1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRangeList.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/SHA1.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <memory> 80 #include <optional> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 namespace llvm { 100 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 101 } 102 103 extern bool WriteNewDbgInfoFormatToBitcode; 104 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 105 106 namespace { 107 108 /// These are manifest constants used by the bitcode writer. They do not need to 109 /// be kept in sync with the reader, but need to be consistent within this file. 110 enum { 111 // VALUE_SYMTAB_BLOCK abbrev id's. 112 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 113 VST_ENTRY_7_ABBREV, 114 VST_ENTRY_6_ABBREV, 115 VST_BBENTRY_6_ABBREV, 116 117 // CONSTANTS_BLOCK abbrev id's. 118 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 119 CONSTANTS_INTEGER_ABBREV, 120 CONSTANTS_CE_CAST_Abbrev, 121 CONSTANTS_NULL_Abbrev, 122 123 // FUNCTION_BLOCK abbrev id's. 124 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 125 FUNCTION_INST_UNOP_ABBREV, 126 FUNCTION_INST_UNOP_FLAGS_ABBREV, 127 FUNCTION_INST_BINOP_ABBREV, 128 FUNCTION_INST_BINOP_FLAGS_ABBREV, 129 FUNCTION_INST_CAST_ABBREV, 130 FUNCTION_INST_CAST_FLAGS_ABBREV, 131 FUNCTION_INST_RET_VOID_ABBREV, 132 FUNCTION_INST_RET_VAL_ABBREV, 133 FUNCTION_INST_UNREACHABLE_ABBREV, 134 FUNCTION_INST_GEP_ABBREV, 135 FUNCTION_DEBUG_RECORD_VALUE_ABBREV, 136 }; 137 138 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 139 /// file type. 140 class BitcodeWriterBase { 141 protected: 142 /// The stream created and owned by the client. 143 BitstreamWriter &Stream; 144 145 StringTableBuilder &StrtabBuilder; 146 147 public: 148 /// Constructs a BitcodeWriterBase object that writes to the provided 149 /// \p Stream. 150 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 151 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 152 153 protected: 154 void writeModuleVersion(); 155 }; 156 157 void BitcodeWriterBase::writeModuleVersion() { 158 // VERSION: [version#] 159 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 160 } 161 162 /// Base class to manage the module bitcode writing, currently subclassed for 163 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 164 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 165 protected: 166 /// The Module to write to bitcode. 167 const Module &M; 168 169 /// Enumerates ids for all values in the module. 170 ValueEnumerator VE; 171 172 /// Optional per-module index to write for ThinLTO. 173 const ModuleSummaryIndex *Index; 174 175 /// Map that holds the correspondence between GUIDs in the summary index, 176 /// that came from indirect call profiles, and a value id generated by this 177 /// class to use in the VST and summary block records. 178 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 179 180 /// Tracks the last value id recorded in the GUIDToValueMap. 181 unsigned GlobalValueId; 182 183 /// Saves the offset of the VSTOffset record that must eventually be 184 /// backpatched with the offset of the actual VST. 185 uint64_t VSTOffsetPlaceholder = 0; 186 187 public: 188 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 189 /// writing to the provided \p Buffer. 190 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 191 BitstreamWriter &Stream, 192 bool ShouldPreserveUseListOrder, 193 const ModuleSummaryIndex *Index) 194 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 195 VE(M, ShouldPreserveUseListOrder), Index(Index) { 196 // Assign ValueIds to any callee values in the index that came from 197 // indirect call profiles and were recorded as a GUID not a Value* 198 // (which would have been assigned an ID by the ValueEnumerator). 199 // The starting ValueId is just after the number of values in the 200 // ValueEnumerator, so that they can be emitted in the VST. 201 GlobalValueId = VE.getValues().size(); 202 if (!Index) 203 return; 204 for (const auto &GUIDSummaryLists : *Index) 205 // Examine all summaries for this GUID. 206 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 207 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) { 208 // For each call in the function summary, see if the call 209 // is to a GUID (which means it is for an indirect call, 210 // otherwise we would have a Value for it). If so, synthesize 211 // a value id. 212 for (auto &CallEdge : FS->calls()) 213 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 214 assignValueId(CallEdge.first.getGUID()); 215 216 // For each referenced variables in the function summary, see if the 217 // variable is represented by a GUID (as opposed to a symbol to 218 // declarations or definitions in the module). If so, synthesize a 219 // value id. 220 for (auto &RefEdge : FS->refs()) 221 if (!RefEdge.haveGVs() || !RefEdge.getValue()) 222 assignValueId(RefEdge.getGUID()); 223 } 224 } 225 226 protected: 227 void writePerModuleGlobalValueSummary(); 228 229 private: 230 void writePerModuleFunctionSummaryRecord( 231 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 232 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 233 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 234 void writeModuleLevelReferences(const GlobalVariable &V, 235 SmallVector<uint64_t, 64> &NameVals, 236 unsigned FSModRefsAbbrev, 237 unsigned FSModVTableRefsAbbrev); 238 239 void assignValueId(GlobalValue::GUID ValGUID) { 240 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 241 } 242 243 unsigned getValueId(GlobalValue::GUID ValGUID) { 244 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 245 // Expect that any GUID value had a value Id assigned by an 246 // earlier call to assignValueId. 247 assert(VMI != GUIDToValueIdMap.end() && 248 "GUID does not have assigned value Id"); 249 return VMI->second; 250 } 251 252 // Helper to get the valueId for the type of value recorded in VI. 253 unsigned getValueId(ValueInfo VI) { 254 if (!VI.haveGVs() || !VI.getValue()) 255 return getValueId(VI.getGUID()); 256 return VE.getValueID(VI.getValue()); 257 } 258 259 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 260 }; 261 262 /// Class to manage the bitcode writing for a module. 263 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 264 /// True if a module hash record should be written. 265 bool GenerateHash; 266 267 /// If non-null, when GenerateHash is true, the resulting hash is written 268 /// into ModHash. 269 ModuleHash *ModHash; 270 271 SHA1 Hasher; 272 273 /// The start bit of the identification block. 274 uint64_t BitcodeStartBit; 275 276 public: 277 /// Constructs a ModuleBitcodeWriter object for the given Module, 278 /// writing to the provided \p Buffer. 279 ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 280 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 281 const ModuleSummaryIndex *Index, bool GenerateHash, 282 ModuleHash *ModHash = nullptr) 283 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 284 ShouldPreserveUseListOrder, Index), 285 GenerateHash(GenerateHash), ModHash(ModHash), 286 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 287 288 /// Emit the current module to the bitstream. 289 void write(); 290 291 private: 292 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 293 294 size_t addToStrtab(StringRef Str); 295 296 void writeAttributeGroupTable(); 297 void writeAttributeTable(); 298 void writeTypeTable(); 299 void writeComdats(); 300 void writeValueSymbolTableForwardDecl(); 301 void writeModuleInfo(); 302 void writeValueAsMetadata(const ValueAsMetadata *MD, 303 SmallVectorImpl<uint64_t> &Record); 304 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 unsigned createDILocationAbbrev(); 307 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned &Abbrev); 309 unsigned createGenericDINodeAbbrev(); 310 void writeGenericDINode(const GenericDINode *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 312 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 313 unsigned Abbrev); 314 void writeDIGenericSubrange(const DIGenericSubrange *N, 315 SmallVectorImpl<uint64_t> &Record, 316 unsigned Abbrev); 317 void writeDIEnumerator(const DIEnumerator *N, 318 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 319 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIStringType(const DIStringType *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDIDerivedType(const DIDerivedType *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDICompositeType(const DICompositeType *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDISubroutineType(const DISubroutineType *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDICompileUnit(const DICompileUnit *N, 333 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 334 void writeDISubprogram(const DISubprogram *N, 335 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 336 void writeDILexicalBlock(const DILexicalBlock *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDICommonBlock(const DICommonBlock *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 350 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 355 SmallVectorImpl<uint64_t> &Record, 356 unsigned Abbrev); 357 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIGlobalVariable(const DIGlobalVariable *N, 361 SmallVectorImpl<uint64_t> &Record, 362 unsigned Abbrev); 363 void writeDILocalVariable(const DILocalVariable *N, 364 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 365 void writeDILabel(const DILabel *N, 366 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 367 void writeDIExpression(const DIExpression *N, 368 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 369 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 370 SmallVectorImpl<uint64_t> &Record, 371 unsigned Abbrev); 372 void writeDIObjCProperty(const DIObjCProperty *N, 373 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 374 void writeDIImportedEntity(const DIImportedEntity *N, 375 SmallVectorImpl<uint64_t> &Record, 376 unsigned Abbrev); 377 unsigned createNamedMetadataAbbrev(); 378 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 379 unsigned createMetadataStringsAbbrev(); 380 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 381 SmallVectorImpl<uint64_t> &Record); 382 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 383 SmallVectorImpl<uint64_t> &Record, 384 std::vector<unsigned> *MDAbbrevs = nullptr, 385 std::vector<uint64_t> *IndexPos = nullptr); 386 void writeModuleMetadata(); 387 void writeFunctionMetadata(const Function &F); 388 void writeFunctionMetadataAttachment(const Function &F); 389 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 390 const GlobalObject &GO); 391 void writeModuleMetadataKinds(); 392 void writeOperandBundleTags(); 393 void writeSyncScopeNames(); 394 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 395 void writeModuleConstants(); 396 bool pushValueAndType(const Value *V, unsigned InstID, 397 SmallVectorImpl<unsigned> &Vals); 398 bool pushValueOrMetadata(const Value *V, unsigned InstID, 399 SmallVectorImpl<unsigned> &Vals); 400 void writeOperandBundles(const CallBase &CB, unsigned InstID); 401 void pushValue(const Value *V, unsigned InstID, 402 SmallVectorImpl<unsigned> &Vals); 403 void pushValueSigned(const Value *V, unsigned InstID, 404 SmallVectorImpl<uint64_t> &Vals); 405 void writeInstruction(const Instruction &I, unsigned InstID, 406 SmallVectorImpl<unsigned> &Vals); 407 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 408 void writeGlobalValueSymbolTable( 409 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 410 void writeUseList(UseListOrder &&Order); 411 void writeUseListBlock(const Function *F); 412 void 413 writeFunction(const Function &F, 414 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 415 void writeBlockInfo(); 416 void writeModuleHash(StringRef View); 417 418 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 419 return unsigned(SSID); 420 } 421 422 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 423 }; 424 425 /// Class to manage the bitcode writing for a combined index. 426 class IndexBitcodeWriter : public BitcodeWriterBase { 427 /// The combined index to write to bitcode. 428 const ModuleSummaryIndex &Index; 429 430 /// When writing combined summaries, provides the set of global value 431 /// summaries for which the value (function, function alias, etc) should be 432 /// imported as a declaration. 433 const GVSummaryPtrSet *DecSummaries = nullptr; 434 435 /// When writing a subset of the index for distributed backends, client 436 /// provides a map of modules to the corresponding GUIDs/summaries to write. 437 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex; 438 439 /// Map that holds the correspondence between the GUID used in the combined 440 /// index and a value id generated by this class to use in references. 441 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 442 443 // The stack ids used by this index, which will be a subset of those in 444 // the full index in the case of distributed indexes. 445 std::vector<uint64_t> StackIds; 446 447 // Keep a map of the stack id indices used by records being written for this 448 // index to the index of the corresponding stack id in the above StackIds 449 // vector. Ensures we write each referenced stack id once. 450 DenseMap<unsigned, unsigned> StackIdIndicesToIndex; 451 452 /// Tracks the last value id recorded in the GUIDToValueMap. 453 unsigned GlobalValueId = 0; 454 455 /// Tracks the assignment of module paths in the module path string table to 456 /// an id assigned for use in summary references to the module path. 457 DenseMap<StringRef, uint64_t> ModuleIdMap; 458 459 public: 460 /// Constructs a IndexBitcodeWriter object for the given combined index, 461 /// writing to the provided \p Buffer. When writing a subset of the index 462 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 463 /// If provided, \p DecSummaries specifies the set of summaries for which 464 /// the corresponding functions or aliased functions should be imported as a 465 /// declaration (but not definition) for each module. 466 IndexBitcodeWriter( 467 BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 468 const ModuleSummaryIndex &Index, 469 const GVSummaryPtrSet *DecSummaries = nullptr, 470 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr) 471 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 472 DecSummaries(DecSummaries), 473 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 474 475 // See if the StackIdIndex was already added to the StackId map and 476 // vector. If not, record it. 477 auto RecordStackIdReference = [&](unsigned StackIdIndex) { 478 // If the StackIdIndex is not yet in the map, the below insert ensures 479 // that it will point to the new StackIds vector entry we push to just 480 // below. 481 auto Inserted = 482 StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()}); 483 if (Inserted.second) 484 StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex)); 485 }; 486 487 // Assign unique value ids to all summaries to be written, for use 488 // in writing out the call graph edges. Save the mapping from GUID 489 // to the new global value id to use when writing those edges, which 490 // are currently saved in the index in terms of GUID. 491 forEachSummary([&](GVInfo I, bool IsAliasee) { 492 GUIDToValueIdMap[I.first] = ++GlobalValueId; 493 if (IsAliasee) 494 return; 495 auto *FS = dyn_cast<FunctionSummary>(I.second); 496 if (!FS) 497 return; 498 // Record all stack id indices actually used in the summary entries being 499 // written, so that we can compact them in the case of distributed ThinLTO 500 // indexes. 501 for (auto &CI : FS->callsites()) { 502 // If the stack id list is empty, this callsite info was synthesized for 503 // a missing tail call frame. Ensure that the callee's GUID gets a value 504 // id. Normally we only generate these for defined summaries, which in 505 // the case of distributed ThinLTO is only the functions already defined 506 // in the module or that we want to import. We don't bother to include 507 // all the callee symbols as they aren't normally needed in the backend. 508 // However, for the synthesized callsite infos we do need the callee 509 // GUID in the backend so that we can correlate the identified callee 510 // with this callsite info (which for non-tail calls is done by the 511 // ordering of the callsite infos and verified via stack ids). 512 if (CI.StackIdIndices.empty()) { 513 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 514 continue; 515 } 516 for (auto Idx : CI.StackIdIndices) 517 RecordStackIdReference(Idx); 518 } 519 for (auto &AI : FS->allocs()) 520 for (auto &MIB : AI.MIBs) 521 for (auto Idx : MIB.StackIdIndices) 522 RecordStackIdReference(Idx); 523 }); 524 } 525 526 /// The below iterator returns the GUID and associated summary. 527 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 528 529 /// Calls the callback for each value GUID and summary to be written to 530 /// bitcode. This hides the details of whether they are being pulled from the 531 /// entire index or just those in a provided ModuleToSummariesForIndex map. 532 template<typename Functor> 533 void forEachSummary(Functor Callback) { 534 if (ModuleToSummariesForIndex) { 535 for (auto &M : *ModuleToSummariesForIndex) 536 for (auto &Summary : M.second) { 537 Callback(Summary, false); 538 // Ensure aliasee is handled, e.g. for assigning a valueId, 539 // even if we are not importing the aliasee directly (the 540 // imported alias will contain a copy of aliasee). 541 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 542 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 543 } 544 } else { 545 for (auto &Summaries : Index) 546 for (auto &Summary : Summaries.second.SummaryList) 547 Callback({Summaries.first, Summary.get()}, false); 548 } 549 } 550 551 /// Calls the callback for each entry in the modulePaths StringMap that 552 /// should be written to the module path string table. This hides the details 553 /// of whether they are being pulled from the entire index or just those in a 554 /// provided ModuleToSummariesForIndex map. 555 template <typename Functor> void forEachModule(Functor Callback) { 556 if (ModuleToSummariesForIndex) { 557 for (const auto &M : *ModuleToSummariesForIndex) { 558 const auto &MPI = Index.modulePaths().find(M.first); 559 if (MPI == Index.modulePaths().end()) { 560 // This should only happen if the bitcode file was empty, in which 561 // case we shouldn't be importing (the ModuleToSummariesForIndex 562 // would only include the module we are writing and index for). 563 assert(ModuleToSummariesForIndex->size() == 1); 564 continue; 565 } 566 Callback(*MPI); 567 } 568 } else { 569 // Since StringMap iteration order isn't guaranteed, order by path string 570 // first. 571 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 572 // map lookup. 573 std::vector<StringRef> ModulePaths; 574 for (auto &[ModPath, _] : Index.modulePaths()) 575 ModulePaths.push_back(ModPath); 576 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 577 for (auto &ModPath : ModulePaths) 578 Callback(*Index.modulePaths().find(ModPath)); 579 } 580 } 581 582 /// Main entry point for writing a combined index to bitcode. 583 void write(); 584 585 private: 586 void writeModStrings(); 587 void writeCombinedGlobalValueSummary(); 588 589 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 590 auto VMI = GUIDToValueIdMap.find(ValGUID); 591 if (VMI == GUIDToValueIdMap.end()) 592 return std::nullopt; 593 return VMI->second; 594 } 595 596 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 597 }; 598 599 } // end anonymous namespace 600 601 static unsigned getEncodedCastOpcode(unsigned Opcode) { 602 switch (Opcode) { 603 default: llvm_unreachable("Unknown cast instruction!"); 604 case Instruction::Trunc : return bitc::CAST_TRUNC; 605 case Instruction::ZExt : return bitc::CAST_ZEXT; 606 case Instruction::SExt : return bitc::CAST_SEXT; 607 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 608 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 609 case Instruction::UIToFP : return bitc::CAST_UITOFP; 610 case Instruction::SIToFP : return bitc::CAST_SITOFP; 611 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 612 case Instruction::FPExt : return bitc::CAST_FPEXT; 613 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 614 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 615 case Instruction::BitCast : return bitc::CAST_BITCAST; 616 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 617 } 618 } 619 620 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 621 switch (Opcode) { 622 default: llvm_unreachable("Unknown binary instruction!"); 623 case Instruction::FNeg: return bitc::UNOP_FNEG; 624 } 625 } 626 627 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 628 switch (Opcode) { 629 default: llvm_unreachable("Unknown binary instruction!"); 630 case Instruction::Add: 631 case Instruction::FAdd: return bitc::BINOP_ADD; 632 case Instruction::Sub: 633 case Instruction::FSub: return bitc::BINOP_SUB; 634 case Instruction::Mul: 635 case Instruction::FMul: return bitc::BINOP_MUL; 636 case Instruction::UDiv: return bitc::BINOP_UDIV; 637 case Instruction::FDiv: 638 case Instruction::SDiv: return bitc::BINOP_SDIV; 639 case Instruction::URem: return bitc::BINOP_UREM; 640 case Instruction::FRem: 641 case Instruction::SRem: return bitc::BINOP_SREM; 642 case Instruction::Shl: return bitc::BINOP_SHL; 643 case Instruction::LShr: return bitc::BINOP_LSHR; 644 case Instruction::AShr: return bitc::BINOP_ASHR; 645 case Instruction::And: return bitc::BINOP_AND; 646 case Instruction::Or: return bitc::BINOP_OR; 647 case Instruction::Xor: return bitc::BINOP_XOR; 648 } 649 } 650 651 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 652 switch (Op) { 653 default: llvm_unreachable("Unknown RMW operation!"); 654 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 655 case AtomicRMWInst::Add: return bitc::RMW_ADD; 656 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 657 case AtomicRMWInst::And: return bitc::RMW_AND; 658 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 659 case AtomicRMWInst::Or: return bitc::RMW_OR; 660 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 661 case AtomicRMWInst::Max: return bitc::RMW_MAX; 662 case AtomicRMWInst::Min: return bitc::RMW_MIN; 663 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 664 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 665 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 666 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 667 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 668 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 669 case AtomicRMWInst::UIncWrap: 670 return bitc::RMW_UINC_WRAP; 671 case AtomicRMWInst::UDecWrap: 672 return bitc::RMW_UDEC_WRAP; 673 case AtomicRMWInst::USubCond: 674 return bitc::RMW_USUB_COND; 675 case AtomicRMWInst::USubSat: 676 return bitc::RMW_USUB_SAT; 677 } 678 } 679 680 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 681 switch (Ordering) { 682 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 683 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 684 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 685 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 686 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 687 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 688 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 689 } 690 llvm_unreachable("Invalid ordering"); 691 } 692 693 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 694 StringRef Str, unsigned AbbrevToUse) { 695 SmallVector<unsigned, 64> Vals; 696 697 // Code: [strchar x N] 698 for (char C : Str) { 699 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 700 AbbrevToUse = 0; 701 Vals.push_back(C); 702 } 703 704 // Emit the finished record. 