataRecords
3741   // with the type ids referenced by this index file.
3742   std::set<GlobalValue::GUID> ReferencedTypeIds;
3743 
3744   // For local linkage, we also emit the original name separately
3745   // immediately after the record.
3746   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3747     if (!GlobalValue::isLocalLinkage(S.linkage()))
3748       return;
3749     NameVals.push_back(S.getOriginalName());
3750     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3751     NameVals.clear();
3752   };
3753 
3754   forEachSummary([&](GVInfo I, bool IsAliasee) {
3755     GlobalValueSummary *S = I.second;
3756     assert(S);
3757 
3758     auto ValueId = getValueId(I.first);
3759     assert(ValueId);
3760     SummaryToValueIdMap[S] = *ValueId;
3761 
3762     // If this is invoked for an aliasee, we want to record the above
3763     // mapping, but then not emit a summary entry (if the aliasee is
3764     // to be imported, we will invoke this separately with IsAliasee=false).
3765     if (IsAliasee)
3766       return;
3767 
3768     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3769       // Will process aliases as a post-pass because the reader wants all
3770       // global to be loaded first.
3771       Aliases.push_back(AS);
3772       return;
3773     }
3774 
3775     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3776       NameVals.push_back(*ValueId);
3777       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3778       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3779       for (auto &RI : VS->refs()) {
3780         auto RefValueId = getValueId(RI.getGUID());
3781         if (!RefValueId)
3782           continue;
3783         NameVals.push_back(*RefValueId);
3784       }
3785 
3786       // Emit the finished record.
3787       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3788                         FSModRefsAbbrev);
3789       NameVals.clear();
3790       MaybeEmitOriginalName(*S);
3791       return;
3792     }
3793 
3794     auto *FS = cast<FunctionSummary>(S);
3795     writeFunctionTypeMetadataRecords(Stream, FS);
3796     getReferencedTypeIds(FS, ReferencedTypeIds);
3797 
3798     NameVals.push_back(*ValueId);
3799     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3800     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3801     NameVals.push_back(FS->instCount());
3802     NameVals.push_back(getEncodedFFlags(FS->fflags()));
3803     // Fill in below
3804     NameVals.push_back(0);
3805 
3806     unsigned Count = 0;
3807     for (auto &RI : FS->refs()) {
3808       auto RefValueId = getValueId(RI.getGUID());
3809       if (!RefValueId)
3810         continue;
3811       NameVals.push_back(*RefValueId);
3812       Count++;
3813     }
3814     NameVals[5] = Count;
3815 
3816     bool HasProfileData = false;
3817     for (auto &EI : FS->calls()) {
3818       HasProfileData |=
3819           EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
3820       if (HasProfileData)
3821         break;
3822     }
3823 
3824     for (auto &EI : FS->calls()) {
3825       // If this GUID doesn't have a value id, it doesn't have a function
3826       // summary and we don't need to record any calls to it.
3827       GlobalValue::GUID GUID = EI.first.getGUID();
3828       auto CallValueId = getValueId(GUID);
3829       if (!CallValueId) {
3830         // For SamplePGO, the indirect call targets for local functions will
3831         // have its original name annotated in profile. We try to find the
3832         // corresponding PGOFuncName as the GUID.
3833         GUID = Index.getGUIDFromOriginalID(GUID);
3834         if (GUID == 0)
3835           continue;
3836         CallValueId = getValueId(GUID);
3837         if (!CallValueId)
3838           continue;
3839         // The mapping from OriginalId to GUID may return a GUID
3840         // that corresponds to a static variable. Filter it out here.
3841         // This can happen when
3842         // 1) There is a call to a library function which does not have
3843         // a CallValidId;
3844         // 2) There is a static variable with the  OriginalGUID identical
3845         // to the GUID of the library function in 1);
3846         // When this happens, the logic for SamplePGO kicks in and
3847         // the static variable in 2) will be found, which needs to be
3848         // filtered out.
3849         auto *GVSum = Index.getGlobalValueSummary(GUID, false);
3850         if (GVSum &&
3851             GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
3852           continue;
3853       }
3854       NameVals.push_back(*CallValueId);
3855       if (HasProfileData)
3856         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3857     }
3858 
3859     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3860     unsigned Code =
3861         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3862 
3863     // Emit the finished record.
