1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Object/IRSymtab.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/Program.h" 36 #include "llvm/Support/SHA1.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <cctype> 40 #include <map> 41 using namespace llvm; 42 43 namespace { 44 45 cl::opt<unsigned> 46 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 47 cl::desc("Number of metadatas above which we emit an index " 48 "to enable lazy-loading")); 49 /// These are manifest constants used by the bitcode writer. They do not need to 50 /// be kept in sync with the reader, but need to be consistent within this file. 51 enum { 52 // VALUE_SYMTAB_BLOCK abbrev id's. 53 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 VST_ENTRY_7_ABBREV, 55 VST_ENTRY_6_ABBREV, 56 VST_BBENTRY_6_ABBREV, 57 58 // CONSTANTS_BLOCK abbrev id's. 59 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 60 CONSTANTS_INTEGER_ABBREV, 61 CONSTANTS_CE_CAST_Abbrev, 62 CONSTANTS_NULL_Abbrev, 63 64 // FUNCTION_BLOCK abbrev id's. 65 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 66 FUNCTION_INST_BINOP_ABBREV, 67 FUNCTION_INST_BINOP_FLAGS_ABBREV, 68 FUNCTION_INST_CAST_ABBREV, 69 FUNCTION_INST_RET_VOID_ABBREV, 70 FUNCTION_INST_RET_VAL_ABBREV, 71 FUNCTION_INST_UNREACHABLE_ABBREV, 72 FUNCTION_INST_GEP_ABBREV, 73 }; 74 75 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 76 /// file type. 77 class BitcodeWriterBase { 78 protected: 79 /// The stream created and owned by the client. 80 BitstreamWriter &Stream; 81 82 StringTableBuilder &StrtabBuilder; 83 84 public: 85 /// Constructs a BitcodeWriterBase object that writes to the provided 86 /// \p Stream. 87 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 88 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 89 90 protected: 91 void writeBitcodeHeader(); 92 void writeModuleVersion(); 93 }; 94 95 void BitcodeWriterBase::writeModuleVersion() { 96 // VERSION: [version#] 97 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 98 } 99 100 /// Base class to manage the module bitcode writing, currently subclassed for 101 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 102 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 103 protected: 104 /// The Module to write to bitcode. 105 const Module &M; 106 107 /// Enumerates ids for all values in the module. 108 ValueEnumerator VE; 109 110 /// Optional per-module index to write for ThinLTO. 111 const ModuleSummaryIndex *Index; 112 113 /// Map that holds the correspondence between GUIDs in the summary index, 114 /// that came from indirect call profiles, and a value id generated by this 115 /// class to use in the VST and summary block records. 116 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 117 118 /// Tracks the last value id recorded in the GUIDToValueMap. 119 unsigned GlobalValueId; 120 121 /// Saves the offset of the VSTOffset record that must eventually be 122 /// backpatched with the offset of the actual VST. 123 uint64_t VSTOffsetPlaceholder = 0; 124 125 public: 126 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 127 /// writing to the provided \p Buffer. 128 ModuleBitcodeWriterBase(const Module *M, StringTableBuilder &StrtabBuilder, 129 BitstreamWriter &Stream, 130 bool ShouldPreserveUseListOrder, 131 const ModuleSummaryIndex *Index) 132 : BitcodeWriterBase(Stream, StrtabBuilder), M(*M), 133 VE(*M, ShouldPreserveUseListOrder), Index(Index) { 134 // Assign ValueIds to any callee values in the index that came from 135 // indirect call profiles and were recorded as a GUID not a Value* 136 // (which would have been assigned an ID by the ValueEnumerator). 137 // The starting ValueId is just after the number of values in the 138 // ValueEnumerator, so that they can be emitted in the VST. 139 GlobalValueId = VE.getValues().size(); 140 if (!Index) 141 return; 142 for (const auto &GUIDSummaryLists : *Index) 143 // Examine all summaries for this GUID. 144 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 145 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 146 // For each call in the function summary, see if the call 147 // is to a GUID (which means it is for an indirect call, 148 // otherwise we would have a Value for it). If so, synthesize 149 // a value id. 150 for (auto &CallEdge : FS->calls()) 151 if (!CallEdge.first.getValue()) 152 assignValueId(CallEdge.first.getGUID()); 153 } 154 155 protected: 156 void writePerModuleGlobalValueSummary(); 157 158 private: 159 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 160 GlobalValueSummary *Summary, 161 unsigned ValueID, 162 unsigned FSCallsAbbrev, 163 unsigned FSCallsProfileAbbrev, 164 const Function &F); 165 void writeModuleLevelReferences(const GlobalVariable &V, 166 SmallVector<uint64_t, 64> &NameVals, 167 unsigned FSModRefsAbbrev); 168 169 void assignValueId(GlobalValue::GUID ValGUID) { 170 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 171 } 172 unsigned getValueId(GlobalValue::GUID ValGUID) { 173 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 174 // Expect that any GUID value had a value Id assigned by an 175 // earlier call to assignValueId. 176 assert(VMI != GUIDToValueIdMap.end() && 177 "GUID does not have assigned value Id"); 178 return VMI->second; 179 } 180 // Helper to get the valueId for the type of value recorded in VI. 181 unsigned getValueId(ValueInfo VI) { 182 if (!VI.getValue()) 183 return getValueId(VI.getGUID()); 184 return VE.getValueID(VI.getValue()); 185 } 186 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 187 }; 188 189 /// Class to manage the bitcode writing for a module. 190 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 191 /// Pointer to the buffer allocated by caller for bitcode writing. 192 const SmallVectorImpl<char> &Buffer; 193 194 /// True if a module hash record should be written. 195 bool GenerateHash; 196 197 /// If non-null, when GenerateHash is true, the resulting hash is written 198 /// into ModHash. 199 ModuleHash *ModHash; 200 201 SHA1 Hasher; 202 203 /// The start bit of the identification block. 204 uint64_t BitcodeStartBit; 205 206 public: 207 /// Constructs a ModuleBitcodeWriter object for the given Module, 208 /// writing to the provided \p Buffer. 209 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 210 StringTableBuilder &StrtabBuilder, 211 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 212 const ModuleSummaryIndex *Index, bool GenerateHash, 213 ModuleHash *ModHash = nullptr) 214 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 215 ShouldPreserveUseListOrder, Index), 216 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 217 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 218 219 /// Emit the current module to the bitstream. 220 void write(); 221 222 private: 223 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 224 225 size_t addToStrtab(StringRef Str); 226 227 void writeAttributeGroupTable(); 228 void writeAttributeTable(); 229 void writeTypeTable(); 230 void writeComdats(); 231 void writeValueSymbolTableForwardDecl(); 232 void writeModuleInfo(); 233 void writeValueAsMetadata(const ValueAsMetadata *MD, 234 SmallVectorImpl<uint64_t> &Record); 235 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 236 unsigned Abbrev); 237 unsigned createDILocationAbbrev(); 238 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 239 unsigned &Abbrev); 240 unsigned createGenericDINodeAbbrev(); 241 void writeGenericDINode(const GenericDINode *N, 242 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 243 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 244 unsigned Abbrev); 245 void writeDIEnumerator(const DIEnumerator *N, 246 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 247 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 248 unsigned Abbrev); 249 void writeDIDerivedType(const DIDerivedType *N, 250 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 251 void writeDICompositeType(const DICompositeType *N, 252 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 253 void writeDISubroutineType(const DISubroutineType *N, 254 SmallVectorImpl<uint64_t> &Record, 255 unsigned Abbrev); 256 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 257 unsigned Abbrev); 258 void writeDICompileUnit(const DICompileUnit *N, 259 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 260 void writeDISubprogram(const DISubprogram *N, 261 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 262 void writeDILexicalBlock(const DILexicalBlock *N, 263 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 264 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 265 SmallVectorImpl<uint64_t> &Record, 266 unsigned Abbrev); 267 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 268 unsigned Abbrev); 269 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 270 unsigned Abbrev); 271 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 272 unsigned Abbrev); 273 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 274 unsigned Abbrev); 275 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 276 SmallVectorImpl<uint64_t> &Record, 277 unsigned Abbrev); 278 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 279 SmallVectorImpl<uint64_t> &Record, 280 unsigned Abbrev); 281 void writeDIGlobalVariable(const DIGlobalVariable *N, 282 SmallVectorImpl<uint64_t> &Record, 283 unsigned Abbrev); 284 void writeDILocalVariable(const DILocalVariable *N, 285 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 286 void writeDIExpression(const DIExpression *N, 287 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 288 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 289 SmallVectorImpl<uint64_t> &Record, 290 unsigned Abbrev); 291 void writeDIObjCProperty(const DIObjCProperty *N, 292 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 293 void writeDIImportedEntity(const DIImportedEntity *N, 294 SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createNamedMetadataAbbrev(); 297 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 298 unsigned createMetadataStringsAbbrev(); 299 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 300 SmallVectorImpl<uint64_t> &Record); 301 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 302 SmallVectorImpl<uint64_t> &Record, 303 std::vector<unsigned> *MDAbbrevs = nullptr, 304 std::vector<uint64_t> *IndexPos = nullptr); 305 void writeModuleMetadata(); 306 void writeFunctionMetadata(const Function &F); 307 void writeFunctionMetadataAttachment(const Function &F); 308 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 309 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 310 const GlobalObject &GO); 311 void writeModuleMetadataKinds(); 312 void writeOperandBundleTags(); 313 void writeSyncScopeNames(); 314 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 315 void writeModuleConstants(); 316 bool pushValueAndType(const Value *V, unsigned InstID, 317 SmallVectorImpl<unsigned> &Vals); 318 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 319 void pushValue(const Value *V, unsigned InstID, 320 SmallVectorImpl<unsigned> &Vals); 321 void pushValueSigned(const Value *V, unsigned InstID, 322 SmallVectorImpl<uint64_t> &Vals); 323 void writeInstruction(const Instruction &I, unsigned InstID, 324 SmallVectorImpl<unsigned> &Vals); 325 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 326 void writeGlobalValueSymbolTable( 327 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 328 void writeUseList(UseListOrder &&Order); 329 void writeUseListBlock(const Function *F); 330 void 331 writeFunction(const Function &F, 332 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 333 void writeBlockInfo(); 334 void writeModuleHash(size_t BlockStartPos); 335 336 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 337 return unsigned(SSID); 338 } 339 }; 340 341 /// Class to manage the bitcode writing for a combined index. 342 class IndexBitcodeWriter : public BitcodeWriterBase { 343 /// The combined index to write to bitcode. 344 const ModuleSummaryIndex &Index; 345 346 /// When writing a subset of the index for distributed backends, client 347 /// provides a map of modules to the corresponding GUIDs/summaries to write. 348 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 349 350 /// Map that holds the correspondence between the GUID used in the combined 351 /// index and a value id generated by this class to use in references. 352 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 353 354 /// Tracks the last value id recorded in the GUIDToValueMap. 355 unsigned GlobalValueId = 0; 356 357 public: 358 /// Constructs a IndexBitcodeWriter object for the given combined index, 359 /// writing to the provided \p Buffer. When writing a subset of the index 360 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 361 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 362 const ModuleSummaryIndex &Index, 363 const std::map<std::string, GVSummaryMapTy> 364 *ModuleToSummariesForIndex = nullptr) 365 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 366 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 367 // Assign unique value ids to all summaries to be written, for use 368 // in writing out the call graph edges. Save the mapping from GUID 369 // to the new global value id to use when writing those edges, which 370 // are currently saved in the index in terms of GUID. 371 forEachSummary([&](GVInfo I) { 372 GUIDToValueIdMap[I.first] = ++GlobalValueId; 373 }); 374 } 375 376 /// The below iterator returns the GUID and associated summary. 377 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 378 379 /// Calls the callback for each value GUID and summary to be written to 380 /// bitcode. This hides the details of whether they are being pulled from the 381 /// entire index or just those in a provided ModuleToSummariesForIndex map. 382 template<typename Functor> 383 void forEachSummary(Functor Callback) { 384 if (ModuleToSummariesForIndex) { 385 for (auto &M : *ModuleToSummariesForIndex) 386 for (auto &Summary : M.second) 387 Callback(Summary); 388 } else { 389 for (auto &Summaries : Index) 390 for (auto &Summary : Summaries.second.SummaryList) 391 Callback({Summaries.first, Summary.get()}); 392 } 393 } 394 395 /// Calls the callback for each entry in the modulePaths StringMap that 396 /// should be written to the module path string table. This hides the details 397 /// of whether they are being pulled from the entire index or just those in a 398 /// provided ModuleToSummariesForIndex map. 399 template <typename Functor> void forEachModule(Functor Callback) { 400 if (ModuleToSummariesForIndex) { 401 for (const auto &M : *ModuleToSummariesForIndex) { 402 const auto &MPI = Index.modulePaths().find(M.first); 403 if (MPI == Index.modulePaths().end()) { 404 // This should only happen if the bitcode file was empty, in which 405 // case we shouldn't be importing (the ModuleToSummariesForIndex 406 // would only include the module we are writing and index for). 407 assert(ModuleToSummariesForIndex->size() == 1); 408 continue; 409 } 410 Callback(*MPI); 411 } 412 } else { 413 for (const auto &MPSE : Index.modulePaths()) 414 Callback(MPSE); 415 } 416 } 417 418 /// Main entry point for writing a combined index to bitcode. 419 void write(); 420 421 private: 422 void writeModStrings(); 423 void writeCombinedGlobalValueSummary(); 424 425 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 426 auto VMI = GUIDToValueIdMap.find(ValGUID); 427 if (VMI == GUIDToValueIdMap.end()) 428 return None; 429 return VMI->second; 430 } 431 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 432 }; 433 } // end anonymous namespace 434 435 static unsigned getEncodedCastOpcode(unsigned Opcode) { 436 switch (Opcode) { 437 default: llvm_unreachable("Unknown cast instruction!"); 438 case Instruction::Trunc : return bitc::CAST_TRUNC; 439 case Instruction::ZExt : return bitc::CAST_ZEXT; 440 case Instruction::SExt : return bitc::CAST_SEXT; 441 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 442 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 443 case Instruction::UIToFP : return bitc::CAST_UITOFP; 444 case Instruction::SIToFP : return bitc::CAST_SITOFP; 445 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 446 case Instruction::FPExt : return bitc::CAST_FPEXT; 447 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 448 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 449 case Instruction::BitCast : return bitc::CAST_BITCAST; 450 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 451 } 452 } 453 454 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 455 switch (Opcode) { 456 default: llvm_unreachable("Unknown binary instruction!"); 457 case Instruction::Add: 458 case Instruction::FAdd: return bitc::BINOP_ADD; 459 case Instruction::Sub: 460 case Instruction::FSub: return bitc::BINOP_SUB; 461 case Instruction::Mul: 462 case Instruction::FMul: return bitc::BINOP_MUL; 463 case Instruction::UDiv: return bitc::BINOP_UDIV; 464 case Instruction::FDiv: 465 case Instruction::SDiv: return bitc::BINOP_SDIV; 466 case Instruction::URem: return bitc::BINOP_UREM; 467 case Instruction::FRem: 468 case Instruction::SRem: return bitc::BINOP_SREM; 469 case Instruction::Shl: return bitc::BINOP_SHL; 470 case Instruction::LShr: return bitc::BINOP_LSHR; 471 case Instruction::AShr: return bitc::BINOP_ASHR; 472 case Instruction::And: return bitc::BINOP_AND; 473 case Instruction::Or: return bitc::BINOP_OR; 474 case Instruction::Xor: return bitc::BINOP_XOR; 475 } 476 } 477 478 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 479 switch (Op) { 480 default: llvm_unreachable("Unknown RMW operation!"); 481 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 482 case AtomicRMWInst::Add: return bitc::RMW_ADD; 483 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 484 case AtomicRMWInst::And: return bitc::RMW_AND; 485 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 486 case AtomicRMWInst::Or: return bitc::RMW_OR; 487 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 488 case AtomicRMWInst::Max: return bitc::RMW_MAX; 489 case AtomicRMWInst::Min: return bitc::RMW_MIN; 490 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 491 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 492 } 493 } 494 495 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 496 switch (Ordering) { 497 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 498 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 499 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 500 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 501 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 502 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 503 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 504 } 505 llvm_unreachable("Invalid ordering"); 506 } 507 508 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 509 StringRef Str, unsigned AbbrevToUse) { 510 SmallVector<unsigned, 64> Vals; 511 512 // Code: [strchar x N] 513 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 514 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 515 AbbrevToUse = 0; 516 Vals.push_back(Str[i]); 517 } 518 519 // Emit the finished record. 