705 Stream.EmitRecord(Code, Vals, AbbrevToUse); 706 } 707 708 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 709 switch (Kind) { 710 case Attribute::Alignment: 711 return bitc::ATTR_KIND_ALIGNMENT; 712 case Attribute::AllocAlign: 713 return bitc::ATTR_KIND_ALLOC_ALIGN; 714 case Attribute::AllocSize: 715 return bitc::ATTR_KIND_ALLOC_SIZE; 716 case Attribute::AlwaysInline: 717 return bitc::ATTR_KIND_ALWAYS_INLINE; 718 case Attribute::Builtin: 719 return bitc::ATTR_KIND_BUILTIN; 720 case Attribute::ByVal: 721 return bitc::ATTR_KIND_BY_VAL; 722 case Attribute::Convergent: 723 return bitc::ATTR_KIND_CONVERGENT; 724 case Attribute::InAlloca: 725 return bitc::ATTR_KIND_IN_ALLOCA; 726 case Attribute::Cold: 727 return bitc::ATTR_KIND_COLD; 728 case Attribute::DisableSanitizerInstrumentation: 729 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 730 case Attribute::FnRetThunkExtern: 731 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 732 case Attribute::Hot: 733 return bitc::ATTR_KIND_HOT; 734 case Attribute::ElementType: 735 return bitc::ATTR_KIND_ELEMENTTYPE; 736 case Attribute::HybridPatchable: 737 return bitc::ATTR_KIND_HYBRID_PATCHABLE; 738 case Attribute::InlineHint: 739 return bitc::ATTR_KIND_INLINE_HINT; 740 case Attribute::InReg: 741 return bitc::ATTR_KIND_IN_REG; 742 case Attribute::JumpTable: 743 return bitc::ATTR_KIND_JUMP_TABLE; 744 case Attribute::MinSize: 745 return bitc::ATTR_KIND_MIN_SIZE; 746 case Attribute::AllocatedPointer: 747 return bitc::ATTR_KIND_ALLOCATED_POINTER; 748 case Attribute::AllocKind: 749 return bitc::ATTR_KIND_ALLOC_KIND; 750 case Attribute::Memory: 751 return bitc::ATTR_KIND_MEMORY; 752 case Attribute::NoFPClass: 753 return bitc::ATTR_KIND_NOFPCLASS; 754 case Attribute::Naked: 755 return bitc::ATTR_KIND_NAKED; 756 case Attribute::Nest: 757 return bitc::ATTR_KIND_NEST; 758 case Attribute::NoAlias: 759 return bitc::ATTR_KIND_NO_ALIAS; 760 case Attribute::NoBuiltin: 761 return bitc::ATTR_KIND_NO_BUILTIN; 762 case Attribute::NoCallback: 763 return bitc::ATTR_KIND_NO_CALLBACK; 764 case Attribute::NoCapture: 765 return bitc::ATTR_KIND_NO_CAPTURE; 766 case Attribute::NoDivergenceSource: 767 return bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE; 768 case Attribute::NoDuplicate: 769 return bitc::ATTR_KIND_NO_DUPLICATE; 770 case Attribute::NoFree: 771 return bitc::ATTR_KIND_NOFREE; 772 case Attribute::NoImplicitFloat: 773 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 774 case Attribute::NoInline: 775 return bitc::ATTR_KIND_NO_INLINE; 776 case Attribute::NoRecurse: 777 return bitc::ATTR_KIND_NO_RECURSE; 778 case Attribute::NoMerge: 779 return bitc::ATTR_KIND_NO_MERGE; 780 case Attribute::NonLazyBind: 781 return bitc::ATTR_KIND_NON_LAZY_BIND; 782 case Attribute::NonNull: 783 return bitc::ATTR_KIND_NON_NULL; 784 case Attribute::Dereferenceable: 785 return bitc::ATTR_KIND_DEREFERENCEABLE; 786 case Attribute::DereferenceableOrNull: 787 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 788 case Attribute::NoRedZone: 789 return bitc::ATTR_KIND_NO_RED_ZONE; 790 case Attribute::NoReturn: 791 return bitc::ATTR_KIND_NO_RETURN; 792 case Attribute::NoSync: 793 return bitc::ATTR_KIND_NOSYNC; 794 case Attribute::NoCfCheck: 795 return bitc::ATTR_KIND_NOCF_CHECK; 796 case Attribute::NoProfile: 797 return bitc::ATTR_KIND_NO_PROFILE; 798 case Attribute::SkipProfile: 799 return bitc::ATTR_KIND_SKIP_PROFILE; 800 case Attribute::NoUnwind: 801 return bitc::ATTR_KIND_NO_UNWIND; 802 case Attribute::NoSanitizeBounds: 803 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 804 case Attribute::NoSanitizeCoverage: 805 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 806 case Attribute::NullPointerIsValid: 807 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 808 case Attribute::OptimizeForDebugging: 809 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 810 case Attribute::OptForFuzzing: 811 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 812 case Attribute::OptimizeForSize: 813 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 814 case Attribute::OptimizeNone: 815 return bitc::ATTR_KIND_OPTIMIZE_NONE; 816 case Attribute::ReadNone: 817 return bitc::ATTR_KIND_READ_NONE; 818 case Attribute::ReadOnly: 819 return bitc::ATTR_KIND_READ_ONLY; 820 case Attribute::Returned: 821 return bitc::ATTR_KIND_RETURNED; 822 case Attribute::ReturnsTwice: 823 return bitc::ATTR_KIND_RETURNS_TWICE; 824 case Attribute::SExt: 825 return bitc::ATTR_KIND_S_EXT; 826 case Attribute::Speculatable: 827 return bitc::ATTR_KIND_SPECULATABLE; 828 case Attribute::StackAlignment: 829 return bitc::ATTR_KIND_STACK_ALIGNMENT; 830 case Attribute::StackProtect: 831 return bitc::ATTR_KIND_STACK_PROTECT; 832 case Attribute::StackProtectReq: 833 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 834 case Attribute::StackProtectStrong: 835 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 836 case Attribute::SafeStack: 837 return bitc::ATTR_KIND_SAFESTACK; 838 case Attribute::ShadowCallStack: 839 return bitc::ATTR_KIND_SHADOWCALLSTACK; 840 case Attribute::StrictFP: 841 return bitc::ATTR_KIND_STRICT_FP; 842 case Attribute::StructRet: 843 return bitc::ATTR_KIND_STRUCT_RET; 844 case Attribute::SanitizeAddress: 845 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 846 case Attribute::SanitizeHWAddress: 847 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 848 case Attribute::SanitizeThread: 849 return bitc::ATTR_KIND_SANITIZE_THREAD; 850 case Attribute::SanitizeMemory: 851 return bitc::ATTR_KIND_SANITIZE_MEMORY; 852 case Attribute::SanitizeNumericalStability: 853 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY; 854 case Attribute::SanitizeRealtime: 855 return bitc::ATTR_KIND_SANITIZE_REALTIME; 856 case Attribute::SanitizeRealtimeUnsafe: 857 return bitc::ATTR_KIND_SANITIZE_REALTIME_UNSAFE; 858 case Attribute::SpeculativeLoadHardening: 859 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 860 case Attribute::SwiftError: 861 return bitc::ATTR_KIND_SWIFT_ERROR; 862 case Attribute::SwiftSelf: 863 return bitc::ATTR_KIND_SWIFT_SELF; 864 case Attribute::SwiftAsync: 865 return bitc::ATTR_KIND_SWIFT_ASYNC; 866 case Attribute::UWTable: 867 return bitc::ATTR_KIND_UW_TABLE; 868 case Attribute::VScaleRange: 869 return bitc::ATTR_KIND_VSCALE_RANGE; 870 case Attribute::WillReturn: 871 return bitc::ATTR_KIND_WILLRETURN; 872 case Attribute::WriteOnly: 873 return bitc::ATTR_KIND_WRITEONLY; 874 case Attribute::ZExt: 875 return bitc::ATTR_KIND_Z_EXT; 876 case Attribute::ImmArg: 877 return bitc::ATTR_KIND_IMMARG; 878 case Attribute::SanitizeMemTag: 879 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 880 case Attribute::Preallocated: 881 return bitc::ATTR_KIND_PREALLOCATED; 882 case Attribute::NoUndef: 883 return bitc::ATTR_KIND_NOUNDEF; 884 case Attribute::ByRef: 885 return bitc::ATTR_KIND_BYREF; 886 case Attribute::MustProgress: 887 return bitc::ATTR_KIND_MUSTPROGRESS; 888 case Attribute::PresplitCoroutine: 889 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 890 case Attribute::Writable: 891 return bitc::ATTR_KIND_WRITABLE; 892 case Attribute::CoroDestroyOnlyWhenComplete: 893 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 894 case Attribute::CoroElideSafe: 895 return bitc::ATTR_KIND_CORO_ELIDE_SAFE; 896 case Attribute::DeadOnUnwind: 897 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 898 case Attribute::Range: 899 return bitc::ATTR_KIND_RANGE; 900 case Attribute::Initializes: 901 return bitc::ATTR_KIND_INITIALIZES; 902 case Attribute::NoExt: 903 return bitc::ATTR_KIND_NO_EXT; 904 case Attribute::EndAttrKinds: 905 llvm_unreachable("Can not encode end-attribute kinds marker."); 906 case Attribute::None: 907 llvm_unreachable("Can not encode none-attribute."); 908 case Attribute::EmptyKey: 909 case Attribute::TombstoneKey: 910 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 911 } 912 913 llvm_unreachable("Trying to encode unknown attribute"); 914 } 915 916 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 917 if ((int64_t)V >= 0) 918 Vals.push_back(V << 1); 919 else 920 Vals.push_back((-V << 1) | 1); 921 } 922 923 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 924 // We have an arbitrary precision integer value to write whose 925 // bit width is > 64. However, in canonical unsigned integer 926 // format it is likely that the high bits are going to be zero. 927 // So, we only write the number of active words. 928 unsigned NumWords = A.getActiveWords(); 929 const uint64_t *RawData = A.getRawData(); 930 for (unsigned i = 0; i < NumWords; i++) 931 emitSignedInt64(Vals, RawData[i]); 932 } 933 934 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 935 const ConstantRange &CR, bool EmitBitWidth) { 936 unsigned BitWidth = CR.getBitWidth(); 937 if (EmitBitWidth) 938 Record.push_back(BitWidth); 939 if (BitWidth > 64) { 940 Record.push_back(CR.getLower().getActiveWords() | 941 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 942 emitWideAPInt(Record, CR.getLower()); 943 emitWideAPInt(Record, CR.getUpper()); 944 } else { 945 emitSignedInt64(Record, CR.getLower().getSExtValue()); 946 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 947 } 948 } 949 950 void ModuleBitcodeWriter::writeAttributeGroupTable() { 951 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 952 VE.getAttributeGroups(); 953 if (AttrGrps.empty()) return; 954 955 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 956 957 SmallVector<uint64_t, 64> Record; 958 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 959 unsigned AttrListIndex = Pair.first; 960 AttributeSet AS = Pair.second; 961 Record.push_back(VE.getAttributeGroupID(Pair)); 962 Record.push_back(AttrListIndex); 963 964 for (Attribute Attr : AS) { 965 if (Attr.isEnumAttribute()) { 966 Record.push_back(0); 967 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 968 } else if (Attr.isIntAttribute()) { 969 Record.push_back(1); 970 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 971 Record.push_back(Attr.getValueAsInt()); 972 } else if (Attr.isStringAttribute()) { 973 StringRef Kind = Attr.getKindAsString(); 974 StringRef Val = Attr.getValueAsString(); 975 976 Record.push_back(Val.empty() ? 3 : 4); 977 Record.append(Kind.begin(), Kind.end()); 978 Record.push_back(0); 979 if (!Val.empty()) { 980 Record.append(Val.begin(), Val.end()); 981 Record.push_back(0); 982 } 983 } else if (Attr.isTypeAttribute()) { 984 Type *Ty = Attr.getValueAsType(); 985 Record.push_back(Ty ? 6 : 5); 986 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 987 if (Ty) 988 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 989 } else if (Attr.isConstantRangeAttribute()) { 990 Record.push_back(7); 991 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 992 emitConstantRange(Record, Attr.getValueAsConstantRange(), 993 /*EmitBitWidth=*/true); 994 } else { 995 assert(Attr.isConstantRangeListAttribute()); 996 Record.push_back(8); 997 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 998 ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList(); 999 Record.push_back(Val.size()); 1000 Record.push_back(Val[0].getBitWidth()); 1001 for (auto &CR : Val) 1002 emitConstantRange(Record, CR, /*EmitBitWidth=*/false); 1003 } 1004 } 1005 1006 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 1007 Record.clear(); 1008 } 1009 1010 Stream.ExitBlock(); 1011 } 1012 1013 void ModuleBitcodeWriter::writeAttributeTable() { 1014 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 1015 if (Attrs.empty()) return; 1016 1017 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 1018 1019 SmallVector<uint64_t, 64> Record; 1020 for (const AttributeList &AL : Attrs) { 1021 for (unsigned i : AL.indexes()) { 1022 AttributeSet AS = AL.getAttributes(i); 1023 if (AS.hasAttributes()) 1024 Record.push_back(VE.getAttributeGroupID({i, AS})); 1025 } 1026 1027 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 1028 Record.clear(); 1029 } 1030 1031 Stream.ExitBlock(); 1032 } 1033 1034 /// WriteTypeTable - Write out the type table for a module. 1035 void ModuleBitcodeWriter::writeTypeTable() { 1036 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 1037 1038 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 1039 SmallVector<uint64_t, 64> TypeVals; 1040 1041 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); 1042 1043 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 1044 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1045 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 1046 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 1047 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1048 1049 // Abbrev for TYPE_CODE_FUNCTION. 1050 Abbv = std::make_shared<BitCodeAbbrev>(); 1051 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 1052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 1053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1055 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1056 1057 // Abbrev for TYPE_CODE_STRUCT_ANON. 1058 Abbv = std::make_shared<BitCodeAbbrev>(); 1059 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 1060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1063 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1064 1065 // Abbrev for TYPE_CODE_STRUCT_NAME. 1066 Abbv = std::make_shared<BitCodeAbbrev>(); 1067 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1070 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1071 1072 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1073 Abbv = std::make_shared<BitCodeAbbrev>(); 1074 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1078 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1079 1080 // Abbrev for TYPE_CODE_ARRAY. 1081 Abbv = std::make_shared<BitCodeAbbrev>(); 1082 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1085 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1086 1087 // Emit an entry count so the reader can reserve space. 1088 TypeVals.push_back(TypeList.size()); 1089 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1090 TypeVals.clear(); 1091 1092 // Loop over all of the types, emitting each in turn. 1093 for (Type *T : TypeList) { 1094 int AbbrevToUse = 0; 1095 unsigned Code = 0; 1096 1097 switch (T->getTypeID()) { 1098 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1099 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1100 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1101 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1102 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1103 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1104 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1105 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1106 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1107 case Type::MetadataTyID: 1108 Code = bitc::TYPE_CODE_METADATA; 1109 break; 1110 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1111 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1112 case Type::IntegerTyID: 1113 // INTEGER: [width] 1114 Code = bitc::TYPE_CODE_INTEGER; 1115 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1116 break; 1117 case Type::PointerTyID: { 1118 PointerType *PTy = cast<PointerType>(T); 1119 unsigned AddressSpace = PTy->getAddressSpace(); 1120 // OPAQUE_POINTER: [address space] 1121 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1122 TypeVals.push_back(AddressSpace); 1123 if (AddressSpace == 0) 1124 AbbrevToUse = OpaquePtrAbbrev; 1125 break; 1126 } 1127 case Type::FunctionTyID: { 1128 FunctionType *FT = cast<FunctionType>(T); 1129 // FUNCTION: [isvararg, retty, paramty x N] 1130 Code = bitc::TYPE_CODE_FUNCTION; 1131 TypeVals.push_back(FT->isVarArg()); 1132 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1133 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1134 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1135 AbbrevToUse = FunctionAbbrev; 1136 break; 1137 } 1138 case Type::StructTyID: { 1139 StructType *ST = cast<StructType>(T); 1140 // STRUCT: [ispacked, eltty x N] 1141 TypeVals.push_back(ST->isPacked()); 1142 // Output all of the element types. 1143 for (Type *ET : ST->elements()) 1144 TypeVals.push_back(VE.getTypeID(ET)); 1145 1146 if (ST->isLiteral()) { 1147 Code = bitc::TYPE_CODE_STRUCT_ANON; 1148 AbbrevToUse = StructAnonAbbrev; 1149 } else { 1150 if (ST->isOpaque()) { 1151 Code = bitc::TYPE_CODE_OPAQUE; 1152 } else { 1153 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1154 AbbrevToUse = StructNamedAbbrev; 1155 } 1156 1157 // Emit the name if it is present. 1158 if (!ST->getName().empty()) 1159 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1160 StructNameAbbrev); 1161 } 1162 break; 1163 } 1164 case Type::ArrayTyID: { 1165 ArrayType *AT = cast<ArrayType>(T); 1166 // ARRAY: [numelts, eltty] 1167 Code = bitc::TYPE_CODE_ARRAY; 1168 TypeVals.push_back(AT->getNumElements()); 1169 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1170 AbbrevToUse = ArrayAbbrev; 1171 break; 1172 } 1173 case Type::FixedVectorTyID: 1174 case Type::ScalableVectorTyID: { 1175 VectorType *VT = cast<VectorType>(T); 1176 // VECTOR [numelts, eltty] or 1177 // [numelts, eltty, scalable] 1178 Code = bitc::TYPE_CODE_VECTOR; 1179 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1180 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1181 if (isa<ScalableVectorType>(VT)) 1182 TypeVals.push_back(true); 1183 break; 1184 } 1185 case Type::TargetExtTyID: { 1186 TargetExtType *TET = cast<TargetExtType>(T); 1187 Code = bitc::TYPE_CODE_TARGET_TYPE; 1188 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1189 StructNameAbbrev); 1190 TypeVals.push_back(TET->getNumTypeParameters()); 1191 for (Type *InnerTy : TET->type_params()) 1192 TypeVals.push_back(VE.getTypeID(InnerTy)); 1193 for (unsigned IntParam : TET->int_params()) 1194 TypeVals.push_back(IntParam); 1195 break; 1196 } 1197 case Type::TypedPointerTyID: 1198 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1199 } 1200 1201 // Emit the finished record. 1202 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1203 TypeVals.clear(); 1204 } 1205 1206 Stream.ExitBlock(); 1207 } 1208 1209 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1210 switch (Linkage) { 1211 case GlobalValue::ExternalLinkage: 1212 return 0; 1213 case GlobalValue::WeakAnyLinkage: 1214 return 16; 1215 case GlobalValue::AppendingLinkage: 1216 return 2; 1217 case GlobalValue::InternalLinkage: 1218 return 3; 1219 case GlobalValue::LinkOnceAnyLinkage: 1220 return 18; 1221 case GlobalValue::ExternalWeakLinkage: 1222 return 7; 1223 case GlobalValue::CommonLinkage: 1224 return 8; 1225 case GlobalValue::PrivateLinkage: 1226 return 9; 1227 case GlobalValue::WeakODRLinkage: 1228 return 17; 1229 case GlobalValue::LinkOnceODRLinkage: 1230 return 19; 1231 case GlobalValue::AvailableExternallyLinkage: 1232 return 12; 1233 } 1234 llvm_unreachable("Invalid linkage"); 1235 } 1236 1237 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1238 return getEncodedLinkage(GV.getLinkage()); 1239 } 1240 1241 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1242 uint64_t RawFlags = 0; 1243 RawFlags |= Flags.ReadNone; 1244 RawFlags |= (Flags.ReadOnly << 1); 1245 RawFlags |= (Flags.NoRecurse << 2); 1246 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1247 RawFlags |= (Flags.NoInline << 4); 1248 RawFlags |= (Flags.AlwaysInline << 5); 1249 RawFlags |= (Flags.NoUnwind << 6); 1250 RawFlags |= (Flags.MayThrow << 7); 1251 RawFlags |= (Flags.HasUnknownCall << 8); 1252 RawFlags |= (Flags.MustBeUnreachable << 9); 1253 return RawFlags; 1254 } 1255 1256 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1257 // in BitcodeReader.cpp. 1258 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags, 1259 bool ImportAsDecl = false) { 1260 uint64_t RawFlags = 0; 1261 1262 RawFlags |= Flags.NotEligibleToImport; // bool 1263 RawFlags |= (Flags.Live << 1); 1264 RawFlags |= (Flags.DSOLocal << 2); 1265 RawFlags |= (Flags.CanAutoHide << 3); 1266 1267 // Linkage don't need to be remapped at that time for the summary. Any future 1268 // change to the getEncodedLinkage() function will need to be taken into 1269 // account here as well. 1270 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1271 1272 RawFlags |= (Flags.Visibility << 8); // 2 bits 1273 1274 unsigned ImportType = Flags.ImportType | ImportAsDecl; 1275 RawFlags |= (ImportType << 10); // 1 bit 1276 1277 return RawFlags; 1278 } 1279 1280 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1281 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1282 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1283 return RawFlags; 1284 } 1285 1286 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1287 uint64_t RawFlags = 0; 1288 1289 RawFlags |= CI.Hotness; // 3 bits 1290 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1291 1292 return RawFlags; 1293 } 1294 1295 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1296 uint64_t RawFlags = 0; 1297 1298 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1299 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1300 1301 return RawFlags; 1302 } 1303 1304 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1305 switch (GV.getVisibility()) { 1306 case GlobalValue::DefaultVisibility: return 0; 1307 case GlobalValue::HiddenVisibility: return 1; 1308 case GlobalValue::ProtectedVisibility: return 2; 1309 } 1310 llvm_unreachable("Invalid visibility"); 1311 } 1312 1313 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1314 switch (GV.getDLLStorageClass()) { 1315 case GlobalValue::DefaultStorageClass: return 0; 1316 case GlobalValue::DLLImportStorageClass: return 1; 1317 case GlobalValue::DLLExportStorageClass: return 2; 1318 } 1319 llvm_unreachable("Invalid DLL storage class"); 1320 } 1321 1322 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1323 switch (GV.getThreadLocalMode()) { 1324 case GlobalVariable::NotThreadLocal: return 0; 1325 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1326 case GlobalVariable::LocalDynamicTLSModel: return 2; 1327 case GlobalVariable::InitialExecTLSModel: return 3; 1328 case GlobalVariable::LocalExecTLSModel: return 4; 1329 } 1330 llvm_unreachable("Invalid TLS model"); 1331 } 1332 1333 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1334 switch (C.getSelectionKind()) { 1335 case Comdat::Any: 1336 return bitc::COMDAT_SELECTION_KIND_ANY; 1337 case Comdat::ExactMatch: 1338 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1339 case Comdat::Largest: 1340 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1341 case Comdat::NoDeduplicate: 1342 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1343 case Comdat::SameSize: 1344 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1345 } 1346 llvm_unreachable("Invalid selection kind"); 1347 } 1348 1349 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1350 switch (GV.getUnnamedAddr()) { 1351 case GlobalValue::UnnamedAddr::None: return 0; 1352 case GlobalValue::UnnamedAddr::Local: return 2; 1353 case GlobalValue::UnnamedAddr::Global: return 1; 1354 } 1355 llvm_unreachable("Invalid unnamed_addr"); 1356 } 1357 1358 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1359 if (GenerateHash) 1360 Hasher.update(Str); 1361 return StrtabBuilder.add(Str); 1362 } 1363 1364 void ModuleBitcodeWriter::writeComdats() { 1365 SmallVector<unsigned, 64> Vals; 1366 for (const Comdat *C : VE.getComdats()) { 1367 // COMDAT: [strtab offset, strtab size, selection_kind] 1368 Vals.push_back(addToStrtab(C->getName())); 1369 Vals.push_back(C->getName().size()); 1370 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1371 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1372 Vals.clear(); 1373 } 1374 } 1375 1376 /// Write a record that will eventually hold the word offset of the 1377 /// module-level VST. For now the offset is 0, which will be backpatched 1378 /// after the real VST is written. Saves the bit offset to backpatch. 1379 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1380 // Write a placeholder value in for the offset of the real VST, 1381 // which is written after the function blocks so that it can include 1382 // the offset of each function. The placeholder offset will be 1383 // updated when the real VST is written. 1384 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1385 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1386 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1387 // hold the real VST offset. Must use fixed instead of VBR as we don't 1388 // know how many VBR chunks to reserve ahead of time. 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1390 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1391 1392 // Emit the placeholder 1393 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1394 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1395 1396 // Compute and save the bit offset to the placeholder, which will be 1397 // patched when the real VST is written. We can simply subtract the 32-bit 1398 // fixed size from the current bit number to get the location to backpatch. 1399 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1400 } 1401 1402 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1403 1404 /// Determine the encoding to use for the given string name and length. 