1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 namespace { 103 104 /// These are manifest constants used by the bitcode writer. They do not need to 105 /// be kept in sync with the reader, but need to be consistent within this file. 106 enum { 107 // VALUE_SYMTAB_BLOCK abbrev id's. 108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 VST_ENTRY_7_ABBREV, 110 VST_ENTRY_6_ABBREV, 111 VST_BBENTRY_6_ABBREV, 112 113 // CONSTANTS_BLOCK abbrev id's. 114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 CONSTANTS_INTEGER_ABBREV, 116 CONSTANTS_CE_CAST_Abbrev, 117 CONSTANTS_NULL_Abbrev, 118 119 // FUNCTION_BLOCK abbrev id's. 120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 FUNCTION_INST_UNOP_ABBREV, 122 FUNCTION_INST_UNOP_FLAGS_ABBREV, 123 FUNCTION_INST_BINOP_ABBREV, 124 FUNCTION_INST_BINOP_FLAGS_ABBREV, 125 FUNCTION_INST_CAST_ABBREV, 126 FUNCTION_INST_CAST_FLAGS_ABBREV, 127 FUNCTION_INST_RET_VOID_ABBREV, 128 FUNCTION_INST_RET_VAL_ABBREV, 129 FUNCTION_INST_UNREACHABLE_ABBREV, 130 FUNCTION_INST_GEP_ABBREV, 131 }; 132 133 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 134 /// file type. 135 class BitcodeWriterBase { 136 protected: 137 /// The stream created and owned by the client. 138 BitstreamWriter &Stream; 139 140 StringTableBuilder &StrtabBuilder; 141 142 public: 143 /// Constructs a BitcodeWriterBase object that writes to the provided 144 /// \p Stream. 145 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 146 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 147 148 protected: 149 void writeModuleVersion(); 150 }; 151 152 void BitcodeWriterBase::writeModuleVersion() { 153 // VERSION: [version#] 154 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 155 } 156 157 /// Base class to manage the module bitcode writing, currently subclassed for 158 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 159 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 160 protected: 161 /// The Module to write to bitcode. 162 const Module &M; 163 164 /// Enumerates ids for all values in the module. 165 ValueEnumerator VE; 166 167 /// Optional per-module index to write for ThinLTO. 168 const ModuleSummaryIndex *Index; 169 170 /// Map that holds the correspondence between GUIDs in the summary index, 171 /// that came from indirect call profiles, and a value id generated by this 172 /// class to use in the VST and summary block records. 173 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 174 175 /// Tracks the last value id recorded in the GUIDToValueMap. 176 unsigned GlobalValueId; 177 178 /// Saves the offset of the VSTOffset record that must eventually be 179 /// backpatched with the offset of the actual VST. 180 uint64_t VSTOffsetPlaceholder = 0; 181 182 public: 183 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 184 /// writing to the provided \p Buffer. 185 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 186 BitstreamWriter &Stream, 187 bool ShouldPreserveUseListOrder, 188 const ModuleSummaryIndex *Index) 189 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 190 VE(M, ShouldPreserveUseListOrder), Index(Index) { 191 // Assign ValueIds to any callee values in the index that came from 192 // indirect call profiles and were recorded as a GUID not a Value* 193 // (which would have been assigned an ID by the ValueEnumerator). 194 // The starting ValueId is just after the number of values in the 195 // ValueEnumerator, so that they can be emitted in the VST. 196 GlobalValueId = VE.getValues().size(); 197 if (!Index) 198 return; 199 for (const auto &GUIDSummaryLists : *Index) 200 // Examine all summaries for this GUID. 201 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 202 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 203 // For each call in the function summary, see if the call 204 // is to a GUID (which means it is for an indirect call, 205 // otherwise we would have a Value for it). If so, synthesize 206 // a value id. 207 for (auto &CallEdge : FS->calls()) 208 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 209 assignValueId(CallEdge.first.getGUID()); 210 } 211 212 protected: 213 void writePerModuleGlobalValueSummary(); 214 215 private: 216 void writePerModuleFunctionSummaryRecord( 217 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 218 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 219 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDIGlobalVariable(const DIGlobalVariable *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 void writeDILocalVariable(const DILocalVariable *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDILabel(const DILabel *N, 357 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 358 void writeDIExpression(const DIExpression *N, 359 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 360 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 361 SmallVectorImpl<uint64_t> &Record, 362 unsigned Abbrev); 363 void writeDIObjCProperty(const DIObjCProperty *N, 364 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 365 void writeDIImportedEntity(const DIImportedEntity *N, 366 SmallVectorImpl<uint64_t> &Record, 367 unsigned Abbrev); 368 unsigned createNamedMetadataAbbrev(); 369 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 370 unsigned createMetadataStringsAbbrev(); 371 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 372 SmallVectorImpl<uint64_t> &Record); 373 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 374 SmallVectorImpl<uint64_t> &Record, 375 std::vector<unsigned> *MDAbbrevs = nullptr, 376 std::vector<uint64_t> *IndexPos = nullptr); 377 void writeModuleMetadata(); 378 void writeFunctionMetadata(const Function &F); 379 void writeFunctionMetadataAttachment(const Function &F); 380 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 381 const GlobalObject &GO); 382 void writeModuleMetadataKinds(); 383 void writeOperandBundleTags(); 384 void writeSyncScopeNames(); 385 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 386 void writeModuleConstants(); 387 bool pushValueAndType(const Value *V, unsigned InstID, 388 SmallVectorImpl<unsigned> &Vals); 389 void writeOperandBundles(const CallBase &CB, unsigned InstID); 390 void pushValue(const Value *V, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void pushValueSigned(const Value *V, unsigned InstID, 393 SmallVectorImpl<uint64_t> &Vals); 394 void writeInstruction(const Instruction &I, unsigned InstID, 395 SmallVectorImpl<unsigned> &Vals); 396 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 397 void writeGlobalValueSymbolTable( 398 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 399 void writeUseList(UseListOrder &&Order); 400 void writeUseListBlock(const Function *F); 401 void 402 writeFunction(const Function &F, 403 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 404 void writeBlockInfo(); 405 void writeModuleHash(size_t BlockStartPos); 406 407 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 408 return unsigned(SSID); 409 } 410 411 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 412 }; 413 414 /// Class to manage the bitcode writing for a combined index. 415 class IndexBitcodeWriter : public BitcodeWriterBase { 416 /// The combined index to write to bitcode. 417 const ModuleSummaryIndex &Index; 418 419 /// When writing a subset of the index for distributed backends, client 420 /// provides a map of modules to the corresponding GUIDs/summaries to write. 421 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 422 423 /// Map that holds the correspondence between the GUID used in the combined 424 /// index and a value id generated by this class to use in references. 425 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 426 427 // The sorted stack id indices actually used in the summary entries being 428 // written, which will be a subset of those in the full index in the case of 429 // distributed indexes. 430 std::vector<unsigned> StackIdIndices; 431 432 /// Tracks the last value id recorded in the GUIDToValueMap. 433 unsigned GlobalValueId = 0; 434 435 /// Tracks the assignment of module paths in the module path string table to 436 /// an id assigned for use in summary references to the module path. 437 DenseMap<StringRef, uint64_t> ModuleIdMap; 438 439 public: 440 /// Constructs a IndexBitcodeWriter object for the given combined index, 441 /// writing to the provided \p Buffer. When writing a subset of the index 442 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 443 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 444 const ModuleSummaryIndex &Index, 445 const std::map<std::string, GVSummaryMapTy> 446 *ModuleToSummariesForIndex = nullptr) 447 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 448 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 449 // Assign unique value ids to all summaries to be written, for use 450 // in writing out the call graph edges. Save the mapping from GUID 451 // to the new global value id to use when writing those edges, which 452 // are currently saved in the index in terms of GUID. 453 forEachSummary([&](GVInfo I, bool IsAliasee) { 454 GUIDToValueIdMap[I.first] = ++GlobalValueId; 455 if (IsAliasee) 456 return; 457 auto *FS = dyn_cast<FunctionSummary>(I.second); 458 if (!FS) 459 return; 460 // Record all stack id indices actually used in the summary entries being 461 // written, so that we can compact them in the case of distributed ThinLTO 462 // indexes. 463 for (auto &CI : FS->callsites()) 464 for (auto Idx : CI.StackIdIndices) 465 StackIdIndices.push_back(Idx); 466 for (auto &AI : FS->allocs()) 467 for (auto &MIB : AI.MIBs) 468 for (auto Idx : MIB.StackIdIndices) 469 StackIdIndices.push_back(Idx); 470 }); 471 llvm::sort(StackIdIndices); 472 StackIdIndices.erase( 473 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 474 StackIdIndices.end()); 475 } 476 477 /// The below iterator returns the GUID and associated summary. 478 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 479 480 /// Calls the callback for each value GUID and summary to be written to 481 /// bitcode. This hides the details of whether they are being pulled from the 482 /// entire index or just those in a provided ModuleToSummariesForIndex map. 483 template<typename Functor> 484 void forEachSummary(Functor Callback) { 485 if (ModuleToSummariesForIndex) { 486 for (auto &M : *ModuleToSummariesForIndex) 487 for (auto &Summary : M.second) { 488 Callback(Summary, false); 489 // Ensure aliasee is handled, e.g. for assigning a valueId, 490 // even if we are not importing the aliasee directly (the 491 // imported alias will contain a copy of aliasee). 492 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 493 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 494 } 495 } else { 496 for (auto &Summaries : Index) 497 for (auto &Summary : Summaries.second.SummaryList) 498 Callback({Summaries.first, Summary.get()}, false); 499 } 500 } 501 502 /// Calls the callback for each entry in the modulePaths StringMap that 503 /// should be written to the module path string table. This hides the details 504 /// of whether they are being pulled from the entire index or just those in a 505 /// provided ModuleToSummariesForIndex map. 506 template <typename Functor> void forEachModule(Functor Callback) { 507 if (ModuleToSummariesForIndex) { 508 for (const auto &M : *ModuleToSummariesForIndex) { 509 const auto &MPI = Index.modulePaths().find(M.first); 510 if (MPI == Index.modulePaths().end()) { 511 // This should only happen if the bitcode file was empty, in which 512 // case we shouldn't be importing (the ModuleToSummariesForIndex 513 // would only include the module we are writing and index for). 514 assert(ModuleToSummariesForIndex->size() == 1); 515 continue; 516 } 517 Callback(*MPI); 518 } 519 } else { 520 // Since StringMap iteration order isn't guaranteed, order by path string 521 // first. 522 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 523 // map lookup. 524 std::vector<StringRef> ModulePaths; 525 for (auto &[ModPath, _] : Index.modulePaths()) 526 ModulePaths.push_back(ModPath); 527 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 528 for (auto &ModPath : ModulePaths) 529 Callback(*Index.modulePaths().find(ModPath)); 530 } 531 } 532 533 /// Main entry point for writing a combined index to bitcode. 534 void write(); 535 536 private: 537 void writeModStrings(); 538 void writeCombinedGlobalValueSummary(); 539 540 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 541 auto VMI = GUIDToValueIdMap.find(ValGUID); 542 if (VMI == GUIDToValueIdMap.end()) 543 return std::nullopt; 544 return VMI->second; 545 } 546 547 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 548 }; 549 550 } // end anonymous namespace 551 552 static unsigned getEncodedCastOpcode(unsigned Opcode) { 553 switch (Opcode) { 554 default: llvm_unreachable("Unknown cast instruction!"); 555 case Instruction::Trunc : return bitc::CAST_TRUNC; 556 case Instruction::ZExt : return bitc::CAST_ZEXT; 557 case Instruction::SExt : return bitc::CAST_SEXT; 558 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 559 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 560 case Instruction::UIToFP : return bitc::CAST_UITOFP; 561 case Instruction::SIToFP : return bitc::CAST_SITOFP; 562 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 563 case Instruction::FPExt : return bitc::CAST_FPEXT; 564 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 565 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 566 case Instruction::BitCast : return bitc::CAST_BITCAST; 567 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 568 } 569 } 570 571 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 572 switch (Opcode) { 573 default: llvm_unreachable("Unknown binary instruction!"); 574 case Instruction::FNeg: return bitc::UNOP_FNEG; 575 } 576 } 577 578 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 579 switch (Opcode) { 580 default: llvm_unreachable("Unknown binary instruction!"); 581 case Instruction::Add: 582 case Instruction::FAdd: return bitc::BINOP_ADD; 583 case Instruction::Sub: 584 case Instruction::FSub: return bitc::BINOP_SUB; 585 case Instruction::Mul: 586 case Instruction::FMul: return bitc::BINOP_MUL; 587 case Instruction::UDiv: return bitc::BINOP_UDIV; 588 case Instruction::FDiv: 589 case Instruction::SDiv: return bitc::BINOP_SDIV; 590 case Instruction::URem: return bitc::BINOP_UREM; 591 case Instruction::FRem: 592 case Instruction::SRem: return bitc::BINOP_SREM; 593 case Instruction::Shl: return bitc::BINOP_SHL; 594 case Instruction::LShr: return bitc::BINOP_LSHR; 595 case Instruction::AShr: return bitc::BINOP_ASHR; 596 case Instruction::And: return bitc::BINOP_AND; 597 case Instruction::Or: return bitc::BINOP_OR; 598 case Instruction::Xor: return bitc::BINOP_XOR; 599 } 600 } 601 602 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 603 switch (Op) { 604 default: llvm_unreachable("Unknown RMW operation!"); 605 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 606 case AtomicRMWInst::Add: return bitc::RMW_ADD; 607 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 608 case AtomicRMWInst::And: return bitc::RMW_AND; 609 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 610 case AtomicRMWInst::Or: return bitc::RMW_OR; 611 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 612 case AtomicRMWInst::Max: return bitc::RMW_MAX; 613 case AtomicRMWInst::Min: return bitc::RMW_MIN; 614 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 615 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 616 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 617 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 618 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 619 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 620 case AtomicRMWInst::UIncWrap: 621 return bitc::RMW_UINC_WRAP; 622 case AtomicRMWInst::UDecWrap: 623 return bitc::RMW_UDEC_WRAP; 624 } 625 } 626 627 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 628 switch (Ordering) { 629 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 630 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 631 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 632 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 633 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 634 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 635 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 636 } 637 llvm_unreachable("Invalid ordering"); 638 } 639 640 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 641 StringRef Str, unsigned AbbrevToUse) { 642 SmallVector<unsigned, 64> Vals; 643 644 // Code: [strchar x N] 645 for (char C : Str) { 646 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 647 AbbrevToUse = 0; 648 Vals.push_back(C); 649 } 650 651 // Emit the finished record. 652 Stream.EmitRecord(Code, Vals, AbbrevToUse); 653 } 654 655 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 656 switch (Kind) { 657 case Attribute::Alignment: 658 return bitc::ATTR_KIND_ALIGNMENT; 659 case Attribute::AllocAlign: 660 return bitc::ATTR_KIND_ALLOC_ALIGN; 661 case Attribute::AllocSize: 662 return bitc::ATTR_KIND_ALLOC_SIZE; 663 case Attribute::AlwaysInline: 664 return bitc::ATTR_KIND_ALWAYS_INLINE; 665 case Attribute::Builtin: 666 return bitc::ATTR_KIND_BUILTIN; 667 case Attribute::ByVal: 668 return bitc::ATTR_KIND_BY_VAL; 669 case Attribute::Convergent: 670 return bitc::ATTR_KIND_CONVERGENT; 671 case Attribute::InAlloca: 672 return bitc::ATTR_KIND_IN_ALLOCA; 673 case Attribute::Cold: 674 return bitc::ATTR_KIND_COLD; 675 case Attribute::DisableSanitizerInstrumentation: 676 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 677 case Attribute::FnRetThunkExtern: 678 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 679 case Attribute::Hot: 680 return bitc::ATTR_KIND_HOT; 681 case Attribute::ElementType: 682 return bitc::ATTR_KIND_ELEMENTTYPE; 683 case Attribute::InlineHint: 684 return bitc::ATTR_KIND_INLINE_HINT; 685 case Attribute::InReg: 686 return bitc::ATTR_KIND_IN_REG; 687 case Attribute::JumpTable: 688 return bitc::ATTR_KIND_JUMP_TABLE; 689 case Attribute::MinSize: 690 return bitc::ATTR_KIND_MIN_SIZE; 691 case Attribute::AllocatedPointer: 692 return bitc::ATTR_KIND_ALLOCATED_POINTER; 693 case Attribute::AllocKind: 694 return bitc::ATTR_KIND_ALLOC_KIND; 695 case Attribute::Memory: 696 return bitc::ATTR_KIND_MEMORY; 697 case Attribute::NoFPClass: 698 return bitc::ATTR_KIND_NOFPCLASS; 699 case Attribute::Naked: 700 return bitc::ATTR_KIND_NAKED; 701 case Attribute::Nest: 702 return bitc::ATTR_KIND_NEST; 703 case Attribute::NoAlias: 704 return bitc::ATTR_KIND_NO_ALIAS; 705 case Attribute::NoBuiltin: 706 return bitc::ATTR_KIND_NO_BUILTIN; 707 case Attribute::NoCallback: 708 return bitc::ATTR_KIND_NO_CALLBACK; 709 case Attribute::NoCapture: 710 return bitc::ATTR_KIND_NO_CAPTURE; 711 case Attribute::NoDuplicate: 712 return bitc::ATTR_KIND_NO_DUPLICATE; 713 case Attribute::NoFree: 714 return bitc::ATTR_KIND_NOFREE; 715 case Attribute::NoImplicitFloat: 716 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 717 case Attribute::NoInline: 718 return bitc::ATTR_KIND_NO_INLINE; 719 case Attribute::NoRecurse: 720 return bitc::ATTR_KIND_NO_RECURSE; 721 case Attribute::NoMerge: 722 return bitc::ATTR_KIND_NO_MERGE; 723 case Attribute::NonLazyBind: 724 return bitc::ATTR_KIND_NON_LAZY_BIND; 725 case Attribute::NonNull: 726 return bitc::ATTR_KIND_NON_NULL; 727 case Attribute::Dereferenceable: 728 return bitc::ATTR_KIND_DEREFERENCEABLE; 729 case Attribute::DereferenceableOrNull: 730 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 731 case Attribute::NoRedZone: 732 return bitc::ATTR_KIND_NO_RED_ZONE; 733 case Attribute::NoReturn: 734 return bitc::ATTR_KIND_NO_RETURN; 735 case Attribute::NoSync: 736 return bitc::ATTR_KIND_NOSYNC; 737 case Attribute::NoCfCheck: 738 return bitc::ATTR_KIND_NOCF_CHECK; 739 case Attribute::NoProfile: 740 return bitc::ATTR_KIND_NO_PROFILE; 741 case Attribute::SkipProfile: 742 return bitc::ATTR_KIND_SKIP_PROFILE; 743 case Attribute::NoUnwind: 744 return bitc::ATTR_KIND_NO_UNWIND; 745 case Attribute::NoSanitizeBounds: 746 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 747 case Attribute::NoSanitizeCoverage: 748 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 749 case Attribute::NullPointerIsValid: 750 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 751 case Attribute::OptimizeForDebugging: 752 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 753 case Attribute::OptForFuzzing: 754 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 755 case Attribute::OptimizeForSize: 756 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 757 case Attribute::OptimizeNone: 758 return bitc::ATTR_KIND_OPTIMIZE_NONE; 759 case Attribute::ReadNone: 760 return bitc::ATTR_KIND_READ_NONE; 761 case Attribute::ReadOnly: 762 return bitc::ATTR_KIND_READ_ONLY; 763 case Attribute::Returned: 764 return bitc::ATTR_KIND_RETURNED; 765 case Attribute::ReturnsTwice: 766 return bitc::ATTR_KIND_RETURNS_TWICE; 767 case Attribute::SExt: 768 return bitc::ATTR_KIND_S_EXT; 769 case Attribute::Speculatable: 770 return bitc::ATTR_KIND_SPECULATABLE; 771 case Attribute::StackAlignment: 772 return bitc::ATTR_KIND_STACK_ALIGNMENT; 773 case Attribute::StackProtect: 774 return bitc::ATTR_KIND_STACK_PROTECT; 775 case Attribute::StackProtectReq: 776 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 777 case Attribute::StackProtectStrong: 778 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 779 case Attribute::SafeStack: 780 return bitc::ATTR_KIND_SAFESTACK; 781 case Attribute::ShadowCallStack: 782 return bitc::ATTR_KIND_SHADOWCALLSTACK; 783 case Attribute::StrictFP: 784 return bitc::ATTR_KIND_STRICT_FP; 785 case Attribute::StructRet: 786 return bitc::ATTR_KIND_STRUCT_RET; 787 case Attribute::SanitizeAddress: 788 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 789 case Attribute::SanitizeHWAddress: 790 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 791 case Attribute::SanitizeThread: 792 return bitc::ATTR_KIND_SANITIZE_THREAD; 793 case Attribute::SanitizeMemory: 794 return bitc::ATTR_KIND_SANITIZE_MEMORY; 795 case Attribute::SpeculativeLoadHardening: 796 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 797 case Attribute::SwiftError: 798 return bitc::ATTR_KIND_SWIFT_ERROR; 799 case Attribute::SwiftSelf: 800 return bitc::ATTR_KIND_SWIFT_SELF; 801 case Attribute::SwiftAsync: 802 return bitc::ATTR_KIND_SWIFT_ASYNC; 803 case Attribute::UWTable: 804 return bitc::ATTR_KIND_UW_TABLE; 805 case Attribute::VScaleRange: 806 return bitc::ATTR_KIND_VSCALE_RANGE; 807 case Attribute::WillReturn: 808 return bitc::ATTR_KIND_WILLRETURN; 809 case Attribute::WriteOnly: 810 return bitc::ATTR_KIND_WRITEONLY; 811 case Attribute::ZExt: 812 return bitc::ATTR_KIND_Z_EXT; 813 case Attribute::ImmArg: 814 return bitc::ATTR_KIND_IMMARG; 815 case Attribute::SanitizeMemTag: 816 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 817 case Attribute::Preallocated: 818 return bitc::ATTR_KIND_PREALLOCATED; 819 case Attribute::NoUndef: 820 return bitc::ATTR_KIND_NOUNDEF; 821 case Attribute::ByRef: 822 return bitc::ATTR_KIND_BYREF; 823 case Attribute::MustProgress: 824 return bitc::ATTR_KIND_MUSTPROGRESS; 825 case Attribute::PresplitCoroutine: 826 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 827 case Attribute::Writable: 828 return bitc::ATTR_KIND_WRITABLE; 829 case Attribute::EndAttrKinds: 830 llvm_unreachable("Can not encode end-attribute kinds marker."); 831 case Attribute::None: 832 llvm_unreachable("Can not encode none-attribute."); 833 case Attribute::EmptyKey: 834 case Attribute::TombstoneKey: 835 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 836 } 837 838 llvm_unreachable("Trying to encode unknown attribute"); 839 } 840 841 void ModuleBitcodeWriter::writeAttributeGroupTable() { 842 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 843 VE.getAttributeGroups(); 844 if (AttrGrps.empty()) return; 845 846 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 847 848 SmallVector<uint64_t, 64> Record; 849 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 850 unsigned AttrListIndex = Pair.first; 851 AttributeSet AS = Pair.second; 852 Record.push_back(VE.getAttributeGroupID(Pair)); 853 Record.push_back(AttrListIndex); 854 855 for (Attribute Attr : AS) { 856 if (Attr.isEnumAttribute()) { 857 Record.push_back(0); 858 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 859 } else if (Attr.isIntAttribute()) { 860 Record.push_back(1); 861 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 862 Record.push_back(Attr.getValueAsInt()); 863 } else if (Attr.isStringAttribute()) { 864 StringRef Kind = Attr.getKindAsString(); 865 StringRef Val = Attr.getValueAsString(); 866 867 Record.push_back(Val.empty() ? 