xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 76a1c1d0ba05993f3e57f935698ec0fd09b66c8c)
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Analysis/BlockFrequencyInfo.h"
18 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Bitcode/BitstreamWriter.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitcode/ReaderWriter.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/UseListOrder.h"
36 #include "llvm/IR/ValueSymbolTable.h"
37 #include "llvm/ProfileData/ProfileCommon.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Program.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cctype>
44 #include <map>
45 using namespace llvm;
46 
47 /// These are manifest constants used by the bitcode writer. They do not need to
48 /// be kept in sync with the reader, but need to be consistent within this file.
49 enum {
50   // VALUE_SYMTAB_BLOCK abbrev id's.
51   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52   VST_ENTRY_7_ABBREV,
53   VST_ENTRY_6_ABBREV,
54   VST_BBENTRY_6_ABBREV,
55 
56   // CONSTANTS_BLOCK abbrev id's.
57   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
58   CONSTANTS_INTEGER_ABBREV,
59   CONSTANTS_CE_CAST_Abbrev,
60   CONSTANTS_NULL_Abbrev,
61 
62   // FUNCTION_BLOCK abbrev id's.
63   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
64   FUNCTION_INST_BINOP_ABBREV,
65   FUNCTION_INST_BINOP_FLAGS_ABBREV,
66   FUNCTION_INST_CAST_ABBREV,
67   FUNCTION_INST_RET_VOID_ABBREV,
68   FUNCTION_INST_RET_VAL_ABBREV,
69   FUNCTION_INST_UNREACHABLE_ABBREV,
70   FUNCTION_INST_GEP_ABBREV,
71 };
72 
73 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
74   switch (Opcode) {
75   default: llvm_unreachable("Unknown cast instruction!");
76   case Instruction::Trunc   : return bitc::CAST_TRUNC;
77   case Instruction::ZExt    : return bitc::CAST_ZEXT;
78   case Instruction::SExt    : return bitc::CAST_SEXT;
79   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
80   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
81   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
82   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
83   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
84   case Instruction::FPExt   : return bitc::CAST_FPEXT;
85   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
86   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
87   case Instruction::BitCast : return bitc::CAST_BITCAST;
88   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
89   }
90 }
91 
92 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
93   switch (Opcode) {
94   default: llvm_unreachable("Unknown binary instruction!");
95   case Instruction::Add:
96   case Instruction::FAdd: return bitc::BINOP_ADD;
97   case Instruction::Sub:
98   case Instruction::FSub: return bitc::BINOP_SUB;
99   case Instruction::Mul:
100   case Instruction::FMul: return bitc::BINOP_MUL;
101   case Instruction::UDiv: return bitc::BINOP_UDIV;
102   case Instruction::FDiv:
103   case Instruction::SDiv: return bitc::BINOP_SDIV;
104   case Instruction::URem: return bitc::BINOP_UREM;
105   case Instruction::FRem:
106   case Instruction::SRem: return bitc::BINOP_SREM;
107   case Instruction::Shl:  return bitc::BINOP_SHL;
108   case Instruction::LShr: return bitc::BINOP_LSHR;
109   case Instruction::AShr: return bitc::BINOP_ASHR;
110   case Instruction::And:  return bitc::BINOP_AND;
111   case Instruction::Or:   return bitc::BINOP_OR;
112   case Instruction::Xor:  return bitc::BINOP_XOR;
113   }
114 }
115 
116 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
117   switch (Op) {
118   default: llvm_unreachable("Unknown RMW operation!");
119   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
120   case AtomicRMWInst::Add: return bitc::RMW_ADD;
121   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
122   case AtomicRMWInst::And: return bitc::RMW_AND;
123   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
124   case AtomicRMWInst::Or: return bitc::RMW_OR;
125   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
126   case AtomicRMWInst::Max: return bitc::RMW_MAX;
127   case AtomicRMWInst::Min: return bitc::RMW_MIN;
128   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
129   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
130   }
131 }
132 
133 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
134   switch (Ordering) {
135   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
136   case Unordered: return bitc::ORDERING_UNORDERED;
137   case Monotonic: return bitc::ORDERING_MONOTONIC;
138   case Acquire: return bitc::ORDERING_ACQUIRE;
139   case Release: return bitc::ORDERING_RELEASE;
140   case AcquireRelease: return bitc::ORDERING_ACQREL;
141   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
142   }
143   llvm_unreachable("Invalid ordering");
144 }
145 
146 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
147   switch (SynchScope) {
148   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
149   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
150   }
151   llvm_unreachable("Invalid synch scope");
152 }
153 
154 static void WriteStringRecord(unsigned Code, StringRef Str,
155                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
156   SmallVector<unsigned, 64> Vals;
157 
158   // Code: [strchar x N]
159   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
160     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
161       AbbrevToUse = 0;
162     Vals.push_back(Str[i]);
163   }
164 
165   // Emit the finished record.
166   Stream.EmitRecord(Code, Vals, AbbrevToUse);
167 }
168 
169 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
170   switch (Kind) {
171   case Attribute::Alignment:
172     return bitc::ATTR_KIND_ALIGNMENT;
173   case Attribute::AlwaysInline:
174     return bitc::ATTR_KIND_ALWAYS_INLINE;
175   case Attribute::ArgMemOnly:
176     return bitc::ATTR_KIND_ARGMEMONLY;
177   case Attribute::Builtin:
178     return bitc::ATTR_KIND_BUILTIN;
179   case Attribute::ByVal:
180     return bitc::ATTR_KIND_BY_VAL;
181   case Attribute::Convergent:
182     return bitc::ATTR_KIND_CONVERGENT;
183   case Attribute::InAlloca:
184     return bitc::ATTR_KIND_IN_ALLOCA;
185   case Attribute::Cold:
186     return bitc::ATTR_KIND_COLD;
187   case Attribute::InaccessibleMemOnly:
188     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
189   case Attribute::InaccessibleMemOrArgMemOnly:
190     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
191   case Attribute::InlineHint:
192     return bitc::ATTR_KIND_INLINE_HINT;
193   case Attribute::InReg:
194     return bitc::ATTR_KIND_IN_REG;
195   case Attribute::JumpTable:
196     return bitc::ATTR_KIND_JUMP_TABLE;
197   case Attribute::MinSize:
198     return bitc::ATTR_KIND_MIN_SIZE;
199   case Attribute::Naked:
200     return bitc::ATTR_KIND_NAKED;
201   case Attribute::Nest:
202     return bitc::ATTR_KIND_NEST;
203   case Attribute::NoAlias:
204     return bitc::ATTR_KIND_NO_ALIAS;
205   case Attribute::NoBuiltin:
206     return bitc::ATTR_KIND_NO_BUILTIN;
207   case Attribute::NoCapture:
208     return bitc::ATTR_KIND_NO_CAPTURE;
209   case Attribute::NoDuplicate:
210     return bitc::ATTR_KIND_NO_DUPLICATE;
211   case Attribute::NoImplicitFloat:
212     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
213   case Attribute::NoInline:
214     return bitc::ATTR_KIND_NO_INLINE;
215   case Attribute::NoRecurse:
216     return bitc::ATTR_KIND_NO_RECURSE;
217   case Attribute::NonLazyBind:
218     return bitc::ATTR_KIND_NON_LAZY_BIND;
219   case Attribute::NonNull:
220     return bitc::ATTR_KIND_NON_NULL;
221   case Attribute::Dereferenceable:
222     return bitc::ATTR_KIND_DEREFERENCEABLE;
223   case Attribute::DereferenceableOrNull:
224     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
225   case Attribute::NoRedZone:
226     return bitc::ATTR_KIND_NO_RED_ZONE;
227   case Attribute::NoReturn:
228     return bitc::ATTR_KIND_NO_RETURN;
229   case Attribute::NoUnwind:
230     return bitc::ATTR_KIND_NO_UNWIND;
231   case Attribute::OptimizeForSize:
232     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
233   case Attribute::OptimizeNone:
234     return bitc::ATTR_KIND_OPTIMIZE_NONE;
235   case Attribute::ReadNone:
236     return bitc::ATTR_KIND_READ_NONE;
237   case Attribute::ReadOnly:
238     return bitc::ATTR_KIND_READ_ONLY;
239   case Attribute::Returned:
240     return bitc::ATTR_KIND_RETURNED;
241   case Attribute::ReturnsTwice:
242     return bitc::ATTR_KIND_RETURNS_TWICE;
243   case Attribute::SExt:
244     return bitc::ATTR_KIND_S_EXT;
245   case Attribute::StackAlignment:
246     return bitc::ATTR_KIND_STACK_ALIGNMENT;
247   case Attribute::StackProtect:
248     return bitc::ATTR_KIND_STACK_PROTECT;
249   case Attribute::StackProtectReq:
250     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
251   case Attribute::StackProtectStrong:
252     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
253   case Attribute::SafeStack:
254     return bitc::ATTR_KIND_SAFESTACK;
255   case Attribute::StructRet:
256     return bitc::ATTR_KIND_STRUCT_RET;
257   case Attribute::SanitizeAddress:
258     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
259   case Attribute::SanitizeThread:
260     return bitc::ATTR_KIND_SANITIZE_THREAD;
261   case Attribute::SanitizeMemory:
262     return bitc::ATTR_KIND_SANITIZE_MEMORY;
263   case Attribute::UWTable:
264     return bitc::ATTR_KIND_UW_TABLE;
265   case Attribute::ZExt:
266     return bitc::ATTR_KIND_Z_EXT;
267   case Attribute::EndAttrKinds:
268     llvm_unreachable("Can not encode end-attribute kinds marker.");
269   case Attribute::None:
270     llvm_unreachable("Can not encode none-attribute.");
271   }
272 
273   llvm_unreachable("Trying to encode unknown attribute");
274 }
275 
276 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
277                                      BitstreamWriter &Stream) {
278   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
279   if (AttrGrps.empty()) return;
280 
281   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
282 
283   SmallVector<uint64_t, 64> Record;
284   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
285     AttributeSet AS = AttrGrps[i];
286     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
287       AttributeSet A = AS.getSlotAttributes(i);
288 
289       Record.push_back(VE.getAttributeGroupID(A));
290       Record.push_back(AS.getSlotIndex(i));
291 
292       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
293            I != E; ++I) {
294         Attribute Attr = *I;
295         if (Attr.isEnumAttribute()) {
296           Record.push_back(0);
297           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
298         } else if (Attr.isIntAttribute()) {
299           Record.push_back(1);
300           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
301           Record.push_back(Attr.getValueAsInt());
302         } else {
303           StringRef Kind = Attr.getKindAsString();
304           StringRef Val = Attr.getValueAsString();
305 
306           Record.push_back(Val.empty() ? 3 : 4);
307           Record.append(Kind.begin(), Kind.end());
308           Record.push_back(0);
309           if (!Val.empty()) {
310             Record.append(Val.begin(), Val.end());
311             Record.push_back(0);
312           }
313         }
314       }
315 
316       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
317       Record.clear();
318     }
319   }
320 
321   Stream.ExitBlock();
322 }
323 
324 static void WriteAttributeTable(const ValueEnumerator &VE,
325                                 BitstreamWriter &Stream) {
326   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
327   if (Attrs.empty()) return;
328 
329   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
330 
331   SmallVector<uint64_t, 64> Record;
332   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
333     const AttributeSet &A = Attrs[i];
334     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
335       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
336 
337     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
338     Record.clear();
339   }
340 
341   Stream.ExitBlock();
342 }
343 
344 /// WriteTypeTable - Write out the type table for a module.
345 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
346   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
347 
348   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
349   SmallVector<uint64_t, 64> TypeVals;
350 
351   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
352 
353   // Abbrev for TYPE_CODE_POINTER.
354   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
355   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
357   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
358   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
359 
360   // Abbrev for TYPE_CODE_FUNCTION.
361   Abbv = new BitCodeAbbrev();
362   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
365   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
366 
367   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
368 
369   // Abbrev for TYPE_CODE_STRUCT_ANON.
370   Abbv = new BitCodeAbbrev();
371   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
374   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
375 
376   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
377 
378   // Abbrev for TYPE_CODE_STRUCT_NAME.
379   Abbv = new BitCodeAbbrev();
380   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
381   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
382   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
383   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
384 
385   // Abbrev for TYPE_CODE_STRUCT_NAMED.
386   Abbv = new BitCodeAbbrev();
387   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
388   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
389   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
390   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
391 
392   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
393 
394   // Abbrev for TYPE_CODE_ARRAY.
395   Abbv = new BitCodeAbbrev();
396   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
397   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
398   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
399 
400   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
401 
402   // Emit an entry count so the reader can reserve space.
403   TypeVals.push_back(TypeList.size());
404   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
405   TypeVals.clear();
406 
407   // Loop over all of the types, emitting each in turn.
408   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
409     Type *T = TypeList[i];
410     int AbbrevToUse = 0;
411     unsigned Code = 0;
412 
413     switch (T->getTypeID()) {
414     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
415     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
416     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
417     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
418     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
419     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
420     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
421     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
422     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
423     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
424     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
425     case Type::IntegerTyID:
426       // INTEGER: [width]
427       Code = bitc::TYPE_CODE_INTEGER;
428       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
429       break;
430     case Type::PointerTyID: {
431       PointerType *PTy = cast<PointerType>(T);
432       // POINTER: [pointee type, address space]
433       Code = bitc::TYPE_CODE_POINTER;
434       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
435       unsigned AddressSpace = PTy->getAddressSpace();
436       TypeVals.push_back(AddressSpace);
437       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
438       break;
439     }
440     case Type::FunctionTyID: {
441       FunctionType *FT = cast<FunctionType>(T);
442       // FUNCTION: [isvararg, retty, paramty x N]
443       Code = bitc::TYPE_CODE_FUNCTION;
444       TypeVals.push_back(FT->isVarArg());
445       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
446       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
447         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
448       AbbrevToUse = FunctionAbbrev;
449       break;
450     }
451     case Type::StructTyID: {
452       StructType *ST = cast<StructType>(T);
453       // STRUCT: [ispacked, eltty x N]
454       TypeVals.push_back(ST->isPacked());
455       // Output all of the element types.