1405 static StringEncoding getStringEncoding(StringRef Str) { 1406 bool isChar6 = true; 1407 for (char C : Str) { 1408 if (isChar6) 1409 isChar6 = BitCodeAbbrevOp::isChar6(C); 1410 if ((unsigned char)C & 128) 1411 // don't bother scanning the rest. 1412 return SE_Fixed8; 1413 } 1414 if (isChar6) 1415 return SE_Char6; 1416 return SE_Fixed7; 1417 } 1418 1419 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1420 "Sanitizer Metadata is too large for naive serialization."); 1421 static unsigned 1422 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1423 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1424 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1425 } 1426 1427 /// Emit top-level description of module, including target triple, inline asm, 1428 /// descriptors for global variables, and function prototype info. 1429 /// Returns the bit offset to backpatch with the location of the real VST. 1430 void ModuleBitcodeWriter::writeModuleInfo() { 1431 // Emit various pieces of data attached to a module. 1432 if (!M.getTargetTriple().empty()) 1433 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1434 0 /*TODO*/); 1435 const std::string &DL = M.getDataLayoutStr(); 1436 if (!DL.empty()) 1437 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1438 if (!M.getModuleInlineAsm().empty()) 1439 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1440 0 /*TODO*/); 1441 1442 // Emit information about sections and GC, computing how many there are. Also 1443 // compute the maximum alignment value. 1444 std::map<std::string, unsigned> SectionMap; 1445 std::map<std::string, unsigned> GCMap; 1446 MaybeAlign MaxAlignment; 1447 unsigned MaxGlobalType = 0; 1448 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1449 if (A) 1450 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1451 }; 1452 for (const GlobalVariable &GV : M.globals()) { 1453 UpdateMaxAlignment(GV.getAlign()); 1454 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1455 if (GV.hasSection()) { 1456 // Give section names unique ID's. 1457 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1458 if (!Entry) { 1459 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1460 0 /*TODO*/); 1461 Entry = SectionMap.size(); 1462 } 1463 } 1464 } 1465 for (const Function &F : M) { 1466 UpdateMaxAlignment(F.getAlign()); 1467 if (F.hasSection()) { 1468 // Give section names unique ID's. 1469 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1470 if (!Entry) { 1471 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1472 0 /*TODO*/); 1473 Entry = SectionMap.size(); 1474 } 1475 } 1476 if (F.hasGC()) { 1477 // Same for GC names. 1478 unsigned &Entry = GCMap[F.getGC()]; 1479 if (!Entry) { 1480 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1481 0 /*TODO*/); 1482 Entry = GCMap.size(); 1483 } 1484 } 1485 } 1486 1487 // Emit abbrev for globals, now that we know # sections and max alignment. 1488 unsigned SimpleGVarAbbrev = 0; 1489 if (!M.global_empty()) { 1490 // Add an abbrev for common globals with no visibility or thread localness. 1491 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1492 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1496 Log2_32_Ceil(MaxGlobalType+1))); 1497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1498 //| explicitType << 1 1499 //| constant 1500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1502 if (!MaxAlignment) // Alignment. 1503 Abbv->Add(BitCodeAbbrevOp(0)); 1504 else { 1505 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1507 Log2_32_Ceil(MaxEncAlignment+1))); 1508 } 1509 if (SectionMap.empty()) // Section. 1510 Abbv->Add(BitCodeAbbrevOp(0)); 1511 else 1512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1513 Log2_32_Ceil(SectionMap.size()+1))); 1514 // Don't bother emitting vis + thread local. 1515 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1516 } 1517 1518 SmallVector<unsigned, 64> Vals; 1519 // Emit the module's source file name. 1520 { 1521 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1522 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1523 if (Bits == SE_Char6) 1524 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1525 else if (Bits == SE_Fixed7) 1526 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1527 1528 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1529 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1530 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1532 Abbv->Add(AbbrevOpToUse); 1533 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1534 1535 for (const auto P : M.getSourceFileName()) 1536 Vals.push_back((unsigned char)P); 1537 1538 // Emit the finished record. 1539 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1540 Vals.clear(); 1541 } 1542 1543 // Emit the global variable information. 1544 for (const GlobalVariable &GV : M.globals()) { 1545 unsigned AbbrevToUse = 0; 1546 1547 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1548 // linkage, alignment, section, visibility, threadlocal, 1549 // unnamed_addr, externally_initialized, dllstorageclass, 1550 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1551 Vals.push_back(addToStrtab(GV.getName())); 1552 Vals.push_back(GV.getName().size()); 1553 Vals.push_back(VE.getTypeID(GV.getValueType())); 1554 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1555 Vals.push_back(GV.isDeclaration() ? 0 : 1556 (VE.getValueID(GV.getInitializer()) + 1)); 1557 Vals.push_back(getEncodedLinkage(GV)); 1558 Vals.push_back(getEncodedAlign(GV.getAlign())); 1559 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1560 : 0); 1561 if (GV.isThreadLocal() || 1562 GV.getVisibility() != GlobalValue::DefaultVisibility || 1563 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1564 GV.isExternallyInitialized() || 1565 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1566 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1567 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1568 Vals.push_back(getEncodedVisibility(GV)); 1569 Vals.push_back(getEncodedThreadLocalMode(GV)); 1570 Vals.push_back(getEncodedUnnamedAddr(GV)); 1571 Vals.push_back(GV.isExternallyInitialized()); 1572 Vals.push_back(getEncodedDLLStorageClass(GV)); 1573 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1574 1575 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1576 Vals.push_back(VE.getAttributeListID(AL)); 1577 1578 Vals.push_back(GV.isDSOLocal()); 1579 Vals.push_back(addToStrtab(GV.getPartition())); 1580 Vals.push_back(GV.getPartition().size()); 1581 1582 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1583 GV.getSanitizerMetadata()) 1584 : 0)); 1585 Vals.push_back(GV.getCodeModelRaw()); 1586 } else { 1587 AbbrevToUse = SimpleGVarAbbrev; 1588 } 1589 1590 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1591 Vals.clear(); 1592 } 1593 1594 // Emit the function proto information. 1595 for (const Function &F : M) { 1596 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1597 // linkage, paramattrs, alignment, section, visibility, gc, 1598 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1599 // prefixdata, personalityfn, DSO_Local, addrspace] 1600 Vals.push_back(addToStrtab(F.getName())); 1601 Vals.push_back(F.getName().size()); 1602 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1603 Vals.push_back(F.getCallingConv()); 1604 Vals.push_back(F.isDeclaration()); 1605 Vals.push_back(getEncodedLinkage(F)); 1606 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1607 Vals.push_back(getEncodedAlign(F.getAlign())); 1608 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1609 : 0); 1610 Vals.push_back(getEncodedVisibility(F)); 1611 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1612 Vals.push_back(getEncodedUnnamedAddr(F)); 1613 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1614 : 0); 1615 Vals.push_back(getEncodedDLLStorageClass(F)); 1616 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1617 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1618 : 0); 1619 Vals.push_back( 1620 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1621 1622 Vals.push_back(F.isDSOLocal()); 1623 Vals.push_back(F.getAddressSpace()); 1624 Vals.push_back(addToStrtab(F.getPartition())); 1625 Vals.push_back(F.getPartition().size()); 1626 1627 unsigned AbbrevToUse = 0; 1628 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1629 Vals.clear(); 1630 } 1631 1632 // Emit the alias information. 1633 for (const GlobalAlias &A : M.aliases()) { 1634 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1635 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1636 // DSO_Local] 1637 Vals.push_back(addToStrtab(A.getName())); 1638 Vals.push_back(A.getName().size()); 1639 Vals.push_back(VE.getTypeID(A.getValueType())); 1640 Vals.push_back(A.getType()->getAddressSpace()); 1641 Vals.push_back(VE.getValueID(A.getAliasee())); 1642 Vals.push_back(getEncodedLinkage(A)); 1643 Vals.push_back(getEncodedVisibility(A)); 1644 Vals.push_back(getEncodedDLLStorageClass(A)); 1645 Vals.push_back(getEncodedThreadLocalMode(A)); 1646 Vals.push_back(getEncodedUnnamedAddr(A)); 1647 Vals.push_back(A.isDSOLocal()); 1648 Vals.push_back(addToStrtab(A.getPartition())); 1649 Vals.push_back(A.getPartition().size()); 1650 1651 unsigned AbbrevToUse = 0; 1652 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1653 Vals.clear(); 1654 } 1655 1656 // Emit the ifunc information. 1657 for (const GlobalIFunc &I : M.ifuncs()) { 1658 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1659 // val#, linkage, visibility, DSO_Local] 1660 Vals.push_back(addToStrtab(I.getName())); 1661 Vals.push_back(I.getName().size()); 1662 Vals.push_back(VE.getTypeID(I.getValueType())); 1663 Vals.push_back(I.getType()->getAddressSpace()); 1664 Vals.push_back(VE.getValueID(I.getResolver())); 1665 Vals.push_back(getEncodedLinkage(I)); 1666 Vals.push_back(getEncodedVisibility(I)); 1667 Vals.push_back(I.isDSOLocal()); 1668 Vals.push_back(addToStrtab(I.getPartition())); 1669 Vals.push_back(I.getPartition().size()); 1670 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1671 Vals.clear(); 1672 } 1673 1674 writeValueSymbolTableForwardDecl(); 1675 } 1676 1677 static uint64_t getOptimizationFlags(const Value *V) { 1678 uint64_t Flags = 0; 1679 1680 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1681 if (OBO->hasNoSignedWrap()) 1682 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1683 if (OBO->hasNoUnsignedWrap()) 1684 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1685 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1686 if (PEO->isExact()) 1687 Flags |= 1 << bitc::PEO_EXACT; 1688 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1689 if (PDI->isDisjoint()) 1690 Flags |= 1 << bitc::PDI_DISJOINT; 1691 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1692 if (FPMO->hasAllowReassoc()) 1693 Flags |= bitc::AllowReassoc; 1694 if (FPMO->hasNoNaNs()) 1695 Flags |= bitc::NoNaNs; 1696 if (FPMO->hasNoInfs()) 1697 Flags |= bitc::NoInfs; 1698 if (FPMO->hasNoSignedZeros()) 1699 Flags |= bitc::NoSignedZeros; 1700 if (FPMO->hasAllowReciprocal()) 1701 Flags |= bitc::AllowReciprocal; 1702 if (FPMO->hasAllowContract()) 1703 Flags |= bitc::AllowContract; 1704 if (FPMO->hasApproxFunc()) 1705 Flags |= bitc::ApproxFunc; 1706 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1707 if (NNI->hasNonNeg()) 1708 Flags |= 1 << bitc::PNNI_NON_NEG; 1709 } else if (const auto *TI = dyn_cast<TruncInst>(V)) { 1710 if (TI->hasNoSignedWrap()) 1711 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; 1712 if (TI->hasNoUnsignedWrap()) 1713 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; 1714 } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) { 1715 if (GEP->isInBounds()) 1716 Flags |= 1 << bitc::GEP_INBOUNDS; 1717 if (GEP->hasNoUnsignedSignedWrap()) 1718 Flags |= 1 << bitc::GEP_NUSW; 1719 if (GEP->hasNoUnsignedWrap()) 1720 Flags |= 1 << bitc::GEP_NUW; 1721 } 1722 1723 return Flags; 1724 } 1725 1726 void ModuleBitcodeWriter::writeValueAsMetadata( 1727 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1728 // Mimic an MDNode with a value as one operand. 1729 Value *V = MD->getValue(); 1730 Record.push_back(VE.getTypeID(V->getType())); 1731 Record.push_back(VE.getValueID(V)); 1732 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1733 Record.clear(); 1734 } 1735 1736 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1737 SmallVectorImpl<uint64_t> &Record, 1738 unsigned Abbrev) { 1739 for (const MDOperand &MDO : N->operands()) { 1740 Metadata *MD = MDO; 1741 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1742 "Unexpected function-local metadata"); 1743 Record.push_back(VE.getMetadataOrNullID(MD)); 1744 } 1745 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1746 : bitc::METADATA_NODE, 1747 Record, Abbrev); 1748 Record.clear(); 1749 } 1750 1751 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1752 // Assume the column is usually under 128, and always output the inlined-at 1753 // location (it's never more expensive than building an array size 1). 1754 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1755 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1762 return Stream.EmitAbbrev(std::move(Abbv)); 1763 } 1764 1765 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1766 SmallVectorImpl<uint64_t> &Record, 1767 unsigned &Abbrev) { 1768 if (!Abbrev) 1769 Abbrev = createDILocationAbbrev(); 1770 1771 Record.push_back(N->isDistinct()); 1772 Record.push_back(N->getLine()); 1773 Record.push_back(N->getColumn()); 1774 Record.push_back(VE.getMetadataID(N->getScope())); 1775 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1776 Record.push_back(N->isImplicitCode()); 1777 1778 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1779 Record.clear(); 1780 } 1781 1782 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1783 // Assume the column is usually under 128, and always output the inlined-at 1784 // location (it's never more expensive than building an array size 1). 1785 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1786 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1793 return Stream.EmitAbbrev(std::move(Abbv)); 1794 } 1795 1796 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1797 SmallVectorImpl<uint64_t> &Record, 1798 unsigned &Abbrev) { 1799 if (!Abbrev) 1800 Abbrev = createGenericDINodeAbbrev(); 1801 1802 Record.push_back(N->isDistinct()); 1803 Record.push_back(N->getTag()); 1804 Record.push_back(0); // Per-tag version field; unused for now. 1805 1806 for (auto &I : N->operands()) 1807 Record.push_back(VE.getMetadataOrNullID(I)); 1808 1809 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1810 Record.clear(); 1811 } 1812 1813 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1814 SmallVectorImpl<uint64_t> &Record, 1815 unsigned Abbrev) { 1816 const uint64_t Version = 2 << 1; 1817 Record.push_back((uint64_t)N->isDistinct() | Version); 1818 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1819 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1820 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1821 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1822 1823 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1824 Record.clear(); 1825 } 1826 1827 void ModuleBitcodeWriter::writeDIGenericSubrange( 1828 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1829 unsigned Abbrev) { 1830 Record.push_back((uint64_t)N->isDistinct()); 1831 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1832 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1833 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1834 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1835 1836 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1837 Record.clear(); 1838 } 1839 1840 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1841 SmallVectorImpl<uint64_t> &Record, 1842 unsigned Abbrev) { 1843 const uint64_t IsBigInt = 1 << 2; 1844 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1845 Record.push_back(N->getValue().getBitWidth()); 1846 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1847 emitWideAPInt(Record, N->getValue()); 1848 1849 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1850 Record.clear(); 1851 } 1852 1853 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1854 SmallVectorImpl<uint64_t> &Record, 1855 unsigned Abbrev) { 1856 Record.push_back(N->isDistinct()); 1857 Record.push_back(N->getTag()); 1858 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1859 Record.push_back(N->getSizeInBits()); 1860 Record.push_back(N->getAlignInBits()); 1861 Record.push_back(N->getEncoding()); 1862 Record.push_back(N->getFlags()); 1863 1864 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1865 Record.clear(); 1866 } 1867 1868 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1869 SmallVectorImpl<uint64_t> &Record, 1870 unsigned Abbrev) { 1871 Record.push_back(N->isDistinct()); 1872 Record.push_back(N->getTag()); 1873 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1874 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1875 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1876 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1877 Record.push_back(N->getSizeInBits()); 1878 Record.push_back(N->getAlignInBits()); 1879 Record.push_back(N->getEncoding()); 1880 1881 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1882 Record.clear(); 1883 } 1884 1885 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1886 SmallVectorImpl<uint64_t> &Record, 1887 unsigned Abbrev) { 1888 Record.push_back(N->isDistinct()); 1889 Record.push_back(N->getTag()); 1890 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1891 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1892 Record.push_back(N->getLine()); 1893 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1894 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1895 Record.push_back(N->getSizeInBits()); 1896 Record.push_back(N->getAlignInBits()); 1897 Record.push_back(N->getOffsetInBits()); 1898 Record.push_back(N->getFlags()); 1899 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1900 1901 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1902 // that there is no DWARF address space associated with DIDerivedType. 1903 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1904 Record.push_back(*DWARFAddressSpace + 1); 1905 else 1906 Record.push_back(0); 1907 1908 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1909 1910 if (auto PtrAuthData = N->getPtrAuthData()) 1911 Record.push_back(PtrAuthData->RawData); 1912 else 1913 Record.push_back(0); 1914 1915 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1916 Record.clear(); 1917 } 1918 1919 void ModuleBitcodeWriter::writeDICompositeType( 1920 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1921 unsigned Abbrev) { 1922 const unsigned IsNotUsedInOldTypeRef = 0x2; 1923 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1924 Record.push_back(N->getTag()); 1925 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1926 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1927 Record.push_back(N->getLine()); 1928 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1929 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1930 Record.push_back(N->getSizeInBits()); 1931 Record.push_back(N->getAlignInBits()); 1932 Record.push_back(N->getOffsetInBits()); 1933 Record.push_back(N->getFlags()); 1934 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1935 Record.push_back(N->getRuntimeLang()); 1936 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1937 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1938 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1939 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1940 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1941 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1942 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1943 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1944 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1945 1946 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1947 Record.clear(); 1948 } 1949 1950 void ModuleBitcodeWriter::writeDISubroutineType( 1951 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1952 unsigned Abbrev) { 1953 const unsigned HasNoOldTypeRefs = 0x2; 1954 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1955 Record.push_back(N->getFlags()); 1956 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1957 Record.push_back(N->getCC()); 1958 1959 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1960 Record.clear(); 1961 } 1962 1963 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1964 SmallVectorImpl<uint64_t> &Record, 1965 unsigned Abbrev) { 1966 Record.push_back(N->isDistinct()); 1967 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1968 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1969 if (N->getRawChecksum()) { 1970 Record.push_back(N->getRawChecksum()->Kind); 1971 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1972 } else { 1973 // Maintain backwards compatibility with the old internal representation of 1974 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1975 Record.push_back(0); 1976 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1977 } 1978 auto Source = N->getRawSource(); 1979 if (Source) 1980 Record.push_back(VE.getMetadataOrNullID(Source)); 1981 1982 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1983 Record.clear(); 1984 } 1985 1986 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1987 SmallVectorImpl<uint64_t> &Record, 1988 unsigned Abbrev) { 1989 assert(N->isDistinct() && "Expected distinct compile units"); 1990 Record.push_back(/* IsDistinct */ true); 1991 Record.push_back(N->getSourceLanguage()); 1992 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1993 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1994 Record.push_back(N->isOptimized()); 1995 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1996 Record.push_back(N->getRuntimeVersion()); 1997 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1998 Record.push_back(N->getEmissionKind()); 1999 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 2000 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 2001 Record.push_back(/* subprograms */ 0); 2002 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 2003 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 2004 Record.push_back(N->getDWOId()); 2005 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 2006 Record.push_back(N->getSplitDebugInlining()); 2007 Record.push_back(N->getDebugInfoForProfiling()); 2008 Record.push_back((unsigned)N->getNameTableKind()); 2009 Record.push_back(N->getRangesBaseAddress()); 2010 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 2011 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 2012 2013 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 2014 Record.clear(); 2015 } 2016 2017 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 2018 SmallVectorImpl<uint64_t> &Record, 2019 unsigned Abbrev) { 2020 const uint64_t HasUnitFlag = 1 << 1; 2021 const uint64_t HasSPFlagsFlag = 1 << 2; 2022 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 2023 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2024 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2025 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2026 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2027 Record.push_back(N->getLine()); 2028 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2029 Record.push_back(N->getScopeLine()); 2030 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 2031 Record.push_back(N->getSPFlags()); 2032 Record.push_back(N->getVirtualIndex()); 2033 Record.push_back(N->getFlags()); 2034 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 2035 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 2036 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 2037 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 2038 Record.push_back(N->getThisAdjustment()); 2039 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 2040 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2041 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 2042 2043 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 2044 Record.clear(); 2045 } 2046 2047 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 2048 SmallVectorImpl<uint64_t> &Record, 2049 unsigned Abbrev) { 2050 Record.push_back(N->isDistinct()); 2051 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2052 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2053 Record.push_back(N->getLine()); 2054 Record.push_back(N->getColumn()); 2055 2056 