3 : 4); 868 Record.append(Kind.begin(), Kind.end()); 869 Record.push_back(0); 870 if (!Val.empty()) { 871 Record.append(Val.begin(), Val.end()); 872 Record.push_back(0); 873 } 874 } else { 875 assert(Attr.isTypeAttribute()); 876 Type *Ty = Attr.getValueAsType(); 877 Record.push_back(Ty ? 6 : 5); 878 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 879 if (Ty) 880 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 881 } 882 } 883 884 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 885 Record.clear(); 886 } 887 888 Stream.ExitBlock(); 889 } 890 891 void ModuleBitcodeWriter::writeAttributeTable() { 892 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 893 if (Attrs.empty()) return; 894 895 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 896 897 SmallVector<uint64_t, 64> Record; 898 for (const AttributeList &AL : Attrs) { 899 for (unsigned i : AL.indexes()) { 900 AttributeSet AS = AL.getAttributes(i); 901 if (AS.hasAttributes()) 902 Record.push_back(VE.getAttributeGroupID({i, AS})); 903 } 904 905 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 906 Record.clear(); 907 } 908 909 Stream.ExitBlock(); 910 } 911 912 /// WriteTypeTable - Write out the type table for a module. 913 void ModuleBitcodeWriter::writeTypeTable() { 914 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 915 916 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 917 SmallVector<uint64_t, 64> TypeVals; 918 919 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 920 921 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 922 auto Abbv = std::make_shared<BitCodeAbbrev>(); 923 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 924 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 925 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 926 927 // Abbrev for TYPE_CODE_FUNCTION. 928 Abbv = std::make_shared<BitCodeAbbrev>(); 929 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 933 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 934 935 // Abbrev for TYPE_CODE_STRUCT_ANON. 936 Abbv = std::make_shared<BitCodeAbbrev>(); 937 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 941 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 942 943 // Abbrev for TYPE_CODE_STRUCT_NAME. 944 Abbv = std::make_shared<BitCodeAbbrev>(); 945 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 948 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 949 950 // Abbrev for TYPE_CODE_STRUCT_NAMED. 951 Abbv = std::make_shared<BitCodeAbbrev>(); 952 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 956 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 957 958 // Abbrev for TYPE_CODE_ARRAY. 959 Abbv = std::make_shared<BitCodeAbbrev>(); 960 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 963 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 964 965 // Emit an entry count so the reader can reserve space. 966 TypeVals.push_back(TypeList.size()); 967 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 968 TypeVals.clear(); 969 970 // Loop over all of the types, emitting each in turn. 971 for (Type *T : TypeList) { 972 int AbbrevToUse = 0; 973 unsigned Code = 0; 974 975 switch (T->getTypeID()) { 976 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 977 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 978 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 979 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 980 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 981 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 982 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 983 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 984 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 985 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 986 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 987 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 988 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 989 case Type::IntegerTyID: 990 // INTEGER: [width] 991 Code = bitc::TYPE_CODE_INTEGER; 992 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 993 break; 994 case Type::PointerTyID: { 995 PointerType *PTy = cast<PointerType>(T); 996 unsigned AddressSpace = PTy->getAddressSpace(); 997 // OPAQUE_POINTER: [address space] 998 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 999 TypeVals.push_back(AddressSpace); 1000 if (AddressSpace == 0) 1001 AbbrevToUse = OpaquePtrAbbrev; 1002 break; 1003 } 1004 case Type::FunctionTyID: { 1005 FunctionType *FT = cast<FunctionType>(T); 1006 // FUNCTION: [isvararg, retty, paramty x N] 1007 Code = bitc::TYPE_CODE_FUNCTION; 1008 TypeVals.push_back(FT->isVarArg()); 1009 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1010 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1011 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1012 AbbrevToUse = FunctionAbbrev; 1013 break; 1014 } 1015 case Type::StructTyID: { 1016 StructType *ST = cast<StructType>(T); 1017 // STRUCT: [ispacked, eltty x N] 1018 TypeVals.push_back(ST->isPacked()); 1019 // Output all of the element types. 1020 for (Type *ET : ST->elements()) 1021 TypeVals.push_back(VE.getTypeID(ET)); 1022 1023 if (ST->isLiteral()) { 1024 Code = bitc::TYPE_CODE_STRUCT_ANON; 1025 AbbrevToUse = StructAnonAbbrev; 1026 } else { 1027 if (ST->isOpaque()) { 1028 Code = bitc::TYPE_CODE_OPAQUE; 1029 } else { 1030 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1031 AbbrevToUse = StructNamedAbbrev; 1032 } 1033 1034 // Emit the name if it is present. 1035 if (!ST->getName().empty()) 1036 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1037 StructNameAbbrev); 1038 } 1039 break; 1040 } 1041 case Type::ArrayTyID: { 1042 ArrayType *AT = cast<ArrayType>(T); 1043 // ARRAY: [numelts, eltty] 1044 Code = bitc::TYPE_CODE_ARRAY; 1045 TypeVals.push_back(AT->getNumElements()); 1046 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1047 AbbrevToUse = ArrayAbbrev; 1048 break; 1049 } 1050 case Type::FixedVectorTyID: 1051 case Type::ScalableVectorTyID: { 1052 VectorType *VT = cast<VectorType>(T); 1053 // VECTOR [numelts, eltty] or 1054 // [numelts, eltty, scalable] 1055 Code = bitc::TYPE_CODE_VECTOR; 1056 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1057 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1058 if (isa<ScalableVectorType>(VT)) 1059 TypeVals.push_back(true); 1060 break; 1061 } 1062 case Type::TargetExtTyID: { 1063 TargetExtType *TET = cast<TargetExtType>(T); 1064 Code = bitc::TYPE_CODE_TARGET_TYPE; 1065 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1066 StructNameAbbrev); 1067 TypeVals.push_back(TET->getNumTypeParameters()); 1068 for (Type *InnerTy : TET->type_params()) 1069 TypeVals.push_back(VE.getTypeID(InnerTy)); 1070 for (unsigned IntParam : TET->int_params()) 1071 TypeVals.push_back(IntParam); 1072 break; 1073 } 1074 case Type::TypedPointerTyID: 1075 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1076 } 1077 1078 // Emit the finished record. 1079 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1080 TypeVals.clear(); 1081 } 1082 1083 Stream.ExitBlock(); 1084 } 1085 1086 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1087 switch (Linkage) { 1088 case GlobalValue::ExternalLinkage: 1089 return 0; 1090 case GlobalValue::WeakAnyLinkage: 1091 return 16; 1092 case GlobalValue::AppendingLinkage: 1093 return 2; 1094 case GlobalValue::InternalLinkage: 1095 return 3; 1096 case GlobalValue::LinkOnceAnyLinkage: 1097 return 18; 1098 case GlobalValue::ExternalWeakLinkage: 1099 return 7; 1100 case GlobalValue::CommonLinkage: 1101 return 8; 1102 case GlobalValue::PrivateLinkage: 1103 return 9; 1104 case GlobalValue::WeakODRLinkage: 1105 return 17; 1106 case GlobalValue::LinkOnceODRLinkage: 1107 return 19; 1108 case GlobalValue::AvailableExternallyLinkage: 1109 return 12; 1110 } 1111 llvm_unreachable("Invalid linkage"); 1112 } 1113 1114 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1115 return getEncodedLinkage(GV.getLinkage()); 1116 } 1117 1118 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1119 uint64_t RawFlags = 0; 1120 RawFlags |= Flags.ReadNone; 1121 RawFlags |= (Flags.ReadOnly << 1); 1122 RawFlags |= (Flags.NoRecurse << 2); 1123 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1124 RawFlags |= (Flags.NoInline << 4); 1125 RawFlags |= (Flags.AlwaysInline << 5); 1126 RawFlags |= (Flags.NoUnwind << 6); 1127 RawFlags |= (Flags.MayThrow << 7); 1128 RawFlags |= (Flags.HasUnknownCall << 8); 1129 RawFlags |= (Flags.MustBeUnreachable << 9); 1130 return RawFlags; 1131 } 1132 1133 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1134 // in BitcodeReader.cpp. 1135 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1136 uint64_t RawFlags = 0; 1137 1138 RawFlags |= Flags.NotEligibleToImport; // bool 1139 RawFlags |= (Flags.Live << 1); 1140 RawFlags |= (Flags.DSOLocal << 2); 1141 RawFlags |= (Flags.CanAutoHide << 3); 1142 1143 // Linkage don't need to be remapped at that time for the summary. Any future 1144 // change to the getEncodedLinkage() function will need to be taken into 1145 // account here as well. 1146 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1147 1148 RawFlags |= (Flags.Visibility << 8); // 2 bits 1149 1150 return RawFlags; 1151 } 1152 1153 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1154 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1155 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1156 return RawFlags; 1157 } 1158 1159 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1160 switch (GV.getVisibility()) { 1161 case GlobalValue::DefaultVisibility: return 0; 1162 case GlobalValue::HiddenVisibility: return 1; 1163 case GlobalValue::ProtectedVisibility: return 2; 1164 } 1165 llvm_unreachable("Invalid visibility"); 1166 } 1167 1168 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1169 switch (GV.getDLLStorageClass()) { 1170 case GlobalValue::DefaultStorageClass: return 0; 1171 case GlobalValue::DLLImportStorageClass: return 1; 1172 case GlobalValue::DLLExportStorageClass: return 2; 1173 } 1174 llvm_unreachable("Invalid DLL storage class"); 1175 } 1176 1177 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1178 switch (GV.getThreadLocalMode()) { 1179 case GlobalVariable::NotThreadLocal: return 0; 1180 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1181 case GlobalVariable::LocalDynamicTLSModel: return 2; 1182 case GlobalVariable::InitialExecTLSModel: return 3; 1183 case GlobalVariable::LocalExecTLSModel: return 4; 1184 } 1185 llvm_unreachable("Invalid TLS model"); 1186 } 1187 1188 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1189 switch (C.getSelectionKind()) { 1190 case Comdat::Any: 1191 return bitc::COMDAT_SELECTION_KIND_ANY; 1192 case Comdat::ExactMatch: 1193 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1194 case Comdat::Largest: 1195 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1196 case Comdat::NoDeduplicate: 1197 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1198 case Comdat::SameSize: 1199 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1200 } 1201 llvm_unreachable("Invalid selection kind"); 1202 } 1203 1204 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1205 switch (GV.getUnnamedAddr()) { 1206 case GlobalValue::UnnamedAddr::None: return 0; 1207 case GlobalValue::UnnamedAddr::Local: return 2; 1208 case GlobalValue::UnnamedAddr::Global: return 1; 1209 } 1210 llvm_unreachable("Invalid unnamed_addr"); 1211 } 1212 1213 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1214 if (GenerateHash) 1215 Hasher.update(Str); 1216 return StrtabBuilder.add(Str); 1217 } 1218 1219 void ModuleBitcodeWriter::writeComdats() { 1220 SmallVector<unsigned, 64> Vals; 1221 for (const Comdat *C : VE.getComdats()) { 1222 // COMDAT: [strtab offset, strtab size, selection_kind] 1223 Vals.push_back(addToStrtab(C->getName())); 1224 Vals.push_back(C->getName().size()); 1225 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1226 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1227 Vals.clear(); 1228 } 1229 } 1230 1231 /// Write a record that will eventually hold the word offset of the 1232 /// module-level VST. For now the offset is 0, which will be backpatched 1233 /// after the real VST is written. Saves the bit offset to backpatch. 1234 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1235 // Write a placeholder value in for the offset of the real VST, 1236 // which is written after the function blocks so that it can include 1237 // the offset of each function. The placeholder offset will be 1238 // updated when the real VST is written. 1239 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1240 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1241 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1242 // hold the real VST offset. Must use fixed instead of VBR as we don't 1243 // know how many VBR chunks to reserve ahead of time. 1244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1245 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1246 1247 // Emit the placeholder 1248 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1249 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1250 1251 // Compute and save the bit offset to the placeholder, which will be 1252 // patched when the real VST is written. We can simply subtract the 32-bit 1253 // fixed size from the current bit number to get the location to backpatch. 1254 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1255 } 1256 1257 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1258 1259 /// Determine the encoding to use for the given string name and length. 1260 static StringEncoding getStringEncoding(StringRef Str) { 1261 bool isChar6 = true; 1262 for (char C : Str) { 1263 if (isChar6) 1264 isChar6 = BitCodeAbbrevOp::isChar6(C); 1265 if ((unsigned char)C & 128) 1266 // don't bother scanning the rest. 1267 return SE_Fixed8; 1268 } 1269 if (isChar6) 1270 return SE_Char6; 1271 return SE_Fixed7; 1272 } 1273 1274 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1275 "Sanitizer Metadata is too large for naive serialization."); 1276 static unsigned 1277 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1278 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1279 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1280 } 1281 1282 /// Emit top-level description of module, including target triple, inline asm, 1283 /// descriptors for global variables, and function prototype info. 1284 /// Returns the bit offset to backpatch with the location of the real VST. 1285 void ModuleBitcodeWriter::writeModuleInfo() { 1286 // Emit various pieces of data attached to a module. 1287 if (!M.getTargetTriple().empty()) 1288 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1289 0 /*TODO*/); 1290 const std::string &DL = M.getDataLayoutStr(); 1291 if (!DL.empty()) 1292 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1293 if (!M.getModuleInlineAsm().empty()) 1294 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1295 0 /*TODO*/); 1296 1297 // Emit information about sections and GC, computing how many there are. Also 1298 // compute the maximum alignment value. 1299 std::map<std::string, unsigned> SectionMap; 1300 std::map<std::string, unsigned> GCMap; 1301 MaybeAlign MaxAlignment; 1302 unsigned MaxGlobalType = 0; 1303 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1304 if (A) 1305 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1306 }; 1307 for (const GlobalVariable &GV : M.globals()) { 1308 UpdateMaxAlignment(GV.getAlign()); 1309 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1310 if (GV.hasSection()) { 1311 // Give section names unique ID's. 1312 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1313 if (!Entry) { 1314 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1315 0 /*TODO*/); 1316 Entry = SectionMap.size(); 1317 } 1318 } 1319 } 1320 for (const Function &F : M) { 1321 UpdateMaxAlignment(F.getAlign()); 1322 if (F.hasSection()) { 1323 // Give section names unique ID's. 1324 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1325 if (!Entry) { 1326 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1327 0 /*TODO*/); 1328 Entry = SectionMap.size(); 1329 } 1330 } 1331 if (F.hasGC()) { 1332 // Same for GC names. 1333 unsigned &Entry = GCMap[F.getGC()]; 1334 if (!Entry) { 1335 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1336 0 /*TODO*/); 1337 Entry = GCMap.size(); 1338 } 1339 } 1340 } 1341 1342 // Emit abbrev for globals, now that we know # sections and max alignment. 1343 unsigned SimpleGVarAbbrev = 0; 1344 if (!M.global_empty()) { 1345 // Add an abbrev for common globals with no visibility or thread localness. 1346 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1347 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1351 Log2_32_Ceil(MaxGlobalType+1))); 1352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1353 //| explicitType << 1 1354 //| constant 1355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1357 if (!MaxAlignment) // Alignment. 1358 Abbv->Add(BitCodeAbbrevOp(0)); 1359 else { 1360 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1362 Log2_32_Ceil(MaxEncAlignment+1))); 1363 } 1364 if (SectionMap.empty()) // Section. 1365 Abbv->Add(BitCodeAbbrevOp(0)); 1366 else 1367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1368 Log2_32_Ceil(SectionMap.size()+1))); 1369 // Don't bother emitting vis + thread local. 1370 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1371 } 1372 1373 SmallVector<unsigned, 64> Vals; 1374 // Emit the module's source file name. 1375 { 1376 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1377 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1378 if (Bits == SE_Char6) 1379 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1380 else if (Bits == SE_Fixed7) 1381 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1382 1383 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1384 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1385 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1387 Abbv->Add(AbbrevOpToUse); 1388 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1389 1390 for (const auto P : M.getSourceFileName()) 1391 Vals.push_back((unsigned char)P); 1392 1393 // Emit the finished record. 1394 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1395 Vals.clear(); 1396 } 1397 1398 // Emit the global variable information. 1399 for (const GlobalVariable &GV : M.globals()) { 1400 unsigned AbbrevToUse = 0; 1401 1402 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1403 // linkage, alignment, section, visibility, threadlocal, 1404 // unnamed_addr, externally_initialized, dllstorageclass, 1405 // comdat, attributes, DSO_Local, GlobalSanitizer] 1406 Vals.push_back(addToStrtab(GV.getName())); 1407 Vals.push_back(GV.getName().size()); 1408 Vals.push_back(VE.getTypeID(GV.getValueType())); 1409 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1410 Vals.push_back(GV.isDeclaration() ? 0 : 1411 (VE.getValueID(GV.getInitializer()) + 1)); 1412 Vals.push_back(getEncodedLinkage(GV)); 1413 Vals.push_back(getEncodedAlign(GV.getAlign())); 1414 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1415 : 0); 1416 if (GV.isThreadLocal() || 1417 GV.getVisibility() != GlobalValue::DefaultVisibility || 1418 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1419 GV.isExternallyInitialized() || 1420 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1421 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1422 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1423 Vals.push_back(getEncodedVisibility(GV)); 1424 Vals.push_back(getEncodedThreadLocalMode(GV)); 1425 Vals.push_back(getEncodedUnnamedAddr(GV)); 1426 Vals.push_back(GV.isExternallyInitialized()); 1427 Vals.push_back(getEncodedDLLStorageClass(GV)); 1428 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1429 1430 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1431 Vals.push_back(VE.getAttributeListID(AL)); 1432 1433 Vals.push_back(GV.isDSOLocal()); 1434 Vals.push_back(addToStrtab(GV.getPartition())); 1435 Vals.push_back(GV.getPartition().size()); 1436 1437 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1438 GV.getSanitizerMetadata()) 1439 : 0)); 1440 } else { 1441 AbbrevToUse = SimpleGVarAbbrev; 1442 } 1443 1444 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1445 Vals.clear(); 1446 } 1447 1448 // Emit the function proto information. 