456       for (StructType::element_iterator I = ST->element_begin(),
457            E = ST->element_end(); I != E; ++I)
458         TypeVals.push_back(VE.getTypeID(*I));
459 
460       if (ST->isLiteral()) {
461         Code = bitc::TYPE_CODE_STRUCT_ANON;
462         AbbrevToUse = StructAnonAbbrev;
463       } else {
464         if (ST->isOpaque()) {
465           Code = bitc::TYPE_CODE_OPAQUE;
466         } else {
467           Code = bitc::TYPE_CODE_STRUCT_NAMED;
468           AbbrevToUse = StructNamedAbbrev;
469         }
470 
471         // Emit the name if it is present.
472         if (!ST->getName().empty())
473           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
474                             StructNameAbbrev, Stream);
475       }
476       break;
477     }
478     case Type::ArrayTyID: {
479       ArrayType *AT = cast<ArrayType>(T);
480       // ARRAY: [numelts, eltty]
481       Code = bitc::TYPE_CODE_ARRAY;
482       TypeVals.push_back(AT->getNumElements());
483       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
484       AbbrevToUse = ArrayAbbrev;
485       break;
486     }
487     case Type::VectorTyID: {
488       VectorType *VT = cast<VectorType>(T);
489       // VECTOR [numelts, eltty]
490       Code = bitc::TYPE_CODE_VECTOR;
491       TypeVals.push_back(VT->getNumElements());
492       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
493       break;
494     }
495     }
496 
497     // Emit the finished record.
498     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
499     TypeVals.clear();
500   }
501 
502   Stream.ExitBlock();
503 }
504 
505 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
506   switch (Linkage) {
507   case GlobalValue::ExternalLinkage:
508     return 0;
509   case GlobalValue::WeakAnyLinkage:
510     return 16;
511   case GlobalValue::AppendingLinkage:
512     return 2;
513   case GlobalValue::InternalLinkage:
514     return 3;
515   case GlobalValue::LinkOnceAnyLinkage:
516     return 18;
517   case GlobalValue::ExternalWeakLinkage:
518     return 7;
519   case GlobalValue::CommonLinkage:
520     return 8;
521   case GlobalValue::PrivateLinkage:
522     return 9;
523   case GlobalValue::WeakODRLinkage:
524     return 17;
525   case GlobalValue::LinkOnceODRLinkage:
526     return 19;
527   case GlobalValue::AvailableExternallyLinkage:
528     return 12;
529   }
530   llvm_unreachable("Invalid linkage");
531 }
532 
533 static unsigned getEncodedLinkage(const GlobalValue &GV) {
534   return getEncodedLinkage(GV.getLinkage());
535 }
536 
537 static unsigned getEncodedVisibility(const GlobalValue &GV) {
538   switch (GV.getVisibility()) {
539   case GlobalValue::DefaultVisibility:   return 0;
540   case GlobalValue::HiddenVisibility:    return 1;
541   case GlobalValue::ProtectedVisibility: return 2;
542   }
543   llvm_unreachable("Invalid visibility");
544 }
545 
546 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
547   switch (GV.getDLLStorageClass()) {
548   case GlobalValue::DefaultStorageClass:   return 0;
549   case GlobalValue::DLLImportStorageClass: return 1;
550   case GlobalValue::DLLExportStorageClass: return 2;
551   }
552   llvm_unreachable("Invalid DLL storage class");
553 }
554 
555 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
556   switch (GV.getThreadLocalMode()) {
557     case GlobalVariable::NotThreadLocal:         return 0;
558     case GlobalVariable::GeneralDynamicTLSModel: return 1;
559     case GlobalVariable::LocalDynamicTLSModel:   return 2;
560     case GlobalVariable::InitialExecTLSModel:    return 3;
561     case GlobalVariable::LocalExecTLSModel:      return 4;
562   }
563   llvm_unreachable("Invalid TLS model");
564 }
565 
566 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
567   switch (C.getSelectionKind()) {
568   case Comdat::Any:
569     return bitc::COMDAT_SELECTION_KIND_ANY;
570   case Comdat::ExactMatch:
571     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
572   case Comdat::Largest:
573     return bitc::COMDAT_SELECTION_KIND_LARGEST;
574   case Comdat::NoDuplicates:
575     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
576   case Comdat::SameSize:
577     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
578   }
579   llvm_unreachable("Invalid selection kind");
580 }
581 
582 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
583   SmallVector<uint16_t, 64> Vals;
584   for (const Comdat *C : VE.getComdats()) {
585     // COMDAT: [selection_kind, name]
586     Vals.push_back(getEncodedComdatSelectionKind(*C));
587     size_t Size = C->getName().size();
588     assert(isUInt<16>(Size));
589     Vals.push_back(Size);
590     for (char Chr : C->getName())
591       Vals.push_back((unsigned char)Chr);
592     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
593     Vals.clear();
594   }
595 }
596 
597 /// Write a record that will eventually hold the word offset of the
598 /// module-level VST. For now the offset is 0, which will be backpatched
599 /// after the real VST is written. Returns the bit offset to backpatch.
600 static uint64_t WriteValueSymbolTableForwardDecl(BitstreamWriter &Stream) {
601   // Write a placeholder value in for the offset of the real VST,
602   // which is written after the function blocks so that it can include
603   // the offset of each function. The placeholder offset will be
604   // updated when the real VST is written.
605   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
606   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
607   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
608   // hold the real VST offset. Must use fixed instead of VBR as we don't
609   // know how many VBR chunks to reserve ahead of time.
610   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
611   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv);
612 
613   // Emit the placeholder
614   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
615   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
616 
617   // Compute and return the bit offset to the placeholder, which will be
618   // patched when the real VST is written. We can simply subtract the 32-bit
619   // fixed size from the current bit number to get the location to backpatch.
620   return Stream.GetCurrentBitNo() - 32;
621 }
622 
623 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
624 
625 /// Determine the encoding to use for the given string name and length.
626 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
627   bool isChar6 = true;
628   for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
629     if (isChar6)
630       isChar6 = BitCodeAbbrevOp::isChar6(*C);
631     if ((unsigned char)*C & 128)
632       // don't bother scanning the rest.
633       return SE_Fixed8;
634   }
635   if (isChar6)
636     return SE_Char6;
637   else
638     return SE_Fixed7;
639 }
640 
641 /// Emit top-level description of module, including target triple, inline asm,
642 /// descriptors for global variables, and function prototype info.
643 /// Returns the bit offset to backpatch with the location of the real VST.
644 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
645                                 BitstreamWriter &Stream) {
646   // Emit various pieces of data attached to a module.
647   if (!M->getTargetTriple().empty())
648     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
649                       0/*TODO*/, Stream);
650   const std::string &DL = M->getDataLayoutStr();
651   if (!DL.empty())
652     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
653   if (!M->getModuleInlineAsm().empty())
654     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
655                       0/*TODO*/, Stream);
656 
657   // Emit information about sections and GC, computing how many there are. Also
658   // compute the maximum alignment value.
659   std::map<std::string, unsigned> SectionMap;
660   std::map<std::string, unsigned> GCMap;
661   unsigned MaxAlignment = 0;
662   unsigned MaxGlobalType = 0;
663   for (const GlobalValue &GV : M->globals()) {
664     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
665     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
666     if (GV.hasSection()) {
667       // Give section names unique ID's.
668       unsigned &Entry = SectionMap[GV.getSection()];
669       if (!Entry) {
670         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
671                           0/*TODO*/, Stream);
672         Entry = SectionMap.size();
673       }
674     }
675   }
676   for (const Function &F : *M) {
677     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
678     if (F.hasSection()) {
679       // Give section names unique ID's.
680       unsigned &Entry = SectionMap[F.getSection()];
681       if (!Entry) {
682         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
683                           0/*TODO*/, Stream);
684         Entry = SectionMap.size();
685       }
686     }
687     if (F.hasGC()) {
688       // Same for GC names.
689       unsigned &Entry = GCMap[F.getGC()];
690       if (!Entry) {
691         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
692                           0/*TODO*/, Stream);
693         Entry = GCMap.size();
694       }
695     }
696   }
697 
698   // Emit abbrev for globals, now that we know # sections and max alignment.
699   unsigned SimpleGVarAbbrev = 0;
700   if (!M->global_empty()) {
701     // Add an abbrev for common globals with no visibility or thread localness.
702     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
703     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
704     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
705                               Log2_32_Ceil(MaxGlobalType+1)));
706     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
707                                                            //| explicitType << 1
708                                                            //| constant
709     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
710     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
711     if (MaxAlignment == 0)                                 // Alignment.
712       Abbv->Add(BitCodeAbbrevOp(0));
713     else {
714       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
715       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
716                                Log2_32_Ceil(MaxEncAlignment+1)));
717     }
718     if (SectionMap.empty())                                    // Section.
719       Abbv->Add(BitCodeAbbrevOp(0));
720     else
721       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
722                                Log2_32_Ceil(SectionMap.size()+1)));
723     // Don't bother emitting vis + thread local.
724     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
725   }
726 
727   // Emit the global variable information.
728   SmallVector<unsigned, 64> Vals;
729   for (const GlobalVariable &GV : M->globals()) {
730     unsigned AbbrevToUse = 0;
731 
732     // GLOBALVAR: [type, isconst, initid,
733     //             linkage, alignment, section, visibility, threadlocal,
734     //             unnamed_addr, externally_initialized, dllstorageclass,
735     //             comdat]
736     Vals.push_back(VE.getTypeID(GV.getValueType()));
737     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
738     Vals.push_back(GV.isDeclaration() ? 0 :
739                    (VE.getValueID(GV.getInitializer()) + 1));
740     Vals.push_back(getEncodedLinkage(GV));
741     Vals.push_back(Log2_32(GV.getAlignment())+1);
742     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
743     if (GV.isThreadLocal() ||
744         GV.getVisibility() != GlobalValue::DefaultVisibility ||
745         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
746         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
747         GV.hasComdat()) {
748       Vals.push_back(getEncodedVisibility(GV));
749       Vals.push_back(getEncodedThreadLocalMode(GV));
750       Vals.push_back(GV.hasUnnamedAddr());
751       Vals.push_back(GV.isExternallyInitialized());
752       Vals.push_back(getEncodedDLLStorageClass(GV));
753       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
754     } else {
755       AbbrevToUse = SimpleGVarAbbrev;
756     }
757 
758     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
759     Vals.clear();
760   }
761 
762   // Emit the function proto information.
763   for (const Function &F : *M) {
764     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
765     //             section, visibility, gc, unnamed_addr, prologuedata,
766     //             dllstorageclass, comdat, prefixdata, personalityfn]
767     Vals.push_back(VE.getTypeID(F.getFunctionType()));
768     Vals.push_back(F.getCallingConv());
769     Vals.push_back(F.isDeclaration());
770     Vals.push_back(getEncodedLinkage(F));
771     Vals.push_back(VE.getAttributeID(F.getAttributes()));
772     Vals.push_back(Log2_32(F.getAlignment())+1);
773     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
774     Vals.push_back(getEncodedVisibility(F));
775     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
776     Vals.push_back(F.hasUnnamedAddr());
777     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
778                                        : 0);
779     Vals.push_back(getEncodedDLLStorageClass(F));
780     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
781     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
782                                      : 0);
783     Vals.push_back(
784         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
785 
786     unsigned AbbrevToUse = 0;
787     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
788     Vals.clear();
789   }
790 
791   // Emit the alias information.
792   for (const GlobalAlias &A : M->aliases()) {
793     // ALIAS: [alias type, aliasee val#, linkage, visibility]
794     Vals.push_back(VE.getTypeID(A.getValueType()));
795     Vals.push_back(A.getType()->getAddressSpace());
796     Vals.push_back(VE.getValueID(A.getAliasee()));
797     Vals.push_back(getEncodedLinkage(A));
798     Vals.push_back(getEncodedVisibility(A));
799     Vals.push_back(getEncodedDLLStorageClass(A));
800     Vals.push_back(getEncodedThreadLocalMode(A));
801     Vals.push_back(A.hasUnnamedAddr());
802     unsigned AbbrevToUse = 0;
803     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
804     Vals.clear();
805   }
806 
807   // Write a record indicating the number of module-level metadata IDs
808   // This is needed because the ids of metadata are assigned implicitly
809   // based on their ordering in the bitcode, with the function-level
810   // metadata ids starting after the module-level metadata ids. For
811   // function importing where we lazy load the metadata as a postpass,
812   // we want to avoid parsing the module-level metadata before parsing
813   // the imported functions.
814   {
815     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
816     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_METADATA_VALUES));
817     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
818     unsigned MDValsAbbrev = Stream.EmitAbbrev(Abbv);
819     Vals.push_back(VE.numMDs());
820     Stream.EmitRecord(bitc::MODULE_CODE_METADATA_VALUES, Vals, MDValsAbbrev);
821     Vals.clear();
822   }
823 
824   // Emit the module's source file name.
825   {
826     StringEncoding Bits = getStringEncoding(M->getSourceFileName().data(),
827                                             M->getSourceFileName().size());
828     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
829     if (Bits == SE_Char6)
830       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
831     else if (Bits == SE_Fixed7)
832       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
833 
834     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
835     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
836     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
837     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
838     Abbv->Add(AbbrevOpToUse);
839     unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv);
840 
841     for (const auto P : M->getSourceFileName())
842       Vals.push_back((unsigned char)P);
843 
844     // Emit the finished record.
845     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
846     Vals.clear();
847   }
848 
849   // If we have a VST, write the VSTOFFSET record placeholder and return
850   // its offset.