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 2057 Record.clear(); 2058 } 2059 2060 void ModuleBitcodeWriter::writeDILexicalBlockFile( 2061 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 2062 unsigned Abbrev) { 2063 Record.push_back(N->isDistinct()); 2064 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2065 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2066 Record.push_back(N->getDiscriminator()); 2067 2068 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 2069 Record.clear(); 2070 } 2071 2072 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 2073 SmallVectorImpl<uint64_t> &Record, 2074 unsigned Abbrev) { 2075 Record.push_back(N->isDistinct()); 2076 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2077 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 2078 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2079 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2080 Record.push_back(N->getLineNo()); 2081 2082 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 2083 Record.clear(); 2084 } 2085 2086 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2087 SmallVectorImpl<uint64_t> &Record, 2088 unsigned Abbrev) { 2089 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2090 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2091 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2092 2093 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2094 Record.clear(); 2095 } 2096 2097 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2098 SmallVectorImpl<uint64_t> &Record, 2099 unsigned Abbrev) { 2100 Record.push_back(N->isDistinct()); 2101 Record.push_back(N->getMacinfoType()); 2102 Record.push_back(N->getLine()); 2103 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2104 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2105 2106 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2107 Record.clear(); 2108 } 2109 2110 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2111 SmallVectorImpl<uint64_t> &Record, 2112 unsigned Abbrev) { 2113 Record.push_back(N->isDistinct()); 2114 Record.push_back(N->getMacinfoType()); 2115 Record.push_back(N->getLine()); 2116 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2117 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2118 2119 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2120 Record.clear(); 2121 } 2122 2123 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2124 SmallVectorImpl<uint64_t> &Record) { 2125 Record.reserve(N->getArgs().size()); 2126 for (ValueAsMetadata *MD : N->getArgs()) 2127 Record.push_back(VE.getMetadataID(MD)); 2128 2129 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2130 Record.clear(); 2131 } 2132 2133 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2134 SmallVectorImpl<uint64_t> &Record, 2135 unsigned Abbrev) { 2136 Record.push_back(N->isDistinct()); 2137 for (auto &I : N->operands()) 2138 Record.push_back(VE.getMetadataOrNullID(I)); 2139 Record.push_back(N->getLineNo()); 2140 Record.push_back(N->getIsDecl()); 2141 2142 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2143 Record.clear(); 2144 } 2145 2146 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2147 SmallVectorImpl<uint64_t> &Record, 2148 unsigned Abbrev) { 2149 // There are no arguments for this metadata type. 2150 Record.push_back(N->isDistinct()); 2151 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2152 Record.clear(); 2153 } 2154 2155 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2156 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2157 unsigned Abbrev) { 2158 Record.push_back(N->isDistinct()); 2159 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2160 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2161 Record.push_back(N->isDefault()); 2162 2163 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2164 Record.clear(); 2165 } 2166 2167 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2168 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2169 unsigned Abbrev) { 2170 Record.push_back(N->isDistinct()); 2171 Record.push_back(N->getTag()); 2172 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2173 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2174 Record.push_back(N->isDefault()); 2175 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2176 2177 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2178 Record.clear(); 2179 } 2180 2181 void ModuleBitcodeWriter::writeDIGlobalVariable( 2182 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2183 unsigned Abbrev) { 2184 const uint64_t Version = 2 << 1; 2185 Record.push_back((uint64_t)N->isDistinct() | Version); 2186 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2187 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2188 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2189 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2190 Record.push_back(N->getLine()); 2191 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2192 Record.push_back(N->isLocalToUnit()); 2193 Record.push_back(N->isDefinition()); 2194 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2195 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2196 Record.push_back(N->getAlignInBits()); 2197 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2198 2199 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2200 Record.clear(); 2201 } 2202 2203 void ModuleBitcodeWriter::writeDILocalVariable( 2204 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2205 unsigned Abbrev) { 2206 // In order to support all possible bitcode formats in BitcodeReader we need 2207 // to distinguish the following cases: 2208 // 1) Record has no artificial tag (Record[1]), 2209 // has no obsolete inlinedAt field (Record[9]). 2210 // In this case Record size will be 8, HasAlignment flag is false. 2211 // 2) Record has artificial tag (Record[1]), 2212 // has no obsolete inlignedAt field (Record[9]). 2213 // In this case Record size will be 9, HasAlignment flag is false. 2214 // 3) Record has both artificial tag (Record[1]) and 2215 // obsolete inlignedAt field (Record[9]). 2216 // In this case Record size will be 10, HasAlignment flag is false. 2217 // 4) Record has neither artificial tag, nor inlignedAt field, but 2218 // HasAlignment flag is true and Record[8] contains alignment value. 2219 const uint64_t HasAlignmentFlag = 1 << 1; 2220 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2221 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2222 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2223 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2224 Record.push_back(N->getLine()); 2225 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2226 Record.push_back(N->getArg()); 2227 Record.push_back(N->getFlags()); 2228 Record.push_back(N->getAlignInBits()); 2229 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2230 2231 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2232 Record.clear(); 2233 } 2234 2235 void ModuleBitcodeWriter::writeDILabel( 2236 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2237 unsigned Abbrev) { 2238 Record.push_back((uint64_t)N->isDistinct()); 2239 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2240 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2241 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2242 Record.push_back(N->getLine()); 2243 2244 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2245 Record.clear(); 2246 } 2247 2248 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2249 SmallVectorImpl<uint64_t> &Record, 2250 unsigned Abbrev) { 2251 Record.reserve(N->getElements().size() + 1); 2252 const uint64_t Version = 3 << 1; 2253 Record.push_back((uint64_t)N->isDistinct() | Version); 2254 Record.append(N->elements_begin(), N->elements_end()); 2255 2256 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2257 Record.clear(); 2258 } 2259 2260 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2261 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2262 unsigned Abbrev) { 2263 Record.push_back(N->isDistinct()); 2264 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2265 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2266 2267 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2268 Record.clear(); 2269 } 2270 2271 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2272 SmallVectorImpl<uint64_t> &Record, 2273 unsigned Abbrev) { 2274 Record.push_back(N->isDistinct()); 2275 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2276 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2277 Record.push_back(N->getLine()); 2278 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2279 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2280 Record.push_back(N->getAttributes()); 2281 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2282 2283 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2284 Record.clear(); 2285 } 2286 2287 void ModuleBitcodeWriter::writeDIImportedEntity( 2288 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2289 unsigned Abbrev) { 2290 Record.push_back(N->isDistinct()); 2291 Record.push_back(N->getTag()); 2292 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2293 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2294 Record.push_back(N->getLine()); 2295 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2296 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2297 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2298 2299 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2300 Record.clear(); 2301 } 2302 2303 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2304 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2305 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2308 return Stream.EmitAbbrev(std::move(Abbv)); 2309 } 2310 2311 void ModuleBitcodeWriter::writeNamedMetadata( 2312 SmallVectorImpl<uint64_t> &Record) { 2313 if (M.named_metadata_empty()) 2314 return; 2315 2316 unsigned Abbrev = createNamedMetadataAbbrev(); 2317 for (const NamedMDNode &NMD : M.named_metadata()) { 2318 // Write name. 2319 StringRef Str = NMD.getName(); 2320 Record.append(Str.bytes_begin(), Str.bytes_end()); 2321 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2322 Record.clear(); 2323 2324 // Write named metadata operands. 2325 for (const MDNode *N : NMD.operands()) 2326 Record.push_back(VE.getMetadataID(N)); 2327 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2328 Record.clear(); 2329 } 2330 } 2331 2332 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2333 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2334 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2338 return Stream.EmitAbbrev(std::move(Abbv)); 2339 } 2340 2341 /// Write out a record for MDString. 2342 /// 2343 /// All the metadata strings in a metadata block are emitted in a single 2344 /// record. The sizes and strings themselves are shoved into a blob. 2345 void ModuleBitcodeWriter::writeMetadataStrings( 2346 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2347 if (Strings.empty()) 2348 return; 2349 2350 // Start the record with the number of strings. 2351 Record.push_back(bitc::METADATA_STRINGS); 2352 Record.push_back(Strings.size()); 2353 2354 // Emit the sizes of the strings in the blob. 2355 SmallString<256> Blob; 2356 { 2357 BitstreamWriter W(Blob); 2358 for (const Metadata *MD : Strings) 2359 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2360 W.FlushToWord(); 2361 } 2362 2363 // Add the offset to the strings to the record. 2364 Record.push_back(Blob.size()); 2365 2366 // Add the strings to the blob. 2367 for (const Metadata *MD : Strings) 2368 Blob.append(cast<MDString>(MD)->getString()); 2369 2370 // Emit the final record. 2371 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2372 Record.clear(); 2373 } 2374 2375 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2376 enum MetadataAbbrev : unsigned { 2377 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2378 #include "llvm/IR/Metadata.def" 2379 LastPlusOne 2380 }; 2381 2382 void ModuleBitcodeWriter::writeMetadataRecords( 2383 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2384 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2385 if (MDs.empty()) 2386 return; 2387 2388 // Initialize MDNode abbreviations. 2389 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2390 #include "llvm/IR/Metadata.def" 2391 2392 for (const Metadata *MD : MDs) { 2393 if (IndexPos) 2394 IndexPos->push_back(Stream.GetCurrentBitNo()); 2395 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2396 assert(N->isResolved() && "Expected forward references to be resolved"); 2397 2398 switch (N->getMetadataID()) { 2399 default: 2400 llvm_unreachable("Invalid MDNode subclass"); 2401 #define HANDLE_MDNODE_LEAF(CLASS) \ 2402 case Metadata::CLASS##Kind: \ 2403 if (MDAbbrevs) \ 2404 write##CLASS(cast<CLASS>(N), Record, \ 2405 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2406 else \ 2407 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2408 continue; 2409 #include "llvm/IR/Metadata.def" 2410 } 2411 } 2412 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2413 writeDIArgList(AL, Record); 2414 continue; 2415 } 2416 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2417 } 2418 } 2419 2420 void ModuleBitcodeWriter::writeModuleMetadata() { 2421 if (!VE.hasMDs() && M.named_metadata_empty()) 2422 return; 2423 2424 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2425 SmallVector<uint64_t, 64> Record; 2426 2427 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2428 // block and load any metadata. 2429 std::vector<unsigned> MDAbbrevs; 2430 2431 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2432 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2433 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2434 createGenericDINodeAbbrev(); 2435 2436 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2437 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2440 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2441 2442 Abbv = std::make_shared<BitCodeAbbrev>(); 2443 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2446 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2447 2448 // Emit MDStrings together upfront. 2449 writeMetadataStrings(VE.getMDStrings(), Record); 2450 2451 // We only emit an index for the metadata record if we have more than a given 2452 // (naive) threshold of metadatas, otherwise it is not worth it. 2453 if (VE.getNonMDStrings().size() > IndexThreshold) { 2454 // Write a placeholder value in for the offset of the metadata index, 2455 // which is written after the records, so that it can include 2456 // the offset of each entry. The placeholder offset will be 2457 // updated after all records are emitted. 2458 uint64_t Vals[] = {0, 0}; 2459 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2460 } 2461 2462 // Compute and save the bit offset to the current position, which will be 2463 // patched when we emit the index later. We can simply subtract the 64-bit 2464 // fixed size from the current bit number to get the location to backpatch. 2465 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2466 2467 // This index will contain the bitpos for each individual record. 2468 std::vector<uint64_t> IndexPos; 2469 IndexPos.reserve(VE.getNonMDStrings().size()); 2470 2471 // Write all the records 2472 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2473 2474 if (VE.getNonMDStrings().size() > IndexThreshold) { 2475 // Now that we have emitted all the records we will emit the index. But 2476 // first 2477 // backpatch the forward reference so that the reader can skip the records 2478 // efficiently. 2479 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2480 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2481 2482 // Delta encode the index. 2483 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2484 for (auto &Elt : IndexPos) { 2485 auto EltDelta = Elt - PreviousValue; 2486 PreviousValue = Elt; 2487 Elt = EltDelta; 2488 } 2489 // Emit the index record. 2490 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2491 IndexPos.clear(); 2492 } 2493 2494 // Write the named metadata now. 2495 writeNamedMetadata(Record); 2496 2497 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2498 SmallVector<uint64_t, 4> Record; 2499 Record.push_back(VE.getValueID(&GO)); 2500 pushGlobalMetadataAttachment(Record, GO); 2501 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2502 }; 2503 for (const Function &F : M) 2504 if (F.isDeclaration() && F.hasMetadata()) 2505 AddDeclAttachedMetadata(F); 2506 // FIXME: Only store metadata for declarations here, and move data for global 2507 // variable definitions to a separate block (PR28134). 2508 for (const GlobalVariable &GV : M.globals()) 2509 if (GV.hasMetadata()) 2510 AddDeclAttachedMetadata(GV); 2511 2512 Stream.ExitBlock(); 2513 } 2514 2515 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2516 if (!VE.hasMDs()) 2517 return; 2518 2519 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2520 SmallVector<uint64_t, 64> Record; 2521 writeMetadataStrings(VE.getMDStrings(), Record); 2522 writeMetadataRecords(VE.getNonMDStrings(), Record); 2523 Stream.ExitBlock(); 2524 } 2525 2526 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2527 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2528 // [n x [id, mdnode]] 2529 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2530 GO.getAllMetadata(MDs); 2531 for (const auto &I : MDs) { 2532 Record.push_back(I.first); 2533 Record.push_back(VE.getMetadataID(I.second)); 2534 } 2535 } 2536 2537 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2538 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2539 2540 SmallVector<uint64_t, 64> Record; 2541 2542 if (F.hasMetadata()) { 2543 pushGlobalMetadataAttachment(Record, F); 2544 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2545 Record.clear(); 2546 } 2547 2548 // Write metadata attachments 2549 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2550 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2551 for (const BasicBlock &BB : F) 2552 for (const Instruction &I : BB) { 2553 MDs.clear(); 2554 I.getAllMetadataOtherThanDebugLoc(MDs); 2555 2556 // If no metadata, ignore instruction. 2557 if (MDs.empty()) continue; 2558 2559 Record.push_back(VE.getInstructionID(&I)); 2560 2561 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2562 Record.push_back(MDs[i].first); 2563 Record.push_back(VE.getMetadataID(MDs[i].second)); 2564 } 2565 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2566 Record.clear(); 2567 } 2568 2569 Stream.ExitBlock(); 2570 } 2571 2572 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2573 SmallVector<uint64_t, 64> Record; 2574 2575 // Write metadata kinds 2576 // METADATA_KIND - [n x [id, name]] 2577 SmallVector<StringRef, 8> Names; 2578 M.getMDKindNames(Names); 2579 2580 if (Names.empty()) return; 2581 2582 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2583 2584 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2585 Record.push_back(MDKindID); 2586 StringRef KName = Names[MDKindID]; 2587 Record.append(KName.begin(), KName.end()); 2588 2589 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2590 Record.clear(); 2591 } 2592 2593 Stream.ExitBlock(); 2594 } 2595 2596 void ModuleBitcodeWriter::writeOperandBundleTags() { 2597 // Write metadata kinds 2598 // 2599 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2600 // 2601 // OPERAND_BUNDLE_TAG - [strchr x N] 2602 2603 SmallVector<StringRef, 8> Tags; 2604 M.getOperandBundleTags(Tags); 2605 2606 if (Tags.empty()) 2607 return; 2608 2609 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2610 2611 SmallVector<uint64_t, 64> Record; 2612 2613 for (auto Tag : Tags) { 2614 Record.append(Tag.begin(), Tag.end()); 2615 2616 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2617 Record.clear(); 2618 } 2619 2620 Stream.ExitBlock(); 2621 } 2622 2623 void ModuleBitcodeWriter::writeSyncScopeNames() { 2624 SmallVector<StringRef, 8> SSNs; 2625 M.getContext().getSyncScopeNames(SSNs); 2626 if (SSNs.empty()) 2627 return; 2628 2629 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2630 2631 SmallVector<uint64_t, 64> Record; 2632 for (auto SSN : SSNs) { 2633 Record.append(SSN.begin(), SSN.end()); 2634 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2635 Record.clear(); 2636 } 2637 2638 Stream.ExitBlock(); 2639 } 2640 2641 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2642 bool isGlobal) { 2643 if (FirstVal == LastVal) return; 2644 2645 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2646 2647 unsigned AggregateAbbrev = 0; 2648 unsigned String8Abbrev = 0; 2649 unsigned CString7Abbrev = 0; 2650 unsigned CString6Abbrev = 0; 2651 // If this is a constant pool for the module, emit module-specific abbrevs. 2652 if (isGlobal) { 2653 // Abbrev for CST_CODE_AGGREGATE. 2654 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2655 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2658 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2659 2660 // Abbrev for CST_CODE_STRING. 2661 Abbv = std::make_shared<BitCodeAbbrev>(); 2662 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2665 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2666 // Abbrev for CST_CODE_CSTRING. 2667 Abbv = std::make_shared<BitCodeAbbrev>(); 2668 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2671 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2672 // Abbrev for CST_CODE_CSTRING. 2673 Abbv = std::make_shared<BitCodeAbbrev>(); 2674 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2677 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2678 } 2679 2680 SmallVector<uint64_t, 64> Record; 2681 2682 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2683 Type *LastTy = nullptr; 2684 for (unsigned i = FirstVal; i != LastVal; ++i) { 2685 const Value *V = Vals[i].first; 2686 // If we need to switch types, do so now. 2687 if (V->getType() != LastTy) { 2688 LastTy = V->getType(); 2689 Record.push_back(VE.getTypeID(LastTy)); 2690 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2691 CONSTANTS_SETTYPE_ABBREV); 2692 Record.clear(); 2693 } 2694 2695 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2696 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2697 Record.push_back( 2698 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2699 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2700 2701 // Add the asm string. 2702 const std::string &AsmStr = IA->getAsmString(); 2703 Record.push_back(AsmStr.size()); 2704 Record.append(AsmStr.begin(), AsmStr.end()); 2705 2706 // Add the constraint string. 2707 const std::string &ConstraintStr = IA->getConstraintString(); 2708 Record.push_back(ConstraintStr.size()); 2709 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2710 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2711 Record.clear(); 2712 continue; 2713 } 2714 const Constant *C = cast<Constant>(V); 2715 unsigned Code = -1U; 2716 unsigned AbbrevToUse = 0; 2717 if (C->isNullValue()) { 2718 Code = bitc::CST_CODE_NULL; 2719 } else if (isa<PoisonValue>(C)) { 2720 Code = bitc::CST_CODE_POISON; 2721 } else if (isa<UndefValue>(C)) { 2722 Code = bitc::CST_CODE_UNDEF; 2723 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2724 if (IV->getBitWidth() <= 64) { 2725 uint64_t V = IV->getSExtValue(); 2726 emitSignedInt64(Record, V); 2727 Code = bitc::CST_CODE_INTEGER; 2728 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2729 } else { // Wide integers, > 64 bits in size. 2730 emitWideAPInt(Record, IV->getValue()); 2731 Code = bitc::CST_CODE_WIDE_INTEGER; 2732 } 2733 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2734 Code = bitc::CST_CODE_FLOAT; 2735 Type *Ty = CFP->getType()->getScalarType(); 2736 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2737 Ty->isDoubleTy()) { 2738 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2739 } else if (Ty->isX86_FP80Ty()) { 2740 // api needed to prevent premature destruction 2741 // bits are not in the same order as a normal i80 APInt, compensate. 2742 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2743 const uint64_t *p = api.getRawData(); 2744 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2745 Record.push_back(p[0] & 0xffffLL); 2746 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2747 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2748 const uint64_t *p = api.getRawData(); 2749 Record.push_back(p[0]); 2750 Record.push_back(p[1]); 2751 } else { 2752 assert(0 && "Unknown FP type!"); 2753 } 2754 } else if (isa<ConstantDataSequential>(C) && 2755 cast<ConstantDataSequential>(C)->isString()) { 2756 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2757 // Emit constant strings specially. 