1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/Program.h" 34 #include "llvm/Support/SHA1.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cctype> 37 #include <map> 38 using namespace llvm; 39 40 namespace { 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV, 64 FUNCTION_INST_GEP_ABBREV, 65 }; 66 67 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 68 /// file type. 69 class BitcodeWriterBase { 70 protected: 71 /// The stream created and owned by the client. 72 BitstreamWriter &Stream; 73 74 /// Saves the offset of the VSTOffset record that must eventually be 75 /// backpatched with the offset of the actual VST. 76 uint64_t VSTOffsetPlaceholder = 0; 77 78 public: 79 /// Constructs a BitcodeWriterBase object that writes to the provided 80 /// \p Stream. 81 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 82 83 protected: 84 bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; } 85 void writeValueSymbolTableForwardDecl(); 86 void writeBitcodeHeader(); 87 }; 88 89 /// Class to manage the bitcode writing for a module. 90 class ModuleBitcodeWriter : public BitcodeWriterBase { 91 /// Pointer to the buffer allocated by caller for bitcode writing. 92 const SmallVectorImpl<char> &Buffer; 93 94 /// The Module to write to bitcode. 95 const Module &M; 96 97 /// Enumerates ids for all values in the module. 98 ValueEnumerator VE; 99 100 /// Optional per-module index to write for ThinLTO. 101 const ModuleSummaryIndex *Index; 102 103 /// True if a module hash record should be written. 104 bool GenerateHash; 105 106 /// The start bit of the identification block. 107 uint64_t BitcodeStartBit; 108 109 /// Map that holds the correspondence between GUIDs in the summary index, 110 /// that came from indirect call profiles, and a value id generated by this 111 /// class to use in the VST and summary block records. 112 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 113 114 /// Tracks the last value id recorded in the GUIDToValueMap. 115 unsigned GlobalValueId; 116 117 public: 118 /// Constructs a ModuleBitcodeWriter object for the given Module, 119 /// writing to the provided \p Buffer. 120 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 121 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 122 const ModuleSummaryIndex *Index, bool GenerateHash) 123 : BitcodeWriterBase(Stream), Buffer(Buffer), M(*M), 124 VE(*M, ShouldPreserveUseListOrder), Index(Index), 125 GenerateHash(GenerateHash), BitcodeStartBit(Stream.GetCurrentBitNo()) { 126 // Assign ValueIds to any callee values in the index that came from 127 // indirect call profiles and were recorded as a GUID not a Value* 128 // (which would have been assigned an ID by the ValueEnumerator). 129 // The starting ValueId is just after the number of values in the 130 // ValueEnumerator, so that they can be emitted in the VST. 131 GlobalValueId = VE.getValues().size(); 132 if (!Index) 133 return; 134 for (const auto &GUIDSummaryLists : *Index) 135 // Examine all summaries for this GUID. 136 for (auto &Summary : GUIDSummaryLists.second) 137 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 138 // For each call in the function summary, see if the call 139 // is to a GUID (which means it is for an indirect call, 140 // otherwise we would have a Value for it). If so, synthesize 141 // a value id. 142 for (auto &CallEdge : FS->calls()) 143 if (CallEdge.first.isGUID()) 144 assignValueId(CallEdge.first.getGUID()); 145 } 146 147 /// Emit the current module to the bitstream. 148 void write(); 149 150 private: 151 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 152 153 void writeAttributeGroupTable(); 154 void writeAttributeTable(); 155 void writeTypeTable(); 156 void writeComdats(); 157 void writeModuleInfo(); 158 void writeValueAsMetadata(const ValueAsMetadata *MD, 159 SmallVectorImpl<uint64_t> &Record); 160 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 161 unsigned Abbrev); 162 unsigned createDILocationAbbrev(); 163 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 164 unsigned &Abbrev); 165 unsigned createGenericDINodeAbbrev(); 166 void writeGenericDINode(const GenericDINode *N, 167 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 168 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 169 unsigned Abbrev); 170 void writeDIEnumerator(const DIEnumerator *N, 171 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 172 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 173 unsigned Abbrev); 174 void writeDIDerivedType(const DIDerivedType *N, 175 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 176 void writeDICompositeType(const DICompositeType *N, 177 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 178 void writeDISubroutineType(const DISubroutineType *N, 179 SmallVectorImpl<uint64_t> &Record, 180 unsigned Abbrev); 181 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 182 unsigned Abbrev); 183 void writeDICompileUnit(const DICompileUnit *N, 184 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 185 void writeDISubprogram(const DISubprogram *N, 186 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 187 void writeDILexicalBlock(const DILexicalBlock *N, 188 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 189 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 190 SmallVectorImpl<uint64_t> &Record, 191 unsigned Abbrev); 192 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 193 unsigned Abbrev); 194 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 195 unsigned Abbrev); 196 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 199 unsigned Abbrev); 200 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 201 SmallVectorImpl<uint64_t> &Record, 202 unsigned Abbrev); 203 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 204 SmallVectorImpl<uint64_t> &Record, 205 unsigned Abbrev); 206 void writeDIGlobalVariable(const DIGlobalVariable *N, 207 SmallVectorImpl<uint64_t> &Record, 208 unsigned Abbrev); 209 void writeDILocalVariable(const DILocalVariable *N, 210 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 211 void writeDIExpression(const DIExpression *N, 212 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 213 void writeDIObjCProperty(const DIObjCProperty *N, 214 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 215 void writeDIImportedEntity(const DIImportedEntity *N, 216 SmallVectorImpl<uint64_t> &Record, 217 unsigned Abbrev); 218 unsigned createNamedMetadataAbbrev(); 219 