851   if (M->getValueSymbolTable().empty())
852     return 0;
853   return WriteValueSymbolTableForwardDecl(Stream);
854 }
855 
856 static uint64_t GetOptimizationFlags(const Value *V) {
857   uint64_t Flags = 0;
858 
859   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
860     if (OBO->hasNoSignedWrap())
861       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
862     if (OBO->hasNoUnsignedWrap())
863       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
864   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
865     if (PEO->isExact())
866       Flags |= 1 << bitc::PEO_EXACT;
867   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
868     if (FPMO->hasUnsafeAlgebra())
869       Flags |= FastMathFlags::UnsafeAlgebra;
870     if (FPMO->hasNoNaNs())
871       Flags |= FastMathFlags::NoNaNs;
872     if (FPMO->hasNoInfs())
873       Flags |= FastMathFlags::NoInfs;
874     if (FPMO->hasNoSignedZeros())
875       Flags |= FastMathFlags::NoSignedZeros;
876     if (FPMO->hasAllowReciprocal())
877       Flags |= FastMathFlags::AllowReciprocal;
878   }
879 
880   return Flags;
881 }
882 
883 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
884                                  const ValueEnumerator &VE,
885                                  BitstreamWriter &Stream,
886                                  SmallVectorImpl<uint64_t> &Record) {
887   // Mimic an MDNode with a value as one operand.
888   Value *V = MD->getValue();
889   Record.push_back(VE.getTypeID(V->getType()));
890   Record.push_back(VE.getValueID(V));
891   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
892   Record.clear();
893 }
894 
895 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
896                          BitstreamWriter &Stream,
897                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
898   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
899     Metadata *MD = N->getOperand(i);
900     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
901            "Unexpected function-local metadata");
902     Record.push_back(VE.getMetadataOrNullID(MD));
903   }
904   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
905                                     : bitc::METADATA_NODE,
906                     Record, Abbrev);
907   Record.clear();
908 }
909 
910 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE,
911                             BitstreamWriter &Stream,
912                             SmallVectorImpl<uint64_t> &Record,
913                             unsigned Abbrev) {
914   Record.push_back(N->isDistinct());
915   Record.push_back(N->getLine());
916   Record.push_back(N->getColumn());
917   Record.push_back(VE.getMetadataID(N->getScope()));
918   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
919 
920   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
921   Record.clear();
922 }
923 
924 static void WriteGenericDINode(const GenericDINode *N,
925                                const ValueEnumerator &VE,
926                                BitstreamWriter &Stream,
927                                SmallVectorImpl<uint64_t> &Record,
928                                unsigned Abbrev) {
929   Record.push_back(N->isDistinct());
930   Record.push_back(N->getTag());
931   Record.push_back(0); // Per-tag version field; unused for now.
932 
933   for (auto &I : N->operands())
934     Record.push_back(VE.getMetadataOrNullID(I));
935 
936   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
937   Record.clear();
938 }
939 
940 static uint64_t rotateSign(int64_t I) {
941   uint64_t U = I;
942   return I < 0 ? ~(U << 1) : U << 1;
943 }
944 
945 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &,
946                             BitstreamWriter &Stream,
947                             SmallVectorImpl<uint64_t> &Record,
948                             unsigned Abbrev) {
949   Record.push_back(N->isDistinct());
950   Record.push_back(N->getCount());
951   Record.push_back(rotateSign(N->getLowerBound()));
952 
953   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
954   Record.clear();
955 }
956 
957 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE,
958                               BitstreamWriter &Stream,
959                               SmallVectorImpl<uint64_t> &Record,
960                               unsigned Abbrev) {
961   Record.push_back(N->isDistinct());
962   Record.push_back(rotateSign(N->getValue()));
963   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
964 
965   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
966   Record.clear();
967 }
968 
969 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE,
970                              BitstreamWriter &Stream,
971                              SmallVectorImpl<uint64_t> &Record,
972                              unsigned Abbrev) {
973   Record.push_back(N->isDistinct());
974   Record.push_back(N->getTag());
975   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
976   Record.push_back(N->getSizeInBits());
977   Record.push_back(N->getAlignInBits());
978   Record.push_back(N->getEncoding());
979 
980   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
981   Record.clear();
982 }
983 
984 static void WriteDIDerivedType(const DIDerivedType *N,
985                                const ValueEnumerator &VE,
986                                BitstreamWriter &Stream,
987                                SmallVectorImpl<uint64_t> &Record,
988                                unsigned Abbrev) {
989   Record.push_back(N->isDistinct());
990   Record.push_back(N->getTag());
991   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
992   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
993   Record.push_back(N->getLine());
994   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
995   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
996   Record.push_back(N->getSizeInBits());
997   Record.push_back(N->getAlignInBits());
998   Record.push_back(N->getOffsetInBits());
999   Record.push_back(N->getFlags());
1000   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1001 
1002   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1003   Record.clear();
1004 }
1005 
1006 static void WriteDICompositeType(const DICompositeType *N,
1007                                  const ValueEnumerator &VE,
1008                                  BitstreamWriter &Stream,
1009                                  SmallVectorImpl<uint64_t> &Record,
1010                                  unsigned Abbrev) {
1011   Record.push_back(N->isDistinct());
1012   Record.push_back(N->getTag());
1013   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1014   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1015   Record.push_back(N->getLine());
1016   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1017   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1018   Record.push_back(N->getSizeInBits());
1019   Record.push_back(N->getAlignInBits());
1020   Record.push_back(N->getOffsetInBits());
1021   Record.push_back(N->getFlags());
1022   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1023   Record.push_back(N->getRuntimeLang());
1024   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1025   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1026   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1027 
1028   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1029   Record.clear();
1030 }
1031 
1032 static void WriteDISubroutineType(const DISubroutineType *N,
1033                                   const ValueEnumerator &VE,
1034                                   BitstreamWriter &Stream,
1035                                   SmallVectorImpl<uint64_t> &Record,
1036                                   unsigned Abbrev) {
1037   Record.push_back(N->isDistinct());
1038   Record.push_back(N->getFlags());
1039   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1040 
1041   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1042   Record.clear();
1043 }
1044 
1045 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE,
1046                         BitstreamWriter &Stream,
1047                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
1048   Record.push_back(N->isDistinct());
1049   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1050   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1051 
1052   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1053   Record.clear();
1054 }
1055 
1056 static void WriteDICompileUnit(const DICompileUnit *N,
1057                                const ValueEnumerator &VE,
1058                                BitstreamWriter &Stream,
1059                                SmallVectorImpl<uint64_t> &Record,
1060                                unsigned Abbrev) {
1061   assert(N->isDistinct() && "Expected distinct compile units");
1062   Record.push_back(/* IsDistinct */ true);
1063   Record.push_back(N->getSourceLanguage());
1064   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1065   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1066   Record.push_back(N->isOptimized());
1067   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1068   Record.push_back(N->getRuntimeVersion());
1069   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1070   Record.push_back(N->getEmissionKind());
1071   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1072   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1073   Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get()));
1074   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1075   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1076   Record.push_back(N->getDWOId());
1077   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1078 
1079   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1080   Record.clear();
1081 }
1082 
1083 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE,
1084                               BitstreamWriter &Stream,
1085                               SmallVectorImpl<uint64_t> &Record,
1086                               unsigned Abbrev) {
1087   Record.push_back(N->isDistinct());
1088   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1089   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1090   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1091   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1092   Record.push_back(N->getLine());
1093   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1094   Record.push_back(N->isLocalToUnit());
1095   Record.push_back(N->isDefinition());
1096   Record.push_back(N->getScopeLine());
1097   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1098   Record.push_back(N->getVirtuality());
1099   Record.push_back(N->getVirtualIndex());
1100   Record.push_back(N->getFlags());
1101   Record.push_back(N->isOptimized());
1102   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1103   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1104   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1105 
1106   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1107   Record.clear();
1108 }
1109 
1110 static void WriteDILexicalBlock(const DILexicalBlock *N,
1111                                 const ValueEnumerator &VE,
1112                                 BitstreamWriter &Stream,
1113                                 SmallVectorImpl<uint64_t> &Record,
1114                                 unsigned Abbrev) {
1115   Record.push_back(N->isDistinct());
1116   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1117   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1118   Record.push_back(N->getLine());
1119   Record.push_back(N->getColumn());
1120 
1121   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1122   Record.clear();
1123 }
1124 
1125 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N,
1126                                     const ValueEnumerator &VE,
1127                                     BitstreamWriter &Stream,
1128                                     SmallVectorImpl<uint64_t> &Record,
1129                                     unsigned Abbrev) {
1130   Record.push_back(N->isDistinct());
1131   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1132   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1133   Record.push_back(N->getDiscriminator());
1134 
1135   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1136   Record.clear();
1137 }
1138 
1139 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE,
1140                              BitstreamWriter &Stream,
1141                              SmallVectorImpl<uint64_t> &Record,
1142                              unsigned Abbrev) {
1143   Record.push_back(N->isDistinct());
1144   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1145   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1146   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1147   Record.push_back(N->getLine());
1148 
1149   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1150   Record.clear();
1151 }
1152 
1153 static void WriteDIMacro(const DIMacro *N, const ValueEnumerator &VE,
1154                          BitstreamWriter &Stream,
1155                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
1156   Record.push_back(N->isDistinct());
1157   Record.push_back(N->getMacinfoType());
1158   Record.push_back(N->getLine());
1159   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1160   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1161 
1162   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1163   Record.clear();
1164 }
1165 
1166 static void WriteDIMacroFile(const DIMacroFile *N, const ValueEnumerator &VE,
1167                              BitstreamWriter &Stream,
1168                              SmallVectorImpl<uint64_t> &Record,
1169                              unsigned Abbrev) {
1170   Record.push_back(N->isDistinct());
1171   Record.push_back(N->getMacinfoType());
1172   Record.push_back(N->getLine());
1173   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1174   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1175 
1176   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1177   Record.clear();
1178 }
1179 
1180 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE,
1181                           BitstreamWriter &Stream,
1182                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
1183   Record.push_back(N->isDistinct());
1184   for (auto &I : N->operands())
1185     Record.push_back(VE.getMetadataOrNullID(I));
1186 
1187   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1188   Record.clear();
1189 }
1190 
1191 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N,
1192                                          const ValueEnumerator &VE,
1193                                          BitstreamWriter &Stream,
1194                                          SmallVectorImpl<uint64_t> &Record,
1195                                          unsigned Abbrev) {
1196   Record.push_back(N->isDistinct());
1197   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1198   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1199 
1200   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1201   Record.clear();
1202 }
1203 
1204 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N,
1205                                           const ValueEnumerator &VE,
1206                                           BitstreamWriter &Stream,
1207                                           SmallVectorImpl<uint64_t> &Record,
1208                                           unsigned Abbrev) {
1209   Record.push_back(N->isDistinct());
1210   Record.push_back(N->getTag());
1211   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1212   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1213   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1214 
1215   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1216   Record.clear();
1217 }
1218 
1219 static void WriteDIGlobalVariable(const DIGlobalVariable *N,
1220                                   const ValueEnumerator &VE,
1221                                   BitstreamWriter &Stream,
1222                                   SmallVectorImpl<uint64_t> &Record,
1223                                   unsigned Abbrev) {
1224   Record.push_back(N->isDistinct());
1225   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1226   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1227   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1228   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1229   Record.push_back(N->getLine());
1230   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1231   Record.push_back(N->isLocalToUnit());
1232   Record.push_back(N->isDefinition());
1233   Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
1234   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1235 
1236   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1237   Record.clear();
1238 }
1239 
1240 static void WriteDILocalVariable(const DILocalVariable *N,
1241                                  const ValueEnumerator &VE,
1242                                  BitstreamWriter &Stream,
1243                                  SmallVectorImpl<uint64_t> &Record,
1244                                  unsigned Abbrev) {
1245   Record.push_back(N->isDistinct());
1246   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1247   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1248   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1249   Record.push_back(N->getLine());
1250   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1251   Record.push_back(N->getArg());
1252   Record.push_back(N->getFlags());
1253 
1254   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1255   Record.clear();
1256 }
1257 
1258 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &,
1259                               BitstreamWriter &Stream,
1260                               SmallVectorImpl<uint64_t> &Record,
1261                               unsigned Abbrev) {
1262   Record.reserve(N->getElements().size() + 1);
1263 
1264   Record.push_back(N->isDistinct());
1265   Record.append(N->elements_begin(), N->elements_end());
1266 
1267   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1268   Record.clear();
1269 }
1270 
1271 static void WriteDIObjCProperty(const DIObjCProperty *N,
1272                                 const ValueEnumerator &VE,
1273                                 BitstreamWriter &Stream,
1274                                 SmallVectorImpl<uint64_t> &Record,
1275                                 unsigned Abbrev) {
1276   Record.push_back(N->isDistinct());
1277   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1278   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1279   Record.push_back(N->getLine());
1280   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1281   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1282   Record.push_back(N->getAttributes());
1283   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1284 
1285   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1286   Record.clear();
1287 }
1288 
1289 static void WriteDIImportedEntity(const DIImportedEntity *N,
1290                                   const ValueEnumerator &VE,
1291                                   BitstreamWriter &Stream,
1292                                   SmallVectorImpl<uint64_t> &Record,
1293                                   unsigned Abbrev) {
1294   Record.push_back(N->isDistinct());
1295   Record.push_back(N->getTag());
1296   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1297   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1298   Record.push_back(N->getLine());
1299   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1300 
1301   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1302   Record.clear();
1303 }
1304 
1305 static void WriteModuleMetadata(const Module *M,
1306                                 const ValueEnumerator &VE,
1307                                 BitstreamWriter &Stream) {
1308   const auto &MDs = VE.getMDs();
1309   if (MDs.empty() && M->named_metadata_empty())
1310     return;
1311 
1312   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1313 
1314   unsigned MDSAbbrev = 0;
1315   if (VE.hasMDString()) {
1316     // Abbrev for METADATA_STRING.
1317     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1318     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
1319     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1320     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1321     MDSAbbrev = Stream.EmitAbbrev(Abbv);
1322   }
1323 
1324   // Initialize MDNode abbreviations.