2758 unsigned NumElts = Str->getNumElements(); 2759 // If this is a null-terminated string, use the denser CSTRING encoding. 2760 if (Str->isCString()) { 2761 Code = bitc::CST_CODE_CSTRING; 2762 --NumElts; // Don't encode the null, which isn't allowed by char6. 2763 } else { 2764 Code = bitc::CST_CODE_STRING; 2765 AbbrevToUse = String8Abbrev; 2766 } 2767 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2768 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2769 for (unsigned i = 0; i != NumElts; ++i) { 2770 unsigned char V = Str->getElementAsInteger(i); 2771 Record.push_back(V); 2772 isCStr7 &= (V & 128) == 0; 2773 if (isCStrChar6) 2774 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2775 } 2776 2777 if (isCStrChar6) 2778 AbbrevToUse = CString6Abbrev; 2779 else if (isCStr7) 2780 AbbrevToUse = CString7Abbrev; 2781 } else if (const ConstantDataSequential *CDS = 2782 dyn_cast<ConstantDataSequential>(C)) { 2783 Code = bitc::CST_CODE_DATA; 2784 Type *EltTy = CDS->getElementType(); 2785 if (isa<IntegerType>(EltTy)) { 2786 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2787 Record.push_back(CDS->getElementAsInteger(i)); 2788 } else { 2789 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2790 Record.push_back( 2791 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2792 } 2793 } else if (isa<ConstantAggregate>(C)) { 2794 Code = bitc::CST_CODE_AGGREGATE; 2795 for (const Value *Op : C->operands()) 2796 Record.push_back(VE.getValueID(Op)); 2797 AbbrevToUse = AggregateAbbrev; 2798 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2799 switch (CE->getOpcode()) { 2800 default: 2801 if (Instruction::isCast(CE->getOpcode())) { 2802 Code = bitc::CST_CODE_CE_CAST; 2803 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2804 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2805 Record.push_back(VE.getValueID(C->getOperand(0))); 2806 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2807 } else { 2808 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2809 Code = bitc::CST_CODE_CE_BINOP; 2810 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2811 Record.push_back(VE.getValueID(C->getOperand(0))); 2812 Record.push_back(VE.getValueID(C->getOperand(1))); 2813 uint64_t Flags = getOptimizationFlags(CE); 2814 if (Flags != 0) 2815 Record.push_back(Flags); 2816 } 2817 break; 2818 case Instruction::FNeg: { 2819 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2820 Code = bitc::CST_CODE_CE_UNOP; 2821 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2822 Record.push_back(VE.getValueID(C->getOperand(0))); 2823 uint64_t Flags = getOptimizationFlags(CE); 2824 if (Flags != 0) 2825 Record.push_back(Flags); 2826 break; 2827 } 2828 case Instruction::GetElementPtr: { 2829 Code = bitc::CST_CODE_CE_GEP; 2830 const auto *GO = cast<GEPOperator>(C); 2831 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2832 Record.push_back(getOptimizationFlags(GO)); 2833 if (std::optional<ConstantRange> Range = GO->getInRange()) { 2834 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; 2835 emitConstantRange(Record, *Range, /*EmitBitWidth=*/true); 2836 } 2837 for (const Value *Op : CE->operands()) { 2838 Record.push_back(VE.getTypeID(Op->getType())); 2839 Record.push_back(VE.getValueID(Op)); 2840 } 2841 break; 2842 } 2843 case Instruction::ExtractElement: 2844 Code = bitc::CST_CODE_CE_EXTRACTELT; 2845 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2846 Record.push_back(VE.getValueID(C->getOperand(0))); 2847 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2848 Record.push_back(VE.getValueID(C->getOperand(1))); 2849 break; 2850 case Instruction::InsertElement: 2851 Code = bitc::CST_CODE_CE_INSERTELT; 2852 Record.push_back(VE.getValueID(C->getOperand(0))); 2853 Record.push_back(VE.getValueID(C->getOperand(1))); 2854 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2855 Record.push_back(VE.getValueID(C->getOperand(2))); 2856 break; 2857 case Instruction::ShuffleVector: 2858 // If the return type and argument types are the same, this is a 2859 // standard shufflevector instruction. If the types are different, 2860 // then the shuffle is widening or truncating the input vectors, and 2861 // the argument type must also be encoded. 2862 if (C->getType() == C->getOperand(0)->getType()) { 2863 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2864 } else { 2865 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2866 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2867 } 2868 Record.push_back(VE.getValueID(C->getOperand(0))); 2869 Record.push_back(VE.getValueID(C->getOperand(1))); 2870 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2871 break; 2872 } 2873 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2874 Code = bitc::CST_CODE_BLOCKADDRESS; 2875 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2876 Record.push_back(VE.getValueID(BA->getFunction())); 2877 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2878 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2879 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2880 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2881 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2882 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2883 Code = bitc::CST_CODE_NO_CFI_VALUE; 2884 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2885 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2886 } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) { 2887 Code = bitc::CST_CODE_PTRAUTH; 2888 Record.push_back(VE.getValueID(CPA->getPointer())); 2889 Record.push_back(VE.getValueID(CPA->getKey())); 2890 Record.push_back(VE.getValueID(CPA->getDiscriminator())); 2891 Record.push_back(VE.getValueID(CPA->getAddrDiscriminator())); 2892 } else { 2893 #ifndef NDEBUG 2894 C->dump(); 2895 #endif 2896 llvm_unreachable("Unknown constant!"); 2897 } 2898 Stream.EmitRecord(Code, Record, AbbrevToUse); 2899 Record.clear(); 2900 } 2901 2902 Stream.ExitBlock(); 2903 } 2904 2905 void ModuleBitcodeWriter::writeModuleConstants() { 2906 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2907 2908 // Find the first constant to emit, which is the first non-globalvalue value. 2909 // We know globalvalues have been emitted by WriteModuleInfo. 2910 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2911 if (!isa<GlobalValue>(Vals[i].first)) { 2912 writeConstants(i, Vals.size(), true); 2913 return; 2914 } 2915 } 2916 } 2917 2918 /// pushValueAndType - The file has to encode both the value and type id for 2919 /// many values, because we need to know what type to create for forward 2920 /// references. However, most operands are not forward references, so this type 2921 /// field is not needed. 2922 /// 2923 /// This function adds V's value ID to Vals. If the value ID is higher than the 2924 /// instruction ID, then it is a forward reference, and it also includes the 2925 /// type ID. The value ID that is written is encoded relative to the InstID. 2926 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2927 SmallVectorImpl<unsigned> &Vals) { 2928 unsigned ValID = VE.getValueID(V); 2929 // Make encoding relative to the InstID. 2930 Vals.push_back(InstID - ValID); 2931 if (ValID >= InstID) { 2932 Vals.push_back(VE.getTypeID(V->getType())); 2933 return true; 2934 } 2935 return false; 2936 } 2937 2938 bool ModuleBitcodeWriter::pushValueOrMetadata(const Value *V, unsigned InstID, 2939 SmallVectorImpl<unsigned> &Vals) { 2940 bool IsMetadata = V->getType()->isMetadataTy(); 2941 if (IsMetadata) { 2942 Vals.push_back(bitc::OB_METADATA); 2943 Metadata *MD = cast<MetadataAsValue>(V)->getMetadata(); 2944 unsigned ValID = VE.getMetadataID(MD); 2945 Vals.push_back(InstID - ValID); 2946 return false; 2947 } 2948 return pushValueAndType(V, InstID, Vals); 2949 } 2950 2951 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2952 unsigned InstID) { 2953 SmallVector<unsigned, 64> Record; 2954 LLVMContext &C = CS.getContext(); 2955 2956 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2957 const auto &Bundle = CS.getOperandBundleAt(i); 2958 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2959 2960 for (auto &Input : Bundle.Inputs) 2961 pushValueOrMetadata(Input, InstID, Record); 2962 2963 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2964 Record.clear(); 2965 } 2966 } 2967 2968 /// pushValue - Like pushValueAndType, but where the type of the value is 2969 /// omitted (perhaps it was already encoded in an earlier operand). 2970 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2971 SmallVectorImpl<unsigned> &Vals) { 2972 unsigned ValID = VE.getValueID(V); 2973 Vals.push_back(InstID - ValID); 2974 } 2975 2976 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2977 SmallVectorImpl<uint64_t> &Vals) { 2978 unsigned ValID = VE.getValueID(V); 2979 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2980 emitSignedInt64(Vals, diff); 2981 } 2982 2983 /// WriteInstruction - Emit an instruction to the specified stream. 2984 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2985 unsigned InstID, 2986 SmallVectorImpl<unsigned> &Vals) { 2987 unsigned Code = 0; 2988 unsigned AbbrevToUse = 0; 2989 VE.setInstructionID(&I); 2990 switch (I.getOpcode()) { 2991 default: 2992 if (Instruction::isCast(I.getOpcode())) { 2993 Code = bitc::FUNC_CODE_INST_CAST; 2994 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2995 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2996 Vals.push_back(VE.getTypeID(I.getType())); 2997 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2998 uint64_t Flags = getOptimizationFlags(&I); 2999 if (Flags != 0) { 3000 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 3001 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 3002 Vals.push_back(Flags); 3003 } 3004 } else { 3005 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 3006 Code = bitc::FUNC_CODE_INST_BINOP; 3007 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3008 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 3009 pushValue(I.getOperand(1), InstID, Vals); 3010 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 3011 uint64_t Flags = getOptimizationFlags(&I); 3012 if (Flags != 0) { 3013 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 3014 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 3015 Vals.push_back(Flags); 3016 } 3017 } 3018 break; 3019 case Instruction::FNeg: { 3020 Code = bitc::FUNC_CODE_INST_UNOP; 3021 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3022 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 3023 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 3024 uint64_t Flags = getOptimizationFlags(&I); 3025 if (Flags != 0) { 3026 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 3027 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 3028 Vals.push_back(Flags); 3029 } 3030 break; 3031 } 3032 case Instruction::GetElementPtr: { 3033 Code = bitc::FUNC_CODE_INST_GEP; 3034 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 3035 auto &GEPInst = cast<GetElementPtrInst>(I); 3036 Vals.push_back(getOptimizationFlags(&I)); 3037 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 3038 for (const Value *Op : I.operands()) 3039 pushValueAndType(Op, InstID, Vals); 3040 break; 3041 } 3042 case Instruction::ExtractValue: { 3043 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 3044 pushValueAndType(I.getOperand(0), InstID, Vals); 3045 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 3046 Vals.append(EVI->idx_begin(), EVI->idx_end()); 3047 break; 3048 } 3049 case Instruction::InsertValue: { 3050 Code = bitc::FUNC_CODE_INST_INSERTVAL; 3051 pushValueAndType(I.getOperand(0), InstID, Vals); 3052 pushValueAndType(I.getOperand(1), InstID, Vals); 3053 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 3054 Vals.append(IVI->idx_begin(), IVI->idx_end()); 3055 break; 3056 } 3057 case Instruction::Select: { 3058 Code = bitc::FUNC_CODE_INST_VSELECT; 3059 pushValueAndType(I.getOperand(1), InstID, Vals); 3060 pushValue(I.getOperand(2), InstID, Vals); 3061 pushValueAndType(I.getOperand(0), InstID, Vals); 3062 uint64_t Flags = getOptimizationFlags(&I); 3063 if (Flags != 0) 3064 Vals.push_back(Flags); 3065 break; 3066 } 3067 case Instruction::ExtractElement: 3068 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 3069 pushValueAndType(I.getOperand(0), InstID, Vals); 3070 pushValueAndType(I.getOperand(1), InstID, Vals); 3071 break; 3072 case Instruction::InsertElement: 3073 Code = bitc::FUNC_CODE_INST_INSERTELT; 3074 pushValueAndType(I.getOperand(0), InstID, Vals); 3075 pushValue(I.getOperand(1), InstID, Vals); 3076 pushValueAndType(I.getOperand(2), InstID, Vals); 3077 break; 3078 case Instruction::ShuffleVector: 3079 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 3080 pushValueAndType(I.getOperand(0), InstID, Vals); 3081 pushValue(I.getOperand(1), InstID, Vals); 3082 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 3083 Vals); 3084 break; 3085 case Instruction::ICmp: 3086 case Instruction::FCmp: { 3087 // compare returning Int1Ty or vector of Int1Ty 3088 Code = bitc::FUNC_CODE_INST_CMP2; 3089 pushValueAndType(I.getOperand(0), InstID, Vals); 3090 pushValue(I.getOperand(1), InstID, Vals); 3091 Vals.push_back(cast<CmpInst>(I).getPredicate()); 3092 uint64_t Flags = getOptimizationFlags(&I); 3093 if (Flags != 0) 3094 Vals.push_back(Flags); 3095 break; 3096 } 3097 3098 case Instruction::Ret: 3099 { 3100 Code = bitc::FUNC_CODE_INST_RET; 3101 unsigned NumOperands = I.getNumOperands(); 3102 if (NumOperands == 0) 3103 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3104 else if (NumOperands == 1) { 3105 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3106 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3107 } else { 3108 for (const Value *Op : I.operands()) 3109 pushValueAndType(Op, InstID, Vals); 3110 } 3111 } 3112 break; 3113 case Instruction::Br: 3114 { 3115 Code = bitc::FUNC_CODE_INST_BR; 3116 const BranchInst &II = cast<BranchInst>(I); 3117 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3118 if (II.isConditional()) { 3119 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3120 pushValue(II.getCondition(), InstID, Vals); 3121 } 3122 } 3123 break; 3124 case Instruction::Switch: 3125 { 3126 Code = bitc::FUNC_CODE_INST_SWITCH; 3127 const SwitchInst &SI = cast<SwitchInst>(I); 3128 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3129 pushValue(SI.getCondition(), InstID, Vals); 3130 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3131 for (auto Case : SI.cases()) { 3132 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3133 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3134 } 3135 } 3136 break; 3137 case Instruction::IndirectBr: 3138 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3139 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3140 // Encode the address operand as relative, but not the basic blocks. 3141 pushValue(I.getOperand(0), InstID, Vals); 3142 for (const Value *Op : drop_begin(I.operands())) 3143 Vals.push_back(VE.getValueID(Op)); 3144 break; 3145 3146 case Instruction::Invoke: { 3147 const InvokeInst *II = cast<InvokeInst>(&I); 3148 const Value *Callee = II->getCalledOperand(); 3149 FunctionType *FTy = II->getFunctionType(); 3150 3151 if (II->hasOperandBundles()) 3152 writeOperandBundles(*II, InstID); 3153 3154 Code = bitc::FUNC_CODE_INST_INVOKE; 3155 3156 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3157 Vals.push_back(II->getCallingConv() | 1 << 13); 3158 Vals.push_back(VE.getValueID(II->getNormalDest())); 3159 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3160 Vals.push_back(VE.getTypeID(FTy)); 3161 pushValueAndType(Callee, InstID, Vals); 3162 3163 // Emit value #'s for the fixed parameters. 3164 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3165 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3166 3167 // Emit type/value pairs for varargs params. 3168 if (FTy->isVarArg()) { 3169 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3170 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3171 } 3172 break; 3173 } 3174 case Instruction::Resume: 3175 Code = bitc::FUNC_CODE_INST_RESUME; 3176 pushValueAndType(I.getOperand(0), InstID, Vals); 3177 break; 3178 case Instruction::CleanupRet: { 3179 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3180 const auto &CRI = cast<CleanupReturnInst>(I); 3181 pushValue(CRI.getCleanupPad(), InstID, Vals); 3182 if (CRI.hasUnwindDest()) 3183 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3184 break; 3185 } 3186 case Instruction::CatchRet: { 3187 Code = bitc::FUNC_CODE_INST_CATCHRET; 3188 const auto &CRI = cast<CatchReturnInst>(I); 3189 pushValue(CRI.getCatchPad(), InstID, Vals); 3190 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3191 break; 3192 } 3193 case Instruction::CleanupPad: 3194 case Instruction::CatchPad: { 3195 const auto &FuncletPad = cast<FuncletPadInst>(I); 3196 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3197 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3198 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3199 3200 unsigned NumArgOperands = FuncletPad.arg_size(); 3201 Vals.push_back(NumArgOperands); 3202 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3203 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3204 break; 3205 } 3206 case Instruction::CatchSwitch: { 3207 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3208 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3209 3210 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3211 3212 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3213 Vals.push_back(NumHandlers); 3214 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3215 Vals.push_back(VE.getValueID(CatchPadBB)); 3216 3217 if (CatchSwitch.hasUnwindDest()) 3218 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3219 break; 3220 } 3221 case Instruction::CallBr: { 3222 const CallBrInst *CBI = cast<CallBrInst>(&I); 3223 const Value *Callee = CBI->getCalledOperand(); 3224 FunctionType *FTy = CBI->getFunctionType(); 3225 3226 if (CBI->hasOperandBundles()) 3227 writeOperandBundles(*CBI, InstID); 3228 3229 Code = bitc::FUNC_CODE_INST_CALLBR; 3230 3231 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3232 3233 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3234 1 << bitc::CALL_EXPLICIT_TYPE); 3235 3236 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3237 Vals.push_back(CBI->getNumIndirectDests()); 3238 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3239 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3240 3241 Vals.push_back(VE.getTypeID(FTy)); 3242 pushValueAndType(Callee, InstID, Vals); 3243 3244 // Emit value #'s for the fixed parameters. 3245 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3246 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3247 3248 // Emit type/value pairs for varargs params. 3249 if (FTy->isVarArg()) { 3250 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3251 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3252 } 3253 break; 3254 } 3255 case Instruction::Unreachable: 3256 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3257 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3258 break; 3259 3260 case Instruction::PHI: { 3261 const PHINode &PN = cast<PHINode>(I); 3262 Code = bitc::FUNC_CODE_INST_PHI; 3263 // With the newer instruction encoding, forward references could give 3264 // negative valued IDs. This is most common for PHIs, so we use 3265 // signed VBRs. 3266 SmallVector<uint64_t, 128> Vals64; 3267 Vals64.push_back(VE.getTypeID(PN.getType())); 3268 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3269 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3270 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3271 } 3272 3273 uint64_t Flags = getOptimizationFlags(&I); 3274 if (Flags != 0) 3275 Vals64.push_back(Flags); 3276 3277 // Emit a Vals64 vector and exit. 3278 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3279 Vals64.clear(); 3280 return; 3281 } 3282 3283 case Instruction::LandingPad: { 3284 const LandingPadInst &LP = cast<LandingPadInst>(I); 3285 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3286 Vals.push_back(VE.getTypeID(LP.getType())); 3287 Vals.push_back(LP.isCleanup()); 3288 Vals.push_back(LP.getNumClauses()); 3289 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3290 if (LP.isCatch(I)) 3291 Vals.push_back(LandingPadInst::Catch); 3292 else 3293 Vals.push_back(LandingPadInst::Filter); 3294 pushValueAndType(LP.getClause(I), InstID, Vals); 3295 } 3296 break; 3297 } 3298 3299 case Instruction::Alloca: { 3300 Code = bitc::FUNC_CODE_INST_ALLOCA; 3301 const AllocaInst &AI = cast<AllocaInst>(I); 3302 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3303 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3304 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3305 using APV = AllocaPackedValues; 3306 unsigned Record = 0; 3307 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3308 Bitfield::set<APV::AlignLower>( 3309 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3310 Bitfield::set<APV::AlignUpper>(Record, 3311 EncodedAlign >> APV::AlignLower::Bits); 3312 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3313 Bitfield::set<APV::ExplicitType>(Record, true); 3314 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3315 Vals.push_back(Record); 3316 3317 unsigned AS = AI.getAddressSpace(); 3318 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3319 Vals.push_back(AS); 3320 break; 3321 } 3322 3323 case Instruction::Load: 3324 if (cast<LoadInst>(I).isAtomic()) { 3325 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3326 pushValueAndType(I.getOperand(0), InstID, Vals); 3327 } else { 3328 Code = bitc::FUNC_CODE_INST_LOAD; 3329 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3330 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3331 } 3332 Vals.push_back(VE.getTypeID(I.getType())); 3333 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3334 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3335 if (cast<LoadInst>(I).isAtomic()) { 3336 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3337 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3338 } 3339 break; 3340 case Instruction::Store: 3341 if (cast<StoreInst>(I).isAtomic()) 3342 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3343 else 3344 Code = bitc::FUNC_CODE_INST_STORE; 3345 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3346 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3347 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3348 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3349 if (cast<StoreInst>(I).isAtomic()) { 3350 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3351 Vals.push_back( 3352 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3353 } 3354 break; 3355 case Instruction::AtomicCmpXchg: 3356 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3357 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3358 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3359 pushValue(I.getOperand(2), InstID, Vals); // newval. 3360 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3361 Vals.push_back( 3362 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3363 Vals.push_back( 3364 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3365 Vals.push_back( 3366 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3367 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3368 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3369 break; 3370 case Instruction::AtomicRMW: 3371 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3372 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3373 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3374 Vals.push_back( 3375 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3376 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3377 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3378 Vals.push_back( 3379 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3380 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3381 break; 3382 case Instruction::Fence: 3383 Code = bitc::FUNC_CODE_INST_FENCE; 3384 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3385 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3386 break; 3387 case Instruction::Call: { 3388 const CallInst &CI = cast<CallInst>(I); 3389 FunctionType *FTy = CI.getFunctionType(); 3390 3391 if (CI.hasOperandBundles()) 3392 writeOperandBundles(CI, InstID); 3393 3394 Code = bitc::FUNC_CODE_INST_CALL; 3395 3396 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3397 3398 unsigned Flags = getOptimizationFlags(&I); 3399 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3400 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3401 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3402 1 << bitc::CALL_EXPLICIT_TYPE | 3403 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3404 unsigned(Flags != 0) << bitc::CALL_FMF); 3405 if (Flags != 0) 3406 Vals.push_back(Flags); 3407 3408 Vals.push_back(VE.getTypeID(FTy)); 3409 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3410 3411 // Emit value #'s for the fixed parameters. 