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 220 unsigned createMetadataStringsAbbrev(); 221 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 222 SmallVectorImpl<uint64_t> &Record); 223 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 224 SmallVectorImpl<uint64_t> &Record); 225 void writeModuleMetadata(); 226 void writeFunctionMetadata(const Function &F); 227 void writeFunctionMetadataAttachment(const Function &F); 228 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 229 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 230 const GlobalObject &GO); 231 void writeModuleMetadataKinds(); 232 void writeOperandBundleTags(); 233 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 234 void writeModuleConstants(); 235 bool pushValueAndType(const Value *V, unsigned InstID, 236 SmallVectorImpl<unsigned> &Vals); 237 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 238 void pushValue(const Value *V, unsigned InstID, 239 SmallVectorImpl<unsigned> &Vals); 240 void pushValueSigned(const Value *V, unsigned InstID, 241 SmallVectorImpl<uint64_t> &Vals); 242 void writeInstruction(const Instruction &I, unsigned InstID, 243 SmallVectorImpl<unsigned> &Vals); 244 void writeValueSymbolTable( 245 const ValueSymbolTable &VST, bool IsModuleLevel = false, 246 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr); 247 void writeUseList(UseListOrder &&Order); 248 void writeUseListBlock(const Function *F); 249 void 250 writeFunction(const Function &F, 251 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 252 void writeBlockInfo(); 253 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 254 GlobalValueSummary *Summary, 255 unsigned ValueID, 256 unsigned FSCallsAbbrev, 257 unsigned FSCallsProfileAbbrev, 258 const Function &F); 259 void writeModuleLevelReferences(const GlobalVariable &V, 260 SmallVector<uint64_t, 64> &NameVals, 261 unsigned FSModRefsAbbrev); 262 void writePerModuleGlobalValueSummary(); 263 void writeModuleHash(size_t BlockStartPos); 264 265 void assignValueId(GlobalValue::GUID ValGUID) { 266 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 267 } 268 unsigned getValueId(GlobalValue::GUID ValGUID) { 269 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 270 // Expect that any GUID value had a value Id assigned by an 271 // earlier call to assignValueId. 272 assert(VMI != GUIDToValueIdMap.end() && 273 "GUID does not have assigned value Id"); 274 return VMI->second; 275 } 276 // Helper to get the valueId for the type of value recorded in VI. 277 unsigned getValueId(ValueInfo VI) { 278 if (VI.isGUID()) 279 return getValueId(VI.getGUID()); 280 return VE.getValueID(VI.getValue()); 281 } 282 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 283 }; 284 285 /// Class to manage the bitcode writing for a combined index. 286 class IndexBitcodeWriter : public BitcodeWriterBase { 287 /// The combined index to write to bitcode. 288 const ModuleSummaryIndex &Index; 289 290 /// When writing a subset of the index for distributed backends, client 291 /// provides a map of modules to the corresponding GUIDs/summaries to write. 292 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 293 294 /// Map that holds the correspondence between the GUID used in the combined 295 /// index and a value id generated by this class to use in references. 296 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 297 298 /// Tracks the last value id recorded in the GUIDToValueMap. 299 unsigned GlobalValueId = 0; 300 301 public: 302 /// Constructs a IndexBitcodeWriter object for the given combined index, 303 /// writing to the provided \p Buffer. When writing a subset of the index 304 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 305 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 306 const std::map<std::string, GVSummaryMapTy> 307 *ModuleToSummariesForIndex = nullptr) 308 : BitcodeWriterBase(Stream), Index(Index), 309 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 310 // Assign unique value ids to all summaries to be written, for use 311 // in writing out the call graph edges. Save the mapping from GUID 312 // to the new global value id to use when writing those edges, which 313 // are currently saved in the index in terms of GUID. 314 for (const auto &I : *this) 315 GUIDToValueIdMap[I.first] = ++GlobalValueId; 316 } 317 318 /// The below iterator returns the GUID and associated summary. 319 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 320 321 /// Iterator over the value GUID and summaries to be written to bitcode, 322 /// hides the details of whether they are being pulled from the entire 323 /// index or just those in a provided ModuleToSummariesForIndex map. 324 class iterator 325 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 326 GVInfo> { 327 /// Enables access to parent class. 328 const IndexBitcodeWriter &Writer; 329 330 // Iterators used when writing only those summaries in a provided 331 // ModuleToSummariesForIndex map: 332 333 /// Points to the last element in outer ModuleToSummariesForIndex map. 334 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack; 335 /// Iterator on outer ModuleToSummariesForIndex map. 336 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter; 337 /// Iterator on an inner global variable summary map. 338 GVSummaryMapTy::const_iterator ModuleGVSummariesIter; 339 340 // Iterators used when writing all summaries in the index: 341 342 /// Points to the last element in the Index outer GlobalValueMap. 343 const_gvsummary_iterator IndexSummariesBack; 344 /// Iterator on outer GlobalValueMap. 345 const_gvsummary_iterator IndexSummariesIter; 346 /// Iterator on an inner GlobalValueSummaryList. 347 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 348 349 public: 350 /// Construct iterator from parent \p Writer and indicate if we are 351 /// constructing the end iterator. 352 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 353 // Set up the appropriate set of iterators given whether we are writing 354 // the full index or just a subset. 