1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 extern bool WriteNewDbgInfoFormatToBitcode; 103 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 104 105 namespace { 106 107 /// These are manifest constants used by the bitcode writer. They do not need to 108 /// be kept in sync with the reader, but need to be consistent within this file. 109 enum { 110 // VALUE_SYMTAB_BLOCK abbrev id's. 111 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 VST_ENTRY_7_ABBREV, 113 VST_ENTRY_6_ABBREV, 114 VST_BBENTRY_6_ABBREV, 115 116 // CONSTANTS_BLOCK abbrev id's. 117 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 CONSTANTS_INTEGER_ABBREV, 119 CONSTANTS_CE_CAST_Abbrev, 120 CONSTANTS_NULL_Abbrev, 121 122 // FUNCTION_BLOCK abbrev id's. 123 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 124 FUNCTION_INST_UNOP_ABBREV, 125 FUNCTION_INST_UNOP_FLAGS_ABBREV, 126 FUNCTION_INST_BINOP_ABBREV, 127 FUNCTION_INST_BINOP_FLAGS_ABBREV, 128 FUNCTION_INST_CAST_ABBREV, 129 FUNCTION_INST_CAST_FLAGS_ABBREV, 130 FUNCTION_INST_RET_VOID_ABBREV, 131 FUNCTION_INST_RET_VAL_ABBREV, 132 FUNCTION_INST_UNREACHABLE_ABBREV, 133 FUNCTION_INST_GEP_ABBREV, 134 FUNCTION_DEBUG_RECORD_VALUE_ABBREV, 135 }; 136 137 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 138 /// file type. 139 class BitcodeWriterBase { 140 protected: 141 /// The stream created and owned by the client. 142 BitstreamWriter &Stream; 143 144 StringTableBuilder &StrtabBuilder; 145 146 public: 147 /// Constructs a BitcodeWriterBase object that writes to the provided 148 /// \p Stream. 149 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 150 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 151 152 protected: 153 void writeModuleVersion(); 154 }; 155 156 void BitcodeWriterBase::writeModuleVersion() { 157 // VERSION: [version#] 158 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 159 } 160 161 /// Base class to manage the module bitcode writing, currently subclassed for 162 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 163 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 164 protected: 165 /// The Module to write to bitcode. 166 const Module &M; 167 168 /// Enumerates ids for all values in the module. 169 ValueEnumerator VE; 170 171 /// Optional per-module index to write for ThinLTO. 172 const ModuleSummaryIndex *Index; 173 174 /// Map that holds the correspondence between GUIDs in the summary index, 175 /// that came from indirect call profiles, and a value id generated by this 176 /// class to use in the VST and summary block records. 177 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 178 179 /// Tracks the last value id recorded in the GUIDToValueMap. 180 unsigned GlobalValueId; 181 182 /// Saves the offset of the VSTOffset record that must eventually be 183 /// backpatched with the offset of the actual VST. 184 uint64_t VSTOffsetPlaceholder = 0; 185 186 public: 187 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 188 /// writing to the provided \p Buffer. 189 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 190 BitstreamWriter &Stream, 191 bool ShouldPreserveUseListOrder, 192 const ModuleSummaryIndex *Index) 193 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 194 VE(M, ShouldPreserveUseListOrder), Index(Index) { 195 // Assign ValueIds to any callee values in the index that came from 196 // indirect call profiles and were recorded as a GUID not a Value* 197 // (which would have been assigned an ID by the ValueEnumerator). 198 // The starting ValueId is just after the number of values in the 199 // ValueEnumerator, so that they can be emitted in the VST. 200 GlobalValueId = VE.getValues().size(); 201 if (!Index) 202 return; 203 for (const auto &GUIDSummaryLists : *Index) 204 // Examine all summaries for this GUID. 205 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 206 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 207 // For each call in the function summary, see if the call 208 // is to a GUID (which means it is for an indirect call, 209 // otherwise we would have a Value for it). If so, synthesize 210 // a value id. 211 for (auto &CallEdge : FS->calls()) 212 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 213 assignValueId(CallEdge.first.getGUID()); 214 } 215 216 protected: 217 void writePerModuleGlobalValueSummary(); 218 219 private: 220 void writePerModuleFunctionSummaryRecord( 221 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 222 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 223 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 224 void writeModuleLevelReferences(const GlobalVariable &V, 225 SmallVector<uint64_t, 64> &NameVals, 226 unsigned FSModRefsAbbrev, 227 unsigned FSModVTableRefsAbbrev); 228 229 void assignValueId(GlobalValue::GUID ValGUID) { 230 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 231 } 232 233 unsigned getValueId(GlobalValue::GUID ValGUID) { 234 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 235 // Expect that any GUID value had a value Id assigned by an 236 // earlier call to assignValueId. 237 assert(VMI != GUIDToValueIdMap.end() && 238 "GUID does not have assigned value Id"); 239 return VMI->second; 240 } 241 242 // Helper to get the valueId for the type of value recorded in VI. 243 unsigned getValueId(ValueInfo VI) { 244 if (!VI.haveGVs() || !VI.getValue()) 245 return getValueId(VI.getGUID()); 246 return VE.getValueID(VI.getValue()); 247 } 248 249 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 250 }; 251 252 /// Class to manage the bitcode writing for a module. 253 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 254 /// Pointer to the buffer allocated by caller for bitcode writing. 255 const SmallVectorImpl<char> &Buffer; 256 257 /// True if a module hash record should be written. 258 bool GenerateHash; 259 260 /// If non-null, when GenerateHash is true, the resulting hash is written 261 /// into ModHash. 262 ModuleHash *ModHash; 263 264 SHA1 Hasher; 265 266 /// The start bit of the identification block. 267 uint64_t BitcodeStartBit; 268 269 public: 270 /// Constructs a ModuleBitcodeWriter object for the given Module, 271 /// writing to the provided \p Buffer. 272 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 273 StringTableBuilder &StrtabBuilder, 274 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 275 const ModuleSummaryIndex *Index, bool GenerateHash, 276 ModuleHash *ModHash = nullptr) 277 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 278 ShouldPreserveUseListOrder, Index), 279 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 280 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 281 282 /// Emit the current module to the bitstream. 283 void write(); 284 285 private: 286 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 287 288 size_t addToStrtab(StringRef Str); 289 290 void writeAttributeGroupTable(); 291 void writeAttributeTable(); 292 void writeTypeTable(); 293 void writeComdats(); 294 void writeValueSymbolTableForwardDecl(); 295 void writeModuleInfo(); 296 void writeValueAsMetadata(const ValueAsMetadata *MD, 297 SmallVectorImpl<uint64_t> &Record); 298 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 299 unsigned Abbrev); 300 unsigned createDILocationAbbrev(); 301 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned &Abbrev); 303 unsigned createGenericDINodeAbbrev(); 304 void writeGenericDINode(const GenericDINode *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 306 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 307 unsigned Abbrev); 308 void writeDIGenericSubrange(const DIGenericSubrange *N, 309 SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIEnumerator(const DIEnumerator *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 314 unsigned Abbrev); 315 void writeDIStringType(const DIStringType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDIDerivedType(const DIDerivedType *N, 318 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 319 void writeDICompositeType(const DICompositeType *N, 320 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 321 void writeDISubroutineType(const DISubroutineType *N, 322 SmallVectorImpl<uint64_t> &Record, 323 unsigned Abbrev); 324 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDICompileUnit(const DICompileUnit *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDISubprogram(const DISubprogram *N, 329 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 330 void writeDILexicalBlock(const DILexicalBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 333 SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDICommonBlock(const DICommonBlock *N, 336 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 337 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 344 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 345 unsigned Abbrev); 346 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 void writeDIGlobalVariable(const DIGlobalVariable *N, 355 SmallVectorImpl<uint64_t> &Record, 356 unsigned Abbrev); 357 void writeDILocalVariable(const DILocalVariable *N, 358 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 359 void writeDILabel(const DILabel *N, 360 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 361 void writeDIExpression(const DIExpression *N, 362 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 363 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 364 SmallVectorImpl<uint64_t> &Record, 365 unsigned Abbrev); 366 void writeDIObjCProperty(const DIObjCProperty *N, 367 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 368 void writeDIImportedEntity(const DIImportedEntity *N, 369 SmallVectorImpl<uint64_t> &Record, 370 unsigned Abbrev); 371 unsigned createNamedMetadataAbbrev(); 372 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 373 unsigned createMetadataStringsAbbrev(); 374 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 375 SmallVectorImpl<uint64_t> &Record); 376 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 377 SmallVectorImpl<uint64_t> &Record, 378 std::vector<unsigned> *MDAbbrevs = nullptr, 379 std::vector<uint64_t> *IndexPos = nullptr); 380 void writeModuleMetadata(); 381 void writeFunctionMetadata(const Function &F); 382 void writeFunctionMetadataAttachment(const Function &F); 383 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 384 const GlobalObject &GO); 385 void writeModuleMetadataKinds(); 386 void writeOperandBundleTags(); 387 void writeSyncScopeNames(); 388 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 389 void writeModuleConstants(); 390 bool pushValueAndType(const Value *V, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void writeOperandBundles(const CallBase &CB, unsigned InstID); 393 void pushValue(const Value *V, unsigned InstID, 394 SmallVectorImpl<unsigned> &Vals); 395 void pushValueSigned(const Value *V, unsigned InstID, 396 SmallVectorImpl<uint64_t> &Vals); 397 void writeInstruction(const Instruction &I, unsigned InstID, 398 SmallVectorImpl<unsigned> &Vals); 399 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 400 void writeGlobalValueSymbolTable( 401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 402 void writeUseList(UseListOrder &&Order); 403 void writeUseListBlock(const Function *F); 404 void 405 writeFunction(const Function &F, 406 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 407 void writeBlockInfo(); 408 void writeModuleHash(size_t BlockStartPos); 409 410 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 411 return unsigned(SSID); 412 } 413 414 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 415 }; 416 417 /// Class to manage the bitcode writing for a combined index. 418 class IndexBitcodeWriter : public BitcodeWriterBase { 419 /// The combined index to write to bitcode. 420 const ModuleSummaryIndex &Index; 421 422 /// When writing a subset of the index for distributed backends, client 423 /// provides a map of modules to the corresponding GUIDs/summaries to write. 424 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 425 426 /// Map that holds the correspondence between the GUID used in the combined 427 /// index and a value id generated by this class to use in references. 428 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 429 430 // The sorted stack id indices actually used in the summary entries being 431 // written, which will be a subset of those in the full index in the case of 432 // distributed indexes. 433 std::vector<unsigned> StackIdIndices; 434 435 /// Tracks the last value id recorded in the GUIDToValueMap. 436 unsigned GlobalValueId = 0; 437 438 /// Tracks the assignment of module paths in the module path string table to 439 /// an id assigned for use in summary references to the module path. 440 DenseMap<StringRef, uint64_t> ModuleIdMap; 441 442 public: 443 /// Constructs a IndexBitcodeWriter object for the given combined index, 444 /// writing to the provided \p Buffer. When writing a subset of the index 445 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 446 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 447 const ModuleSummaryIndex &Index, 448 const std::map<std::string, GVSummaryMapTy> 449 *ModuleToSummariesForIndex = nullptr) 450 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 451 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 452 // Assign unique value ids to all summaries to be written, for use 453 // in writing out the call graph edges. Save the mapping from GUID 454 // to the new global value id to use when writing those edges, which 455 // are currently saved in the index in terms of GUID. 456 forEachSummary([&](GVInfo I, bool IsAliasee) { 457 GUIDToValueIdMap[I.first] = ++GlobalValueId; 458 if (IsAliasee) 459 return; 460 auto *FS = dyn_cast<FunctionSummary>(I.second); 461 if (!FS) 462 return; 463 // Record all stack id indices actually used in the summary entries being 464 // written, so that we can compact them in the case of distributed ThinLTO 465 // indexes. 466 for (auto &CI : FS->callsites()) { 467 // If the stack id list is empty, this callsite info was synthesized for 468 // a missing tail call frame. Ensure that the callee's GUID gets a value 469 // id. Normally we only generate these for defined summaries, which in 470 // the case of distributed ThinLTO is only the functions already defined 471 // in the module or that we want to import. We don't bother to include 472 // all the callee symbols as they aren't normally needed in the backend. 473 // However, for the synthesized callsite infos we do need the callee 474 // GUID in the backend so that we can correlate the identified callee 475 // with this callsite info (which for non-tail calls is done by the 476 // ordering of the callsite infos and verified via stack ids). 477 if (CI.StackIdIndices.empty()) { 478 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 479 continue; 480 } 481 for (auto Idx : CI.StackIdIndices) 482 StackIdIndices.push_back(Idx); 483 } 484 for (auto &AI : FS->allocs()) 485 for (auto &MIB : AI.MIBs) 486 for (auto Idx : MIB.StackIdIndices) 487 StackIdIndices.push_back(Idx); 488 }); 489 llvm::sort(StackIdIndices); 490 StackIdIndices.erase( 491 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 492 StackIdIndices.end()); 493 } 494 495 /// The below iterator returns the GUID and associated summary. 496 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 497 498 /// Calls the callback for each value GUID and summary to be written to 499 /// bitcode. This hides the details of whether they are being pulled from the 500 /// entire index or just those in a provided ModuleToSummariesForIndex map. 501 template<typename Functor> 502 void forEachSummary(Functor Callback) { 503 if (ModuleToSummariesForIndex) { 504 for (auto &M : *ModuleToSummariesForIndex) 505 for (auto &Summary : M.second) { 506 Callback(Summary, false); 507 // Ensure aliasee is handled, e.g. for assigning a valueId, 508 // even if we are not importing the aliasee directly (the 509 // imported alias will contain a copy of aliasee). 510 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 511 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 512 } 513 } else { 514 for (auto &Summaries : Index) 515 for (auto &Summary : Summaries.second.SummaryList) 516 Callback({Summaries.first, Summary.get()}, false); 517 } 518 } 519 520 /// Calls the callback for each entry in the modulePaths StringMap that 521 /// should be written to the module path string table. This hides the details 522 /// of whether they are being pulled from the entire index or just those in a 523 /// provided ModuleToSummariesForIndex map. 524 template <typename Functor> void forEachModule(Functor Callback) { 525 if (ModuleToSummariesForIndex) { 526 for (const auto &M : *ModuleToSummariesForIndex) { 527 const auto &MPI = Index.modulePaths().find(M.first); 528 if (MPI == Index.modulePaths().end()) { 529 // This should only happen if the bitcode file was empty, in which 530 // case we shouldn't be importing (the ModuleToSummariesForIndex 531 // would only include the module we are writing and index for). 532 assert(ModuleToSummariesForIndex->size() == 1); 533 continue; 534 } 535 Callback(*MPI); 536 } 537 } else { 538 // Since StringMap iteration order isn't guaranteed, order by path string 539 // first. 540 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 541 // map lookup. 542 std::vector<StringRef> ModulePaths; 543 for (auto &[ModPath, _] : Index.modulePaths()) 544 ModulePaths.push_back(ModPath); 545 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 546 for (auto &ModPath : ModulePaths) 547 Callback(*Index.modulePaths().find(ModPath)); 548 } 549 } 550 551 /// Main entry point for writing a combined index to bitcode. 552 void write(); 553 554 private: 555 void writeModStrings(); 556 void writeCombinedGlobalValueSummary(); 557 558 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 559 auto VMI = GUIDToValueIdMap.find(ValGUID); 560 if (VMI == GUIDToValueIdMap.end()) 561 return std::nullopt; 562 return VMI->second; 563 } 564 565 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 566 }; 567 568 } // end anonymous namespace 569 570 static unsigned getEncodedCastOpcode(unsigned Opcode) { 571 switch (Opcode) { 572 default: llvm_unreachable("Unknown cast instruction!"); 573 case Instruction::Trunc : return bitc::CAST_TRUNC; 574 case Instruction::ZExt : return bitc::CAST_ZEXT; 575 case Instruction::SExt : return bitc::CAST_SEXT; 576 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 577 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 578 case Instruction::UIToFP : return bitc::CAST_UITOFP; 579 case Instruction::SIToFP : return bitc::CAST_SITOFP; 580 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 581 case Instruction::FPExt : return bitc::CAST_FPEXT; 582 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 583 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 584 case Instruction::BitCast : return bitc::CAST_BITCAST; 585 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 586 } 587 } 588 589 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 590 switch (Opcode) { 591 default: llvm_unreachable("Unknown binary instruction!"); 592 case Instruction::FNeg: return bitc::UNOP_FNEG; 593 } 594 } 595 596 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 597 switch (Opcode) { 598 default: llvm_unreachable("Unknown binary instruction!"); 599 case Instruction::Add: 600 case Instruction::FAdd: return bitc::BINOP_ADD; 601 case Instruction::Sub: 602 case Instruction::FSub: return bitc::BINOP_SUB; 603 case Instruction::Mul: 604 case Instruction::FMul: return bitc::BINOP_MUL; 605 case Instruction::UDiv: return bitc::BINOP_UDIV; 606 case Instruction::FDiv: 607 case Instruction::SDiv: return bitc::BINOP_SDIV; 608 case Instruction::URem: return bitc::BINOP_UREM; 609 case Instruction::FRem: 610 case Instruction::SRem: return bitc::BINOP_SREM; 611 case Instruction::Shl: return bitc::BINOP_SHL; 612 case Instruction::LShr: return bitc::BINOP_LSHR; 613 case Instruction::AShr: return bitc::BINOP_ASHR; 614 case Instruction::And: return bitc::BINOP_AND; 615 case Instruction::Or: return bitc::BINOP_OR; 616 case Instruction::Xor: return bitc::BINOP_XOR; 617 } 618 } 619 620 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 621 switch (Op) { 622 default: llvm_unreachable("Unknown RMW operation!"); 623 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 624 case AtomicRMWInst::Add: return bitc::RMW_ADD; 625 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 626 case AtomicRMWInst::And: return bitc::RMW_AND; 627 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 628 case AtomicRMWInst::Or: return bitc::RMW_OR; 629 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 630 case AtomicRMWInst::Max: return bitc::RMW_MAX; 631 case AtomicRMWInst::Min: return bitc::RMW_MIN; 632 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 633 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 634 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 635 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 636 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 637 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 638 case AtomicRMWInst::UIncWrap: 639 return bitc::RMW_UINC_WRAP; 640 case AtomicRMWInst::UDecWrap: 641 return bitc::RMW_UDEC_WRAP; 642 } 643 } 644 645 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 646 switch (Ordering) { 647 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 648 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 649 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 650 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 651 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 652 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 653 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 654 } 655 llvm_unreachable("Invalid ordering"); 656 } 657 658 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 659 StringRef Str, unsigned AbbrevToUse) { 660 SmallVector<unsigned, 64> Vals; 661 662 // Code: [strchar x N] 663 for (char C : Str) { 664 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 665 AbbrevToUse = 0; 666 Vals.push_back(C); 667 } 668 669 // Emit the finished record. 