520 Stream.EmitRecord(Code, Vals, AbbrevToUse); 521 } 522 523 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 524 switch (Kind) { 525 case Attribute::Alignment: 526 return bitc::ATTR_KIND_ALIGNMENT; 527 case Attribute::AllocSize: 528 return bitc::ATTR_KIND_ALLOC_SIZE; 529 case Attribute::AlwaysInline: 530 return bitc::ATTR_KIND_ALWAYS_INLINE; 531 case Attribute::ArgMemOnly: 532 return bitc::ATTR_KIND_ARGMEMONLY; 533 case Attribute::Builtin: 534 return bitc::ATTR_KIND_BUILTIN; 535 case Attribute::ByVal: 536 return bitc::ATTR_KIND_BY_VAL; 537 case Attribute::Convergent: 538 return bitc::ATTR_KIND_CONVERGENT; 539 case Attribute::InAlloca: 540 return bitc::ATTR_KIND_IN_ALLOCA; 541 case Attribute::Cold: 542 return bitc::ATTR_KIND_COLD; 543 case Attribute::InaccessibleMemOnly: 544 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 545 case Attribute::InaccessibleMemOrArgMemOnly: 546 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 547 case Attribute::InlineHint: 548 return bitc::ATTR_KIND_INLINE_HINT; 549 case Attribute::InReg: 550 return bitc::ATTR_KIND_IN_REG; 551 case Attribute::JumpTable: 552 return bitc::ATTR_KIND_JUMP_TABLE; 553 case Attribute::MinSize: 554 return bitc::ATTR_KIND_MIN_SIZE; 555 case Attribute::Naked: 556 return bitc::ATTR_KIND_NAKED; 557 case Attribute::Nest: 558 return bitc::ATTR_KIND_NEST; 559 case Attribute::NoAlias: 560 return bitc::ATTR_KIND_NO_ALIAS; 561 case Attribute::NoBuiltin: 562 return bitc::ATTR_KIND_NO_BUILTIN; 563 case Attribute::NoCapture: 564 return bitc::ATTR_KIND_NO_CAPTURE; 565 case Attribute::NoDuplicate: 566 return bitc::ATTR_KIND_NO_DUPLICATE; 567 case Attribute::NoImplicitFloat: 568 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 569 case Attribute::NoInline: 570 return bitc::ATTR_KIND_NO_INLINE; 571 case Attribute::NoRecurse: 572 return bitc::ATTR_KIND_NO_RECURSE; 573 case Attribute::NonLazyBind: 574 return bitc::ATTR_KIND_NON_LAZY_BIND; 575 case Attribute::NonNull: 576 return bitc::ATTR_KIND_NON_NULL; 577 case Attribute::Dereferenceable: 578 return bitc::ATTR_KIND_DEREFERENCEABLE; 579 case Attribute::DereferenceableOrNull: 580 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 581 case Attribute::NoRedZone: 582 return bitc::ATTR_KIND_NO_RED_ZONE; 583 case Attribute::NoReturn: 584 return bitc::ATTR_KIND_NO_RETURN; 585 case Attribute::NoUnwind: 586 return bitc::ATTR_KIND_NO_UNWIND; 587 case Attribute::OptimizeForSize: 588 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 589 case Attribute::OptimizeNone: 590 return bitc::ATTR_KIND_OPTIMIZE_NONE; 591 case Attribute::ReadNone: 592 return bitc::ATTR_KIND_READ_NONE; 593 case Attribute::ReadOnly: 594 return bitc::ATTR_KIND_READ_ONLY; 595 case Attribute::Returned: 596 return bitc::ATTR_KIND_RETURNED; 597 case Attribute::ReturnsTwice: 598 return bitc::ATTR_KIND_RETURNS_TWICE; 599 case Attribute::SExt: 600 return bitc::ATTR_KIND_S_EXT; 601 case Attribute::Speculatable: 602 return bitc::ATTR_KIND_SPECULATABLE; 603 case Attribute::StackAlignment: 604 return bitc::ATTR_KIND_STACK_ALIGNMENT; 605 case Attribute::StackProtect: 606 return bitc::ATTR_KIND_STACK_PROTECT; 607 case Attribute::StackProtectReq: 608 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 609 case Attribute::StackProtectStrong: 610 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 611 case Attribute::SafeStack: 612 return bitc::ATTR_KIND_SAFESTACK; 613 case Attribute::StructRet: 614 return bitc::ATTR_KIND_STRUCT_RET; 615 case Attribute::SanitizeAddress: 616 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 617 case Attribute::SanitizeThread: 618 return bitc::ATTR_KIND_SANITIZE_THREAD; 619 case Attribute::SanitizeMemory: 620 return bitc::ATTR_KIND_SANITIZE_MEMORY; 621 case Attribute::SwiftError: 622 return bitc::ATTR_KIND_SWIFT_ERROR; 623 case Attribute::SwiftSelf: 624 return bitc::ATTR_KIND_SWIFT_SELF; 625 case Attribute::UWTable: 626 return bitc::ATTR_KIND_UW_TABLE; 627 case Attribute::WriteOnly: 628 return bitc::ATTR_KIND_WRITEONLY; 629 case Attribute::ZExt: 630 return bitc::ATTR_KIND_Z_EXT; 631 case Attribute::EndAttrKinds: 632 llvm_unreachable("Can not encode end-attribute kinds marker."); 633 case Attribute::None: 634 llvm_unreachable("Can not encode none-attribute."); 635 } 636 637 llvm_unreachable("Trying to encode unknown attribute"); 638 } 639 640 void ModuleBitcodeWriter::writeAttributeGroupTable() { 641 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 642 VE.getAttributeGroups(); 643 if (AttrGrps.empty()) return; 644 645 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 646 647 SmallVector<uint64_t, 64> Record; 648 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 649 unsigned AttrListIndex = Pair.first; 650 AttributeSet AS = Pair.second; 651 Record.push_back(VE.getAttributeGroupID(Pair)); 652 Record.push_back(AttrListIndex); 653 654 for (Attribute Attr : AS) { 655 if (Attr.isEnumAttribute()) { 656 Record.push_back(0); 657 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 658 } else if (Attr.isIntAttribute()) { 659 Record.push_back(1); 660 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 661 Record.push_back(Attr.getValueAsInt()); 662 } else { 663 StringRef Kind = Attr.getKindAsString(); 664 StringRef Val = Attr.getValueAsString(); 665 666 Record.push_back(Val.empty() ? 3 : 4); 667 Record.append(Kind.begin(), Kind.end()); 668 Record.push_back(0); 669 if (!Val.empty()) { 670 Record.append(Val.begin(), Val.end()); 671 Record.push_back(0); 672 } 673 } 674 } 675 676 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 677 Record.clear(); 678 } 679 680 Stream.ExitBlock(); 681 } 682 683 void ModuleBitcodeWriter::writeAttributeTable() { 684 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 685 if (Attrs.empty()) return; 686 687 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 688 689 SmallVector<uint64_t, 64> Record; 690 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 691 AttributeList AL = Attrs[i]; 692 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 693 AttributeSet AS = AL.getAttributes(i); 694 if (AS.hasAttributes()) 695 Record.push_back(VE.getAttributeGroupID({i, AS})); 696 } 697 698 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 699 Record.clear(); 700 } 701 702 Stream.ExitBlock(); 703 } 704 705 /// WriteTypeTable - Write out the type table for a module. 706 void ModuleBitcodeWriter::writeTypeTable() { 707 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 708 709 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 710 SmallVector<uint64_t, 64> TypeVals; 711 712 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 713 714 // Abbrev for TYPE_CODE_POINTER. 715 auto Abbv = std::make_shared<BitCodeAbbrev>(); 716 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 718 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 719 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 720 721 // Abbrev for TYPE_CODE_FUNCTION. 722 Abbv = std::make_shared<BitCodeAbbrev>(); 723 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 727 728 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 729 730 // Abbrev for TYPE_CODE_STRUCT_ANON. 731 Abbv = std::make_shared<BitCodeAbbrev>(); 732 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 736 737 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 738 739 // Abbrev for TYPE_CODE_STRUCT_NAME. 740 Abbv = std::make_shared<BitCodeAbbrev>(); 741 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 744 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 745 746 // Abbrev for TYPE_CODE_STRUCT_NAMED. 747 Abbv = std::make_shared<BitCodeAbbrev>(); 748 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 752 753 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 754 755 // Abbrev for TYPE_CODE_ARRAY. 756 Abbv = std::make_shared<BitCodeAbbrev>(); 757 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 760 761 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 762 763 // Emit an entry count so the reader can reserve space. 764 TypeVals.push_back(TypeList.size()); 765 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 766 TypeVals.clear(); 767 768 // Loop over all of the types, emitting each in turn. 769 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 770 Type *T = TypeList[i]; 771 int AbbrevToUse = 0; 772 unsigned Code = 0; 773 774 switch (T->getTypeID()) { 775 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 776 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 777 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 778 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 779 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 780 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 781 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 782 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 783 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 784 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 785 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 786 case Type::IntegerTyID: 787 // INTEGER: [width] 788 Code = bitc::TYPE_CODE_INTEGER; 789 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 790 break; 791 case Type::PointerTyID: { 792 PointerType *PTy = cast<PointerType>(T); 793 // POINTER: [pointee type, address space] 794 Code = bitc::TYPE_CODE_POINTER; 795 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 796 unsigned AddressSpace = PTy->getAddressSpace(); 797 TypeVals.push_back(AddressSpace); 798 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 799 break; 800 } 801 case Type::FunctionTyID: { 802 FunctionType *FT = cast<FunctionType>(T); 803 // FUNCTION: [isvararg, retty, paramty x N] 804 Code = bitc::TYPE_CODE_FUNCTION; 805 TypeVals.push_back(FT->isVarArg()); 806 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 807 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 808 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 809 AbbrevToUse = FunctionAbbrev; 810 break; 811 } 812 case Type::StructTyID: { 813 StructType *ST = cast<StructType>(T); 814 // STRUCT: [ispacked, eltty x N] 815 TypeVals.push_back(ST->isPacked()); 816 // Output all of the element types. 817 for (StructType::element_iterator I = ST->element_begin(), 818 E = ST->element_end(); I != E; ++I) 819 TypeVals.push_back(VE.getTypeID(*I)); 820 821 if (ST->isLiteral()) { 822 Code = bitc::TYPE_CODE_STRUCT_ANON; 823 AbbrevToUse = StructAnonAbbrev; 824 } else { 825 if (ST->isOpaque()) { 826 Code = bitc::TYPE_CODE_OPAQUE; 827 } else { 828 Code = bitc::TYPE_CODE_STRUCT_NAMED; 829 AbbrevToUse = StructNamedAbbrev; 830 } 831 832 // Emit the name if it is present. 833 if (!ST->getName().empty()) 834 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 835 StructNameAbbrev); 836 } 837 break; 838 } 839 case Type::ArrayTyID: { 840 ArrayType *AT = cast<ArrayType>(T); 841 // ARRAY: [numelts, eltty] 842 Code = bitc::TYPE_CODE_ARRAY; 843 TypeVals.push_back(AT->getNumElements()); 844 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 845 AbbrevToUse = ArrayAbbrev; 846 break; 847 } 848 case Type::VectorTyID: { 849 VectorType *VT = cast<VectorType>(T); 850 // VECTOR [numelts, eltty] 851 Code = bitc::TYPE_CODE_VECTOR; 852 TypeVals.push_back(VT->getNumElements()); 853 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 854 break; 855 } 856 } 857 858 // Emit the finished record. 859 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 860 TypeVals.clear(); 861 } 862 863 Stream.ExitBlock(); 864 } 865 866 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 867 switch (Linkage) { 868 case GlobalValue::ExternalLinkage: 869 return 0; 870 case GlobalValue::WeakAnyLinkage: 871 return 16; 872 case GlobalValue::AppendingLinkage: 873 return 2; 874 case GlobalValue::InternalLinkage: 875 return 3; 876 case GlobalValue::LinkOnceAnyLinkage: 877 return 18; 878 case GlobalValue::ExternalWeakLinkage: 879 return 7; 880 case GlobalValue::CommonLinkage: 881 return 8; 882 case GlobalValue::PrivateLinkage: 883 return 9; 884 case GlobalValue::WeakODRLinkage: 885 return 17; 886 case GlobalValue::LinkOnceODRLinkage: 887 return 19; 888 case GlobalValue::AvailableExternallyLinkage: 889 return 12; 890 } 891 llvm_unreachable("Invalid linkage"); 892 } 893 894 static unsigned getEncodedLinkage(const GlobalValue &GV) { 895 return getEncodedLinkage(GV.getLinkage()); 896 } 897 898 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 899 uint64_t RawFlags = 0; 900 RawFlags |= Flags.ReadNone; 901 RawFlags |= (Flags.ReadOnly << 1); 902 RawFlags |= (Flags.NoRecurse << 2); 903 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 904 return RawFlags; 905 } 906 907 // Decode the flags for GlobalValue in the summary 908 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 909 uint64_t RawFlags = 0; 910 911 RawFlags |= Flags.NotEligibleToImport; // bool 912 RawFlags |= (Flags.Live << 1); 913 // Linkage don't need to be remapped at that time for the summary. Any future 914 // change to the getEncodedLinkage() function will need to be taken into 915 // account here as well. 916 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 917 918 return RawFlags; 919 } 920 921 static unsigned getEncodedVisibility(const GlobalValue &GV) { 922 switch (GV.getVisibility()) { 923 case GlobalValue::DefaultVisibility: return 0; 924 case GlobalValue::HiddenVisibility: return 1; 925 case GlobalValue::ProtectedVisibility: return 2; 926 } 927 llvm_unreachable("Invalid visibility"); 928 } 929 930 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 931 switch (GV.getDLLStorageClass()) { 932 case GlobalValue::DefaultStorageClass: return 0; 933 case GlobalValue::DLLImportStorageClass: return 1; 934 case GlobalValue::DLLExportStorageClass: return 2; 935 } 936 llvm_unreachable("Invalid DLL storage class"); 937 } 938 939 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 940 switch (GV.getThreadLocalMode()) { 941 case GlobalVariable::NotThreadLocal: return 0; 942 case GlobalVariable::GeneralDynamicTLSModel: return 1; 943 case GlobalVariable::LocalDynamicTLSModel: return 2; 944 case GlobalVariable::InitialExecTLSModel: return 3; 945 case GlobalVariable::LocalExecTLSModel: return 4; 946 } 947 llvm_unreachable("Invalid TLS model"); 948 } 949 950 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 951 switch (C.getSelectionKind()) { 952 case Comdat::Any: 953 return bitc::COMDAT_SELECTION_KIND_ANY; 954 case Comdat::ExactMatch: 955 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 956 case Comdat::Largest: 957 return bitc::COMDAT_SELECTION_KIND_LARGEST; 958 case Comdat::NoDuplicates: 959 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 960 case Comdat::SameSize: 961 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 962 } 963 llvm_unreachable("Invalid selection kind"); 964 } 965 966 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 967 switch (GV.getUnnamedAddr()) { 968 case GlobalValue::UnnamedAddr::None: return 0; 969 case GlobalValue::UnnamedAddr::Local: return 2; 970 case GlobalValue::UnnamedAddr::Global: return 1; 971 } 972 llvm_unreachable("Invalid unnamed_addr"); 973 } 974 975 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 976 if (GenerateHash) 977 Hasher.update(Str); 978 return StrtabBuilder.add(Str); 979 } 980 981 void ModuleBitcodeWriter::writeComdats() { 982 SmallVector<unsigned, 64> Vals; 983 for (const Comdat *C : VE.getComdats()) { 984 // COMDAT: [strtab offset, strtab size, selection_kind] 985 Vals.push_back(addToStrtab(C->getName())); 986 Vals.push_back(C->getName().size()); 987 Vals.push_back(getEncodedComdatSelectionKind(*C)); 988 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 989 Vals.clear(); 990 } 991 } 992 993 /// Write a record that will eventually hold the word offset of the 994 /// module-level VST. For now the offset is 0, which will be backpatched 995 /// after the real VST is written. Saves the bit offset to backpatch. 996 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 997 // Write a placeholder value in for the offset of the real VST, 998 // which is written after the function blocks so that it can include 999 // the offset of each function. The placeholder offset will be 1000 // updated when the real VST is written. 1001 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1002 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1003 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1004 // hold the real VST offset. Must use fixed instead of VBR as we don't 1005 // know how many VBR chunks to reserve ahead of time. 1006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1007 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1008 1009 // Emit the placeholder 1010 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1011 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1012 1013 // Compute and save the bit offset to the placeholder, which will be 1014 // patched when the real VST is written. We can simply subtract the 32-bit 1015 // fixed size from the current bit number to get the location to backpatch. 1016 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1017 } 1018 1019 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1020 1021 /// Determine the encoding to use for the given string name and length. 1022 static StringEncoding getStringEncoding(StringRef Str) { 1023 bool isChar6 = true; 1024 for (char C : Str) { 1025 if (isChar6) 1026 isChar6 = BitCodeAbbrevOp::isChar6(C); 1027 if ((unsigned char)C & 128) 1028 // don't bother scanning the rest. 1029 return SE_Fixed8; 1030 } 1031 if (isChar6) 1032 return SE_Char6; 1033 return SE_Fixed7; 1034 } 1035 1036 /// Emit top-level description of module, including target triple, inline asm, 1037 /// descriptors for global variables, and function prototype info. 1038 /// Returns the bit offset to backpatch with the location of the real VST. 1039 void ModuleBitcodeWriter::writeModuleInfo() { 1040 // Emit various pieces of data attached to a module. 