355 // Can't setup the Back or inner iterators if the corresponding map 356 // is empty. This will be handled specially in operator== as well. 357 if (Writer.ModuleToSummariesForIndex && 358 !Writer.ModuleToSummariesForIndex->empty()) { 359 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 360 std::next(ModuleSummariesBack) != 361 Writer.ModuleToSummariesForIndex->end(); 362 ModuleSummariesBack++) 363 ; 364 ModuleSummariesIter = !IsAtEnd 365 ? Writer.ModuleToSummariesForIndex->begin() 366 : ModuleSummariesBack; 367 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 368 : ModuleSummariesBack->second.end(); 369 } else if (!Writer.ModuleToSummariesForIndex && 370 Writer.Index.begin() != Writer.Index.end()) { 371 for (IndexSummariesBack = Writer.Index.begin(); 372 std::next(IndexSummariesBack) != Writer.Index.end(); 373 IndexSummariesBack++) 374 ; 375 IndexSummariesIter = 376 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 377 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 378 : IndexSummariesBack->second.end(); 379 } 380 } 381 382 /// Increment the appropriate set of iterators. 383 iterator &operator++() { 384 // First the inner iterator is incremented, then if it is at the end 385 // and there are more outer iterations to go, the inner is reset to 386 // the start of the next inner list. 387 if (Writer.ModuleToSummariesForIndex) { 388 ++ModuleGVSummariesIter; 389 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 390 ModuleSummariesIter != ModuleSummariesBack) { 391 ++ModuleSummariesIter; 392 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 393 } 394 } else { 395 ++IndexGVSummariesIter; 396 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 397 IndexSummariesIter != IndexSummariesBack) { 398 ++IndexSummariesIter; 399 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 400 } 401 } 402 return *this; 403 } 404 405 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 406 /// outer and inner iterator positions. 407 GVInfo operator*() { 408 if (Writer.ModuleToSummariesForIndex) 409 return std::make_pair(ModuleGVSummariesIter->first, 410 ModuleGVSummariesIter->second); 411 return std::make_pair(IndexSummariesIter->first, 412 IndexGVSummariesIter->get()); 413 } 414 415 /// Checks if the iterators are equal, with special handling for empty 416 /// indexes. 417 bool operator==(const iterator &RHS) const { 418 if (Writer.ModuleToSummariesForIndex) { 419 // First ensure that both are writing the same subset. 420 if (Writer.ModuleToSummariesForIndex != 421 RHS.Writer.ModuleToSummariesForIndex) 422 return false; 423 // Already determined above that maps are the same, so if one is 424 // empty, they both are. 425 if (Writer.ModuleToSummariesForIndex->empty()) 426 return true; 427 // Ensure the ModuleGVSummariesIter are iterating over the same 428 // container before checking them below. 429 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 430 return false; 431 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 432 } 433 // First ensure RHS also writing the full index, and that both are 434 // writing the same full index. 435 if (RHS.Writer.ModuleToSummariesForIndex || 436 &Writer.Index != &RHS.Writer.Index) 437 return false; 438 // Already determined above that maps are the same, so if one is 439 // empty, they both are. 440 if (Writer.Index.begin() == Writer.Index.end()) 441 return true; 442 // Ensure the IndexGVSummariesIter are iterating over the same 443 // container before checking them below. 444 if (IndexSummariesIter != RHS.IndexSummariesIter) 445 return false; 446 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 447 } 448 }; 449 450 /// Obtain the start iterator over the summaries to be written. 451 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 452 /// Obtain the end iterator over the summaries to be written. 453 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 454 455 /// Main entry point for writing a combined index to bitcode. 456 void write(); 457 458 private: 459 void writeIndex(); 460 void writeModStrings(); 461 void writeCombinedValueSymbolTable(); 462 void writeCombinedGlobalValueSummary(); 463 464 /// Indicates whether the provided \p ModulePath should be written into 465 /// the module string table, e.g. if full index written or if it is in 466 /// the provided subset. 467 bool doIncludeModule(StringRef ModulePath) { 468 return !ModuleToSummariesForIndex || 469 ModuleToSummariesForIndex->count(ModulePath); 470 } 471 472 bool hasValueId(GlobalValue::GUID ValGUID) { 473 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 474 return VMI != GUIDToValueIdMap.end(); 475 } 476 unsigned getValueId(GlobalValue::GUID ValGUID) { 477 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 478 // If this GUID doesn't have an entry, assign one. 479 if (VMI == GUIDToValueIdMap.end()) { 480 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 481 return GlobalValueId; 482 } else { 483 return VMI->second; 484 } 485 } 486 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 487 }; 488 } // end anonymous namespace 489 490 static unsigned getEncodedCastOpcode(unsigned Opcode) { 491 switch (Opcode) { 492 default: llvm_unreachable("Unknown cast instruction!"); 493 case Instruction::Trunc : return bitc::CAST_TRUNC; 494 case Instruction::ZExt : return bitc::CAST_ZEXT; 495 case Instruction::SExt : return bitc::CAST_SEXT; 496 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 497 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 498 case Instruction::UIToFP : return bitc::CAST_UITOFP; 499 case Instruction::SIToFP : return bitc::CAST_SITOFP; 500 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 501 case Instruction::FPExt : return bitc::CAST_FPEXT; 502 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 503 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 504 case Instruction::BitCast : return bitc::CAST_BITCAST; 505 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 506 } 507 } 508 509 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 510 switch (Opcode) { 511 default: llvm_unreachable("Unknown binary instruction!"); 512 case Instruction::Add: 513 case Instruction::FAdd: return bitc::BINOP_ADD; 514 case Instruction::Sub: 515 case Instruction::FSub: return bitc::BINOP_SUB; 516 case Instruction::Mul: 517 case Instruction::FMul: return bitc::BINOP_MUL; 518 case Instruction::UDiv: return bitc::BINOP_UDIV; 519 case Instruction::FDiv: 520 case Instruction::SDiv: return bitc::BINOP_SDIV; 521 case Instruction::URem: return bitc::BINOP_UREM; 522 case Instruction::FRem: 523 case Instruction::SRem: return bitc::BINOP_SREM; 524 case Instruction::Shl: return bitc::BINOP_SHL; 525 case Instruction::LShr: return bitc::BINOP_LSHR; 526 case Instruction::AShr: return bitc::BINOP_ASHR; 527 case Instruction::And: return bitc::BINOP_AND; 528 case Instruction::Or: return bitc::BINOP_OR; 