670 Stream.EmitRecord(Code, Vals, AbbrevToUse); 671 } 672 673 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 674 switch (Kind) { 675 case Attribute::Alignment: 676 return bitc::ATTR_KIND_ALIGNMENT; 677 case Attribute::AllocAlign: 678 return bitc::ATTR_KIND_ALLOC_ALIGN; 679 case Attribute::AllocSize: 680 return bitc::ATTR_KIND_ALLOC_SIZE; 681 case Attribute::AlwaysInline: 682 return bitc::ATTR_KIND_ALWAYS_INLINE; 683 case Attribute::Builtin: 684 return bitc::ATTR_KIND_BUILTIN; 685 case Attribute::ByVal: 686 return bitc::ATTR_KIND_BY_VAL; 687 case Attribute::Convergent: 688 return bitc::ATTR_KIND_CONVERGENT; 689 case Attribute::InAlloca: 690 return bitc::ATTR_KIND_IN_ALLOCA; 691 case Attribute::Cold: 692 return bitc::ATTR_KIND_COLD; 693 case Attribute::DisableSanitizerInstrumentation: 694 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 695 case Attribute::FnRetThunkExtern: 696 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 697 case Attribute::Hot: 698 return bitc::ATTR_KIND_HOT; 699 case Attribute::ElementType: 700 return bitc::ATTR_KIND_ELEMENTTYPE; 701 case Attribute::InlineHint: 702 return bitc::ATTR_KIND_INLINE_HINT; 703 case Attribute::InReg: 704 return bitc::ATTR_KIND_IN_REG; 705 case Attribute::JumpTable: 706 return bitc::ATTR_KIND_JUMP_TABLE; 707 case Attribute::MinSize: 708 return bitc::ATTR_KIND_MIN_SIZE; 709 case Attribute::AllocatedPointer: 710 return bitc::ATTR_KIND_ALLOCATED_POINTER; 711 case Attribute::AllocKind: 712 return bitc::ATTR_KIND_ALLOC_KIND; 713 case Attribute::Memory: 714 return bitc::ATTR_KIND_MEMORY; 715 case Attribute::NoFPClass: 716 return bitc::ATTR_KIND_NOFPCLASS; 717 case Attribute::Naked: 718 return bitc::ATTR_KIND_NAKED; 719 case Attribute::Nest: 720 return bitc::ATTR_KIND_NEST; 721 case Attribute::NoAlias: 722 return bitc::ATTR_KIND_NO_ALIAS; 723 case Attribute::NoBuiltin: 724 return bitc::ATTR_KIND_NO_BUILTIN; 725 case Attribute::NoCallback: 726 return bitc::ATTR_KIND_NO_CALLBACK; 727 case Attribute::NoCapture: 728 return bitc::ATTR_KIND_NO_CAPTURE; 729 case Attribute::NoDuplicate: 730 return bitc::ATTR_KIND_NO_DUPLICATE; 731 case Attribute::NoFree: 732 return bitc::ATTR_KIND_NOFREE; 733 case Attribute::NoImplicitFloat: 734 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 735 case Attribute::NoInline: 736 return bitc::ATTR_KIND_NO_INLINE; 737 case Attribute::NoRecurse: 738 return bitc::ATTR_KIND_NO_RECURSE; 739 case Attribute::NoMerge: 740 return bitc::ATTR_KIND_NO_MERGE; 741 case Attribute::NonLazyBind: 742 return bitc::ATTR_KIND_NON_LAZY_BIND; 743 case Attribute::NonNull: 744 return bitc::ATTR_KIND_NON_NULL; 745 case Attribute::Dereferenceable: 746 return bitc::ATTR_KIND_DEREFERENCEABLE; 747 case Attribute::DereferenceableOrNull: 748 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 749 case Attribute::NoRedZone: 750 return bitc::ATTR_KIND_NO_RED_ZONE; 751 case Attribute::NoReturn: 752 return bitc::ATTR_KIND_NO_RETURN; 753 case Attribute::NoSync: 754 return bitc::ATTR_KIND_NOSYNC; 755 case Attribute::NoCfCheck: 756 return bitc::ATTR_KIND_NOCF_CHECK; 757 case Attribute::NoProfile: 758 return bitc::ATTR_KIND_NO_PROFILE; 759 case Attribute::SkipProfile: 760 return bitc::ATTR_KIND_SKIP_PROFILE; 761 case Attribute::NoUnwind: 762 return bitc::ATTR_KIND_NO_UNWIND; 763 case Attribute::NoSanitizeBounds: 764 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 765 case Attribute::NoSanitizeCoverage: 766 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 767 case Attribute::NullPointerIsValid: 768 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 769 case Attribute::OptimizeForDebugging: 770 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 771 case Attribute::OptForFuzzing: 772 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 773 case Attribute::OptimizeForSize: 774 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 775 case Attribute::OptimizeNone: 776 return bitc::ATTR_KIND_OPTIMIZE_NONE; 777 case Attribute::ReadNone: 778 return bitc::ATTR_KIND_READ_NONE; 779 case Attribute::ReadOnly: 780 return bitc::ATTR_KIND_READ_ONLY; 781 case Attribute::Returned: 782 return bitc::ATTR_KIND_RETURNED; 783 case Attribute::ReturnsTwice: 784 return bitc::ATTR_KIND_RETURNS_TWICE; 785 case Attribute::SExt: 786 return bitc::ATTR_KIND_S_EXT; 787 case Attribute::Speculatable: 788 return bitc::ATTR_KIND_SPECULATABLE; 789 case Attribute::StackAlignment: 790 return bitc::ATTR_KIND_STACK_ALIGNMENT; 791 case Attribute::StackProtect: 792 return bitc::ATTR_KIND_STACK_PROTECT; 793 case Attribute::StackProtectReq: 794 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 795 case Attribute::StackProtectStrong: 796 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 797 case Attribute::SafeStack: 798 return bitc::ATTR_KIND_SAFESTACK; 799 case Attribute::ShadowCallStack: 800 return bitc::ATTR_KIND_SHADOWCALLSTACK; 801 case Attribute::StrictFP: 802 return bitc::ATTR_KIND_STRICT_FP; 803 case Attribute::StructRet: 804 return bitc::ATTR_KIND_STRUCT_RET; 805 case Attribute::SanitizeAddress: 806 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 807 case Attribute::SanitizeHWAddress: 808 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 809 case Attribute::SanitizeThread: 810 return bitc::ATTR_KIND_SANITIZE_THREAD; 811 case Attribute::SanitizeMemory: 812 return bitc::ATTR_KIND_SANITIZE_MEMORY; 813 case Attribute::SpeculativeLoadHardening: 814 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 815 case Attribute::SwiftError: 816 return bitc::ATTR_KIND_SWIFT_ERROR; 817 case Attribute::SwiftSelf: 818 return bitc::ATTR_KIND_SWIFT_SELF; 819 case Attribute::SwiftAsync: 820 return bitc::ATTR_KIND_SWIFT_ASYNC; 821 case Attribute::UWTable: 822 return bitc::ATTR_KIND_UW_TABLE; 823 case Attribute::VScaleRange: 824 return bitc::ATTR_KIND_VSCALE_RANGE; 825 case Attribute::WillReturn: 826 return bitc::ATTR_KIND_WILLRETURN; 827 case Attribute::WriteOnly: 828 return bitc::ATTR_KIND_WRITEONLY; 829 case Attribute::ZExt: 830 return bitc::ATTR_KIND_Z_EXT; 831 case Attribute::ImmArg: 832 return bitc::ATTR_KIND_IMMARG; 833 case Attribute::SanitizeMemTag: 834 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 835 case Attribute::Preallocated: 836 return bitc::ATTR_KIND_PREALLOCATED; 837 case Attribute::NoUndef: 838 return bitc::ATTR_KIND_NOUNDEF; 839 case Attribute::ByRef: 840 return bitc::ATTR_KIND_BYREF; 841 case Attribute::MustProgress: 842 return bitc::ATTR_KIND_MUSTPROGRESS; 843 case Attribute::PresplitCoroutine: 844 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 845 case Attribute::Writable: 846 return bitc::ATTR_KIND_WRITABLE; 847 case Attribute::CoroDestroyOnlyWhenComplete: 848 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 849 case Attribute::DeadOnUnwind: 850 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 851 case Attribute::Range: 852 return bitc::ATTR_KIND_RANGE; 853 case Attribute::EndAttrKinds: 854 llvm_unreachable("Can not encode end-attribute kinds marker."); 855 case Attribute::None: 856 llvm_unreachable("Can not encode none-attribute."); 857 case Attribute::EmptyKey: 858 case Attribute::TombstoneKey: 859 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 860 } 861 862 llvm_unreachable("Trying to encode unknown attribute"); 863 } 864 865 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 866 if ((int64_t)V >= 0) 867 Vals.push_back(V << 1); 868 else 869 Vals.push_back((-V << 1) | 1); 870 } 871 872 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 873 // We have an arbitrary precision integer value to write whose 874 // bit width is > 64. However, in canonical unsigned integer 875 // format it is likely that the high bits are going to be zero. 876 // So, we only write the number of active words. 877 unsigned NumWords = A.getActiveWords(); 878 const uint64_t *RawData = A.getRawData(); 879 for (unsigned i = 0; i < NumWords; i++) 880 emitSignedInt64(Vals, RawData[i]); 881 } 882 883 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 884 const ConstantRange &CR) { 885 unsigned BitWidth = CR.getBitWidth(); 886 Record.push_back(BitWidth); 887 if (BitWidth > 64) { 888 Record.push_back(CR.getLower().getActiveWords() | 889 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 890 emitWideAPInt(Record, CR.getLower()); 891 emitWideAPInt(Record, CR.getUpper()); 892 } else { 893 emitSignedInt64(Record, CR.getLower().getSExtValue()); 894 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 895 } 896 } 897 898 void ModuleBitcodeWriter::writeAttributeGroupTable() { 899 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 900 VE.getAttributeGroups(); 901 if (AttrGrps.empty()) return; 902 903 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 904 905 SmallVector<uint64_t, 64> Record; 906 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 907 unsigned AttrListIndex = Pair.first; 908 AttributeSet AS = Pair.second; 909 Record.push_back(VE.getAttributeGroupID(Pair)); 910 Record.push_back(AttrListIndex); 911 912 for (Attribute Attr : AS) { 913 if (Attr.isEnumAttribute()) { 914 Record.push_back(0); 915 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 916 } else if (Attr.isIntAttribute()) { 917 Record.push_back(1); 918 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 919 Record.push_back(Attr.getValueAsInt()); 920 } else if (Attr.isStringAttribute()) { 921 StringRef Kind = Attr.getKindAsString(); 922 StringRef Val = Attr.getValueAsString(); 923 924 Record.push_back(Val.empty() ? 3 : 4); 925 Record.append(Kind.begin(), Kind.end()); 926 Record.push_back(0); 927 if (!Val.empty()) { 928 Record.append(Val.begin(), Val.end()); 929 Record.push_back(0); 930 } 931 } else if (Attr.isTypeAttribute()) { 932 Type *Ty = Attr.getValueAsType(); 933 Record.push_back(Ty ? 6 : 5); 934 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 935 if (Ty) 936 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 937 } else { 938 assert(Attr.isConstantRangeAttribute()); 939 Record.push_back(7); 940 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 941 emitConstantRange(Record, Attr.getValueAsConstantRange()); 942 } 943 } 944 945 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 946 Record.clear(); 947 } 948 949 Stream.ExitBlock(); 950 } 951 952 void ModuleBitcodeWriter::writeAttributeTable() { 953 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 954 if (Attrs.empty()) return; 955 956 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 957 958 SmallVector<uint64_t, 64> Record; 959 for (const AttributeList &AL : Attrs) { 960 for (unsigned i : AL.indexes()) { 961 AttributeSet AS = AL.getAttributes(i); 962 if (AS.hasAttributes()) 963 Record.push_back(VE.getAttributeGroupID({i, AS})); 964 } 965 966 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 967 Record.clear(); 968 } 969 970 Stream.ExitBlock(); 971 } 972 973 /// WriteTypeTable - Write out the type table for a module. 974 void ModuleBitcodeWriter::writeTypeTable() { 975 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 976 977 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 978 SmallVector<uint64_t, 64> TypeVals; 979 980 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 981 982 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 983 auto Abbv = std::make_shared<BitCodeAbbrev>(); 984 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 985 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 986 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 987 988 // Abbrev for TYPE_CODE_FUNCTION. 989 Abbv = std::make_shared<BitCodeAbbrev>(); 990 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 994 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 995 996 // Abbrev for TYPE_CODE_STRUCT_ANON. 997 Abbv = std::make_shared<BitCodeAbbrev>(); 998 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1002 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1003 1004 // Abbrev for TYPE_CODE_STRUCT_NAME. 1005 Abbv = std::make_shared<BitCodeAbbrev>(); 1006 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1009 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1010 1011 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1012 Abbv = std::make_shared<BitCodeAbbrev>(); 1013 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1017 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1018 1019 // Abbrev for TYPE_CODE_ARRAY. 1020 Abbv = std::make_shared<BitCodeAbbrev>(); 1021 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1024 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1025 1026 // Emit an entry count so the reader can reserve space. 1027 TypeVals.push_back(TypeList.size()); 1028 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1029 TypeVals.clear(); 1030 1031 // Loop over all of the types, emitting each in turn. 1032 for (Type *T : TypeList) { 1033 int AbbrevToUse = 0; 1034 unsigned Code = 0; 1035 1036 switch (T->getTypeID()) { 1037 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1038 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1039 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1040 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1041 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1042 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1043 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1044 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1045 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1046 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 1047 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 1048 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1049 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1050 case Type::IntegerTyID: 1051 // INTEGER: [width] 1052 Code = bitc::TYPE_CODE_INTEGER; 1053 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1054 break; 1055 case Type::PointerTyID: { 1056 PointerType *PTy = cast<PointerType>(T); 1057 unsigned AddressSpace = PTy->getAddressSpace(); 1058 // OPAQUE_POINTER: [address space] 1059 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1060 TypeVals.push_back(AddressSpace); 1061 if (AddressSpace == 0) 1062 AbbrevToUse = OpaquePtrAbbrev; 1063 break; 1064 } 1065 case Type::FunctionTyID: { 1066 FunctionType *FT = cast<FunctionType>(T); 1067 // FUNCTION: [isvararg, retty, paramty x N] 1068 Code = bitc::TYPE_CODE_FUNCTION; 1069 TypeVals.push_back(FT->isVarArg()); 1070 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1071 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1072 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1073 AbbrevToUse = FunctionAbbrev; 1074 break; 1075 } 1076 case Type::StructTyID: { 1077 StructType *ST = cast<StructType>(T); 1078 // STRUCT: [ispacked, eltty x N] 1079 TypeVals.push_back(ST->isPacked()); 1080 // Output all of the element types. 1081 for (Type *ET : ST->elements()) 1082 TypeVals.push_back(VE.getTypeID(ET)); 1083 1084 if (ST->isLiteral()) { 1085 Code = bitc::TYPE_CODE_STRUCT_ANON; 1086 AbbrevToUse = StructAnonAbbrev; 1087 } else { 1088 if (ST->isOpaque()) { 1089 Code = bitc::TYPE_CODE_OPAQUE; 1090 } else { 1091 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1092 AbbrevToUse = StructNamedAbbrev; 1093 } 1094 1095 // Emit the name if it is present. 1096 if (!ST->getName().empty()) 1097 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1098 StructNameAbbrev); 1099 } 1100 break; 1101 } 1102 case Type::ArrayTyID: { 1103 ArrayType *AT = cast<ArrayType>(T); 1104 // ARRAY: [numelts, eltty] 1105 Code = bitc::TYPE_CODE_ARRAY; 1106 TypeVals.push_back(AT->getNumElements()); 1107 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1108 AbbrevToUse = ArrayAbbrev; 1109 break; 1110 } 1111 case Type::FixedVectorTyID: 1112 case Type::ScalableVectorTyID: { 1113 VectorType *VT = cast<VectorType>(T); 1114 // VECTOR [numelts, eltty] or 1115 // [numelts, eltty, scalable] 1116 Code = bitc::TYPE_CODE_VECTOR; 1117 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1118 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1119 if (isa<ScalableVectorType>(VT)) 1120 TypeVals.push_back(true); 1121 break; 1122 } 1123 case Type::TargetExtTyID: { 1124 TargetExtType *TET = cast<TargetExtType>(T); 1125 Code = bitc::TYPE_CODE_TARGET_TYPE; 1126 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1127 StructNameAbbrev); 1128 TypeVals.push_back(TET->getNumTypeParameters()); 1129 for (Type *InnerTy : TET->type_params()) 1130 TypeVals.push_back(VE.getTypeID(InnerTy)); 1131 for (unsigned IntParam : TET->int_params()) 1132 TypeVals.push_back(IntParam); 1133 break; 1134 } 1135 case Type::TypedPointerTyID: 1136 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1137 } 1138 1139 // Emit the finished record. 1140 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1141 TypeVals.clear(); 1142 } 1143 1144 Stream.ExitBlock(); 1145 } 1146 1147 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1148 switch (Linkage) { 1149 case GlobalValue::ExternalLinkage: 1150 return 0; 1151 case GlobalValue::WeakAnyLinkage: 1152 return 16; 1153 case GlobalValue::AppendingLinkage: 1154 return 2; 1155 case GlobalValue::InternalLinkage: 1156 return 3; 1157 case GlobalValue::LinkOnceAnyLinkage: 1158 return 18; 1159 case GlobalValue::ExternalWeakLinkage: 1160 return 7; 1161 case GlobalValue::CommonLinkage: 1162 return 8; 1163 case GlobalValue::PrivateLinkage: 1164 return 9; 1165 case GlobalValue::WeakODRLinkage: 1166 return 17; 1167 case GlobalValue::LinkOnceODRLinkage: 1168 return 19; 1169 case GlobalValue::AvailableExternallyLinkage: 1170 return 12; 1171 } 1172 llvm_unreachable("Invalid linkage"); 1173 } 1174 1175 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1176 return getEncodedLinkage(GV.getLinkage()); 1177 } 1178 1179 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1180 uint64_t RawFlags = 0; 1181 RawFlags |= Flags.ReadNone; 1182 RawFlags |= (Flags.ReadOnly << 1); 1183 RawFlags |= (Flags.NoRecurse << 2); 1184 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1185 RawFlags |= (Flags.NoInline << 4); 1186 RawFlags |= (Flags.AlwaysInline << 5); 1187 RawFlags |= (Flags.NoUnwind << 6); 1188 RawFlags |= (Flags.MayThrow << 7); 1189 RawFlags |= (Flags.HasUnknownCall << 8); 1190 RawFlags |= (Flags.MustBeUnreachable << 9); 1191 return RawFlags; 1192 } 1193 1194 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1195 // in BitcodeReader.cpp. 1196 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1197 uint64_t RawFlags = 0; 1198 1199 RawFlags |= Flags.NotEligibleToImport; // bool 1200 RawFlags |= (Flags.Live << 1); 1201 RawFlags |= (Flags.DSOLocal << 2); 1202 RawFlags |= (Flags.CanAutoHide << 3); 1203 1204 // Linkage don't need to be remapped at that time for the summary. Any future 1205 // change to the getEncodedLinkage() function will need to be taken into 1206 // account here as well. 1207 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1208 1209 RawFlags |= (Flags.Visibility << 8); // 2 bits 1210 1211 return RawFlags; 1212 } 1213 1214 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1215 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1216 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1217 return RawFlags; 1218 } 1219 1220 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1221 uint64_t RawFlags = 0; 1222 1223 RawFlags |= CI.Hotness; // 3 bits 1224 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1225 1226 return RawFlags; 1227 } 1228 1229 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1230 uint64_t RawFlags = 0; 1231 1232 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1233 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1234 1235 return RawFlags; 1236 } 1237 1238 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1239 switch (GV.getVisibility()) { 1240 case GlobalValue::DefaultVisibility: return 0; 1241 case GlobalValue::HiddenVisibility: return 1; 1242 case GlobalValue::ProtectedVisibility: return 2; 1243 } 1244 llvm_unreachable("Invalid visibility"); 1245 } 1246 1247 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1248 switch (GV.getDLLStorageClass()) { 1249 case GlobalValue::DefaultStorageClass: return 0; 1250 case GlobalValue::DLLImportStorageClass: return 1; 1251 case GlobalValue::DLLExportStorageClass: return 2; 1252 } 1253 llvm_unreachable("Invalid DLL storage class"); 1254 } 1255 1256 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1257 switch (GV.getThreadLocalMode()) { 1258 case GlobalVariable::NotThreadLocal: return 0; 1259 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1260 case GlobalVariable::LocalDynamicTLSModel: return 2; 1261 case GlobalVariable::InitialExecTLSModel: return 3; 1262 case GlobalVariable::LocalExecTLSModel: return 4; 1263 } 1264 llvm_unreachable("Invalid TLS model"); 1265 } 1266 1267 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1268 switch (C.getSelectionKind()) { 1269 case Comdat::Any: 1270 return bitc::COMDAT_SELECTION_KIND_ANY; 1271 case Comdat::ExactMatch: 1272 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1273 case Comdat::Largest: 1274 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1275 case Comdat::NoDeduplicate: 1276 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1277 case Comdat::SameSize: 1278 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1279 } 1280 llvm_unreachable("Invalid selection kind"); 1281 } 1282 1283 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1284 switch (GV.getUnnamedAddr()) { 1285 case GlobalValue::UnnamedAddr::None: return 0; 1286 case GlobalValue::UnnamedAddr::Local: return 2; 1287 case GlobalValue::UnnamedAddr::Global: return 1; 1288 } 1289 llvm_unreachable("Invalid unnamed_addr"); 1290 } 1291 1292 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1293 if (GenerateHash) 1294 Hasher.update(Str); 1295 return StrtabBuilder.add(Str); 1296 } 1297 1298 void ModuleBitcodeWriter::writeComdats() { 1299 SmallVector<unsigned, 64> Vals; 1300 for (const Comdat *C : VE.getComdats()) { 1301 // COMDAT: [strtab offset, strtab size, selection_kind] 1302 Vals.push_back(addToStrtab(C->getName())); 1303 Vals.push_back(C->getName().size()); 1304 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1305 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1306 Vals.clear(); 1307 } 1308 } 1309 1310 /// Write a record that will eventually hold the word offset of the 1311 /// module-level VST. For now the offset is 0, which will be backpatched 1312 /// after the real VST is written. Saves the bit offset to backpatch. 1313 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1314 // Write a placeholder value in for the offset of the real VST, 1315 // which is written after the function blocks so that it can include 1316 // the offset of each function. The placeholder offset will be 1317 // updated when the real VST is written. 1318 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1319 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1320 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1321 // hold the real VST offset. Must use fixed instead of VBR as we don't 1322 // know how many VBR chunks to reserve ahead of time. 1323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1324 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1325 1326 // Emit the placeholder 1327 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1328 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1329 1330 // Compute and save the bit offset to the placeholder, which will be 1331 // patched when the real VST is written. We can simply subtract the 32-bit 1332 // fixed size from the current bit number to get the location to backpatch. 1333 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1334 } 1335 1336 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1337 1338 /// Determine the encoding to use for the given string name and length. 1339 static StringEncoding getStringEncoding(StringRef Str) { 1340 bool isChar6 = true; 1341 for (char C : Str) { 1342 if (isChar6) 1343 isChar6 = BitCodeAbbrevOp::isChar6(C); 1344 if ((unsigned char)C & 128) 1345 // don't bother scanning the rest. 1346 return SE_Fixed8; 1347 } 1348 if (isChar6) 1349 return SE_Char6; 1350 return SE_Fixed7; 1351 } 1352 1353 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1354 "Sanitizer Metadata is too large for naive serialization."); 1355 static unsigned 1356 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1357 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1358 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1359 } 1360 1361 /// Emit top-level description of module, including target triple, inline asm, 1362 /// descriptors for global variables, and function prototype info. 1363 /// Returns the bit offset to backpatch with the location of the real VST. 1364 void ModuleBitcodeWriter::writeModuleInfo() { 1365 // Emit various pieces of data attached to a module. 1366 if (!M.getTargetTriple().empty()) 1367 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1368 0 /*TODO*/); 1369 const std::string &DL = M.getDataLayoutStr(); 1370 if (!DL.empty()) 1371 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1372 if (!M.getModuleInlineAsm().empty()) 1373 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1374 0 /*TODO*/); 1375 1376 // Emit information about sections and GC, computing how many there are. Also 1377 // compute the maximum alignment value. 