1325 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1326 #include "llvm/IR/Metadata.def"
1327 
1328   if (VE.hasDILocation()) {
1329     // Abbrev for METADATA_LOCATION.
1330     //
1331     // Assume the column is usually under 128, and always output the inlined-at
1332     // location (it's never more expensive than building an array size 1).
1333     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1334     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1335     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1336     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1337     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1338     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1339     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1340     DILocationAbbrev = Stream.EmitAbbrev(Abbv);
1341   }
1342 
1343   if (VE.hasGenericDINode()) {
1344     // Abbrev for METADATA_GENERIC_DEBUG.
1345     //
1346     // Assume the column is usually under 128, and always output the inlined-at
1347     // location (it's never more expensive than building an array size 1).
1348     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1349     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1350     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1351     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1352     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1353     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1354     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1355     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1356     GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv);
1357   }
1358 
1359   unsigned NameAbbrev = 0;
1360   if (!M->named_metadata_empty()) {
1361     // Abbrev for METADATA_NAME.
1362     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1363     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1364     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1365     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1366     NameAbbrev = Stream.EmitAbbrev(Abbv);
1367   }
1368 
1369   SmallVector<uint64_t, 64> Record;
1370   for (const Metadata *MD : MDs) {
1371     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1372       assert(N->isResolved() && "Expected forward references to be resolved");
1373 
1374       switch (N->getMetadataID()) {
1375       default:
1376         llvm_unreachable("Invalid MDNode subclass");
1377 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1378   case Metadata::CLASS##Kind:                                                  \
1379     Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
1380     continue;
1381 #include "llvm/IR/Metadata.def"
1382       }
1383     }
1384     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
1385       WriteValueAsMetadata(MDC, VE, Stream, Record);
1386       continue;
1387     }
1388     const MDString *MDS = cast<MDString>(MD);
1389     // Code: [strchar x N]
1390     Record.append(MDS->bytes_begin(), MDS->bytes_end());
1391 
1392     // Emit the finished record.
1393     Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
1394     Record.clear();
1395   }
1396 
1397   // Write named metadata.
1398   for (const NamedMDNode &NMD : M->named_metadata()) {
1399     // Write name.
1400     StringRef Str = NMD.getName();
1401     Record.append(Str.bytes_begin(), Str.bytes_end());
1402     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1403     Record.clear();
1404 
1405     // Write named metadata operands.
1406     for (const MDNode *N : NMD.operands())
1407       Record.push_back(VE.getMetadataID(N));
1408     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1409     Record.clear();
1410   }
1411 
1412   Stream.ExitBlock();
1413 }
1414 
1415 static void WriteFunctionLocalMetadata(const Function &F,
1416                                        const ValueEnumerator &VE,
1417                                        BitstreamWriter &Stream) {
1418   bool StartedMetadataBlock = false;
1419   SmallVector<uint64_t, 64> Record;
1420   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
1421       VE.getFunctionLocalMDs();
1422   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1423     assert(MDs[i] && "Expected valid function-local metadata");
1424     if (!StartedMetadataBlock) {
1425       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1426       StartedMetadataBlock = true;
1427     }
1428     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
1429   }
1430 
1431   if (StartedMetadataBlock)
1432     Stream.ExitBlock();
1433 }
1434 
1435 static void WriteMetadataAttachment(const Function &F,
1436                                     const ValueEnumerator &VE,
1437                                     BitstreamWriter &Stream) {
1438   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1439 
1440   SmallVector<uint64_t, 64> Record;
1441 
1442   // Write metadata attachments
1443   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1444   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1445   F.getAllMetadata(MDs);
1446   if (!MDs.empty()) {
1447     for (const auto &I : MDs) {
1448       Record.push_back(I.first);
1449       Record.push_back(VE.getMetadataID(I.second));
1450     }
1451     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1452     Record.clear();
1453   }
1454 
1455   for (const BasicBlock &BB : F)
1456     for (const Instruction &I : BB) {
1457       MDs.clear();
1458       I.getAllMetadataOtherThanDebugLoc(MDs);
1459 
1460       // If no metadata, ignore instruction.
1461       if (MDs.empty()) continue;
1462 
1463       Record.push_back(VE.getInstructionID(&I));
1464 
1465       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1466         Record.push_back(MDs[i].first);
1467         Record.push_back(VE.getMetadataID(MDs[i].second));
1468       }
1469       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1470       Record.clear();
1471     }
1472 
1473   Stream.ExitBlock();
1474 }
1475 
1476 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
1477   SmallVector<uint64_t, 64> Record;
1478 
1479   // Write metadata kinds
1480   // METADATA_KIND - [n x [id, name]]
1481   SmallVector<StringRef, 8> Names;
1482   M->getMDKindNames(Names);
1483 
1484   if (Names.empty()) return;
1485 
1486   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
1487 
1488   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1489     Record.push_back(MDKindID);
1490     StringRef KName = Names[MDKindID];
1491     Record.append(KName.begin(), KName.end());
1492 
1493     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1494     Record.clear();
1495   }
1496 
1497   Stream.ExitBlock();
1498 }
1499 
1500 static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) {
1501   // Write metadata kinds
1502   //
1503   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
1504   //
1505   // OPERAND_BUNDLE_TAG - [strchr x N]
1506 
1507   SmallVector<StringRef, 8> Tags;
1508   M->getOperandBundleTags(Tags);
1509 
1510   if (Tags.empty())
1511     return;
1512 
1513   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
1514 
1515   SmallVector<uint64_t, 64> Record;
1516 
1517   for (auto Tag : Tags) {
1518     Record.append(Tag.begin(), Tag.end());
1519 
1520     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
1521     Record.clear();
1522   }
1523 
1524   Stream.ExitBlock();
1525 }
1526 
1527 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1528   if ((int64_t)V >= 0)
1529     Vals.push_back(V << 1);
1530   else
1531     Vals.push_back((-V << 1) | 1);
1532 }
1533 
1534 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
1535                            const ValueEnumerator &VE,
1536                            BitstreamWriter &Stream, bool isGlobal) {
1537   if (FirstVal == LastVal) return;
1538 
1539   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1540 
1541   unsigned AggregateAbbrev = 0;
1542   unsigned String8Abbrev = 0;
1543   unsigned CString7Abbrev = 0;
1544   unsigned CString6Abbrev = 0;
1545   // If this is a constant pool for the module, emit module-specific abbrevs.
1546   if (isGlobal) {
1547     // Abbrev for CST_CODE_AGGREGATE.
1548     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1549     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1550     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1551     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1552     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1553 
1554     // Abbrev for CST_CODE_STRING.
1555     Abbv = new BitCodeAbbrev();
1556     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1557     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1558     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1559     String8Abbrev = Stream.EmitAbbrev(Abbv);
1560     // Abbrev for CST_CODE_CSTRING.
1561     Abbv = new BitCodeAbbrev();
1562     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1563     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1564     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1565     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1566     // Abbrev for CST_CODE_CSTRING.
1567     Abbv = new BitCodeAbbrev();
1568     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1569     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1570     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1571     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1572   }
1573 
1574   SmallVector<uint64_t, 64> Record;
1575 
1576   const ValueEnumerator::ValueList &Vals = VE.getValues();
1577   Type *LastTy = nullptr;
1578   for (unsigned i = FirstVal; i != LastVal; ++i) {
1579     const Value *V = Vals[i].first;
1580     // If we need to switch types, do so now.
1581     if (V->getType() != LastTy) {
1582       LastTy = V->getType();
1583       Record.push_back(VE.getTypeID(LastTy));
1584       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1585                         CONSTANTS_SETTYPE_ABBREV);
1586       Record.clear();
1587     }
1588 
1589     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1590       Record.push_back(unsigned(IA->hasSideEffects()) |
1591                        unsigned(IA->isAlignStack()) << 1 |
1592                        unsigned(IA->getDialect()&1) << 2);
1593 
1594       // Add the asm string.
1595       const std::string &AsmStr = IA->getAsmString();
1596       Record.push_back(AsmStr.size());
1597       Record.append(AsmStr.begin(), AsmStr.end());
1598 
1599       // Add the constraint string.
1600       const std::string &ConstraintStr = IA->getConstraintString();
1601       Record.push_back(ConstraintStr.size());
1602       Record.append(ConstraintStr.begin(), ConstraintStr.end());
1603       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1604       Record.clear();
1605       continue;
1606     }
1607     const Constant *C = cast<Constant>(V);
1608     unsigned Code = -1U;
1609     unsigned AbbrevToUse = 0;
1610     if (C->isNullValue()) {
1611       Code = bitc::CST_CODE_NULL;
1612     } else if (isa<UndefValue>(C)) {
1613       Code = bitc::CST_CODE_UNDEF;
1614     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1615       if (IV->getBitWidth() <= 64) {
1616         uint64_t V = IV->getSExtValue();
1617         emitSignedInt64(Record, V);
1618         Code = bitc::CST_CODE_INTEGER;
1619         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1620       } else {                             // Wide integers, > 64 bits in size.
1621         // We have an arbitrary precision integer value to write whose
1622         // bit width is > 64. However, in canonical unsigned integer
1623         // format it is likely that the high bits are going to be zero.
1624         // So, we only write the number of active words.
1625         unsigned NWords = IV->getValue().getActiveWords();
1626         const uint64_t *RawWords = IV->getValue().getRawData();
1627         for (unsigned i = 0; i != NWords; ++i) {
1628           emitSignedInt64(Record, RawWords[i]);
1629         }
1630         Code = bitc::CST_CODE_WIDE_INTEGER;
1631       }
1632     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1633       Code = bitc::CST_CODE_FLOAT;
1634       Type *Ty = CFP->getType();
1635       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1636         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1637       } else if (Ty->isX86_FP80Ty()) {
1638         // api needed to prevent premature destruction
1639         // bits are not in the same order as a normal i80 APInt, compensate.
1640         APInt api = CFP->getValueAPF().bitcastToAPInt();
1641         const uint64_t *p = api.getRawData();
1642         Record.push_back((p[1] << 48) | (p[0] >> 16));
1643         Record.push_back(p[0] & 0xffffLL);
1644       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1645         APInt api = CFP->getValueAPF().bitcastToAPInt();
1646         const uint64_t *p = api.getRawData();
1647         Record.push_back(p[0]);
1648         Record.push_back(p[1]);
1649       } else {
1650         assert (0 && "Unknown FP type!");
1651       }
1652     } else if (isa<ConstantDataSequential>(C) &&
1653                cast<ConstantDataSequential>(C)->isString()) {
1654       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1655       // Emit constant strings specially.
1656       unsigned NumElts = Str->getNumElements();
1657       // If this is a null-terminated string, use the denser CSTRING encoding.
1658       if (Str->isCString()) {
1659         Code = bitc::CST_CODE_CSTRING;
1660         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1661       } else {
1662         Code = bitc::CST_CODE_STRING;
1663         AbbrevToUse = String8Abbrev;
1664       }
1665       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1666       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1667       for (unsigned i = 0; i != NumElts; ++i) {
1668         unsigned char V = Str->getElementAsInteger(i);
1669         Record.push_back(V);
1670         isCStr7 &= (V & 128) == 0;
1671         if (isCStrChar6)
1672           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1673       }
1674 
1675       if (isCStrChar6)
1676         AbbrevToUse = CString6Abbrev;
1677       else if (isCStr7)
1678         AbbrevToUse = CString7Abbrev;
1679     } else if (const ConstantDataSequential *CDS =
1680                   dyn_cast<ConstantDataSequential>(C)) {
1681       Code = bitc::CST_CODE_DATA;
1682       Type *EltTy = CDS->getType()->getElementType();
1683       if (isa<IntegerType>(EltTy)) {
1684         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1685           Record.push_back(CDS->getElementAsInteger(i));
1686       } else {
1687         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1688           Record.push_back(
1689               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
1690       }
1691     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1692                isa<ConstantVector>(C)) {
1693       Code = bitc::CST_CODE_AGGREGATE;
1694       for (const Value *Op : C->operands())
1695         Record.push_back(VE.getValueID(Op));
1696       AbbrevToUse = AggregateAbbrev;
1697     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1698       switch (CE->getOpcode()) {
1699       default:
1700         if (Instruction::isCast(CE->getOpcode())) {
1701           Code = bitc::CST_CODE_CE_CAST;
1702           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1703           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1704           Record.push_back(VE.getValueID(C->getOperand(0)));
1705           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1706         } else {
1707           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1708           Code = bitc::CST_CODE_CE_BINOP;
1709           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1710           Record.push_back(VE.getValueID(C->getOperand(0)));
1711           Record.push_back(VE.getValueID(C->getOperand(1)));
1712           uint64_t Flags = GetOptimizationFlags(CE);
1713           if (Flags != 0)
1714             Record.push_back(Flags);
1715         }
1716         break;
1717       case Instruction::GetElementPtr: {
1718         Code = bitc::CST_CODE_CE_GEP;
1719         const auto *GO = cast<GEPOperator>(C);
1720         if (GO->isInBounds())
1721           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1722         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
1723         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1724           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1725           Record.push_back(VE.getValueID(C->getOperand(i)));
1726         }
1727         break;
1728       }
1729       case Instruction::Select:
1730         Code = bitc::CST_CODE_CE_SELECT;
1731         Record.push_back(VE.getValueID(C->getOperand(0)));
1732         Record.push_back(VE.getValueID(C->getOperand(1)));
1733         Record.push_back(VE.getValueID(C->getOperand(2)));
1734         break;
1735       case Instruction::ExtractElement:
1736         Code = bitc::CST_CODE_CE_EXTRACTELT;
1737         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1738         Record.push_back(VE.getValueID(C->getOperand(0)));
1739         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1740         Record.push_back(VE.getValueID(C->getOperand(1)));
1741         break;
1742       case Instruction::InsertElement:
1743         Code = bitc::CST_CODE_CE_INSERTELT;
1744         Record.push_back(VE.getValueID(C->getOperand(0)));
1745         Record.push_back(VE.getValueID(C->getOperand(1)));
1746         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1747         Record.push_back(VE.getValueID(C->getOperand(2)));
1748         break;
1749       case Instruction::ShuffleVector:
1750         // If the return type and argument types are the same, this is a
1751         // standard shufflevector instruction.  If the types are different,
1752         // then the shuffle is widening or truncating the input vectors, and
1753         // the argument type must also be encoded.