3864     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3865     NameVals.clear();
3866     MaybeEmitOriginalName(*S);
3867   });
3868 
3869   for (auto *AS : Aliases) {
3870     auto AliasValueId = SummaryToValueIdMap[AS];
3871     assert(AliasValueId);
3872     NameVals.push_back(AliasValueId);
3873     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3874     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3875     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3876     assert(AliaseeValueId);
3877     NameVals.push_back(AliaseeValueId);
3878 
3879     // Emit the finished record.
3880     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3881     NameVals.clear();
3882     MaybeEmitOriginalName(*AS);
3883 
3884     if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
3885       getReferencedTypeIds(FS, ReferencedTypeIds);
3886   }
3887 
3888   if (!Index.cfiFunctionDefs().empty()) {
3889     for (auto &S : Index.cfiFunctionDefs()) {
3890       NameVals.push_back(StrtabBuilder.add(S));
3891       NameVals.push_back(S.size());
3892     }
3893     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
3894     NameVals.clear();
3895   }
3896 
3897   if (!Index.cfiFunctionDecls().empty()) {
3898     for (auto &S : Index.cfiFunctionDecls()) {
3899       NameVals.push_back(StrtabBuilder.add(S));
3900       NameVals.push_back(S.size());
3901     }
3902     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
3903     NameVals.clear();
3904   }
3905 
3906   // Walk the GUIDs that were referenced, and write the
3907   // corresponding type id records.
3908   for (auto &T : ReferencedTypeIds) {
3909     auto TidIter = Index.typeIds().equal_range(T);
3910     for (auto It = TidIter.first; It != TidIter.second; ++It) {
3911       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
3912                                It->second.second);
3913       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
3914       NameVals.clear();
3915     }
3916   }
3917 
3918   Stream.ExitBlock();
3919 }
3920 
3921 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
3922 /// current llvm version, and a record for the epoch number.
3923 static void writeIdentificationBlock(BitstreamWriter &Stream) {
3924   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3925 
3926   // Write the "user readable" string identifying the bitcode producer
3927   auto Abbv = std::make_shared<BitCodeAbbrev>();
3928   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3929   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3930   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3931   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3932   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
3933                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
3934 
3935   // Write the epoch version
3936   Abbv = std::make_shared<BitCodeAbbrev>();
3937   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3938   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3939   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3940   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3941   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3942   Stream.ExitBlock();
3943 }
3944 
3945 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3946   // Emit the module's hash.
3947   // MODULE_CODE_HASH: [5*i32]
3948   if (GenerateHash) {
3949     uint32_t Vals[5];
3950     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3951                                     Buffer.size() - BlockStartPos));
3952     StringRef Hash = Hasher.result();
3953     for (int Pos = 0; Pos < 20; Pos += 4) {
3954       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
3955     }
3956 
3957     // Emit the finished record.
3958     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3959 
3960     if (ModHash)
3961       // Save the written hash value.
3962       std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash));
3963   }
3964 }
3965 
3966 void ModuleBitcodeWriter::write() {
3967   writeIdentificationBlock(Stream);
3968 
3969   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3970   size_t BlockStartPos = Buffer.size();
3971 
3972   writeModuleVersion();
3973 
3974   // Emit blockinfo, which defines the standard abbreviations etc.
3975   writeBlockInfo();
3976 
3977   // Emit information about attribute groups.
3978   writeAttributeGroupTable();
3979 
3980   // Emit information about parameter attributes.
3981   writeAttributeTable();
3982 
3983   // Emit information describing all of the types in the module.
3984   writeTypeTable();
3985 
3986   writeComdats();
3987 
3988   // Emit top-level description of module, including target triple, inline asm,
3989   // descriptors for global variables, and function prototype info.
3990   writeModuleInfo();
3991 
3992   // Emit constants.
3993   writeModuleConstants();
3994 
3995   // Emit metadata kind names.
3996   writeModuleMetadataKinds();
3997 
3998   // Emit metadata.
3999   writeModuleMetadata();
4000 
4001   // Emit module-level use-lists.
4002   if (VE.shouldPreserveUseListOrder())
4003     writeUseListBlock(nullptr);
4004 
4005   writeOperandBundleTags();
4006   writeSyncScopeNames();
4007 
4008   // Emit function bodies.
4009   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4010   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4011     if (!F->isDeclaration())
4012       writeFunction(*F, FunctionToBitcodeIndex);
4013 
4014   // Need to write after the above call to WriteFunction which populates
4015   // the summary information in the index.