529 case Instruction::Xor: return bitc::BINOP_XOR; 530 } 531 } 532 533 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 534 switch (Op) { 535 default: llvm_unreachable("Unknown RMW operation!"); 536 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 537 case AtomicRMWInst::Add: return bitc::RMW_ADD; 538 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 539 case AtomicRMWInst::And: return bitc::RMW_AND; 540 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 541 case AtomicRMWInst::Or: return bitc::RMW_OR; 542 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 543 case AtomicRMWInst::Max: return bitc::RMW_MAX; 544 case AtomicRMWInst::Min: return bitc::RMW_MIN; 545 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 546 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 547 } 548 } 549 550 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 551 switch (Ordering) { 552 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 553 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 554 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 555 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 556 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 557 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 558 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 559 } 560 llvm_unreachable("Invalid ordering"); 561 } 562 563 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 564 switch (SynchScope) { 565 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 566 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 567 } 568 llvm_unreachable("Invalid synch scope"); 569 } 570 571 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 572 StringRef Str, unsigned AbbrevToUse) { 573 SmallVector<unsigned, 64> Vals; 574 575 // Code: [strchar x N] 576 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 577 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 578 AbbrevToUse = 0; 579 Vals.push_back(Str[i]); 580 } 581 582 // Emit the finished record. 583 Stream.EmitRecord(Code, Vals, AbbrevToUse); 584 } 585 586 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 587 switch (Kind) { 588 case Attribute::Alignment: 589 return bitc::ATTR_KIND_ALIGNMENT; 590 case Attribute::AllocSize: 591 return bitc::ATTR_KIND_ALLOC_SIZE; 592 case Attribute::AlwaysInline: 593 return bitc::ATTR_KIND_ALWAYS_INLINE; 594 case Attribute::ArgMemOnly: 595 return bitc::ATTR_KIND_ARGMEMONLY; 596 case Attribute::Builtin: 597 return bitc::ATTR_KIND_BUILTIN; 598 case Attribute::ByVal: 599 return bitc::ATTR_KIND_BY_VAL; 600 case Attribute::Convergent: 601 return bitc::ATTR_KIND_CONVERGENT; 602 case Attribute::InAlloca: 603 return bitc::ATTR_KIND_IN_ALLOCA; 604 case Attribute::Cold: 605 return bitc::ATTR_KIND_COLD; 606 case Attribute::InaccessibleMemOnly: 607 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 608 case Attribute::InaccessibleMemOrArgMemOnly: 609 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 610 case Attribute::InlineHint: 611 return bitc::ATTR_KIND_INLINE_HINT; 612 case Attribute::InReg: 613 return bitc::ATTR_KIND_IN_REG; 614 case Attribute::JumpTable: 615 return bitc::ATTR_KIND_JUMP_TABLE; 616 case Attribute::MinSize: 617 return bitc::ATTR_KIND_MIN_SIZE; 618 case Attribute::Naked: 619 return bitc::ATTR_KIND_NAKED; 620 case Attribute::Nest: 621 return bitc::ATTR_KIND_NEST; 622 case Attribute::NoAlias: 623 return bitc::ATTR_KIND_NO_ALIAS; 624 case Attribute::NoBuiltin: 625 return bitc::ATTR_KIND_NO_BUILTIN; 626 case Attribute::NoCapture: 627 return bitc::ATTR_KIND_NO_CAPTURE; 628 case Attribute::NoDuplicate: 629 return bitc::ATTR_KIND_NO_DUPLICATE; 630 case Attribute::NoImplicitFloat: 631 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 632 case Attribute::NoInline: 633 return bitc::ATTR_KIND_NO_INLINE; 634 case Attribute::NoRecurse: 635 return bitc::ATTR_KIND_NO_RECURSE; 636 case Attribute::NonLazyBind: 637 return bitc::ATTR_KIND_NON_LAZY_BIND; 638 case Attribute::NonNull: 639 return bitc::ATTR_KIND_NON_NULL; 640 case Attribute::Dereferenceable: 641 return bitc::ATTR_KIND_DEREFERENCEABLE; 642 case Attribute::DereferenceableOrNull: 643 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 644 case Attribute::NoRedZone: 645 return bitc::ATTR_KIND_NO_RED_ZONE; 646 case Attribute::NoReturn: 647 return bitc::ATTR_KIND_NO_RETURN; 648 case Attribute::NoUnwind: 649 return bitc::ATTR_KIND_NO_UNWIND; 650 case Attribute::OptimizeForSize: 651 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 652 case Attribute::OptimizeNone: 653 return bitc::ATTR_KIND_OPTIMIZE_NONE; 654 case Attribute::ReadNone: 655 return bitc::ATTR_KIND_READ_NONE; 656 case Attribute::ReadOnly: 657 return bitc::ATTR_KIND_READ_ONLY; 658 case Attribute::Returned: 659 return bitc::ATTR_KIND_RETURNED; 660 case Attribute::ReturnsTwice: 661 return bitc::ATTR_KIND_RETURNS_TWICE; 662 case Attribute::SExt: 663 return bitc::ATTR_KIND_S_EXT; 664 case Attribute::StackAlignment: 665 return bitc::ATTR_KIND_STACK_ALIGNMENT; 666 case Attribute::StackProtect: 667 return bitc::ATTR_KIND_STACK_PROTECT; 668 case Attribute::StackProtectReq: 669 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 670 case Attribute::StackProtectStrong: 671 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 672 case Attribute::SafeStack: 673 return bitc::ATTR_KIND_SAFESTACK; 674 case Attribute::StructRet: 675 return bitc::ATTR_KIND_STRUCT_RET; 676 case Attribute::SanitizeAddress: 677 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 678 case Attribute::SanitizeThread: 679 return bitc::ATTR_KIND_SANITIZE_THREAD; 680 case Attribute::SanitizeMemory: 681 return bitc::ATTR_KIND_SANITIZE_MEMORY; 682 case Attribute::SwiftError: 683 return bitc::ATTR_KIND_SWIFT_ERROR; 684 case Attribute::SwiftSelf: 685 return bitc::ATTR_KIND_SWIFT_SELF; 686 case Attribute::UWTable: 687 return bitc::ATTR_KIND_UW_TABLE; 688 case Attribute::WriteOnly: 689 return bitc::ATTR_KIND_WRITEONLY; 690 case Attribute::ZExt: 691 return bitc::ATTR_KIND_Z_EXT; 692 case Attribute::EndAttrKinds: 693 llvm_unreachable("Can not encode end-attribute kinds marker."); 694 case Attribute::None: 695 llvm_unreachable("Can not encode none-attribute."); 696 } 697 698 llvm_unreachable("Trying to encode unknown attribute"); 699 } 700 701 void ModuleBitcodeWriter::writeAttributeGroupTable() { 702 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 703 if (AttrGrps.empty()) return; 704 705 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 706 707 SmallVector<uint64_t, 64> Record; 708 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 709 AttributeSet AS = AttrGrps[i]; 710 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 711 AttributeSet A = AS.getSlotAttributes(i); 712 713 Record.push_back(VE.getAttributeGroupID(A)); 714 Record.push_back(AS.getSlotIndex(i)); 715 716 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 717 I != E; ++I) { 718 Attribute Attr = *I; 719 if (Attr.isEnumAttribute()) { 720 Record.push_back(0); 721 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 722 } else if (Attr.isIntAttribute()) { 723 Record.push_back(1); 724 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 725 Record.push_back(Attr.getValueAsInt()); 726 } else { 727 StringRef Kind = Attr.getKindAsString(); 728 StringRef Val = Attr.getValueAsString(); 729 730 Record.push_back(Val.empty() ? 