1041 if (!M.getTargetTriple().empty()) 1042 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1043 0 /*TODO*/); 1044 const std::string &DL = M.getDataLayoutStr(); 1045 if (!DL.empty()) 1046 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1047 if (!M.getModuleInlineAsm().empty()) 1048 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1049 0 /*TODO*/); 1050 1051 // Emit information about sections and GC, computing how many there are. Also 1052 // compute the maximum alignment value. 1053 std::map<std::string, unsigned> SectionMap; 1054 std::map<std::string, unsigned> GCMap; 1055 unsigned MaxAlignment = 0; 1056 unsigned MaxGlobalType = 0; 1057 for (const GlobalValue &GV : M.globals()) { 1058 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1059 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1060 if (GV.hasSection()) { 1061 // Give section names unique ID's. 1062 unsigned &Entry = SectionMap[GV.getSection()]; 1063 if (!Entry) { 1064 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1065 0 /*TODO*/); 1066 Entry = SectionMap.size(); 1067 } 1068 } 1069 } 1070 for (const Function &F : M) { 1071 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1072 if (F.hasSection()) { 1073 // Give section names unique ID's. 1074 unsigned &Entry = SectionMap[F.getSection()]; 1075 if (!Entry) { 1076 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1077 0 /*TODO*/); 1078 Entry = SectionMap.size(); 1079 } 1080 } 1081 if (F.hasGC()) { 1082 // Same for GC names. 1083 unsigned &Entry = GCMap[F.getGC()]; 1084 if (!Entry) { 1085 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1086 0 /*TODO*/); 1087 Entry = GCMap.size(); 1088 } 1089 } 1090 } 1091 1092 // Emit abbrev for globals, now that we know # sections and max alignment. 1093 unsigned SimpleGVarAbbrev = 0; 1094 if (!M.global_empty()) { 1095 // Add an abbrev for common globals with no visibility or thread localness. 1096 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1097 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1101 Log2_32_Ceil(MaxGlobalType+1))); 1102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1103 //| explicitType << 1 1104 //| constant 1105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1107 if (MaxAlignment == 0) // Alignment. 1108 Abbv->Add(BitCodeAbbrevOp(0)); 1109 else { 1110 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1112 Log2_32_Ceil(MaxEncAlignment+1))); 1113 } 1114 if (SectionMap.empty()) // Section. 1115 Abbv->Add(BitCodeAbbrevOp(0)); 1116 else 1117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1118 Log2_32_Ceil(SectionMap.size()+1))); 1119 // Don't bother emitting vis + thread local. 1120 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1121 } 1122 1123 SmallVector<unsigned, 64> Vals; 1124 // Emit the module's source file name. 1125 { 1126 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1127 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1128 if (Bits == SE_Char6) 1129 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1130 else if (Bits == SE_Fixed7) 1131 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1132 1133 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1134 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1135 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1137 Abbv->Add(AbbrevOpToUse); 1138 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1139 1140 for (const auto P : M.getSourceFileName()) 1141 Vals.push_back((unsigned char)P); 1142 1143 // Emit the finished record. 1144 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1145 Vals.clear(); 1146 } 1147 1148 // Emit the global variable information. 1149 for (const GlobalVariable &GV : M.globals()) { 1150 unsigned AbbrevToUse = 0; 1151 1152 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1153 // linkage, alignment, section, visibility, threadlocal, 1154 // unnamed_addr, externally_initialized, dllstorageclass, 1155 // comdat, attributes] 1156 Vals.push_back(addToStrtab(GV.getName())); 1157 Vals.push_back(GV.getName().size()); 1158 Vals.push_back(VE.getTypeID(GV.getValueType())); 1159 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1160 Vals.push_back(GV.isDeclaration() ? 0 : 1161 (VE.getValueID(GV.getInitializer()) + 1)); 1162 Vals.push_back(getEncodedLinkage(GV)); 1163 Vals.push_back(Log2_32(GV.getAlignment())+1); 1164 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1165 if (GV.isThreadLocal() || 1166 GV.getVisibility() != GlobalValue::DefaultVisibility || 1167 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1168 GV.isExternallyInitialized() || 1169 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1170 GV.hasComdat() || 1171 GV.hasAttributes()) { 1172 Vals.push_back(getEncodedVisibility(GV)); 1173 Vals.push_back(getEncodedThreadLocalMode(GV)); 1174 Vals.push_back(getEncodedUnnamedAddr(GV)); 1175 Vals.push_back(GV.isExternallyInitialized()); 1176 Vals.push_back(getEncodedDLLStorageClass(GV)); 1177 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1178 1179 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1180 Vals.push_back(VE.getAttributeListID(AL)); 1181 } else { 1182 AbbrevToUse = SimpleGVarAbbrev; 1183 } 1184 1185 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1186 Vals.clear(); 1187 } 1188 1189 // Emit the function proto information. 1190 for (const Function &F : M) { 1191 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1192 // linkage, paramattrs, alignment, section, visibility, gc, 1193 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1194 // prefixdata, personalityfn] 1195 Vals.push_back(addToStrtab(F.getName())); 1196 Vals.push_back(F.getName().size()); 1197 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1198 Vals.push_back(F.getCallingConv()); 1199 Vals.push_back(F.isDeclaration()); 1200 Vals.push_back(getEncodedLinkage(F)); 1201 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1202 Vals.push_back(Log2_32(F.getAlignment())+1); 1203 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1204 Vals.push_back(getEncodedVisibility(F)); 1205 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1206 Vals.push_back(getEncodedUnnamedAddr(F)); 1207 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1208 : 0); 1209 Vals.push_back(getEncodedDLLStorageClass(F)); 1210 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1211 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1212 : 0); 1213 Vals.push_back( 1214 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1215 1216 unsigned AbbrevToUse = 0; 1217 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1218 Vals.clear(); 1219 } 1220 1221 // Emit the alias information. 1222 for (const GlobalAlias &A : M.aliases()) { 1223 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1224 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1225 Vals.push_back(addToStrtab(A.getName())); 1226 Vals.push_back(A.getName().size()); 1227 Vals.push_back(VE.getTypeID(A.getValueType())); 1228 Vals.push_back(A.getType()->getAddressSpace()); 1229 Vals.push_back(VE.getValueID(A.getAliasee())); 1230 Vals.push_back(getEncodedLinkage(A)); 1231 Vals.push_back(getEncodedVisibility(A)); 1232 Vals.push_back(getEncodedDLLStorageClass(A)); 1233 Vals.push_back(getEncodedThreadLocalMode(A)); 1234 Vals.push_back(getEncodedUnnamedAddr(A)); 1235 unsigned AbbrevToUse = 0; 1236 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1237 Vals.clear(); 1238 } 1239 1240 // Emit the ifunc information. 1241 for (const GlobalIFunc &I : M.ifuncs()) { 1242 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1243 // val#, linkage, visibility] 1244 Vals.push_back(addToStrtab(I.getName())); 1245 Vals.push_back(I.getName().size()); 1246 Vals.push_back(VE.getTypeID(I.getValueType())); 1247 Vals.push_back(I.getType()->getAddressSpace()); 1248 Vals.push_back(VE.getValueID(I.getResolver())); 1249 Vals.push_back(getEncodedLinkage(I)); 1250 Vals.push_back(getEncodedVisibility(I)); 1251 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1252 Vals.clear(); 1253 } 1254 1255 writeValueSymbolTableForwardDecl(); 1256 } 1257 1258 static uint64_t getOptimizationFlags(const Value *V) { 1259 uint64_t Flags = 0; 1260 1261 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1262 if (OBO->hasNoSignedWrap()) 1263 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1264 if (OBO->hasNoUnsignedWrap()) 1265 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1266 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1267 if (PEO->isExact()) 1268 Flags |= 1 << bitc::PEO_EXACT; 1269 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1270 if (FPMO->hasUnsafeAlgebra()) 1271 Flags |= FastMathFlags::UnsafeAlgebra; 1272 if (FPMO->hasNoNaNs()) 1273 Flags |= FastMathFlags::NoNaNs; 1274 if (FPMO->hasNoInfs()) 1275 Flags |= FastMathFlags::NoInfs; 1276 if (FPMO->hasNoSignedZeros()) 1277 Flags |= FastMathFlags::NoSignedZeros; 1278 if (FPMO->hasAllowReciprocal()) 1279 Flags |= FastMathFlags::AllowReciprocal; 1280 if (FPMO->hasAllowContract()) 1281 Flags |= FastMathFlags::AllowContract; 1282 } 1283 1284 return Flags; 1285 } 1286 1287 void ModuleBitcodeWriter::writeValueAsMetadata( 1288 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1289 // Mimic an MDNode with a value as one operand. 1290 Value *V = MD->getValue(); 1291 Record.push_back(VE.getTypeID(V->getType())); 1292 Record.push_back(VE.getValueID(V)); 1293 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1294 Record.clear(); 1295 } 1296 1297 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1298 SmallVectorImpl<uint64_t> &Record, 1299 unsigned Abbrev) { 1300 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1301 Metadata *MD = N->getOperand(i); 1302 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1303 "Unexpected function-local metadata"); 1304 Record.push_back(VE.getMetadataOrNullID(MD)); 1305 } 1306 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1307 : bitc::METADATA_NODE, 1308 Record, Abbrev); 1309 Record.clear(); 1310 } 1311 1312 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1313 // Assume the column is usually under 128, and always output the inlined-at 1314 // location (it's never more expensive than building an array size 1). 1315 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1316 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1322 return Stream.EmitAbbrev(std::move(Abbv)); 1323 } 1324 1325 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1326 SmallVectorImpl<uint64_t> &Record, 1327 unsigned &Abbrev) { 1328 if (!Abbrev) 1329 Abbrev = createDILocationAbbrev(); 1330 1331 Record.push_back(N->isDistinct()); 1332 Record.push_back(N->getLine()); 1333 Record.push_back(N->getColumn()); 1334 Record.push_back(VE.getMetadataID(N->getScope())); 1335 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1336 1337 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1338 Record.clear(); 1339 } 1340 1341 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1342 // Assume the column is usually under 128, and always output the inlined-at 1343 // location (it's never more expensive than building an array size 1). 1344 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1345 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1352 return Stream.EmitAbbrev(std::move(Abbv)); 1353 } 1354 1355 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1356 SmallVectorImpl<uint64_t> &Record, 1357 unsigned &Abbrev) { 1358 if (!Abbrev) 1359 Abbrev = createGenericDINodeAbbrev(); 1360 1361 Record.push_back(N->isDistinct()); 1362 Record.push_back(N->getTag()); 1363 Record.push_back(0); // Per-tag version field; unused for now. 1364 1365 for (auto &I : N->operands()) 1366 Record.push_back(VE.getMetadataOrNullID(I)); 1367 1368 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1369 Record.clear(); 1370 } 1371 1372 static uint64_t rotateSign(int64_t I) { 1373 uint64_t U = I; 1374 return I < 0 ? ~(U << 1) : U << 1; 1375 } 1376 1377 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1378 SmallVectorImpl<uint64_t> &Record, 1379 unsigned Abbrev) { 1380 Record.push_back(N->isDistinct()); 1381 Record.push_back(N->getCount()); 1382 Record.push_back(rotateSign(N->getLowerBound())); 1383 1384 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1385 Record.clear(); 1386 } 1387 1388 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1389 SmallVectorImpl<uint64_t> &Record, 1390 unsigned Abbrev) { 1391 Record.push_back(N->isDistinct()); 1392 Record.push_back(rotateSign(N->getValue())); 1393 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1394 1395 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1396 Record.clear(); 1397 } 1398 1399 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1400 SmallVectorImpl<uint64_t> &Record, 1401 unsigned Abbrev) { 1402 Record.push_back(N->isDistinct()); 1403 Record.push_back(N->getTag()); 1404 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1405 Record.push_back(N->getSizeInBits()); 1406 Record.push_back(N->getAlignInBits()); 1407 Record.push_back(N->getEncoding()); 1408 1409 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1410 Record.clear(); 1411 } 1412 1413 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1414 SmallVectorImpl<uint64_t> &Record, 1415 unsigned Abbrev) { 1416 Record.push_back(N->isDistinct()); 1417 Record.push_back(N->getTag()); 1418 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1419 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1420 Record.push_back(N->getLine()); 1421 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1422 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1423 Record.push_back(N->getSizeInBits()); 1424 Record.push_back(N->getAlignInBits()); 1425 Record.push_back(N->getOffsetInBits()); 1426 Record.push_back(N->getFlags()); 1427 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1428 1429 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1430 // that there is no DWARF address space associated with DIDerivedType. 1431 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1432 Record.push_back(*DWARFAddressSpace + 1); 1433 else 1434 Record.push_back(0); 1435 1436 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1437 Record.clear(); 1438 } 1439 1440 void ModuleBitcodeWriter::writeDICompositeType( 1441 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1442 unsigned Abbrev) { 1443 const unsigned IsNotUsedInOldTypeRef = 0x2; 1444 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1445 Record.push_back(N->getTag()); 1446 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1447 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1448 Record.push_back(N->getLine()); 1449 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1450 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1451 Record.push_back(N->getSizeInBits()); 1452 Record.push_back(N->getAlignInBits()); 1453 Record.push_back(N->getOffsetInBits()); 1454 Record.push_back(N->getFlags()); 1455 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1456 Record.push_back(N->getRuntimeLang()); 1457 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1458 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1459 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1460 1461 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1462 Record.clear(); 1463 } 1464 1465 void ModuleBitcodeWriter::writeDISubroutineType( 1466 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1467 unsigned Abbrev) { 1468 const unsigned HasNoOldTypeRefs = 0x2; 1469 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1470 Record.push_back(N->getFlags()); 1471 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1472 Record.push_back(N->getCC()); 1473 1474 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1475 Record.clear(); 1476 } 1477 1478 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1479 SmallVectorImpl<uint64_t> &Record, 1480 unsigned Abbrev) { 1481 Record.push_back(N->isDistinct()); 1482 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1483 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1484 Record.push_back(N->getChecksumKind()); 1485 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1486 1487 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1488 Record.clear(); 1489 } 1490 1491 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1492 SmallVectorImpl<uint64_t> &Record, 1493 unsigned Abbrev) { 1494 assert(N->isDistinct() && "Expected distinct compile units"); 1495 Record.push_back(/* IsDistinct */ true); 1496 Record.push_back(N->getSourceLanguage()); 1497 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1498 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1499 Record.push_back(N->isOptimized()); 1500 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1501 Record.push_back(N->getRuntimeVersion()); 1502 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1503 Record.push_back(N->getEmissionKind()); 1504 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1505 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1506 Record.push_back(/* subprograms */ 0); 1507 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1508 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1509 Record.push_back(N->getDWOId()); 1510 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1511 Record.push_back(N->getSplitDebugInlining()); 1512 Record.push_back(N->getDebugInfoForProfiling()); 1513 1514 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1515 Record.clear(); 1516 } 1517 1518 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1519 SmallVectorImpl<uint64_t> &Record, 1520 unsigned Abbrev) { 1521 uint64_t HasUnitFlag = 1 << 1; 1522 Record.push_back(N->isDistinct() | HasUnitFlag); 1523 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1524 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1525 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1526 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1527 Record.push_back(N->getLine()); 1528 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1529 Record.push_back(N->isLocalToUnit()); 1530 Record.push_back(N->isDefinition()); 1531 Record.push_back(N->getScopeLine()); 1532 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1533 Record.push_back(N->getVirtuality()); 1534 Record.push_back(N->getVirtualIndex()); 1535 Record.push_back(N->getFlags()); 1536 Record.push_back(N->isOptimized()); 1537 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1538 