3412 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3413 // Check for labels (can happen with asm labels). 3414 if (FTy->getParamType(i)->isLabelTy()) 3415 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3416 else 3417 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3418 } 3419 3420 // Emit type/value pairs for varargs params. 3421 if (FTy->isVarArg()) { 3422 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3423 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3424 } 3425 break; 3426 } 3427 case Instruction::VAArg: 3428 Code = bitc::FUNC_CODE_INST_VAARG; 3429 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3430 pushValue(I.getOperand(0), InstID, Vals); // valist. 3431 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3432 break; 3433 case Instruction::Freeze: 3434 Code = bitc::FUNC_CODE_INST_FREEZE; 3435 pushValueAndType(I.getOperand(0), InstID, Vals); 3436 break; 3437 } 3438 3439 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3440 Vals.clear(); 3441 } 3442 3443 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3444 /// to allow clients to efficiently find the function body. 3445 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3446 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3447 // Get the offset of the VST we are writing, and backpatch it into 3448 // the VST forward declaration record. 3449 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3450 // The BitcodeStartBit was the stream offset of the identification block. 3451 VSTOffset -= bitcodeStartBit(); 3452 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3453 // Note that we add 1 here because the offset is relative to one word 3454 // before the start of the identification block, which was historically 3455 // always the start of the regular bitcode header. 3456 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3457 3458 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3459 3460 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3461 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3464 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3465 3466 for (const Function &F : M) { 3467 uint64_t Record[2]; 3468 3469 if (F.isDeclaration()) 3470 continue; 3471 3472 Record[0] = VE.getValueID(&F); 3473 3474 // Save the word offset of the function (from the start of the 3475 // actual bitcode written to the stream). 3476 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3477 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3478 // Note that we add 1 here because the offset is relative to one word 3479 // before the start of the identification block, which was historically 3480 // always the start of the regular bitcode header. 3481 Record[1] = BitcodeIndex / 32 + 1; 3482 3483 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3484 } 3485 3486 Stream.ExitBlock(); 3487 } 3488 3489 /// Emit names for arguments, instructions and basic blocks in a function. 3490 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3491 const ValueSymbolTable &VST) { 3492 if (VST.empty()) 3493 return; 3494 3495 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3496 3497 // FIXME: Set up the abbrev, we know how many values there are! 3498 // FIXME: We know if the type names can use 7-bit ascii. 3499 SmallVector<uint64_t, 64> NameVals; 3500 3501 for (const ValueName &Name : VST) { 3502 // Figure out the encoding to use for the name. 3503 StringEncoding Bits = getStringEncoding(Name.getKey()); 3504 3505 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3506 NameVals.push_back(VE.getValueID(Name.getValue())); 3507 3508 // VST_CODE_ENTRY: [valueid, namechar x N] 3509 // VST_CODE_BBENTRY: [bbid, namechar x N] 3510 unsigned Code; 3511 if (isa<BasicBlock>(Name.getValue())) { 3512 Code = bitc::VST_CODE_BBENTRY; 3513 if (Bits == SE_Char6) 3514 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3515 } else { 3516 Code = bitc::VST_CODE_ENTRY; 3517 if (Bits == SE_Char6) 3518 AbbrevToUse = VST_ENTRY_6_ABBREV; 3519 else if (Bits == SE_Fixed7) 3520 AbbrevToUse = VST_ENTRY_7_ABBREV; 3521 } 3522 3523 for (const auto P : Name.getKey()) 3524 NameVals.push_back((unsigned char)P); 3525 3526 // Emit the finished record. 3527 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3528 NameVals.clear(); 3529 } 3530 3531 Stream.ExitBlock(); 3532 } 3533 3534 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3535 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3536 unsigned Code; 3537 if (isa<BasicBlock>(Order.V)) 3538 Code = bitc::USELIST_CODE_BB; 3539 else 3540 Code = bitc::USELIST_CODE_DEFAULT; 3541 3542 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3543 Record.push_back(VE.getValueID(Order.V)); 3544 Stream.EmitRecord(Code, Record); 3545 } 3546 3547 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3548 assert(VE.shouldPreserveUseListOrder() && 3549 "Expected to be preserving use-list order"); 3550 3551 auto hasMore = [&]() { 3552 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3553 }; 3554 if (!hasMore()) 3555 // Nothing to do. 3556 return; 3557 3558 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3559 while (hasMore()) { 3560 writeUseList(std::move(VE.UseListOrders.back())); 3561 VE.UseListOrders.pop_back(); 3562 } 3563 Stream.ExitBlock(); 3564 } 3565 3566 /// Emit a function body to the module stream. 3567 void ModuleBitcodeWriter::writeFunction( 3568 const Function &F, 3569 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3570 // Save the bitcode index of the start of this function block for recording 3571 // in the VST. 3572 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3573 3574 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3575 VE.incorporateFunction(F); 3576 3577 SmallVector<unsigned, 64> Vals; 3578 3579 // Emit the number of basic blocks, so the reader can create them ahead of 3580 // time. 3581 Vals.push_back(VE.getBasicBlocks().size()); 3582 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3583 Vals.clear(); 3584 3585 // If there are function-local constants, emit them now. 3586 unsigned CstStart, CstEnd; 3587 VE.getFunctionConstantRange(CstStart, CstEnd); 3588 writeConstants(CstStart, CstEnd, false); 3589 3590 // If there is function-local metadata, emit it now. 3591 writeFunctionMetadata(F); 3592 3593 // Keep a running idea of what the instruction ID is. 3594 unsigned InstID = CstEnd; 3595 3596 bool NeedsMetadataAttachment = F.hasMetadata(); 3597 3598 DILocation *LastDL = nullptr; 3599 SmallSetVector<Function *, 4> BlockAddressUsers; 3600 3601 // Finally, emit all the instructions, in order. 3602 for (const BasicBlock &BB : F) { 3603 for (const Instruction &I : BB) { 3604 writeInstruction(I, InstID, Vals); 3605 3606 if (!I.getType()->isVoidTy()) 3607 ++InstID; 3608 3609 // If the instruction has metadata, write a metadata attachment later. 3610 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3611 3612 // If the instruction has a debug location, emit it. 3613 if (DILocation *DL = I.getDebugLoc()) { 3614 if (DL == LastDL) { 3615 // Just repeat the same debug loc as last time. 3616 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3617 } else { 3618 Vals.push_back(DL->getLine()); 3619 Vals.push_back(DL->getColumn()); 3620 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3621 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3622 Vals.push_back(DL->isImplicitCode()); 3623 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3624 Vals.clear(); 3625 LastDL = DL; 3626 } 3627 } 3628 3629 // If the instruction has DbgRecords attached to it, emit them. Note that 3630 // they come after the instruction so that it's easy to attach them again 3631 // when reading the bitcode, even though conceptually the debug locations 3632 // start "before" the instruction. 3633 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { 3634 /// Try to push the value only (unwrapped), otherwise push the 3635 /// metadata wrapped value. Returns true if the value was pushed 3636 /// without the ValueAsMetadata wrapper. 3637 auto PushValueOrMetadata = [&Vals, InstID, 3638 this](Metadata *RawLocation) { 3639 assert(RawLocation && 3640 "RawLocation unexpectedly null in DbgVariableRecord"); 3641 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) { 3642 SmallVector<unsigned, 2> ValAndType; 3643 // If the value is a fwd-ref the type is also pushed. We don't 3644 // want the type, so fwd-refs are kept wrapped (pushValueAndType 3645 // returns false if the value is pushed without type). 3646 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { 3647 Vals.push_back(ValAndType[0]); 3648 return true; 3649 } 3650 } 3651 // The metadata is a DIArgList, or ValueAsMetadata wrapping a 3652 // fwd-ref. Push the metadata ID. 3653 Vals.push_back(VE.getMetadataID(RawLocation)); 3654 return false; 3655 }; 3656 3657 // Write out non-instruction debug information attached to this 3658 // instruction. Write it after the instruction so that it's easy to 3659 // re-attach to the instruction reading the records in. 3660 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { 3661 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3662 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc())); 3663 Vals.push_back(VE.getMetadataID(DLR->getLabel())); 3664 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); 3665 Vals.clear(); 3666 continue; 3667 } 3668 3669 // First 3 fields are common to all kinds: 3670 // DILocation, DILocalVariable, DIExpression 3671 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 3672 // ..., LocationMetadata 3673 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 3674 // ..., Value 3675 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 3676 // ..., LocationMetadata 3677 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 3678 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 3679 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3680 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); 3681 Vals.push_back(VE.getMetadataID(DVR.getVariable())); 3682 Vals.push_back(VE.getMetadataID(DVR.getExpression())); 3683 if (DVR.isDbgValue()) { 3684 if (PushValueOrMetadata(DVR.getRawLocation())) 3685 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, 3686 FUNCTION_DEBUG_RECORD_VALUE_ABBREV); 3687 else 3688 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); 3689 } else if (DVR.isDbgDeclare()) { 3690 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3691 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); 3692 } else { 3693 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); 3694 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3695 Vals.push_back(VE.getMetadataID(DVR.getAssignID())); 3696 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); 3697 Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); 3698 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); 3699 } 3700 Vals.clear(); 3701 } 3702 } 3703 } 3704 3705 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3706 SmallVector<Value *> Worklist{BA}; 3707 SmallPtrSet<Value *, 8> Visited{BA}; 3708 while (!Worklist.empty()) { 3709 Value *V = Worklist.pop_back_val(); 3710 for (User *U : V->users()) { 3711 if (auto *I = dyn_cast<Instruction>(U)) { 3712 Function *P = I->getFunction(); 3713 if (P != &F) 3714 BlockAddressUsers.insert(P); 3715 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3716 Visited.insert(U).second) 3717 Worklist.push_back(U); 3718 } 3719 } 3720 } 3721 } 3722 3723 if (!BlockAddressUsers.empty()) { 3724 Vals.resize(BlockAddressUsers.size()); 3725 for (auto I : llvm::enumerate(BlockAddressUsers)) 3726 Vals[I.index()] = VE.getValueID(I.value()); 3727 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3728 Vals.clear(); 3729 } 3730 3731 // Emit names for all the instructions etc. 3732 if (auto *Symtab = F.getValueSymbolTable()) 3733 writeFunctionLevelValueSymbolTable(*Symtab); 3734 3735 if (NeedsMetadataAttachment) 3736 writeFunctionMetadataAttachment(F); 3737 if (VE.shouldPreserveUseListOrder()) 3738 writeUseListBlock(&F); 3739 VE.purgeFunction(); 3740 Stream.ExitBlock(); 3741 } 3742 3743 // Emit blockinfo, which defines the standard abbreviations etc. 3744 void ModuleBitcodeWriter::writeBlockInfo() { 3745 // We only want to emit block info records for blocks that have multiple 3746 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3747 // Other blocks can define their abbrevs inline. 3748 Stream.EnterBlockInfoBlock(); 3749 3750 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3751 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3756 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3757 VST_ENTRY_8_ABBREV) 3758 llvm_unreachable("Unexpected abbrev ordering!"); 3759 } 3760 3761 { // 7-bit fixed width VST_CODE_ENTRY strings. 3762 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3763 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3767 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3768 VST_ENTRY_7_ABBREV) 3769 llvm_unreachable("Unexpected abbrev ordering!"); 3770 } 3771 { // 6-bit char6 VST_CODE_ENTRY strings. 3772 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3773 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3777 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3778 VST_ENTRY_6_ABBREV) 3779 llvm_unreachable("Unexpected abbrev ordering!"); 3780 } 3781 { // 6-bit char6 VST_CODE_BBENTRY strings. 3782 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3783 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3787 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3788 VST_BBENTRY_6_ABBREV) 3789 llvm_unreachable("Unexpected abbrev ordering!"); 3790 } 3791 3792 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3793 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3794 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3796 VE.computeBitsRequiredForTypeIndices())); 3797 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3798 CONSTANTS_SETTYPE_ABBREV) 3799 llvm_unreachable("Unexpected abbrev ordering!"); 3800 } 3801 3802 { // INTEGER abbrev for CONSTANTS_BLOCK. 3803 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3804 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3806 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3807 CONSTANTS_INTEGER_ABBREV) 3808 llvm_unreachable("Unexpected abbrev ordering!"); 3809 } 3810 3811 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3812 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3813 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3816 VE.computeBitsRequiredForTypeIndices())); 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3818 3819 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3820 CONSTANTS_CE_CAST_Abbrev) 3821 llvm_unreachable("Unexpected abbrev ordering!"); 3822 } 3823 { // NULL abbrev for CONSTANTS_BLOCK. 3824 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3825 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3826 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3827 CONSTANTS_NULL_Abbrev) 3828 llvm_unreachable("Unexpected abbrev ordering!"); 3829 } 3830 3831 // FIXME: This should only use space for first class types! 3832 3833 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3834 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3835 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3838 VE.computeBitsRequiredForTypeIndices())); 3839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3841 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3842 FUNCTION_INST_LOAD_ABBREV) 3843 llvm_unreachable("Unexpected abbrev ordering!"); 3844 } 3845 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3846 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3847 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3850 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3851 FUNCTION_INST_UNOP_ABBREV) 3852 llvm_unreachable("Unexpected abbrev ordering!"); 3853 } 3854 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3855 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3856 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3860 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3861 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3862 llvm_unreachable("Unexpected abbrev ordering!"); 3863 } 3864 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3865 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3866 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3869 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3870 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3871 FUNCTION_INST_BINOP_ABBREV) 3872 llvm_unreachable("Unexpected abbrev ordering!"); 3873 } 3874 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3875 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3876 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3881 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3882 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3883 llvm_unreachable("Unexpected abbrev ordering!"); 3884 } 3885 { // INST_CAST abbrev for FUNCTION_BLOCK. 3886 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3887 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3890 VE.computeBitsRequiredForTypeIndices())); 3891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3892 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3893 FUNCTION_INST_CAST_ABBREV) 3894 llvm_unreachable("Unexpected abbrev ordering!"); 3895 } 3896 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3897 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3898 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3901 VE.computeBitsRequiredForTypeIndices())); 3902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3904 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3905 FUNCTION_INST_CAST_FLAGS_ABBREV) 3906 llvm_unreachable("Unexpected abbrev ordering!"); 3907 } 3908 3909 { // INST_RET abbrev for FUNCTION_BLOCK. 3910 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3911 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3912 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3913 FUNCTION_INST_RET_VOID_ABBREV) 3914 llvm_unreachable("Unexpected abbrev ordering!"); 3915 } 3916 { // INST_RET abbrev for FUNCTION_BLOCK. 3917 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3918 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3920 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3921 FUNCTION_INST_RET_VAL_ABBREV) 3922 llvm_unreachable("Unexpected abbrev ordering!"); 3923 } 3924 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3925 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3926 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3927 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3928 FUNCTION_INST_UNREACHABLE_ABBREV) 3929 llvm_unreachable("Unexpected abbrev ordering!"); 3930 } 3931 { 3932 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3933 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3936 Log2_32_Ceil(VE.getTypes().size() + 1))); 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3939 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3940 FUNCTION_INST_GEP_ABBREV) 3941 llvm_unreachable("Unexpected abbrev ordering!"); 3942 } 3943 { 3944 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3945 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); 3946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val 3950 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3951 FUNCTION_DEBUG_RECORD_VALUE_ABBREV) 3952 llvm_unreachable("Unexpected abbrev ordering! 1"); 3953 } 3954 Stream.ExitBlock(); 3955 } 3956 3957 /// Write the module path strings, currently only used when generating 3958 /// a combined index file. 3959 void IndexBitcodeWriter::writeModStrings() { 3960 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3961 3962 // TODO: See which abbrev sizes we actually need to emit 3963 3964 // 8-bit fixed-width MST_ENTRY strings. 3965 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3966 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3970 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3971 3972 // 7-bit fixed width MST_ENTRY strings. 3973 Abbv = std::make_shared<BitCodeAbbrev>(); 3974 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3978 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3979 3980 // 6-bit char6 MST_ENTRY strings. 3981 Abbv = std::make_shared<BitCodeAbbrev>(); 3982 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3986 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3987 3988 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3989 Abbv = std::make_shared<BitCodeAbbrev>(); 3990 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3996 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3997 3998 SmallVector<unsigned, 64> Vals; 3999 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 4000 StringRef Key = MPSE.getKey(); 4001 const auto &Hash = MPSE.getValue(); 4002 StringEncoding Bits = getStringEncoding(Key); 4003 unsigned AbbrevToUse = Abbrev8Bit; 4004 if (Bits == SE_Char6) 4005 AbbrevToUse = Abbrev6Bit; 4006 else if (Bits == SE_Fixed7) 4007 AbbrevToUse = Abbrev7Bit; 4008 4009 auto ModuleId = ModuleIdMap.size(); 4010 ModuleIdMap[Key] = ModuleId; 4011 Vals.push_back(ModuleId); 4012 Vals.append(Key.begin(), Key.end()); 4013 4014 // Emit the finished record. 4015 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 4016 4017 // Emit an optional hash for the module now 4018 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 4019 Vals.assign(Hash.begin(), Hash.end()); 4020 // Emit the hash record. 4021 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 4022 } 4023 4024 Vals.clear(); 4025 }); 4026 Stream.ExitBlock(); 4027 } 4028 4029 /// Write the function type metadata related records that need to appear before 4030 /// a function summary entry (whether per-module or combined). 4031 template <typename Fn> 4032 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 4033 FunctionSummary *FS, 4034 Fn GetValueID) { 4035 if (!FS->type_tests().empty()) 4036 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 4037 4038 SmallVector<uint64_t, 64> Record; 4039 4040 auto WriteVFuncIdVec = [&](uint64_t Ty, 4041 ArrayRef<FunctionSummary::VFuncId> VFs) { 4042 if (VFs.empty()) 4043 return; 4044 Record.clear(); 4045 for (auto &VF : VFs) { 4046 Record.push_back(VF.GUID); 4047 Record.push_back(VF.Offset); 4048 } 4049 Stream.EmitRecord(Ty, Record); 4050 }; 4051 4052 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 4053 FS->type_test_assume_vcalls()); 4054 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 4055 FS->type_checked_load_vcalls()); 4056 4057 auto WriteConstVCallVec = [&](uint64_t Ty, 4058 ArrayRef<FunctionSummary::ConstVCall> VCs) { 4059 for (auto &VC : VCs) { 4060 Record.clear(); 4061 Record.push_back(VC.VFunc.GUID); 4062 Record.push_back(VC.VFunc.Offset); 4063 llvm::append_range(Record, VC.Args); 4064 Stream.EmitRecord(Ty, Record); 4065 } 4066 }; 4067 4068 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 4069 FS->type_test_assume_const_vcalls()); 4070 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 4071 FS->type_checked_load_const_vcalls()); 4072 4073 auto WriteRange = [&](ConstantRange Range) { 4074 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 4075 assert(Range.getLower().getNumWords() == 1); 4076 assert(Range.getUpper().getNumWords() == 1); 4077 emitSignedInt64(Record, *Range.getLower().getRawData()); 4078 emitSignedInt64(Record, *Range.getUpper().getRawData()); 4079 }; 4080 4081 if (!FS->paramAccesses().empty()) { 4082 Record.clear(); 4083 for (auto &Arg : FS->paramAccesses()) { 4084 size_t UndoSize = Record.size(); 4085 Record.push_back(Arg.ParamNo); 4086 WriteRange(Arg.Use); 4087 Record.push_back(Arg.Calls.size()); 4088 for (auto &Call : Arg.Calls) { 4089 Record.push_back(Call.ParamNo); 4090 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 4091 if (!ValueID) { 4092 // If ValueID is unknown we can't drop just this call, we must drop 4093 // entire parameter. 