1449 for (const Function &F : M) { 1450 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1451 // linkage, paramattrs, alignment, section, visibility, gc, 1452 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1453 // prefixdata, personalityfn, DSO_Local, addrspace] 1454 Vals.push_back(addToStrtab(F.getName())); 1455 Vals.push_back(F.getName().size()); 1456 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1457 Vals.push_back(F.getCallingConv()); 1458 Vals.push_back(F.isDeclaration()); 1459 Vals.push_back(getEncodedLinkage(F)); 1460 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1461 Vals.push_back(getEncodedAlign(F.getAlign())); 1462 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1463 : 0); 1464 Vals.push_back(getEncodedVisibility(F)); 1465 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1466 Vals.push_back(getEncodedUnnamedAddr(F)); 1467 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1468 : 0); 1469 Vals.push_back(getEncodedDLLStorageClass(F)); 1470 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1471 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1472 : 0); 1473 Vals.push_back( 1474 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1475 1476 Vals.push_back(F.isDSOLocal()); 1477 Vals.push_back(F.getAddressSpace()); 1478 Vals.push_back(addToStrtab(F.getPartition())); 1479 Vals.push_back(F.getPartition().size()); 1480 1481 unsigned AbbrevToUse = 0; 1482 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1483 Vals.clear(); 1484 } 1485 1486 // Emit the alias information. 1487 for (const GlobalAlias &A : M.aliases()) { 1488 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1489 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1490 // DSO_Local] 1491 Vals.push_back(addToStrtab(A.getName())); 1492 Vals.push_back(A.getName().size()); 1493 Vals.push_back(VE.getTypeID(A.getValueType())); 1494 Vals.push_back(A.getType()->getAddressSpace()); 1495 Vals.push_back(VE.getValueID(A.getAliasee())); 1496 Vals.push_back(getEncodedLinkage(A)); 1497 Vals.push_back(getEncodedVisibility(A)); 1498 Vals.push_back(getEncodedDLLStorageClass(A)); 1499 Vals.push_back(getEncodedThreadLocalMode(A)); 1500 Vals.push_back(getEncodedUnnamedAddr(A)); 1501 Vals.push_back(A.isDSOLocal()); 1502 Vals.push_back(addToStrtab(A.getPartition())); 1503 Vals.push_back(A.getPartition().size()); 1504 1505 unsigned AbbrevToUse = 0; 1506 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1507 Vals.clear(); 1508 } 1509 1510 // Emit the ifunc information. 1511 for (const GlobalIFunc &I : M.ifuncs()) { 1512 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1513 // val#, linkage, visibility, DSO_Local] 1514 Vals.push_back(addToStrtab(I.getName())); 1515 Vals.push_back(I.getName().size()); 1516 Vals.push_back(VE.getTypeID(I.getValueType())); 1517 Vals.push_back(I.getType()->getAddressSpace()); 1518 Vals.push_back(VE.getValueID(I.getResolver())); 1519 Vals.push_back(getEncodedLinkage(I)); 1520 Vals.push_back(getEncodedVisibility(I)); 1521 Vals.push_back(I.isDSOLocal()); 1522 Vals.push_back(addToStrtab(I.getPartition())); 1523 Vals.push_back(I.getPartition().size()); 1524 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1525 Vals.clear(); 1526 } 1527 1528 writeValueSymbolTableForwardDecl(); 1529 } 1530 1531 static uint64_t getOptimizationFlags(const Value *V) { 1532 uint64_t Flags = 0; 1533 1534 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1535 if (OBO->hasNoSignedWrap()) 1536 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1537 if (OBO->hasNoUnsignedWrap()) 1538 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1539 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1540 if (PEO->isExact()) 1541 Flags |= 1 << bitc::PEO_EXACT; 1542 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1543 if (FPMO->hasAllowReassoc()) 1544 Flags |= bitc::AllowReassoc; 1545 if (FPMO->hasNoNaNs()) 1546 Flags |= bitc::NoNaNs; 1547 if (FPMO->hasNoInfs()) 1548 Flags |= bitc::NoInfs; 1549 if (FPMO->hasNoSignedZeros()) 1550 Flags |= bitc::NoSignedZeros; 1551 if (FPMO->hasAllowReciprocal()) 1552 Flags |= bitc::AllowReciprocal; 1553 if (FPMO->hasAllowContract()) 1554 Flags |= bitc::AllowContract; 1555 if (FPMO->hasApproxFunc()) 1556 Flags |= bitc::ApproxFunc; 1557 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1558 if (NNI->hasNonNeg()) 1559 Flags |= 1 << bitc::PNNI_NON_NEG; 1560 } 1561 1562 return Flags; 1563 } 1564 1565 void ModuleBitcodeWriter::writeValueAsMetadata( 1566 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1567 // Mimic an MDNode with a value as one operand. 1568 Value *V = MD->getValue(); 1569 Record.push_back(VE.getTypeID(V->getType())); 1570 Record.push_back(VE.getValueID(V)); 1571 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1572 Record.clear(); 1573 } 1574 1575 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1576 SmallVectorImpl<uint64_t> &Record, 1577 unsigned Abbrev) { 1578 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1579 Metadata *MD = N->getOperand(i); 1580 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1581 "Unexpected function-local metadata"); 1582 Record.push_back(VE.getMetadataOrNullID(MD)); 1583 } 1584 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1585 : bitc::METADATA_NODE, 1586 Record, Abbrev); 1587 Record.clear(); 1588 } 1589 1590 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1591 // Assume the column is usually under 128, and always output the inlined-at 1592 // location (it's never more expensive than building an array size 1). 1593 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1594 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1601 return Stream.EmitAbbrev(std::move(Abbv)); 1602 } 1603 1604 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1605 SmallVectorImpl<uint64_t> &Record, 1606 unsigned &Abbrev) { 1607 if (!Abbrev) 1608 Abbrev = createDILocationAbbrev(); 1609 1610 Record.push_back(N->isDistinct()); 1611 Record.push_back(N->getLine()); 1612 Record.push_back(N->getColumn()); 1613 Record.push_back(VE.getMetadataID(N->getScope())); 1614 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1615 Record.push_back(N->isImplicitCode()); 1616 1617 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1618 Record.clear(); 1619 } 1620 1621 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1622 // Assume the column is usually under 128, and always output the inlined-at 1623 // location (it's never more expensive than building an array size 1). 1624 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1625 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1632 return Stream.EmitAbbrev(std::move(Abbv)); 1633 } 1634 1635 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1636 SmallVectorImpl<uint64_t> &Record, 1637 unsigned &Abbrev) { 1638 if (!Abbrev) 1639 Abbrev = createGenericDINodeAbbrev(); 1640 1641 Record.push_back(N->isDistinct()); 1642 Record.push_back(N->getTag()); 1643 Record.push_back(0); // Per-tag version field; unused for now. 1644 1645 for (auto &I : N->operands()) 1646 Record.push_back(VE.getMetadataOrNullID(I)); 1647 1648 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1649 Record.clear(); 1650 } 1651 1652 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1653 SmallVectorImpl<uint64_t> &Record, 1654 unsigned Abbrev) { 1655 const uint64_t Version = 2 << 1; 1656 Record.push_back((uint64_t)N->isDistinct() | Version); 1657 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1659 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1660 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1661 1662 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1663 Record.clear(); 1664 } 1665 1666 void ModuleBitcodeWriter::writeDIGenericSubrange( 1667 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1668 unsigned Abbrev) { 1669 Record.push_back((uint64_t)N->isDistinct()); 1670 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1671 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1672 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1673 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1674 1675 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1676 Record.clear(); 1677 } 1678 1679 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1680 if ((int64_t)V >= 0) 1681 Vals.push_back(V << 1); 1682 else 1683 Vals.push_back((-V << 1) | 1); 1684 } 1685 1686 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1687 // We have an arbitrary precision integer value to write whose 1688 // bit width is > 64. However, in canonical unsigned integer 1689 // format it is likely that the high bits are going to be zero. 1690 // So, we only write the number of active words. 1691 unsigned NumWords = A.getActiveWords(); 1692 const uint64_t *RawData = A.getRawData(); 1693 for (unsigned i = 0; i < NumWords; i++) 1694 emitSignedInt64(Vals, RawData[i]); 1695 } 1696 1697 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1698 SmallVectorImpl<uint64_t> &Record, 1699 unsigned Abbrev) { 1700 const uint64_t IsBigInt = 1 << 2; 1701 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1702 Record.push_back(N->getValue().getBitWidth()); 1703 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1704 emitWideAPInt(Record, N->getValue()); 1705 1706 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1707 Record.clear(); 1708 } 1709 1710 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1711 SmallVectorImpl<uint64_t> &Record, 1712 unsigned Abbrev) { 1713 Record.push_back(N->isDistinct()); 1714 Record.push_back(N->getTag()); 1715 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1716 Record.push_back(N->getSizeInBits()); 1717 Record.push_back(N->getAlignInBits()); 1718 Record.push_back(N->getEncoding()); 1719 Record.push_back(N->getFlags()); 1720 1721 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1722 Record.clear(); 1723 } 1724 1725 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1726 SmallVectorImpl<uint64_t> &Record, 1727 unsigned Abbrev) { 1728 Record.push_back(N->isDistinct()); 1729 Record.push_back(N->getTag()); 1730 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1731 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1732 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1733 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1734 Record.push_back(N->getSizeInBits()); 1735 Record.push_back(N->getAlignInBits()); 1736 Record.push_back(N->getEncoding()); 1737 1738 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1739 Record.clear(); 1740 } 1741 1742 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1743 SmallVectorImpl<uint64_t> &Record, 1744 unsigned Abbrev) { 1745 Record.push_back(N->isDistinct()); 1746 Record.push_back(N->getTag()); 1747 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1748 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1749 Record.push_back(N->getLine()); 1750 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1751 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1752 Record.push_back(N->getSizeInBits()); 1753 Record.push_back(N->getAlignInBits()); 1754 Record.push_back(N->getOffsetInBits()); 1755 Record.push_back(N->getFlags()); 1756 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1757 1758 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1759 // that there is no DWARF address space associated with DIDerivedType. 1760 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1761 Record.push_back(*DWARFAddressSpace + 1); 1762 else 1763 Record.push_back(0); 1764 1765 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1766 1767 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1768 Record.clear(); 1769 } 1770 1771 void ModuleBitcodeWriter::writeDICompositeType( 1772 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1773 unsigned Abbrev) { 1774 const unsigned IsNotUsedInOldTypeRef = 0x2; 1775 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1776 Record.push_back(N->getTag()); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1778 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1779 Record.push_back(N->getLine()); 1780 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1781 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1782 Record.push_back(N->getSizeInBits()); 1783 Record.push_back(N->getAlignInBits()); 1784 Record.push_back(N->getOffsetInBits()); 1785 Record.push_back(N->getFlags()); 1786 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1787 Record.push_back(N->getRuntimeLang()); 1788 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1789 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1790 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1791 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1792 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1793 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1795 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1796 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1797 1798 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1799 Record.clear(); 1800 } 1801 1802 void ModuleBitcodeWriter::writeDISubroutineType( 1803 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1804 unsigned Abbrev) { 1805 const unsigned HasNoOldTypeRefs = 0x2; 1806 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1807 Record.push_back(N->getFlags()); 1808 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1809 Record.push_back(N->getCC()); 1810 1811 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1812 Record.clear(); 1813 } 1814 1815 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1816 SmallVectorImpl<uint64_t> &Record, 1817 unsigned Abbrev) { 1818 Record.push_back(N->isDistinct()); 1819 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1820 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1821 if (N->getRawChecksum()) { 1822 Record.push_back(N->getRawChecksum()->Kind); 1823 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1824 } else { 1825 // Maintain backwards compatibility with the old internal representation of 1826 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1827 Record.push_back(0); 1828 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1829 } 1830 auto Source = N->getRawSource(); 1831 if (Source) 1832 Record.push_back(VE.getMetadataOrNullID(Source)); 1833 1834 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1835 Record.clear(); 1836 } 1837 1838 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1839 SmallVectorImpl<uint64_t> &Record, 1840 unsigned Abbrev) { 1841 assert(N->isDistinct() && "Expected distinct compile units"); 1842 Record.push_back(/* IsDistinct */ true); 1843 Record.push_back(N->getSourceLanguage()); 1844 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1845 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1846 Record.push_back(N->isOptimized()); 1847 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1848 Record.push_back(N->getRuntimeVersion()); 1849 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1850 Record.push_back(N->getEmissionKind()); 1851 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1852 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1853 Record.push_back(/* subprograms */ 0); 1854 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1856 Record.push_back(N->getDWOId()); 1857 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1858 Record.push_back(N->getSplitDebugInlining()); 1859 Record.push_back(N->getDebugInfoForProfiling()); 1860 Record.push_back((unsigned)N->getNameTableKind()); 1861 Record.push_back(N->getRangesBaseAddress()); 1862 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1863 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1864 1865 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1866 Record.clear(); 1867 } 1868 1869 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1870 SmallVectorImpl<uint64_t> &Record, 1871 unsigned Abbrev) { 1872 const uint64_t HasUnitFlag = 1 << 1; 1873 const uint64_t HasSPFlagsFlag = 1 << 2; 1874 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1875 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1876 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1877 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1878 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1879 Record.push_back(N->getLine()); 1880 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1881 Record.push_back(N->getScopeLine()); 1882 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1883 Record.push_back(N->getSPFlags()); 1884 Record.push_back(N->getVirtualIndex()); 1885 Record.push_back(N->getFlags()); 1886 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1887 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1888 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1889 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1890 Record.push_back(N->getThisAdjustment()); 1891 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1892 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1893 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1894 1895 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1896 Record.clear(); 1897 } 1898 1899 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1900 SmallVectorImpl<uint64_t> &Record, 1901 unsigned Abbrev) { 1902 Record.push_back(N->isDistinct()); 1903 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1904 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1905 Record.push_back(N->getLine()); 1906 Record.push_back(N->getColumn()); 1907 1908 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1909 Record.clear(); 1910 } 1911 1912 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1913 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1914 unsigned Abbrev) { 1915 Record.push_back(N->isDistinct()); 1916 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1917 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1918 Record.push_back(N->getDiscriminator()); 1919 1920 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1921 Record.clear(); 1922 } 1923 1924 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1925 SmallVectorImpl<uint64_t> &Record, 1926 unsigned Abbrev) { 1927 Record.push_back(N->isDistinct()); 1928 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1929 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1930 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1931 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1932 Record.push_back(N->getLineNo()); 1933 1934 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1935 Record.clear(); 1936 } 1937 1938 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1939 SmallVectorImpl<uint64_t> &Record, 1940 unsigned Abbrev) { 1941 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1942 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1943 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1944 1945 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1946 Record.clear(); 1947 } 1948 1949 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1950 SmallVectorImpl<uint64_t> &Record, 1951 unsigned Abbrev) { 1952 Record.push_back(N->isDistinct()); 1953 Record.push_back(N->getMacinfoType()); 1954 Record.push_back(N->getLine()); 1955 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1956 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1957 1958 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1959 Record.clear(); 1960 } 1961 1962 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1963 SmallVectorImpl<uint64_t> &Record, 1964 unsigned Abbrev) { 1965 Record.push_back(N->isDistinct()); 1966 Record.push_back(N->getMacinfoType()); 1967 Record.push_back(N->getLine()); 1968 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1969 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1970 1971 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1972 Record.clear(); 1973 } 1974 1975 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1976 SmallVectorImpl<uint64_t> &Record, 1977 unsigned Abbrev) { 1978 Record.reserve(N->getArgs().size()); 1979 for (ValueAsMetadata *MD : N->getArgs()) 1980 Record.push_back(VE.getMetadataID(MD)); 1981 1982 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1983 Record.clear(); 1984 } 1985 1986 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1987 SmallVectorImpl<uint64_t> &Record, 1988 unsigned Abbrev) { 1989 Record.push_back(N->isDistinct()); 1990 for (auto &I : N->operands()) 1991 Record.push_back(VE.getMetadataOrNullID(I)); 1992 Record.push_back(N->getLineNo()); 1993 Record.push_back(N->getIsDecl()); 1994 1995 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1996 Record.clear(); 1997 } 1998 1999 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2000 SmallVectorImpl<uint64_t> &Record, 2001 unsigned Abbrev) { 2002 // There are no arguments for this metadata type. 2003 Record.push_back(N->isDistinct()); 2004 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2005 Record.clear(); 2006 } 2007 2008 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2009 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2010 unsigned Abbrev) { 2011 Record.push_back(N->isDistinct()); 2012 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2013 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2014 Record.push_back(N->isDefault()); 2015 2016 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2017 Record.clear(); 2018 } 2019 2020 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2021 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2022 unsigned Abbrev) { 2023 Record.push_back(N->isDistinct()); 2024 Record.push_back(N->getTag()); 2025 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2026 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2027 Record.push_back(N->isDefault()); 2028 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2029 2030 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2031 Record.clear(); 2032 } 2033 2034 void ModuleBitcodeWriter::writeDIGlobalVariable( 2035 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2036 unsigned Abbrev) { 2037 const uint64_t Version = 2 << 1; 2038 Record.push_back((uint64_t)N->isDistinct() | Version); 2039 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2040 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2041 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2042 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2043 Record.push_back(N->getLine()); 2044 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2045 Record.push_back(N->isLocalToUnit()); 2046 Record.push_back(N->isDefinition()); 2047 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2048 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2049 Record.push_back(N->getAlignInBits()); 2050 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2051 2052 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2053 Record.clear(); 2054 } 2055 2056 void ModuleBitcodeWriter::writeDILocalVariable( 2057 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2058 unsigned Abbrev) { 2059 // In order to support all possible bitcode formats in BitcodeReader we need 2060 // to distinguish the following cases: 2061 // 1) Record has no artificial tag (Record[1]), 2062 // has no obsolete inlinedAt field (Record[9]). 