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1539 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1540 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1541 Record.push_back(N->getThisAdjustment()); 1542 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1543 1544 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1545 Record.clear(); 1546 } 1547 1548 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1549 SmallVectorImpl<uint64_t> &Record, 1550 unsigned Abbrev) { 1551 Record.push_back(N->isDistinct()); 1552 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1553 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1554 Record.push_back(N->getLine()); 1555 Record.push_back(N->getColumn()); 1556 1557 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1558 Record.clear(); 1559 } 1560 1561 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1562 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1563 unsigned Abbrev) { 1564 Record.push_back(N->isDistinct()); 1565 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1566 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1567 Record.push_back(N->getDiscriminator()); 1568 1569 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1570 Record.clear(); 1571 } 1572 1573 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1574 SmallVectorImpl<uint64_t> &Record, 1575 unsigned Abbrev) { 1576 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1577 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1578 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1579 1580 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1581 Record.clear(); 1582 } 1583 1584 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1585 SmallVectorImpl<uint64_t> &Record, 1586 unsigned Abbrev) { 1587 Record.push_back(N->isDistinct()); 1588 Record.push_back(N->getMacinfoType()); 1589 Record.push_back(N->getLine()); 1590 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1591 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1592 1593 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1594 Record.clear(); 1595 } 1596 1597 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1598 SmallVectorImpl<uint64_t> &Record, 1599 unsigned Abbrev) { 1600 Record.push_back(N->isDistinct()); 1601 Record.push_back(N->getMacinfoType()); 1602 Record.push_back(N->getLine()); 1603 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1604 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1605 1606 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1607 Record.clear(); 1608 } 1609 1610 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1611 SmallVectorImpl<uint64_t> &Record, 1612 unsigned Abbrev) { 1613 Record.push_back(N->isDistinct()); 1614 for (auto &I : N->operands()) 1615 Record.push_back(VE.getMetadataOrNullID(I)); 1616 1617 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1618 Record.clear(); 1619 } 1620 1621 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1622 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1623 unsigned Abbrev) { 1624 Record.push_back(N->isDistinct()); 1625 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1626 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1627 1628 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1629 Record.clear(); 1630 } 1631 1632 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1633 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1634 unsigned Abbrev) { 1635 Record.push_back(N->isDistinct()); 1636 Record.push_back(N->getTag()); 1637 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1638 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1639 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1640 1641 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1642 Record.clear(); 1643 } 1644 1645 void ModuleBitcodeWriter::writeDIGlobalVariable( 1646 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1647 unsigned Abbrev) { 1648 const uint64_t Version = 1 << 1; 1649 Record.push_back((uint64_t)N->isDistinct() | Version); 1650 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1651 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1652 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1653 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1654 Record.push_back(N->getLine()); 1655 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1656 Record.push_back(N->isLocalToUnit()); 1657 Record.push_back(N->isDefinition()); 1658 Record.push_back(/* expr */ 0); 1659 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1660 Record.push_back(N->getAlignInBits()); 1661 1662 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1663 Record.clear(); 1664 } 1665 1666 void ModuleBitcodeWriter::writeDILocalVariable( 1667 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1668 unsigned Abbrev) { 1669 // In order to support all possible bitcode formats in BitcodeReader we need 1670 // to distinguish the following cases: 1671 // 1) Record has no artificial tag (Record[1]), 1672 // has no obsolete inlinedAt field (Record[9]). 1673 // In this case Record size will be 8, HasAlignment flag is false. 1674 // 2) Record has artificial tag (Record[1]), 1675 // has no obsolete inlignedAt field (Record[9]). 1676 // In this case Record size will be 9, HasAlignment flag is false. 1677 // 3) Record has both artificial tag (Record[1]) and 1678 // obsolete inlignedAt field (Record[9]). 1679 // In this case Record size will be 10, HasAlignment flag is false. 1680 // 4) Record has neither artificial tag, nor inlignedAt field, but 1681 // HasAlignment flag is true and Record[8] contains alignment value. 1682 const uint64_t HasAlignmentFlag = 1 << 1; 1683 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1684 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1686 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1687 Record.push_back(N->getLine()); 1688 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1689 Record.push_back(N->getArg()); 1690 Record.push_back(N->getFlags()); 1691 Record.push_back(N->getAlignInBits()); 1692 1693 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1694 Record.clear(); 1695 } 1696 1697 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1698 SmallVectorImpl<uint64_t> &Record, 1699 unsigned Abbrev) { 1700 Record.reserve(N->getElements().size() + 1); 1701 const uint64_t Version = 3 << 1; 1702 Record.push_back((uint64_t)N->isDistinct() | Version); 1703 Record.append(N->elements_begin(), N->elements_end()); 1704 1705 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1706 Record.clear(); 1707 } 1708 1709 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1710 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1711 unsigned Abbrev) { 1712 Record.push_back(N->isDistinct()); 1713 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1714 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1715 1716 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1717 Record.clear(); 1718 } 1719 1720 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1721 SmallVectorImpl<uint64_t> &Record, 1722 unsigned Abbrev) { 1723 Record.push_back(N->isDistinct()); 1724 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1726 Record.push_back(N->getLine()); 1727 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1728 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1729 Record.push_back(N->getAttributes()); 1730 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1731 1732 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1733 Record.clear(); 1734 } 1735 1736 void ModuleBitcodeWriter::writeDIImportedEntity( 1737 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1738 unsigned Abbrev) { 1739 Record.push_back(N->isDistinct()); 1740 Record.push_back(N->getTag()); 1741 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1742 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1743 Record.push_back(N->getLine()); 1744 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1745 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1746 1747 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1748 Record.clear(); 1749 } 1750 1751 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1752 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1753 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1756 return Stream.EmitAbbrev(std::move(Abbv)); 1757 } 1758 1759 void ModuleBitcodeWriter::writeNamedMetadata( 1760 SmallVectorImpl<uint64_t> &Record) { 1761 if (M.named_metadata_empty()) 1762 return; 1763 1764 unsigned Abbrev = createNamedMetadataAbbrev(); 1765 for (const NamedMDNode &NMD : M.named_metadata()) { 1766 // Write name. 1767 StringRef Str = NMD.getName(); 1768 Record.append(Str.bytes_begin(), Str.bytes_end()); 1769 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1770 Record.clear(); 1771 1772 // Write named metadata operands. 1773 for (const MDNode *N : NMD.operands()) 1774 Record.push_back(VE.getMetadataID(N)); 1775 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1776 Record.clear(); 1777 } 1778 } 1779 1780 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1781 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1782 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1786 return Stream.EmitAbbrev(std::move(Abbv)); 1787 } 1788 1789 /// Write out a record for MDString. 1790 /// 1791 /// All the metadata strings in a metadata block are emitted in a single 1792 /// record. The sizes and strings themselves are shoved into a blob. 1793 void ModuleBitcodeWriter::writeMetadataStrings( 1794 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1795 if (Strings.empty()) 1796 return; 1797 1798 // Start the record with the number of strings. 1799 Record.push_back(bitc::METADATA_STRINGS); 1800 Record.push_back(Strings.size()); 1801 1802 // Emit the sizes of the strings in the blob. 1803 SmallString<256> Blob; 1804 { 1805 BitstreamWriter W(Blob); 1806 for (const Metadata *MD : Strings) 1807 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1808 W.FlushToWord(); 1809 } 1810 1811 // Add the offset to the strings to the record. 1812 Record.push_back(Blob.size()); 1813 1814 // Add the strings to the blob. 1815 for (const Metadata *MD : Strings) 1816 Blob.append(cast<MDString>(MD)->getString()); 1817 1818 // Emit the final record. 1819 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1820 Record.clear(); 1821 } 1822 1823 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1824 enum MetadataAbbrev : unsigned { 1825 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1826 #include "llvm/IR/Metadata.def" 1827 LastPlusOne 1828 }; 1829 1830 void ModuleBitcodeWriter::writeMetadataRecords( 1831 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1832 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1833 if (MDs.empty()) 1834 return; 1835 1836 // Initialize MDNode abbreviations. 1837 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1838 #include "llvm/IR/Metadata.def" 1839 1840 for (const Metadata *MD : MDs) { 1841 if (IndexPos) 1842 IndexPos->push_back(Stream.GetCurrentBitNo()); 1843 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1844 assert(N->isResolved() && "Expected forward references to be resolved"); 1845 1846 switch (N->getMetadataID()) { 1847 default: 1848 llvm_unreachable("Invalid MDNode subclass"); 1849 #define HANDLE_MDNODE_LEAF(CLASS) \ 1850 case Metadata::CLASS##Kind: \ 1851 if (MDAbbrevs) \ 1852 write##CLASS(cast<CLASS>(N), Record, \ 1853 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1854 else \ 1855 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1856 continue; 1857 #include "llvm/IR/Metadata.def" 1858 } 1859 } 1860 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1861 } 1862 } 1863 1864 void ModuleBitcodeWriter::writeModuleMetadata() { 1865 if (!VE.hasMDs() && M.named_metadata_empty()) 1866 return; 1867 1868 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1869 SmallVector<uint64_t, 64> Record; 1870 1871 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1872 // block and load any metadata. 1873 std::vector<unsigned> MDAbbrevs; 1874 1875 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1876 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1877 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1878 createGenericDINodeAbbrev(); 1879 1880 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1881 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1884 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1885 1886 Abbv = std::make_shared<BitCodeAbbrev>(); 1887 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1890 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1891 1892 // Emit MDStrings together upfront. 1893 writeMetadataStrings(VE.getMDStrings(), Record); 1894 1895 // We only emit an index for the metadata record if we have more than a given 1896 // (naive) threshold of metadatas, otherwise it is not worth it. 1897 if (VE.getNonMDStrings().size() > IndexThreshold) { 1898 // Write a placeholder value in for the offset of the metadata index, 1899 // which is written after the records, so that it can include 1900 // the offset of each entry. The placeholder offset will be 1901 // updated after all records are emitted. 1902 uint64_t Vals[] = {0, 0}; 1903 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1904 } 1905 1906 // Compute and save the bit offset to the current position, which will be 1907 // patched when we emit the index later. We can simply subtract the 64-bit 1908 // fixed size from the current bit number to get the location to backpatch. 1909 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1910 1911 // This index will contain the bitpos for each individual record. 1912 std::vector<uint64_t> IndexPos; 1913 IndexPos.reserve(VE.getNonMDStrings().size()); 1914 1915 // Write all the records 1916 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1917 1918 if (VE.getNonMDStrings().size() > IndexThreshold) { 1919 // Now that we have emitted all the records we will emit the index. But 1920 // first 1921 // backpatch the forward reference so that the reader can skip the records 1922 // efficiently. 1923 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1924 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1925 1926 // Delta encode the index. 1927 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1928 for (auto &Elt : IndexPos) { 1929 auto EltDelta = Elt - PreviousValue; 1930 PreviousValue = Elt; 1931 Elt = EltDelta; 1932 } 1933 // Emit the index record. 1934 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1935 IndexPos.clear(); 1936 } 1937 1938 // Write the named metadata now. 1939 writeNamedMetadata(Record); 1940 1941 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1942 SmallVector<uint64_t, 4> Record; 1943 Record.push_back(VE.getValueID(&GO)); 1944 pushGlobalMetadataAttachment(Record, GO); 1945 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1946 }; 1947 for (const Function &F : M) 1948 if (F.isDeclaration() && F.hasMetadata()) 1949 AddDeclAttachedMetadata(F); 1950 // FIXME: Only store metadata for declarations here, and move data for global 1951 // variable definitions to a separate block (PR28134). 1952 for (const GlobalVariable &GV : M.globals()) 1953 if (GV.hasMetadata()) 1954 AddDeclAttachedMetadata(GV); 1955 1956 Stream.ExitBlock(); 1957 } 1958 1959 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1960 if (!VE.hasMDs()) 1961 return; 1962 1963 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1964 SmallVector<uint64_t, 64> Record; 1965 writeMetadataStrings(VE.getMDStrings(), Record); 1966 writeMetadataRecords(VE.getNonMDStrings(), Record); 1967 Stream.ExitBlock(); 1968 } 1969 1970 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1971 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1972 // [n x [id, mdnode]] 1973 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1974 GO.getAllMetadata(MDs); 1975 for (const auto &I : MDs) { 1976 Record.push_back(I.first); 1977 Record.push_back(VE.getMetadataID(I.second)); 1978 } 1979 } 1980 1981 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1982 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1983 1984 SmallVector<uint64_t, 64> Record; 1985 1986 if (F.hasMetadata()) { 1987 pushGlobalMetadataAttachment(Record, F); 1988 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1989 Record.clear(); 1990 } 1991 1992 // Write metadata attachments 1993 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1994 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1995 for (const BasicBlock &BB : F) 1996 for (const Instruction &I : BB) { 1997 MDs.clear(); 1998 I.getAllMetadataOtherThanDebugLoc(MDs); 1999 2000 // If no metadata, ignore instruction. 2001 if (MDs.empty()) continue; 2002 2003 Record.push_back(VE.getInstructionID(&I)); 2004 2005 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2006 Record.push_back(MDs[i].first); 2007 Record.push_back(VE.getMetadataID(MDs[i].second)); 2008 } 2009 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2010 Record.clear(); 2011 } 2012 2013 Stream.ExitBlock(); 2014 } 2015 2016 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2017 SmallVector<uint64_t, 64> Record; 2018 2019 // Write metadata kinds 2020 // METADATA_KIND - [n x [id, name]] 2021 SmallVector<StringRef, 8> Names; 2022 M.getMDKindNames(Names); 2023 2024 if (Names.empty()) return; 2025 2026 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2027 2028 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2029 Record.push_back(MDKindID); 2030 StringRef KName = Names[MDKindID]; 2031 Record.append(KName.begin(), KName.end()); 2032 2033 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2034 Record.clear(); 2035 } 2036 2037 Stream.ExitBlock(); 2038 } 2039 2040 void ModuleBitcodeWriter::writeOperandBundleTags() { 2041 // Write metadata kinds 2042 // 2043 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2044 // 2045 // OPERAND_BUNDLE_TAG - [strchr x N] 2046 2047 SmallVector<StringRef, 8> Tags; 2048 M.getOperandBundleTags(Tags); 2049 2050 if (Tags.empty()) 2051 return; 2052 2053 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2054 2055 SmallVector<uint64_t, 64> Record; 2056 2057 for (auto Tag : Tags) { 2058 Record.append(Tag.begin(), Tag.end()); 2059 2060 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2061 Record.clear(); 2062 } 2063 2064 Stream.ExitBlock(); 2065 } 2066 2067 void ModuleBitcodeWriter::writeSyncScopeNames() { 2068 SmallVector<StringRef, 8> SSNs; 2069 M.getContext().getSyncScopeNames(SSNs); 2070 if (SSNs.empty()) 2071 return; 2072 2073 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2074 2075 SmallVector<uint64_t, 64> Record; 2076 for (auto SSN : SSNs) { 2077 Record.append(SSN.begin(), SSN.end()); 2078 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2079 Record.clear(); 2080 } 2081 2082 Stream.ExitBlock(); 2083 } 2084 2085 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2086 if ((int64_t)V >= 0) 2087 Vals.push_back(V << 1); 2088 else 2089 Vals.push_back((-V << 1) | 1); 2090 } 2091 2092 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2093 bool isGlobal) { 2094 if (FirstVal == LastVal) return; 2095 2096 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2097 2098 unsigned AggregateAbbrev = 0; 2099 unsigned String8Abbrev = 0; 2100 unsigned CString7Abbrev = 0; 2101 unsigned CString6Abbrev = 0; 2102 // If this is a constant pool for the module, emit module-specific abbrevs. 