1378 std::map<std::string, unsigned> SectionMap; 1379 std::map<std::string, unsigned> GCMap; 1380 MaybeAlign MaxAlignment; 1381 unsigned MaxGlobalType = 0; 1382 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1383 if (A) 1384 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1385 }; 1386 for (const GlobalVariable &GV : M.globals()) { 1387 UpdateMaxAlignment(GV.getAlign()); 1388 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1389 if (GV.hasSection()) { 1390 // Give section names unique ID's. 1391 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1392 if (!Entry) { 1393 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1394 0 /*TODO*/); 1395 Entry = SectionMap.size(); 1396 } 1397 } 1398 } 1399 for (const Function &F : M) { 1400 UpdateMaxAlignment(F.getAlign()); 1401 if (F.hasSection()) { 1402 // Give section names unique ID's. 1403 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1404 if (!Entry) { 1405 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1406 0 /*TODO*/); 1407 Entry = SectionMap.size(); 1408 } 1409 } 1410 if (F.hasGC()) { 1411 // Same for GC names. 1412 unsigned &Entry = GCMap[F.getGC()]; 1413 if (!Entry) { 1414 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1415 0 /*TODO*/); 1416 Entry = GCMap.size(); 1417 } 1418 } 1419 } 1420 1421 // Emit abbrev for globals, now that we know # sections and max alignment. 1422 unsigned SimpleGVarAbbrev = 0; 1423 if (!M.global_empty()) { 1424 // Add an abbrev for common globals with no visibility or thread localness. 1425 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1426 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1430 Log2_32_Ceil(MaxGlobalType+1))); 1431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1432 //| explicitType << 1 1433 //| constant 1434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1436 if (!MaxAlignment) // Alignment. 1437 Abbv->Add(BitCodeAbbrevOp(0)); 1438 else { 1439 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1441 Log2_32_Ceil(MaxEncAlignment+1))); 1442 } 1443 if (SectionMap.empty()) // Section. 1444 Abbv->Add(BitCodeAbbrevOp(0)); 1445 else 1446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1447 Log2_32_Ceil(SectionMap.size()+1))); 1448 // Don't bother emitting vis + thread local. 1449 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1450 } 1451 1452 SmallVector<unsigned, 64> Vals; 1453 // Emit the module's source file name. 1454 { 1455 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1456 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1457 if (Bits == SE_Char6) 1458 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1459 else if (Bits == SE_Fixed7) 1460 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1461 1462 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1463 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1464 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1466 Abbv->Add(AbbrevOpToUse); 1467 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1468 1469 for (const auto P : M.getSourceFileName()) 1470 Vals.push_back((unsigned char)P); 1471 1472 // Emit the finished record. 1473 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1474 Vals.clear(); 1475 } 1476 1477 // Emit the global variable information. 1478 for (const GlobalVariable &GV : M.globals()) { 1479 unsigned AbbrevToUse = 0; 1480 1481 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1482 // linkage, alignment, section, visibility, threadlocal, 1483 // unnamed_addr, externally_initialized, dllstorageclass, 1484 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1485 Vals.push_back(addToStrtab(GV.getName())); 1486 Vals.push_back(GV.getName().size()); 1487 Vals.push_back(VE.getTypeID(GV.getValueType())); 1488 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1489 Vals.push_back(GV.isDeclaration() ? 0 : 1490 (VE.getValueID(GV.getInitializer()) + 1)); 1491 Vals.push_back(getEncodedLinkage(GV)); 1492 Vals.push_back(getEncodedAlign(GV.getAlign())); 1493 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1494 : 0); 1495 if (GV.isThreadLocal() || 1496 GV.getVisibility() != GlobalValue::DefaultVisibility || 1497 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1498 GV.isExternallyInitialized() || 1499 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1500 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1501 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1502 Vals.push_back(getEncodedVisibility(GV)); 1503 Vals.push_back(getEncodedThreadLocalMode(GV)); 1504 Vals.push_back(getEncodedUnnamedAddr(GV)); 1505 Vals.push_back(GV.isExternallyInitialized()); 1506 Vals.push_back(getEncodedDLLStorageClass(GV)); 1507 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1508 1509 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1510 Vals.push_back(VE.getAttributeListID(AL)); 1511 1512 Vals.push_back(GV.isDSOLocal()); 1513 Vals.push_back(addToStrtab(GV.getPartition())); 1514 Vals.push_back(GV.getPartition().size()); 1515 1516 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1517 GV.getSanitizerMetadata()) 1518 : 0)); 1519 Vals.push_back(GV.getCodeModelRaw()); 1520 } else { 1521 AbbrevToUse = SimpleGVarAbbrev; 1522 } 1523 1524 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1525 Vals.clear(); 1526 } 1527 1528 // Emit the function proto information. 1529 for (const Function &F : M) { 1530 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1531 // linkage, paramattrs, alignment, section, visibility, gc, 1532 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1533 // prefixdata, personalityfn, DSO_Local, addrspace] 1534 Vals.push_back(addToStrtab(F.getName())); 1535 Vals.push_back(F.getName().size()); 1536 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1537 Vals.push_back(F.getCallingConv()); 1538 Vals.push_back(F.isDeclaration()); 1539 Vals.push_back(getEncodedLinkage(F)); 1540 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1541 Vals.push_back(getEncodedAlign(F.getAlign())); 1542 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1543 : 0); 1544 Vals.push_back(getEncodedVisibility(F)); 1545 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1546 Vals.push_back(getEncodedUnnamedAddr(F)); 1547 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1548 : 0); 1549 Vals.push_back(getEncodedDLLStorageClass(F)); 1550 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1551 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1552 : 0); 1553 Vals.push_back( 1554 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1555 1556 Vals.push_back(F.isDSOLocal()); 1557 Vals.push_back(F.getAddressSpace()); 1558 Vals.push_back(addToStrtab(F.getPartition())); 1559 Vals.push_back(F.getPartition().size()); 1560 1561 unsigned AbbrevToUse = 0; 1562 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1563 Vals.clear(); 1564 } 1565 1566 // Emit the alias information. 1567 for (const GlobalAlias &A : M.aliases()) { 1568 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1569 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1570 // DSO_Local] 1571 Vals.push_back(addToStrtab(A.getName())); 1572 Vals.push_back(A.getName().size()); 1573 Vals.push_back(VE.getTypeID(A.getValueType())); 1574 Vals.push_back(A.getType()->getAddressSpace()); 1575 Vals.push_back(VE.getValueID(A.getAliasee())); 1576 Vals.push_back(getEncodedLinkage(A)); 1577 Vals.push_back(getEncodedVisibility(A)); 1578 Vals.push_back(getEncodedDLLStorageClass(A)); 1579 Vals.push_back(getEncodedThreadLocalMode(A)); 1580 Vals.push_back(getEncodedUnnamedAddr(A)); 1581 Vals.push_back(A.isDSOLocal()); 1582 Vals.push_back(addToStrtab(A.getPartition())); 1583 Vals.push_back(A.getPartition().size()); 1584 1585 unsigned AbbrevToUse = 0; 1586 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1587 Vals.clear(); 1588 } 1589 1590 // Emit the ifunc information. 1591 for (const GlobalIFunc &I : M.ifuncs()) { 1592 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1593 // val#, linkage, visibility, DSO_Local] 1594 Vals.push_back(addToStrtab(I.getName())); 1595 Vals.push_back(I.getName().size()); 1596 Vals.push_back(VE.getTypeID(I.getValueType())); 1597 Vals.push_back(I.getType()->getAddressSpace()); 1598 Vals.push_back(VE.getValueID(I.getResolver())); 1599 Vals.push_back(getEncodedLinkage(I)); 1600 Vals.push_back(getEncodedVisibility(I)); 1601 Vals.push_back(I.isDSOLocal()); 1602 Vals.push_back(addToStrtab(I.getPartition())); 1603 Vals.push_back(I.getPartition().size()); 1604 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1605 Vals.clear(); 1606 } 1607 1608 writeValueSymbolTableForwardDecl(); 1609 } 1610 1611 static uint64_t getOptimizationFlags(const Value *V) { 1612 uint64_t Flags = 0; 1613 1614 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1615 if (OBO->hasNoSignedWrap()) 1616 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1617 if (OBO->hasNoUnsignedWrap()) 1618 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1619 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1620 if (PEO->isExact()) 1621 Flags |= 1 << bitc::PEO_EXACT; 1622 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1623 if (PDI->isDisjoint()) 1624 Flags |= 1 << bitc::PDI_DISJOINT; 1625 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1626 if (FPMO->hasAllowReassoc()) 1627 Flags |= bitc::AllowReassoc; 1628 if (FPMO->hasNoNaNs()) 1629 Flags |= bitc::NoNaNs; 1630 if (FPMO->hasNoInfs()) 1631 Flags |= bitc::NoInfs; 1632 if (FPMO->hasNoSignedZeros()) 1633 Flags |= bitc::NoSignedZeros; 1634 if (FPMO->hasAllowReciprocal()) 1635 Flags |= bitc::AllowReciprocal; 1636 if (FPMO->hasAllowContract()) 1637 Flags |= bitc::AllowContract; 1638 if (FPMO->hasApproxFunc()) 1639 Flags |= bitc::ApproxFunc; 1640 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1641 if (NNI->hasNonNeg()) 1642 Flags |= 1 << bitc::PNNI_NON_NEG; 1643 } else if (const auto *TI = dyn_cast<TruncInst>(V)) { 1644 if (TI->hasNoSignedWrap()) 1645 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; 1646 if (TI->hasNoUnsignedWrap()) 1647 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; 1648 } 1649 1650 return Flags; 1651 } 1652 1653 void ModuleBitcodeWriter::writeValueAsMetadata( 1654 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1655 // Mimic an MDNode with a value as one operand. 1656 Value *V = MD->getValue(); 1657 Record.push_back(VE.getTypeID(V->getType())); 1658 Record.push_back(VE.getValueID(V)); 1659 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1660 Record.clear(); 1661 } 1662 1663 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1664 SmallVectorImpl<uint64_t> &Record, 1665 unsigned Abbrev) { 1666 for (const MDOperand &MDO : N->operands()) { 1667 Metadata *MD = MDO; 1668 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1669 "Unexpected function-local metadata"); 1670 Record.push_back(VE.getMetadataOrNullID(MD)); 1671 } 1672 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1673 : bitc::METADATA_NODE, 1674 Record, Abbrev); 1675 Record.clear(); 1676 } 1677 1678 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1679 // Assume the column is usually under 128, and always output the inlined-at 1680 // location (it's never more expensive than building an array size 1). 1681 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1682 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1689 return Stream.EmitAbbrev(std::move(Abbv)); 1690 } 1691 1692 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1693 SmallVectorImpl<uint64_t> &Record, 1694 unsigned &Abbrev) { 1695 if (!Abbrev) 1696 Abbrev = createDILocationAbbrev(); 1697 1698 Record.push_back(N->isDistinct()); 1699 Record.push_back(N->getLine()); 1700 Record.push_back(N->getColumn()); 1701 Record.push_back(VE.getMetadataID(N->getScope())); 1702 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1703 Record.push_back(N->isImplicitCode()); 1704 1705 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1706 Record.clear(); 1707 } 1708 1709 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1710 // Assume the column is usually under 128, and always output the inlined-at 1711 // location (it's never more expensive than building an array size 1). 1712 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1713 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1720 return Stream.EmitAbbrev(std::move(Abbv)); 1721 } 1722 1723 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1724 SmallVectorImpl<uint64_t> &Record, 1725 unsigned &Abbrev) { 1726 if (!Abbrev) 1727 Abbrev = createGenericDINodeAbbrev(); 1728 1729 Record.push_back(N->isDistinct()); 1730 Record.push_back(N->getTag()); 1731 Record.push_back(0); // Per-tag version field; unused for now. 1732 1733 for (auto &I : N->operands()) 1734 Record.push_back(VE.getMetadataOrNullID(I)); 1735 1736 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1737 Record.clear(); 1738 } 1739 1740 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1741 SmallVectorImpl<uint64_t> &Record, 1742 unsigned Abbrev) { 1743 const uint64_t Version = 2 << 1; 1744 Record.push_back((uint64_t)N->isDistinct() | Version); 1745 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1746 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1747 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1749 1750 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1751 Record.clear(); 1752 } 1753 1754 void ModuleBitcodeWriter::writeDIGenericSubrange( 1755 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1756 unsigned Abbrev) { 1757 Record.push_back((uint64_t)N->isDistinct()); 1758 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1759 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1760 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1761 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1762 1763 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1764 Record.clear(); 1765 } 1766 1767 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1768 SmallVectorImpl<uint64_t> &Record, 1769 unsigned Abbrev) { 1770 const uint64_t IsBigInt = 1 << 2; 1771 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1772 Record.push_back(N->getValue().getBitWidth()); 1773 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1774 emitWideAPInt(Record, N->getValue()); 1775 1776 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1777 Record.clear(); 1778 } 1779 1780 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1781 SmallVectorImpl<uint64_t> &Record, 1782 unsigned Abbrev) { 1783 Record.push_back(N->isDistinct()); 1784 Record.push_back(N->getTag()); 1785 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1786 Record.push_back(N->getSizeInBits()); 1787 Record.push_back(N->getAlignInBits()); 1788 Record.push_back(N->getEncoding()); 1789 Record.push_back(N->getFlags()); 1790 1791 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1792 Record.clear(); 1793 } 1794 1795 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1796 SmallVectorImpl<uint64_t> &Record, 1797 unsigned Abbrev) { 1798 Record.push_back(N->isDistinct()); 1799 Record.push_back(N->getTag()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1804 Record.push_back(N->getSizeInBits()); 1805 Record.push_back(N->getAlignInBits()); 1806 Record.push_back(N->getEncoding()); 1807 1808 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1809 Record.clear(); 1810 } 1811 1812 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1813 SmallVectorImpl<uint64_t> &Record, 1814 unsigned Abbrev) { 1815 Record.push_back(N->isDistinct()); 1816 Record.push_back(N->getTag()); 1817 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1818 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1819 Record.push_back(N->getLine()); 1820 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1821 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1822 Record.push_back(N->getSizeInBits()); 1823 Record.push_back(N->getAlignInBits()); 1824 Record.push_back(N->getOffsetInBits()); 1825 Record.push_back(N->getFlags()); 1826 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1827 1828 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1829 // that there is no DWARF address space associated with DIDerivedType. 1830 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1831 Record.push_back(*DWARFAddressSpace + 1); 1832 else 1833 Record.push_back(0); 1834 1835 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1836 1837 if (auto PtrAuthData = N->getPtrAuthData()) 1838 Record.push_back(PtrAuthData->RawData); 1839 else 1840 Record.push_back(0); 1841 1842 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1843 Record.clear(); 1844 } 1845 1846 void ModuleBitcodeWriter::writeDICompositeType( 1847 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1848 unsigned Abbrev) { 1849 const unsigned IsNotUsedInOldTypeRef = 0x2; 1850 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1851 Record.push_back(N->getTag()); 1852 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1854 Record.push_back(N->getLine()); 1855 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1857 Record.push_back(N->getSizeInBits()); 1858 Record.push_back(N->getAlignInBits()); 1859 Record.push_back(N->getOffsetInBits()); 1860 Record.push_back(N->getFlags()); 1861 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1862 Record.push_back(N->getRuntimeLang()); 1863 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1864 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1865 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1866 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1867 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1868 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1869 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1870 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1871 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1872 1873 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1874 Record.clear(); 1875 } 1876 1877 void ModuleBitcodeWriter::writeDISubroutineType( 1878 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1879 unsigned Abbrev) { 1880 const unsigned HasNoOldTypeRefs = 0x2; 1881 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1882 Record.push_back(N->getFlags()); 1883 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1884 Record.push_back(N->getCC()); 1885 1886 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1887 Record.clear(); 1888 } 1889 1890 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1891 SmallVectorImpl<uint64_t> &Record, 1892 unsigned Abbrev) { 1893 Record.push_back(N->isDistinct()); 1894 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1895 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1896 if (N->getRawChecksum()) { 1897 Record.push_back(N->getRawChecksum()->Kind); 1898 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1899 } else { 1900 // Maintain backwards compatibility with the old internal representation of 1901 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1902 Record.push_back(0); 1903 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1904 } 1905 auto Source = N->getRawSource(); 1906 if (Source) 1907 Record.push_back(VE.getMetadataOrNullID(Source)); 1908 1909 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1910 Record.clear(); 1911 } 1912 1913 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1914 SmallVectorImpl<uint64_t> &Record, 1915 unsigned Abbrev) { 1916 assert(N->isDistinct() && "Expected distinct compile units"); 1917 Record.push_back(/* IsDistinct */ true); 1918 Record.push_back(N->getSourceLanguage()); 1919 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1920 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1921 Record.push_back(N->isOptimized()); 1922 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1923 Record.push_back(N->getRuntimeVersion()); 1924 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1925 Record.push_back(N->getEmissionKind()); 1926 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1927 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1928 Record.push_back(/* subprograms */ 0); 1929 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1930 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1931 Record.push_back(N->getDWOId()); 1932 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1933 Record.push_back(N->getSplitDebugInlining()); 1934 Record.push_back(N->getDebugInfoForProfiling()); 1935 Record.push_back((unsigned)N->getNameTableKind()); 1936 Record.push_back(N->getRangesBaseAddress()); 1937 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1938 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1939 1940 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1941 Record.clear(); 1942 } 1943 1944 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1945 SmallVectorImpl<uint64_t> &Record, 1946 unsigned Abbrev) { 1947 const uint64_t HasUnitFlag = 1 << 1; 1948 const uint64_t HasSPFlagsFlag = 1 << 2; 1949 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1950 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1951 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1952 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1953 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1954 Record.push_back(N->getLine()); 1955 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1956 Record.push_back(N->getScopeLine()); 1957 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1958 Record.push_back(N->getSPFlags()); 1959 Record.push_back(N->getVirtualIndex()); 1960 Record.push_back(N->getFlags()); 1961 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1962 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1963 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1964 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1965 Record.push_back(N->getThisAdjustment()); 1966 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1967 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1968 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1969 1970 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1971 Record.clear(); 1972 } 1973 1974 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1975 SmallVectorImpl<uint64_t> &Record, 1976 unsigned Abbrev) { 1977 Record.push_back(N->isDistinct()); 1978 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1979 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1980 Record.push_back(N->getLine()); 1981 Record.push_back(N->getColumn()); 1982 1983 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1984 Record.clear(); 1985 } 1986 1987 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1988 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1989 unsigned Abbrev) { 1990 Record.push_back(N->isDistinct()); 1991 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1992 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1993 Record.push_back(N->getDiscriminator()); 1994 1995 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1996 Record.clear(); 1997 } 1998 1999 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 2000 SmallVectorImpl<uint64_t> &Record, 2001 unsigned Abbrev) { 2002 Record.push_back(N->isDistinct()); 2003 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2004 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 2005 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2006 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2007 Record.push_back(N->getLineNo()); 2008 2009 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 2010 Record.clear(); 2011 } 2012 2013 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2014 SmallVectorImpl<uint64_t> &Record, 2015 unsigned Abbrev) { 2016 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2017 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2018 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2019 2020 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2021 Record.clear(); 2022 } 2023 2024 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2025 SmallVectorImpl<uint64_t> &Record, 2026 unsigned Abbrev) { 2027 Record.push_back(N->isDistinct()); 2028 Record.push_back(N->getMacinfoType()); 2029 