1754         if (C->getType() == C->getOperand(0)->getType()) {
1755           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1756         } else {
1757           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1758           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1759         }
1760         Record.push_back(VE.getValueID(C->getOperand(0)));
1761         Record.push_back(VE.getValueID(C->getOperand(1)));
1762         Record.push_back(VE.getValueID(C->getOperand(2)));
1763         break;
1764       case Instruction::ICmp:
1765       case Instruction::FCmp:
1766         Code = bitc::CST_CODE_CE_CMP;
1767         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1768         Record.push_back(VE.getValueID(C->getOperand(0)));
1769         Record.push_back(VE.getValueID(C->getOperand(1)));
1770         Record.push_back(CE->getPredicate());
1771         break;
1772       }
1773     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1774       Code = bitc::CST_CODE_BLOCKADDRESS;
1775       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1776       Record.push_back(VE.getValueID(BA->getFunction()));
1777       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1778     } else {
1779 #ifndef NDEBUG
1780       C->dump();
1781 #endif
1782       llvm_unreachable("Unknown constant!");
1783     }
1784     Stream.EmitRecord(Code, Record, AbbrevToUse);
1785     Record.clear();
1786   }
1787 
1788   Stream.ExitBlock();
1789 }
1790 
1791 static void WriteModuleConstants(const ValueEnumerator &VE,
1792                                  BitstreamWriter &Stream) {
1793   const ValueEnumerator::ValueList &Vals = VE.getValues();
1794 
1795   // Find the first constant to emit, which is the first non-globalvalue value.
1796   // We know globalvalues have been emitted by WriteModuleInfo.
1797   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1798     if (!isa<GlobalValue>(Vals[i].first)) {
1799       WriteConstants(i, Vals.size(), VE, Stream, true);
1800       return;
1801     }
1802   }
1803 }
1804 
1805 /// PushValueAndType - The file has to encode both the value and type id for
1806 /// many values, because we need to know what type to create for forward
1807 /// references.  However, most operands are not forward references, so this type
1808 /// field is not needed.
1809 ///
1810 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1811 /// instruction ID, then it is a forward reference, and it also includes the
1812 /// type ID.  The value ID that is written is encoded relative to the InstID.
1813 static bool PushValueAndType(const Value *V, unsigned InstID,
1814                              SmallVectorImpl<unsigned> &Vals,
1815                              ValueEnumerator &VE) {
1816   unsigned ValID = VE.getValueID(V);
1817   // Make encoding relative to the InstID.
1818   Vals.push_back(InstID - ValID);
1819   if (ValID >= InstID) {
1820     Vals.push_back(VE.getTypeID(V->getType()));
1821     return true;
1822   }
1823   return false;
1824 }
1825 
1826 static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS,
1827                                 unsigned InstID, ValueEnumerator &VE) {
1828   SmallVector<unsigned, 64> Record;
1829   LLVMContext &C = CS.getInstruction()->getContext();
1830 
1831   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1832     const auto &Bundle = CS.getOperandBundleAt(i);
1833     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
1834 
1835     for (auto &Input : Bundle.Inputs)
1836       PushValueAndType(Input, InstID, Record, VE);
1837 
1838     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
1839     Record.clear();
1840   }
1841 }
1842 
1843 /// pushValue - Like PushValueAndType, but where the type of the value is
1844 /// omitted (perhaps it was already encoded in an earlier operand).
1845 static void pushValue(const Value *V, unsigned InstID,
1846                       SmallVectorImpl<unsigned> &Vals,
1847                       ValueEnumerator &VE) {
1848   unsigned ValID = VE.getValueID(V);
1849   Vals.push_back(InstID - ValID);
1850 }
1851 
1852 static void pushValueSigned(const Value *V, unsigned InstID,
1853                             SmallVectorImpl<uint64_t> &Vals,
1854                             ValueEnumerator &VE) {
1855   unsigned ValID = VE.getValueID(V);
1856   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1857   emitSignedInt64(Vals, diff);
1858 }
1859 
1860 /// WriteInstruction - Emit an instruction to the specified stream.
1861 static void WriteInstruction(const Instruction &I, unsigned InstID,
1862                              ValueEnumerator &VE, BitstreamWriter &Stream,
1863                              SmallVectorImpl<unsigned> &Vals) {
1864   unsigned Code = 0;
1865   unsigned AbbrevToUse = 0;
1866   VE.setInstructionID(&I);
1867   switch (I.getOpcode()) {
1868   default:
1869     if (Instruction::isCast(I.getOpcode())) {
1870       Code = bitc::FUNC_CODE_INST_CAST;
1871       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1872         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1873       Vals.push_back(VE.getTypeID(I.getType()));
1874       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1875     } else {
1876       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1877       Code = bitc::FUNC_CODE_INST_BINOP;
1878       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1879         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1880       pushValue(I.getOperand(1), InstID, Vals, VE);
1881       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1882       uint64_t Flags = GetOptimizationFlags(&I);
1883       if (Flags != 0) {
1884         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1885           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1886         Vals.push_back(Flags);
1887       }
1888     }
1889     break;
1890 
1891   case Instruction::GetElementPtr: {
1892     Code = bitc::FUNC_CODE_INST_GEP;
1893     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
1894     auto &GEPInst = cast<GetElementPtrInst>(I);
1895     Vals.push_back(GEPInst.isInBounds());
1896     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
1897     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1898       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1899     break;
1900   }
1901   case Instruction::ExtractValue: {
1902     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1903     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1904     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1905     Vals.append(EVI->idx_begin(), EVI->idx_end());
1906     break;
1907   }
1908   case Instruction::InsertValue: {
1909     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1910     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1911     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1912     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1913     Vals.append(IVI->idx_begin(), IVI->idx_end());
1914     break;
1915   }
1916   case Instruction::Select:
1917     Code = bitc::FUNC_CODE_INST_VSELECT;
1918     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1919     pushValue(I.getOperand(2), InstID, Vals, VE);
1920     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1921     break;
1922   case Instruction::ExtractElement:
1923     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1924     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1925     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1926     break;
1927   case Instruction::InsertElement:
1928     Code = bitc::FUNC_CODE_INST_INSERTELT;
1929     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1930     pushValue(I.getOperand(1), InstID, Vals, VE);
1931     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1932     break;
1933   case Instruction::ShuffleVector:
1934     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1935     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1936     pushValue(I.getOperand(1), InstID, Vals, VE);
1937     pushValue(I.getOperand(2), InstID, Vals, VE);
1938     break;
1939   case Instruction::ICmp:
1940   case Instruction::FCmp: {
1941     // compare returning Int1Ty or vector of Int1Ty
1942     Code = bitc::FUNC_CODE_INST_CMP2;
1943     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1944     pushValue(I.getOperand(1), InstID, Vals, VE);
1945     Vals.push_back(cast<CmpInst>(I).getPredicate());
1946     uint64_t Flags = GetOptimizationFlags(&I);
1947     if (Flags != 0)
1948       Vals.push_back(Flags);
1949     break;
1950   }
1951 
1952   case Instruction::Ret:
1953     {
1954       Code = bitc::FUNC_CODE_INST_RET;
1955       unsigned NumOperands = I.getNumOperands();
1956       if (NumOperands == 0)
1957         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1958       else if (NumOperands == 1) {
1959         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1960           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1961       } else {
1962         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1963           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1964       }
1965     }
1966     break;
1967   case Instruction::Br:
1968     {
1969       Code = bitc::FUNC_CODE_INST_BR;
1970       const BranchInst &II = cast<BranchInst>(I);
1971       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1972       if (II.isConditional()) {
1973         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1974         pushValue(II.getCondition(), InstID, Vals, VE);
1975       }
1976     }
1977     break;
1978   case Instruction::Switch:
1979     {
1980       Code = bitc::FUNC_CODE_INST_SWITCH;
1981       const SwitchInst &SI = cast<SwitchInst>(I);
1982       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1983       pushValue(SI.getCondition(), InstID, Vals, VE);
1984       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1985       for (SwitchInst::ConstCaseIt Case : SI.cases()) {
1986         Vals.push_back(VE.getValueID(Case.getCaseValue()));
1987         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
1988       }
1989     }
1990     break;
1991   case Instruction::IndirectBr:
1992     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1993     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1994     // Encode the address operand as relative, but not the basic blocks.
1995     pushValue(I.getOperand(0), InstID, Vals, VE);
1996     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1997       Vals.push_back(VE.getValueID(I.getOperand(i)));
1998     break;
1999 
2000   case Instruction::Invoke: {
2001     const InvokeInst *II = cast<InvokeInst>(&I);
2002     const Value *Callee = II->getCalledValue();
2003     FunctionType *FTy = II->getFunctionType();
2004 
2005     if (II->hasOperandBundles())
2006       WriteOperandBundles(Stream, II, InstID, VE);
2007 
2008     Code = bitc::FUNC_CODE_INST_INVOKE;
2009 
2010     Vals.push_back(VE.getAttributeID(II->getAttributes()));
2011     Vals.push_back(II->getCallingConv() | 1 << 13);
2012     Vals.push_back(VE.getValueID(II->getNormalDest()));
2013     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2014     Vals.push_back(VE.getTypeID(FTy));
2015     PushValueAndType(Callee, InstID, Vals, VE);
2016 
2017     // Emit value #'s for the fixed parameters.
2018     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2019       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
2020 
2021     // Emit type/value pairs for varargs params.
2022     if (FTy->isVarArg()) {
2023       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
2024            i != e; ++i)
2025         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
2026     }
2027     break;
2028   }
2029   case Instruction::Resume:
2030     Code = bitc::FUNC_CODE_INST_RESUME;
2031     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
2032     break;
2033   case Instruction::CleanupRet: {
2034     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2035     const auto &CRI = cast<CleanupReturnInst>(I);
2036     pushValue(CRI.getCleanupPad(), InstID, Vals, VE);
2037     if (CRI.hasUnwindDest())
2038       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2039     break;
2040   }
2041   case Instruction::CatchRet: {
2042     Code = bitc::FUNC_CODE_INST_CATCHRET;
2043     const auto &CRI = cast<CatchReturnInst>(I);
2044     pushValue(CRI.getCatchPad(), InstID, Vals, VE);
2045     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2046     break;
2047   }
2048   case Instruction::CleanupPad:
2049   case Instruction::CatchPad: {
2050     const auto &FuncletPad = cast<FuncletPadInst>(I);
2051     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2052                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2053     pushValue(FuncletPad.getParentPad(), InstID, Vals, VE);
2054 
2055     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2056     Vals.push_back(NumArgOperands);
2057     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2058       PushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals, VE);
2059     break;
2060   }
2061   case Instruction::CatchSwitch: {
2062     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2063     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2064 
2065     pushValue(CatchSwitch.getParentPad(), InstID, Vals, VE);
2066 
2067     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2068     Vals.push_back(NumHandlers);
2069     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2070       Vals.push_back(VE.getValueID(CatchPadBB));
2071 
2072     if (CatchSwitch.hasUnwindDest())
2073       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2074     break;
2075   }
2076   case Instruction::Unreachable:
2077     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2078     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2079     break;
2080 
2081   case Instruction::PHI: {
2082     const PHINode &PN = cast<PHINode>(I);
2083     Code = bitc::FUNC_CODE_INST_PHI;
2084     // With the newer instruction encoding, forward references could give
2085     // negative valued IDs.  This is most common for PHIs, so we use
2086     // signed VBRs.
2087     SmallVector<uint64_t, 128> Vals64;
2088     Vals64.push_back(VE.getTypeID(PN.getType()));
2089     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2090       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
2091       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2092     }
2093     // Emit a Vals64 vector and exit.
2094     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2095     Vals64.clear();
2096     return;
2097   }
2098 
2099   case Instruction::LandingPad: {
2100     const LandingPadInst &LP = cast<LandingPadInst>(I);
2101     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2102     Vals.push_back(VE.getTypeID(LP.getType()));
2103     Vals.push_back(LP.isCleanup());
2104     Vals.push_back(LP.getNumClauses());
2105     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2106       if (LP.isCatch(I))
2107         Vals.push_back(LandingPadInst::Catch);
2108       else
2109         Vals.push_back(LandingPadInst::Filter);
2110       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
2111     }
2112     break;
2113   }
2114 
2115   case Instruction::Alloca: {
2116     Code = bitc::FUNC_CODE_INST_ALLOCA;
2117     const AllocaInst &AI = cast<AllocaInst>(I);
2118     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2119     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2120     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2121     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2122     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2123            "not enough bits for maximum alignment");
2124     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2125     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2126     AlignRecord |= 1 << 6;
2127     // Reserve bit 7 for SwiftError flag.
2128     // AlignRecord |= AI.isSwiftError() << 7;
2129     Vals.push_back(AlignRecord);
2130     break;
2131   }
2132 
2133   case Instruction::Load:
2134     if (cast<LoadInst>(I).isAtomic()) {
2135       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2136       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
2137     } else {
2138       Code = bitc::FUNC_CODE_INST_LOAD;
2139       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
2140         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2141     }
2142     Vals.push_back(VE.getTypeID(I.getType()));
2143     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2144     Vals.push_back(cast<LoadInst>(I).isVolatile());
2145     if (cast<LoadInst>(I).isAtomic()) {
2146       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2147       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
2148     }
2149     break;
2150   case Instruction::Store:
2151     if (cast<StoreInst>(I).isAtomic())
2152       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2153     else
2154       Code = bitc::FUNC_CODE_INST_STORE;
2155     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
2156     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // valty + val
2157     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2158     Vals.push_back(cast<StoreInst>(I).isVolatile());
2159     if (cast<StoreInst>(I).isAtomic()) {
2160       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2161       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
2162     }
2163     break;
2164   case Instruction::AtomicCmpXchg:
2165     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2166     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
2167     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // cmp.