2103 if (isGlobal) { 2104 // Abbrev for CST_CODE_AGGREGATE. 2105 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2106 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2109 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2110 2111 // Abbrev for CST_CODE_STRING. 2112 Abbv = std::make_shared<BitCodeAbbrev>(); 2113 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2116 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2117 // Abbrev for CST_CODE_CSTRING. 2118 Abbv = std::make_shared<BitCodeAbbrev>(); 2119 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2122 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2123 // Abbrev for CST_CODE_CSTRING. 2124 Abbv = std::make_shared<BitCodeAbbrev>(); 2125 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2128 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2129 } 2130 2131 SmallVector<uint64_t, 64> Record; 2132 2133 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2134 Type *LastTy = nullptr; 2135 for (unsigned i = FirstVal; i != LastVal; ++i) { 2136 const Value *V = Vals[i].first; 2137 // If we need to switch types, do so now. 2138 if (V->getType() != LastTy) { 2139 LastTy = V->getType(); 2140 Record.push_back(VE.getTypeID(LastTy)); 2141 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2142 CONSTANTS_SETTYPE_ABBREV); 2143 Record.clear(); 2144 } 2145 2146 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2147 Record.push_back(unsigned(IA->hasSideEffects()) | 2148 unsigned(IA->isAlignStack()) << 1 | 2149 unsigned(IA->getDialect()&1) << 2); 2150 2151 // Add the asm string. 2152 const std::string &AsmStr = IA->getAsmString(); 2153 Record.push_back(AsmStr.size()); 2154 Record.append(AsmStr.begin(), AsmStr.end()); 2155 2156 // Add the constraint string. 2157 const std::string &ConstraintStr = IA->getConstraintString(); 2158 Record.push_back(ConstraintStr.size()); 2159 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2160 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2161 Record.clear(); 2162 continue; 2163 } 2164 const Constant *C = cast<Constant>(V); 2165 unsigned Code = -1U; 2166 unsigned AbbrevToUse = 0; 2167 if (C->isNullValue()) { 2168 Code = bitc::CST_CODE_NULL; 2169 } else if (isa<UndefValue>(C)) { 2170 Code = bitc::CST_CODE_UNDEF; 2171 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2172 if (IV->getBitWidth() <= 64) { 2173 uint64_t V = IV->getSExtValue(); 2174 emitSignedInt64(Record, V); 2175 Code = bitc::CST_CODE_INTEGER; 2176 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2177 } else { // Wide integers, > 64 bits in size. 2178 // We have an arbitrary precision integer value to write whose 2179 // bit width is > 64. However, in canonical unsigned integer 2180 // format it is likely that the high bits are going to be zero. 2181 // So, we only write the number of active words. 2182 unsigned NWords = IV->getValue().getActiveWords(); 2183 const uint64_t *RawWords = IV->getValue().getRawData(); 2184 for (unsigned i = 0; i != NWords; ++i) { 2185 emitSignedInt64(Record, RawWords[i]); 2186 } 2187 Code = bitc::CST_CODE_WIDE_INTEGER; 2188 } 2189 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2190 Code = bitc::CST_CODE_FLOAT; 2191 Type *Ty = CFP->getType(); 2192 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2193 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2194 } else if (Ty->isX86_FP80Ty()) { 2195 // api needed to prevent premature destruction 2196 // bits are not in the same order as a normal i80 APInt, compensate. 2197 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2198 const uint64_t *p = api.getRawData(); 2199 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2200 Record.push_back(p[0] & 0xffffLL); 2201 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2202 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2203 const uint64_t *p = api.getRawData(); 2204 Record.push_back(p[0]); 2205 Record.push_back(p[1]); 2206 } else { 2207 assert (0 && "Unknown FP type!"); 2208 } 2209 } else if (isa<ConstantDataSequential>(C) && 2210 cast<ConstantDataSequential>(C)->isString()) { 2211 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2212 // Emit constant strings specially. 2213 unsigned NumElts = Str->getNumElements(); 2214 // If this is a null-terminated string, use the denser CSTRING encoding. 2215 if (Str->isCString()) { 2216 Code = bitc::CST_CODE_CSTRING; 2217 --NumElts; // Don't encode the null, which isn't allowed by char6. 2218 } else { 2219 Code = bitc::CST_CODE_STRING; 2220 AbbrevToUse = String8Abbrev; 2221 } 2222 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2223 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2224 for (unsigned i = 0; i != NumElts; ++i) { 2225 unsigned char V = Str->getElementAsInteger(i); 2226 Record.push_back(V); 2227 isCStr7 &= (V & 128) == 0; 2228 if (isCStrChar6) 2229 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2230 } 2231 2232 if (isCStrChar6) 2233 AbbrevToUse = CString6Abbrev; 2234 else if (isCStr7) 2235 AbbrevToUse = CString7Abbrev; 2236 } else if (const ConstantDataSequential *CDS = 2237 dyn_cast<ConstantDataSequential>(C)) { 2238 Code = bitc::CST_CODE_DATA; 2239 Type *EltTy = CDS->getType()->getElementType(); 2240 if (isa<IntegerType>(EltTy)) { 2241 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2242 Record.push_back(CDS->getElementAsInteger(i)); 2243 } else { 2244 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2245 Record.push_back( 2246 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2247 } 2248 } else if (isa<ConstantAggregate>(C)) { 2249 Code = bitc::CST_CODE_AGGREGATE; 2250 for (const Value *Op : C->operands()) 2251 Record.push_back(VE.getValueID(Op)); 2252 AbbrevToUse = AggregateAbbrev; 2253 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2254 switch (CE->getOpcode()) { 2255 default: 2256 if (Instruction::isCast(CE->getOpcode())) { 2257 Code = bitc::CST_CODE_CE_CAST; 2258 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2259 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2260 Record.push_back(VE.getValueID(C->getOperand(0))); 2261 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2262 } else { 2263 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2264 Code = bitc::CST_CODE_CE_BINOP; 2265 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2266 Record.push_back(VE.getValueID(C->getOperand(0))); 2267 Record.push_back(VE.getValueID(C->getOperand(1))); 2268 uint64_t Flags = getOptimizationFlags(CE); 2269 if (Flags != 0) 2270 Record.push_back(Flags); 2271 } 2272 break; 2273 case Instruction::GetElementPtr: { 2274 Code = bitc::CST_CODE_CE_GEP; 2275 const auto *GO = cast<GEPOperator>(C); 2276 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2277 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2278 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2279 Record.push_back((*Idx << 1) | GO->isInBounds()); 2280 } else if (GO->isInBounds()) 2281 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2282 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2283 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2284 Record.push_back(VE.getValueID(C->getOperand(i))); 2285 } 2286 break; 2287 } 2288 case Instruction::Select: 2289 Code = bitc::CST_CODE_CE_SELECT; 2290 Record.push_back(VE.getValueID(C->getOperand(0))); 2291 Record.push_back(VE.getValueID(C->getOperand(1))); 2292 Record.push_back(VE.getValueID(C->getOperand(2))); 2293 break; 2294 case Instruction::ExtractElement: 2295 Code = bitc::CST_CODE_CE_EXTRACTELT; 2296 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2297 Record.push_back(VE.getValueID(C->getOperand(0))); 2298 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2299 Record.push_back(VE.getValueID(C->getOperand(1))); 2300 break; 2301 case Instruction::InsertElement: 2302 Code = bitc::CST_CODE_CE_INSERTELT; 2303 Record.push_back(VE.getValueID(C->getOperand(0))); 2304 Record.push_back(VE.getValueID(C->getOperand(1))); 2305 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2306 Record.push_back(VE.getValueID(C->getOperand(2))); 2307 break; 2308 case Instruction::ShuffleVector: 2309 // If the return type and argument types are the same, this is a 2310 // standard shufflevector instruction. If the types are different, 2311 // then the shuffle is widening or truncating the input vectors, and 2312 // the argument type must also be encoded. 2313 if (C->getType() == C->getOperand(0)->getType()) { 2314 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2315 } else { 2316 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2317 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2318 } 2319 Record.push_back(VE.getValueID(C->getOperand(0))); 2320 Record.push_back(VE.getValueID(C->getOperand(1))); 2321 Record.push_back(VE.getValueID(C->getOperand(2))); 2322 break; 2323 case Instruction::ICmp: 2324 case Instruction::FCmp: 2325 Code = bitc::CST_CODE_CE_CMP; 2326 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2327 Record.push_back(VE.getValueID(C->getOperand(0))); 2328 Record.push_back(VE.getValueID(C->getOperand(1))); 2329 Record.push_back(CE->getPredicate()); 2330 break; 2331 } 2332 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2333 Code = bitc::CST_CODE_BLOCKADDRESS; 2334 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2335 Record.push_back(VE.getValueID(BA->getFunction())); 2336 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2337 } else { 2338 #ifndef NDEBUG 2339 C->dump(); 2340 #endif 2341 llvm_unreachable("Unknown constant!"); 2342 } 2343 Stream.EmitRecord(Code, Record, AbbrevToUse); 2344 Record.clear(); 2345 } 2346 2347 Stream.ExitBlock(); 2348 } 2349 2350 void ModuleBitcodeWriter::writeModuleConstants() { 2351 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2352 2353 // Find the first constant to emit, which is the first non-globalvalue value. 2354 // We know globalvalues have been emitted by WriteModuleInfo. 2355 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2356 if (!isa<GlobalValue>(Vals[i].first)) { 2357 writeConstants(i, Vals.size(), true); 2358 return; 2359 } 2360 } 2361 } 2362 2363 /// pushValueAndType - The file has to encode both the value and type id for 2364 /// many values, because we need to know what type to create for forward 2365 /// references. However, most operands are not forward references, so this type 2366 /// field is not needed. 2367 /// 2368 /// This function adds V's value ID to Vals. If the value ID is higher than the 2369 /// instruction ID, then it is a forward reference, and it also includes the 2370 /// type ID. The value ID that is written is encoded relative to the InstID. 2371 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2372 SmallVectorImpl<unsigned> &Vals) { 2373 unsigned ValID = VE.getValueID(V); 2374 // Make encoding relative to the InstID. 2375 Vals.push_back(InstID - ValID); 2376 if (ValID >= InstID) { 2377 Vals.push_back(VE.getTypeID(V->getType())); 2378 return true; 2379 } 2380 return false; 2381 } 2382 2383 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2384 unsigned InstID) { 2385 SmallVector<unsigned, 64> Record; 2386 LLVMContext &C = CS.getInstruction()->getContext(); 2387 2388 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2389 const auto &Bundle = CS.getOperandBundleAt(i); 2390 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2391 2392 for (auto &Input : Bundle.Inputs) 2393 pushValueAndType(Input, InstID, Record); 2394 2395 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2396 Record.clear(); 2397 } 2398 } 2399 2400 /// pushValue - Like pushValueAndType, but where the type of the value is 2401 /// omitted (perhaps it was already encoded in an earlier operand). 2402 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2403 SmallVectorImpl<unsigned> &Vals) { 2404 unsigned ValID = VE.getValueID(V); 2405 Vals.push_back(InstID - ValID); 2406 } 2407 2408 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2409 SmallVectorImpl<uint64_t> &Vals) { 2410 unsigned ValID = VE.getValueID(V); 2411 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2412 emitSignedInt64(Vals, diff); 2413 } 2414 2415 /// WriteInstruction - Emit an instruction to the specified stream. 2416 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2417 unsigned InstID, 2418 SmallVectorImpl<unsigned> &Vals) { 2419 unsigned Code = 0; 2420 unsigned AbbrevToUse = 0; 2421 VE.setInstructionID(&I); 2422 switch (I.getOpcode()) { 2423 default: 2424 if (Instruction::isCast(I.getOpcode())) { 2425 Code = bitc::FUNC_CODE_INST_CAST; 2426 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2427 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2428 Vals.push_back(VE.getTypeID(I.getType())); 2429 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2430 } else { 2431 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2432 Code = bitc::FUNC_CODE_INST_BINOP; 2433 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2434 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2435 pushValue(I.getOperand(1), InstID, Vals); 2436 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2437 uint64_t Flags = getOptimizationFlags(&I); 2438 if (Flags != 0) { 2439 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2440 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2441 Vals.push_back(Flags); 2442 } 2443 } 2444 break; 2445 2446 case Instruction::GetElementPtr: { 2447 Code = bitc::FUNC_CODE_INST_GEP; 2448 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2449 auto &GEPInst = cast<GetElementPtrInst>(I); 2450 Vals.push_back(GEPInst.isInBounds()); 2451 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2452 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2453 pushValueAndType(I.getOperand(i), InstID, Vals); 2454 break; 2455 } 2456 case Instruction::ExtractValue: { 2457 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2458 pushValueAndType(I.getOperand(0), InstID, Vals); 2459 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2460 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2461 break; 2462 } 2463 case Instruction::InsertValue: { 2464 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2465 pushValueAndType(I.getOperand(0), InstID, Vals); 2466 pushValueAndType(I.getOperand(1), InstID, Vals); 2467 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2468 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2469 break; 2470 } 2471 case Instruction::Select: 2472 Code = bitc::FUNC_CODE_INST_VSELECT; 2473 pushValueAndType(I.getOperand(1), InstID, Vals); 2474 pushValue(I.getOperand(2), InstID, Vals); 2475 pushValueAndType(I.getOperand(0), InstID, Vals); 2476 break; 2477 case Instruction::ExtractElement: 2478 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2479 pushValueAndType(I.getOperand(0), InstID, Vals); 2480 pushValueAndType(I.getOperand(1), InstID, Vals); 2481 break; 2482 case Instruction::InsertElement: 2483 Code = bitc::FUNC_CODE_INST_INSERTELT; 2484 pushValueAndType(I.getOperand(0), InstID, Vals); 2485 pushValue(I.getOperand(1), InstID, Vals); 2486 pushValueAndType(I.getOperand(2), InstID, Vals); 2487 break; 2488 case Instruction::ShuffleVector: 2489 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2490 pushValueAndType(I.getOperand(0), InstID, Vals); 2491 pushValue(I.getOperand(1), InstID, Vals); 2492 pushValue(I.getOperand(2), InstID, Vals); 2493 break; 2494 case Instruction::ICmp: 2495 case Instruction::FCmp: { 2496 // compare returning Int1Ty or vector of Int1Ty 2497 Code = bitc::FUNC_CODE_INST_CMP2; 2498 pushValueAndType(I.getOperand(0), InstID, Vals); 2499 pushValue(I.getOperand(1), InstID, Vals); 2500 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2501 uint64_t Flags = getOptimizationFlags(&I); 2502 if (Flags != 0) 2503 Vals.push_back(Flags); 2504 break; 2505 } 2506 2507 case Instruction::Ret: 2508 { 2509 Code = bitc::FUNC_CODE_INST_RET; 2510 unsigned NumOperands = I.getNumOperands(); 2511 if (NumOperands == 0) 2512 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2513 else if (NumOperands == 1) { 2514 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2515 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2516 } else { 2517 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2518 pushValueAndType(I.getOperand(i), InstID, Vals); 2519 } 2520 } 2521 break; 2522 case Instruction::Br: 2523 { 2524 Code = bitc::FUNC_CODE_INST_BR; 2525 const BranchInst &II = cast<BranchInst>(I); 2526 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2527 if (II.isConditional()) { 2528 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2529 pushValue(II.getCondition(), InstID, Vals); 2530 } 2531 } 2532 break; 2533 case Instruction::Switch: 2534 { 2535 Code = bitc::FUNC_CODE_INST_SWITCH; 2536 const SwitchInst &SI = cast<SwitchInst>(I); 2537 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2538 pushValue(SI.getCondition(), InstID, Vals); 2539 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2540 for (auto Case : SI.cases()) { 2541 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2542 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2543 } 2544 } 2545 break; 2546 case Instruction::IndirectBr: 2547 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2548 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2549 // Encode the address operand as relative, but not the basic blocks. 