Record.push_back(N->getLine()); 2030 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2031 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2032 2033 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2034 Record.clear(); 2035 } 2036 2037 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2038 SmallVectorImpl<uint64_t> &Record, 2039 unsigned Abbrev) { 2040 Record.push_back(N->isDistinct()); 2041 Record.push_back(N->getMacinfoType()); 2042 Record.push_back(N->getLine()); 2043 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2044 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2045 2046 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2047 Record.clear(); 2048 } 2049 2050 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2051 SmallVectorImpl<uint64_t> &Record) { 2052 Record.reserve(N->getArgs().size()); 2053 for (ValueAsMetadata *MD : N->getArgs()) 2054 Record.push_back(VE.getMetadataID(MD)); 2055 2056 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2057 Record.clear(); 2058 } 2059 2060 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2061 SmallVectorImpl<uint64_t> &Record, 2062 unsigned Abbrev) { 2063 Record.push_back(N->isDistinct()); 2064 for (auto &I : N->operands()) 2065 Record.push_back(VE.getMetadataOrNullID(I)); 2066 Record.push_back(N->getLineNo()); 2067 Record.push_back(N->getIsDecl()); 2068 2069 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2070 Record.clear(); 2071 } 2072 2073 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2074 SmallVectorImpl<uint64_t> &Record, 2075 unsigned Abbrev) { 2076 // There are no arguments for this metadata type. 2077 Record.push_back(N->isDistinct()); 2078 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2079 Record.clear(); 2080 } 2081 2082 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2083 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2084 unsigned Abbrev) { 2085 Record.push_back(N->isDistinct()); 2086 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2087 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2088 Record.push_back(N->isDefault()); 2089 2090 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2091 Record.clear(); 2092 } 2093 2094 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2095 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2096 unsigned Abbrev) { 2097 Record.push_back(N->isDistinct()); 2098 Record.push_back(N->getTag()); 2099 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2100 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2101 Record.push_back(N->isDefault()); 2102 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2103 2104 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2105 Record.clear(); 2106 } 2107 2108 void ModuleBitcodeWriter::writeDIGlobalVariable( 2109 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2110 unsigned Abbrev) { 2111 const uint64_t Version = 2 << 1; 2112 Record.push_back((uint64_t)N->isDistinct() | Version); 2113 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2114 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2115 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2116 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2117 Record.push_back(N->getLine()); 2118 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2119 Record.push_back(N->isLocalToUnit()); 2120 Record.push_back(N->isDefinition()); 2121 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2122 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2123 Record.push_back(N->getAlignInBits()); 2124 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2125 2126 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2127 Record.clear(); 2128 } 2129 2130 void ModuleBitcodeWriter::writeDILocalVariable( 2131 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2132 unsigned Abbrev) { 2133 // In order to support all possible bitcode formats in BitcodeReader we need 2134 // to distinguish the following cases: 2135 // 1) Record has no artificial tag (Record[1]), 2136 // has no obsolete inlinedAt field (Record[9]). 2137 // In this case Record size will be 8, HasAlignment flag is false. 2138 // 2) Record has artificial tag (Record[1]), 2139 // has no obsolete inlignedAt field (Record[9]). 2140 // In this case Record size will be 9, HasAlignment flag is false. 2141 // 3) Record has both artificial tag (Record[1]) and 2142 // obsolete inlignedAt field (Record[9]). 2143 // In this case Record size will be 10, HasAlignment flag is false. 2144 // 4) Record has neither artificial tag, nor inlignedAt field, but 2145 // HasAlignment flag is true and Record[8] contains alignment value. 2146 const uint64_t HasAlignmentFlag = 1 << 1; 2147 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2148 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2149 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2150 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2151 Record.push_back(N->getLine()); 2152 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2153 Record.push_back(N->getArg()); 2154 Record.push_back(N->getFlags()); 2155 Record.push_back(N->getAlignInBits()); 2156 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2157 2158 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2159 Record.clear(); 2160 } 2161 2162 void ModuleBitcodeWriter::writeDILabel( 2163 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2164 unsigned Abbrev) { 2165 Record.push_back((uint64_t)N->isDistinct()); 2166 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2167 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2168 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2169 Record.push_back(N->getLine()); 2170 2171 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2172 Record.clear(); 2173 } 2174 2175 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2176 SmallVectorImpl<uint64_t> &Record, 2177 unsigned Abbrev) { 2178 Record.reserve(N->getElements().size() + 1); 2179 const uint64_t Version = 3 << 1; 2180 Record.push_back((uint64_t)N->isDistinct() | Version); 2181 Record.append(N->elements_begin(), N->elements_end()); 2182 2183 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2184 Record.clear(); 2185 } 2186 2187 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2188 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2189 unsigned Abbrev) { 2190 Record.push_back(N->isDistinct()); 2191 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2192 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2193 2194 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2195 Record.clear(); 2196 } 2197 2198 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2199 SmallVectorImpl<uint64_t> &Record, 2200 unsigned Abbrev) { 2201 Record.push_back(N->isDistinct()); 2202 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2203 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2204 Record.push_back(N->getLine()); 2205 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2206 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2207 Record.push_back(N->getAttributes()); 2208 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2209 2210 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2211 Record.clear(); 2212 } 2213 2214 void ModuleBitcodeWriter::writeDIImportedEntity( 2215 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2216 unsigned Abbrev) { 2217 Record.push_back(N->isDistinct()); 2218 Record.push_back(N->getTag()); 2219 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2220 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2221 Record.push_back(N->getLine()); 2222 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2223 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2224 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2225 2226 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2227 Record.clear(); 2228 } 2229 2230 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2231 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2232 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2235 return Stream.EmitAbbrev(std::move(Abbv)); 2236 } 2237 2238 void ModuleBitcodeWriter::writeNamedMetadata( 2239 SmallVectorImpl<uint64_t> &Record) { 2240 if (M.named_metadata_empty()) 2241 return; 2242 2243 unsigned Abbrev = createNamedMetadataAbbrev(); 2244 for (const NamedMDNode &NMD : M.named_metadata()) { 2245 // Write name. 2246 StringRef Str = NMD.getName(); 2247 Record.append(Str.bytes_begin(), Str.bytes_end()); 2248 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2249 Record.clear(); 2250 2251 // Write named metadata operands. 2252 for (const MDNode *N : NMD.operands()) 2253 Record.push_back(VE.getMetadataID(N)); 2254 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2255 Record.clear(); 2256 } 2257 } 2258 2259 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2260 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2261 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2265 return Stream.EmitAbbrev(std::move(Abbv)); 2266 } 2267 2268 /// Write out a record for MDString. 2269 /// 2270 /// All the metadata strings in a metadata block are emitted in a single 2271 /// record. The sizes and strings themselves are shoved into a blob. 2272 void ModuleBitcodeWriter::writeMetadataStrings( 2273 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2274 if (Strings.empty()) 2275 return; 2276 2277 // Start the record with the number of strings. 2278 Record.push_back(bitc::METADATA_STRINGS); 2279 Record.push_back(Strings.size()); 2280 2281 // Emit the sizes of the strings in the blob. 2282 SmallString<256> Blob; 2283 { 2284 BitstreamWriter W(Blob); 2285 for (const Metadata *MD : Strings) 2286 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2287 W.FlushToWord(); 2288 } 2289 2290 // Add the offset to the strings to the record. 2291 Record.push_back(Blob.size()); 2292 2293 // Add the strings to the blob. 2294 for (const Metadata *MD : Strings) 2295 Blob.append(cast<MDString>(MD)->getString()); 2296 2297 // Emit the final record. 2298 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2299 Record.clear(); 2300 } 2301 2302 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2303 enum MetadataAbbrev : unsigned { 2304 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2305 #include "llvm/IR/Metadata.def" 2306 LastPlusOne 2307 }; 2308 2309 void ModuleBitcodeWriter::writeMetadataRecords( 2310 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2311 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2312 if (MDs.empty()) 2313 return; 2314 2315 // Initialize MDNode abbreviations. 2316 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2317 #include "llvm/IR/Metadata.def" 2318 2319 for (const Metadata *MD : MDs) { 2320 if (IndexPos) 2321 IndexPos->push_back(Stream.GetCurrentBitNo()); 2322 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2323 assert(N->isResolved() && "Expected forward references to be resolved"); 2324 2325 switch (N->getMetadataID()) { 2326 default: 2327 llvm_unreachable("Invalid MDNode subclass"); 2328 #define HANDLE_MDNODE_LEAF(CLASS) \ 2329 case Metadata::CLASS##Kind: \ 2330 if (MDAbbrevs) \ 2331 write##CLASS(cast<CLASS>(N), Record, \ 2332 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2333 else \ 2334 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2335 continue; 2336 #include "llvm/IR/Metadata.def" 2337 } 2338 } 2339 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2340 writeDIArgList(AL, Record); 2341 continue; 2342 } 2343 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2344 } 2345 } 2346 2347 void ModuleBitcodeWriter::writeModuleMetadata() { 2348 if (!VE.hasMDs() && M.named_metadata_empty()) 2349 return; 2350 2351 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2352 SmallVector<uint64_t, 64> Record; 2353 2354 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2355 // block and load any metadata. 2356 std::vector<unsigned> MDAbbrevs; 2357 2358 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2359 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2360 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2361 createGenericDINodeAbbrev(); 2362 2363 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2364 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2367 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2368 2369 Abbv = std::make_shared<BitCodeAbbrev>(); 2370 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2373 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2374 2375 // Emit MDStrings together upfront. 2376 writeMetadataStrings(VE.getMDStrings(), Record); 2377 2378 // We only emit an index for the metadata record if we have more than a given 2379 // (naive) threshold of metadatas, otherwise it is not worth it. 2380 if (VE.getNonMDStrings().size() > IndexThreshold) { 2381 // Write a placeholder value in for the offset of the metadata index, 2382 // which is written after the records, so that it can include 2383 // the offset of each entry. The placeholder offset will be 2384 // updated after all records are emitted. 2385 uint64_t Vals[] = {0, 0}; 2386 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2387 } 2388 2389 // Compute and save the bit offset to the current position, which will be 2390 // patched when we emit the index later. We can simply subtract the 64-bit 2391 // fixed size from the current bit number to get the location to backpatch. 2392 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2393 2394 // This index will contain the bitpos for each individual record. 2395 std::vector<uint64_t> IndexPos; 2396 IndexPos.reserve(VE.getNonMDStrings().size()); 2397 2398 // Write all the records 2399 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2400 2401 if (VE.getNonMDStrings().size() > IndexThreshold) { 2402 // Now that we have emitted all the records we will emit the index. But 2403 // first 2404 // backpatch the forward reference so that the reader can skip the records 2405 // efficiently. 2406 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2407 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2408 2409 // Delta encode the index. 2410 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2411 for (auto &Elt : IndexPos) { 2412 auto EltDelta = Elt - PreviousValue; 2413 PreviousValue = Elt; 2414 Elt = EltDelta; 2415 } 2416 // Emit the index record. 2417 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2418 IndexPos.clear(); 2419 } 2420 2421 // Write the named metadata now. 2422 writeNamedMetadata(Record); 2423 2424 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2425 SmallVector<uint64_t, 4> Record; 2426 Record.push_back(VE.getValueID(&GO)); 2427 pushGlobalMetadataAttachment(Record, GO); 2428 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2429 }; 2430 for (const Function &F : M) 2431 if (F.isDeclaration() && F.hasMetadata()) 2432 AddDeclAttachedMetadata(F); 2433 // FIXME: Only store metadata for declarations here, and move data for global 2434 // variable definitions to a separate block (PR28134). 2435 for (const GlobalVariable &GV : M.globals()) 2436 if (GV.hasMetadata()) 2437 AddDeclAttachedMetadata(GV); 2438 2439 Stream.ExitBlock(); 2440 } 2441 2442 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2443 if (!VE.hasMDs()) 2444 return; 2445 2446 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2447 SmallVector<uint64_t, 64> Record; 2448 writeMetadataStrings(VE.getMDStrings(), Record); 2449 writeMetadataRecords(VE.getNonMDStrings(), Record); 2450 Stream.ExitBlock(); 2451 } 2452 2453 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2454 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2455 // [n x [id, mdnode]] 2456 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2457 GO.getAllMetadata(MDs); 2458 for (const auto &I : MDs) { 2459 Record.push_back(I.first); 2460 Record.push_back(VE.getMetadataID(I.second)); 2461 } 2462 } 2463 2464 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2465 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2466 2467 SmallVector<uint64_t, 64> Record; 2468 2469 if (F.hasMetadata()) { 2470 pushGlobalMetadataAttachment(Record, F); 2471 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2472 Record.clear(); 2473 } 2474 2475 // Write metadata attachments 2476 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2477 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2478 for (const BasicBlock &BB : F) 2479 for (const Instruction &I : BB) { 2480 MDs.clear(); 2481 I.getAllMetadataOtherThanDebugLoc(MDs); 2482 2483 // If no metadata, ignore instruction. 2484 if (MDs.empty()) continue; 2485 2486 Record.push_back(VE.getInstructionID(&I)); 2487 2488 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2489 Record.push_back(MDs[i].first); 2490 Record.push_back(VE.getMetadataID(MDs[i].second)); 2491 } 2492 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2493 Record.clear(); 2494 } 2495 2496 Stream.ExitBlock(); 2497 } 2498 2499 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2500 SmallVector<uint64_t, 64> Record; 2501 2502 // Write metadata kinds 2503 // METADATA_KIND - [n x [id, name]] 2504 SmallVector<StringRef, 8> Names; 2505 M.getMDKindNames(Names); 2506 2507 if (Names.empty()) return; 2508 2509 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2510 2511 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2512 Record.push_back(MDKindID); 2513 StringRef KName = Names[MDKindID]; 2514 Record.append(KName.begin(), KName.end()); 2515 2516 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2517 Record.clear(); 2518 } 2519 2520 Stream.ExitBlock(); 2521 } 2522 2523 void ModuleBitcodeWriter::writeOperandBundleTags() { 2524 // Write metadata kinds 2525 // 2526 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2527 // 2528 // OPERAND_BUNDLE_TAG - [strchr x N] 2529 2530 SmallVector<StringRef, 8> Tags; 2531 M.getOperandBundleTags(Tags); 2532 2533 if (Tags.empty()) 2534 return; 2535 2536 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2537 2538 SmallVector<uint64_t, 64> Record; 2539 2540 for (auto Tag : Tags) { 2541 Record.append(Tag.begin(), Tag.end()); 2542 2543 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2544 Record.clear(); 2545 } 2546 2547 Stream.ExitBlock(); 2548 } 2549 2550 void ModuleBitcodeWriter::writeSyncScopeNames() { 2551 SmallVector<StringRef, 8> SSNs; 2552 M.getContext().getSyncScopeNames(SSNs); 2553 if (SSNs.empty()) 2554 return; 2555 2556 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2557 2558 SmallVector<uint64_t, 64> Record; 2559 for (auto SSN : SSNs) { 2560 Record.append(SSN.begin(), SSN.end()); 2561 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2562 Record.clear(); 2563 } 2564 2565 Stream.ExitBlock(); 2566 } 2567 2568 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2569 bool isGlobal) { 2570 if (FirstVal == LastVal) return; 2571 2572 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2573 2574 unsigned AggregateAbbrev = 0; 2575 unsigned String8Abbrev = 0; 2576 unsigned CString7Abbrev = 0; 2577 unsigned CString6Abbrev = 0; 2578 // If this is a constant pool for the module, emit module-specific abbrevs. 2579 if (isGlobal) { 2580 // Abbrev for CST_CODE_AGGREGATE. 2581 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2582 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2585 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2586 2587 // Abbrev for CST_CODE_STRING. 2588 Abbv = std::make_shared<BitCodeAbbrev>(); 2589 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2592 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2593 // Abbrev for CST_CODE_CSTRING. 2594 Abbv = std::make_shared<BitCodeAbbrev>(); 2595 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2598 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2599 // Abbrev for CST_CODE_CSTRING. 2600 Abbv = std::make_shared<BitCodeAbbrev>(); 2601 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2604 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2605 } 2606 2607 SmallVector<uint64_t, 64> Record; 2608 2609 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2610 Type *LastTy = nullptr; 2611 for (unsigned i = FirstVal; i != LastVal; ++i) { 2612 const Value *V = Vals[i].first; 2613 // If we need to switch types, do so now. 2614 if (V->getType() != LastTy) { 2615 LastTy = V->getType(); 2616 Record.push_back(VE.getTypeID(LastTy)); 2617 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2618 CONSTANTS_SETTYPE_ABBREV); 2619 Record.clear(); 2620 } 2621 2622 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2623 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2624 Record.push_back( 2625 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2626 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2627 2628 // Add the asm string. 2629 const std::string &AsmStr = IA->getAsmString(); 2630 Record.push_back(AsmStr.size()); 2631 Record.append(AsmStr.begin(), AsmStr.end()); 2632 2633 // Add the constraint string. 2634 const std::string &ConstraintStr = IA->getConstraintString(); 2635 Record.push_back(ConstraintStr.size()); 2636 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2637 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2638 Record.clear(); 2639 continue; 2640 } 2641 const Constant *C = cast<Constant>(V); 2642 unsigned Code = -1U; 2643 unsigned AbbrevToUse = 0; 2644 if (C->isNullValue()) { 2645 Code = bitc::CST_CODE_NULL; 2646 } else if (isa<PoisonValue>(C)) { 2647 Code = bitc::CST_CODE_POISON; 2648 } else if (isa<UndefValue>(C)) { 2649 Code = bitc::CST_CODE_UNDEF; 2650 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2651 if (IV->getBitWidth() <= 64) { 2652 uint64_t V = IV->getSExtValue(); 2653 emitSignedInt64(Record, V); 2654 Code = bitc::CST_CODE_INTEGER; 2655 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2656 } else { // Wide integers, > 64 bits in size. 2657 emitWideAPInt(Record, IV->getValue()); 2658 Code = bitc::CST_CODE_WIDE_INTEGER; 2659 } 2660 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2661 Code = bitc::CST_CODE_FLOAT; 2662 Type *Ty = CFP->getType()->getScalarType(); 2663 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2664 Ty->isDoubleTy()) { 2665 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2666 } else if (Ty->isX86_FP80Ty()) { 2667 // api needed to prevent premature destruction 2668 // bits are not in the same order as a normal i80 APInt, compensate. 2669 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2670 const uint64_t *p = api.getRawData(); 2671 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2672 Record.push_back(p[0] & 0xffffLL); 2673 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2674 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2675 const uint64_t *p = api.getRawData(); 2676 Record.push_back(p[0]); 2677 Record.push_back(p[1]); 2678 } else { 2679 assert(0 && "Unknown FP type!"); 2680 } 2681 } else if (isa<ConstantDataSequential>(C) && 2682 cast<ConstantDataSequential>(C)->isString()) { 2683 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2684 // Emit constant strings specially. 2685 unsigned NumElts = Str->getNumElements(); 2686 // If this is a null-terminated string, use the denser CSTRING encoding. 2687 if (Str->isCString()) { 2688 Code = bitc::CST_CODE_CSTRING; 2689 --NumElts; // Don't encode the null, which isn't allowed by char6. 