2063 // In this case Record size will be 8, HasAlignment flag is false. 2064 // 2) Record has artificial tag (Record[1]), 2065 // has no obsolete inlignedAt field (Record[9]). 2066 // In this case Record size will be 9, HasAlignment flag is false. 2067 // 3) Record has both artificial tag (Record[1]) and 2068 // obsolete inlignedAt field (Record[9]). 2069 // In this case Record size will be 10, HasAlignment flag is false. 2070 // 4) Record has neither artificial tag, nor inlignedAt field, but 2071 // HasAlignment flag is true and Record[8] contains alignment value. 2072 const uint64_t HasAlignmentFlag = 1 << 1; 2073 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2074 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2075 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2076 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2077 Record.push_back(N->getLine()); 2078 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2079 Record.push_back(N->getArg()); 2080 Record.push_back(N->getFlags()); 2081 Record.push_back(N->getAlignInBits()); 2082 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2083 2084 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2085 Record.clear(); 2086 } 2087 2088 void ModuleBitcodeWriter::writeDILabel( 2089 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2090 unsigned Abbrev) { 2091 Record.push_back((uint64_t)N->isDistinct()); 2092 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2093 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2094 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2095 Record.push_back(N->getLine()); 2096 2097 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2098 Record.clear(); 2099 } 2100 2101 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2102 SmallVectorImpl<uint64_t> &Record, 2103 unsigned Abbrev) { 2104 Record.reserve(N->getElements().size() + 1); 2105 const uint64_t Version = 3 << 1; 2106 Record.push_back((uint64_t)N->isDistinct() | Version); 2107 Record.append(N->elements_begin(), N->elements_end()); 2108 2109 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2110 Record.clear(); 2111 } 2112 2113 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2114 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2115 unsigned Abbrev) { 2116 Record.push_back(N->isDistinct()); 2117 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2118 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2119 2120 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2121 Record.clear(); 2122 } 2123 2124 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2125 SmallVectorImpl<uint64_t> &Record, 2126 unsigned Abbrev) { 2127 Record.push_back(N->isDistinct()); 2128 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2129 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2130 Record.push_back(N->getLine()); 2131 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2132 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2133 Record.push_back(N->getAttributes()); 2134 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2135 2136 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2137 Record.clear(); 2138 } 2139 2140 void ModuleBitcodeWriter::writeDIImportedEntity( 2141 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2142 unsigned Abbrev) { 2143 Record.push_back(N->isDistinct()); 2144 Record.push_back(N->getTag()); 2145 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2146 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2147 Record.push_back(N->getLine()); 2148 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2149 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2150 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2151 2152 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2153 Record.clear(); 2154 } 2155 2156 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2157 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2158 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2161 return Stream.EmitAbbrev(std::move(Abbv)); 2162 } 2163 2164 void ModuleBitcodeWriter::writeNamedMetadata( 2165 SmallVectorImpl<uint64_t> &Record) { 2166 if (M.named_metadata_empty()) 2167 return; 2168 2169 unsigned Abbrev = createNamedMetadataAbbrev(); 2170 for (const NamedMDNode &NMD : M.named_metadata()) { 2171 // Write name. 2172 StringRef Str = NMD.getName(); 2173 Record.append(Str.bytes_begin(), Str.bytes_end()); 2174 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2175 Record.clear(); 2176 2177 // Write named metadata operands. 2178 for (const MDNode *N : NMD.operands()) 2179 Record.push_back(VE.getMetadataID(N)); 2180 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2181 Record.clear(); 2182 } 2183 } 2184 2185 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2186 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2187 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2191 return Stream.EmitAbbrev(std::move(Abbv)); 2192 } 2193 2194 /// Write out a record for MDString. 2195 /// 2196 /// All the metadata strings in a metadata block are emitted in a single 2197 /// record. The sizes and strings themselves are shoved into a blob. 2198 void ModuleBitcodeWriter::writeMetadataStrings( 2199 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2200 if (Strings.empty()) 2201 return; 2202 2203 // Start the record with the number of strings. 2204 Record.push_back(bitc::METADATA_STRINGS); 2205 Record.push_back(Strings.size()); 2206 2207 // Emit the sizes of the strings in the blob. 2208 SmallString<256> Blob; 2209 { 2210 BitstreamWriter W(Blob); 2211 for (const Metadata *MD : Strings) 2212 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2213 W.FlushToWord(); 2214 } 2215 2216 // Add the offset to the strings to the record. 2217 Record.push_back(Blob.size()); 2218 2219 // Add the strings to the blob. 2220 for (const Metadata *MD : Strings) 2221 Blob.append(cast<MDString>(MD)->getString()); 2222 2223 // Emit the final record. 2224 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2225 Record.clear(); 2226 } 2227 2228 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2229 enum MetadataAbbrev : unsigned { 2230 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2231 #include "llvm/IR/Metadata.def" 2232 LastPlusOne 2233 }; 2234 2235 void ModuleBitcodeWriter::writeMetadataRecords( 2236 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2237 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2238 if (MDs.empty()) 2239 return; 2240 2241 // Initialize MDNode abbreviations. 2242 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2243 #include "llvm/IR/Metadata.def" 2244 2245 for (const Metadata *MD : MDs) { 2246 if (IndexPos) 2247 IndexPos->push_back(Stream.GetCurrentBitNo()); 2248 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2249 assert(N->isResolved() && "Expected forward references to be resolved"); 2250 2251 switch (N->getMetadataID()) { 2252 default: 2253 llvm_unreachable("Invalid MDNode subclass"); 2254 #define HANDLE_MDNODE_LEAF(CLASS) \ 2255 case Metadata::CLASS##Kind: \ 2256 if (MDAbbrevs) \ 2257 write##CLASS(cast<CLASS>(N), Record, \ 2258 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2259 else \ 2260 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2261 continue; 2262 #include "llvm/IR/Metadata.def" 2263 } 2264 } 2265 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2266 } 2267 } 2268 2269 void ModuleBitcodeWriter::writeModuleMetadata() { 2270 if (!VE.hasMDs() && M.named_metadata_empty()) 2271 return; 2272 2273 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2274 SmallVector<uint64_t, 64> Record; 2275 2276 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2277 // block and load any metadata. 2278 std::vector<unsigned> MDAbbrevs; 2279 2280 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2281 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2282 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2283 createGenericDINodeAbbrev(); 2284 2285 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2286 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2289 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2290 2291 Abbv = std::make_shared<BitCodeAbbrev>(); 2292 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2295 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2296 2297 // Emit MDStrings together upfront. 2298 writeMetadataStrings(VE.getMDStrings(), Record); 2299 2300 // We only emit an index for the metadata record if we have more than a given 2301 // (naive) threshold of metadatas, otherwise it is not worth it. 2302 if (VE.getNonMDStrings().size() > IndexThreshold) { 2303 // Write a placeholder value in for the offset of the metadata index, 2304 // which is written after the records, so that it can include 2305 // the offset of each entry. The placeholder offset will be 2306 // updated after all records are emitted. 2307 uint64_t Vals[] = {0, 0}; 2308 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2309 } 2310 2311 // Compute and save the bit offset to the current position, which will be 2312 // patched when we emit the index later. We can simply subtract the 64-bit 2313 // fixed size from the current bit number to get the location to backpatch. 2314 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2315 2316 // This index will contain the bitpos for each individual record. 2317 std::vector<uint64_t> IndexPos; 2318 IndexPos.reserve(VE.getNonMDStrings().size()); 2319 2320 // Write all the records 2321 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2322 2323 if (VE.getNonMDStrings().size() > IndexThreshold) { 2324 // Now that we have emitted all the records we will emit the index. But 2325 // first 2326 // backpatch the forward reference so that the reader can skip the records 2327 // efficiently. 2328 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2329 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2330 2331 // Delta encode the index. 2332 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2333 for (auto &Elt : IndexPos) { 2334 auto EltDelta = Elt - PreviousValue; 2335 PreviousValue = Elt; 2336 Elt = EltDelta; 2337 } 2338 // Emit the index record. 2339 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2340 IndexPos.clear(); 2341 } 2342 2343 // Write the named metadata now. 2344 writeNamedMetadata(Record); 2345 2346 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2347 SmallVector<uint64_t, 4> Record; 2348 Record.push_back(VE.getValueID(&GO)); 2349 pushGlobalMetadataAttachment(Record, GO); 2350 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2351 }; 2352 for (const Function &F : M) 2353 if (F.isDeclaration() && F.hasMetadata()) 2354 AddDeclAttachedMetadata(F); 2355 // FIXME: Only store metadata for declarations here, and move data for global 2356 // variable definitions to a separate block (PR28134). 2357 for (const GlobalVariable &GV : M.globals()) 2358 if (GV.hasMetadata()) 2359 AddDeclAttachedMetadata(GV); 2360 2361 Stream.ExitBlock(); 2362 } 2363 2364 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2365 if (!VE.hasMDs()) 2366 return; 2367 2368 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2369 SmallVector<uint64_t, 64> Record; 2370 writeMetadataStrings(VE.getMDStrings(), Record); 2371 writeMetadataRecords(VE.getNonMDStrings(), Record); 2372 Stream.ExitBlock(); 2373 } 2374 2375 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2376 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2377 // [n x [id, mdnode]] 2378 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2379 GO.getAllMetadata(MDs); 2380 for (const auto &I : MDs) { 2381 Record.push_back(I.first); 2382 Record.push_back(VE.getMetadataID(I.second)); 2383 } 2384 } 2385 2386 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2387 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2388 2389 SmallVector<uint64_t, 64> Record; 2390 2391 if (F.hasMetadata()) { 2392 pushGlobalMetadataAttachment(Record, F); 2393 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2394 Record.clear(); 2395 } 2396 2397 // Write metadata attachments 2398 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2399 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2400 for (const BasicBlock &BB : F) 2401 for (const Instruction &I : BB) { 2402 MDs.clear(); 2403 I.getAllMetadataOtherThanDebugLoc(MDs); 2404 2405 // If no metadata, ignore instruction. 2406 if (MDs.empty()) continue; 2407 2408 Record.push_back(VE.getInstructionID(&I)); 2409 2410 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2411 Record.push_back(MDs[i].first); 2412 Record.push_back(VE.getMetadataID(MDs[i].second)); 2413 } 2414 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2415 Record.clear(); 2416 } 2417 2418 Stream.ExitBlock(); 2419 } 2420 2421 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2422 SmallVector<uint64_t, 64> Record; 2423 2424 // Write metadata kinds 2425 // METADATA_KIND - [n x [id, name]] 2426 SmallVector<StringRef, 8> Names; 2427 M.getMDKindNames(Names); 2428 2429 if (Names.empty()) return; 2430 2431 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2432 2433 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2434 Record.push_back(MDKindID); 2435 StringRef KName = Names[MDKindID]; 2436 Record.append(KName.begin(), KName.end()); 2437 2438 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2439 Record.clear(); 2440 } 2441 2442 Stream.ExitBlock(); 2443 } 2444 2445 void ModuleBitcodeWriter::writeOperandBundleTags() { 2446 // Write metadata kinds 2447 // 2448 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2449 // 2450 // OPERAND_BUNDLE_TAG - [strchr x N] 2451 2452 SmallVector<StringRef, 8> Tags; 2453 M.getOperandBundleTags(Tags); 2454 2455 if (Tags.empty()) 2456 return; 2457 2458 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2459 2460 SmallVector<uint64_t, 64> Record; 2461 2462 for (auto Tag : Tags) { 2463 Record.append(Tag.begin(), Tag.end()); 2464 2465 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2466 Record.clear(); 2467 } 2468 2469 Stream.ExitBlock(); 2470 } 2471 2472 void ModuleBitcodeWriter::writeSyncScopeNames() { 2473 SmallVector<StringRef, 8> SSNs; 2474 M.getContext().getSyncScopeNames(SSNs); 2475 if (SSNs.empty()) 2476 return; 2477 2478 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2479 2480 SmallVector<uint64_t, 64> Record; 2481 for (auto SSN : SSNs) { 2482 Record.append(SSN.begin(), SSN.end()); 2483 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2484 Record.clear(); 2485 } 2486 2487 Stream.ExitBlock(); 2488 } 2489 2490 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2491 bool isGlobal) { 2492 if (FirstVal == LastVal) return; 2493 2494 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2495 2496 unsigned AggregateAbbrev = 0; 2497 unsigned String8Abbrev = 0; 2498 unsigned CString7Abbrev = 0; 2499 unsigned CString6Abbrev = 0; 2500 // If this is a constant pool for the module, emit module-specific abbrevs. 2501 if (isGlobal) { 2502 // Abbrev for CST_CODE_AGGREGATE. 2503 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2504 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2507 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2508 2509 // Abbrev for CST_CODE_STRING. 2510 Abbv = std::make_shared<BitCodeAbbrev>(); 2511 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2514 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2515 // Abbrev for CST_CODE_CSTRING. 2516 Abbv = std::make_shared<BitCodeAbbrev>(); 2517 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2520 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2521 // Abbrev for CST_CODE_CSTRING. 2522 Abbv = std::make_shared<BitCodeAbbrev>(); 2523 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2526 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2527 } 2528 2529 SmallVector<uint64_t, 64> Record; 2530 2531 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2532 Type *LastTy = nullptr; 2533 for (unsigned i = FirstVal; i != LastVal; ++i) { 2534 const Value *V = Vals[i].first; 2535 // If we need to switch types, do so now. 2536 if (V->getType() != LastTy) { 2537 LastTy = V->getType(); 2538 Record.push_back(VE.getTypeID(LastTy)); 2539 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2540 CONSTANTS_SETTYPE_ABBREV); 2541 Record.clear(); 2542 } 2543 2544 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2545 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2546 Record.push_back( 2547 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2548 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2549 2550 // Add the asm string. 2551 const std::string &AsmStr = IA->getAsmString(); 2552 Record.push_back(AsmStr.size()); 2553 Record.append(AsmStr.begin(), AsmStr.end()); 2554 2555 // Add the constraint string. 2556 const std::string &ConstraintStr = IA->getConstraintString(); 2557 Record.push_back(ConstraintStr.size()); 2558 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2559 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2560 Record.clear(); 2561 continue; 2562 } 2563 const Constant *C = cast<Constant>(V); 2564 unsigned Code = -1U; 2565 unsigned AbbrevToUse = 0; 2566 if (C->isNullValue()) { 2567 Code = bitc::CST_CODE_NULL; 2568 } else if (isa<PoisonValue>(C)) { 2569 Code = bitc::CST_CODE_POISON; 2570 } else if (isa<UndefValue>(C)) { 2571 Code = bitc::CST_CODE_UNDEF; 2572 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2573 if (IV->getBitWidth() <= 64) { 2574 uint64_t V = IV->getSExtValue(); 2575 emitSignedInt64(Record, V); 2576 Code = bitc::CST_CODE_INTEGER; 2577 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2578 } else { // Wide integers, > 64 bits in size. 2579 emitWideAPInt(Record, IV->getValue()); 2580 Code = bitc::CST_CODE_WIDE_INTEGER; 2581 } 2582 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2583 Code = bitc::CST_CODE_FLOAT; 2584 Type *Ty = CFP->getType(); 2585 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2586 Ty->isDoubleTy()) { 2587 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2588 } else if (Ty->isX86_FP80Ty()) { 2589 // api needed to prevent premature destruction 2590 // bits are not in the same order as a normal i80 APInt, compensate. 2591 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2592 const uint64_t *p = api.getRawData(); 2593 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2594 Record.push_back(p[0] & 0xffffLL); 2595 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2596 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2597 const uint64_t *p = api.getRawData(); 2598 Record.push_back(p[0]); 2599 Record.push_back(p[1]); 2600 } else { 2601 assert(0 && "Unknown FP type!"); 2602 } 2603 } else if (isa<ConstantDataSequential>(C) && 2604 cast<ConstantDataSequential>(C)->isString()) { 2605 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2606 // Emit constant strings specially. 2607 unsigned NumElts = Str->getNumElements(); 2608 // If this is a null-terminated string, use the denser CSTRING encoding. 2609 if (Str->isCString()) { 2610 Code = bitc::CST_CODE_CSTRING; 2611 --NumElts; // Don't encode the null, which isn't allowed by char6. 2612 } else { 2613 Code = bitc::CST_CODE_STRING; 2614 AbbrevToUse = String8Abbrev; 2615 } 2616 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2617 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2618 for (unsigned i = 0; i != NumElts; ++i) { 2619 unsigned char V = Str->getElementAsInteger(i); 2620 Record.push_back(V); 2621 isCStr7 &= (V & 128) == 0; 2622 if (isCStrChar6) 2623 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2624 } 2625 2626 if (isCStrChar6) 2627 AbbrevToUse = CString6Abbrev; 2628 else if (isCStr7) 2629 AbbrevToUse = CString7Abbrev; 2630 } else if (const ConstantDataSequential *CDS = 2631 dyn_cast<ConstantDataSequential>(C)) { 2632 Code = bitc::CST_CODE_DATA; 2633 Type *EltTy = CDS->getElementType(); 2634 if (isa<IntegerType>(EltTy)) { 2635 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2636 Record.push_back(CDS->getElementAsInteger(i)); 2637 } else { 2638 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2639 Record.push_back( 2640 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2641 } 2642 } else if (isa<ConstantAggregate>(C)) { 2643 Code = bitc::CST_CODE_AGGREGATE; 2644 for (const Value *Op : C->operands()) 2645 Record.push_back(VE.getValueID(Op)); 2646 AbbrevToUse = AggregateAbbrev; 2647 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2648 switch (CE->getOpcode()) { 2649 default: 2650 if (Instruction::isCast(CE->getOpcode())) { 2651 Code = bitc::CST_CODE_CE_CAST; 2652 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2653 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2654 Record.push_back(VE.getValueID(C->getOperand(0))); 2655 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2656 } else { 2657 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2658 Code = bitc::CST_CODE_CE_BINOP; 2659 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2660 Record.push_back(VE.getValueID(C->getOperand(0))); 2661 Record.push_back(VE.getValueID(C->getOperand(1))); 2662 uint64_t Flags = getOptimizationFlags(CE); 2663 if (Flags != 0) 2664 Record.push_back(Flags); 2665 } 2666 break; 2667 case Instruction::FNeg: { 2668 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2669 Code = bitc::CST_CODE_CE_UNOP; 2670 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2671 Record.push_back(VE.getValueID(C->getOperand(0))); 2672 uint64_t Flags = getOptimizationFlags(CE); 2673 if (Flags != 0) 2674 Record.push_back(Flags); 2675 break; 2676 } 2677 case Instruction::GetElementPtr: { 2678 Code = bitc::CST_CODE_CE_GEP; 2679 const auto *GO = cast<GEPOperator>(C); 2680 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2681 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { 2682 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2683 Record.push_back((*Idx << 1) | GO->isInBounds()); 2684 } else if (GO->isInBounds()) 2685 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2686 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2687 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2688 Record.push_back(VE.getValueID(C->getOperand(i))); 2689 } 2690 break; 2691 } 2692 case Instruction::ExtractElement: 2693 Code = bitc::CST_CODE_CE_EXTRACTELT; 2694 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2695 Record.push_back(VE.getValueID(C->getOperand(0))); 2696 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2697 Record.push_back(VE.getValueID(C->getOperand(1))); 2698 break; 2699 case Instruction::InsertElement: 2700 Code = bitc::CST_CODE_CE_INSERTELT; 2701 Record.push_back(VE.getValueID(C->getOperand(0))); 2702 Record.push_back(VE.getValueID(C->getOperand(1))); 2703 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2704 Record.push_back(VE.getValueID(C->getOperand(2))); 2705 break; 2706 case Instruction::ShuffleVector: 2707 // If the return type and argument types are the same, this is a 2708 // standard shufflevector instruction. If the types are different, 2709 // then the shuffle is widening or truncating the input vectors, and 2710 // the argument type must also be encoded. 