4016   if (Index)
4017     writePerModuleGlobalValueSummary();
4018 
4019   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4020 
4021   writeModuleHash(BlockStartPos);
4022 
4023   Stream.ExitBlock();
4024 }
4025 
4026 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4027                                uint32_t &Position) {
4028   support::endian::write32le(&Buffer[Position], Value);
4029   Position += 4;
4030 }
4031 
4032 /// If generating a bc file on darwin, we have to emit a
4033 /// header and trailer to make it compatible with the system archiver.  To do
4034 /// this we emit the following header, and then emit a trailer that pads the
4035 /// file out to be a multiple of 16 bytes.
4036 ///
4037 /// struct bc_header {
4038 ///   uint32_t Magic;         // 0x0B17C0DE
4039 ///   uint32_t Version;       // Version, currently always 0.
4040 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4041 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4042 ///   uint32_t CPUType;       // CPU specifier.
4043 ///   ... potentially more later ...
4044 /// };
4045 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4046                                          const Triple &TT) {
4047   unsigned CPUType = ~0U;
4048 
4049   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4050   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4051   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4052   // specific constants here because they are implicitly part of the Darwin ABI.
4053   enum {
4054     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4055     DARWIN_CPU_TYPE_X86        = 7,
4056     DARWIN_CPU_TYPE_ARM        = 12,
4057     DARWIN_CPU_TYPE_POWERPC    = 18
4058   };
4059 
4060   Triple::ArchType Arch = TT.getArch();
4061   if (Arch == Triple::x86_64)
4062     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4063   else if (Arch == Triple::x86)
4064     CPUType = DARWIN_CPU_TYPE_X86;
4065   else if (Arch == Triple::ppc)
4066     CPUType = DARWIN_CPU_TYPE_POWERPC;
4067   else if (Arch == Triple::ppc64)
4068     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4069   else if (Arch == Triple::arm || Arch == Triple::thumb)
4070     CPUType = DARWIN_CPU_TYPE_ARM;
4071 
4072   // Traditional Bitcode starts after header.
4073   assert(Buffer.size() >= BWH_HeaderSize &&
4074          "Expected header size to be reserved");
4075   unsigned BCOffset = BWH_HeaderSize;
4076   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4077 
4078   // Write the magic and version.
4079   unsigned Position = 0;
4080   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4081   writeInt32ToBuffer(0, Buffer, Position); // Version.
4082   writeInt32ToBuffer(BCOffset, Buffer, Position);
4083   writeInt32ToBuffer(BCSize, Buffer, Position);
4084   writeInt32ToBuffer(CPUType, Buffer, Position);
4085 
4086   // If the file is not a multiple of 16 bytes, insert dummy padding.
4087   while (Buffer.size() & 15)
4088     Buffer.push_back(0);
4089 }
4090 
4091 /// Helper to write the header common to all bitcode files.
4092 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4093   // Emit the file header.
4094   Stream.Emit((unsigned)'B', 8);
4095   Stream.Emit((unsigned)'C', 8);
4096   Stream.Emit(0x0, 4);
4097   Stream.Emit(0xC, 4);
4098   Stream.Emit(0xE, 4);
4099   Stream.Emit(0xD, 4);
4100 }
4101 
4102 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
4103     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4104   writeBitcodeHeader(*Stream);
4105 }
4106 
4107 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4108 
4109 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4110   Stream->EnterSubblock(Block, 3);
4111 
4112   auto Abbv = std::make_shared<BitCodeAbbrev>();
4113   Abbv->Add(BitCodeAbbrevOp(Record));
4114   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4115   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4116 
4117   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4118 
4119   Stream->ExitBlock();
4120 }
4121 
4122 void BitcodeWriter::writeSymtab() {
4123   assert(!WroteStrtab && !WroteSymtab);
4124 
4125   // If any module has module-level inline asm, we will require a registered asm
4126   // parser for the target so that we can create an accurate symbol table for
4127   // the module.
4128   for (Module *M : Mods) {
4129     if (M->getModuleInlineAsm().empty())
4130       continue;
4131 
4132     std::string Err;
4133     const Triple TT(M->getTargetTriple());
4134     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4135     if (!T || !T->hasMCAsmParser())
4136       return;
4137   }
4138 
4139   WroteSymtab = true;
4140   SmallVector<char, 0> Symtab;
4141   // The irsymtab::build function may be unable to create a symbol table if the
4142   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4143   // table is not required for correctness, but we still want to be able to
4144   // write malformed modules to bitcode files, so swallow the error.