2690 } else { 2691 Code = bitc::CST_CODE_STRING; 2692 AbbrevToUse = String8Abbrev; 2693 } 2694 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2695 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2696 for (unsigned i = 0; i != NumElts; ++i) { 2697 unsigned char V = Str->getElementAsInteger(i); 2698 Record.push_back(V); 2699 isCStr7 &= (V & 128) == 0; 2700 if (isCStrChar6) 2701 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2702 } 2703 2704 if (isCStrChar6) 2705 AbbrevToUse = CString6Abbrev; 2706 else if (isCStr7) 2707 AbbrevToUse = CString7Abbrev; 2708 } else if (const ConstantDataSequential *CDS = 2709 dyn_cast<ConstantDataSequential>(C)) { 2710 Code = bitc::CST_CODE_DATA; 2711 Type *EltTy = CDS->getElementType(); 2712 if (isa<IntegerType>(EltTy)) { 2713 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2714 Record.push_back(CDS->getElementAsInteger(i)); 2715 } else { 2716 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2717 Record.push_back( 2718 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2719 } 2720 } else if (isa<ConstantAggregate>(C)) { 2721 Code = bitc::CST_CODE_AGGREGATE; 2722 for (const Value *Op : C->operands()) 2723 Record.push_back(VE.getValueID(Op)); 2724 AbbrevToUse = AggregateAbbrev; 2725 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2726 switch (CE->getOpcode()) { 2727 default: 2728 if (Instruction::isCast(CE->getOpcode())) { 2729 Code = bitc::CST_CODE_CE_CAST; 2730 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2731 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2732 Record.push_back(VE.getValueID(C->getOperand(0))); 2733 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2734 } else { 2735 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2736 Code = bitc::CST_CODE_CE_BINOP; 2737 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2738 Record.push_back(VE.getValueID(C->getOperand(0))); 2739 Record.push_back(VE.getValueID(C->getOperand(1))); 2740 uint64_t Flags = getOptimizationFlags(CE); 2741 if (Flags != 0) 2742 Record.push_back(Flags); 2743 } 2744 break; 2745 case Instruction::FNeg: { 2746 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2747 Code = bitc::CST_CODE_CE_UNOP; 2748 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2749 Record.push_back(VE.getValueID(C->getOperand(0))); 2750 uint64_t Flags = getOptimizationFlags(CE); 2751 if (Flags != 0) 2752 Record.push_back(Flags); 2753 break; 2754 } 2755 case Instruction::GetElementPtr: { 2756 Code = bitc::CST_CODE_CE_GEP; 2757 const auto *GO = cast<GEPOperator>(C); 2758 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2759 if (std::optional<ConstantRange> Range = GO->getInRange()) { 2760 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; 2761 Record.push_back(GO->isInBounds()); 2762 emitConstantRange(Record, *Range); 2763 } else if (GO->isInBounds()) 2764 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2765 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2766 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2767 Record.push_back(VE.getValueID(C->getOperand(i))); 2768 } 2769 break; 2770 } 2771 case Instruction::ExtractElement: 2772 Code = bitc::CST_CODE_CE_EXTRACTELT; 2773 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2774 Record.push_back(VE.getValueID(C->getOperand(0))); 2775 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2776 Record.push_back(VE.getValueID(C->getOperand(1))); 2777 break; 2778 case Instruction::InsertElement: 2779 Code = bitc::CST_CODE_CE_INSERTELT; 2780 Record.push_back(VE.getValueID(C->getOperand(0))); 2781 Record.push_back(VE.getValueID(C->getOperand(1))); 2782 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2783 Record.push_back(VE.getValueID(C->getOperand(2))); 2784 break; 2785 case Instruction::ShuffleVector: 2786 // If the return type and argument types are the same, this is a 2787 // standard shufflevector instruction. If the types are different, 2788 // then the shuffle is widening or truncating the input vectors, and 2789 // the argument type must also be encoded. 2790 if (C->getType() == C->getOperand(0)->getType()) { 2791 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2792 } else { 2793 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2794 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2795 } 2796 Record.push_back(VE.getValueID(C->getOperand(0))); 2797 Record.push_back(VE.getValueID(C->getOperand(1))); 2798 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2799 break; 2800 case Instruction::ICmp: 2801 case Instruction::FCmp: 2802 Code = bitc::CST_CODE_CE_CMP; 2803 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2804 Record.push_back(VE.getValueID(C->getOperand(0))); 2805 Record.push_back(VE.getValueID(C->getOperand(1))); 2806 Record.push_back(CE->getPredicate()); 2807 break; 2808 } 2809 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2810 Code = bitc::CST_CODE_BLOCKADDRESS; 2811 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2812 Record.push_back(VE.getValueID(BA->getFunction())); 2813 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2814 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2815 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2816 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2817 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2818 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2819 Code = bitc::CST_CODE_NO_CFI_VALUE; 2820 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2821 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2822 } else { 2823 #ifndef NDEBUG 2824 C->dump(); 2825 #endif 2826 llvm_unreachable("Unknown constant!"); 2827 } 2828 Stream.EmitRecord(Code, Record, AbbrevToUse); 2829 Record.clear(); 2830 } 2831 2832 Stream.ExitBlock(); 2833 } 2834 2835 void ModuleBitcodeWriter::writeModuleConstants() { 2836 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2837 2838 // Find the first constant to emit, which is the first non-globalvalue value. 2839 // We know globalvalues have been emitted by WriteModuleInfo. 2840 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2841 if (!isa<GlobalValue>(Vals[i].first)) { 2842 writeConstants(i, Vals.size(), true); 2843 return; 2844 } 2845 } 2846 } 2847 2848 /// pushValueAndType - The file has to encode both the value and type id for 2849 /// many values, because we need to know what type to create for forward 2850 /// references. However, most operands are not forward references, so this type 2851 /// field is not needed. 2852 /// 2853 /// This function adds V's value ID to Vals. If the value ID is higher than the 2854 /// instruction ID, then it is a forward reference, and it also includes the 2855 /// type ID. The value ID that is written is encoded relative to the InstID. 2856 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2857 SmallVectorImpl<unsigned> &Vals) { 2858 unsigned ValID = VE.getValueID(V); 2859 // Make encoding relative to the InstID. 2860 Vals.push_back(InstID - ValID); 2861 if (ValID >= InstID) { 2862 Vals.push_back(VE.getTypeID(V->getType())); 2863 return true; 2864 } 2865 return false; 2866 } 2867 2868 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2869 unsigned InstID) { 2870 SmallVector<unsigned, 64> Record; 2871 LLVMContext &C = CS.getContext(); 2872 2873 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2874 const auto &Bundle = CS.getOperandBundleAt(i); 2875 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2876 2877 for (auto &Input : Bundle.Inputs) 2878 pushValueAndType(Input, InstID, Record); 2879 2880 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2881 Record.clear(); 2882 } 2883 } 2884 2885 /// pushValue - Like pushValueAndType, but where the type of the value is 2886 /// omitted (perhaps it was already encoded in an earlier operand). 2887 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2888 SmallVectorImpl<unsigned> &Vals) { 2889 unsigned ValID = VE.getValueID(V); 2890 Vals.push_back(InstID - ValID); 2891 } 2892 2893 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2894 SmallVectorImpl<uint64_t> &Vals) { 2895 unsigned ValID = VE.getValueID(V); 2896 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2897 emitSignedInt64(Vals, diff); 2898 } 2899 2900 /// WriteInstruction - Emit an instruction to the specified stream. 2901 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2902 unsigned InstID, 2903 SmallVectorImpl<unsigned> &Vals) { 2904 unsigned Code = 0; 2905 unsigned AbbrevToUse = 0; 2906 VE.setInstructionID(&I); 2907 switch (I.getOpcode()) { 2908 default: 2909 if (Instruction::isCast(I.getOpcode())) { 2910 Code = bitc::FUNC_CODE_INST_CAST; 2911 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2912 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2913 Vals.push_back(VE.getTypeID(I.getType())); 2914 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2915 uint64_t Flags = getOptimizationFlags(&I); 2916 if (Flags != 0) { 2917 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2918 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2919 Vals.push_back(Flags); 2920 } 2921 } else { 2922 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2923 Code = bitc::FUNC_CODE_INST_BINOP; 2924 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2925 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2926 pushValue(I.getOperand(1), InstID, Vals); 2927 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2928 uint64_t Flags = getOptimizationFlags(&I); 2929 if (Flags != 0) { 2930 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2931 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2932 Vals.push_back(Flags); 2933 } 2934 } 2935 break; 2936 case Instruction::FNeg: { 2937 Code = bitc::FUNC_CODE_INST_UNOP; 2938 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2939 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2940 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2941 uint64_t Flags = getOptimizationFlags(&I); 2942 if (Flags != 0) { 2943 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2944 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2945 Vals.push_back(Flags); 2946 } 2947 break; 2948 } 2949 case Instruction::GetElementPtr: { 2950 Code = bitc::FUNC_CODE_INST_GEP; 2951 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2952 auto &GEPInst = cast<GetElementPtrInst>(I); 2953 Vals.push_back(GEPInst.isInBounds()); 2954 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2955 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2956 pushValueAndType(I.getOperand(i), InstID, Vals); 2957 break; 2958 } 2959 case Instruction::ExtractValue: { 2960 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2961 pushValueAndType(I.getOperand(0), InstID, Vals); 2962 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2963 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2964 break; 2965 } 2966 case Instruction::InsertValue: { 2967 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2968 pushValueAndType(I.getOperand(0), InstID, Vals); 2969 pushValueAndType(I.getOperand(1), InstID, Vals); 2970 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2971 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2972 break; 2973 } 2974 case Instruction::Select: { 2975 Code = bitc::FUNC_CODE_INST_VSELECT; 2976 pushValueAndType(I.getOperand(1), InstID, Vals); 2977 pushValue(I.getOperand(2), InstID, Vals); 2978 pushValueAndType(I.getOperand(0), InstID, Vals); 2979 uint64_t Flags = getOptimizationFlags(&I); 2980 if (Flags != 0) 2981 Vals.push_back(Flags); 2982 break; 2983 } 2984 case Instruction::ExtractElement: 2985 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2986 pushValueAndType(I.getOperand(0), InstID, Vals); 2987 pushValueAndType(I.getOperand(1), InstID, Vals); 2988 break; 2989 case Instruction::InsertElement: 2990 Code = bitc::FUNC_CODE_INST_INSERTELT; 2991 pushValueAndType(I.getOperand(0), InstID, Vals); 2992 pushValue(I.getOperand(1), InstID, Vals); 2993 pushValueAndType(I.getOperand(2), InstID, Vals); 2994 break; 2995 case Instruction::ShuffleVector: 2996 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2997 pushValueAndType(I.getOperand(0), InstID, Vals); 2998 pushValue(I.getOperand(1), InstID, Vals); 2999 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 3000 Vals); 3001 break; 3002 case Instruction::ICmp: 3003 case Instruction::FCmp: { 3004 // compare returning Int1Ty or vector of Int1Ty 3005 Code = bitc::FUNC_CODE_INST_CMP2; 3006 pushValueAndType(I.getOperand(0), InstID, Vals); 3007 pushValue(I.getOperand(1), InstID, Vals); 3008 Vals.push_back(cast<CmpInst>(I).getPredicate()); 3009 uint64_t Flags = getOptimizationFlags(&I); 3010 if (Flags != 0) 3011 Vals.push_back(Flags); 3012 break; 3013 } 3014 3015 case Instruction::Ret: 3016 { 3017 Code = bitc::FUNC_CODE_INST_RET; 3018 unsigned NumOperands = I.getNumOperands(); 3019 if (NumOperands == 0) 3020 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3021 else if (NumOperands == 1) { 3022 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3023 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3024 } else { 3025 for (unsigned i = 0, e = NumOperands; i != e; ++i) 3026 pushValueAndType(I.getOperand(i), InstID, Vals); 3027 } 3028 } 3029 break; 3030 case Instruction::Br: 3031 { 3032 Code = bitc::FUNC_CODE_INST_BR; 3033 const BranchInst &II = cast<BranchInst>(I); 3034 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3035 if (II.isConditional()) { 3036 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3037 pushValue(II.getCondition(), InstID, Vals); 3038 } 3039 } 3040 break; 3041 case Instruction::Switch: 3042 { 3043 Code = bitc::FUNC_CODE_INST_SWITCH; 3044 const SwitchInst &SI = cast<SwitchInst>(I); 3045 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3046 pushValue(SI.getCondition(), InstID, Vals); 3047 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3048 for (auto Case : SI.cases()) { 3049 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3050 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3051 } 3052 } 3053 break; 3054 case Instruction::IndirectBr: 3055 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3056 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3057 // Encode the address operand as relative, but not the basic blocks. 3058 pushValue(I.getOperand(0), InstID, Vals); 3059 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 3060 Vals.push_back(VE.getValueID(I.getOperand(i))); 3061 break; 3062 3063 case Instruction::Invoke: { 3064 const InvokeInst *II = cast<InvokeInst>(&I); 3065 const Value *Callee = II->getCalledOperand(); 3066 FunctionType *FTy = II->getFunctionType(); 3067 3068 if (II->hasOperandBundles()) 3069 writeOperandBundles(*II, InstID); 3070 3071 Code = bitc::FUNC_CODE_INST_INVOKE; 3072 3073 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3074 Vals.push_back(II->getCallingConv() | 1 << 13); 3075 Vals.push_back(VE.getValueID(II->getNormalDest())); 3076 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3077 Vals.push_back(VE.getTypeID(FTy)); 3078 pushValueAndType(Callee, InstID, Vals); 3079 3080 // Emit value #'s for the fixed parameters. 3081 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3082 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3083 3084 // Emit type/value pairs for varargs params. 3085 if (FTy->isVarArg()) { 3086 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3087 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3088 } 3089 break; 3090 } 3091 case Instruction::Resume: 3092 Code = bitc::FUNC_CODE_INST_RESUME; 3093 pushValueAndType(I.getOperand(0), InstID, Vals); 3094 break; 3095 case Instruction::CleanupRet: { 3096 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3097 const auto &CRI = cast<CleanupReturnInst>(I); 3098 pushValue(CRI.getCleanupPad(), InstID, Vals); 3099 if (CRI.hasUnwindDest()) 3100 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3101 break; 3102 } 3103 case Instruction::CatchRet: { 3104 Code = bitc::FUNC_CODE_INST_CATCHRET; 3105 const auto &CRI = cast<CatchReturnInst>(I); 3106 pushValue(CRI.getCatchPad(), InstID, Vals); 3107 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3108 break; 3109 } 3110 case Instruction::CleanupPad: 3111 case Instruction::CatchPad: { 3112 const auto &FuncletPad = cast<FuncletPadInst>(I); 3113 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3114 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3115 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3116 3117 unsigned NumArgOperands = FuncletPad.arg_size(); 3118 Vals.push_back(NumArgOperands); 3119 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3120 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3121 break; 3122 } 3123 case Instruction::CatchSwitch: { 3124 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3125 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3126 3127 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3128 3129 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3130 Vals.push_back(NumHandlers); 3131 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3132 Vals.push_back(VE.getValueID(CatchPadBB)); 3133 3134 if (CatchSwitch.hasUnwindDest()) 3135 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3136 break; 3137 } 3138 case Instruction::CallBr: { 3139 const CallBrInst *CBI = cast<CallBrInst>(&I); 3140 const Value *Callee = CBI->getCalledOperand(); 3141 FunctionType *FTy = CBI->getFunctionType(); 3142 3143 if (CBI->hasOperandBundles()) 3144 writeOperandBundles(*CBI, InstID); 3145 3146 Code = bitc::FUNC_CODE_INST_CALLBR; 3147 3148 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3149 3150 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3151 1 << bitc::CALL_EXPLICIT_TYPE); 3152 3153 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3154 Vals.push_back(CBI->getNumIndirectDests()); 3155 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3156 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3157 3158 Vals.push_back(VE.getTypeID(FTy)); 3159 pushValueAndType(Callee, InstID, Vals); 3160 3161 // Emit value #'s for the fixed parameters. 3162 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3163 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3164 3165 // Emit type/value pairs for varargs params. 3166 if (FTy->isVarArg()) { 3167 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3168 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3169 } 3170 break; 3171 } 3172 case Instruction::Unreachable: 3173 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3174 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3175 break; 3176 3177 case Instruction::PHI: { 3178 const PHINode &PN = cast<PHINode>(I); 3179 Code = bitc::FUNC_CODE_INST_PHI; 3180 // With the newer instruction encoding, forward references could give 3181 // negative valued IDs. This is most common for PHIs, so we use 3182 // signed VBRs. 3183 SmallVector<uint64_t, 128> Vals64; 3184 Vals64.push_back(VE.getTypeID(PN.getType())); 3185 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3186 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3187 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3188 } 3189 3190 uint64_t Flags = getOptimizationFlags(&I); 3191 if (Flags != 0) 3192 Vals64.push_back(Flags); 3193 3194 // Emit a Vals64 vector and exit. 3195 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3196 Vals64.clear(); 3197 return; 3198 } 3199 3200 case Instruction::LandingPad: { 3201 const LandingPadInst &LP = cast<LandingPadInst>(I); 3202 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3203 Vals.push_back(VE.getTypeID(LP.getType())); 3204 Vals.push_back(LP.isCleanup()); 3205 Vals.push_back(LP.getNumClauses()); 3206 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3207 if (LP.isCatch(I)) 3208 Vals.push_back(LandingPadInst::Catch); 3209 else 3210 Vals.push_back(LandingPadInst::Filter); 3211 pushValueAndType(LP.getClause(I), InstID, Vals); 3212 } 3213 break; 3214 } 3215 3216 case Instruction::Alloca: { 3217 Code = bitc::FUNC_CODE_INST_ALLOCA; 3218 const AllocaInst &AI = cast<AllocaInst>(I); 3219 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3220 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3221 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3222 using APV = AllocaPackedValues; 3223 unsigned Record = 0; 3224 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3225 Bitfield::set<APV::AlignLower>( 3226 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3227 Bitfield::set<APV::AlignUpper>(Record, 3228 EncodedAlign >> APV::AlignLower::Bits); 3229 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3230 Bitfield::set<APV::ExplicitType>(Record, true); 3231 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3232 Vals.push_back(Record); 3233 3234 unsigned AS = AI.getAddressSpace(); 3235 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3236 Vals.push_back(AS); 3237 break; 3238 } 3239 3240 case Instruction::Load: 3241 if (cast<LoadInst>(I).isAtomic()) { 3242 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3243 pushValueAndType(I.getOperand(0), InstID, Vals); 3244 } else { 3245 Code = bitc::FUNC_CODE_INST_LOAD; 3246 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3247 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3248 } 3249 Vals.push_back(VE.getTypeID(I.getType())); 3250 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3251 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3252 if (cast<LoadInst>(I).isAtomic()) { 3253 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3254 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3255 } 3256 break; 3257 case Instruction::Store: 3258 if (cast<StoreInst>(I).isAtomic()) 3259 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3260 else 3261 Code = bitc::FUNC_CODE_INST_STORE; 3262 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3263 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3264 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3265 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3266 if (cast<StoreInst>(I).isAtomic()) { 3267 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3268 Vals.push_back( 3269 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3270 } 3271 break; 3272 case Instruction::AtomicCmpXchg: 3273 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3274 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3275 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3276 pushValue(I.getOperand(2), InstID, Vals); // newval. 3277 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3278 Vals.push_back( 3279 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3280 Vals.push_back( 3281 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3282 Vals.push_back( 3283 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3284 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3285 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3286 break; 3287 case Instruction::AtomicRMW: 3288 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3289 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3290 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3291 Vals.push_back( 3292 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3293 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3294 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3295 Vals.push_back( 3296 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3297 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3298 break; 3299 case Instruction::Fence: 3300 Code = bitc::FUNC_CODE_INST_FENCE; 3301 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3302 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3303 break; 3304 case Instruction::Call: { 3305 const CallInst &CI = cast<CallInst>(I); 3306 FunctionType *FTy = CI.getFunctionType(); 3307 3308 if (CI.hasOperandBundles()) 3309 writeOperandBundles(CI, InstID); 3310 3311 Code = bitc::FUNC_CODE_INST_CALL; 3312 3313 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3314 3315 unsigned Flags = getOptimizationFlags(&I); 3316 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3317 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3318 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3319 1 << bitc::CALL_EXPLICIT_TYPE | 3320 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3321 unsigned(Flags != 0) << bitc::CALL_FMF); 3322 if (Flags != 0) 3323 Vals.push_back(Flags); 3324 3325 Vals.push_back(VE.getTypeID(FTy)); 3326 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3327 3328 // Emit value #'s for the fixed parameters. 