2711 if (C->getType() == C->getOperand(0)->getType()) { 2712 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2713 } else { 2714 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2715 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2716 } 2717 Record.push_back(VE.getValueID(C->getOperand(0))); 2718 Record.push_back(VE.getValueID(C->getOperand(1))); 2719 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2720 break; 2721 case Instruction::ICmp: 2722 case Instruction::FCmp: 2723 Code = bitc::CST_CODE_CE_CMP; 2724 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2725 Record.push_back(VE.getValueID(C->getOperand(0))); 2726 Record.push_back(VE.getValueID(C->getOperand(1))); 2727 Record.push_back(CE->getPredicate()); 2728 break; 2729 } 2730 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2731 Code = bitc::CST_CODE_BLOCKADDRESS; 2732 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2733 Record.push_back(VE.getValueID(BA->getFunction())); 2734 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2735 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2736 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2737 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2738 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2739 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2740 Code = bitc::CST_CODE_NO_CFI_VALUE; 2741 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2742 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2743 } else { 2744 #ifndef NDEBUG 2745 C->dump(); 2746 #endif 2747 llvm_unreachable("Unknown constant!"); 2748 } 2749 Stream.EmitRecord(Code, Record, AbbrevToUse); 2750 Record.clear(); 2751 } 2752 2753 Stream.ExitBlock(); 2754 } 2755 2756 void ModuleBitcodeWriter::writeModuleConstants() { 2757 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2758 2759 // Find the first constant to emit, which is the first non-globalvalue value. 2760 // We know globalvalues have been emitted by WriteModuleInfo. 2761 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2762 if (!isa<GlobalValue>(Vals[i].first)) { 2763 writeConstants(i, Vals.size(), true); 2764 return; 2765 } 2766 } 2767 } 2768 2769 /// pushValueAndType - The file has to encode both the value and type id for 2770 /// many values, because we need to know what type to create for forward 2771 /// references. However, most operands are not forward references, so this type 2772 /// field is not needed. 2773 /// 2774 /// This function adds V's value ID to Vals. If the value ID is higher than the 2775 /// instruction ID, then it is a forward reference, and it also includes the 2776 /// type ID. The value ID that is written is encoded relative to the InstID. 2777 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2778 SmallVectorImpl<unsigned> &Vals) { 2779 unsigned ValID = VE.getValueID(V); 2780 // Make encoding relative to the InstID. 2781 Vals.push_back(InstID - ValID); 2782 if (ValID >= InstID) { 2783 Vals.push_back(VE.getTypeID(V->getType())); 2784 return true; 2785 } 2786 return false; 2787 } 2788 2789 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2790 unsigned InstID) { 2791 SmallVector<unsigned, 64> Record; 2792 LLVMContext &C = CS.getContext(); 2793 2794 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2795 const auto &Bundle = CS.getOperandBundleAt(i); 2796 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2797 2798 for (auto &Input : Bundle.Inputs) 2799 pushValueAndType(Input, InstID, Record); 2800 2801 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2802 Record.clear(); 2803 } 2804 } 2805 2806 /// pushValue - Like pushValueAndType, but where the type of the value is 2807 /// omitted (perhaps it was already encoded in an earlier operand). 2808 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2809 SmallVectorImpl<unsigned> &Vals) { 2810 unsigned ValID = VE.getValueID(V); 2811 Vals.push_back(InstID - ValID); 2812 } 2813 2814 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2815 SmallVectorImpl<uint64_t> &Vals) { 2816 unsigned ValID = VE.getValueID(V); 2817 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2818 emitSignedInt64(Vals, diff); 2819 } 2820 2821 /// WriteInstruction - Emit an instruction to the specified stream. 2822 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2823 unsigned InstID, 2824 SmallVectorImpl<unsigned> &Vals) { 2825 unsigned Code = 0; 2826 unsigned AbbrevToUse = 0; 2827 VE.setInstructionID(&I); 2828 switch (I.getOpcode()) { 2829 default: 2830 if (Instruction::isCast(I.getOpcode())) { 2831 Code = bitc::FUNC_CODE_INST_CAST; 2832 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2833 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2834 Vals.push_back(VE.getTypeID(I.getType())); 2835 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2836 uint64_t Flags = getOptimizationFlags(&I); 2837 if (Flags != 0) { 2838 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2839 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2840 Vals.push_back(Flags); 2841 } 2842 } else { 2843 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2844 Code = bitc::FUNC_CODE_INST_BINOP; 2845 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2846 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2847 pushValue(I.getOperand(1), InstID, Vals); 2848 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2849 uint64_t Flags = getOptimizationFlags(&I); 2850 if (Flags != 0) { 2851 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2852 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2853 Vals.push_back(Flags); 2854 } 2855 } 2856 break; 2857 case Instruction::FNeg: { 2858 Code = bitc::FUNC_CODE_INST_UNOP; 2859 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2860 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2861 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2862 uint64_t Flags = getOptimizationFlags(&I); 2863 if (Flags != 0) { 2864 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2865 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2866 Vals.push_back(Flags); 2867 } 2868 break; 2869 } 2870 case Instruction::GetElementPtr: { 2871 Code = bitc::FUNC_CODE_INST_GEP; 2872 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2873 auto &GEPInst = cast<GetElementPtrInst>(I); 2874 Vals.push_back(GEPInst.isInBounds()); 2875 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2876 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2877 pushValueAndType(I.getOperand(i), InstID, Vals); 2878 break; 2879 } 2880 case Instruction::ExtractValue: { 2881 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2882 pushValueAndType(I.getOperand(0), InstID, Vals); 2883 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2884 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2885 break; 2886 } 2887 case Instruction::InsertValue: { 2888 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2889 pushValueAndType(I.getOperand(0), InstID, Vals); 2890 pushValueAndType(I.getOperand(1), InstID, Vals); 2891 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2892 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2893 break; 2894 } 2895 case Instruction::Select: { 2896 Code = bitc::FUNC_CODE_INST_VSELECT; 2897 pushValueAndType(I.getOperand(1), InstID, Vals); 2898 pushValue(I.getOperand(2), InstID, Vals); 2899 pushValueAndType(I.getOperand(0), InstID, Vals); 2900 uint64_t Flags = getOptimizationFlags(&I); 2901 if (Flags != 0) 2902 Vals.push_back(Flags); 2903 break; 2904 } 2905 case Instruction::ExtractElement: 2906 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2907 pushValueAndType(I.getOperand(0), InstID, Vals); 2908 pushValueAndType(I.getOperand(1), InstID, Vals); 2909 break; 2910 case Instruction::InsertElement: 2911 Code = bitc::FUNC_CODE_INST_INSERTELT; 2912 pushValueAndType(I.getOperand(0), InstID, Vals); 2913 pushValue(I.getOperand(1), InstID, Vals); 2914 pushValueAndType(I.getOperand(2), InstID, Vals); 2915 break; 2916 case Instruction::ShuffleVector: 2917 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2918 pushValueAndType(I.getOperand(0), InstID, Vals); 2919 pushValue(I.getOperand(1), InstID, Vals); 2920 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2921 Vals); 2922 break; 2923 case Instruction::ICmp: 2924 case Instruction::FCmp: { 2925 // compare returning Int1Ty or vector of Int1Ty 2926 Code = bitc::FUNC_CODE_INST_CMP2; 2927 pushValueAndType(I.getOperand(0), InstID, Vals); 2928 pushValue(I.getOperand(1), InstID, Vals); 2929 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2930 uint64_t Flags = getOptimizationFlags(&I); 2931 if (Flags != 0) 2932 Vals.push_back(Flags); 2933 break; 2934 } 2935 2936 case Instruction::Ret: 2937 { 2938 Code = bitc::FUNC_CODE_INST_RET; 2939 unsigned NumOperands = I.getNumOperands(); 2940 if (NumOperands == 0) 2941 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2942 else if (NumOperands == 1) { 2943 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2944 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2945 } else { 2946 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2947 pushValueAndType(I.getOperand(i), InstID, Vals); 2948 } 2949 } 2950 break; 2951 case Instruction::Br: 2952 { 2953 Code = bitc::FUNC_CODE_INST_BR; 2954 const BranchInst &II = cast<BranchInst>(I); 2955 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2956 if (II.isConditional()) { 2957 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2958 pushValue(II.getCondition(), InstID, Vals); 2959 } 2960 } 2961 break; 2962 case Instruction::Switch: 2963 { 2964 Code = bitc::FUNC_CODE_INST_SWITCH; 2965 const SwitchInst &SI = cast<SwitchInst>(I); 2966 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2967 pushValue(SI.getCondition(), InstID, Vals); 2968 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2969 for (auto Case : SI.cases()) { 2970 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2971 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2972 } 2973 } 2974 break; 2975 case Instruction::IndirectBr: 2976 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2977 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2978 // Encode the address operand as relative, but not the basic blocks. 2979 pushValue(I.getOperand(0), InstID, Vals); 2980 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2981 Vals.push_back(VE.getValueID(I.getOperand(i))); 2982 break; 2983 2984 case Instruction::Invoke: { 2985 const InvokeInst *II = cast<InvokeInst>(&I); 2986 const Value *Callee = II->getCalledOperand(); 2987 FunctionType *FTy = II->getFunctionType(); 2988 2989 if (II->hasOperandBundles()) 2990 writeOperandBundles(*II, InstID); 2991 2992 Code = bitc::FUNC_CODE_INST_INVOKE; 2993 2994 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2995 Vals.push_back(II->getCallingConv() | 1 << 13); 2996 Vals.push_back(VE.getValueID(II->getNormalDest())); 2997 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2998 Vals.push_back(VE.getTypeID(FTy)); 2999 pushValueAndType(Callee, InstID, Vals); 3000 3001 // Emit value #'s for the fixed parameters. 3002 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3003 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3004 3005 // Emit type/value pairs for varargs params. 3006 if (FTy->isVarArg()) { 3007 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3008 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3009 } 3010 break; 3011 } 3012 case Instruction::Resume: 3013 Code = bitc::FUNC_CODE_INST_RESUME; 3014 pushValueAndType(I.getOperand(0), InstID, Vals); 3015 break; 3016 case Instruction::CleanupRet: { 3017 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3018 const auto &CRI = cast<CleanupReturnInst>(I); 3019 pushValue(CRI.getCleanupPad(), InstID, Vals); 3020 if (CRI.hasUnwindDest()) 3021 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3022 break; 3023 } 3024 case Instruction::CatchRet: { 3025 Code = bitc::FUNC_CODE_INST_CATCHRET; 3026 const auto &CRI = cast<CatchReturnInst>(I); 3027 pushValue(CRI.getCatchPad(), InstID, Vals); 3028 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3029 break; 3030 } 3031 case Instruction::CleanupPad: 3032 case Instruction::CatchPad: { 3033 const auto &FuncletPad = cast<FuncletPadInst>(I); 3034 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3035 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3036 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3037 3038 unsigned NumArgOperands = FuncletPad.arg_size(); 3039 Vals.push_back(NumArgOperands); 3040 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3041 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3042 break; 3043 } 3044 case Instruction::CatchSwitch: { 3045 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3046 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3047 3048 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3049 3050 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3051 Vals.push_back(NumHandlers); 3052 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3053 Vals.push_back(VE.getValueID(CatchPadBB)); 3054 3055 if (CatchSwitch.hasUnwindDest()) 3056 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3057 break; 3058 } 3059 case Instruction::CallBr: { 3060 const CallBrInst *CBI = cast<CallBrInst>(&I); 3061 const Value *Callee = CBI->getCalledOperand(); 3062 FunctionType *FTy = CBI->getFunctionType(); 3063 3064 if (CBI->hasOperandBundles()) 3065 writeOperandBundles(*CBI, InstID); 3066 3067 Code = bitc::FUNC_CODE_INST_CALLBR; 3068 3069 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3070 3071 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3072 1 << bitc::CALL_EXPLICIT_TYPE); 3073 3074 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3075 Vals.push_back(CBI->getNumIndirectDests()); 3076 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3077 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3078 3079 Vals.push_back(VE.getTypeID(FTy)); 3080 pushValueAndType(Callee, InstID, Vals); 3081 3082 // Emit value #'s for the fixed parameters. 3083 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3084 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3085 3086 // Emit type/value pairs for varargs params. 3087 if (FTy->isVarArg()) { 3088 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3089 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3090 } 3091 break; 3092 } 3093 case Instruction::Unreachable: 3094 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3095 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3096 break; 3097 3098 case Instruction::PHI: { 3099 const PHINode &PN = cast<PHINode>(I); 3100 Code = bitc::FUNC_CODE_INST_PHI; 3101 // With the newer instruction encoding, forward references could give 3102 // negative valued IDs. This is most common for PHIs, so we use 3103 // signed VBRs. 3104 SmallVector<uint64_t, 128> Vals64; 3105 Vals64.push_back(VE.getTypeID(PN.getType())); 3106 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3107 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3108 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3109 } 3110 3111 uint64_t Flags = getOptimizationFlags(&I); 3112 if (Flags != 0) 3113 Vals64.push_back(Flags); 3114 3115 // Emit a Vals64 vector and exit. 3116 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3117 Vals64.clear(); 3118 return; 3119 } 3120 3121 case Instruction::LandingPad: { 3122 const LandingPadInst &LP = cast<LandingPadInst>(I); 3123 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3124 Vals.push_back(VE.getTypeID(LP.getType())); 3125 Vals.push_back(LP.isCleanup()); 3126 Vals.push_back(LP.getNumClauses()); 3127 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3128 if (LP.isCatch(I)) 3129 Vals.push_back(LandingPadInst::Catch); 3130 else 3131 Vals.push_back(LandingPadInst::Filter); 3132 pushValueAndType(LP.getClause(I), InstID, Vals); 3133 } 3134 break; 3135 } 3136 3137 case Instruction::Alloca: { 3138 Code = bitc::FUNC_CODE_INST_ALLOCA; 3139 const AllocaInst &AI = cast<AllocaInst>(I); 3140 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3141 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3142 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3143 using APV = AllocaPackedValues; 3144 unsigned Record = 0; 3145 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3146 Bitfield::set<APV::AlignLower>( 3147 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3148 Bitfield::set<APV::AlignUpper>(Record, 3149 EncodedAlign >> APV::AlignLower::Bits); 3150 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3151 Bitfield::set<APV::ExplicitType>(Record, true); 3152 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3153 Vals.push_back(Record); 3154 3155 unsigned AS = AI.getAddressSpace(); 3156 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3157 Vals.push_back(AS); 3158 break; 3159 } 3160 3161 case Instruction::Load: 3162 if (cast<LoadInst>(I).isAtomic()) { 3163 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3164 pushValueAndType(I.getOperand(0), InstID, Vals); 3165 } else { 3166 Code = bitc::FUNC_CODE_INST_LOAD; 3167 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3168 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3169 } 3170 Vals.push_back(VE.getTypeID(I.getType())); 3171 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3172 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3173 if (cast<LoadInst>(I).isAtomic()) { 3174 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3175 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3176 } 3177 break; 3178 case Instruction::Store: 3179 if (cast<StoreInst>(I).isAtomic()) 3180 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3181 else 3182 Code = bitc::FUNC_CODE_INST_STORE; 3183 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3184 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3185 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3186 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3187 if (cast<StoreInst>(I).isAtomic()) { 3188 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3189 Vals.push_back( 3190 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3191 } 3192 break; 3193 case Instruction::AtomicCmpXchg: 3194 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3195 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3196 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3197 pushValue(I.getOperand(2), InstID, Vals); // newval. 3198 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3199 Vals.push_back( 3200 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3201 Vals.push_back( 3202 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3203 Vals.push_back( 3204 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3205 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3206 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3207 break; 3208 case Instruction::AtomicRMW: 3209 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3210 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3211 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3212 Vals.push_back( 3213 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3214 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3215 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3216 Vals.push_back( 3217 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3218 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3219 break; 3220 case Instruction::Fence: 3221 Code = bitc::FUNC_CODE_INST_FENCE; 3222 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3223 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3224 break; 3225 case Instruction::Call: { 3226 const CallInst &CI = cast<CallInst>(I); 3227 FunctionType *FTy = CI.getFunctionType(); 3228 3229 if (CI.hasOperandBundles()) 3230 writeOperandBundles(CI, InstID); 3231 3232 Code = bitc::FUNC_CODE_INST_CALL; 3233 3234 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3235 3236 unsigned Flags = getOptimizationFlags(&I); 3237 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3238 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3239 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3240 1 << bitc::CALL_EXPLICIT_TYPE | 3241 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3242 unsigned(Flags != 0) << bitc::CALL_FMF); 3243 if (Flags != 0) 3244 Vals.push_back(Flags); 3245 3246 Vals.push_back(VE.getTypeID(FTy)); 3247 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3248 3249 // Emit value #'s for the fixed parameters. 3250 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3251 // Check for labels (can happen with asm labels). 3252 if (FTy->getParamType(i)->isLabelTy()) 3253 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3254 else 3255 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3256 } 3257 3258 // Emit type/value pairs for varargs params. 3259 if (FTy->isVarArg()) { 3260 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3261 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3262 } 3263 break; 3264 } 3265 case Instruction::VAArg: 3266 Code = bitc::FUNC_CODE_INST_VAARG; 3267 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3268 pushValue(I.getOperand(0), InstID, Vals); // valist. 