4094 Record.resize(UndoSize); 4095 break; 4096 } 4097 Record.push_back(*ValueID); 4098 WriteRange(Call.Offsets); 4099 } 4100 } 4101 if (!Record.empty()) 4102 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 4103 } 4104 } 4105 4106 /// Collect type IDs from type tests used by function. 4107 static void 4108 getReferencedTypeIds(FunctionSummary *FS, 4109 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 4110 if (!FS->type_tests().empty()) 4111 for (auto &TT : FS->type_tests()) 4112 ReferencedTypeIds.insert(TT); 4113 4114 auto GetReferencedTypesFromVFuncIdVec = 4115 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 4116 for (auto &VF : VFs) 4117 ReferencedTypeIds.insert(VF.GUID); 4118 }; 4119 4120 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 4121 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 4122 4123 auto GetReferencedTypesFromConstVCallVec = 4124 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 4125 for (auto &VC : VCs) 4126 ReferencedTypeIds.insert(VC.VFunc.GUID); 4127 }; 4128 4129 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 4130 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 4131 } 4132 4133 static void writeWholeProgramDevirtResolutionByArg( 4134 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 4135 const WholeProgramDevirtResolution::ByArg &ByArg) { 4136 NameVals.push_back(args.size()); 4137 llvm::append_range(NameVals, args); 4138 4139 NameVals.push_back(ByArg.TheKind); 4140 NameVals.push_back(ByArg.Info); 4141 NameVals.push_back(ByArg.Byte); 4142 NameVals.push_back(ByArg.Bit); 4143 } 4144 4145 static void writeWholeProgramDevirtResolution( 4146 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4147 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 4148 NameVals.push_back(Id); 4149 4150 NameVals.push_back(Wpd.TheKind); 4151 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 4152 NameVals.push_back(Wpd.SingleImplName.size()); 4153 4154 NameVals.push_back(Wpd.ResByArg.size()); 4155 for (auto &A : Wpd.ResByArg) 4156 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 4157 } 4158 4159 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 4160 StringTableBuilder &StrtabBuilder, 4161 const std::string &Id, 4162 const TypeIdSummary &Summary) { 4163 NameVals.push_back(StrtabBuilder.add(Id)); 4164 NameVals.push_back(Id.size()); 4165 4166 NameVals.push_back(Summary.TTRes.TheKind); 4167 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 4168 NameVals.push_back(Summary.TTRes.AlignLog2); 4169 NameVals.push_back(Summary.TTRes.SizeM1); 4170 NameVals.push_back(Summary.TTRes.BitMask); 4171 NameVals.push_back(Summary.TTRes.InlineBits); 4172 4173 for (auto &W : Summary.WPDRes) 4174 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 4175 W.second); 4176 } 4177 4178 static void writeTypeIdCompatibleVtableSummaryRecord( 4179 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4180 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 4181 ValueEnumerator &VE) { 4182 NameVals.push_back(StrtabBuilder.add(Id)); 4183 NameVals.push_back(Id.size()); 4184 4185 for (auto &P : Summary) { 4186 NameVals.push_back(P.AddressPointOffset); 4187 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4188 } 4189 } 4190 4191 static void writeFunctionHeapProfileRecords( 4192 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4193 unsigned AllocAbbrev, bool PerModule, 4194 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4195 std::function<unsigned(unsigned)> GetStackIndex) { 4196 SmallVector<uint64_t> Record; 4197 4198 for (auto &CI : FS->callsites()) { 4199 Record.clear(); 4200 // Per module callsite clones should always have a single entry of 4201 // value 0. 4202 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4203 Record.push_back(GetValueID(CI.Callee)); 4204 if (!PerModule) { 4205 Record.push_back(CI.StackIdIndices.size()); 4206 Record.push_back(CI.Clones.size()); 4207 } 4208 for (auto Id : CI.StackIdIndices) 4209 Record.push_back(GetStackIndex(Id)); 4210 if (!PerModule) { 4211 for (auto V : CI.Clones) 4212 Record.push_back(V); 4213 } 4214 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4215 : bitc::FS_COMBINED_CALLSITE_INFO, 4216 Record, CallsiteAbbrev); 4217 } 4218 4219 for (auto &AI : FS->allocs()) { 4220 Record.clear(); 4221 // Per module alloc versions should always have a single entry of 4222 // value 0. 4223 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4224 Record.push_back(AI.MIBs.size()); 4225 if (!PerModule) 4226 Record.push_back(AI.Versions.size()); 4227 for (auto &MIB : AI.MIBs) { 4228 Record.push_back((uint8_t)MIB.AllocType); 4229 Record.push_back(MIB.StackIdIndices.size()); 4230 for (auto Id : MIB.StackIdIndices) 4231 Record.push_back(GetStackIndex(Id)); 4232 } 4233 if (!PerModule) { 4234 for (auto V : AI.Versions) 4235 Record.push_back(V); 4236 } 4237 assert(AI.TotalSizes.empty() || AI.TotalSizes.size() == AI.MIBs.size()); 4238 if (!AI.TotalSizes.empty()) { 4239 for (auto Size : AI.TotalSizes) 4240 Record.push_back(Size); 4241 } 4242 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4243 : bitc::FS_COMBINED_ALLOC_INFO, 4244 Record, AllocAbbrev); 4245 } 4246 } 4247 4248 // Helper to emit a single function summary record. 4249 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4250 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4251 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4252 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4253 unsigned AllocAbbrev, const Function &F) { 4254 NameVals.push_back(ValueID); 4255 4256 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4257 4258 writeFunctionTypeMetadataRecords( 4259 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4260 return {VE.getValueID(VI.getValue())}; 4261 }); 4262 4263 writeFunctionHeapProfileRecords( 4264 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4265 /*PerModule*/ true, 4266 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4267 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4268 4269 auto SpecialRefCnts = FS->specialRefCounts(); 4270 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4271 NameVals.push_back(FS->instCount()); 4272 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4273 NameVals.push_back(FS->refs().size()); 4274 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4275 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4276 4277 for (auto &RI : FS->refs()) 4278 NameVals.push_back(getValueId(RI)); 4279 4280 const bool UseRelBFRecord = 4281 WriteRelBFToSummary && !F.hasProfileData() && 4282 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4283 for (auto &ECI : FS->calls()) { 4284 NameVals.push_back(getValueId(ECI.first)); 4285 if (UseRelBFRecord) 4286 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4287 else 4288 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4289 } 4290 4291 unsigned FSAbbrev = 4292 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4293 unsigned Code = 4294 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4295 4296 // Emit the finished record. 4297 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4298 NameVals.clear(); 4299 } 4300 4301 // Collect the global value references in the given variable's initializer, 4302 // and emit them in a summary record. 4303 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4304 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4305 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4306 auto VI = Index->getValueInfo(V.getGUID()); 4307 if (!VI || VI.getSummaryList().empty()) { 4308 // Only declarations should not have a summary (a declaration might however 4309 // have a summary if the def was in module level asm). 4310 assert(V.isDeclaration()); 4311 return; 4312 } 4313 auto *Summary = VI.getSummaryList()[0].get(); 4314 NameVals.push_back(VE.getValueID(&V)); 4315 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4316 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4317 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4318 4319 auto VTableFuncs = VS->vTableFuncs(); 4320 if (!VTableFuncs.empty()) 4321 NameVals.push_back(VS->refs().size()); 4322 4323 unsigned SizeBeforeRefs = NameVals.size(); 4324 for (auto &RI : VS->refs()) 4325 NameVals.push_back(VE.getValueID(RI.getValue())); 4326 // Sort the refs for determinism output, the vector returned by FS->refs() has 4327 // been initialized from a DenseSet. 4328 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4329 4330 if (VTableFuncs.empty()) 4331 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4332 FSModRefsAbbrev); 4333 else { 4334 // VTableFuncs pairs should already be sorted by offset. 4335 for (auto &P : VTableFuncs) { 4336 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4337 NameVals.push_back(P.VTableOffset); 4338 } 4339 4340 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4341 FSModVTableRefsAbbrev); 4342 } 4343 NameVals.clear(); 4344 } 4345 4346 /// Emit the per-module summary section alongside the rest of 4347 /// the module's bitcode. 4348 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4349 // By default we compile with ThinLTO if the module has a summary, but the 4350 // client can request full LTO with a module flag. 4351 bool IsThinLTO = true; 4352 if (auto *MD = 4353 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4354 IsThinLTO = MD->getZExtValue(); 4355 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4356 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4357 4); 4358 4359 Stream.EmitRecord( 4360 bitc::FS_VERSION, 4361 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4362 4363 // Write the index flags. 4364 uint64_t Flags = 0; 4365 // Bits 1-3 are set only in the combined index, skip them. 4366 if (Index->enableSplitLTOUnit()) 4367 Flags |= 0x8; 4368 if (Index->hasUnifiedLTO()) 4369 Flags |= 0x200; 4370 4371 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4372 4373 if (Index->begin() == Index->end()) { 4374 Stream.ExitBlock(); 4375 return; 4376 } 4377 4378 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4379 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4381 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4384 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4385 4386 for (const auto &GVI : valueIds()) { 4387 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4388 ArrayRef<uint32_t>{GVI.second, 4389 static_cast<uint32_t>(GVI.first >> 32), 4390 static_cast<uint32_t>(GVI.first)}, 4391 ValueGuidAbbrev); 4392 } 4393 4394 if (!Index->stackIds().empty()) { 4395 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4396 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4397 // numids x stackid 4398 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4399 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4400 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4401 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4402 } 4403 4404 // Abbrev for FS_PERMODULE_PROFILE. 4405 Abbv = std::make_shared<BitCodeAbbrev>(); 4406 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4414 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4417 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4418 4419 // Abbrev for FS_PERMODULE_RELBF. 4420 Abbv = std::make_shared<BitCodeAbbrev>(); 4421 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4429 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4432 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4433 4434 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4435 Abbv = std::make_shared<BitCodeAbbrev>(); 4436 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4441 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4442 4443 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4444 Abbv = std::make_shared<BitCodeAbbrev>(); 4445 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4449 // numrefs x valueid, n x (valueid , offset) 4450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4452 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4453 4454 // Abbrev for FS_ALIAS. 4455 Abbv = std::make_shared<BitCodeAbbrev>(); 4456 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4460 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4461 4462 // Abbrev for FS_TYPE_ID_METADATA 4463 Abbv = std::make_shared<BitCodeAbbrev>(); 4464 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4467 // n x (valueid , offset) 4468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4470 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4471 4472 Abbv = std::make_shared<BitCodeAbbrev>(); 4473 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4475 // n x stackidindex 4476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4478 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4479 4480 Abbv = std::make_shared<BitCodeAbbrev>(); 4481 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4483 // n x (alloc type, numstackids, numstackids x stackidindex) 4484 // optional: nummib x total size 4485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4487 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4488 4489 SmallVector<uint64_t, 64> NameVals; 4490 // Iterate over the list of functions instead of the Index to 4491 // ensure the ordering is stable. 4492 for (const Function &F : M) { 4493 // Summary emission does not support anonymous functions, they have to 4494 // renamed using the anonymous function renaming pass. 4495 if (!F.hasName()) 4496 report_fatal_error("Unexpected anonymous function when writing summary"); 4497 4498 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4499 if (!VI || VI.getSummaryList().empty()) { 4500 // Only declarations should not have a summary (a declaration might 4501 // however have a summary if the def was in module level asm). 4502 assert(F.isDeclaration()); 4503 continue; 4504 } 4505 auto *Summary = VI.getSummaryList()[0].get(); 4506 writePerModuleFunctionSummaryRecord( 4507 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4508 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F); 4509 } 4510 4511 // Capture references from GlobalVariable initializers, which are outside 4512 // of a function scope. 4513 for (const GlobalVariable &G : M.globals()) 4514 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4515 FSModVTableRefsAbbrev); 4516 4517 for (const GlobalAlias &A : M.aliases()) { 4518 auto *Aliasee = A.getAliaseeObject(); 4519 // Skip ifunc and nameless functions which don't have an entry in the 4520 // summary. 4521 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4522 continue; 4523 auto AliasId = VE.getValueID(&A); 4524 auto AliaseeId = VE.getValueID(Aliasee); 4525 NameVals.push_back(AliasId); 4526 auto *Summary = Index->getGlobalValueSummary(A); 4527 AliasSummary *AS = cast<AliasSummary>(Summary); 4528 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4529 NameVals.push_back(AliaseeId); 4530 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4531 NameVals.clear(); 4532 } 4533 4534 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4535 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4536 S.second, VE); 4537 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4538 TypeIdCompatibleVtableAbbrev); 4539 NameVals.clear(); 4540 } 4541 4542 if (Index->getBlockCount()) 4543 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4544 ArrayRef<uint64_t>{Index->getBlockCount()}); 4545 4546 Stream.ExitBlock(); 4547 } 4548 4549 /// Emit the combined summary section into the combined index file. 4550 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4551 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4552 Stream.EmitRecord( 4553 bitc::FS_VERSION, 4554 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4555 4556 // Write the index flags. 4557 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4558 4559 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4560 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4562 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4565 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4566 4567 for (const auto &GVI : valueIds()) { 4568 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4569 ArrayRef<uint32_t>{GVI.second, 4570 static_cast<uint32_t>(GVI.first >> 32), 4571 static_cast<uint32_t>(GVI.first)}, 4572 ValueGuidAbbrev); 4573 } 4574 4575 // Write the stack ids used by this index, which will be a subset of those in 4576 // the full index in the case of distributed indexes. 4577 if (!StackIds.empty()) { 4578 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4579 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4580 // numids x stackid 4581 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4582 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4583 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4584 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4585 } 4586 4587 // Abbrev for FS_COMBINED_PROFILE. 4588 Abbv = std::make_shared<BitCodeAbbrev>(); 4589 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4599 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4602 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4603 4604 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4605 Abbv = std::make_shared<BitCodeAbbrev>(); 4606 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4612 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4613 4614 // Abbrev for FS_COMBINED_ALIAS. 4615 Abbv = std::make_shared<BitCodeAbbrev>(); 4616 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4621 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4622 4623 Abbv = std::make_shared<BitCodeAbbrev>(); 4624 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4628 // numstackindices x stackidindex, numver x version 4629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4631 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4632 4633 Abbv = std::make_shared<BitCodeAbbrev>(); 4634 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4637 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4638 // numver x version 4639 // optional: nummib x total size 4640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4642 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4643 4644 auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool { 4645 if (DecSummaries == nullptr) 4646 return false; 4647 return DecSummaries->count(GVS); 4648 }; 4649 4650 // The aliases are emitted as a post-pass, and will point to the value 4651 // id of the aliasee. Save them in a vector for post-processing. 4652 SmallVector<AliasSummary *, 64> Aliases; 4653 4654 // Save the value id for each summary for alias emission. 4655 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4656 4657 SmallVector<uint64_t, 64> NameVals; 4658 4659 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4660 // with the type ids referenced by this index file. 4661 std::set<GlobalValue::GUID> ReferencedTypeIds; 4662 4663 // For local linkage, we also emit the original name separately 4664 // immediately after the record. 4665 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4666 // We don't need to emit the original name if we are writing the index for 4667 // distributed backends (in which case ModuleToSummariesForIndex is 4668 // non-null). The original name is only needed during the thin link, since 4669 // for SamplePGO the indirect call targets for local functions have 4670 // have the original name annotated in profile. 4671 // Continue to emit it when writing out the entire combined index, which is 4672 // used in testing the thin link via llvm-lto. 4673 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4674 return; 4675 NameVals.push_back(S.getOriginalName()); 4676 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4677 NameVals.clear(); 4678 }; 4679 4680 DenseSet<GlobalValue::GUID> DefOrUseGUIDs; 4681 forEachSummary([&](GVInfo I, bool IsAliasee) { 4682 GlobalValueSummary *S = I.second; 4683 assert(S); 4684 DefOrUseGUIDs.insert(I.first); 4685 for (const ValueInfo &VI : S->refs()) 4686 DefOrUseGUIDs.insert(VI.getGUID()); 4687 4688 auto ValueId = getValueId(I.first); 4689 assert(ValueId); 4690 SummaryToValueIdMap[S] = *ValueId; 4691 4692 // If this is invoked for an aliasee, we want to record the above 4693 // mapping, but then not emit a summary entry (if the aliasee is 4694 // to be imported, we will invoke this separately with IsAliasee=false). 4695 if (IsAliasee) 4696 return; 4697 4698 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4699 // Will process aliases as a post-pass because the reader wants all 4700 // global to be loaded first. 4701 Aliases.push_back(AS); 4702 return; 4703 } 4704 4705 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4706 NameVals.push_back(*ValueId); 4707 assert(ModuleIdMap.count(VS->modulePath())); 4708 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4709 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4710 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4711 for (auto &RI : VS->refs()) { 4712 auto RefValueId = getValueId(RI.getGUID()); 4713 if (!RefValueId) 4714 continue; 4715 NameVals.push_back(*RefValueId); 4716 } 4717 4718 // Emit the finished record. 4719 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4720 FSModRefsAbbrev); 4721 NameVals.clear(); 4722 MaybeEmitOriginalName(*S); 4723 return; 4724 } 4725 4726 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4727 if (!VI) 4728 return std::nullopt; 4729 return getValueId(VI.getGUID()); 4730 }; 4731 4732 auto *FS = cast<FunctionSummary>(S); 4733 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4734 getReferencedTypeIds(FS, ReferencedTypeIds); 4735 4736 writeFunctionHeapProfileRecords( 4737 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4738 /*PerModule*/ false, 4739 /*GetValueId*/ 4740 [&](const ValueInfo &VI) -> unsigned { 4741 std::optional<unsigned> ValueID = GetValueId(VI); 4742 // This can happen in shared index files for distributed ThinLTO if 4743 // the callee function summary is not included. Record 0 which we 4744 // will have to deal with conservatively when doing any kind of 4745 // validation in the ThinLTO backends. 4746 if (!ValueID) 4747 return 0; 4748 return *ValueID; 4749 }, 4750 /*GetStackIndex*/ 4751 [&](unsigned I) { 4752 // Get the corresponding index into the list of StackIds actually 4753 // being written for this combined index (which may be a subset in 4754 // the case of distributed indexes). 4755 assert(StackIdIndicesToIndex.contains(I)); 4756 return StackIdIndicesToIndex[I]; 4757 }); 4758 4759 NameVals.push_back(*ValueId); 4760 assert(ModuleIdMap.count(FS->modulePath())); 4761 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4762 NameVals.push_back( 4763 getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS))); 4764 NameVals.push_back(FS->instCount()); 4765 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4766 // TODO: Stop writing entry count and bump bitcode version. 4767 NameVals.push_back(0 /* EntryCount */); 4768 4769 // Fill in below 4770 NameVals.push_back(0); // numrefs 4771 NameVals.push_back(0); // rorefcnt 4772 NameVals.push_back(0); // worefcnt 4773 4774 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4775 for (auto &RI : FS->refs()) { 4776 auto RefValueId = getValueId(RI.getGUID()); 4777 if (!RefValueId) 4778 continue; 4779 NameVals.push_back(*RefValueId); 4780 if (RI.isReadOnly()) 4781 RORefCnt++; 4782 else if (RI.isWriteOnly()) 4783 WORefCnt++; 4784 Count++; 4785 } 4786 NameVals[6] = Count; 4787 NameVals[7] = RORefCnt; 4788 NameVals[8] = WORefCnt; 4789 4790 for (auto &EI : FS->calls()) { 4791 // If this GUID doesn't have a value id, it doesn't have a function 4792 // summary and we don't need to record any calls to it. 4793 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4794 if (!CallValueId) 4795 continue; 4796 NameVals.push_back(*CallValueId); 4797 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4798 } 4799 4800 // Emit the finished record. 4801 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 4802 FSCallsProfileAbbrev); 4803 NameVals.clear(); 4804 MaybeEmitOriginalName(*S); 4805 }); 4806 4807 for (auto *AS : Aliases) { 4808 auto AliasValueId = SummaryToValueIdMap[AS]; 4809 assert(AliasValueId); 4810 NameVals.push_back(AliasValueId); 4811 assert(ModuleIdMap.count(AS->modulePath())); 4812 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4813 NameVals.push_back( 4814 getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS))); 4815 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4816 assert(AliaseeValueId); 4817 NameVals.push_back(AliaseeValueId); 4818 4819 // Emit the finished record. 