2550 pushValue(I.getOperand(0), InstID, Vals); 2551 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2552 Vals.push_back(VE.getValueID(I.getOperand(i))); 2553 break; 2554 2555 case Instruction::Invoke: { 2556 const InvokeInst *II = cast<InvokeInst>(&I); 2557 const Value *Callee = II->getCalledValue(); 2558 FunctionType *FTy = II->getFunctionType(); 2559 2560 if (II->hasOperandBundles()) 2561 writeOperandBundles(II, InstID); 2562 2563 Code = bitc::FUNC_CODE_INST_INVOKE; 2564 2565 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2566 Vals.push_back(II->getCallingConv() | 1 << 13); 2567 Vals.push_back(VE.getValueID(II->getNormalDest())); 2568 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2569 Vals.push_back(VE.getTypeID(FTy)); 2570 pushValueAndType(Callee, InstID, Vals); 2571 2572 // Emit value #'s for the fixed parameters. 2573 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2574 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2575 2576 // Emit type/value pairs for varargs params. 2577 if (FTy->isVarArg()) { 2578 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2579 i != e; ++i) 2580 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2581 } 2582 break; 2583 } 2584 case Instruction::Resume: 2585 Code = bitc::FUNC_CODE_INST_RESUME; 2586 pushValueAndType(I.getOperand(0), InstID, Vals); 2587 break; 2588 case Instruction::CleanupRet: { 2589 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2590 const auto &CRI = cast<CleanupReturnInst>(I); 2591 pushValue(CRI.getCleanupPad(), InstID, Vals); 2592 if (CRI.hasUnwindDest()) 2593 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2594 break; 2595 } 2596 case Instruction::CatchRet: { 2597 Code = bitc::FUNC_CODE_INST_CATCHRET; 2598 const auto &CRI = cast<CatchReturnInst>(I); 2599 pushValue(CRI.getCatchPad(), InstID, Vals); 2600 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2601 break; 2602 } 2603 case Instruction::CleanupPad: 2604 case Instruction::CatchPad: { 2605 const auto &FuncletPad = cast<FuncletPadInst>(I); 2606 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2607 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2608 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2609 2610 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2611 Vals.push_back(NumArgOperands); 2612 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2613 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2614 break; 2615 } 2616 case Instruction::CatchSwitch: { 2617 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2618 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2619 2620 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2621 2622 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2623 Vals.push_back(NumHandlers); 2624 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2625 Vals.push_back(VE.getValueID(CatchPadBB)); 2626 2627 if (CatchSwitch.hasUnwindDest()) 2628 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2629 break; 2630 } 2631 case Instruction::Unreachable: 2632 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2633 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2634 break; 2635 2636 case Instruction::PHI: { 2637 const PHINode &PN = cast<PHINode>(I); 2638 Code = bitc::FUNC_CODE_INST_PHI; 2639 // With the newer instruction encoding, forward references could give 2640 // negative valued IDs. This is most common for PHIs, so we use 2641 // signed VBRs. 2642 SmallVector<uint64_t, 128> Vals64; 2643 Vals64.push_back(VE.getTypeID(PN.getType())); 2644 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2645 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2646 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2647 } 2648 // Emit a Vals64 vector and exit. 2649 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2650 Vals64.clear(); 2651 return; 2652 } 2653 2654 case Instruction::LandingPad: { 2655 const LandingPadInst &LP = cast<LandingPadInst>(I); 2656 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2657 Vals.push_back(VE.getTypeID(LP.getType())); 2658 Vals.push_back(LP.isCleanup()); 2659 Vals.push_back(LP.getNumClauses()); 2660 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2661 if (LP.isCatch(I)) 2662 Vals.push_back(LandingPadInst::Catch); 2663 else 2664 Vals.push_back(LandingPadInst::Filter); 2665 pushValueAndType(LP.getClause(I), InstID, Vals); 2666 } 2667 break; 2668 } 2669 2670 case Instruction::Alloca: { 2671 Code = bitc::FUNC_CODE_INST_ALLOCA; 2672 const AllocaInst &AI = cast<AllocaInst>(I); 2673 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2674 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2675 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2676 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2677 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2678 "not enough bits for maximum alignment"); 2679 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2680 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2681 AlignRecord |= 1 << 6; 2682 AlignRecord |= AI.isSwiftError() << 7; 2683 Vals.push_back(AlignRecord); 2684 break; 2685 } 2686 2687 case Instruction::Load: 2688 if (cast<LoadInst>(I).isAtomic()) { 2689 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2690 pushValueAndType(I.getOperand(0), InstID, Vals); 2691 } else { 2692 Code = bitc::FUNC_CODE_INST_LOAD; 2693 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2694 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2695 } 2696 Vals.push_back(VE.getTypeID(I.getType())); 2697 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2698 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2699 if (cast<LoadInst>(I).isAtomic()) { 2700 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2701 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2702 } 2703 break; 2704 case Instruction::Store: 2705 if (cast<StoreInst>(I).isAtomic()) 2706 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2707 else 2708 Code = bitc::FUNC_CODE_INST_STORE; 2709 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2710 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2711 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2712 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2713 if (cast<StoreInst>(I).isAtomic()) { 2714 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2715 Vals.push_back( 2716 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2717 } 2718 break; 2719 case Instruction::AtomicCmpXchg: 2720 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2721 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2722 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2723 pushValue(I.getOperand(2), InstID, Vals); // newval. 2724 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2725 Vals.push_back( 2726 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2727 Vals.push_back( 2728 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2729 Vals.push_back( 2730 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2731 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2732 break; 2733 case Instruction::AtomicRMW: 2734 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2735 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2736 pushValue(I.getOperand(1), InstID, Vals); // val. 2737 Vals.push_back( 2738 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2739 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2740 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2741 Vals.push_back( 2742 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2743 break; 2744 case Instruction::Fence: 2745 Code = bitc::FUNC_CODE_INST_FENCE; 2746 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2747 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2748 break; 2749 case Instruction::Call: { 2750 const CallInst &CI = cast<CallInst>(I); 2751 FunctionType *FTy = CI.getFunctionType(); 2752 2753 if (CI.hasOperandBundles()) 2754 writeOperandBundles(&CI, InstID); 2755 2756 Code = bitc::FUNC_CODE_INST_CALL; 2757 2758 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2759 2760 unsigned Flags = getOptimizationFlags(&I); 2761 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2762 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2763 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2764 1 << bitc::CALL_EXPLICIT_TYPE | 2765 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2766 unsigned(Flags != 0) << bitc::CALL_FMF); 2767 if (Flags != 0) 2768 Vals.push_back(Flags); 2769 2770 Vals.push_back(VE.getTypeID(FTy)); 2771 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2772 2773 // Emit value #'s for the fixed parameters. 2774 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2775 // Check for labels (can happen with asm labels). 2776 if (FTy->getParamType(i)->isLabelTy()) 2777 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2778 else 2779 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2780 } 2781 2782 // Emit type/value pairs for varargs params. 2783 if (FTy->isVarArg()) { 2784 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2785 i != e; ++i) 2786 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2787 } 2788 break; 2789 } 2790 case Instruction::VAArg: 2791 Code = bitc::FUNC_CODE_INST_VAARG; 2792 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2793 pushValue(I.getOperand(0), InstID, Vals); // valist. 2794 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2795 break; 2796 } 2797 2798 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2799 Vals.clear(); 2800 } 2801 2802 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2803 /// to allow clients to efficiently find the function body. 2804 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2805 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2806 // Get the offset of the VST we are writing, and backpatch it into 2807 // the VST forward declaration record. 2808 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2809 // The BitcodeStartBit was the stream offset of the identification block. 2810 VSTOffset -= bitcodeStartBit(); 2811 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2812 // Note that we add 1 here because the offset is relative to one word 2813 // before the start of the identification block, which was historically 2814 // always the start of the regular bitcode header. 2815 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2816 2817 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2818 2819 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2820 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2823 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2824 2825 for (const Function &F : M) { 2826 uint64_t Record[2]; 2827 2828 if (F.isDeclaration()) 2829 continue; 2830 2831 Record[0] = VE.getValueID(&F); 2832 2833 // Save the word offset of the function (from the start of the 2834 // actual bitcode written to the stream). 2835 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2836 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2837 // Note that we add 1 here because the offset is relative to one word 2838 // before the start of the identification block, which was historically 2839 // always the start of the regular bitcode header. 2840 Record[1] = BitcodeIndex / 32 + 1; 2841 2842 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2843 } 2844 2845 Stream.ExitBlock(); 2846 } 2847 2848 /// Emit names for arguments, instructions and basic blocks in a function. 2849 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2850 const ValueSymbolTable &VST) { 2851 if (VST.empty()) 2852 return; 2853 2854 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2855 2856 // FIXME: Set up the abbrev, we know how many values there are! 2857 // FIXME: We know if the type names can use 7-bit ascii. 2858 SmallVector<uint64_t, 64> NameVals; 2859 2860 for (const ValueName &Name : VST) { 2861 // Figure out the encoding to use for the name. 2862 StringEncoding Bits = getStringEncoding(Name.getKey()); 2863 2864 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2865 NameVals.push_back(VE.getValueID(Name.getValue())); 2866 2867 // VST_CODE_ENTRY: [valueid, namechar x N] 2868 // VST_CODE_BBENTRY: [bbid, namechar x N] 2869 unsigned Code; 2870 if (isa<BasicBlock>(Name.getValue())) { 2871 Code = bitc::VST_CODE_BBENTRY; 2872 if (Bits == SE_Char6) 2873 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2874 } else { 2875 Code = bitc::VST_CODE_ENTRY; 2876 if (Bits == SE_Char6) 2877 AbbrevToUse = VST_ENTRY_6_ABBREV; 2878 else if (Bits == SE_Fixed7) 2879 AbbrevToUse = VST_ENTRY_7_ABBREV; 2880 } 2881 2882 for (const auto P : Name.getKey()) 2883 NameVals.push_back((unsigned char)P); 2884 2885 // Emit the finished record. 2886 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2887 NameVals.clear(); 2888 } 2889 2890 Stream.ExitBlock(); 2891 } 2892 2893 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2894 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2895 unsigned Code; 2896 if (isa<BasicBlock>(Order.V)) 2897 Code = bitc::USELIST_CODE_BB; 2898 else 2899 Code = bitc::USELIST_CODE_DEFAULT; 2900 2901 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2902 Record.push_back(VE.getValueID(Order.V)); 2903 Stream.EmitRecord(Code, Record); 2904 } 2905 2906 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2907 assert(VE.shouldPreserveUseListOrder() && 2908 "Expected to be preserving use-list order"); 2909 2910 auto hasMore = [&]() { 2911 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2912 }; 2913 if (!hasMore()) 2914 // Nothing to do. 2915 return; 2916 2917 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2918 while (hasMore()) { 2919 writeUseList(std::move(VE.UseListOrders.back())); 2920 VE.UseListOrders.pop_back(); 2921 } 2922 Stream.ExitBlock(); 2923 } 2924 2925 /// Emit a function body to the module stream. 2926 void ModuleBitcodeWriter::writeFunction( 2927 const Function &F, 2928 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2929 // Save the bitcode index of the start of this function block for recording 2930 // in the VST. 2931 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2932 2933 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2934 VE.incorporateFunction(F); 2935 2936 SmallVector<unsigned, 64> Vals; 2937 2938 // Emit the number of basic blocks, so the reader can create them ahead of 2939 // time. 2940 Vals.push_back(VE.getBasicBlocks().size()); 2941 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2942 Vals.clear(); 2943 2944 // If there are function-local constants, emit them now. 2945 unsigned CstStart, CstEnd; 2946 VE.getFunctionConstantRange(CstStart, CstEnd); 2947 writeConstants(CstStart, CstEnd, false); 2948 2949 // If there is function-local metadata, emit it now. 2950 writeFunctionMetadata(F); 2951 2952 // Keep a running idea of what the instruction ID is. 2953 unsigned InstID = CstEnd; 2954 2955 bool NeedsMetadataAttachment = F.hasMetadata(); 2956 2957 DILocation *LastDL = nullptr; 2958 // Finally, emit all the instructions, in order. 2959 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2960 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2961 I != E; ++I) { 2962 writeInstruction(*I, InstID, Vals); 2963 2964 if (!I->getType()->isVoidTy()) 2965 ++InstID; 2966 2967 // If the instruction has metadata, write a metadata attachment later. 2968 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2969 2970 // If the instruction has a debug location, emit it. 2971 DILocation *DL = I->getDebugLoc(); 2972 if (!DL) 2973 continue; 2974 2975 if (DL == LastDL) { 2976 // Just repeat the same debug loc as last time. 2977 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2978 continue; 2979 } 2980 2981 Vals.push_back(DL->getLine()); 2982 Vals.push_back(DL->getColumn()); 2983 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2984 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2985 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2986 Vals.clear(); 2987 2988 LastDL = DL; 2989 } 2990 2991 // Emit names for all the instructions etc. 2992 if (auto *Symtab = F.getValueSymbolTable()) 2993 writeFunctionLevelValueSymbolTable(*Symtab); 2994 2995 if (NeedsMetadataAttachment) 2996 writeFunctionMetadataAttachment(F); 2997 if (VE.shouldPreserveUseListOrder()) 2998 writeUseListBlock(&F); 2999 VE.purgeFunction(); 3000 Stream.ExitBlock(); 3001 } 3002 3003 // Emit blockinfo, which defines the standard abbreviations etc. 3004 void ModuleBitcodeWriter::writeBlockInfo() { 3005 // We only want to emit block info records for blocks that have multiple 3006 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3007 // Other blocks can define their abbrevs inline. 3008 Stream.EnterBlockInfoBlock(); 3009 3010 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3011 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3016 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3017 VST_ENTRY_8_ABBREV) 3018 llvm_unreachable("Unexpected abbrev ordering!"); 3019 } 3020 3021 { // 7-bit fixed width VST_CODE_ENTRY strings. 3022 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3023 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3027 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3028 VST_ENTRY_7_ABBREV) 3029 llvm_unreachable("Unexpected abbrev ordering!"); 3030 } 3031 { // 6-bit char6 VST_CODE_ENTRY strings. 3032 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3033 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3037 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3038 VST_ENTRY_6_ABBREV) 3039 llvm_unreachable("Unexpected abbrev ordering!"); 3040 } 3041 { // 6-bit char6 VST_CODE_BBENTRY strings. 3042 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3043 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3047 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3048 VST_BBENTRY_6_ABBREV) 3049 llvm_unreachable("Unexpected abbrev ordering!"); 3050 } 3051 3052 3053 3054 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3055 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3056 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3058 VE.computeBitsRequiredForTypeIndicies())); 3059 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3060 CONSTANTS_SETTYPE_ABBREV) 3061 llvm_unreachable("Unexpected abbrev ordering!"); 3062 } 3063 3064 { // INTEGER abbrev for CONSTANTS_BLOCK. 