3269 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3270 break; 3271 case Instruction::Freeze: 3272 Code = bitc::FUNC_CODE_INST_FREEZE; 3273 pushValueAndType(I.getOperand(0), InstID, Vals); 3274 break; 3275 } 3276 3277 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3278 Vals.clear(); 3279 } 3280 3281 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3282 /// to allow clients to efficiently find the function body. 3283 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3284 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3285 // Get the offset of the VST we are writing, and backpatch it into 3286 // the VST forward declaration record. 3287 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3288 // The BitcodeStartBit was the stream offset of the identification block. 3289 VSTOffset -= bitcodeStartBit(); 3290 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3291 // Note that we add 1 here because the offset is relative to one word 3292 // before the start of the identification block, which was historically 3293 // always the start of the regular bitcode header. 3294 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3295 3296 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3297 3298 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3299 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3302 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3303 3304 for (const Function &F : M) { 3305 uint64_t Record[2]; 3306 3307 if (F.isDeclaration()) 3308 continue; 3309 3310 Record[0] = VE.getValueID(&F); 3311 3312 // Save the word offset of the function (from the start of the 3313 // actual bitcode written to the stream). 3314 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3315 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3316 // Note that we add 1 here because the offset is relative to one word 3317 // before the start of the identification block, which was historically 3318 // always the start of the regular bitcode header. 3319 Record[1] = BitcodeIndex / 32 + 1; 3320 3321 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3322 } 3323 3324 Stream.ExitBlock(); 3325 } 3326 3327 /// Emit names for arguments, instructions and basic blocks in a function. 3328 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3329 const ValueSymbolTable &VST) { 3330 if (VST.empty()) 3331 return; 3332 3333 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3334 3335 // FIXME: Set up the abbrev, we know how many values there are! 3336 // FIXME: We know if the type names can use 7-bit ascii. 3337 SmallVector<uint64_t, 64> NameVals; 3338 3339 for (const ValueName &Name : VST) { 3340 // Figure out the encoding to use for the name. 3341 StringEncoding Bits = getStringEncoding(Name.getKey()); 3342 3343 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3344 NameVals.push_back(VE.getValueID(Name.getValue())); 3345 3346 // VST_CODE_ENTRY: [valueid, namechar x N] 3347 // VST_CODE_BBENTRY: [bbid, namechar x N] 3348 unsigned Code; 3349 if (isa<BasicBlock>(Name.getValue())) { 3350 Code = bitc::VST_CODE_BBENTRY; 3351 if (Bits == SE_Char6) 3352 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3353 } else { 3354 Code = bitc::VST_CODE_ENTRY; 3355 if (Bits == SE_Char6) 3356 AbbrevToUse = VST_ENTRY_6_ABBREV; 3357 else if (Bits == SE_Fixed7) 3358 AbbrevToUse = VST_ENTRY_7_ABBREV; 3359 } 3360 3361 for (const auto P : Name.getKey()) 3362 NameVals.push_back((unsigned char)P); 3363 3364 // Emit the finished record. 3365 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3366 NameVals.clear(); 3367 } 3368 3369 Stream.ExitBlock(); 3370 } 3371 3372 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3373 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3374 unsigned Code; 3375 if (isa<BasicBlock>(Order.V)) 3376 Code = bitc::USELIST_CODE_BB; 3377 else 3378 Code = bitc::USELIST_CODE_DEFAULT; 3379 3380 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3381 Record.push_back(VE.getValueID(Order.V)); 3382 Stream.EmitRecord(Code, Record); 3383 } 3384 3385 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3386 assert(VE.shouldPreserveUseListOrder() && 3387 "Expected to be preserving use-list order"); 3388 3389 auto hasMore = [&]() { 3390 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3391 }; 3392 if (!hasMore()) 3393 // Nothing to do. 3394 return; 3395 3396 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3397 while (hasMore()) { 3398 writeUseList(std::move(VE.UseListOrders.back())); 3399 VE.UseListOrders.pop_back(); 3400 } 3401 Stream.ExitBlock(); 3402 } 3403 3404 /// Emit a function body to the module stream. 3405 void ModuleBitcodeWriter::writeFunction( 3406 const Function &F, 3407 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3408 // Save the bitcode index of the start of this function block for recording 3409 // in the VST. 3410 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3411 3412 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3413 VE.incorporateFunction(F); 3414 3415 SmallVector<unsigned, 64> Vals; 3416 3417 // Emit the number of basic blocks, so the reader can create them ahead of 3418 // time. 3419 Vals.push_back(VE.getBasicBlocks().size()); 3420 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3421 Vals.clear(); 3422 3423 // If there are function-local constants, emit them now. 3424 unsigned CstStart, CstEnd; 3425 VE.getFunctionConstantRange(CstStart, CstEnd); 3426 writeConstants(CstStart, CstEnd, false); 3427 3428 // If there is function-local metadata, emit it now. 3429 writeFunctionMetadata(F); 3430 3431 // Keep a running idea of what the instruction ID is. 3432 unsigned InstID = CstEnd; 3433 3434 bool NeedsMetadataAttachment = F.hasMetadata(); 3435 3436 DILocation *LastDL = nullptr; 3437 SmallSetVector<Function *, 4> BlockAddressUsers; 3438 3439 // Finally, emit all the instructions, in order. 3440 for (const BasicBlock &BB : F) { 3441 for (const Instruction &I : BB) { 3442 writeInstruction(I, InstID, Vals); 3443 3444 if (!I.getType()->isVoidTy()) 3445 ++InstID; 3446 3447 // If the instruction has metadata, write a metadata attachment later. 3448 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3449 3450 // If the instruction has a debug location, emit it. 3451 DILocation *DL = I.getDebugLoc(); 3452 if (!DL) 3453 continue; 3454 3455 if (DL == LastDL) { 3456 // Just repeat the same debug loc as last time. 3457 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3458 continue; 3459 } 3460 3461 Vals.push_back(DL->getLine()); 3462 Vals.push_back(DL->getColumn()); 3463 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3464 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3465 Vals.push_back(DL->isImplicitCode()); 3466 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3467 Vals.clear(); 3468 3469 LastDL = DL; 3470 } 3471 3472 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3473 SmallVector<Value *> Worklist{BA}; 3474 SmallPtrSet<Value *, 8> Visited{BA}; 3475 while (!Worklist.empty()) { 3476 Value *V = Worklist.pop_back_val(); 3477 for (User *U : V->users()) { 3478 if (auto *I = dyn_cast<Instruction>(U)) { 3479 Function *P = I->getFunction(); 3480 if (P != &F) 3481 BlockAddressUsers.insert(P); 3482 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3483 Visited.insert(U).second) 3484 Worklist.push_back(U); 3485 } 3486 } 3487 } 3488 } 3489 3490 if (!BlockAddressUsers.empty()) { 3491 Vals.resize(BlockAddressUsers.size()); 3492 for (auto I : llvm::enumerate(BlockAddressUsers)) 3493 Vals[I.index()] = VE.getValueID(I.value()); 3494 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3495 Vals.clear(); 3496 } 3497 3498 // Emit names for all the instructions etc. 3499 if (auto *Symtab = F.getValueSymbolTable()) 3500 writeFunctionLevelValueSymbolTable(*Symtab); 3501 3502 if (NeedsMetadataAttachment) 3503 writeFunctionMetadataAttachment(F); 3504 if (VE.shouldPreserveUseListOrder()) 3505 writeUseListBlock(&F); 3506 VE.purgeFunction(); 3507 Stream.ExitBlock(); 3508 } 3509 3510 // Emit blockinfo, which defines the standard abbreviations etc. 3511 void ModuleBitcodeWriter::writeBlockInfo() { 3512 // We only want to emit block info records for blocks that have multiple 3513 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3514 // Other blocks can define their abbrevs inline. 3515 Stream.EnterBlockInfoBlock(); 3516 3517 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3518 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3523 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3524 VST_ENTRY_8_ABBREV) 3525 llvm_unreachable("Unexpected abbrev ordering!"); 3526 } 3527 3528 { // 7-bit fixed width VST_CODE_ENTRY strings. 3529 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3530 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3534 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3535 VST_ENTRY_7_ABBREV) 3536 llvm_unreachable("Unexpected abbrev ordering!"); 3537 } 3538 { // 6-bit char6 VST_CODE_ENTRY strings. 3539 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3540 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3544 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3545 VST_ENTRY_6_ABBREV) 3546 llvm_unreachable("Unexpected abbrev ordering!"); 3547 } 3548 { // 6-bit char6 VST_CODE_BBENTRY strings. 3549 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3550 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3554 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3555 VST_BBENTRY_6_ABBREV) 3556 llvm_unreachable("Unexpected abbrev ordering!"); 3557 } 3558 3559 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3560 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3561 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3563 VE.computeBitsRequiredForTypeIndicies())); 3564 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3565 CONSTANTS_SETTYPE_ABBREV) 3566 llvm_unreachable("Unexpected abbrev ordering!"); 3567 } 3568 3569 { // INTEGER abbrev for CONSTANTS_BLOCK. 3570 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3571 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3573 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3574 CONSTANTS_INTEGER_ABBREV) 3575 llvm_unreachable("Unexpected abbrev ordering!"); 3576 } 3577 3578 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3579 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3580 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3583 VE.computeBitsRequiredForTypeIndicies())); 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3585 3586 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3587 CONSTANTS_CE_CAST_Abbrev) 3588 llvm_unreachable("Unexpected abbrev ordering!"); 3589 } 3590 { // NULL abbrev for CONSTANTS_BLOCK. 3591 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3592 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3593 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3594 CONSTANTS_NULL_Abbrev) 3595 llvm_unreachable("Unexpected abbrev ordering!"); 3596 } 3597 3598 // FIXME: This should only use space for first class types! 3599 3600 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3601 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3602 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3605 VE.computeBitsRequiredForTypeIndicies())); 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3608 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3609 FUNCTION_INST_LOAD_ABBREV) 3610 llvm_unreachable("Unexpected abbrev ordering!"); 3611 } 3612 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3613 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3614 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3617 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3618 FUNCTION_INST_UNOP_ABBREV) 3619 llvm_unreachable("Unexpected abbrev ordering!"); 3620 } 3621 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3622 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3623 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3627 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3628 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3629 llvm_unreachable("Unexpected abbrev ordering!"); 3630 } 3631 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3632 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3633 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3637 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3638 FUNCTION_INST_BINOP_ABBREV) 3639 llvm_unreachable("Unexpected abbrev ordering!"); 3640 } 3641 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3642 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3643 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3648 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3649 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3650 llvm_unreachable("Unexpected abbrev ordering!"); 3651 } 3652 { // INST_CAST abbrev for FUNCTION_BLOCK. 3653 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3654 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3657 VE.computeBitsRequiredForTypeIndicies())); 3658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3659 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3660 FUNCTION_INST_CAST_ABBREV) 3661 llvm_unreachable("Unexpected abbrev ordering!"); 3662 } 3663 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3664 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3665 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3668 VE.computeBitsRequiredForTypeIndicies())); 3669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3671 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3672 FUNCTION_INST_CAST_FLAGS_ABBREV) 3673 llvm_unreachable("Unexpected abbrev ordering!"); 3674 } 3675 3676 { // INST_RET abbrev for FUNCTION_BLOCK. 3677 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3678 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3679 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3680 FUNCTION_INST_RET_VOID_ABBREV) 3681 llvm_unreachable("Unexpected abbrev ordering!"); 3682 } 3683 { // INST_RET abbrev for FUNCTION_BLOCK. 3684 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3685 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3687 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3688 FUNCTION_INST_RET_VAL_ABBREV) 3689 llvm_unreachable("Unexpected abbrev ordering!"); 3690 } 3691 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3692 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3693 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3694 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3695 FUNCTION_INST_UNREACHABLE_ABBREV) 3696 llvm_unreachable("Unexpected abbrev ordering!"); 3697 } 3698 { 3699 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3700 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3703 Log2_32_Ceil(VE.getTypes().size() + 1))); 3704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3706 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3707 FUNCTION_INST_GEP_ABBREV) 3708 llvm_unreachable("Unexpected abbrev ordering!"); 3709 } 3710 3711 Stream.ExitBlock(); 3712 } 3713 3714 /// Write the module path strings, currently only used when generating 3715 /// a combined index file. 3716 void IndexBitcodeWriter::writeModStrings() { 3717 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3718 3719 // TODO: See which abbrev sizes we actually need to emit 3720 3721 // 8-bit fixed-width MST_ENTRY strings. 3722 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3723 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3727 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3728 3729 // 7-bit fixed width MST_ENTRY strings. 3730 Abbv = std::make_shared<BitCodeAbbrev>(); 3731 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3735 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3736 3737 // 6-bit char6 MST_ENTRY strings. 3738 Abbv = std::make_shared<BitCodeAbbrev>(); 3739 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3743 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3744 3745 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3746 Abbv = std::make_shared<BitCodeAbbrev>(); 3747 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3753 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3754 3755 SmallVector<unsigned, 64> Vals; 3756 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3757 StringRef Key = MPSE.getKey(); 3758 const auto &Hash = MPSE.getValue(); 3759 StringEncoding Bits = getStringEncoding(Key); 3760 unsigned AbbrevToUse = Abbrev8Bit; 3761 if (Bits == SE_Char6) 3762 AbbrevToUse = Abbrev6Bit; 3763 else if (Bits == SE_Fixed7) 3764 AbbrevToUse = Abbrev7Bit; 3765 3766 auto ModuleId = ModuleIdMap.size(); 3767 ModuleIdMap[Key] = ModuleId; 3768 Vals.push_back(ModuleId); 3769 Vals.append(Key.begin(), Key.end()); 3770 3771 // Emit the finished record. 3772 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3773 3774 // Emit an optional hash for the module now 3775 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3776 Vals.assign(Hash.begin(), Hash.end()); 3777 // Emit the hash record. 3778 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3779 } 3780 3781 Vals.clear(); 3782 }); 3783 Stream.ExitBlock(); 3784 } 3785 3786 /// Write the function type metadata related records that need to appear before 3787 /// a function summary entry (whether per-module or combined). 3788 template <typename Fn> 3789 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3790 FunctionSummary *FS, 3791 Fn GetValueID) { 3792 if (!FS->type_tests().empty()) 3793 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3794 3795 SmallVector<uint64_t, 64> Record; 3796 3797 auto WriteVFuncIdVec = [&](uint64_t Ty, 3798 ArrayRef<FunctionSummary::VFuncId> VFs) { 3799 if (VFs.empty()) 3800 return; 3801 Record.clear(); 3802 for (auto &VF : VFs) { 3803 Record.push_back(VF.GUID); 3804 Record.push_back(VF.Offset); 3805 } 3806 Stream.EmitRecord(Ty, Record); 3807 }; 3808 3809 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3810 FS->type_test_assume_vcalls()); 3811 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3812 FS->type_checked_load_vcalls()); 3813 3814 auto WriteConstVCallVec = [&](uint64_t Ty, 3815 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3816 for (auto &VC : VCs) { 3817 Record.clear(); 3818 Record.push_back(VC.VFunc.GUID); 3819 Record.push_back(VC.VFunc.Offset); 3820 llvm::append_range(Record, VC.Args); 3821 Stream.EmitRecord(Ty, Record); 3822 } 3823 }; 3824 3825 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3826 FS->type_test_assume_const_vcalls()); 3827 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3828 FS->type_checked_load_const_vcalls()); 3829 3830 auto WriteRange = [&](ConstantRange Range) { 3831 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3832 assert(Range.getLower().getNumWords() == 1); 3833 assert(Range.getUpper().getNumWords() == 1); 3834 emitSignedInt64(Record, *Range.getLower().getRawData()); 3835 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3836 }; 3837 3838 if (!FS->paramAccesses().empty()) { 3839 Record.clear(); 3840 for (auto &Arg : FS->paramAccesses()) { 3841 size_t UndoSize = Record.size(); 3842 Record.push_back(Arg.ParamNo); 3843 WriteRange(Arg.Use); 3844 Record.push_back(Arg.Calls.size()); 3845 for (auto &Call : Arg.Calls) { 3846 Record.push_back(Call.ParamNo); 3847 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 3848 if (!ValueID) { 3849 // If ValueID is unknown we can't drop just this call, we must drop 3850 // entire parameter. 3851 Record.resize(UndoSize); 3852 break; 3853 } 3854 Record.push_back(*ValueID); 3855 WriteRange(Call.Offsets); 3856 } 3857 } 3858 if (!Record.empty()) 3859 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3860 } 3861 } 3862 3863 /// Collect type IDs from type tests used by function. 3864 static void 3865 getReferencedTypeIds(FunctionSummary *FS, 3866 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3867 if (!FS->type_tests().empty()) 3868 for (auto &TT : FS->type_tests()) 3869 ReferencedTypeIds.insert(TT); 3870 3871 auto GetReferencedTypesFromVFuncIdVec = 3872 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3873 for (auto &VF : VFs) 3874 ReferencedTypeIds.insert(VF.GUID); 3875 }; 3876 3877 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3878 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3879 3880 auto GetReferencedTypesFromConstVCallVec = 3881 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3882 for (auto &VC : VCs) 3883 ReferencedTypeIds.insert(VC.VFunc.GUID); 3884 }; 3885 3886 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3887 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3888 } 3889 3890 static void writeWholeProgramDevirtResolutionByArg( 3891 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3892 const WholeProgramDevirtResolution::ByArg &ByArg) { 3893 NameVals.push_back(args.size()); 3894 llvm::append_range(NameVals, args); 3895 3896 NameVals.push_back(ByArg.TheKind); 3897 NameVals.push_back(ByArg.Info); 3898 NameVals.push_back(ByArg.Byte); 3899 NameVals.push_back(ByArg.Bit); 3900 } 3901 3902 static void writeWholeProgramDevirtResolution( 3903 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3904 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3905 NameVals.push_back(Id); 3906 3907 NameVals.push_back(Wpd.TheKind); 3908 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3909 NameVals.push_back(Wpd.SingleImplName.size()); 3910 3911 NameVals.push_back(Wpd.ResByArg.size()); 3912 for (auto &A : Wpd.ResByArg) 3913 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3914 } 3915 3916 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3917 StringTableBuilder &StrtabBuilder, 3918 const std::string &Id, 3919 const TypeIdSummary &Summary) { 3920 NameVals.push_back(StrtabBuilder.add(Id)); 3921 NameVals.push_back(Id.size()); 3922 3923 NameVals.push_back(Summary.TTRes.TheKind); 3924 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3925 NameVals.push_back(Summary.TTRes.AlignLog2); 3926 NameVals.push_back(Summary.TTRes.SizeM1); 3927 NameVals.push_back(Summary.TTRes.BitMask); 3928 NameVals.push_back(Summary.TTRes.InlineBits); 3929 3930 for (auto &W : Summary.WPDRes) 3931 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3932 W.second); 3933 } 3934 3935 static void writeTypeIdCompatibleVtableSummaryRecord( 3936 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3937 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3938 ValueEnumerator &VE) { 3939 NameVals.push_back(StrtabBuilder.add(Id)); 3940 NameVals.push_back(Id.size()); 3941 3942 for (auto &P : Summary) { 3943 NameVals.push_back(P.AddressPointOffset); 3944 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3945 } 3946 } 3947 3948 static void writeFunctionHeapProfileRecords( 3949 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 3950 unsigned AllocAbbrev, bool PerModule, 3951 std::function<unsigned(const ValueInfo &VI)> GetValueID, 3952 std::function<unsigned(unsigned)> GetStackIndex) { 3953 SmallVector<uint64_t> Record; 3954 3955 for (auto &CI : FS->callsites()) { 3956 Record.clear(); 3957 // Per module callsite clones should always have a single entry of 3958 // value 0. 