4820 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4821 NameVals.clear(); 4822 MaybeEmitOriginalName(*AS); 4823 4824 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4825 getReferencedTypeIds(FS, ReferencedTypeIds); 4826 } 4827 4828 if (!Index.cfiFunctionDefs().empty()) { 4829 for (auto &S : Index.cfiFunctionDefs()) { 4830 if (DefOrUseGUIDs.contains( 4831 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4832 NameVals.push_back(StrtabBuilder.add(S)); 4833 NameVals.push_back(S.size()); 4834 } 4835 } 4836 if (!NameVals.empty()) { 4837 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4838 NameVals.clear(); 4839 } 4840 } 4841 4842 if (!Index.cfiFunctionDecls().empty()) { 4843 for (auto &S : Index.cfiFunctionDecls()) { 4844 if (DefOrUseGUIDs.contains( 4845 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4846 NameVals.push_back(StrtabBuilder.add(S)); 4847 NameVals.push_back(S.size()); 4848 } 4849 } 4850 if (!NameVals.empty()) { 4851 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4852 NameVals.clear(); 4853 } 4854 } 4855 4856 // Walk the GUIDs that were referenced, and write the 4857 // corresponding type id records. 4858 for (auto &T : ReferencedTypeIds) { 4859 auto TidIter = Index.typeIds().equal_range(T); 4860 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) { 4861 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, TypeIdPair.first, 4862 TypeIdPair.second); 4863 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4864 NameVals.clear(); 4865 } 4866 } 4867 4868 if (Index.getBlockCount()) 4869 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4870 ArrayRef<uint64_t>{Index.getBlockCount()}); 4871 4872 Stream.ExitBlock(); 4873 } 4874 4875 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4876 /// current llvm version, and a record for the epoch number. 4877 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4878 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4879 4880 // Write the "user readable" string identifying the bitcode producer 4881 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4882 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4885 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4886 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4887 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4888 4889 // Write the epoch version 4890 Abbv = std::make_shared<BitCodeAbbrev>(); 4891 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4893 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4894 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4895 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4896 Stream.ExitBlock(); 4897 } 4898 4899 void ModuleBitcodeWriter::writeModuleHash(StringRef View) { 4900 // Emit the module's hash. 4901 // MODULE_CODE_HASH: [5*i32] 4902 if (GenerateHash) { 4903 uint32_t Vals[5]; 4904 Hasher.update(ArrayRef<uint8_t>( 4905 reinterpret_cast<const uint8_t *>(View.data()), View.size())); 4906 std::array<uint8_t, 20> Hash = Hasher.result(); 4907 for (int Pos = 0; Pos < 20; Pos += 4) { 4908 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4909 } 4910 4911 // Emit the finished record. 4912 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4913 4914 if (ModHash) 4915 // Save the written hash value. 4916 llvm::copy(Vals, std::begin(*ModHash)); 4917 } 4918 } 4919 4920 void ModuleBitcodeWriter::write() { 4921 writeIdentificationBlock(Stream); 4922 4923 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4924 // We will want to write the module hash at this point. Block any flushing so 4925 // we can have access to the whole underlying data later. 4926 Stream.markAndBlockFlushing(); 4927 4928 writeModuleVersion(); 4929 4930 // Emit blockinfo, which defines the standard abbreviations etc. 4931 writeBlockInfo(); 4932 4933 // Emit information describing all of the types in the module. 4934 writeTypeTable(); 4935 4936 // Emit information about attribute groups. 4937 writeAttributeGroupTable(); 4938 4939 // Emit information about parameter attributes. 4940 writeAttributeTable(); 4941 4942 writeComdats(); 4943 4944 // Emit top-level description of module, including target triple, inline asm, 4945 // descriptors for global variables, and function prototype info. 4946 writeModuleInfo(); 4947 4948 // Emit constants. 4949 writeModuleConstants(); 4950 4951 // Emit metadata kind names. 4952 writeModuleMetadataKinds(); 4953 4954 // Emit metadata. 4955 writeModuleMetadata(); 4956 4957 // Emit module-level use-lists. 4958 if (VE.shouldPreserveUseListOrder()) 4959 writeUseListBlock(nullptr); 4960 4961 writeOperandBundleTags(); 4962 writeSyncScopeNames(); 4963 4964 // Emit function bodies. 4965 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4966 for (const Function &F : M) 4967 if (!F.isDeclaration()) 4968 writeFunction(F, FunctionToBitcodeIndex); 4969 4970 // Need to write after the above call to WriteFunction which populates 4971 // the summary information in the index. 4972 if (Index) 4973 writePerModuleGlobalValueSummary(); 4974 4975 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4976 4977 writeModuleHash(Stream.getMarkedBufferAndResumeFlushing()); 4978 4979 Stream.ExitBlock(); 4980 } 4981 4982 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4983 uint32_t &Position) { 4984 support::endian::write32le(&Buffer[Position], Value); 4985 Position += 4; 4986 } 4987 4988 /// If generating a bc file on darwin, we have to emit a 4989 /// header and trailer to make it compatible with the system archiver. To do 4990 /// this we emit the following header, and then emit a trailer that pads the 4991 /// file out to be a multiple of 16 bytes. 4992 /// 4993 /// struct bc_header { 4994 /// uint32_t Magic; // 0x0B17C0DE 4995 /// uint32_t Version; // Version, currently always 0. 4996 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4997 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4998 /// uint32_t CPUType; // CPU specifier. 4999 /// ... potentially more later ... 5000 /// }; 5001 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 5002 const Triple &TT) { 5003 unsigned CPUType = ~0U; 5004 5005 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 5006 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 5007 // number from /usr/include/mach/machine.h. It is ok to reproduce the 5008 // specific constants here because they are implicitly part of the Darwin ABI. 5009 enum { 5010 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 5011 DARWIN_CPU_TYPE_X86 = 7, 5012 DARWIN_CPU_TYPE_ARM = 12, 5013 DARWIN_CPU_TYPE_POWERPC = 18 5014 }; 5015 5016 Triple::ArchType Arch = TT.getArch(); 5017 if (Arch == Triple::x86_64) 5018 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 5019 else if (Arch == Triple::x86) 5020 CPUType = DARWIN_CPU_TYPE_X86; 5021 else if (Arch == Triple::ppc) 5022 CPUType = DARWIN_CPU_TYPE_POWERPC; 5023 else if (Arch == Triple::ppc64) 5024 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 5025 else if (Arch == Triple::arm || Arch == Triple::thumb) 5026 CPUType = DARWIN_CPU_TYPE_ARM; 5027 5028 // Traditional Bitcode starts after header. 5029 assert(Buffer.size() >= BWH_HeaderSize && 5030 "Expected header size to be reserved"); 5031 unsigned BCOffset = BWH_HeaderSize; 5032 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 5033 5034 // Write the magic and version. 5035 unsigned Position = 0; 5036 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 5037 writeInt32ToBuffer(0, Buffer, Position); // Version. 5038 writeInt32ToBuffer(BCOffset, Buffer, Position); 5039 writeInt32ToBuffer(BCSize, Buffer, Position); 5040 writeInt32ToBuffer(CPUType, Buffer, Position); 5041 5042 // If the file is not a multiple of 16 bytes, insert dummy padding. 5043 while (Buffer.size() & 15) 5044 Buffer.push_back(0); 5045 } 5046 5047 /// Helper to write the header common to all bitcode files. 5048 static void writeBitcodeHeader(BitstreamWriter &Stream) { 5049 // Emit the file header. 5050 Stream.Emit((unsigned)'B', 8); 5051 Stream.Emit((unsigned)'C', 8); 5052 Stream.Emit(0x0, 4); 5053 Stream.Emit(0xC, 4); 5054 Stream.Emit(0xE, 4); 5055 Stream.Emit(0xD, 4); 5056 } 5057 5058 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 5059 : Stream(new BitstreamWriter(Buffer)) { 5060 writeBitcodeHeader(*Stream); 5061 } 5062 5063 BitcodeWriter::BitcodeWriter(raw_ostream &FS) 5064 : Stream(new BitstreamWriter(FS, FlushThreshold)) { 5065 writeBitcodeHeader(*Stream); 5066 } 5067 5068 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 5069 5070 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 5071 Stream->EnterSubblock(Block, 3); 5072 5073 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5074 Abbv->Add(BitCodeAbbrevOp(Record)); 5075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 5076 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 5077 5078 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 5079 5080 Stream->ExitBlock(); 5081 } 5082 5083 void BitcodeWriter::writeSymtab() { 5084 assert(!WroteStrtab && !WroteSymtab); 5085 5086 // If any module has module-level inline asm, we will require a registered asm 5087 // parser for the target so that we can create an accurate symbol table for 5088 // the module. 5089 for (Module *M : Mods) { 5090 if (M->getModuleInlineAsm().empty()) 5091 continue; 5092 5093 std::string Err; 5094 const Triple TT(M->getTargetTriple()); 5095 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 5096 if (!T || !T->hasMCAsmParser()) 5097 return; 5098 } 5099 5100 WroteSymtab = true; 5101 SmallVector<char, 0> Symtab; 5102 // The irsymtab::build function may be unable to create a symbol table if the 5103 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 5104 // table is not required for correctness, but we still want to be able to 5105 // write malformed modules to bitcode files, so swallow the error. 5106 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 5107 consumeError(std::move(E)); 5108 return; 5109 } 5110 5111 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 5112 {Symtab.data(), Symtab.size()}); 5113 } 5114 5115 void BitcodeWriter::writeStrtab() { 5116 assert(!WroteStrtab); 5117 5118 std::vector<char> Strtab; 5119 StrtabBuilder.finalizeInOrder(); 5120 Strtab.resize(StrtabBuilder.getSize()); 5121 StrtabBuilder.write((uint8_t *)Strtab.data()); 5122 5123 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 5124 {Strtab.data(), Strtab.size()}); 5125 5126 WroteStrtab = true; 5127 } 5128 5129 void BitcodeWriter::copyStrtab(StringRef Strtab) { 5130 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 5131 WroteStrtab = true; 5132 } 5133 5134 void BitcodeWriter::writeModule(const Module &M, 5135 bool ShouldPreserveUseListOrder, 5136 const ModuleSummaryIndex *Index, 5137 bool GenerateHash, ModuleHash *ModHash) { 5138 assert(!WroteStrtab); 5139 5140 // The Mods vector is used by irsymtab::build, which requires non-const 5141 // Modules in case it needs to materialize metadata. But the bitcode writer 5142 // requires that the module is materialized, so we can cast to non-const here, 5143 // after checking that it is in fact materialized. 5144 assert(M.isMaterialized()); 5145 Mods.push_back(const_cast<Module *>(&M)); 5146 5147 ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream, 5148 ShouldPreserveUseListOrder, Index, 5149 GenerateHash, ModHash); 5150 ModuleWriter.write(); 5151 } 5152 5153 void BitcodeWriter::writeIndex( 5154 const ModuleSummaryIndex *Index, 5155 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5156 const GVSummaryPtrSet *DecSummaries) { 5157 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries, 5158 ModuleToSummariesForIndex); 5159 IndexWriter.write(); 5160 } 5161 5162 /// Write the specified module to the specified output stream. 5163 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 5164 bool ShouldPreserveUseListOrder, 5165 const ModuleSummaryIndex *Index, 5166 bool GenerateHash, ModuleHash *ModHash) { 5167 auto Write = [&](BitcodeWriter &Writer) { 5168 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 5169 ModHash); 5170 Writer.writeSymtab(); 5171 Writer.writeStrtab(); 5172 }; 5173 Triple TT(M.getTargetTriple()); 5174 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) { 5175 // If this is darwin or another generic macho target, reserve space for the 5176 // header. Note that the header is computed *after* the output is known, so 5177 // we currently explicitly use a buffer, write to it, and then subsequently 5178 // flush to Out. 5179 SmallVector<char, 0> Buffer; 5180 Buffer.reserve(256 * 1024); 5181 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 5182 BitcodeWriter Writer(Buffer); 5183 Write(Writer); 5184 emitDarwinBCHeaderAndTrailer(Buffer, TT); 5185 Out.write(Buffer.data(), Buffer.size()); 5186 } else { 5187 BitcodeWriter Writer(Out); 5188 Write(Writer); 5189 } 5190 } 5191 5192 void IndexBitcodeWriter::write() { 5193 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5194 5195 writeModuleVersion(); 5196 5197 // Write the module paths in the combined index. 5198 writeModStrings(); 5199 5200 // Write the summary combined index records. 5201 writeCombinedGlobalValueSummary(); 5202 5203 Stream.ExitBlock(); 5204 } 5205 5206 // Write the specified module summary index to the given raw output stream, 5207 // where it will be written in a new bitcode block. This is used when 5208 // writing the combined index file for ThinLTO. When writing a subset of the 5209 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 5210 void llvm::writeIndexToFile( 5211 const ModuleSummaryIndex &Index, raw_ostream &Out, 5212 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5213 const GVSummaryPtrSet *DecSummaries) { 5214 SmallVector<char, 0> Buffer; 5215 Buffer.reserve(256 * 1024); 5216 5217 BitcodeWriter Writer(Buffer); 5218 Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries); 5219 Writer.writeStrtab(); 5220 5221 Out.write((char *)&Buffer.front(), Buffer.size()); 5222 } 5223 5224 namespace { 5225 5226 /// Class to manage the bitcode writing for a thin link bitcode file. 5227 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5228 /// ModHash is for use in ThinLTO incremental build, generated while writing 5229 /// the module bitcode file. 5230 const ModuleHash *ModHash; 5231 5232 public: 5233 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5234 BitstreamWriter &Stream, 5235 const ModuleSummaryIndex &Index, 5236 const ModuleHash &ModHash) 5237 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5238 /*ShouldPreserveUseListOrder=*/false, &Index), 5239 ModHash(&ModHash) {} 5240 5241 void write(); 5242 5243 private: 5244 void writeSimplifiedModuleInfo(); 5245 }; 5246 5247 } // end anonymous namespace 5248 5249 // This function writes a simpilified module info for thin link bitcode file. 5250 // It only contains the source file name along with the name(the offset and 5251 // size in strtab) and linkage for global values. For the global value info 5252 // entry, in order to keep linkage at offset 5, there are three zeros used 5253 // as padding. 5254 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5255 SmallVector<unsigned, 64> Vals; 5256 // Emit the module's source file name. 5257 { 5258 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5259 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5260 if (Bits == SE_Char6) 5261 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5262 else if (Bits == SE_Fixed7) 5263 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5264 5265 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5266 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5267 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5269 Abbv->Add(AbbrevOpToUse); 5270 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5271 5272 for (const auto P : M.getSourceFileName()) 5273 Vals.push_back((unsigned char)P); 5274 5275 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5276 Vals.clear(); 5277 } 5278 5279 // Emit the global variable information. 5280 for (const GlobalVariable &GV : M.globals()) { 5281 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5282 Vals.push_back(StrtabBuilder.add(GV.getName())); 5283 Vals.push_back(GV.getName().size()); 5284 Vals.push_back(0); 5285 Vals.push_back(0); 5286 Vals.push_back(0); 5287 Vals.push_back(getEncodedLinkage(GV)); 5288 5289 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5290 Vals.clear(); 5291 } 5292 5293 // Emit the function proto information. 5294 for (const Function &F : M) { 5295 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5296 Vals.push_back(StrtabBuilder.add(F.getName())); 5297 Vals.push_back(F.getName().size()); 5298 Vals.push_back(0); 5299 Vals.push_back(0); 5300 Vals.push_back(0); 5301 Vals.push_back(getEncodedLinkage(F)); 5302 5303 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5304 Vals.clear(); 5305 } 5306 5307 // Emit the alias information. 5308 for (const GlobalAlias &A : M.aliases()) { 5309 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5310 Vals.push_back(StrtabBuilder.add(A.getName())); 5311 Vals.push_back(A.getName().size()); 5312 Vals.push_back(0); 5313 Vals.push_back(0); 5314 Vals.push_back(0); 5315 Vals.push_back(getEncodedLinkage(A)); 5316 5317 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5318 Vals.clear(); 5319 } 5320 5321 // Emit the ifunc information. 5322 for (const GlobalIFunc &I : M.ifuncs()) { 5323 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5324 Vals.push_back(StrtabBuilder.add(I.getName())); 5325 Vals.push_back(I.getName().size()); 5326 Vals.push_back(0); 5327 Vals.push_back(0); 5328 Vals.push_back(0); 5329 Vals.push_back(getEncodedLinkage(I)); 5330 5331 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5332 Vals.clear(); 5333 } 5334 } 5335 5336 void ThinLinkBitcodeWriter::write() { 5337 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5338 5339 writeModuleVersion(); 5340 5341 writeSimplifiedModuleInfo(); 5342 5343 writePerModuleGlobalValueSummary(); 5344 5345 // Write module hash. 5346 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5347 5348 Stream.ExitBlock(); 5349 } 5350 5351 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5352 const ModuleSummaryIndex &Index, 5353 const ModuleHash &ModHash) { 5354 assert(!WroteStrtab); 5355 5356 // The Mods vector is used by irsymtab::build, which requires non-const 5357 // Modules in case it needs to materialize metadata. But the bitcode writer 5358 // requires that the module is materialized, so we can cast to non-const here, 5359 // after checking that it is in fact materialized. 5360 assert(M.isMaterialized()); 5361 Mods.push_back(const_cast<Module *>(&M)); 5362 5363 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5364 ModHash); 5365 ThinLinkWriter.write(); 5366 } 5367 5368 // Write the specified thin link bitcode file to the given raw output stream, 5369 // where it will be written in a new bitcode block. This is used when 5370 // writing the per-module index file for ThinLTO. 5371 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5372 const ModuleSummaryIndex &Index, 5373 const ModuleHash &ModHash) { 5374 SmallVector<char, 0> Buffer; 5375 Buffer.reserve(256 * 1024); 5376 5377 BitcodeWriter Writer(Buffer); 5378 Writer.writeThinLinkBitcode(M, Index, ModHash); 5379 Writer.writeSymtab(); 5380 Writer.writeStrtab(); 5381 5382 Out.write((char *)&Buffer.front(), Buffer.size()); 5383 } 5384 5385 static const char *getSectionNameForBitcode(const Triple &T) { 5386 switch (T.getObjectFormat()) { 5387 case Triple::MachO: 5388 return "__LLVM,__bitcode"; 5389 case Triple::COFF: 5390 case Triple::ELF: 5391 case Triple::Wasm: 5392 case Triple::UnknownObjectFormat: 5393 return ".llvmbc"; 5394 case Triple::GOFF: 5395 llvm_unreachable("GOFF is not yet implemented"); 5396 break; 5397 case Triple::SPIRV: 5398 if (T.getVendor() == Triple::AMD) 5399 return ".llvmbc"; 5400 llvm_unreachable("SPIRV is not yet implemented"); 5401 break; 5402 case Triple::XCOFF: 5403 llvm_unreachable("XCOFF is not yet implemented"); 5404 break; 5405 case Triple::DXContainer: 5406 llvm_unreachable("DXContainer is not yet implemented"); 5407 break; 5408 } 5409 llvm_unreachable("Unimplemented ObjectFormatType"); 5410 } 5411 5412 static const char *getSectionNameForCommandline(const Triple &T) { 5413 switch (T.getObjectFormat()) { 5414 case Triple::MachO: 5415 return "__LLVM,__cmdline"; 5416 case Triple::COFF: 5417 case Triple::ELF: 5418 case Triple::Wasm: 5419 case Triple::UnknownObjectFormat: 5420 return ".llvmcmd"; 5421 case Triple::GOFF: 5422 llvm_unreachable("GOFF is not yet implemented"); 5423 break; 5424 case Triple::SPIRV: 5425 if (T.getVendor() == Triple::AMD) 5426 return ".llvmcmd"; 5427 llvm_unreachable("SPIRV is not yet implemented"); 5428 break; 5429 case Triple::XCOFF: 5430 llvm_unreachable("XCOFF is not yet implemented"); 5431 break; 5432 case Triple::DXContainer: 5433 llvm_unreachable("DXC is not yet implemented"); 5434 break; 5435 } 5436 llvm_unreachable("Unimplemented ObjectFormatType"); 5437 } 5438 5439 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5440 bool EmbedBitcode, bool EmbedCmdline, 5441 const std::vector<uint8_t> &CmdArgs) { 5442 // Save llvm.compiler.used and remove it. 5443 SmallVector<Constant *, 2> UsedArray; 5444 SmallVector<GlobalValue *, 4> UsedGlobals; 5445 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5446 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5447 for (auto *GV : UsedGlobals) { 5448 if (GV->getName() != "llvm.embedded.module" && 5449 GV->getName() != "llvm.cmdline") 5450 UsedArray.push_back( 5451 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5452 } 5453 if (Used) 5454 Used->eraseFromParent(); 5455 5456 // Embed the bitcode for the llvm module. 5457 std::string Data; 5458 ArrayRef<uint8_t> ModuleData; 5459 Triple T(M.getTargetTriple()); 5460 5461 if (EmbedBitcode) { 5462 if (Buf.getBufferSize() == 0 || 5463 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5464 (const unsigned char *)Buf.getBufferEnd())) { 5465 // If the input is LLVM Assembly, bitcode is produced by serializing 5466 // the module. Use-lists order need to be preserved in this case. 5467 llvm::raw_string_ostream OS(Data); 5468 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5469 ModuleData = 5470 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5471 } else 5472 // If the input is LLVM bitcode, write the input byte stream directly. 5473 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5474 Buf.getBufferSize()); 5475 } 5476 llvm::Constant *ModuleConstant = 5477 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5478 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5479 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5480 ModuleConstant); 5481 GV->setSection(getSectionNameForBitcode(T)); 5482 // Set alignment to 1 to prevent padding between two contributions from input 5483 // sections after linking. 5484 GV->setAlignment(Align(1)); 5485 UsedArray.push_back( 5486 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5487 if (llvm::GlobalVariable *Old = 5488 M.getGlobalVariable("llvm.embedded.module", true)) { 5489 assert(Old->hasZeroLiveUses() && 5490 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5491 GV->takeName(Old); 5492 Old->eraseFromParent(); 5493 } else { 5494 GV->setName("llvm.embedded.module"); 5495 } 5496 5497 // Skip if only bitcode needs to be embedded. 5498 if (EmbedCmdline) { 5499 // Embed command-line options. 5500 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5501 CmdArgs.size()); 5502 llvm::Constant *CmdConstant = 5503 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5504 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5505 llvm::GlobalValue::PrivateLinkage, 5506 CmdConstant); 5507 GV->setSection(getSectionNameForCommandline(T)); 5508 GV->setAlignment(Align(1)); 5509 UsedArray.push_back( 5510 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5511 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5512 assert(Old->hasZeroLiveUses() && 5513 "llvm.cmdline can only be used once in llvm.compiler.used"); 5514 GV->takeName(Old); 5515 Old->eraseFromParent(); 5516 } else { 5517 GV->setName("llvm.cmdline"); 5518 } 5519 } 5520 5521 if (UsedArray.empty()) 5522 return; 5523 5524 // Recreate llvm.compiler.used. 5525 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5526 auto *NewUsed = new GlobalVariable( 5527 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5528 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5529 NewUsed->setSection("llvm.metadata"); 5530 } 5531