2168     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
2169     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2170     Vals.push_back(GetEncodedOrdering(
2171                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2172     Vals.push_back(GetEncodedSynchScope(
2173                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
2174     Vals.push_back(GetEncodedOrdering(
2175                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2176     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2177     break;
2178   case Instruction::AtomicRMW:
2179     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2180     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
2181     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
2182     Vals.push_back(GetEncodedRMWOperation(
2183                      cast<AtomicRMWInst>(I).getOperation()));
2184     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2185     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2186     Vals.push_back(GetEncodedSynchScope(
2187                      cast<AtomicRMWInst>(I).getSynchScope()));
2188     break;
2189   case Instruction::Fence:
2190     Code = bitc::FUNC_CODE_INST_FENCE;
2191     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2192     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
2193     break;
2194   case Instruction::Call: {
2195     const CallInst &CI = cast<CallInst>(I);
2196     FunctionType *FTy = CI.getFunctionType();
2197 
2198     if (CI.hasOperandBundles())
2199       WriteOperandBundles(Stream, &CI, InstID, VE);
2200 
2201     Code = bitc::FUNC_CODE_INST_CALL;
2202 
2203     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
2204 
2205     unsigned Flags = GetOptimizationFlags(&I);
2206     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2207                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2208                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2209                    1 << bitc::CALL_EXPLICIT_TYPE |
2210                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2211                    unsigned(Flags != 0) << bitc::CALL_FMF);
2212     if (Flags != 0)
2213       Vals.push_back(Flags);
2214 
2215     Vals.push_back(VE.getTypeID(FTy));
2216     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
2217 
2218     // Emit value #'s for the fixed parameters.
2219     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2220       // Check for labels (can happen with asm labels).
2221       if (FTy->getParamType(i)->isLabelTy())
2222         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2223       else
2224         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
2225     }
2226 
2227     // Emit type/value pairs for varargs params.
2228     if (FTy->isVarArg()) {
2229       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2230            i != e; ++i)
2231         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
2232     }
2233     break;
2234   }
2235   case Instruction::VAArg:
2236     Code = bitc::FUNC_CODE_INST_VAARG;
2237     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2238     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
2239     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2240     break;
2241   }
2242 
2243   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2244   Vals.clear();
2245 }
2246 
2247 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder,
2248 /// BitcodeStartBit and FunctionIndex are only passed for the module-level
2249 /// VST, where we are including a function bitcode index and need to
2250 /// backpatch the VST forward declaration record.
2251 static void WriteValueSymbolTable(
2252     const ValueSymbolTable &VST, const ValueEnumerator &VE,
2253     BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0,
2254     uint64_t BitcodeStartBit = 0,
2255     DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>>
2256         *FunctionIndex = nullptr) {
2257   if (VST.empty()) {
2258     // WriteValueSymbolTableForwardDecl should have returned early as
2259     // well. Ensure this handling remains in sync by asserting that
2260     // the placeholder offset is not set.
2261     assert(VSTOffsetPlaceholder == 0);
2262     return;
2263   }
2264 
2265   if (VSTOffsetPlaceholder > 0) {
2266     // Get the offset of the VST we are writing, and backpatch it into
2267     // the VST forward declaration record.
2268     uint64_t VSTOffset = Stream.GetCurrentBitNo();
2269     // The BitcodeStartBit was the stream offset of the actual bitcode
2270     // (e.g. excluding any initial darwin header).
2271     VSTOffset -= BitcodeStartBit;
2272     assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2273     Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2274   }
2275 
2276   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2277 
2278   // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
2279   // records, which are not used in the per-function VSTs.
2280   unsigned FnEntry8BitAbbrev;
2281   unsigned FnEntry7BitAbbrev;
2282   unsigned FnEntry6BitAbbrev;
2283   if (VSTOffsetPlaceholder > 0) {
2284     // 8-bit fixed-width VST_CODE_FNENTRY function strings.
2285     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2286     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2287     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2288     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2289     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2290     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2291     FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
2292 
2293     // 7-bit fixed width VST_CODE_FNENTRY function strings.
2294     Abbv = new BitCodeAbbrev();
2295     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2296     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2297     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2298     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2299     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2300     FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
2301 
2302     // 6-bit char6 VST_CODE_FNENTRY function strings.
2303     Abbv = new BitCodeAbbrev();
2304     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2305     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2306     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2307     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2308     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2309     FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
2310   }
2311 
2312   // FIXME: Set up the abbrev, we know how many values there are!
2313   // FIXME: We know if the type names can use 7-bit ascii.
2314   SmallVector<unsigned, 64> NameVals;
2315 
2316   for (const ValueName &Name : VST) {
2317     // Figure out the encoding to use for the name.
2318     StringEncoding Bits =
2319         getStringEncoding(Name.getKeyData(), Name.getKeyLength());
2320 
2321     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2322     NameVals.push_back(VE.getValueID(Name.getValue()));
2323 
2324     Function *F = dyn_cast<Function>(Name.getValue());
2325     if (!F) {
2326       // If value is an alias, need to get the aliased base object to
2327       // see if it is a function.
2328       auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
2329       if (GA && GA->getBaseObject())
2330         F = dyn_cast<Function>(GA->getBaseObject());
2331     }
2332 
2333     // VST_CODE_ENTRY:   [valueid, namechar x N]
2334     // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N]
2335     // VST_CODE_BBENTRY: [bbid, namechar x N]
2336     unsigned Code;
2337     if (isa<BasicBlock>(Name.getValue())) {
2338       Code = bitc::VST_CODE_BBENTRY;
2339       if (Bits == SE_Char6)
2340         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2341     } else if (F && !F->isDeclaration()) {
2342       // Must be the module-level VST, where we pass in the Index and
2343       // have a VSTOffsetPlaceholder. The function-level VST should not
2344       // contain any Function symbols.
2345       assert(FunctionIndex);
2346       assert(VSTOffsetPlaceholder > 0);
2347 
2348       // Save the word offset of the function (from the start of the
2349       // actual bitcode written to the stream).
2350       assert(FunctionIndex->count(F) == 1);
2351       uint64_t BitcodeIndex =
2352           (*FunctionIndex)[F]->bitcodeIndex() - BitcodeStartBit;
2353       assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2354       NameVals.push_back(BitcodeIndex / 32);
2355 
2356       Code = bitc::VST_CODE_FNENTRY;
2357       AbbrevToUse = FnEntry8BitAbbrev;
2358       if (Bits == SE_Char6)
2359         AbbrevToUse = FnEntry6BitAbbrev;
2360       else if (Bits == SE_Fixed7)
2361         AbbrevToUse = FnEntry7BitAbbrev;
2362     } else {
2363       Code = bitc::VST_CODE_ENTRY;
2364       if (Bits == SE_Char6)
2365         AbbrevToUse = VST_ENTRY_6_ABBREV;
2366       else if (Bits == SE_Fixed7)
2367         AbbrevToUse = VST_ENTRY_7_ABBREV;
2368     }
2369 
2370     for (const auto P : Name.getKey())
2371       NameVals.push_back((unsigned char)P);
2372 
2373     // Emit the finished record.
2374     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2375     NameVals.clear();
2376   }
2377   Stream.ExitBlock();
2378 }
2379 
2380 /// Emit function names and summary offsets for the combined index
2381 /// used by ThinLTO.
2382 static void
2383 WriteCombinedValueSymbolTable(const FunctionInfoIndex &Index,
2384                               BitstreamWriter &Stream,
2385                               std::map<uint64_t, unsigned> &GUIDToValueIdMap,
2386                               uint64_t VSTOffsetPlaceholder) {
2387   assert(VSTOffsetPlaceholder > 0 && "Expected non-zero VSTOffsetPlaceholder");
2388   // Get the offset of the VST we are writing, and backpatch it into
2389   // the VST forward declaration record.
2390   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2391   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2392   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2393 
2394   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2395 
2396   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2397   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_GVDEFENTRY));
2398   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
2399   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // sumoffset
2400   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // guid
2401   unsigned DefEntryAbbrev = Stream.EmitAbbrev(Abbv);
2402 
2403   Abbv = new BitCodeAbbrev();
2404   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
2405   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
2406   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
2407   unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv);
2408 
2409   SmallVector<uint64_t, 64> NameVals;
2410 
2411   for (const auto &FII : Index) {
2412     uint64_t FuncGUID = FII.first;
2413     const auto &VMI = GUIDToValueIdMap.find(FuncGUID);
2414     assert(VMI != GUIDToValueIdMap.end());
2415 
2416     for (const auto &FI : FII.second) {
2417       // VST_CODE_COMBINED_GVDEFENTRY: [valueid, sumoffset, guid]
2418       NameVals.push_back(VMI->second);
2419       NameVals.push_back(FI->bitcodeIndex());
2420       NameVals.push_back(FuncGUID);
2421 
2422       // Emit the finished record.
2423       Stream.EmitRecord(bitc::VST_CODE_COMBINED_GVDEFENTRY, NameVals,
2424                         DefEntryAbbrev);
2425       NameVals.clear();
2426     }
2427     GUIDToValueIdMap.erase(VMI);
2428   }
2429   for (const auto &GVI : GUIDToValueIdMap) {
2430     // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
2431     NameVals.push_back(GVI.second);
2432     NameVals.push_back(GVI.first);
2433 
2434     // Emit the finished record.
2435     Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev);
2436     NameVals.clear();
2437   }
2438   Stream.ExitBlock();
2439 }
2440 
2441 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
2442                          BitstreamWriter &Stream) {
2443   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2444   unsigned Code;
2445   if (isa<BasicBlock>(Order.V))
2446     Code = bitc::USELIST_CODE_BB;
2447   else
2448     Code = bitc::USELIST_CODE_DEFAULT;
2449 
2450   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2451   Record.push_back(VE.getValueID(Order.V));
2452   Stream.EmitRecord(Code, Record);
2453 }
2454 
2455 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
2456                               BitstreamWriter &Stream) {
2457   assert(VE.shouldPreserveUseListOrder() &&
2458          "Expected to be preserving use-list order");
2459 
2460   auto hasMore = [&]() {
2461     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2462   };
2463   if (!hasMore())
2464     // Nothing to do.
2465     return;
2466 
2467   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2468   while (hasMore()) {
2469     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
2470     VE.UseListOrders.pop_back();
2471   }
2472   Stream.ExitBlock();
2473 }
2474 
2475 // Walk through the operands of a given User via worklist iteration and populate
2476 // the set of GlobalValue references encountered. Invoked either on an
2477 // Instruction or a GlobalVariable (which walks its initializer).
2478 static void findRefEdges(const User *CurUser, const ValueEnumerator &VE,
2479                          DenseSet<unsigned> &RefEdges,
2480                          SmallPtrSet<const User *, 8> &Visited) {
2481   SmallVector<const User *, 32> Worklist;
2482   Worklist.push_back(CurUser);
2483 
2484   while (!Worklist.empty()) {
2485     const User *U = Worklist.pop_back_val();
2486 
2487     if (!Visited.insert(U).second)
2488       continue;
2489 
2490     ImmutableCallSite CS(U);
2491 
2492     for (const auto &OI : U->operands()) {
2493       const User *Operand = dyn_cast<User>(OI);
2494       if (!Operand)
2495         continue;
2496       if (isa<BlockAddress>(Operand))
2497         continue;
2498       if (isa<GlobalValue>(Operand)) {
2499         // We have a reference to a global value. This should be added to
2500         // the reference set unless it is a callee. Callees are handled
2501         // specially by WriteFunction and are added to a separate list.
2502         if (!(CS && CS.isCallee(&OI)))
2503           RefEdges.insert(VE.getValueID(Operand));
2504         continue;
2505       }
2506       Worklist.push_back(Operand);
2507     }
2508   }
2509 }
2510 
2511 /// Emit a function body to the module stream.
2512 static void WriteFunction(
2513     const Function &F, const Module *M, ValueEnumerator &VE,
2514     BitstreamWriter &Stream,
2515     DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex,
2516     bool EmitSummaryIndex) {
2517   // Save the bitcode index of the start of this function block for recording
2518   // in the VST.
2519   uint64_t BitcodeIndex = Stream.GetCurrentBitNo();
2520 
2521   bool HasProfileData = F.getEntryCount().hasValue();
2522   std::unique_ptr<BlockFrequencyInfo> BFI;
2523   if (EmitSummaryIndex && HasProfileData) {
2524     Function &Func = const_cast<Function &>(F);
2525     LoopInfo LI{DominatorTree(Func)};
2526     BranchProbabilityInfo BPI{Func, LI};
2527     BFI = llvm::make_unique<BlockFrequencyInfo>(Func, BPI, LI);
2528   }
2529 
2530   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2531   VE.incorporateFunction(F);
2532 
2533   SmallVector<unsigned, 64> Vals;
2534 
2535   // Emit the number of basic blocks, so the reader can create them ahead of
2536   // time.
2537   Vals.push_back(VE.getBasicBlocks().size());
2538   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2539   Vals.clear();
2540 
2541   // If there are function-local constants, emit them now.
2542   unsigned CstStart, CstEnd;
2543   VE.getFunctionConstantRange(CstStart, CstEnd);
2544   WriteConstants(CstStart, CstEnd, VE, Stream, false);
2545 
2546   // If there is function-local metadata, emit it now.
2547   WriteFunctionLocalMetadata(F, VE, Stream);
2548 
2549   // Keep a running idea of what the instruction ID is.
2550   unsigned InstID = CstEnd;
2551 
2552   bool NeedsMetadataAttachment = F.hasMetadata();
2553 
2554   DILocation *LastDL = nullptr;
2555   unsigned NumInsts = 0;
2556   // Map from callee ValueId to profile count. Used to accumulate profile
2557   // counts for all static calls to a given callee.