3 : 4); 731 Record.append(Kind.begin(), Kind.end()); 732 Record.push_back(0); 733 if (!Val.empty()) { 734 Record.append(Val.begin(), Val.end()); 735 Record.push_back(0); 736 } 737 } 738 } 739 740 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 741 Record.clear(); 742 } 743 } 744 745 Stream.ExitBlock(); 746 } 747 748 void ModuleBitcodeWriter::writeAttributeTable() { 749 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 750 if (Attrs.empty()) return; 751 752 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 753 754 SmallVector<uint64_t, 64> Record; 755 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 756 const AttributeSet &A = Attrs[i]; 757 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 758 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 759 760 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 761 Record.clear(); 762 } 763 764 Stream.ExitBlock(); 765 } 766 767 /// WriteTypeTable - Write out the type table for a module. 768 void ModuleBitcodeWriter::writeTypeTable() { 769 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 770 771 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 772 SmallVector<uint64_t, 64> TypeVals; 773 774 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 775 776 // Abbrev for TYPE_CODE_POINTER. 777 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 778 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 780 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 781 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 782 783 // Abbrev for TYPE_CODE_FUNCTION. 784 Abbv = new BitCodeAbbrev(); 785 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 789 790 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 791 792 // Abbrev for TYPE_CODE_STRUCT_ANON. 793 Abbv = new BitCodeAbbrev(); 794 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 798 799 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 800 801 // Abbrev for TYPE_CODE_STRUCT_NAME. 802 Abbv = new BitCodeAbbrev(); 803 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 806 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 807 808 // Abbrev for TYPE_CODE_STRUCT_NAMED. 809 Abbv = new BitCodeAbbrev(); 810 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 814 815 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 816 817 // Abbrev for TYPE_CODE_ARRAY. 818 Abbv = new BitCodeAbbrev(); 819 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 822 823 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 824 825 // Emit an entry count so the reader can reserve space. 826 TypeVals.push_back(TypeList.size()); 827 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 828 TypeVals.clear(); 829 830 // Loop over all of the types, emitting each in turn. 831 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 832 Type *T = TypeList[i]; 833 int AbbrevToUse = 0; 834 unsigned Code = 0; 835 836 switch (T->getTypeID()) { 837 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 838 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 839 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 840 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 841 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 842 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 843 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 844 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 845 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 846 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 847 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 848 case Type::IntegerTyID: 849 // INTEGER: [width] 850 Code = bitc::TYPE_CODE_INTEGER; 851 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 852 break; 853 case Type::PointerTyID: { 854 PointerType *PTy = cast<PointerType>(T); 855 // POINTER: [pointee type, address space] 856 Code = bitc::TYPE_CODE_POINTER; 857 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 858 unsigned AddressSpace = PTy->getAddressSpace(); 859 TypeVals.push_back(AddressSpace); 860 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 861 break; 862 } 863 case Type::FunctionTyID: { 864 FunctionType *FT = cast<FunctionType>(T); 865 // FUNCTION: [isvararg, retty, paramty x N] 866 Code = bitc::TYPE_CODE_FUNCTION; 867 TypeVals.push_back(FT->isVarArg()); 868 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 869 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 870 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 871 AbbrevToUse = FunctionAbbrev; 872 break; 873 } 874 case Type::StructTyID: { 875 StructType *ST = cast<StructType>(T); 876 // STRUCT: [ispacked, eltty x N] 877 TypeVals.push_back(ST->isPacked()); 878 // Output all of the element types. 879 for (StructType::element_iterator I = ST->element_begin(), 880 E = ST->element_end(); I != E; ++I) 881 TypeVals.push_back(VE.getTypeID(*I)); 882 883 if (ST->isLiteral()) { 884 Code = bitc::TYPE_CODE_STRUCT_ANON; 885 AbbrevToUse = StructAnonAbbrev; 886 } else { 887 if (ST->isOpaque()) { 888 Code = bitc::TYPE_CODE_OPAQUE; 889 } else { 890 Code = bitc::TYPE_CODE_STRUCT_NAMED; 891 AbbrevToUse = StructNamedAbbrev; 892 } 893 894 // Emit the name if it is present. 895 if (!ST->getName().empty()) 896 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 897 StructNameAbbrev); 898 } 899 break; 900 } 901 case Type::ArrayTyID: { 902 ArrayType *AT = cast<ArrayType>(T); 903 // ARRAY: [numelts, eltty] 904 Code = bitc::TYPE_CODE_ARRAY; 905 TypeVals.push_back(AT->getNumElements()); 906 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 907 AbbrevToUse = ArrayAbbrev; 908 break; 909 } 910 case Type::VectorTyID: { 911 VectorType *VT = cast<VectorType>(T); 912 // VECTOR [numelts, eltty] 913 Code = bitc::TYPE_CODE_VECTOR; 914 TypeVals.push_back(VT->getNumElements()); 915 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 916 break; 917 } 918 } 919 920 // Emit the finished record. 