3329 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3330 // Check for labels (can happen with asm labels). 3331 if (FTy->getParamType(i)->isLabelTy()) 3332 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3333 else 3334 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3335 } 3336 3337 // Emit type/value pairs for varargs params. 3338 if (FTy->isVarArg()) { 3339 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3340 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3341 } 3342 break; 3343 } 3344 case Instruction::VAArg: 3345 Code = bitc::FUNC_CODE_INST_VAARG; 3346 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3347 pushValue(I.getOperand(0), InstID, Vals); // valist. 3348 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3349 break; 3350 case Instruction::Freeze: 3351 Code = bitc::FUNC_CODE_INST_FREEZE; 3352 pushValueAndType(I.getOperand(0), InstID, Vals); 3353 break; 3354 } 3355 3356 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3357 Vals.clear(); 3358 } 3359 3360 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3361 /// to allow clients to efficiently find the function body. 3362 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3363 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3364 // Get the offset of the VST we are writing, and backpatch it into 3365 // the VST forward declaration record. 3366 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3367 // The BitcodeStartBit was the stream offset of the identification block. 3368 VSTOffset -= bitcodeStartBit(); 3369 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3370 // Note that we add 1 here because the offset is relative to one word 3371 // before the start of the identification block, which was historically 3372 // always the start of the regular bitcode header. 3373 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3374 3375 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3376 3377 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3378 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3381 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3382 3383 for (const Function &F : M) { 3384 uint64_t Record[2]; 3385 3386 if (F.isDeclaration()) 3387 continue; 3388 3389 Record[0] = VE.getValueID(&F); 3390 3391 // Save the word offset of the function (from the start of the 3392 // actual bitcode written to the stream). 3393 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3394 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3395 // Note that we add 1 here because the offset is relative to one word 3396 // before the start of the identification block, which was historically 3397 // always the start of the regular bitcode header. 3398 Record[1] = BitcodeIndex / 32 + 1; 3399 3400 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3401 } 3402 3403 Stream.ExitBlock(); 3404 } 3405 3406 /// Emit names for arguments, instructions and basic blocks in a function. 3407 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3408 const ValueSymbolTable &VST) { 3409 if (VST.empty()) 3410 return; 3411 3412 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3413 3414 // FIXME: Set up the abbrev, we know how many values there are! 3415 // FIXME: We know if the type names can use 7-bit ascii. 3416 SmallVector<uint64_t, 64> NameVals; 3417 3418 for (const ValueName &Name : VST) { 3419 // Figure out the encoding to use for the name. 3420 StringEncoding Bits = getStringEncoding(Name.getKey()); 3421 3422 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3423 NameVals.push_back(VE.getValueID(Name.getValue())); 3424 3425 // VST_CODE_ENTRY: [valueid, namechar x N] 3426 // VST_CODE_BBENTRY: [bbid, namechar x N] 3427 unsigned Code; 3428 if (isa<BasicBlock>(Name.getValue())) { 3429 Code = bitc::VST_CODE_BBENTRY; 3430 if (Bits == SE_Char6) 3431 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3432 } else { 3433 Code = bitc::VST_CODE_ENTRY; 3434 if (Bits == SE_Char6) 3435 AbbrevToUse = VST_ENTRY_6_ABBREV; 3436 else if (Bits == SE_Fixed7) 3437 AbbrevToUse = VST_ENTRY_7_ABBREV; 3438 } 3439 3440 for (const auto P : Name.getKey()) 3441 NameVals.push_back((unsigned char)P); 3442 3443 // Emit the finished record. 3444 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3445 NameVals.clear(); 3446 } 3447 3448 Stream.ExitBlock(); 3449 } 3450 3451 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3452 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3453 unsigned Code; 3454 if (isa<BasicBlock>(Order.V)) 3455 Code = bitc::USELIST_CODE_BB; 3456 else 3457 Code = bitc::USELIST_CODE_DEFAULT; 3458 3459 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3460 Record.push_back(VE.getValueID(Order.V)); 3461 Stream.EmitRecord(Code, Record); 3462 } 3463 3464 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3465 assert(VE.shouldPreserveUseListOrder() && 3466 "Expected to be preserving use-list order"); 3467 3468 auto hasMore = [&]() { 3469 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3470 }; 3471 if (!hasMore()) 3472 // Nothing to do. 3473 return; 3474 3475 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3476 while (hasMore()) { 3477 writeUseList(std::move(VE.UseListOrders.back())); 3478 VE.UseListOrders.pop_back(); 3479 } 3480 Stream.ExitBlock(); 3481 } 3482 3483 /// Emit a function body to the module stream. 3484 void ModuleBitcodeWriter::writeFunction( 3485 const Function &F, 3486 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3487 // Save the bitcode index of the start of this function block for recording 3488 // in the VST. 3489 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3490 3491 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3492 VE.incorporateFunction(F); 3493 3494 SmallVector<unsigned, 64> Vals; 3495 3496 // Emit the number of basic blocks, so the reader can create them ahead of 3497 // time. 3498 Vals.push_back(VE.getBasicBlocks().size()); 3499 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3500 Vals.clear(); 3501 3502 // If there are function-local constants, emit them now. 3503 unsigned CstStart, CstEnd; 3504 VE.getFunctionConstantRange(CstStart, CstEnd); 3505 writeConstants(CstStart, CstEnd, false); 3506 3507 // If there is function-local metadata, emit it now. 3508 writeFunctionMetadata(F); 3509 3510 // Keep a running idea of what the instruction ID is. 3511 unsigned InstID = CstEnd; 3512 3513 bool NeedsMetadataAttachment = F.hasMetadata(); 3514 3515 DILocation *LastDL = nullptr; 3516 SmallSetVector<Function *, 4> BlockAddressUsers; 3517 3518 // Finally, emit all the instructions, in order. 3519 for (const BasicBlock &BB : F) { 3520 for (const Instruction &I : BB) { 3521 writeInstruction(I, InstID, Vals); 3522 3523 if (!I.getType()->isVoidTy()) 3524 ++InstID; 3525 3526 // If the instruction has metadata, write a metadata attachment later. 3527 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3528 3529 // If the instruction has a debug location, emit it. 3530 if (DILocation *DL = I.getDebugLoc()) { 3531 if (DL == LastDL) { 3532 // Just repeat the same debug loc as last time. 3533 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3534 } else { 3535 Vals.push_back(DL->getLine()); 3536 Vals.push_back(DL->getColumn()); 3537 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3538 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3539 Vals.push_back(DL->isImplicitCode()); 3540 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3541 Vals.clear(); 3542 LastDL = DL; 3543 } 3544 } 3545 3546 // If the instruction has DbgRecords attached to it, emit them. Note that 3547 // they come after the instruction so that it's easy to attach them again 3548 // when reading the bitcode, even though conceptually the debug locations 3549 // start "before" the instruction. 3550 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { 3551 /// Try to push the value only (unwrapped), otherwise push the 3552 /// metadata wrapped value. Returns true if the value was pushed 3553 /// without the ValueAsMetadata wrapper. 3554 auto PushValueOrMetadata = [&Vals, InstID, 3555 this](Metadata *RawLocation) { 3556 assert(RawLocation && 3557 "RawLocation unexpectedly null in DbgVariableRecord"); 3558 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) { 3559 SmallVector<unsigned, 2> ValAndType; 3560 // If the value is a fwd-ref the type is also pushed. We don't 3561 // want the type, so fwd-refs are kept wrapped (pushValueAndType 3562 // returns false if the value is pushed without type). 3563 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { 3564 Vals.push_back(ValAndType[0]); 3565 return true; 3566 } 3567 } 3568 // The metadata is a DIArgList, or ValueAsMetadata wrapping a 3569 // fwd-ref. Push the metadata ID. 3570 Vals.push_back(VE.getMetadataID(RawLocation)); 3571 return false; 3572 }; 3573 3574 // Write out non-instruction debug information attached to this 3575 // instruction. Write it after the instruction so that it's easy to 3576 // re-attach to the instruction reading the records in. 3577 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { 3578 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3579 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc())); 3580 Vals.push_back(VE.getMetadataID(DLR->getLabel())); 3581 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); 3582 Vals.clear(); 3583 continue; 3584 } 3585 3586 // First 3 fields are common to all kinds: 3587 // DILocation, DILocalVariable, DIExpression 3588 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 3589 // ..., LocationMetadata 3590 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 3591 // ..., Value 3592 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 3593 // ..., LocationMetadata 3594 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 3595 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 3596 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3597 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); 3598 Vals.push_back(VE.getMetadataID(DVR.getVariable())); 3599 Vals.push_back(VE.getMetadataID(DVR.getExpression())); 3600 if (DVR.isDbgValue()) { 3601 if (PushValueOrMetadata(DVR.getRawLocation())) 3602 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, 3603 FUNCTION_DEBUG_RECORD_VALUE_ABBREV); 3604 else 3605 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); 3606 } else if (DVR.isDbgDeclare()) { 3607 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3608 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); 3609 } else { 3610 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); 3611 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3612 Vals.push_back(VE.getMetadataID(DVR.getAssignID())); 3613 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); 3614 Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); 3615 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); 3616 } 3617 Vals.clear(); 3618 } 3619 } 3620 } 3621 3622 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3623 SmallVector<Value *> Worklist{BA}; 3624 SmallPtrSet<Value *, 8> Visited{BA}; 3625 while (!Worklist.empty()) { 3626 Value *V = Worklist.pop_back_val(); 3627 for (User *U : V->users()) { 3628 if (auto *I = dyn_cast<Instruction>(U)) { 3629 Function *P = I->getFunction(); 3630 if (P != &F) 3631 BlockAddressUsers.insert(P); 3632 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3633 Visited.insert(U).second) 3634 Worklist.push_back(U); 3635 } 3636 } 3637 } 3638 } 3639 3640 if (!BlockAddressUsers.empty()) { 3641 Vals.resize(BlockAddressUsers.size()); 3642 for (auto I : llvm::enumerate(BlockAddressUsers)) 3643 Vals[I.index()] = VE.getValueID(I.value()); 3644 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3645 Vals.clear(); 3646 } 3647 3648 // Emit names for all the instructions etc. 3649 if (auto *Symtab = F.getValueSymbolTable()) 3650 writeFunctionLevelValueSymbolTable(*Symtab); 3651 3652 if (NeedsMetadataAttachment) 3653 writeFunctionMetadataAttachment(F); 3654 if (VE.shouldPreserveUseListOrder()) 3655 writeUseListBlock(&F); 3656 VE.purgeFunction(); 3657 Stream.ExitBlock(); 3658 } 3659 3660 // Emit blockinfo, which defines the standard abbreviations etc. 3661 void ModuleBitcodeWriter::writeBlockInfo() { 3662 // We only want to emit block info records for blocks that have multiple 3663 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3664 // Other blocks can define their abbrevs inline. 3665 Stream.EnterBlockInfoBlock(); 3666 3667 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3668 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3673 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3674 VST_ENTRY_8_ABBREV) 3675 llvm_unreachable("Unexpected abbrev ordering!"); 3676 } 3677 3678 { // 7-bit fixed width VST_CODE_ENTRY strings. 3679 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3680 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3684 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3685 VST_ENTRY_7_ABBREV) 3686 llvm_unreachable("Unexpected abbrev ordering!"); 3687 } 3688 { // 6-bit char6 VST_CODE_ENTRY strings. 3689 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3690 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3694 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3695 VST_ENTRY_6_ABBREV) 3696 llvm_unreachable("Unexpected abbrev ordering!"); 3697 } 3698 { // 6-bit char6 VST_CODE_BBENTRY strings. 3699 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3700 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3704 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3705 VST_BBENTRY_6_ABBREV) 3706 llvm_unreachable("Unexpected abbrev ordering!"); 3707 } 3708 3709 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3710 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3711 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3713 VE.computeBitsRequiredForTypeIndicies())); 3714 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3715 CONSTANTS_SETTYPE_ABBREV) 3716 llvm_unreachable("Unexpected abbrev ordering!"); 3717 } 3718 3719 { // INTEGER abbrev for CONSTANTS_BLOCK. 3720 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3721 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3723 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3724 CONSTANTS_INTEGER_ABBREV) 3725 llvm_unreachable("Unexpected abbrev ordering!"); 3726 } 3727 3728 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3729 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3730 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3733 VE.computeBitsRequiredForTypeIndicies())); 3734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3735 3736 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3737 CONSTANTS_CE_CAST_Abbrev) 3738 llvm_unreachable("Unexpected abbrev ordering!"); 3739 } 3740 { // NULL abbrev for CONSTANTS_BLOCK. 3741 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3742 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3743 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3744 CONSTANTS_NULL_Abbrev) 3745 llvm_unreachable("Unexpected abbrev ordering!"); 3746 } 3747 3748 // FIXME: This should only use space for first class types! 3749 3750 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3751 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3752 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3755 VE.computeBitsRequiredForTypeIndicies())); 3756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3758 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3759 FUNCTION_INST_LOAD_ABBREV) 3760 llvm_unreachable("Unexpected abbrev ordering!"); 3761 } 3762 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3763 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3764 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3767 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3768 FUNCTION_INST_UNOP_ABBREV) 3769 llvm_unreachable("Unexpected abbrev ordering!"); 3770 } 3771 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3772 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3773 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3777 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3778 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3779 llvm_unreachable("Unexpected abbrev ordering!"); 3780 } 3781 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3782 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3783 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3787 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3788 FUNCTION_INST_BINOP_ABBREV) 3789 llvm_unreachable("Unexpected abbrev ordering!"); 3790 } 3791 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3792 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3793 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3798 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3799 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3800 llvm_unreachable("Unexpected abbrev ordering!"); 3801 } 3802 { // INST_CAST abbrev for FUNCTION_BLOCK. 3803 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3804 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3807 VE.computeBitsRequiredForTypeIndicies())); 3808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3809 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3810 FUNCTION_INST_CAST_ABBREV) 3811 llvm_unreachable("Unexpected abbrev ordering!"); 3812 } 3813 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3814 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3815 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3818 VE.computeBitsRequiredForTypeIndicies())); 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3821 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3822 FUNCTION_INST_CAST_FLAGS_ABBREV) 3823 llvm_unreachable("Unexpected abbrev ordering!"); 3824 } 3825 3826 { // INST_RET abbrev for FUNCTION_BLOCK. 3827 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3828 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3829 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3830 FUNCTION_INST_RET_VOID_ABBREV) 3831 llvm_unreachable("Unexpected abbrev ordering!"); 3832 } 3833 { // INST_RET abbrev for FUNCTION_BLOCK. 3834 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3835 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3837 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3838 FUNCTION_INST_RET_VAL_ABBREV) 3839 llvm_unreachable("Unexpected abbrev ordering!"); 3840 } 3841 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3842 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3843 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3844 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3845 FUNCTION_INST_UNREACHABLE_ABBREV) 3846 llvm_unreachable("Unexpected abbrev ordering!"); 3847 } 3848 { 3849 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3850 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3853 Log2_32_Ceil(VE.getTypes().size() + 1))); 3854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3856 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3857 FUNCTION_INST_GEP_ABBREV) 3858 llvm_unreachable("Unexpected abbrev ordering!"); 3859 } 3860 { 3861 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3862 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); 3863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc 3864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var 3865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr 3866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val 3867 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3868 FUNCTION_DEBUG_RECORD_VALUE_ABBREV) 3869 llvm_unreachable("Unexpected abbrev ordering! 1"); 3870 } 3871 Stream.ExitBlock(); 3872 } 3873 3874 /// Write the module path strings, currently only used when generating 3875 /// a combined index file. 3876 void IndexBitcodeWriter::writeModStrings() { 3877 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3878 3879 // TODO: See which abbrev sizes we actually need to emit 3880 3881 // 8-bit fixed-width MST_ENTRY strings. 3882 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3883 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3887 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3888 3889 // 7-bit fixed width MST_ENTRY strings. 3890 Abbv = std::make_shared<BitCodeAbbrev>(); 3891 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3895 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3896 3897 // 6-bit char6 MST_ENTRY strings. 3898 Abbv = std::make_shared<BitCodeAbbrev>(); 3899 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3903 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3904 3905 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3906 Abbv = std::make_shared<BitCodeAbbrev>(); 3907 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3913 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3914 3915 SmallVector<unsigned, 64> Vals; 3916 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3917 StringRef Key = MPSE.getKey(); 3918 const auto &Hash = MPSE.getValue(); 3919 StringEncoding Bits = getStringEncoding(Key); 3920 unsigned AbbrevToUse = Abbrev8Bit; 3921 if (Bits == SE_Char6) 3922 AbbrevToUse = Abbrev6Bit; 3923 else if (Bits == SE_Fixed7) 3924 AbbrevToUse = Abbrev7Bit; 3925 3926 auto ModuleId = ModuleIdMap.size(); 3927 ModuleIdMap[Key] = ModuleId; 3928 Vals.push_back(ModuleId); 3929 Vals.append(Key.begin(), Key.end()); 3930 3931 // Emit the finished record. 3932 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3933 3934 // Emit an optional hash for the module now 3935 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3936 Vals.assign(Hash.begin(), Hash.end()); 3937 // Emit the hash record. 3938 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3939 } 3940 3941 Vals.clear(); 3942 }); 3943 Stream.ExitBlock(); 3944 } 3945 3946 /// Write the function type metadata related records that need to appear before 3947 /// a function summary entry (whether per-module or combined). 3948 template <typename Fn> 3949 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3950 FunctionSummary *FS, 3951 Fn GetValueID) { 3952 if (!FS->type_tests().empty()) 3953 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3954 3955 SmallVector<uint64_t, 64> Record; 3956 3957 auto WriteVFuncIdVec = [&](uint64_t Ty, 3958 ArrayRef<FunctionSummary::VFuncId> VFs) { 3959 if (VFs.empty()) 3960 return; 3961 Record.clear(); 3962 for (auto &VF : VFs) { 3963 Record.push_back(VF.GUID); 3964 Record.push_back(VF.Offset); 3965 } 3966 Stream.EmitRecord(Ty, Record); 3967 }; 3968 3969 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3970 FS->type_test_assume_vcalls()); 3971 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3972 FS->type_checked_load_vcalls()); 3973 3974 auto WriteConstVCallVec = [&](uint64_t Ty, 3975 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3976 for (auto &VC : VCs) { 3977 Record.clear(); 3978 Record.push_back(VC.VFunc.GUID); 3979 Record.push_back(VC.VFunc.Offset); 3980 llvm::append_range(Record, VC.Args); 3981 Stream.EmitRecord(Ty, Record); 3982 } 3983 }; 3984 3985 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3986 FS->type_test_assume_const_vcalls()); 3987 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3988 FS->type_checked_load_const_vcalls()); 3989 3990 auto WriteRange = [&](ConstantRange Range) { 3991 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3992 assert(Range.getLower().getNumWords() == 1); 3993 assert(Range.getUpper().getNumWords() == 1); 3994 emitSignedInt64(Record, *Range.getLower().getRawData()); 3995 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3996 }; 3997 3998 if (!FS->paramAccesses().empty()) { 3999 Record.clear(); 4000 for (auto &Arg : FS->paramAccesses()) { 4001 size_t UndoSize = Record.size(); 4002 Record.push_back(Arg.ParamNo); 4003 WriteRange(Arg.Use); 4004 Record.push_back(Arg.Calls.size()); 4005 for (auto &Call : Arg.Calls) { 4006 Record.push_back(Call.ParamNo); 4007 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 4008 if (!ValueID) { 4009 // If ValueID is unknown we can't drop just this call, we must drop 4010 // entire parameter. 