2558   DenseMap<unsigned, CalleeInfo> CallGraphEdges;
2559   DenseSet<unsigned> RefEdges;
2560 
2561   SmallPtrSet<const User *, 8> Visited;
2562   // Finally, emit all the instructions, in order.
2563   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2564     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2565          I != E; ++I) {
2566       WriteInstruction(*I, InstID, VE, Stream, Vals);
2567 
2568       if (!isa<DbgInfoIntrinsic>(I))
2569         ++NumInsts;
2570 
2571       if (!I->getType()->isVoidTy())
2572         ++InstID;
2573 
2574       if (EmitSummaryIndex) {
2575         if (auto CS = ImmutableCallSite(&*I)) {
2576           auto *CalledFunction = CS.getCalledFunction();
2577           if (CalledFunction && CalledFunction->hasName() &&
2578               !CalledFunction->isIntrinsic()) {
2579             uint64_t ScaledCount = 0;
2580             if (HasProfileData)
2581               ScaledCount = getBlockProfileCount(
2582                   BFI->getBlockFreq(&(*BB)).getFrequency(), BFI->getEntryFreq(),
2583                   F.getEntryCount().getValue());
2584             unsigned CalleeId = VE.getValueID(
2585                 M->getValueSymbolTable().lookup(CalledFunction->getName()));
2586             CallGraphEdges[CalleeId] += ScaledCount;
2587           }
2588         }
2589         findRefEdges(&*I, VE, RefEdges, Visited);
2590       }
2591 
2592       // If the instruction has metadata, write a metadata attachment later.
2593       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2594 
2595       // If the instruction has a debug location, emit it.
2596       DILocation *DL = I->getDebugLoc();
2597       if (!DL)
2598         continue;
2599 
2600       if (DL == LastDL) {
2601         // Just repeat the same debug loc as last time.
2602         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2603         continue;
2604       }
2605 
2606       Vals.push_back(DL->getLine());
2607       Vals.push_back(DL->getColumn());
2608       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2609       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2610       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2611       Vals.clear();
2612 
2613       LastDL = DL;
2614     }
2615 
2616   std::unique_ptr<FunctionSummary> FuncSummary;
2617   if (EmitSummaryIndex) {
2618     FuncSummary = llvm::make_unique<FunctionSummary>(F.getLinkage(), NumInsts);
2619     FuncSummary->addCallGraphEdges(CallGraphEdges);
2620     FuncSummary->addRefEdges(RefEdges);
2621   }
2622   FunctionIndex[&F] =
2623       llvm::make_unique<GlobalValueInfo>(BitcodeIndex, std::move(FuncSummary));
2624 
2625   // Emit names for all the instructions etc.
2626   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
2627 
2628   if (NeedsMetadataAttachment)
2629     WriteMetadataAttachment(F, VE, Stream);
2630   if (VE.shouldPreserveUseListOrder())
2631     WriteUseListBlock(&F, VE, Stream);
2632   VE.purgeFunction();
2633   Stream.ExitBlock();
2634 }
2635 
2636 // Emit blockinfo, which defines the standard abbreviations etc.
2637 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
2638   // We only want to emit block info records for blocks that have multiple
2639   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2640   // Other blocks can define their abbrevs inline.
2641   Stream.EnterBlockInfoBlock(2);
2642 
2643   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
2644     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2645     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2646     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2647     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2648     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2649     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2650                                    Abbv) != VST_ENTRY_8_ABBREV)
2651       llvm_unreachable("Unexpected abbrev ordering!");
2652   }
2653 
2654   { // 7-bit fixed width VST_CODE_ENTRY strings.
2655     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2656     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2657     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2658     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2659     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2660     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2661                                    Abbv) != VST_ENTRY_7_ABBREV)
2662       llvm_unreachable("Unexpected abbrev ordering!");
2663   }
2664   { // 6-bit char6 VST_CODE_ENTRY strings.
2665     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2666     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2667     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2668     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2669     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2670     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2671                                    Abbv) != VST_ENTRY_6_ABBREV)
2672       llvm_unreachable("Unexpected abbrev ordering!");
2673   }
2674   { // 6-bit char6 VST_CODE_BBENTRY strings.
2675     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2676     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2677     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2678     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2679     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2680     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2681                                    Abbv) != VST_BBENTRY_6_ABBREV)
2682       llvm_unreachable("Unexpected abbrev ordering!");
2683   }
2684 
2685 
2686 
2687   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2688     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2689     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2690     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2691                               VE.computeBitsRequiredForTypeIndicies()));
2692     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2693                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
2694       llvm_unreachable("Unexpected abbrev ordering!");
2695   }
2696 
2697   { // INTEGER abbrev for CONSTANTS_BLOCK.
2698     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2699     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2700     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2701     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2702                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
2703       llvm_unreachable("Unexpected abbrev ordering!");
2704   }
2705 
2706   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2707     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2708     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2709     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
2710     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
2711                               VE.computeBitsRequiredForTypeIndicies()));
2712     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
2713 
2714     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2715                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
2716       llvm_unreachable("Unexpected abbrev ordering!");
2717   }
2718   { // NULL abbrev for CONSTANTS_BLOCK.
2719     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2720     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2721     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2722                                    Abbv) != CONSTANTS_NULL_Abbrev)
2723       llvm_unreachable("Unexpected abbrev ordering!");
2724   }
2725 
2726   // FIXME: This should only use space for first class types!
2727 
2728   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2729     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2730     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2731     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2732     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2733                               VE.computeBitsRequiredForTypeIndicies()));
2734     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2735     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2736     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2737                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
2738       llvm_unreachable("Unexpected abbrev ordering!");
2739   }
2740   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2741     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2742     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2743     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2744     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2745     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2746     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2747                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
2748       llvm_unreachable("Unexpected abbrev ordering!");
2749   }
2750   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2751     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2752     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2753     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2754     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2755     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2756     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2757     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2758                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
2759       llvm_unreachable("Unexpected abbrev ordering!");
2760   }
2761   { // INST_CAST abbrev for FUNCTION_BLOCK.
2762     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2763     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2764     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
2765     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
2766                               VE.computeBitsRequiredForTypeIndicies()));
2767     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
2768     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2769                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
2770       llvm_unreachable("Unexpected abbrev ordering!");
2771   }
2772 
2773   { // INST_RET abbrev for FUNCTION_BLOCK.
2774     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2775     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2776     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2777                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
2778       llvm_unreachable("Unexpected abbrev ordering!");
2779   }
2780   { // INST_RET abbrev for FUNCTION_BLOCK.
2781     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2782     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2783     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2784     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2785                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
2786       llvm_unreachable("Unexpected abbrev ordering!");
2787   }
2788   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2789     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2790     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2791     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2792                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
2793       llvm_unreachable("Unexpected abbrev ordering!");
2794   }
2795   {
2796     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2797     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2798     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2799     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2800                               Log2_32_Ceil(VE.getTypes().size() + 1)));
2801     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2802     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2803     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
2804         FUNCTION_INST_GEP_ABBREV)
2805       llvm_unreachable("Unexpected abbrev ordering!");
2806   }
2807 
2808   Stream.ExitBlock();
2809 }
2810 
2811 /// Write the module path strings, currently only used when generating
2812 /// a combined index file.
2813 static void WriteModStrings(const FunctionInfoIndex &I,
2814                             BitstreamWriter &Stream) {
2815   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
2816 
2817   // TODO: See which abbrev sizes we actually need to emit
2818 
2819   // 8-bit fixed-width MST_ENTRY strings.
2820   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2821   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
2822   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2823   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2824   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2825   unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv);
2826 
2827   // 7-bit fixed width MST_ENTRY strings.
2828   Abbv = new BitCodeAbbrev();
2829   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
2830   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2831   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2832   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2833   unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv);
2834 
2835   // 6-bit char6 MST_ENTRY strings.
2836   Abbv = new BitCodeAbbrev();
2837   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
2838   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2839   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2840   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2841   unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv);
2842 
2843   SmallVector<unsigned, 64> NameVals;
2844   for (const StringMapEntry<uint64_t> &MPSE : I.modPathStringEntries()) {
2845     StringEncoding Bits =
2846         getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
2847     unsigned AbbrevToUse = Abbrev8Bit;
2848     if (Bits == SE_Char6)
2849       AbbrevToUse = Abbrev6Bit;
2850     else if (Bits == SE_Fixed7)
2851       AbbrevToUse = Abbrev7Bit;
2852 
2853     NameVals.push_back(MPSE.getValue());
2854 
2855     for (const auto P : MPSE.getKey())
2856       NameVals.push_back((unsigned char)P);
2857 
2858     // Emit the finished record.
2859     Stream.EmitRecord(bitc::MST_CODE_ENTRY, NameVals, AbbrevToUse);
2860     NameVals.clear();
2861   }
2862   Stream.ExitBlock();
2863 }
2864 
2865 // Helper to emit a single function summary record.
2866 static void WritePerModuleFunctionSummaryRecord(
2867     SmallVector<uint64_t, 64> &NameVals, FunctionSummary *FS, unsigned ValueID,
2868     unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
2869     BitstreamWriter &Stream, const Function &F) {
2870   assert(FS);
2871   NameVals.push_back(ValueID);
2872   NameVals.push_back(getEncodedLinkage(FS->linkage()));
2873   NameVals.push_back(FS->instCount());
2874   NameVals.push_back(FS->refs().size());
2875 
2876   for (auto &RI : FS->refs())
2877     NameVals.push_back(RI);
2878 
2879   bool HasProfileData = F.getEntryCount().hasValue();
2880   for (auto &ECI : FS->edges()) {
2881     NameVals.push_back(ECI.first);
2882     assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite");
2883     NameVals.push_back(ECI.second.CallsiteCount);
2884     if (HasProfileData)
2885       NameVals.push_back(ECI.second.ProfileCount);
2886   }
2887 
2888   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
2889   unsigned Code =
2890       (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
2891 
2892   // Emit the finished record.
2893   Stream.EmitRecord(Code, NameVals, FSAbbrev);
2894   NameVals.clear();
2895 }
2896 
2897 // Collect the global value references in the given variable's initializer,
2898 // and emit them in a summary record.
2899 static void WriteModuleLevelReferences(const GlobalVariable &V,
2900                                        const ValueEnumerator &VE,
2901                                        SmallVector<uint64_t, 64> &NameVals,
2902                                        unsigned FSModRefsAbbrev,
2903                                        BitstreamWriter &Stream) {
2904   DenseSet<unsigned> RefEdges;
2905   SmallPtrSet<const User *, 8> Visited;
2906   findRefEdges(&V, VE, RefEdges, Visited);
2907   unsigned RefCount = RefEdges.size();
2908   if (RefCount) {
2909     NameVals.push_back(VE.getValueID(&V));
2910     NameVals.push_back(getEncodedLinkage(V.getLinkage()));
2911     for (auto RefId : RefEdges) {
2912       NameVals.push_back(RefId);
2913     }
2914     Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
2915                       FSModRefsAbbrev);
2916     NameVals.clear();
2917   }
2918 }
2919 
2920 /// Emit the per-module summary section alongside the rest of
2921 /// the module's bitcode.
2922 static void WritePerModuleGlobalValueSummary(
2923     DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex,
2924     const Module *M, const ValueEnumerator &VE, BitstreamWriter &Stream) {
2925   if (M->empty())
2926     return;
2927 
2928   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
2929 
2930   // Abbrev for FS_PERMODULE.
2931   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2932   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
2933   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
2934   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
2935   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
2936   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
2937   // numrefs x valueid, n x (valueid, callsitecount)
2938   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2939   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2940   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
2941 
2942   // Abbrev for FS_PERMODULE_PROFILE.
2943   Abbv = new BitCodeAbbrev();
2944   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
2945   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
2946   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
2947   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
2948   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
2949   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
2950   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2951   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2952   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
2953 
2954   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
2955   Abbv = new BitCodeAbbrev();
2956   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
2957   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
2958   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
2959   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
2960   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2961   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
2962 
2963   SmallVector<uint64_t, 64> NameVals;
2964   // Iterate over the list of functions instead of the FunctionIndex map to
2965   // ensure the ordering is stable.
2966   for (const Function &F : *M) {
2967     if (F.isDeclaration())
2968       continue;
2969     // Skip anonymous functions. We will emit a function summary for
2970     // any aliases below.
2971     if (!F.hasName())
2972       continue;
2973 
2974     assert(FunctionIndex.count(&F) == 1);
2975 
2976     WritePerModuleFunctionSummaryRecord(
2977         NameVals, dyn_cast<FunctionSummary>(FunctionIndex[&F]->summary()),
2978         VE.getValueID(M->getValueSymbolTable().lookup(F.getName())),
2979         FSCallsAbbrev, FSCallsProfileAbbrev, Stream, F);
2980   }
2981 
2982   for (const GlobalAlias &A : M->aliases()) {
2983     if (!A.getBaseObject())
2984       continue;
2985     const Function *F = dyn_cast<Function>(A.getBaseObject());
2986     if (!F || F->isDeclaration())
2987       continue;
2988 
2989     assert(FunctionIndex.count(F) == 1);
2990     FunctionSummary *FS =
2991         dyn_cast<FunctionSummary>(FunctionIndex[F]->summary());
2992     // Add the alias to the reference list of aliasee function.
2993     FS->addRefEdge(
2994         VE.getValueID(M->getValueSymbolTable().lookup(A.getName())));
2995     WritePerModuleFunctionSummaryRecord(
2996         NameVals, FS,
2997         VE.getValueID(M->getValueSymbolTable().lookup(A.getName())),
2998         FSCallsAbbrev, FSCallsProfileAbbrev, Stream, *F);
2999   }
3000 
3001   // Capture references from GlobalVariable initializers, which are outside
3002   // of a function scope.
3003   for (const GlobalVariable &G : M->globals())
3004     WriteModuleLevelReferences(G, VE, NameVals, FSModRefsAbbrev, Stream);
3005   for (const GlobalAlias &A : M->aliases()) {
3006     const auto *GV = dyn_cast<GlobalVariable>(A.getBaseObject());
3007     if (GV)
3008       WriteModuleLevelReferences(*GV, VE, NameVals, FSModRefsAbbrev, Stream);
3009   }
3010 
3011   Stream.ExitBlock();
3012 }
3013 
3014 /// Emit the combined function summary section into the combined index
3015 /// file.