3959 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 3960 Record.push_back(GetValueID(CI.Callee)); 3961 if (!PerModule) { 3962 Record.push_back(CI.StackIdIndices.size()); 3963 Record.push_back(CI.Clones.size()); 3964 } 3965 for (auto Id : CI.StackIdIndices) 3966 Record.push_back(GetStackIndex(Id)); 3967 if (!PerModule) { 3968 for (auto V : CI.Clones) 3969 Record.push_back(V); 3970 } 3971 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 3972 : bitc::FS_COMBINED_CALLSITE_INFO, 3973 Record, CallsiteAbbrev); 3974 } 3975 3976 for (auto &AI : FS->allocs()) { 3977 Record.clear(); 3978 // Per module alloc versions should always have a single entry of 3979 // value 0. 3980 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 3981 if (!PerModule) { 3982 Record.push_back(AI.MIBs.size()); 3983 Record.push_back(AI.Versions.size()); 3984 } 3985 for (auto &MIB : AI.MIBs) { 3986 Record.push_back((uint8_t)MIB.AllocType); 3987 Record.push_back(MIB.StackIdIndices.size()); 3988 for (auto Id : MIB.StackIdIndices) 3989 Record.push_back(GetStackIndex(Id)); 3990 } 3991 if (!PerModule) { 3992 for (auto V : AI.Versions) 3993 Record.push_back(V); 3994 } 3995 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 3996 : bitc::FS_COMBINED_ALLOC_INFO, 3997 Record, AllocAbbrev); 3998 } 3999 } 4000 4001 // Helper to emit a single function summary record. 4002 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4003 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4004 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 4005 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) { 4006 NameVals.push_back(ValueID); 4007 4008 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4009 4010 writeFunctionTypeMetadataRecords( 4011 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4012 return {VE.getValueID(VI.getValue())}; 4013 }); 4014 4015 writeFunctionHeapProfileRecords( 4016 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4017 /*PerModule*/ true, 4018 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4019 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4020 4021 auto SpecialRefCnts = FS->specialRefCounts(); 4022 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4023 NameVals.push_back(FS->instCount()); 4024 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4025 NameVals.push_back(FS->refs().size()); 4026 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4027 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4028 4029 for (auto &RI : FS->refs()) 4030 NameVals.push_back(VE.getValueID(RI.getValue())); 4031 4032 bool HasProfileData = 4033 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 4034 for (auto &ECI : FS->calls()) { 4035 NameVals.push_back(getValueId(ECI.first)); 4036 if (HasProfileData) 4037 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 4038 else if (WriteRelBFToSummary) 4039 NameVals.push_back(ECI.second.RelBlockFreq); 4040 } 4041 4042 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4043 unsigned Code = 4044 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 4045 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 4046 : bitc::FS_PERMODULE)); 4047 4048 // Emit the finished record. 4049 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4050 NameVals.clear(); 4051 } 4052 4053 // Collect the global value references in the given variable's initializer, 4054 // and emit them in a summary record. 4055 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4056 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4057 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4058 auto VI = Index->getValueInfo(V.getGUID()); 4059 if (!VI || VI.getSummaryList().empty()) { 4060 // Only declarations should not have a summary (a declaration might however 4061 // have a summary if the def was in module level asm). 4062 assert(V.isDeclaration()); 4063 return; 4064 } 4065 auto *Summary = VI.getSummaryList()[0].get(); 4066 NameVals.push_back(VE.getValueID(&V)); 4067 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4068 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4069 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4070 4071 auto VTableFuncs = VS->vTableFuncs(); 4072 if (!VTableFuncs.empty()) 4073 NameVals.push_back(VS->refs().size()); 4074 4075 unsigned SizeBeforeRefs = NameVals.size(); 4076 for (auto &RI : VS->refs()) 4077 NameVals.push_back(VE.getValueID(RI.getValue())); 4078 // Sort the refs for determinism output, the vector returned by FS->refs() has 4079 // been initialized from a DenseSet. 4080 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4081 4082 if (VTableFuncs.empty()) 4083 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4084 FSModRefsAbbrev); 4085 else { 4086 // VTableFuncs pairs should already be sorted by offset. 4087 for (auto &P : VTableFuncs) { 4088 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4089 NameVals.push_back(P.VTableOffset); 4090 } 4091 4092 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4093 FSModVTableRefsAbbrev); 4094 } 4095 NameVals.clear(); 4096 } 4097 4098 /// Emit the per-module summary section alongside the rest of 4099 /// the module's bitcode. 4100 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4101 // By default we compile with ThinLTO if the module has a summary, but the 4102 // client can request full LTO with a module flag. 4103 bool IsThinLTO = true; 4104 if (auto *MD = 4105 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4106 IsThinLTO = MD->getZExtValue(); 4107 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4108 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4109 4); 4110 4111 Stream.EmitRecord( 4112 bitc::FS_VERSION, 4113 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4114 4115 // Write the index flags. 4116 uint64_t Flags = 0; 4117 // Bits 1-3 are set only in the combined index, skip them. 4118 if (Index->enableSplitLTOUnit()) 4119 Flags |= 0x8; 4120 if (Index->hasUnifiedLTO()) 4121 Flags |= 0x200; 4122 4123 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4124 4125 if (Index->begin() == Index->end()) { 4126 Stream.ExitBlock(); 4127 return; 4128 } 4129 4130 for (const auto &GVI : valueIds()) { 4131 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4132 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4133 } 4134 4135 if (!Index->stackIds().empty()) { 4136 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4137 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4138 // numids x stackid 4139 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4140 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4141 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4142 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4143 } 4144 4145 // Abbrev for FS_PERMODULE_PROFILE. 4146 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4147 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4155 // numrefs x valueid, n x (valueid, hotness) 4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4158 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4159 4160 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4161 Abbv = std::make_shared<BitCodeAbbrev>(); 4162 if (WriteRelBFToSummary) 4163 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4164 else 4165 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4173 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4176 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4177 4178 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4179 Abbv = std::make_shared<BitCodeAbbrev>(); 4180 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4185 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4186 4187 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4188 Abbv = std::make_shared<BitCodeAbbrev>(); 4189 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4193 // numrefs x valueid, n x (valueid , offset) 4194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4196 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4197 4198 // Abbrev for FS_ALIAS. 4199 Abbv = std::make_shared<BitCodeAbbrev>(); 4200 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4204 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4205 4206 // Abbrev for FS_TYPE_ID_METADATA 4207 Abbv = std::make_shared<BitCodeAbbrev>(); 4208 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4211 // n x (valueid , offset) 4212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4214 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4215 4216 Abbv = std::make_shared<BitCodeAbbrev>(); 4217 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4219 // n x stackidindex 4220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4222 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4223 4224 Abbv = std::make_shared<BitCodeAbbrev>(); 4225 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4226 // n x (alloc type, numstackids, numstackids x stackidindex) 4227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4229 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4230 4231 SmallVector<uint64_t, 64> NameVals; 4232 // Iterate over the list of functions instead of the Index to 4233 // ensure the ordering is stable. 4234 for (const Function &F : M) { 4235 // Summary emission does not support anonymous functions, they have to 4236 // renamed using the anonymous function renaming pass. 4237 if (!F.hasName()) 4238 report_fatal_error("Unexpected anonymous function when writing summary"); 4239 4240 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4241 if (!VI || VI.getSummaryList().empty()) { 4242 // Only declarations should not have a summary (a declaration might 4243 // however have a summary if the def was in module level asm). 4244 assert(F.isDeclaration()); 4245 continue; 4246 } 4247 auto *Summary = VI.getSummaryList()[0].get(); 4248 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4249 FSCallsAbbrev, FSCallsProfileAbbrev, 4250 CallsiteAbbrev, AllocAbbrev, F); 4251 } 4252 4253 // Capture references from GlobalVariable initializers, which are outside 4254 // of a function scope. 4255 for (const GlobalVariable &G : M.globals()) 4256 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4257 FSModVTableRefsAbbrev); 4258 4259 for (const GlobalAlias &A : M.aliases()) { 4260 auto *Aliasee = A.getAliaseeObject(); 4261 // Skip ifunc and nameless functions which don't have an entry in the 4262 // summary. 4263 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4264 continue; 4265 auto AliasId = VE.getValueID(&A); 4266 auto AliaseeId = VE.getValueID(Aliasee); 4267 NameVals.push_back(AliasId); 4268 auto *Summary = Index->getGlobalValueSummary(A); 4269 AliasSummary *AS = cast<AliasSummary>(Summary); 4270 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4271 NameVals.push_back(AliaseeId); 4272 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4273 NameVals.clear(); 4274 } 4275 4276 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4277 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4278 S.second, VE); 4279 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4280 TypeIdCompatibleVtableAbbrev); 4281 NameVals.clear(); 4282 } 4283 4284 if (Index->getBlockCount()) 4285 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4286 ArrayRef<uint64_t>{Index->getBlockCount()}); 4287 4288 Stream.ExitBlock(); 4289 } 4290 4291 /// Emit the combined summary section into the combined index file. 4292 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4293 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4294 Stream.EmitRecord( 4295 bitc::FS_VERSION, 4296 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4297 4298 // Write the index flags. 4299 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4300 4301 for (const auto &GVI : valueIds()) { 4302 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4303 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4304 } 4305 4306 if (!StackIdIndices.empty()) { 4307 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4308 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4309 // numids x stackid 4310 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4311 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4312 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4313 // Write the stack ids used by this index, which will be a subset of those in 4314 // the full index in the case of distributed indexes. 4315 std::vector<uint64_t> StackIds; 4316 for (auto &I : StackIdIndices) 4317 StackIds.push_back(Index.getStackIdAtIndex(I)); 4318 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4319 } 4320 4321 // Abbrev for FS_COMBINED. 4322 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4323 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4333 // numrefs x valueid, n x (valueid) 4334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4336 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4337 4338 // Abbrev for FS_COMBINED_PROFILE. 4339 Abbv = std::make_shared<BitCodeAbbrev>(); 4340 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4350 // numrefs x valueid, n x (valueid, hotness) 4351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4353 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4354 4355 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4356 Abbv = std::make_shared<BitCodeAbbrev>(); 4357 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4363 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4364 4365 // Abbrev for FS_COMBINED_ALIAS. 4366 Abbv = std::make_shared<BitCodeAbbrev>(); 4367 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4372 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4373 4374 Abbv = std::make_shared<BitCodeAbbrev>(); 4375 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4379 // numstackindices x stackidindex, numver x version 4380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4382 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4383 4384 Abbv = std::make_shared<BitCodeAbbrev>(); 4385 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4388 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4389 // numver x version 4390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4392 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4393 4394 // The aliases are emitted as a post-pass, and will point to the value 4395 // id of the aliasee. Save them in a vector for post-processing. 4396 SmallVector<AliasSummary *, 64> Aliases; 4397 4398 // Save the value id for each summary for alias emission. 4399 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4400 4401 SmallVector<uint64_t, 64> NameVals; 4402 4403 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4404 // with the type ids referenced by this index file. 4405 std::set<GlobalValue::GUID> ReferencedTypeIds; 4406 4407 // For local linkage, we also emit the original name separately 4408 // immediately after the record. 4409 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4410 // We don't need to emit the original name if we are writing the index for 4411 // distributed backends (in which case ModuleToSummariesForIndex is 4412 // non-null). The original name is only needed during the thin link, since 4413 // for SamplePGO the indirect call targets for local functions have 4414 // have the original name annotated in profile. 4415 // Continue to emit it when writing out the entire combined index, which is 4416 // used in testing the thin link via llvm-lto. 4417 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4418 return; 4419 NameVals.push_back(S.getOriginalName()); 4420 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4421 NameVals.clear(); 4422 }; 4423 4424 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4425 forEachSummary([&](GVInfo I, bool IsAliasee) { 4426 GlobalValueSummary *S = I.second; 4427 assert(S); 4428 DefOrUseGUIDs.insert(I.first); 4429 for (const ValueInfo &VI : S->refs()) 4430 DefOrUseGUIDs.insert(VI.getGUID()); 4431 4432 auto ValueId = getValueId(I.first); 4433 assert(ValueId); 4434 SummaryToValueIdMap[S] = *ValueId; 4435 4436 // If this is invoked for an aliasee, we want to record the above 4437 // mapping, but then not emit a summary entry (if the aliasee is 4438 // to be imported, we will invoke this separately with IsAliasee=false). 4439 if (IsAliasee) 4440 return; 4441 4442 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4443 // Will process aliases as a post-pass because the reader wants all 4444 // global to be loaded first. 4445 Aliases.push_back(AS); 4446 return; 4447 } 4448 4449 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4450 NameVals.push_back(*ValueId); 4451 assert(ModuleIdMap.count(VS->modulePath())); 4452 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4453 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4454 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4455 for (auto &RI : VS->refs()) { 4456 auto RefValueId = getValueId(RI.getGUID()); 4457 if (!RefValueId) 4458 continue; 4459 NameVals.push_back(*RefValueId); 4460 } 4461 4462 // Emit the finished record. 4463 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4464 FSModRefsAbbrev); 4465 NameVals.clear(); 4466 MaybeEmitOriginalName(*S); 4467 return; 4468 } 4469 4470 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4471 if (!VI) 4472 return std::nullopt; 4473 return getValueId(VI.getGUID()); 4474 }; 4475 4476 auto *FS = cast<FunctionSummary>(S); 4477 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4478 getReferencedTypeIds(FS, ReferencedTypeIds); 4479 4480 writeFunctionHeapProfileRecords( 4481 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4482 /*PerModule*/ false, 4483 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4484 std::optional<unsigned> ValueID = GetValueId(VI); 4485 // This can happen in shared index files for distributed ThinLTO if 4486 // the callee function summary is not included. Record 0 which we 4487 // will have to deal with conservatively when doing any kind of 4488 // validation in the ThinLTO backends. 4489 if (!ValueID) 4490 return 0; 4491 return *ValueID; 4492 }, 4493 /*GetStackIndex*/ [&](unsigned I) { 4494 // Get the corresponding index into the list of StackIdIndices 4495 // actually being written for this combined index (which may be a 4496 // subset in the case of distributed indexes). 4497 auto Lower = llvm::lower_bound(StackIdIndices, I); 4498 return std::distance(StackIdIndices.begin(), Lower); 4499 }); 4500 4501 NameVals.push_back(*ValueId); 4502 assert(ModuleIdMap.count(FS->modulePath())); 4503 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4504 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4505 NameVals.push_back(FS->instCount()); 4506 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4507 NameVals.push_back(FS->entryCount()); 4508 4509 // Fill in below 4510 NameVals.push_back(0); // numrefs 4511 NameVals.push_back(0); // rorefcnt 4512 NameVals.push_back(0); // worefcnt 4513 4514 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4515 for (auto &RI : FS->refs()) { 4516 auto RefValueId = getValueId(RI.getGUID()); 4517 if (!RefValueId) 4518 continue; 4519 NameVals.push_back(*RefValueId); 4520 if (RI.isReadOnly()) 4521 RORefCnt++; 4522 else if (RI.isWriteOnly()) 4523 WORefCnt++; 4524 Count++; 4525 } 4526 NameVals[6] = Count; 4527 NameVals[7] = RORefCnt; 4528 NameVals[8] = WORefCnt; 4529 4530 bool HasProfileData = false; 4531 for (auto &EI : FS->calls()) { 4532 HasProfileData |= 4533 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4534 if (HasProfileData) 4535 break; 4536 } 4537 4538 for (auto &EI : FS->calls()) { 4539 // If this GUID doesn't have a value id, it doesn't have a function 4540 // summary and we don't need to record any calls to it. 4541 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4542 if (!CallValueId) 4543 continue; 4544 NameVals.push_back(*CallValueId); 4545 if (HasProfileData) 4546 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4547 } 4548 4549 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4550 unsigned Code = 4551 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4552 4553 // Emit the finished record. 4554 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4555 NameVals.clear(); 4556 MaybeEmitOriginalName(*S); 4557 }); 4558 4559 for (auto *AS : Aliases) { 4560 auto AliasValueId = SummaryToValueIdMap[AS]; 4561 assert(AliasValueId); 4562 NameVals.push_back(AliasValueId); 4563 assert(ModuleIdMap.count(AS->modulePath())); 4564 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4565 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4566 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4567 assert(AliaseeValueId); 4568 NameVals.push_back(AliaseeValueId); 4569 4570 // Emit the finished record. 4571 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4572 NameVals.clear(); 4573 MaybeEmitOriginalName(*AS); 4574 4575 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4576 getReferencedTypeIds(FS, ReferencedTypeIds); 4577 } 4578 4579 if (!Index.cfiFunctionDefs().empty()) { 4580 for (auto &S : Index.cfiFunctionDefs()) { 4581 if (DefOrUseGUIDs.count( 4582 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4583 NameVals.push_back(StrtabBuilder.add(S)); 4584 NameVals.push_back(S.size()); 4585 } 4586 } 4587 if (!NameVals.empty()) { 4588 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4589 NameVals.clear(); 4590 } 4591 } 4592 4593 if (!Index.cfiFunctionDecls().empty()) { 4594 for (auto &S : Index.cfiFunctionDecls()) { 4595 if (DefOrUseGUIDs.count( 4596 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4597 NameVals.push_back(StrtabBuilder.add(S)); 4598 NameVals.push_back(S.size()); 4599 } 4600 } 4601 if (!NameVals.empty()) { 4602 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4603 NameVals.clear(); 4604 } 4605 } 4606 4607 // Walk the GUIDs that were referenced, and write the 4608 // corresponding type id records. 