4145   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4146     consumeError(std::move(E));
4147     return;
4148   }
4149 
4150   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4151             {Symtab.data(), Symtab.size()});
4152 }
4153 
4154 void BitcodeWriter::writeStrtab() {
4155   assert(!WroteStrtab);
4156 
4157   std::vector<char> Strtab;
4158   StrtabBuilder.finalizeInOrder();
4159   Strtab.resize(StrtabBuilder.getSize());
4160   StrtabBuilder.write((uint8_t *)Strtab.data());
4161 
4162   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4163             {Strtab.data(), Strtab.size()});
4164 
4165   WroteStrtab = true;
4166 }
4167 
4168 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4169   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4170   WroteStrtab = true;
4171 }
4172 
4173 void BitcodeWriter::writeModule(const Module &M,
4174                                 bool ShouldPreserveUseListOrder,
4175                                 const ModuleSummaryIndex *Index,
4176                                 bool GenerateHash, ModuleHash *ModHash) {
4177   assert(!WroteStrtab);
4178 
4179   // The Mods vector is used by irsymtab::build, which requires non-const
4180   // Modules in case it needs to materialize metadata. But the bitcode writer
4181   // requires that the module is materialized, so we can cast to non-const here,
4182   // after checking that it is in fact materialized.
4183   assert(M.isMaterialized());
4184   Mods.push_back(const_cast<Module *>(&M));
4185 
4186   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4187                                    ShouldPreserveUseListOrder, Index,
4188                                    GenerateHash, ModHash);
4189   ModuleWriter.write();
4190 }
4191 
4192 void BitcodeWriter::writeIndex(
4193     const ModuleSummaryIndex *Index,
4194     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4195   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4196                                  ModuleToSummariesForIndex);
4197   IndexWriter.write();
4198 }
4199 
4200 /// Write the specified module to the specified output stream.
4201 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4202                               bool ShouldPreserveUseListOrder,
4203                               const ModuleSummaryIndex *Index,
4204                               bool GenerateHash, ModuleHash *ModHash) {
4205   SmallVector<char, 0> Buffer;
4206   Buffer.reserve(256*1024);
4207 
4208   // If this is darwin or another generic macho target, reserve space for the
4209   // header.
4210   Triple TT(M.getTargetTriple());
4211   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4212     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4213 
4214   BitcodeWriter Writer(Buffer);
4215   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4216                      ModHash);
4217   Writer.writeSymtab();
4218   Writer.writeStrtab();
4219 
4220   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4221     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4222 
4223   // Write the generated bitstream to "Out".
4224   Out.write((char*)&Buffer.front(), Buffer.size());
4225 }
4226 
4227 void IndexBitcodeWriter::write() {
4228   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4229 
4230   writeModuleVersion();
4231 
4232   // Write the module paths in the combined index.
4233   writeModStrings();
4234 
4235   // Write the summary combined index records.
4236   writeCombinedGlobalValueSummary();
4237 
4238   Stream.ExitBlock();
4239 }
4240 
4241 // Write the specified module summary index to the given raw output stream,
4242 // where it will be written in a new bitcode block. This is used when
4243 // writing the combined index file for ThinLTO. When writing a subset of the
4244 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4245 void llvm::WriteIndexToFile(
4246     const ModuleSummaryIndex &Index, raw_ostream &Out,
4247     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4248   SmallVector<char, 0> Buffer;
4249   Buffer.reserve(256 * 1024);
4250 
4251   BitcodeWriter Writer(Buffer);
4252   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4253   Writer.writeStrtab();
4254 
4255   Out.write((char *)&Buffer.front(), Buffer.size());
4256 }
4257 
4258 namespace {
4259 
4260 /// Class to manage the bitcode writing for a thin link bitcode file.
4261 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4262   /// ModHash is for use in ThinLTO incremental build, generated while writing
4263   /// the module bitcode file.
4264   const ModuleHash *ModHash;
4265 
4266 public:
4267   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4268                         BitstreamWriter &Stream,
4269                         const ModuleSummaryIndex &Index,
4270                         const ModuleHash &ModHash)
4271       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4272                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4273         ModHash(&ModHash) {}
4274 
4275   void write();
4276 
4277 private:
4278   void writeSimplifiedModuleInfo();
4279 };
4280 
4281 } // end anonymous namespace
4282 
4283 // This function writes a simpilified module info for thin link bitcode file.