3065 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3066 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3068 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3069 CONSTANTS_INTEGER_ABBREV) 3070 llvm_unreachable("Unexpected abbrev ordering!"); 3071 } 3072 3073 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3074 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3075 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3078 VE.computeBitsRequiredForTypeIndicies())); 3079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3080 3081 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3082 CONSTANTS_CE_CAST_Abbrev) 3083 llvm_unreachable("Unexpected abbrev ordering!"); 3084 } 3085 { // NULL abbrev for CONSTANTS_BLOCK. 3086 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3087 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3088 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3089 CONSTANTS_NULL_Abbrev) 3090 llvm_unreachable("Unexpected abbrev ordering!"); 3091 } 3092 3093 // FIXME: This should only use space for first class types! 3094 3095 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3096 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3097 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3100 VE.computeBitsRequiredForTypeIndicies())); 3101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3103 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3104 FUNCTION_INST_LOAD_ABBREV) 3105 llvm_unreachable("Unexpected abbrev ordering!"); 3106 } 3107 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3108 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3109 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3113 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3114 FUNCTION_INST_BINOP_ABBREV) 3115 llvm_unreachable("Unexpected abbrev ordering!"); 3116 } 3117 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3118 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3119 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3124 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3125 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3126 llvm_unreachable("Unexpected abbrev ordering!"); 3127 } 3128 { // INST_CAST abbrev for FUNCTION_BLOCK. 3129 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3130 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3133 VE.computeBitsRequiredForTypeIndicies())); 3134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3135 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3136 FUNCTION_INST_CAST_ABBREV) 3137 llvm_unreachable("Unexpected abbrev ordering!"); 3138 } 3139 3140 { // INST_RET abbrev for FUNCTION_BLOCK. 3141 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3142 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3143 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3144 FUNCTION_INST_RET_VOID_ABBREV) 3145 llvm_unreachable("Unexpected abbrev ordering!"); 3146 } 3147 { // INST_RET abbrev for FUNCTION_BLOCK. 3148 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3149 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3151 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3152 FUNCTION_INST_RET_VAL_ABBREV) 3153 llvm_unreachable("Unexpected abbrev ordering!"); 3154 } 3155 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3156 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3157 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3158 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3159 FUNCTION_INST_UNREACHABLE_ABBREV) 3160 llvm_unreachable("Unexpected abbrev ordering!"); 3161 } 3162 { 3163 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3164 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3167 Log2_32_Ceil(VE.getTypes().size() + 1))); 3168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3170 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3171 FUNCTION_INST_GEP_ABBREV) 3172 llvm_unreachable("Unexpected abbrev ordering!"); 3173 } 3174 3175 Stream.ExitBlock(); 3176 } 3177 3178 /// Write the module path strings, currently only used when generating 3179 /// a combined index file. 3180 void IndexBitcodeWriter::writeModStrings() { 3181 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3182 3183 // TODO: See which abbrev sizes we actually need to emit 3184 3185 // 8-bit fixed-width MST_ENTRY strings. 3186 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3187 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3191 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3192 3193 // 7-bit fixed width MST_ENTRY strings. 3194 Abbv = std::make_shared<BitCodeAbbrev>(); 3195 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3199 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3200 3201 // 6-bit char6 MST_ENTRY strings. 3202 Abbv = std::make_shared<BitCodeAbbrev>(); 3203 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3207 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3208 3209 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3210 Abbv = std::make_shared<BitCodeAbbrev>(); 3211 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3217 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3218 3219 SmallVector<unsigned, 64> Vals; 3220 forEachModule( 3221 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3222 StringRef Key = MPSE.getKey(); 3223 const auto &Value = MPSE.getValue(); 3224 StringEncoding Bits = getStringEncoding(Key); 3225 unsigned AbbrevToUse = Abbrev8Bit; 3226 if (Bits == SE_Char6) 3227 AbbrevToUse = Abbrev6Bit; 3228 else if (Bits == SE_Fixed7) 3229 AbbrevToUse = Abbrev7Bit; 3230 3231 Vals.push_back(Value.first); 3232 Vals.append(Key.begin(), Key.end()); 3233 3234 // Emit the finished record. 3235 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3236 3237 // Emit an optional hash for the module now 3238 const auto &Hash = Value.second; 3239 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3240 Vals.assign(Hash.begin(), Hash.end()); 3241 // Emit the hash record. 3242 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3243 } 3244 3245 Vals.clear(); 3246 }); 3247 Stream.ExitBlock(); 3248 } 3249 3250 /// Write the function type metadata related records that need to appear before 3251 /// a function summary entry (whether per-module or combined). 3252 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3253 FunctionSummary *FS) { 3254 if (!FS->type_tests().empty()) 3255 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3256 3257 SmallVector<uint64_t, 64> Record; 3258 3259 auto WriteVFuncIdVec = [&](uint64_t Ty, 3260 ArrayRef<FunctionSummary::VFuncId> VFs) { 3261 if (VFs.empty()) 3262 return; 3263 Record.clear(); 3264 for (auto &VF : VFs) { 3265 Record.push_back(VF.GUID); 3266 Record.push_back(VF.Offset); 3267 } 3268 Stream.EmitRecord(Ty, Record); 3269 }; 3270 3271 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3272 FS->type_test_assume_vcalls()); 3273 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3274 FS->type_checked_load_vcalls()); 3275 3276 auto WriteConstVCallVec = [&](uint64_t Ty, 3277 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3278 for (auto &VC : VCs) { 3279 Record.clear(); 3280 Record.push_back(VC.VFunc.GUID); 3281 Record.push_back(VC.VFunc.Offset); 3282 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3283 Stream.EmitRecord(Ty, Record); 3284 } 3285 }; 3286 3287 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3288 FS->type_test_assume_const_vcalls()); 3289 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3290 FS->type_checked_load_const_vcalls()); 3291 } 3292 3293 // Helper to emit a single function summary record. 3294 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3295 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3296 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3297 const Function &F) { 3298 NameVals.push_back(ValueID); 3299 3300 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3301 writeFunctionTypeMetadataRecords(Stream, FS); 3302 3303 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3304 NameVals.push_back(FS->instCount()); 3305 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3306 NameVals.push_back(FS->refs().size()); 3307 3308 for (auto &RI : FS->refs()) 3309 NameVals.push_back(VE.getValueID(RI.getValue())); 3310 3311 bool HasProfileData = F.getEntryCount().hasValue(); 3312 for (auto &ECI : FS->calls()) { 3313 NameVals.push_back(getValueId(ECI.first)); 3314 if (HasProfileData) 3315 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3316 } 3317 3318 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3319 unsigned Code = 3320 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3321 3322 // Emit the finished record. 3323 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3324 NameVals.clear(); 3325 } 3326 3327 // Collect the global value references in the given variable's initializer, 3328 // and emit them in a summary record. 3329 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3330 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3331 unsigned FSModRefsAbbrev) { 3332 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3333 if (!VI || VI.getSummaryList().empty()) { 3334 // Only declarations should not have a summary (a declaration might however 3335 // have a summary if the def was in module level asm). 3336 assert(V.isDeclaration()); 3337 return; 3338 } 3339 auto *Summary = VI.getSummaryList()[0].get(); 3340 NameVals.push_back(VE.getValueID(&V)); 3341 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3342 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3343 3344 unsigned SizeBeforeRefs = NameVals.size(); 3345 for (auto &RI : VS->refs()) 3346 NameVals.push_back(VE.getValueID(RI.getValue())); 3347 // Sort the refs for determinism output, the vector returned by FS->refs() has 3348 // been initialized from a DenseSet. 3349 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3350 3351 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3352 FSModRefsAbbrev); 3353 NameVals.clear(); 3354 } 3355 3356 // Current version for the summary. 3357 // This is bumped whenever we introduce changes in the way some record are 3358 // interpreted, like flags for instance. 3359 static const uint64_t INDEX_VERSION = 4; 3360 3361 /// Emit the per-module summary section alongside the rest of 3362 /// the module's bitcode. 3363 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3364 // By default we compile with ThinLTO if the module has a summary, but the 3365 // client can request full LTO with a module flag. 3366 bool IsThinLTO = true; 3367 if (auto *MD = 3368 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3369 IsThinLTO = MD->getZExtValue(); 3370 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3371 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3372 4); 3373 3374 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3375 3376 if (Index->begin() == Index->end()) { 3377 Stream.ExitBlock(); 3378 return; 3379 } 3380 3381 for (const auto &GVI : valueIds()) { 3382 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3383 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3384 } 3385 3386 // Abbrev for FS_PERMODULE. 3387 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3388 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3394 // numrefs x valueid, n x (valueid) 3395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3397 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3398 3399 // Abbrev for FS_PERMODULE_PROFILE. 3400 Abbv = std::make_shared<BitCodeAbbrev>(); 3401 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3407 // numrefs x valueid, n x (valueid, hotness) 3408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3410 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3411 3412 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3413 Abbv = std::make_shared<BitCodeAbbrev>(); 3414 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3419 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3420 3421 // Abbrev for FS_ALIAS. 3422 Abbv = std::make_shared<BitCodeAbbrev>(); 3423 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3427 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3428 3429 SmallVector<uint64_t, 64> NameVals; 3430 // Iterate over the list of functions instead of the Index to 3431 // ensure the ordering is stable. 3432 for (const Function &F : M) { 3433 // Summary emission does not support anonymous functions, they have to 3434 // renamed using the anonymous function renaming pass. 3435 if (!F.hasName()) 3436 report_fatal_error("Unexpected anonymous function when writing summary"); 3437 3438 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3439 if (!VI || VI.getSummaryList().empty()) { 3440 // Only declarations should not have a summary (a declaration might 3441 // however have a summary if the def was in module level asm). 3442 assert(F.isDeclaration()); 3443 continue; 3444 } 3445 auto *Summary = VI.getSummaryList()[0].get(); 3446 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3447 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3448 } 3449 3450 // Capture references from GlobalVariable initializers, which are outside 3451 // of a function scope. 3452 for (const GlobalVariable &G : M.globals()) 3453 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3454 3455 for (const GlobalAlias &A : M.aliases()) { 3456 auto *Aliasee = A.getBaseObject(); 3457 if (!Aliasee->hasName()) 3458 // Nameless function don't have an entry in the summary, skip it. 3459 continue; 3460 auto AliasId = VE.getValueID(&A); 3461 auto AliaseeId = VE.getValueID(Aliasee); 3462 NameVals.push_back(AliasId); 3463 auto *Summary = Index->getGlobalValueSummary(A); 3464 AliasSummary *AS = cast<AliasSummary>(Summary); 3465 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3466 NameVals.push_back(AliaseeId); 3467 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3468 NameVals.clear(); 3469 } 3470 3471 Stream.ExitBlock(); 3472 } 3473 3474 /// Emit the combined summary section into the combined index file. 3475 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3476 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3477 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3478 3479 for (const auto &GVI : valueIds()) { 3480 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3481 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3482 } 3483 3484 // Abbrev for FS_COMBINED. 3485 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3486 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3493 // numrefs x valueid, n x (valueid) 3494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3496 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3497 3498 // Abbrev for FS_COMBINED_PROFILE. 3499 Abbv = std::make_shared<BitCodeAbbrev>(); 3500 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3507 // numrefs x valueid, n x (valueid, hotness) 3508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3510 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3511 3512 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3513 Abbv = std::make_shared<BitCodeAbbrev>(); 3514 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3520 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3521 3522 // Abbrev for FS_COMBINED_ALIAS. 3523 Abbv = std::make_shared<BitCodeAbbrev>(); 3524 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3529 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3530 3531 // The aliases are emitted as a post-pass, and will point to the value 3532 // id of the aliasee. Save them in a vector for post-processing. 3533 SmallVector<AliasSummary *, 64> Aliases; 3534 3535 // Save the value id for each summary for alias emission. 3536 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3537 3538 SmallVector<uint64_t, 64> NameVals; 3539 3540 // For local linkage, we also emit the original name separately 3541 // immediately after the record. 3542 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3543 if (!GlobalValue::isLocalLinkage(S.linkage())) 3544 return; 3545 NameVals.push_back(S.getOriginalName()); 3546 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3547 NameVals.clear(); 3548 }; 3549 3550 forEachSummary([&](GVInfo I) { 3551 GlobalValueSummary *S = I.second; 3552 assert(S); 3553 3554 auto ValueId = getValueId(I.first); 3555 assert(ValueId); 3556 SummaryToValueIdMap[S] = *ValueId; 3557 3558 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3559 // Will process aliases as a post-pass because the reader wants all 3560 // global to be loaded first. 3561 Aliases.push_back(AS); 3562 return; 3563 } 3564 3565 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3566 NameVals.push_back(*ValueId); 3567 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3568 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3569 for (auto &RI : VS->refs()) { 3570 auto RefValueId = getValueId(RI.getGUID()); 3571 if (!RefValueId) 3572 continue; 3573 NameVals.push_back(*RefValueId); 3574 } 3575 3576 // Emit the finished record. 3577 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3578 FSModRefsAbbrev); 3579 NameVals.clear(); 3580 MaybeEmitOriginalName(*S); 3581 return; 3582 } 3583 3584 auto *FS = cast<FunctionSummary>(S); 3585 writeFunctionTypeMetadataRecords(Stream, FS); 3586 3587 NameVals.push_back(*ValueId); 3588 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3589 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3590 NameVals.push_back(FS->instCount()); 3591 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3592 // Fill in below 3593 NameVals.push_back(0); 3594 3595 unsigned Count = 0; 3596 for (auto &RI : FS->refs()) { 3597 auto RefValueId = getValueId(RI.getGUID()); 3598 if (!RefValueId) 3599 continue; 3600 NameVals.push_back(*RefValueId); 3601 Count++; 3602 } 3603 NameVals[5] = Count; 3604 3605 bool HasProfileData = false; 3606 for (auto &EI : FS->calls()) { 3607 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3608 if (HasProfileData) 3609 break; 3610 } 3611 3612 for (auto &EI : FS->calls()) { 3613 // If this GUID doesn't have a value id, it doesn't have a function 3614 // summary and we don't need to record any calls to it. 3615 GlobalValue::GUID GUID = EI.first.getGUID(); 3616 auto CallValueId = getValueId(GUID); 3617 if (!CallValueId) { 3618 // For SamplePGO, the indirect call targets for local functions will 3619 // have its original name annotated in profile. We try to find the 3620 // corresponding PGOFuncName as the GUID. 3621 GUID = Index.getGUIDFromOriginalID(GUID); 3622 if (GUID == 0) 3623 continue; 3624 CallValueId = getValueId(GUID); 3625 if (!CallValueId) 3626 continue; 3627 } 3628 NameVals.push_back(*CallValueId); 3629 if (HasProfileData) 3630 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3631 } 3632 3633 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3634 unsigned Code = 3635 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3636 3637 // Emit the finished record. 