4011 Record.resize(UndoSize); 4012 break; 4013 } 4014 Record.push_back(*ValueID); 4015 WriteRange(Call.Offsets); 4016 } 4017 } 4018 if (!Record.empty()) 4019 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 4020 } 4021 } 4022 4023 /// Collect type IDs from type tests used by function. 4024 static void 4025 getReferencedTypeIds(FunctionSummary *FS, 4026 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 4027 if (!FS->type_tests().empty()) 4028 for (auto &TT : FS->type_tests()) 4029 ReferencedTypeIds.insert(TT); 4030 4031 auto GetReferencedTypesFromVFuncIdVec = 4032 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 4033 for (auto &VF : VFs) 4034 ReferencedTypeIds.insert(VF.GUID); 4035 }; 4036 4037 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 4038 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 4039 4040 auto GetReferencedTypesFromConstVCallVec = 4041 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 4042 for (auto &VC : VCs) 4043 ReferencedTypeIds.insert(VC.VFunc.GUID); 4044 }; 4045 4046 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 4047 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 4048 } 4049 4050 static void writeWholeProgramDevirtResolutionByArg( 4051 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 4052 const WholeProgramDevirtResolution::ByArg &ByArg) { 4053 NameVals.push_back(args.size()); 4054 llvm::append_range(NameVals, args); 4055 4056 NameVals.push_back(ByArg.TheKind); 4057 NameVals.push_back(ByArg.Info); 4058 NameVals.push_back(ByArg.Byte); 4059 NameVals.push_back(ByArg.Bit); 4060 } 4061 4062 static void writeWholeProgramDevirtResolution( 4063 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4064 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 4065 NameVals.push_back(Id); 4066 4067 NameVals.push_back(Wpd.TheKind); 4068 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 4069 NameVals.push_back(Wpd.SingleImplName.size()); 4070 4071 NameVals.push_back(Wpd.ResByArg.size()); 4072 for (auto &A : Wpd.ResByArg) 4073 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 4074 } 4075 4076 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 4077 StringTableBuilder &StrtabBuilder, 4078 const std::string &Id, 4079 const TypeIdSummary &Summary) { 4080 NameVals.push_back(StrtabBuilder.add(Id)); 4081 NameVals.push_back(Id.size()); 4082 4083 NameVals.push_back(Summary.TTRes.TheKind); 4084 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 4085 NameVals.push_back(Summary.TTRes.AlignLog2); 4086 NameVals.push_back(Summary.TTRes.SizeM1); 4087 NameVals.push_back(Summary.TTRes.BitMask); 4088 NameVals.push_back(Summary.TTRes.InlineBits); 4089 4090 for (auto &W : Summary.WPDRes) 4091 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 4092 W.second); 4093 } 4094 4095 static void writeTypeIdCompatibleVtableSummaryRecord( 4096 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4097 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 4098 ValueEnumerator &VE) { 4099 NameVals.push_back(StrtabBuilder.add(Id)); 4100 NameVals.push_back(Id.size()); 4101 4102 for (auto &P : Summary) { 4103 NameVals.push_back(P.AddressPointOffset); 4104 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4105 } 4106 } 4107 4108 static void writeFunctionHeapProfileRecords( 4109 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4110 unsigned AllocAbbrev, bool PerModule, 4111 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4112 std::function<unsigned(unsigned)> GetStackIndex) { 4113 SmallVector<uint64_t> Record; 4114 4115 for (auto &CI : FS->callsites()) { 4116 Record.clear(); 4117 // Per module callsite clones should always have a single entry of 4118 // value 0. 4119 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4120 Record.push_back(GetValueID(CI.Callee)); 4121 if (!PerModule) { 4122 Record.push_back(CI.StackIdIndices.size()); 4123 Record.push_back(CI.Clones.size()); 4124 } 4125 for (auto Id : CI.StackIdIndices) 4126 Record.push_back(GetStackIndex(Id)); 4127 if (!PerModule) { 4128 for (auto V : CI.Clones) 4129 Record.push_back(V); 4130 } 4131 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4132 : bitc::FS_COMBINED_CALLSITE_INFO, 4133 Record, CallsiteAbbrev); 4134 } 4135 4136 for (auto &AI : FS->allocs()) { 4137 Record.clear(); 4138 // Per module alloc versions should always have a single entry of 4139 // value 0. 4140 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4141 if (!PerModule) { 4142 Record.push_back(AI.MIBs.size()); 4143 Record.push_back(AI.Versions.size()); 4144 } 4145 for (auto &MIB : AI.MIBs) { 4146 Record.push_back((uint8_t)MIB.AllocType); 4147 Record.push_back(MIB.StackIdIndices.size()); 4148 for (auto Id : MIB.StackIdIndices) 4149 Record.push_back(GetStackIndex(Id)); 4150 } 4151 if (!PerModule) { 4152 for (auto V : AI.Versions) 4153 Record.push_back(V); 4154 } 4155 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4156 : bitc::FS_COMBINED_ALLOC_INFO, 4157 Record, AllocAbbrev); 4158 } 4159 } 4160 4161 // Helper to emit a single function summary record. 4162 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4163 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4164 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4165 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4166 unsigned AllocAbbrev, const Function &F) { 4167 NameVals.push_back(ValueID); 4168 4169 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4170 4171 writeFunctionTypeMetadataRecords( 4172 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4173 return {VE.getValueID(VI.getValue())}; 4174 }); 4175 4176 writeFunctionHeapProfileRecords( 4177 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4178 /*PerModule*/ true, 4179 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4180 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4181 4182 auto SpecialRefCnts = FS->specialRefCounts(); 4183 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4184 NameVals.push_back(FS->instCount()); 4185 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4186 NameVals.push_back(FS->refs().size()); 4187 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4188 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4189 4190 for (auto &RI : FS->refs()) 4191 NameVals.push_back(VE.getValueID(RI.getValue())); 4192 4193 const bool UseRelBFRecord = 4194 WriteRelBFToSummary && !F.hasProfileData() && 4195 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4196 for (auto &ECI : FS->calls()) { 4197 NameVals.push_back(getValueId(ECI.first)); 4198 if (UseRelBFRecord) 4199 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4200 else 4201 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4202 } 4203 4204 unsigned FSAbbrev = 4205 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4206 unsigned Code = 4207 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4208 4209 // Emit the finished record. 4210 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4211 NameVals.clear(); 4212 } 4213 4214 // Collect the global value references in the given variable's initializer, 4215 // and emit them in a summary record. 4216 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4217 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4218 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4219 auto VI = Index->getValueInfo(V.getGUID()); 4220 if (!VI || VI.getSummaryList().empty()) { 4221 // Only declarations should not have a summary (a declaration might however 4222 // have a summary if the def was in module level asm). 4223 assert(V.isDeclaration()); 4224 return; 4225 } 4226 auto *Summary = VI.getSummaryList()[0].get(); 4227 NameVals.push_back(VE.getValueID(&V)); 4228 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4229 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4230 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4231 4232 auto VTableFuncs = VS->vTableFuncs(); 4233 if (!VTableFuncs.empty()) 4234 NameVals.push_back(VS->refs().size()); 4235 4236 unsigned SizeBeforeRefs = NameVals.size(); 4237 for (auto &RI : VS->refs()) 4238 NameVals.push_back(VE.getValueID(RI.getValue())); 4239 // Sort the refs for determinism output, the vector returned by FS->refs() has 4240 // been initialized from a DenseSet. 4241 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4242 4243 if (VTableFuncs.empty()) 4244 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4245 FSModRefsAbbrev); 4246 else { 4247 // VTableFuncs pairs should already be sorted by offset. 4248 for (auto &P : VTableFuncs) { 4249 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4250 NameVals.push_back(P.VTableOffset); 4251 } 4252 4253 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4254 FSModVTableRefsAbbrev); 4255 } 4256 NameVals.clear(); 4257 } 4258 4259 /// Emit the per-module summary section alongside the rest of 4260 /// the module's bitcode. 4261 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4262 // By default we compile with ThinLTO if the module has a summary, but the 4263 // client can request full LTO with a module flag. 4264 bool IsThinLTO = true; 4265 if (auto *MD = 4266 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4267 IsThinLTO = MD->getZExtValue(); 4268 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4269 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4270 4); 4271 4272 Stream.EmitRecord( 4273 bitc::FS_VERSION, 4274 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4275 4276 // Write the index flags. 4277 uint64_t Flags = 0; 4278 // Bits 1-3 are set only in the combined index, skip them. 4279 if (Index->enableSplitLTOUnit()) 4280 Flags |= 0x8; 4281 if (Index->hasUnifiedLTO()) 4282 Flags |= 0x200; 4283 4284 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4285 4286 if (Index->begin() == Index->end()) { 4287 Stream.ExitBlock(); 4288 return; 4289 } 4290 4291 for (const auto &GVI : valueIds()) { 4292 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4293 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4294 } 4295 4296 if (!Index->stackIds().empty()) { 4297 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4298 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4299 // numids x stackid 4300 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4301 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4302 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4303 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4304 } 4305 4306 // Abbrev for FS_PERMODULE_PROFILE. 4307 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4308 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4316 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4319 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4320 4321 // Abbrev for FS_PERMODULE_RELBF. 4322 Abbv = std::make_shared<BitCodeAbbrev>(); 4323 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4331 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4334 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4335 4336 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4337 Abbv = std::make_shared<BitCodeAbbrev>(); 4338 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4343 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4344 4345 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4346 Abbv = std::make_shared<BitCodeAbbrev>(); 4347 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4351 // numrefs x valueid, n x (valueid , offset) 4352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4354 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4355 4356 // Abbrev for FS_ALIAS. 4357 Abbv = std::make_shared<BitCodeAbbrev>(); 4358 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4362 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4363 4364 // Abbrev for FS_TYPE_ID_METADATA 4365 Abbv = std::make_shared<BitCodeAbbrev>(); 4366 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4369 // n x (valueid , offset) 4370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4372 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4373 4374 Abbv = std::make_shared<BitCodeAbbrev>(); 4375 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4377 // n x stackidindex 4378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4380 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4381 4382 Abbv = std::make_shared<BitCodeAbbrev>(); 4383 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4384 // n x (alloc type, numstackids, numstackids x stackidindex) 4385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4387 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4388 4389 SmallVector<uint64_t, 64> NameVals; 4390 // Iterate over the list of functions instead of the Index to 4391 // ensure the ordering is stable. 4392 for (const Function &F : M) { 4393 // Summary emission does not support anonymous functions, they have to 4394 // renamed using the anonymous function renaming pass. 4395 if (!F.hasName()) 4396 report_fatal_error("Unexpected anonymous function when writing summary"); 4397 4398 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4399 if (!VI || VI.getSummaryList().empty()) { 4400 // Only declarations should not have a summary (a declaration might 4401 // however have a summary if the def was in module level asm). 4402 assert(F.isDeclaration()); 4403 continue; 4404 } 4405 auto *Summary = VI.getSummaryList()[0].get(); 4406 writePerModuleFunctionSummaryRecord( 4407 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4408 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F); 4409 } 4410 4411 // Capture references from GlobalVariable initializers, which are outside 4412 // of a function scope. 4413 for (const GlobalVariable &G : M.globals()) 4414 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4415 FSModVTableRefsAbbrev); 4416 4417 for (const GlobalAlias &A : M.aliases()) { 4418 auto *Aliasee = A.getAliaseeObject(); 4419 // Skip ifunc and nameless functions which don't have an entry in the 4420 // summary. 4421 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4422 continue; 4423 auto AliasId = VE.getValueID(&A); 4424 auto AliaseeId = VE.getValueID(Aliasee); 4425 NameVals.push_back(AliasId); 4426 auto *Summary = Index->getGlobalValueSummary(A); 4427 AliasSummary *AS = cast<AliasSummary>(Summary); 4428 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4429 NameVals.push_back(AliaseeId); 4430 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4431 NameVals.clear(); 4432 } 4433 4434 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4435 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4436 S.second, VE); 4437 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4438 TypeIdCompatibleVtableAbbrev); 4439 NameVals.clear(); 4440 } 4441 4442 if (Index->getBlockCount()) 4443 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4444 ArrayRef<uint64_t>{Index->getBlockCount()}); 4445 4446 Stream.ExitBlock(); 4447 } 4448 4449 /// Emit the combined summary section into the combined index file. 4450 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4451 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4452 Stream.EmitRecord( 4453 bitc::FS_VERSION, 4454 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4455 4456 // Write the index flags. 4457 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4458 4459 for (const auto &GVI : valueIds()) { 4460 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4461 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4462 } 4463 4464 if (!StackIdIndices.empty()) { 4465 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4466 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4467 // numids x stackid 4468 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4469 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4470 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4471 // Write the stack ids used by this index, which will be a subset of those in 4472 // the full index in the case of distributed indexes. 4473 std::vector<uint64_t> StackIds; 4474 for (auto &I : StackIdIndices) 4475 StackIds.push_back(Index.getStackIdAtIndex(I)); 4476 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4477 } 4478 4479 // Abbrev for FS_COMBINED_PROFILE. 4480 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4481 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4491 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4494 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4495 4496 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4497 Abbv = std::make_shared<BitCodeAbbrev>(); 4498 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4504 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4505 4506 // Abbrev for FS_COMBINED_ALIAS. 4507 Abbv = std::make_shared<BitCodeAbbrev>(); 4508 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4513 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4514 4515 Abbv = std::make_shared<BitCodeAbbrev>(); 4516 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4520 // numstackindices x stackidindex, numver x version 4521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4523 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4524 4525 Abbv = std::make_shared<BitCodeAbbrev>(); 4526 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4529 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4530 // numver x version 4531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4533 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4534 4535 // The aliases are emitted as a post-pass, and will point to the value 4536 // id of the aliasee. Save them in a vector for post-processing. 4537 SmallVector<AliasSummary *, 64> Aliases; 4538 4539 // Save the value id for each summary for alias emission. 4540 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4541 4542 SmallVector<uint64_t, 64> NameVals; 4543 4544 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4545 // with the type ids referenced by this index file. 4546 std::set<GlobalValue::GUID> ReferencedTypeIds; 4547 4548 // For local linkage, we also emit the original name separately 4549 // immediately after the record. 4550 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4551 // We don't need to emit the original name if we are writing the index for 4552 // distributed backends (in which case ModuleToSummariesForIndex is 4553 // non-null). The original name is only needed during the thin link, since 4554 // for SamplePGO the indirect call targets for local functions have 4555 // have the original name annotated in profile. 4556 // Continue to emit it when writing out the entire combined index, which is 4557 // used in testing the thin link via llvm-lto. 4558 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4559 return; 4560 NameVals.push_back(S.getOriginalName()); 4561 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4562 NameVals.clear(); 4563 }; 4564 4565 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4566 forEachSummary([&](GVInfo I, bool IsAliasee) { 4567 GlobalValueSummary *S = I.second; 4568 assert(S); 4569 DefOrUseGUIDs.insert(I.first); 4570 for (const ValueInfo &VI : S->refs()) 4571 DefOrUseGUIDs.insert(VI.getGUID()); 4572 4573 auto ValueId = getValueId(I.first); 4574 assert(ValueId); 4575 SummaryToValueIdMap[S] = *ValueId; 4576 4577 // If this is invoked for an aliasee, we want to record the above 4578 // mapping, but then not emit a summary entry (if the aliasee is 4579 // to be imported, we will invoke this separately with IsAliasee=false). 4580 if (IsAliasee) 4581 return; 4582 4583 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4584 // Will process aliases as a post-pass because the reader wants all 4585 // global to be loaded first. 4586 Aliases.push_back(AS); 4587 return; 4588 } 4589 4590 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4591 NameVals.push_back(*ValueId); 4592 assert(ModuleIdMap.count(VS->modulePath())); 4593 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4594 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4595 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4596 for (auto &RI : VS->refs()) { 4597 auto RefValueId = getValueId(RI.getGUID()); 4598 if (!RefValueId) 4599 continue; 4600 NameVals.push_back(*RefValueId); 4601 } 4602 4603 // Emit the finished record. 4604 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4605 FSModRefsAbbrev); 4606 NameVals.clear(); 4607 MaybeEmitOriginalName(*S); 4608 return; 4609 } 4610 4611 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4612 if (!VI) 4613 return std::nullopt; 4614 return getValueId(VI.getGUID()); 4615 }; 4616 4617 auto *FS = cast<FunctionSummary>(S); 4618 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4619 getReferencedTypeIds(FS, ReferencedTypeIds); 4620 4621 writeFunctionHeapProfileRecords( 4622 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4623 /*PerModule*/ false, 4624 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4625 std::optional<unsigned> ValueID = GetValueId(VI); 4626 // This can happen in shared index files for distributed ThinLTO if 4627 // the callee function summary is not included. Record 0 which we 4628 // will have to deal with conservatively when doing any kind of 4629 // validation in the ThinLTO backends. 4630 if (!ValueID) 4631 return 0; 4632 return *ValueID; 4633 }, 4634 /*GetStackIndex*/ [&](unsigned I) { 4635 // Get the corresponding index into the list of StackIdIndices 4636 // actually being written for this combined index (which may be a 4637 // subset in the case of distributed indexes). 4638 auto Lower = llvm::lower_bound(StackIdIndices, I); 4639 return std::distance(StackIdIndices.begin(), Lower); 4640 }); 4641 4642 NameVals.push_back(*ValueId); 4643 assert(ModuleIdMap.count(FS->modulePath())); 4644 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4645 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4646 NameVals.push_back(FS->instCount()); 4647 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4648 NameVals.push_back(FS->entryCount()); 4649 4650 // Fill in below 4651 NameVals.push_back(0); // numrefs 4652 NameVals.push_back(0); // rorefcnt 4653 NameVals.push_back(0); // worefcnt 4654 4655 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4656 for (auto &RI : FS->refs()) { 4657 auto RefValueId = getValueId(RI.getGUID()); 4658 if (!RefValueId) 4659 continue; 4660 NameVals.push_back(*RefValueId); 4661 if (RI.isReadOnly()) 4662 RORefCnt++; 4663 else if (RI.isWriteOnly()) 4664 WORefCnt++; 4665 Count++; 4666 } 4667 NameVals[6] = Count; 4668 NameVals[7] = RORefCnt; 4669 NameVals[8] = WORefCnt; 4670 4671 for (auto &EI : FS->calls()) { 4672 // If this GUID doesn't have a value id, it doesn't have a function 4673 // summary and we don't need to record any calls to it. 4674 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4675 if (!CallValueId) 4676 continue; 4677 NameVals.push_back(*CallValueId); 4678 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4679 } 4680 4681 // Emit the finished record. 4682 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 4683 FSCallsProfileAbbrev); 4684 NameVals.clear(); 4685 MaybeEmitOriginalName(*S); 4686 }); 4687 4688 for (auto *AS : Aliases) { 4689 auto AliasValueId = SummaryToValueIdMap[AS]; 4690 assert(AliasValueId); 4691 NameVals.push_back(AliasValueId); 4692 assert(ModuleIdMap.count(AS->modulePath())); 4693 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4694 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4695 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4696 assert(AliaseeValueId); 4697 NameVals.push_back(AliaseeValueId); 4698 4699 // Emit the finished record. 