921 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 922 TypeVals.clear(); 923 } 924 925 Stream.ExitBlock(); 926 } 927 928 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 929 switch (Linkage) { 930 case GlobalValue::ExternalLinkage: 931 return 0; 932 case GlobalValue::WeakAnyLinkage: 933 return 16; 934 case GlobalValue::AppendingLinkage: 935 return 2; 936 case GlobalValue::InternalLinkage: 937 return 3; 938 case GlobalValue::LinkOnceAnyLinkage: 939 return 18; 940 case GlobalValue::ExternalWeakLinkage: 941 return 7; 942 case GlobalValue::CommonLinkage: 943 return 8; 944 case GlobalValue::PrivateLinkage: 945 return 9; 946 case GlobalValue::WeakODRLinkage: 947 return 17; 948 case GlobalValue::LinkOnceODRLinkage: 949 return 19; 950 case GlobalValue::AvailableExternallyLinkage: 951 return 12; 952 } 953 llvm_unreachable("Invalid linkage"); 954 } 955 956 static unsigned getEncodedLinkage(const GlobalValue &GV) { 957 return getEncodedLinkage(GV.getLinkage()); 958 } 959 960 // Decode the flags for GlobalValue in the summary 961 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 962 uint64_t RawFlags = 0; 963 964 RawFlags |= Flags.NoRename; // bool 965 RawFlags |= (Flags.IsNotViableToInline << 1); 966 RawFlags |= (Flags.HasInlineAsmMaybeReferencingInternal << 2); 967 // Linkage don't need to be remapped at that time for the summary. Any future 968 // change to the getEncodedLinkage() function will need to be taken into 969 // account here as well. 970 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 971 972 return RawFlags; 973 } 974 975 static unsigned getEncodedVisibility(const GlobalValue &GV) { 976 switch (GV.getVisibility()) { 977 case GlobalValue::DefaultVisibility: return 0; 978 case GlobalValue::HiddenVisibility: return 1; 979 case GlobalValue::ProtectedVisibility: return 2; 980 } 981 llvm_unreachable("Invalid visibility"); 982 } 983 984 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 985 switch (GV.getDLLStorageClass()) { 986 case GlobalValue::DefaultStorageClass: return 0; 987 case GlobalValue::DLLImportStorageClass: return 1; 988 case GlobalValue::DLLExportStorageClass: return 2; 989 } 990 llvm_unreachable("Invalid DLL storage class"); 991 } 992 993 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 994 switch (GV.getThreadLocalMode()) { 995 case GlobalVariable::NotThreadLocal: return 0; 996 case GlobalVariable::GeneralDynamicTLSModel: return 1; 997 case GlobalVariable::LocalDynamicTLSModel: return 2; 998 case GlobalVariable::InitialExecTLSModel: return 3; 999 case GlobalVariable::LocalExecTLSModel: return 4; 1000 } 1001 llvm_unreachable("Invalid TLS model"); 1002 } 1003 1004 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1005 switch (C.getSelectionKind()) { 1006 case Comdat::Any: 1007 return bitc::COMDAT_SELECTION_KIND_ANY; 1008 case Comdat::ExactMatch: 1009 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1010 case Comdat::Largest: 1011 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1012 case Comdat::NoDuplicates: 1013 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1014 case Comdat::SameSize: 1015 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1016 } 1017 llvm_unreachable("Invalid selection kind"); 1018 } 1019 1020 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1021 switch (GV.getUnnamedAddr()) { 1022 case GlobalValue::UnnamedAddr::None: return 0; 1023 case GlobalValue::UnnamedAddr::Local: return 2; 1024 case GlobalValue::UnnamedAddr::Global: return 1; 1025 } 1026 llvm_unreachable("Invalid unnamed_addr"); 1027 } 1028 1029 void ModuleBitcodeWriter::writeComdats() { 1030 SmallVector<unsigned, 64> Vals; 1031 for (const Comdat *C : VE.getComdats()) { 1032 // COMDAT: [selection_kind, name] 1033 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1034 size_t Size = C->getName().size(); 1035 assert(isUInt<32>(Size)); 1036 Vals.push_back(Size); 1037 for (char Chr : C->getName()) 1038 Vals.push_back((unsigned char)Chr); 1039 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1040 Vals.clear(); 1041 } 1042 } 1043 1044 /// Write a record that will eventually hold the word offset of the 1045 /// module-level VST. For now the offset is 0, which will be backpatched 1046 /// after the real VST is written. Saves the bit offset to backpatch. 1047 void BitcodeWriterBase::writeValueSymbolTableForwardDecl() { 1048 // Write a placeholder value in for the offset of the real VST, 1049 // which is written after the function blocks so that it can include 1050 // the offset of each function. The placeholder offset will be 1051 // updated when the real VST is written. 1052 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1053 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1054 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1055 // hold the real VST offset. Must use fixed instead of VBR as we don't 1056 // know how many VBR chunks to reserve ahead of time. 1057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1058 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 1059 1060 // Emit the placeholder 1061 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1062 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1063 1064 // Compute and save the bit offset to the placeholder, which will be 1065 // patched when the real VST is written. We can simply subtract the 32-bit 1066 // fixed size from the current bit number to get the location to backpatch. 1067 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1068 } 1069 1070 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1071 1072 /// Determine the encoding to use for the given string name and length. 1073 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1074 bool isChar6 = true; 1075 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1076 if (isChar6) 1077 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1078 if ((unsigned char)*C & 128) 1079 // don't bother scanning the rest. 1080 return SE_Fixed8; 1081 } 1082 if (isChar6) 1083 return SE_Char6; 1084 else 1085 return SE_Fixed7; 1086 } 1087 1088 /// Emit top-level description of module, including target triple, inline asm, 1089 /// descriptors for global variables, and function prototype info. 1090 /// Returns the bit offset to backpatch with the location of the real VST. 1091 void ModuleBitcodeWriter::writeModuleInfo() { 1092 // Emit various pieces of data attached to a module. 