4284 // It only contains the source file name along with the name(the offset and
4285 // size in strtab) and linkage for global values. For the global value info
4286 // entry, in order to keep linkage at offset 5, there are three zeros used
4287 // as padding.
4288 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4289   SmallVector<unsigned, 64> Vals;
4290   // Emit the module's source file name.
4291   {
4292     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4293     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4294     if (Bits == SE_Char6)
4295       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4296     else if (Bits == SE_Fixed7)
4297       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4298 
4299     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4300     auto Abbv = std::make_shared<BitCodeAbbrev>();
4301     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4302     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4303     Abbv->Add(AbbrevOpToUse);
4304     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4305 
4306     for (const auto P : M.getSourceFileName())
4307       Vals.push_back((unsigned char)P);
4308 
4309     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4310     Vals.clear();
4311   }
4312 
4313   // Emit the global variable information.
4314   for (const GlobalVariable &GV : M.globals()) {
4315     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4316     Vals.push_back(StrtabBuilder.add(GV.getName()));
4317     Vals.push_back(GV.getName().size());
4318     Vals.push_back(0);
4319     Vals.push_back(0);
4320     Vals.push_back(0);
4321     Vals.push_back(getEncodedLinkage(GV));
4322 
4323     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4324     Vals.clear();
4325   }
4326 
4327   // Emit the function proto information.
4328   for (const Function &F : M) {
4329     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4330     Vals.push_back(StrtabBuilder.add(F.getName()));
4331     Vals.push_back(F.getName().size());
4332     Vals.push_back(0);
4333     Vals.push_back(0);
4334     Vals.push_back(0);
4335     Vals.push_back(getEncodedLinkage(F));
4336 
4337     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4338     Vals.clear();
4339   }
4340 
4341   // Emit the alias information.
4342   for (const GlobalAlias &A : M.aliases()) {
4343     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4344     Vals.push_back(StrtabBuilder.add(A.getName()));
4345     Vals.push_back(A.getName().size());
4346     Vals.push_back(0);
4347     Vals.push_back(0);
4348     Vals.push_back(0);
4349     Vals.push_back(getEncodedLinkage(A));
4350 
4351     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4352     Vals.clear();
4353   }
4354 
4355   // Emit the ifunc information.
4356   for (const GlobalIFunc &I : M.ifuncs()) {
4357     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4358     Vals.push_back(StrtabBuilder.add(I.getName()));
4359     Vals.push_back(I.getName().size());
4360     Vals.push_back(0);
4361     Vals.push_back(0);
4362     Vals.push_back(0);
4363     Vals.push_back(getEncodedLinkage(I));
4364 
4365     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4366     Vals.clear();
4367   }
4368 }
4369 
4370 void ThinLinkBitcodeWriter::write() {
4371   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4372 
4373   writeModuleVersion();
4374 
4375   writeSimplifiedModuleInfo();
4376 
4377   writePerModuleGlobalValueSummary();
4378 
4379   // Write module hash.
4380   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4381 
4382   Stream.ExitBlock();
4383 }
4384 
4385 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4386                                          const ModuleSummaryIndex &Index,
4387                                          const ModuleHash &ModHash) {
4388   assert(!WroteStrtab);
4389 
4390   // The Mods vector is used by irsymtab::build, which requires non-const
4391   // Modules in case it needs to materialize metadata. But the bitcode writer
4392   // requires that the module is materialized, so we can cast to non-const here,
4393   // after checking that it is in fact materialized.
4394   assert(M.isMaterialized());
4395   Mods.push_back(const_cast<Module *>(&M));
4396 
4397   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4398                                        ModHash);
4399   ThinLinkWriter.write();
4400 }
4401 
4402 // Write the specified thin link bitcode file to the given raw output stream,
4403 // where it will be written in a new bitcode block. This is used when
4404 // writing the per-module index file for ThinLTO.
4405 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4406                                       const ModuleSummaryIndex &Index,
4407                                       const ModuleHash &ModHash) {
4408   SmallVector<char, 0> Buffer;
4409   Buffer.reserve(256 * 1024);
4410 
4411   BitcodeWriter Writer(Buffer);
4412   Writer.writeThinLinkBitcode(M, Index, ModHash);
4413   Writer.writeSymtab();
4414   Writer.writeStrtab();
4415 
4416   Out.write((char *)&Buffer.front(), Buffer.size());
4417 }
4418