3016 static void WriteCombinedGlobalValueSummary(
3017     const FunctionInfoIndex &I, BitstreamWriter &Stream,
3018     std::map<uint64_t, unsigned> &GUIDToValueIdMap, unsigned GlobalValueId) {
3019   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3020 
3021   // Abbrev for FS_COMBINED.
3022   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3023   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3024   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3025   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
3026   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3027   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3028   // numrefs x valueid, n x (valueid, callsitecount)
3029   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3030   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3031   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
3032 
3033   // Abbrev for FS_COMBINED_PROFILE.
3034   Abbv = new BitCodeAbbrev();
3035   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3036   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3037   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
3038   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3039   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3040   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
3041   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3042   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3043   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
3044 
3045   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3046   Abbv = new BitCodeAbbrev();
3047   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3048   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3049   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
3050   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3051   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3052   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
3053 
3054   SmallVector<uint64_t, 64> NameVals;
3055   for (const auto &FII : I) {
3056     for (auto &FI : FII.second) {
3057       GlobalValueSummary *S = FI->summary();
3058       assert(S);
3059 
3060       if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3061         assert(!VS->refs().empty() && "Expected at least one ref edge");
3062         NameVals.push_back(I.getModuleId(VS->modulePath()));
3063         NameVals.push_back(getEncodedLinkage(VS->linkage()));
3064         for (auto &RI : VS->refs()) {
3065           const auto &VMI = GUIDToValueIdMap.find(RI);
3066           unsigned RefId;
3067           // If this GUID doesn't have an entry, assign one.
3068           if (VMI == GUIDToValueIdMap.end()) {
3069             GUIDToValueIdMap[RI] = ++GlobalValueId;
3070             RefId = GlobalValueId;
3071           } else {
3072             RefId = VMI->second;
3073           }
3074           NameVals.push_back(RefId);
3075         }
3076 
3077         // Record the starting offset of this summary entry for use
3078         // in the VST entry. Add the current code size since the
3079         // reader will invoke readRecord after the abbrev id read.
3080         FI->setBitcodeIndex(Stream.GetCurrentBitNo() +
3081                             Stream.GetAbbrevIDWidth());
3082 
3083         // Emit the finished record.
3084         Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3085                           FSModRefsAbbrev);
3086         NameVals.clear();
3087         continue;
3088       }
3089 
3090       auto *FS = dyn_cast<FunctionSummary>(S);
3091       assert(FS);
3092       NameVals.push_back(I.getModuleId(FS->modulePath()));
3093       NameVals.push_back(getEncodedLinkage(FS->linkage()));
3094       NameVals.push_back(FS->instCount());
3095       NameVals.push_back(FS->refs().size());
3096 
3097       for (auto &RI : FS->refs()) {
3098         const auto &VMI = GUIDToValueIdMap.find(RI);
3099         unsigned RefId;
3100         // If this GUID doesn't have an entry, assign one.
3101         if (VMI == GUIDToValueIdMap.end()) {
3102           GUIDToValueIdMap[RI] = ++GlobalValueId;
3103           RefId = GlobalValueId;
3104         } else {
3105           RefId = VMI->second;
3106         }
3107         NameVals.push_back(RefId);
3108       }
3109 
3110       bool HasProfileData = false;
3111       for (auto &EI : FS->edges()) {
3112         HasProfileData |= EI.second.ProfileCount != 0;
3113         if (HasProfileData)
3114           break;
3115       }
3116 
3117       for (auto &EI : FS->edges()) {
3118         const auto &VMI = GUIDToValueIdMap.find(EI.first);
3119         // If this GUID doesn't have an entry, it doesn't have a function
3120         // summary and we don't need to record any calls to it.
3121         if (VMI == GUIDToValueIdMap.end())
3122           continue;
3123         NameVals.push_back(VMI->second);
3124         assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite");
3125         NameVals.push_back(EI.second.CallsiteCount);
3126         if (HasProfileData)
3127           NameVals.push_back(EI.second.ProfileCount);
3128       }
3129 
3130       // Record the starting offset of this summary entry for use
3131       // in the VST entry. Add the current code size since the
3132       // reader will invoke readRecord after the abbrev id read.
3133       FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth());
3134 
3135       unsigned FSAbbrev =
3136           (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3137       unsigned Code =
3138           (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3139 
3140       // Emit the finished record.
3141       Stream.EmitRecord(Code, NameVals, FSAbbrev);
3142       NameVals.clear();
3143     }
3144   }
3145 
3146   Stream.ExitBlock();
3147 }
3148 
3149 // Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
3150 // current llvm version, and a record for the epoch number.
3151 static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) {
3152   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3153 
3154   // Write the "user readable" string identifying the bitcode producer
3155   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3156   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3157   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3158   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3159   auto StringAbbrev = Stream.EmitAbbrev(Abbv);
3160   WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING,
3161                     "LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream);
3162 
3163   // Write the epoch version
3164   Abbv = new BitCodeAbbrev();
3165   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3166   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3167   auto EpochAbbrev = Stream.EmitAbbrev(Abbv);
3168   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3169   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3170   Stream.ExitBlock();
3171 }
3172 
3173 /// WriteModule - Emit the specified module to the bitstream.
3174 static void WriteModule(const Module *M, BitstreamWriter &Stream,
3175                         bool ShouldPreserveUseListOrder,
3176                         uint64_t BitcodeStartBit, bool EmitSummaryIndex) {
3177   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3178 
3179   SmallVector<unsigned, 1> Vals;
3180   unsigned CurVersion = 1;
3181   Vals.push_back(CurVersion);
3182   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3183 
3184   // Analyze the module, enumerating globals, functions, etc.
3185   ValueEnumerator VE(*M, ShouldPreserveUseListOrder);
3186 
3187   // Emit blockinfo, which defines the standard abbreviations etc.
3188   WriteBlockInfo(VE, Stream);
3189 
3190   // Emit information about attribute groups.
3191   WriteAttributeGroupTable(VE, Stream);
3192 
3193   // Emit information about parameter attributes.
3194   WriteAttributeTable(VE, Stream);
3195 
3196   // Emit information describing all of the types in the module.
3197   WriteTypeTable(VE, Stream);
3198 
3199   writeComdats(VE, Stream);
3200 
3201   // Emit top-level description of module, including target triple, inline asm,
3202   // descriptors for global variables, and function prototype info.
3203   uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream);
3204 
3205   // Emit constants.
3206   WriteModuleConstants(VE, Stream);
3207 
3208   // Emit metadata.
3209   WriteModuleMetadata(M, VE, Stream);
3210 
3211   // Emit metadata.
3212   WriteModuleMetadataStore(M, Stream);
3213 
3214   // Emit module-level use-lists.
3215   if (VE.shouldPreserveUseListOrder())
3216     WriteUseListBlock(nullptr, VE, Stream);
3217 
3218   WriteOperandBundleTags(M, Stream);
3219 
3220   // Emit function bodies.
3221   DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> FunctionIndex;
3222   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
3223     if (!F->isDeclaration())
3224       WriteFunction(*F, M, VE, Stream, FunctionIndex, EmitSummaryIndex);
3225 
3226   // Need to write after the above call to WriteFunction which populates
3227   // the summary information in the index.
3228   if (EmitSummaryIndex)
3229     WritePerModuleGlobalValueSummary(FunctionIndex, M, VE, Stream);
3230 
3231   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream,
3232                         VSTOffsetPlaceholder, BitcodeStartBit, &FunctionIndex);
3233 
3234   Stream.ExitBlock();
3235 }
3236 
3237 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
3238 /// header and trailer to make it compatible with the system archiver.  To do
3239 /// this we emit the following header, and then emit a trailer that pads the
3240 /// file out to be a multiple of 16 bytes.
3241 ///
3242 /// struct bc_header {
3243 ///   uint32_t Magic;         // 0x0B17C0DE
3244 ///   uint32_t Version;       // Version, currently always 0.
3245 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
3246 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
3247 ///   uint32_t CPUType;       // CPU specifier.
3248 ///   ... potentially more later ...
3249 /// };
3250 
3251 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3252                                uint32_t &Position) {
3253   support::endian::write32le(&Buffer[Position], Value);
3254   Position += 4;
3255 }
3256 
3257 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
3258                                          const Triple &TT) {
3259   unsigned CPUType = ~0U;
3260 
3261   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
3262   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
3263   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
3264   // specific constants here because they are implicitly part of the Darwin ABI.
3265   enum {
3266     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
3267     DARWIN_CPU_TYPE_X86        = 7,
3268     DARWIN_CPU_TYPE_ARM        = 12,
3269     DARWIN_CPU_TYPE_POWERPC    = 18
3270   };
3271 
3272   Triple::ArchType Arch = TT.getArch();
3273   if (Arch == Triple::x86_64)
3274     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
3275   else if (Arch == Triple::x86)
3276     CPUType = DARWIN_CPU_TYPE_X86;
3277   else if (Arch == Triple::ppc)
3278     CPUType = DARWIN_CPU_TYPE_POWERPC;
3279   else if (Arch == Triple::ppc64)
3280     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
3281   else if (Arch == Triple::arm || Arch == Triple::thumb)
3282     CPUType = DARWIN_CPU_TYPE_ARM;
3283 
3284   // Traditional Bitcode starts after header.
3285   assert(Buffer.size() >= BWH_HeaderSize &&
3286          "Expected header size to be reserved");
3287   unsigned BCOffset = BWH_HeaderSize;
3288   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
3289 
3290   // Write the magic and version.
3291   unsigned Position = 0;
3292   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
3293   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
3294   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
3295   WriteInt32ToBuffer(BCSize     , Buffer, Position);
3296   WriteInt32ToBuffer(CPUType    , Buffer, Position);
3297 
3298   // If the file is not a multiple of 16 bytes, insert dummy padding.
3299   while (Buffer.size() & 15)
3300     Buffer.push_back(0);
3301 }
3302 
3303 /// Helper to write the header common to all bitcode files.
3304 static void WriteBitcodeHeader(BitstreamWriter &Stream) {
3305   // Emit the file header.
3306   Stream.Emit((unsigned)'B', 8);
3307   Stream.Emit((unsigned)'C', 8);
3308   Stream.Emit(0x0, 4);
3309   Stream.Emit(0xC, 4);
3310   Stream.Emit(0xE, 4);
3311   Stream.Emit(0xD, 4);
3312 }
3313 
3314 /// WriteBitcodeToFile - Write the specified module to the specified output
3315 /// stream.
3316 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
3317                               bool ShouldPreserveUseListOrder,
3318                               bool EmitSummaryIndex) {
3319   SmallVector<char, 0> Buffer;
3320   Buffer.reserve(256*1024);
3321 
3322   // If this is darwin or another generic macho target, reserve space for the
3323   // header.
3324   Triple TT(M->getTargetTriple());
3325   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3326     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
3327 
3328   // Emit the module into the buffer.
3329   {
3330     BitstreamWriter Stream(Buffer);
3331     // Save the start bit of the actual bitcode, in case there is space
3332     // saved at the start for the darwin header above. The reader stream
3333     // will start at the bitcode, and we need the offset of the VST
3334     // to line up.
3335     uint64_t BitcodeStartBit = Stream.GetCurrentBitNo();
3336 
3337     // Emit the file header.
3338     WriteBitcodeHeader(Stream);
3339 
3340     WriteIdentificationBlock(M, Stream);
3341 
3342     // Emit the module.
3343     WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit,
3344                 EmitSummaryIndex);
3345   }
3346 
3347   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3348     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
3349 
3350   // Write the generated bitstream to "Out".
3351   Out.write((char*)&Buffer.front(), Buffer.size());
3352 }
3353 
3354 // Write the specified module summary index to the given raw output stream,
3355 // where it will be written in a new bitcode block. This is used when
3356 // writing the combined index file for ThinLTO.
3357 void llvm::WriteIndexToFile(const FunctionInfoIndex &Index, raw_ostream &Out) {
3358   SmallVector<char, 0> Buffer;
3359   Buffer.reserve(256 * 1024);
3360 
3361   BitstreamWriter Stream(Buffer);
3362 
3363   // Emit the bitcode header.
3364   WriteBitcodeHeader(Stream);
3365 
3366   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3367 
3368   SmallVector<unsigned, 1> Vals;
3369   unsigned CurVersion = 1;
3370   Vals.push_back(CurVersion);
3371   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3372 
3373   // If we have a VST, write the VSTOFFSET record placeholder and record
3374   // its offset.
3375   uint64_t VSTOffsetPlaceholder = WriteValueSymbolTableForwardDecl(Stream);
3376 
3377   // Write the module paths in the combined index.
3378   WriteModStrings(Index, Stream);
3379 
3380   // Assign unique value ids to all functions in the index for use
3381   // in writing out the call graph edges. Save the mapping from GUID
3382   // to the new global value id to use when writing those edges, which
3383   // are currently saved in the index in terms of GUID.
3384   std::map<uint64_t, unsigned> GUIDToValueIdMap;
3385   unsigned GlobalValueId = 0;
3386   for (auto &II : Index)
3387     GUIDToValueIdMap[II.first] = ++GlobalValueId;
3388 
3389   // Write the summary combined index records.
3390   WriteCombinedGlobalValueSummary(Index, Stream, GUIDToValueIdMap,
3391                                   GlobalValueId);
3392 
3393   // Need a special VST writer for the combined index (we don't have a
3394   // real VST and real values when this is invoked).
3395   WriteCombinedValueSymbolTable(Index, Stream, GUIDToValueIdMap,
3396                                 VSTOffsetPlaceholder);
3397 
3398   Stream.ExitBlock();
3399 
3400   Out.write((char *)&Buffer.front(), Buffer.size());
3401 }
3402