4609 for (auto &T : ReferencedTypeIds) { 4610 auto TidIter = Index.typeIds().equal_range(T); 4611 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4612 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4613 It->second.second); 4614 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4615 NameVals.clear(); 4616 } 4617 } 4618 4619 if (Index.getBlockCount()) 4620 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4621 ArrayRef<uint64_t>{Index.getBlockCount()}); 4622 4623 Stream.ExitBlock(); 4624 } 4625 4626 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4627 /// current llvm version, and a record for the epoch number. 4628 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4629 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4630 4631 // Write the "user readable" string identifying the bitcode producer 4632 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4633 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4636 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4637 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4638 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4639 4640 // Write the epoch version 4641 Abbv = std::make_shared<BitCodeAbbrev>(); 4642 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4644 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4645 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4646 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4647 Stream.ExitBlock(); 4648 } 4649 4650 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4651 // Emit the module's hash. 4652 // MODULE_CODE_HASH: [5*i32] 4653 if (GenerateHash) { 4654 uint32_t Vals[5]; 4655 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4656 Buffer.size() - BlockStartPos)); 4657 std::array<uint8_t, 20> Hash = Hasher.result(); 4658 for (int Pos = 0; Pos < 20; Pos += 4) { 4659 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4660 } 4661 4662 // Emit the finished record. 4663 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4664 4665 if (ModHash) 4666 // Save the written hash value. 4667 llvm::copy(Vals, std::begin(*ModHash)); 4668 } 4669 } 4670 4671 void ModuleBitcodeWriter::write() { 4672 writeIdentificationBlock(Stream); 4673 4674 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4675 size_t BlockStartPos = Buffer.size(); 4676 4677 writeModuleVersion(); 4678 4679 // Emit blockinfo, which defines the standard abbreviations etc. 4680 writeBlockInfo(); 4681 4682 // Emit information describing all of the types in the module. 4683 writeTypeTable(); 4684 4685 // Emit information about attribute groups. 4686 writeAttributeGroupTable(); 4687 4688 // Emit information about parameter attributes. 4689 writeAttributeTable(); 4690 4691 writeComdats(); 4692 4693 // Emit top-level description of module, including target triple, inline asm, 4694 // descriptors for global variables, and function prototype info. 4695 writeModuleInfo(); 4696 4697 // Emit constants. 4698 writeModuleConstants(); 4699 4700 // Emit metadata kind names. 4701 writeModuleMetadataKinds(); 4702 4703 // Emit metadata. 4704 writeModuleMetadata(); 4705 4706 // Emit module-level use-lists. 4707 if (VE.shouldPreserveUseListOrder()) 4708 writeUseListBlock(nullptr); 4709 4710 writeOperandBundleTags(); 4711 writeSyncScopeNames(); 4712 4713 // Emit function bodies. 4714 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4715 for (const Function &F : M) 4716 if (!F.isDeclaration()) 4717 writeFunction(F, FunctionToBitcodeIndex); 4718 4719 // Need to write after the above call to WriteFunction which populates 4720 // the summary information in the index. 4721 if (Index) 4722 writePerModuleGlobalValueSummary(); 4723 4724 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4725 4726 writeModuleHash(BlockStartPos); 4727 4728 Stream.ExitBlock(); 4729 } 4730 4731 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4732 uint32_t &Position) { 4733 support::endian::write32le(&Buffer[Position], Value); 4734 Position += 4; 4735 } 4736 4737 /// If generating a bc file on darwin, we have to emit a 4738 /// header and trailer to make it compatible with the system archiver. To do 4739 /// this we emit the following header, and then emit a trailer that pads the 4740 /// file out to be a multiple of 16 bytes. 4741 /// 4742 /// struct bc_header { 4743 /// uint32_t Magic; // 0x0B17C0DE 4744 /// uint32_t Version; // Version, currently always 0. 4745 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4746 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4747 /// uint32_t CPUType; // CPU specifier. 4748 /// ... potentially more later ... 4749 /// }; 4750 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4751 const Triple &TT) { 4752 unsigned CPUType = ~0U; 4753 4754 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4755 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4756 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4757 // specific constants here because they are implicitly part of the Darwin ABI. 4758 enum { 4759 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4760 DARWIN_CPU_TYPE_X86 = 7, 4761 DARWIN_CPU_TYPE_ARM = 12, 4762 DARWIN_CPU_TYPE_POWERPC = 18 4763 }; 4764 4765 Triple::ArchType Arch = TT.getArch(); 4766 if (Arch == Triple::x86_64) 4767 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4768 else if (Arch == Triple::x86) 4769 CPUType = DARWIN_CPU_TYPE_X86; 4770 else if (Arch == Triple::ppc) 4771 CPUType = DARWIN_CPU_TYPE_POWERPC; 4772 else if (Arch == Triple::ppc64) 4773 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4774 else if (Arch == Triple::arm || Arch == Triple::thumb) 4775 CPUType = DARWIN_CPU_TYPE_ARM; 4776 4777 // Traditional Bitcode starts after header. 4778 assert(Buffer.size() >= BWH_HeaderSize && 4779 "Expected header size to be reserved"); 4780 unsigned BCOffset = BWH_HeaderSize; 4781 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4782 4783 // Write the magic and version. 4784 unsigned Position = 0; 4785 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4786 writeInt32ToBuffer(0, Buffer, Position); // Version. 4787 writeInt32ToBuffer(BCOffset, Buffer, Position); 4788 writeInt32ToBuffer(BCSize, Buffer, Position); 4789 writeInt32ToBuffer(CPUType, Buffer, Position); 4790 4791 // If the file is not a multiple of 16 bytes, insert dummy padding. 4792 while (Buffer.size() & 15) 4793 Buffer.push_back(0); 4794 } 4795 4796 /// Helper to write the header common to all bitcode files. 4797 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4798 // Emit the file header. 4799 Stream.Emit((unsigned)'B', 8); 4800 Stream.Emit((unsigned)'C', 8); 4801 Stream.Emit(0x0, 4); 4802 Stream.Emit(0xC, 4); 4803 Stream.Emit(0xE, 4); 4804 Stream.Emit(0xD, 4); 4805 } 4806 4807 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4808 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4809 writeBitcodeHeader(*Stream); 4810 } 4811 4812 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4813 4814 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4815 Stream->EnterSubblock(Block, 3); 4816 4817 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4818 Abbv->Add(BitCodeAbbrevOp(Record)); 4819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4820 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4821 4822 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4823 4824 Stream->ExitBlock(); 4825 } 4826 4827 void BitcodeWriter::writeSymtab() { 4828 assert(!WroteStrtab && !WroteSymtab); 4829 4830 // If any module has module-level inline asm, we will require a registered asm 4831 // parser for the target so that we can create an accurate symbol table for 4832 // the module. 4833 for (Module *M : Mods) { 4834 if (M->getModuleInlineAsm().empty()) 4835 continue; 4836 4837 std::string Err; 4838 const Triple TT(M->getTargetTriple()); 4839 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4840 if (!T || !T->hasMCAsmParser()) 4841 return; 4842 } 4843 4844 WroteSymtab = true; 4845 SmallVector<char, 0> Symtab; 4846 // The irsymtab::build function may be unable to create a symbol table if the 4847 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4848 // table is not required for correctness, but we still want to be able to 4849 // write malformed modules to bitcode files, so swallow the error. 4850 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4851 consumeError(std::move(E)); 4852 return; 4853 } 4854 4855 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4856 {Symtab.data(), Symtab.size()}); 4857 } 4858 4859 void BitcodeWriter::writeStrtab() { 4860 assert(!WroteStrtab); 4861 4862 std::vector<char> Strtab; 4863 StrtabBuilder.finalizeInOrder(); 4864 Strtab.resize(StrtabBuilder.getSize()); 4865 StrtabBuilder.write((uint8_t *)Strtab.data()); 4866 4867 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4868 {Strtab.data(), Strtab.size()}); 4869 4870 WroteStrtab = true; 4871 } 4872 4873 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4874 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4875 WroteStrtab = true; 4876 } 4877 4878 void BitcodeWriter::writeModule(const Module &M, 4879 bool ShouldPreserveUseListOrder, 4880 const ModuleSummaryIndex *Index, 4881 bool GenerateHash, ModuleHash *ModHash) { 4882 assert(!WroteStrtab); 4883 4884 // The Mods vector is used by irsymtab::build, which requires non-const 4885 // Modules in case it needs to materialize metadata. But the bitcode writer 4886 // requires that the module is materialized, so we can cast to non-const here, 4887 // after checking that it is in fact materialized. 4888 assert(M.isMaterialized()); 4889 Mods.push_back(const_cast<Module *>(&M)); 4890 4891 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4892 ShouldPreserveUseListOrder, Index, 4893 GenerateHash, ModHash); 4894 ModuleWriter.write(); 4895 } 4896 4897 void BitcodeWriter::writeIndex( 4898 const ModuleSummaryIndex *Index, 4899 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4900 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4901 ModuleToSummariesForIndex); 4902 IndexWriter.write(); 4903 } 4904 4905 /// Write the specified module to the specified output stream. 4906 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4907 bool ShouldPreserveUseListOrder, 4908 const ModuleSummaryIndex *Index, 4909 bool GenerateHash, ModuleHash *ModHash) { 4910 SmallVector<char, 0> Buffer; 4911 Buffer.reserve(256*1024); 4912 4913 // If this is darwin or another generic macho target, reserve space for the 4914 // header. 4915 Triple TT(M.getTargetTriple()); 4916 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4917 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4918 4919 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4920 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4921 ModHash); 4922 Writer.writeSymtab(); 4923 Writer.writeStrtab(); 4924 4925 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4926 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4927 4928 // Write the generated bitstream to "Out". 4929 if (!Buffer.empty()) 4930 Out.write((char *)&Buffer.front(), Buffer.size()); 4931 } 4932 4933 void IndexBitcodeWriter::write() { 4934 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4935 4936 writeModuleVersion(); 4937 4938 // Write the module paths in the combined index. 4939 writeModStrings(); 4940 4941 // Write the summary combined index records. 4942 writeCombinedGlobalValueSummary(); 4943 4944 Stream.ExitBlock(); 4945 } 4946 4947 // Write the specified module summary index to the given raw output stream, 4948 // where it will be written in a new bitcode block. This is used when 4949 // writing the combined index file for ThinLTO. When writing a subset of the 4950 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4951 void llvm::writeIndexToFile( 4952 const ModuleSummaryIndex &Index, raw_ostream &Out, 4953 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4954 SmallVector<char, 0> Buffer; 4955 Buffer.reserve(256 * 1024); 4956 4957 BitcodeWriter Writer(Buffer); 4958 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4959 Writer.writeStrtab(); 4960 4961 Out.write((char *)&Buffer.front(), Buffer.size()); 4962 } 4963 4964 namespace { 4965 4966 /// Class to manage the bitcode writing for a thin link bitcode file. 4967 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4968 /// ModHash is for use in ThinLTO incremental build, generated while writing 4969 /// the module bitcode file. 4970 const ModuleHash *ModHash; 4971 4972 public: 4973 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4974 BitstreamWriter &Stream, 4975 const ModuleSummaryIndex &Index, 4976 const ModuleHash &ModHash) 4977 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4978 /*ShouldPreserveUseListOrder=*/false, &Index), 4979 ModHash(&ModHash) {} 4980 4981 void write(); 4982 4983 private: 4984 void writeSimplifiedModuleInfo(); 4985 }; 4986 4987 } // end anonymous namespace 4988 4989 // This function writes a simpilified module info for thin link bitcode file. 4990 // It only contains the source file name along with the name(the offset and 4991 // size in strtab) and linkage for global values. For the global value info 4992 // entry, in order to keep linkage at offset 5, there are three zeros used 4993 // as padding. 4994 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4995 SmallVector<unsigned, 64> Vals; 4996 // Emit the module's source file name. 4997 { 4998 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4999 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5000 if (Bits == SE_Char6) 5001 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5002 else if (Bits == SE_Fixed7) 5003 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5004 5005 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5006 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5007 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5009 Abbv->Add(AbbrevOpToUse); 5010 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5011 5012 for (const auto P : M.getSourceFileName()) 5013 Vals.push_back((unsigned char)P); 5014 5015 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5016 Vals.clear(); 5017 } 5018 5019 // Emit the global variable information. 5020 for (const GlobalVariable &GV : M.globals()) { 5021 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5022 Vals.push_back(StrtabBuilder.add(GV.getName())); 5023 Vals.push_back(GV.getName().size()); 5024 Vals.push_back(0); 5025 Vals.push_back(0); 5026 Vals.push_back(0); 5027 Vals.push_back(getEncodedLinkage(GV)); 5028 5029 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5030 Vals.clear(); 5031 } 5032 5033 // Emit the function proto information. 5034 for (const Function &F : M) { 5035 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5036 Vals.push_back(StrtabBuilder.add(F.getName())); 5037 Vals.push_back(F.getName().size()); 5038 Vals.push_back(0); 5039 Vals.push_back(0); 5040 Vals.push_back(0); 5041 Vals.push_back(getEncodedLinkage(F)); 5042 5043 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5044 Vals.clear(); 5045 } 5046 5047 // Emit the alias information. 5048 for (const GlobalAlias &A : M.aliases()) { 5049 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5050 Vals.push_back(StrtabBuilder.add(A.getName())); 5051 Vals.push_back(A.getName().size()); 5052 Vals.push_back(0); 5053 Vals.push_back(0); 5054 Vals.push_back(0); 5055 Vals.push_back(getEncodedLinkage(A)); 5056 5057 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5058 Vals.clear(); 5059 } 5060 5061 // Emit the ifunc information. 5062 for (const GlobalIFunc &I : M.ifuncs()) { 5063 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5064 Vals.push_back(StrtabBuilder.add(I.getName())); 5065 Vals.push_back(I.getName().size()); 5066 Vals.push_back(0); 5067 Vals.push_back(0); 5068 Vals.push_back(0); 5069 Vals.push_back(getEncodedLinkage(I)); 5070 5071 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5072 Vals.clear(); 5073 } 5074 } 5075 5076 void ThinLinkBitcodeWriter::write() { 5077 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5078 5079 writeModuleVersion(); 5080 5081 writeSimplifiedModuleInfo(); 5082 5083 writePerModuleGlobalValueSummary(); 5084 5085 // Write module hash. 5086 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5087 5088 Stream.ExitBlock(); 5089 } 5090 5091 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5092 const ModuleSummaryIndex &Index, 5093 const ModuleHash &ModHash) { 5094 assert(!WroteStrtab); 5095 5096 // The Mods vector is used by irsymtab::build, which requires non-const 5097 // Modules in case it needs to materialize metadata. But the bitcode writer 5098 // requires that the module is materialized, so we can cast to non-const here, 5099 // after checking that it is in fact materialized. 5100 assert(M.isMaterialized()); 5101 Mods.push_back(const_cast<Module *>(&M)); 5102 5103 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5104 ModHash); 5105 ThinLinkWriter.write(); 5106 } 5107 5108 // Write the specified thin link bitcode file to the given raw output stream, 5109 // where it will be written in a new bitcode block. This is used when 5110 // writing the per-module index file for ThinLTO. 5111 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5112 const ModuleSummaryIndex &Index, 5113 const ModuleHash &ModHash) { 5114 SmallVector<char, 0> Buffer; 5115 Buffer.reserve(256 * 1024); 5116 5117 BitcodeWriter Writer(Buffer); 5118 Writer.writeThinLinkBitcode(M, Index, ModHash); 5119 Writer.writeSymtab(); 5120 Writer.writeStrtab(); 5121 5122 Out.write((char *)&Buffer.front(), Buffer.size()); 5123 } 5124 5125 static const char *getSectionNameForBitcode(const Triple &T) { 5126 switch (T.getObjectFormat()) { 5127 case Triple::MachO: 5128 return "__LLVM,__bitcode"; 5129 case Triple::COFF: 5130 case Triple::ELF: 5131 case Triple::Wasm: 5132 case Triple::UnknownObjectFormat: 5133 return ".llvmbc"; 5134 case Triple::GOFF: 5135 llvm_unreachable("GOFF is not yet implemented"); 5136 break; 5137 case Triple::SPIRV: 5138 llvm_unreachable("SPIRV is not yet implemented"); 5139 break; 5140 case Triple::XCOFF: 5141 llvm_unreachable("XCOFF is not yet implemented"); 5142 break; 5143 case Triple::DXContainer: 5144 llvm_unreachable("DXContainer is not yet implemented"); 5145 break; 5146 } 5147 llvm_unreachable("Unimplemented ObjectFormatType"); 5148 } 5149 5150 static const char *getSectionNameForCommandline(const Triple &T) { 5151 switch (T.getObjectFormat()) { 5152 case Triple::MachO: 5153 return "__LLVM,__cmdline"; 5154 case Triple::COFF: 5155 case Triple::ELF: 5156 case Triple::Wasm: 5157 case Triple::UnknownObjectFormat: 5158 return ".llvmcmd"; 5159 case Triple::GOFF: 5160 llvm_unreachable("GOFF is not yet implemented"); 5161 break; 5162 case Triple::SPIRV: 5163 llvm_unreachable("SPIRV is not yet implemented"); 5164 break; 5165 case Triple::XCOFF: 5166 llvm_unreachable("XCOFF is not yet implemented"); 5167 break; 5168 case Triple::DXContainer: 5169 llvm_unreachable("DXC is not yet implemented"); 5170 break; 5171 } 5172 llvm_unreachable("Unimplemented ObjectFormatType"); 5173 } 5174 5175 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5176 bool EmbedBitcode, bool EmbedCmdline, 5177 const std::vector<uint8_t> &CmdArgs) { 5178 // Save llvm.compiler.used and remove it. 5179 SmallVector<Constant *, 2> UsedArray; 5180 SmallVector<GlobalValue *, 4> UsedGlobals; 5181 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5182 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5183 for (auto *GV : UsedGlobals) { 5184 if (GV->getName() != "llvm.embedded.module" && 5185 GV->getName() != "llvm.cmdline") 5186 UsedArray.push_back( 5187 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5188 } 5189 if (Used) 5190 Used->eraseFromParent(); 5191 5192 // Embed the bitcode for the llvm module. 5193 std::string Data; 5194 ArrayRef<uint8_t> ModuleData; 5195 Triple T(M.getTargetTriple()); 5196 5197 if (EmbedBitcode) { 5198 if (Buf.getBufferSize() == 0 || 5199 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5200 (const unsigned char *)Buf.getBufferEnd())) { 5201 // If the input is LLVM Assembly, bitcode is produced by serializing 5202 // the module. Use-lists order need to be preserved in this case. 5203 llvm::raw_string_ostream OS(Data); 5204 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5205 ModuleData = 5206 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5207 } else 5208 // If the input is LLVM bitcode, write the input byte stream directly. 5209 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5210 Buf.getBufferSize()); 5211 } 5212 llvm::Constant *ModuleConstant = 5213 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5214 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5215 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5216 ModuleConstant); 5217 GV->setSection(getSectionNameForBitcode(T)); 5218 // Set alignment to 1 to prevent padding between two contributions from input 5219 // sections after linking. 5220 GV->setAlignment(Align(1)); 5221 UsedArray.push_back( 5222 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5223 if (llvm::GlobalVariable *Old = 5224 M.getGlobalVariable("llvm.embedded.module", true)) { 5225 assert(Old->hasZeroLiveUses() && 5226 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5227 GV->takeName(Old); 5228 Old->eraseFromParent(); 5229 } else { 5230 GV->setName("llvm.embedded.module"); 5231 } 5232 5233 // Skip if only bitcode needs to be embedded. 5234 if (EmbedCmdline) { 5235 // Embed command-line options. 5236 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5237 CmdArgs.size()); 5238 llvm::Constant *CmdConstant = 5239 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5240 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5241 llvm::GlobalValue::PrivateLinkage, 5242 CmdConstant); 5243 GV->setSection(getSectionNameForCommandline(T)); 5244 GV->setAlignment(Align(1)); 5245 UsedArray.push_back( 5246 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5247 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5248 assert(Old->hasZeroLiveUses() && 5249 "llvm.cmdline can only be used once in llvm.compiler.used"); 5250 GV->takeName(Old); 5251 Old->eraseFromParent(); 5252 } else { 5253 GV->setName("llvm.cmdline"); 5254 } 5255 } 5256 5257 if (UsedArray.empty()) 5258 return; 5259 5260 // Recreate llvm.compiler.used. 5261 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5262 auto *NewUsed = new GlobalVariable( 5263 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5264 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5265 NewUsed->setSection("llvm.metadata"); 5266 } 5267