4700 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4701 NameVals.clear(); 4702 MaybeEmitOriginalName(*AS); 4703 4704 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4705 getReferencedTypeIds(FS, ReferencedTypeIds); 4706 } 4707 4708 if (!Index.cfiFunctionDefs().empty()) { 4709 for (auto &S : Index.cfiFunctionDefs()) { 4710 if (DefOrUseGUIDs.count( 4711 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4712 NameVals.push_back(StrtabBuilder.add(S)); 4713 NameVals.push_back(S.size()); 4714 } 4715 } 4716 if (!NameVals.empty()) { 4717 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4718 NameVals.clear(); 4719 } 4720 } 4721 4722 if (!Index.cfiFunctionDecls().empty()) { 4723 for (auto &S : Index.cfiFunctionDecls()) { 4724 if (DefOrUseGUIDs.count( 4725 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4726 NameVals.push_back(StrtabBuilder.add(S)); 4727 NameVals.push_back(S.size()); 4728 } 4729 } 4730 if (!NameVals.empty()) { 4731 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4732 NameVals.clear(); 4733 } 4734 } 4735 4736 // Walk the GUIDs that were referenced, and write the 4737 // corresponding type id records. 4738 for (auto &T : ReferencedTypeIds) { 4739 auto TidIter = Index.typeIds().equal_range(T); 4740 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4741 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4742 It->second.second); 4743 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4744 NameVals.clear(); 4745 } 4746 } 4747 4748 if (Index.getBlockCount()) 4749 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4750 ArrayRef<uint64_t>{Index.getBlockCount()}); 4751 4752 Stream.ExitBlock(); 4753 } 4754 4755 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4756 /// current llvm version, and a record for the epoch number. 4757 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4758 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4759 4760 // Write the "user readable" string identifying the bitcode producer 4761 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4762 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4765 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4766 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4767 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4768 4769 // Write the epoch version 4770 Abbv = std::make_shared<BitCodeAbbrev>(); 4771 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4773 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4774 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4775 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4776 Stream.ExitBlock(); 4777 } 4778 4779 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4780 // Emit the module's hash. 4781 // MODULE_CODE_HASH: [5*i32] 4782 if (GenerateHash) { 4783 uint32_t Vals[5]; 4784 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4785 Buffer.size() - BlockStartPos)); 4786 std::array<uint8_t, 20> Hash = Hasher.result(); 4787 for (int Pos = 0; Pos < 20; Pos += 4) { 4788 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4789 } 4790 4791 // Emit the finished record. 4792 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4793 4794 if (ModHash) 4795 // Save the written hash value. 4796 llvm::copy(Vals, std::begin(*ModHash)); 4797 } 4798 } 4799 4800 void ModuleBitcodeWriter::write() { 4801 writeIdentificationBlock(Stream); 4802 4803 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4804 size_t BlockStartPos = Buffer.size(); 4805 4806 writeModuleVersion(); 4807 4808 // Emit blockinfo, which defines the standard abbreviations etc. 4809 writeBlockInfo(); 4810 4811 // Emit information describing all of the types in the module. 4812 writeTypeTable(); 4813 4814 // Emit information about attribute groups. 4815 writeAttributeGroupTable(); 4816 4817 // Emit information about parameter attributes. 4818 writeAttributeTable(); 4819 4820 writeComdats(); 4821 4822 // Emit top-level description of module, including target triple, inline asm, 4823 // descriptors for global variables, and function prototype info. 4824 writeModuleInfo(); 4825 4826 // Emit constants. 4827 writeModuleConstants(); 4828 4829 // Emit metadata kind names. 4830 writeModuleMetadataKinds(); 4831 4832 // Emit metadata. 4833 writeModuleMetadata(); 4834 4835 // Emit module-level use-lists. 4836 if (VE.shouldPreserveUseListOrder()) 4837 writeUseListBlock(nullptr); 4838 4839 writeOperandBundleTags(); 4840 writeSyncScopeNames(); 4841 4842 // Emit function bodies. 4843 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4844 for (const Function &F : M) 4845 if (!F.isDeclaration()) 4846 writeFunction(F, FunctionToBitcodeIndex); 4847 4848 // Need to write after the above call to WriteFunction which populates 4849 // the summary information in the index. 4850 if (Index) 4851 writePerModuleGlobalValueSummary(); 4852 4853 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4854 4855 writeModuleHash(BlockStartPos); 4856 4857 Stream.ExitBlock(); 4858 } 4859 4860 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4861 uint32_t &Position) { 4862 support::endian::write32le(&Buffer[Position], Value); 4863 Position += 4; 4864 } 4865 4866 /// If generating a bc file on darwin, we have to emit a 4867 /// header and trailer to make it compatible with the system archiver. To do 4868 /// this we emit the following header, and then emit a trailer that pads the 4869 /// file out to be a multiple of 16 bytes. 4870 /// 4871 /// struct bc_header { 4872 /// uint32_t Magic; // 0x0B17C0DE 4873 /// uint32_t Version; // Version, currently always 0. 4874 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4875 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4876 /// uint32_t CPUType; // CPU specifier. 4877 /// ... potentially more later ... 4878 /// }; 4879 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4880 const Triple &TT) { 4881 unsigned CPUType = ~0U; 4882 4883 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4884 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4885 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4886 // specific constants here because they are implicitly part of the Darwin ABI. 4887 enum { 4888 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4889 DARWIN_CPU_TYPE_X86 = 7, 4890 DARWIN_CPU_TYPE_ARM = 12, 4891 DARWIN_CPU_TYPE_POWERPC = 18 4892 }; 4893 4894 Triple::ArchType Arch = TT.getArch(); 4895 if (Arch == Triple::x86_64) 4896 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4897 else if (Arch == Triple::x86) 4898 CPUType = DARWIN_CPU_TYPE_X86; 4899 else if (Arch == Triple::ppc) 4900 CPUType = DARWIN_CPU_TYPE_POWERPC; 4901 else if (Arch == Triple::ppc64) 4902 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4903 else if (Arch == Triple::arm || Arch == Triple::thumb) 4904 CPUType = DARWIN_CPU_TYPE_ARM; 4905 4906 // Traditional Bitcode starts after header. 4907 assert(Buffer.size() >= BWH_HeaderSize && 4908 "Expected header size to be reserved"); 4909 unsigned BCOffset = BWH_HeaderSize; 4910 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4911 4912 // Write the magic and version. 4913 unsigned Position = 0; 4914 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4915 writeInt32ToBuffer(0, Buffer, Position); // Version. 4916 writeInt32ToBuffer(BCOffset, Buffer, Position); 4917 writeInt32ToBuffer(BCSize, Buffer, Position); 4918 writeInt32ToBuffer(CPUType, Buffer, Position); 4919 4920 // If the file is not a multiple of 16 bytes, insert dummy padding. 4921 while (Buffer.size() & 15) 4922 Buffer.push_back(0); 4923 } 4924 4925 /// Helper to write the header common to all bitcode files. 4926 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4927 // Emit the file header. 4928 Stream.Emit((unsigned)'B', 8); 4929 Stream.Emit((unsigned)'C', 8); 4930 Stream.Emit(0x0, 4); 4931 Stream.Emit(0xC, 4); 4932 Stream.Emit(0xE, 4); 4933 Stream.Emit(0xD, 4); 4934 } 4935 4936 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4937 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4938 writeBitcodeHeader(*Stream); 4939 } 4940 4941 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4942 4943 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4944 Stream->EnterSubblock(Block, 3); 4945 4946 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4947 Abbv->Add(BitCodeAbbrevOp(Record)); 4948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4949 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4950 4951 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4952 4953 Stream->ExitBlock(); 4954 } 4955 4956 void BitcodeWriter::writeSymtab() { 4957 assert(!WroteStrtab && !WroteSymtab); 4958 4959 // If any module has module-level inline asm, we will require a registered asm 4960 // parser for the target so that we can create an accurate symbol table for 4961 // the module. 4962 for (Module *M : Mods) { 4963 if (M->getModuleInlineAsm().empty()) 4964 continue; 4965 4966 std::string Err; 4967 const Triple TT(M->getTargetTriple()); 4968 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4969 if (!T || !T->hasMCAsmParser()) 4970 return; 4971 } 4972 4973 WroteSymtab = true; 4974 SmallVector<char, 0> Symtab; 4975 // The irsymtab::build function may be unable to create a symbol table if the 4976 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4977 // table is not required for correctness, but we still want to be able to 4978 // write malformed modules to bitcode files, so swallow the error. 4979 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4980 consumeError(std::move(E)); 4981 return; 4982 } 4983 4984 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4985 {Symtab.data(), Symtab.size()}); 4986 } 4987 4988 void BitcodeWriter::writeStrtab() { 4989 assert(!WroteStrtab); 4990 4991 std::vector<char> Strtab; 4992 StrtabBuilder.finalizeInOrder(); 4993 Strtab.resize(StrtabBuilder.getSize()); 4994 StrtabBuilder.write((uint8_t *)Strtab.data()); 4995 4996 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4997 {Strtab.data(), Strtab.size()}); 4998 4999 WroteStrtab = true; 5000 } 5001 5002 void BitcodeWriter::copyStrtab(StringRef Strtab) { 5003 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 5004 WroteStrtab = true; 5005 } 5006 5007 void BitcodeWriter::writeModule(const Module &M, 5008 bool ShouldPreserveUseListOrder, 5009 const ModuleSummaryIndex *Index, 5010 bool GenerateHash, ModuleHash *ModHash) { 5011 assert(!WroteStrtab); 5012 5013 // The Mods vector is used by irsymtab::build, which requires non-const 5014 // Modules in case it needs to materialize metadata. But the bitcode writer 5015 // requires that the module is materialized, so we can cast to non-const here, 5016 // after checking that it is in fact materialized. 5017 assert(M.isMaterialized()); 5018 Mods.push_back(const_cast<Module *>(&M)); 5019 5020 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 5021 ShouldPreserveUseListOrder, Index, 5022 GenerateHash, ModHash); 5023 ModuleWriter.write(); 5024 } 5025 5026 void BitcodeWriter::writeIndex( 5027 const ModuleSummaryIndex *Index, 5028 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 5029 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 5030 ModuleToSummariesForIndex); 5031 IndexWriter.write(); 5032 } 5033 5034 /// Write the specified module to the specified output stream. 5035 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 5036 bool ShouldPreserveUseListOrder, 5037 const ModuleSummaryIndex *Index, 5038 bool GenerateHash, ModuleHash *ModHash) { 5039 SmallVector<char, 0> Buffer; 5040 Buffer.reserve(256*1024); 5041 5042 // If this is darwin or another generic macho target, reserve space for the 5043 // header. 5044 Triple TT(M.getTargetTriple()); 5045 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 5046 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 5047 5048 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 5049 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 5050 ModHash); 5051 Writer.writeSymtab(); 5052 Writer.writeStrtab(); 5053 5054 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 5055 emitDarwinBCHeaderAndTrailer(Buffer, TT); 5056 5057 // Write the generated bitstream to "Out". 5058 if (!Buffer.empty()) 5059 Out.write((char *)&Buffer.front(), Buffer.size()); 5060 } 5061 5062 void IndexBitcodeWriter::write() { 5063 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5064 5065 writeModuleVersion(); 5066 5067 // Write the module paths in the combined index. 5068 writeModStrings(); 5069 5070 // Write the summary combined index records. 5071 writeCombinedGlobalValueSummary(); 5072 5073 Stream.ExitBlock(); 5074 } 5075 5076 // Write the specified module summary index to the given raw output stream, 5077 // where it will be written in a new bitcode block. This is used when 5078 // writing the combined index file for ThinLTO. When writing a subset of the 5079 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 5080 void llvm::writeIndexToFile( 5081 const ModuleSummaryIndex &Index, raw_ostream &Out, 5082 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 5083 SmallVector<char, 0> Buffer; 5084 Buffer.reserve(256 * 1024); 5085 5086 BitcodeWriter Writer(Buffer); 5087 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 5088 Writer.writeStrtab(); 5089 5090 Out.write((char *)&Buffer.front(), Buffer.size()); 5091 } 5092 5093 namespace { 5094 5095 /// Class to manage the bitcode writing for a thin link bitcode file. 5096 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5097 /// ModHash is for use in ThinLTO incremental build, generated while writing 5098 /// the module bitcode file. 5099 const ModuleHash *ModHash; 5100 5101 public: 5102 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5103 BitstreamWriter &Stream, 5104 const ModuleSummaryIndex &Index, 5105 const ModuleHash &ModHash) 5106 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5107 /*ShouldPreserveUseListOrder=*/false, &Index), 5108 ModHash(&ModHash) {} 5109 5110 void write(); 5111 5112 private: 5113 void writeSimplifiedModuleInfo(); 5114 }; 5115 5116 } // end anonymous namespace 5117 5118 // This function writes a simpilified module info for thin link bitcode file. 5119 // It only contains the source file name along with the name(the offset and 5120 // size in strtab) and linkage for global values. For the global value info 5121 // entry, in order to keep linkage at offset 5, there are three zeros used 5122 // as padding. 5123 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5124 SmallVector<unsigned, 64> Vals; 5125 // Emit the module's source file name. 5126 { 5127 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5128 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5129 if (Bits == SE_Char6) 5130 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5131 else if (Bits == SE_Fixed7) 5132 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5133 5134 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5135 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5136 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5138 Abbv->Add(AbbrevOpToUse); 5139 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5140 5141 for (const auto P : M.getSourceFileName()) 5142 Vals.push_back((unsigned char)P); 5143 5144 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5145 Vals.clear(); 5146 } 5147 5148 // Emit the global variable information. 5149 for (const GlobalVariable &GV : M.globals()) { 5150 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5151 Vals.push_back(StrtabBuilder.add(GV.getName())); 5152 Vals.push_back(GV.getName().size()); 5153 Vals.push_back(0); 5154 Vals.push_back(0); 5155 Vals.push_back(0); 5156 Vals.push_back(getEncodedLinkage(GV)); 5157 5158 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5159 Vals.clear(); 5160 } 5161 5162 // Emit the function proto information. 5163 for (const Function &F : M) { 5164 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5165 Vals.push_back(StrtabBuilder.add(F.getName())); 5166 Vals.push_back(F.getName().size()); 5167 Vals.push_back(0); 5168 Vals.push_back(0); 5169 Vals.push_back(0); 5170 Vals.push_back(getEncodedLinkage(F)); 5171 5172 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5173 Vals.clear(); 5174 } 5175 5176 // Emit the alias information. 5177 for (const GlobalAlias &A : M.aliases()) { 5178 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5179 Vals.push_back(StrtabBuilder.add(A.getName())); 5180 Vals.push_back(A.getName().size()); 5181 Vals.push_back(0); 5182 Vals.push_back(0); 5183 Vals.push_back(0); 5184 Vals.push_back(getEncodedLinkage(A)); 5185 5186 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5187 Vals.clear(); 5188 } 5189 5190 // Emit the ifunc information. 5191 for (const GlobalIFunc &I : M.ifuncs()) { 5192 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5193 Vals.push_back(StrtabBuilder.add(I.getName())); 5194 Vals.push_back(I.getName().size()); 5195 Vals.push_back(0); 5196 Vals.push_back(0); 5197 Vals.push_back(0); 5198 Vals.push_back(getEncodedLinkage(I)); 5199 5200 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5201 Vals.clear(); 5202 } 5203 } 5204 5205 void ThinLinkBitcodeWriter::write() { 5206 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5207 5208 writeModuleVersion(); 5209 5210 writeSimplifiedModuleInfo(); 5211 5212 writePerModuleGlobalValueSummary(); 5213 5214 // Write module hash. 5215 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5216 5217 Stream.ExitBlock(); 5218 } 5219 5220 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5221 const ModuleSummaryIndex &Index, 5222 const ModuleHash &ModHash) { 5223 assert(!WroteStrtab); 5224 5225 // The Mods vector is used by irsymtab::build, which requires non-const 5226 // Modules in case it needs to materialize metadata. But the bitcode writer 5227 // requires that the module is materialized, so we can cast to non-const here, 5228 // after checking that it is in fact materialized. 5229 assert(M.isMaterialized()); 5230 Mods.push_back(const_cast<Module *>(&M)); 5231 5232 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5233 ModHash); 5234 ThinLinkWriter.write(); 5235 } 5236 5237 // Write the specified thin link bitcode file to the given raw output stream, 5238 // where it will be written in a new bitcode block. This is used when 5239 // writing the per-module index file for ThinLTO. 5240 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5241 const ModuleSummaryIndex &Index, 5242 const ModuleHash &ModHash) { 5243 SmallVector<char, 0> Buffer; 5244 Buffer.reserve(256 * 1024); 5245 5246 BitcodeWriter Writer(Buffer); 5247 Writer.writeThinLinkBitcode(M, Index, ModHash); 5248 Writer.writeSymtab(); 5249 Writer.writeStrtab(); 5250 5251 Out.write((char *)&Buffer.front(), Buffer.size()); 5252 } 5253 5254 static const char *getSectionNameForBitcode(const Triple &T) { 5255 switch (T.getObjectFormat()) { 5256 case Triple::MachO: 5257 return "__LLVM,__bitcode"; 5258 case Triple::COFF: 5259 case Triple::ELF: 5260 case Triple::Wasm: 5261 case Triple::UnknownObjectFormat: 5262 return ".llvmbc"; 5263 case Triple::GOFF: 5264 llvm_unreachable("GOFF is not yet implemented"); 5265 break; 5266 case Triple::SPIRV: 5267 llvm_unreachable("SPIRV is not yet implemented"); 5268 break; 5269 case Triple::XCOFF: 5270 llvm_unreachable("XCOFF is not yet implemented"); 5271 break; 5272 case Triple::DXContainer: 5273 llvm_unreachable("DXContainer is not yet implemented"); 5274 break; 5275 } 5276 llvm_unreachable("Unimplemented ObjectFormatType"); 5277 } 5278 5279 static const char *getSectionNameForCommandline(const Triple &T) { 5280 switch (T.getObjectFormat()) { 5281 case Triple::MachO: 5282 return "__LLVM,__cmdline"; 5283 case Triple::COFF: 5284 case Triple::ELF: 5285 case Triple::Wasm: 5286 case Triple::UnknownObjectFormat: 5287 return ".llvmcmd"; 5288 case Triple::GOFF: 5289 llvm_unreachable("GOFF is not yet implemented"); 5290 break; 5291 case Triple::SPIRV: 5292 llvm_unreachable("SPIRV is not yet implemented"); 5293 break; 5294 case Triple::XCOFF: 5295 llvm_unreachable("XCOFF is not yet implemented"); 5296 break; 5297 case Triple::DXContainer: 5298 llvm_unreachable("DXC is not yet implemented"); 5299 break; 5300 } 5301 llvm_unreachable("Unimplemented ObjectFormatType"); 5302 } 5303 5304 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5305 bool EmbedBitcode, bool EmbedCmdline, 5306 const std::vector<uint8_t> &CmdArgs) { 5307 // Save llvm.compiler.used and remove it. 5308 SmallVector<Constant *, 2> UsedArray; 5309 SmallVector<GlobalValue *, 4> UsedGlobals; 5310 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5311 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5312 for (auto *GV : UsedGlobals) { 5313 if (GV->getName() != "llvm.embedded.module" && 5314 GV->getName() != "llvm.cmdline") 5315 UsedArray.push_back( 5316 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5317 } 5318 if (Used) 5319 Used->eraseFromParent(); 5320 5321 // Embed the bitcode for the llvm module. 5322 std::string Data; 5323 ArrayRef<uint8_t> ModuleData; 5324 Triple T(M.getTargetTriple()); 5325 5326 if (EmbedBitcode) { 5327 if (Buf.getBufferSize() == 0 || 5328 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5329 (const unsigned char *)Buf.getBufferEnd())) { 5330 // If the input is LLVM Assembly, bitcode is produced by serializing 5331 // the module. Use-lists order need to be preserved in this case. 5332 llvm::raw_string_ostream OS(Data); 5333 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5334 ModuleData = 5335 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5336 } else 5337 // If the input is LLVM bitcode, write the input byte stream directly. 5338 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5339 Buf.getBufferSize()); 5340 } 5341 llvm::Constant *ModuleConstant = 5342 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5343 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5344 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5345 ModuleConstant); 5346 GV->setSection(getSectionNameForBitcode(T)); 5347 // Set alignment to 1 to prevent padding between two contributions from input 5348 // sections after linking. 5349 GV->setAlignment(Align(1)); 5350 UsedArray.push_back( 5351 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5352 if (llvm::GlobalVariable *Old = 5353 M.getGlobalVariable("llvm.embedded.module", true)) { 5354 assert(Old->hasZeroLiveUses() && 5355 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5356 GV->takeName(Old); 5357 Old->eraseFromParent(); 5358 } else { 5359 GV->setName("llvm.embedded.module"); 5360 } 5361 5362 // Skip if only bitcode needs to be embedded. 5363 if (EmbedCmdline) { 5364 // Embed command-line options. 5365 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5366 CmdArgs.size()); 5367 llvm::Constant *CmdConstant = 5368 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5369 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5370 llvm::GlobalValue::PrivateLinkage, 5371 CmdConstant); 5372 GV->setSection(getSectionNameForCommandline(T)); 5373 GV->setAlignment(Align(1)); 5374 UsedArray.push_back( 5375 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5376 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5377 assert(Old->hasZeroLiveUses() && 5378 "llvm.cmdline can only be used once in llvm.compiler.used"); 5379 GV->takeName(Old); 5380 Old->eraseFromParent(); 5381 } else { 5382 GV->setName("llvm.cmdline"); 5383 } 5384 } 5385 5386 if (UsedArray.empty()) 5387 return; 5388 5389 // Recreate llvm.compiler.used. 5390 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5391 auto *NewUsed = new GlobalVariable( 5392 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5393 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5394 NewUsed->setSection("llvm.metadata"); 5395 } 5396