1093 if (!M.getTargetTriple().empty()) 1094 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1095 0 /*TODO*/); 1096 const std::string &DL = M.getDataLayoutStr(); 1097 if (!DL.empty()) 1098 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1099 if (!M.getModuleInlineAsm().empty()) 1100 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1101 0 /*TODO*/); 1102 1103 // Emit information about sections and GC, computing how many there are. Also 1104 // compute the maximum alignment value. 1105 std::map<std::string, unsigned> SectionMap; 1106 std::map<std::string, unsigned> GCMap; 1107 unsigned MaxAlignment = 0; 1108 unsigned MaxGlobalType = 0; 1109 for (const GlobalValue &GV : M.globals()) { 1110 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1111 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1112 if (GV.hasSection()) { 1113 // Give section names unique ID's. 1114 unsigned &Entry = SectionMap[GV.getSection()]; 1115 if (!Entry) { 1116 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1117 0 /*TODO*/); 1118 Entry = SectionMap.size(); 1119 } 1120 } 1121 } 1122 for (const Function &F : M) { 1123 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1124 if (F.hasSection()) { 1125 // Give section names unique ID's. 1126 unsigned &Entry = SectionMap[F.getSection()]; 1127 if (!Entry) { 1128 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1129 0 /*TODO*/); 1130 Entry = SectionMap.size(); 1131 } 1132 } 1133 if (F.hasGC()) { 1134 // Same for GC names. 1135 unsigned &Entry = GCMap[F.getGC()]; 1136 if (!Entry) { 1137 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1138 0 /*TODO*/); 1139 Entry = GCMap.size(); 1140 } 1141 } 1142 } 1143 1144 // Emit abbrev for globals, now that we know # sections and max alignment. 1145 unsigned SimpleGVarAbbrev = 0; 1146 if (!M.global_empty()) { 1147 // Add an abbrev for common globals with no visibility or thread localness. 1148 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1149 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1151 Log2_32_Ceil(MaxGlobalType+1))); 1152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1153 //| explicitType << 1 1154 //| constant 1155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1157 if (MaxAlignment == 0) // Alignment. 1158 Abbv->Add(BitCodeAbbrevOp(0)); 1159 else { 1160 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1162 Log2_32_Ceil(MaxEncAlignment+1))); 1163 } 1164 if (SectionMap.empty()) // Section. 1165 Abbv->Add(BitCodeAbbrevOp(0)); 1166 else 1167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1168 Log2_32_Ceil(SectionMap.size()+1))); 1169 // Don't bother emitting vis + thread local. 1170 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 1171 } 1172 1173 // Emit the global variable information. 1174 SmallVector<unsigned, 64> Vals; 1175 for (const GlobalVariable &GV : M.globals()) { 1176 unsigned AbbrevToUse = 0; 1177 1178 // GLOBALVAR: [type, isconst, initid, 1179 // linkage, alignment, section, visibility, threadlocal, 1180 // unnamed_addr, externally_initialized, dllstorageclass, 1181 // comdat] 1182 Vals.push_back(VE.getTypeID(GV.getValueType())); 1183 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1184 Vals.push_back(GV.isDeclaration() ? 0 : 1185 (VE.getValueID(GV.getInitializer()) + 1)); 1186 Vals.push_back(getEncodedLinkage(GV)); 1187 Vals.push_back(Log2_32(GV.getAlignment())+1); 1188 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1189 if (GV.isThreadLocal() || 1190 GV.getVisibility() != GlobalValue::DefaultVisibility || 1191 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1192 GV.isExternallyInitialized() || 1193 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1194 GV.hasComdat()) { 1195 Vals.push_back(getEncodedVisibility(GV)); 1196 Vals.push_back(getEncodedThreadLocalMode(GV)); 1197 Vals.push_back(getEncodedUnnamedAddr(GV)); 1198 Vals.push_back(GV.isExternallyInitialized()); 1199 Vals.push_back(getEncodedDLLStorageClass(GV)); 1200 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1201 } else { 1202 AbbrevToUse = SimpleGVarAbbrev; 1203 } 1204 1205 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1206 Vals.clear(); 1207 } 1208 1209 // Emit the function proto information. 1210 for (const Function &F : M) { 1211 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1212 // section, visibility, gc, unnamed_addr, prologuedata, 1213 // dllstorageclass, comdat, prefixdata, personalityfn] 1214 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1215 Vals.push_back(F.getCallingConv()); 1216 Vals.push_back(F.isDeclaration()); 1217 Vals.push_back(getEncodedLinkage(F)); 1218 Vals.push_back(VE.getAttributeID(F.getAttributes())); 1219 Vals.push_back(Log2_32(F.getAlignment())+1); 1220 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1221 Vals.push_back(getEncodedVisibility(F)); 1222 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1223 Vals.push_back(getEncodedUnnamedAddr(F)); 1224 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1225 : 0); 1226 Vals.push_back(getEncodedDLLStorageClass(F)); 1227 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1228 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1229 : 0); 1230 Vals.push_back( 1231 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1232 1233 unsigned AbbrevToUse = 0; 1234 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1235 Vals.clear(); 1236 } 1237 1238 // Emit the alias information. 1239 for (const GlobalAlias &A : M.aliases()) { 1240 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass, 1241 // threadlocal, unnamed_addr] 1242 Vals.push_back(VE.getTypeID(A.getValueType())); 1243 Vals.push_back(A.getType()->getAddressSpace()); 1244 Vals.push_back(VE.getValueID(A.getAliasee())); 1245 Vals.push_back(getEncodedLinkage(A)); 1246 Vals.push_back(getEncodedVisibility(A)); 1247 Vals.push_back(getEncodedDLLStorageClass(A)); 1248 Vals.push_back(getEncodedThreadLocalMode(A)); 1249 Vals.push_back(getEncodedUnnamedAddr(A)); 1250 unsigned AbbrevToUse = 0; 1251 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1252 Vals.clear(); 1253 } 1254 1255 // Emit the ifunc information. 