3638 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3639 NameVals.clear(); 3640 MaybeEmitOriginalName(*S); 3641 }); 3642 3643 for (auto *AS : Aliases) { 3644 auto AliasValueId = SummaryToValueIdMap[AS]; 3645 assert(AliasValueId); 3646 NameVals.push_back(AliasValueId); 3647 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3648 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3649 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3650 assert(AliaseeValueId); 3651 NameVals.push_back(AliaseeValueId); 3652 3653 // Emit the finished record. 3654 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3655 NameVals.clear(); 3656 MaybeEmitOriginalName(*AS); 3657 } 3658 3659 if (!Index.cfiFunctionDefs().empty()) { 3660 for (auto &S : Index.cfiFunctionDefs()) { 3661 NameVals.push_back(StrtabBuilder.add(S)); 3662 NameVals.push_back(S.size()); 3663 } 3664 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3665 NameVals.clear(); 3666 } 3667 3668 if (!Index.cfiFunctionDecls().empty()) { 3669 for (auto &S : Index.cfiFunctionDecls()) { 3670 NameVals.push_back(StrtabBuilder.add(S)); 3671 NameVals.push_back(S.size()); 3672 } 3673 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3674 NameVals.clear(); 3675 } 3676 3677 Stream.ExitBlock(); 3678 } 3679 3680 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3681 /// current llvm version, and a record for the epoch number. 3682 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3683 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3684 3685 // Write the "user readable" string identifying the bitcode producer 3686 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3687 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3690 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3691 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3692 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3693 3694 // Write the epoch version 3695 Abbv = std::make_shared<BitCodeAbbrev>(); 3696 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3698 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3699 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3700 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3701 Stream.ExitBlock(); 3702 } 3703 3704 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3705 // Emit the module's hash. 3706 // MODULE_CODE_HASH: [5*i32] 3707 if (GenerateHash) { 3708 uint32_t Vals[5]; 3709 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3710 Buffer.size() - BlockStartPos)); 3711 StringRef Hash = Hasher.result(); 3712 for (int Pos = 0; Pos < 20; Pos += 4) { 3713 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3714 } 3715 3716 // Emit the finished record. 3717 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3718 3719 if (ModHash) 3720 // Save the written hash value. 3721 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3722 } 3723 } 3724 3725 void ModuleBitcodeWriter::write() { 3726 writeIdentificationBlock(Stream); 3727 3728 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3729 size_t BlockStartPos = Buffer.size(); 3730 3731 writeModuleVersion(); 3732 3733 // Emit blockinfo, which defines the standard abbreviations etc. 3734 writeBlockInfo(); 3735 3736 // Emit information about attribute groups. 3737 writeAttributeGroupTable(); 3738 3739 // Emit information about parameter attributes. 3740 writeAttributeTable(); 3741 3742 // Emit information describing all of the types in the module. 3743 writeTypeTable(); 3744 3745 writeComdats(); 3746 3747 // Emit top-level description of module, including target triple, inline asm, 3748 // descriptors for global variables, and function prototype info. 3749 writeModuleInfo(); 3750 3751 // Emit constants. 3752 writeModuleConstants(); 3753 3754 // Emit metadata kind names. 3755 writeModuleMetadataKinds(); 3756 3757 // Emit metadata. 3758 writeModuleMetadata(); 3759 3760 // Emit module-level use-lists. 3761 if (VE.shouldPreserveUseListOrder()) 3762 writeUseListBlock(nullptr); 3763 3764 writeOperandBundleTags(); 3765 writeSyncScopeNames(); 3766 3767 // Emit function bodies. 3768 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3769 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3770 if (!F->isDeclaration()) 3771 writeFunction(*F, FunctionToBitcodeIndex); 3772 3773 // Need to write after the above call to WriteFunction which populates 3774 // the summary information in the index. 3775 if (Index) 3776 writePerModuleGlobalValueSummary(); 3777 3778 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3779 3780 writeModuleHash(BlockStartPos); 3781 3782 Stream.ExitBlock(); 3783 } 3784 3785 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3786 uint32_t &Position) { 3787 support::endian::write32le(&Buffer[Position], Value); 3788 Position += 4; 3789 } 3790 3791 /// If generating a bc file on darwin, we have to emit a 3792 /// header and trailer to make it compatible with the system archiver. To do 3793 /// this we emit the following header, and then emit a trailer that pads the 3794 /// file out to be a multiple of 16 bytes. 3795 /// 3796 /// struct bc_header { 3797 /// uint32_t Magic; // 0x0B17C0DE 3798 /// uint32_t Version; // Version, currently always 0. 3799 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3800 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3801 /// uint32_t CPUType; // CPU specifier. 3802 /// ... potentially more later ... 3803 /// }; 3804 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3805 const Triple &TT) { 3806 unsigned CPUType = ~0U; 3807 3808 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3809 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3810 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3811 // specific constants here because they are implicitly part of the Darwin ABI. 3812 enum { 3813 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3814 DARWIN_CPU_TYPE_X86 = 7, 3815 DARWIN_CPU_TYPE_ARM = 12, 3816 DARWIN_CPU_TYPE_POWERPC = 18 3817 }; 3818 3819 Triple::ArchType Arch = TT.getArch(); 3820 if (Arch == Triple::x86_64) 3821 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3822 else if (Arch == Triple::x86) 3823 CPUType = DARWIN_CPU_TYPE_X86; 3824 else if (Arch == Triple::ppc) 3825 CPUType = DARWIN_CPU_TYPE_POWERPC; 3826 else if (Arch == Triple::ppc64) 3827 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3828 else if (Arch == Triple::arm || Arch == Triple::thumb) 3829 CPUType = DARWIN_CPU_TYPE_ARM; 3830 3831 // Traditional Bitcode starts after header. 3832 assert(Buffer.size() >= BWH_HeaderSize && 3833 "Expected header size to be reserved"); 3834 unsigned BCOffset = BWH_HeaderSize; 3835 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3836 3837 // Write the magic and version. 3838 unsigned Position = 0; 3839 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3840 writeInt32ToBuffer(0, Buffer, Position); // Version. 3841 writeInt32ToBuffer(BCOffset, Buffer, Position); 3842 writeInt32ToBuffer(BCSize, Buffer, Position); 3843 writeInt32ToBuffer(CPUType, Buffer, Position); 3844 3845 // If the file is not a multiple of 16 bytes, insert dummy padding. 3846 while (Buffer.size() & 15) 3847 Buffer.push_back(0); 3848 } 3849 3850 /// Helper to write the header common to all bitcode files. 3851 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3852 // Emit the file header. 3853 Stream.Emit((unsigned)'B', 8); 3854 Stream.Emit((unsigned)'C', 8); 3855 Stream.Emit(0x0, 4); 3856 Stream.Emit(0xC, 4); 3857 Stream.Emit(0xE, 4); 3858 Stream.Emit(0xD, 4); 3859 } 3860 3861 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3862 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3863 writeBitcodeHeader(*Stream); 3864 } 3865 3866 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3867 3868 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3869 Stream->EnterSubblock(Block, 3); 3870 3871 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3872 Abbv->Add(BitCodeAbbrevOp(Record)); 3873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3874 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3875 3876 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3877 3878 Stream->ExitBlock(); 3879 } 3880 3881 void BitcodeWriter::writeSymtab() { 3882 assert(!WroteStrtab && !WroteSymtab); 3883 3884 // If any module has module-level inline asm, we will require a registered asm 3885 // parser for the target so that we can create an accurate symbol table for 3886 // the module. 3887 for (Module *M : Mods) { 3888 if (M->getModuleInlineAsm().empty()) 3889 continue; 3890 3891 std::string Err; 3892 const Triple TT(M->getTargetTriple()); 3893 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 3894 if (!T || !T->hasMCAsmParser()) 3895 return; 3896 } 3897 3898 WroteSymtab = true; 3899 SmallVector<char, 0> Symtab; 3900 // The irsymtab::build function may be unable to create a symbol table if the 3901 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 3902 // table is not required for correctness, but we still want to be able to 3903 // write malformed modules to bitcode files, so swallow the error. 3904 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 3905 consumeError(std::move(E)); 3906 return; 3907 } 3908 3909 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 3910 {Symtab.data(), Symtab.size()}); 3911 } 3912 3913 void BitcodeWriter::writeStrtab() { 3914 assert(!WroteStrtab); 3915 3916 std::vector<char> Strtab; 3917 StrtabBuilder.finalizeInOrder(); 3918 Strtab.resize(StrtabBuilder.getSize()); 3919 StrtabBuilder.write((uint8_t *)Strtab.data()); 3920 3921 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3922 {Strtab.data(), Strtab.size()}); 3923 3924 WroteStrtab = true; 3925 } 3926 3927 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3928 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3929 WroteStrtab = true; 3930 } 3931 3932 void BitcodeWriter::writeModule(const Module *M, 3933 bool ShouldPreserveUseListOrder, 3934 const ModuleSummaryIndex *Index, 3935 bool GenerateHash, ModuleHash *ModHash) { 3936 assert(!WroteStrtab); 3937 3938 // The Mods vector is used by irsymtab::build, which requires non-const 3939 // Modules in case it needs to materialize metadata. But the bitcode writer 3940 // requires that the module is materialized, so we can cast to non-const here, 3941 // after checking that it is in fact materialized. 3942 assert(M->isMaterialized()); 3943 Mods.push_back(const_cast<Module *>(M)); 3944 3945 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3946 ShouldPreserveUseListOrder, Index, 3947 GenerateHash, ModHash); 3948 ModuleWriter.write(); 3949 } 3950 3951 void BitcodeWriter::writeIndex( 3952 const ModuleSummaryIndex *Index, 3953 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3954 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 3955 ModuleToSummariesForIndex); 3956 IndexWriter.write(); 3957 } 3958 3959 /// WriteBitcodeToFile - Write the specified module to the specified output 3960 /// stream. 3961 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3962 bool ShouldPreserveUseListOrder, 3963 const ModuleSummaryIndex *Index, 3964 bool GenerateHash, ModuleHash *ModHash) { 3965 SmallVector<char, 0> Buffer; 3966 Buffer.reserve(256*1024); 3967 3968 // If this is darwin or another generic macho target, reserve space for the 3969 // header. 3970 Triple TT(M->getTargetTriple()); 3971 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3972 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3973 3974 BitcodeWriter Writer(Buffer); 3975 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3976 ModHash); 3977 Writer.writeSymtab(); 3978 Writer.writeStrtab(); 3979 3980 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3981 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3982 3983 // Write the generated bitstream to "Out". 3984 Out.write((char*)&Buffer.front(), Buffer.size()); 3985 } 3986 3987 void IndexBitcodeWriter::write() { 3988 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3989 3990 writeModuleVersion(); 3991 3992 // Write the module paths in the combined index. 3993 writeModStrings(); 3994 3995 // Write the summary combined index records. 3996 writeCombinedGlobalValueSummary(); 3997 3998 Stream.ExitBlock(); 3999 } 4000 4001 // Write the specified module summary index to the given raw output stream, 4002 // where it will be written in a new bitcode block. This is used when 4003 // writing the combined index file for ThinLTO. When writing a subset of the 4004 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4005 void llvm::WriteIndexToFile( 4006 const ModuleSummaryIndex &Index, raw_ostream &Out, 4007 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4008 SmallVector<char, 0> Buffer; 4009 Buffer.reserve(256 * 1024); 4010 4011 BitcodeWriter Writer(Buffer); 4012 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4013 Writer.writeStrtab(); 4014 4015 Out.write((char *)&Buffer.front(), Buffer.size()); 4016 } 4017 4018 /// Class to manage the bitcode writing for a thin link bitcode file. 4019 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4020 /// ModHash is for use in ThinLTO incremental build, generated while writing 4021 /// the module bitcode file. 4022 const ModuleHash *ModHash; 4023 4024 public: 4025 ThinLinkBitcodeWriter(const Module *M, StringTableBuilder &StrtabBuilder, 4026 BitstreamWriter &Stream, 4027 const ModuleSummaryIndex &Index, 4028 const ModuleHash &ModHash) 4029 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4030 /*ShouldPreserveUseListOrder=*/false, &Index), 4031 ModHash(&ModHash) {} 4032 4033 void write(); 4034 4035 private: 4036 void writeSimplifiedModuleInfo(); 4037 }; 4038 4039 // This function writes a simpilified module info for thin link bitcode file. 4040 // It only contains the source file name along with the name(the offset and 4041 // size in strtab) and linkage for global values. For the global value info 4042 // entry, in order to keep linkage at offset 5, there are three zeros used 4043 // as padding. 4044 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4045 SmallVector<unsigned, 64> Vals; 4046 // Emit the module's source file name. 4047 { 4048 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4049 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4050 if (Bits == SE_Char6) 4051 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4052 else if (Bits == SE_Fixed7) 4053 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4054 4055 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4056 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4057 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4059 Abbv->Add(AbbrevOpToUse); 4060 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4061 4062 for (const auto P : M.getSourceFileName()) 4063 Vals.push_back((unsigned char)P); 4064 4065 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4066 Vals.clear(); 4067 } 4068 4069 // Emit the global variable information. 4070 for (const GlobalVariable &GV : M.globals()) { 4071 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4072 Vals.push_back(StrtabBuilder.add(GV.getName())); 4073 Vals.push_back(GV.getName().size()); 4074 Vals.push_back(0); 4075 Vals.push_back(0); 4076 Vals.push_back(0); 4077 Vals.push_back(getEncodedLinkage(GV)); 4078 4079 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4080 Vals.clear(); 4081 } 4082 4083 // Emit the function proto information. 4084 for (const Function &F : M) { 4085 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4086 Vals.push_back(StrtabBuilder.add(F.getName())); 4087 Vals.push_back(F.getName().size()); 4088 Vals.push_back(0); 4089 Vals.push_back(0); 4090 Vals.push_back(0); 4091 Vals.push_back(getEncodedLinkage(F)); 4092 4093 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4094 Vals.clear(); 4095 } 4096 4097 // Emit the alias information. 4098 for (const GlobalAlias &A : M.aliases()) { 4099 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4100 Vals.push_back(StrtabBuilder.add(A.getName())); 4101 Vals.push_back(A.getName().size()); 4102 Vals.push_back(0); 4103 Vals.push_back(0); 4104 Vals.push_back(0); 4105 Vals.push_back(getEncodedLinkage(A)); 4106 4107 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4108 Vals.clear(); 4109 } 4110 4111 // Emit the ifunc information. 4112 for (const GlobalIFunc &I : M.ifuncs()) { 4113 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4114 Vals.push_back(StrtabBuilder.add(I.getName())); 4115 Vals.push_back(I.getName().size()); 4116 Vals.push_back(0); 4117 Vals.push_back(0); 4118 Vals.push_back(0); 4119 Vals.push_back(getEncodedLinkage(I)); 4120 4121 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4122 Vals.clear(); 4123 } 4124 } 4125 4126 void ThinLinkBitcodeWriter::write() { 4127 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4128 4129 writeModuleVersion(); 4130 4131 writeSimplifiedModuleInfo(); 4132 4133 writePerModuleGlobalValueSummary(); 4134 4135 // Write module hash. 4136 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4137 4138 Stream.ExitBlock(); 4139 } 4140 4141 void BitcodeWriter::writeThinLinkBitcode(const Module *M, 4142 const ModuleSummaryIndex &Index, 4143 const ModuleHash &ModHash) { 4144 assert(!WroteStrtab); 4145 4146 // The Mods vector is used by irsymtab::build, which requires non-const 4147 // Modules in case it needs to materialize metadata. But the bitcode writer 4148 // requires that the module is materialized, so we can cast to non-const here, 4149 // after checking that it is in fact materialized. 4150 assert(M->isMaterialized()); 4151 Mods.push_back(const_cast<Module *>(M)); 4152 4153 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4154 ModHash); 4155 ThinLinkWriter.write(); 4156 } 4157 4158 // Write the specified thin link bitcode file to the given raw output stream, 4159 // where it will be written in a new bitcode block. This is used when 4160 // writing the per-module index file for ThinLTO. 4161 void llvm::WriteThinLinkBitcodeToFile(const Module *M, raw_ostream &Out, 4162 const ModuleSummaryIndex &Index, 4163 const ModuleHash &ModHash) { 4164 SmallVector<char, 0> Buffer; 4165 Buffer.reserve(256 * 1024); 4166 4167 BitcodeWriter Writer(Buffer); 4168 Writer.writeThinLinkBitcode(M, Index, ModHash); 4169 Writer.writeSymtab(); 4170 Writer.writeStrtab(); 4171 4172 Out.write((char *)&Buffer.front(), Buffer.size()); 4173 } 4174