1256 for (const GlobalIFunc &I : M.ifuncs()) { 1257 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 1258 Vals.push_back(VE.getTypeID(I.getValueType())); 1259 Vals.push_back(I.getType()->getAddressSpace()); 1260 Vals.push_back(VE.getValueID(I.getResolver())); 1261 Vals.push_back(getEncodedLinkage(I)); 1262 Vals.push_back(getEncodedVisibility(I)); 1263 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1264 Vals.clear(); 1265 } 1266 1267 // Emit the module's source file name. 1268 { 1269 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1270 M.getSourceFileName().size()); 1271 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1272 if (Bits == SE_Char6) 1273 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1274 else if (Bits == SE_Fixed7) 1275 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1276 1277 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1278 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1279 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1281 Abbv->Add(AbbrevOpToUse); 1282 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 1283 1284 for (const auto P : M.getSourceFileName()) 1285 Vals.push_back((unsigned char)P); 1286 1287 // Emit the finished record. 1288 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1289 Vals.clear(); 1290 } 1291 1292 // If we have a VST, write the VSTOFFSET record placeholder. 1293 if (M.getValueSymbolTable().empty()) 1294 return; 1295 writeValueSymbolTableForwardDecl(); 1296 } 1297 1298 static uint64_t getOptimizationFlags(const Value *V) { 1299 uint64_t Flags = 0; 1300 1301 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1302 if (OBO->hasNoSignedWrap()) 1303 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1304 if (OBO->hasNoUnsignedWrap()) 1305 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1306 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1307 if (PEO->isExact()) 1308 Flags |= 1 << bitc::PEO_EXACT; 1309 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1310 if (FPMO->hasUnsafeAlgebra()) 1311 Flags |= FastMathFlags::UnsafeAlgebra; 1312 if (FPMO->hasNoNaNs()) 1313 Flags |= FastMathFlags::NoNaNs; 1314 if (FPMO->hasNoInfs()) 1315 Flags |= FastMathFlags::NoInfs; 1316 if (FPMO->hasNoSignedZeros()) 1317 Flags |= FastMathFlags::NoSignedZeros; 1318 if (FPMO->hasAllowReciprocal()) 1319 Flags |= FastMathFlags::AllowReciprocal; 1320 } 1321 1322 return Flags; 1323 } 1324 1325 void ModuleBitcodeWriter::writeValueAsMetadata( 1326 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1327 // Mimic an MDNode with a value as one operand. 1328 Value *V = MD->getValue(); 1329 Record.push_back(VE.getTypeID(V->getType())); 1330 Record.push_back(VE.getValueID(V)); 1331 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1332 Record.clear(); 1333 } 1334 1335 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1336 SmallVectorImpl<uint64_t> &Record, 1337 unsigned Abbrev) { 1338 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1339 Metadata *MD = N->getOperand(i); 1340 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1341 "Unexpected function-local metadata"); 1342 Record.push_back(VE.getMetadataOrNullID(MD)); 1343 } 1344 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1345 : bitc::METADATA_NODE, 1346 Record, Abbrev); 1347 Record.clear(); 1348 } 1349 1350 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1351 // Assume the column is usually under 128, and always output the inlined-at 1352 // location (it's never more expensive than building an array size 1). 1353 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1354 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1360 return Stream.EmitAbbrev(Abbv); 1361 } 1362 1363 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1364 SmallVectorImpl<uint64_t> &Record, 1365 unsigned &Abbrev) { 1366 if (!Abbrev) 1367 Abbrev = createDILocationAbbrev(); 1368 1369 Record.push_back(N->isDistinct()); 1370 Record.push_back(N->getLine()); 1371 Record.push_back(N->getColumn()); 1372 Record.push_back(VE.getMetadataID(N->getScope())); 1373 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1374 1375 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1376 Record.clear(); 1377 } 1378 1379 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1380 // Assume the column is usually under 128, and always output the inlined-at 1381 // location (it's never more expensive than building an array size 1). 1382 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1383 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1390 return Stream.EmitAbbrev(Abbv); 1391 } 1392 1393 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1394 SmallVectorImpl<uint64_t> &Record, 1395 unsigned &Abbrev) { 1396 if (!Abbrev) 1397 Abbrev = createGenericDINodeAbbrev(); 1398 1399 Record.push_back(N->isDistinct()); 1400 Record.push_back(N->getTag()); 1401 Record.push_back(0); // Per-tag version field; unused for now. 1402 1403 for (auto &I : N->operands()) 1404 Record.push_back(VE.getMetadataOrNullID(I)); 1405 1406 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1407 Record.clear(); 1408 } 1409 1410 static uint64_t rotateSign(int64_t I) { 1411 uint64_t U = I; 1412 return I < 0 ? ~(U << 1) : U << 1; 1413 } 1414 1415 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1416 SmallVectorImpl<uint64_t> &Record, 1417 unsigned Abbrev) { 1418 Record.push_back(N->isDistinct()); 1419 Record.push_back(N->getCount()); 1420 Record.push_back(rotateSign(N->getLowerBound())); 1421 1422 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1423 Record.clear(); 1424 } 1425 1426 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1427 SmallVectorImpl<uint64_t> &Record, 1428 unsigned Abbrev) { 1429 Record.push_back(N->isDistinct()); 1430 Record.push_back(rotateSign(N->getValue())); 1431 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1432 1433 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1434 Record.clear(); 1435 } 1436 1437 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1438 SmallVectorImpl<uint64_t> &Record, 1439 unsigned Abbrev) { 1440 Record.push_back(N->isDistinct()); 1441 Record.push_back(N->getTag()); 1442 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1443 Record.push_back(N->getSizeInBits()); 1444 Record.push_back(N->getAlignInBits()); 1445 Record.push_back(N->getEncoding()); 1446 1447 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1448 Record.clear(); 1449 } 1450 1451 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1452 SmallVectorImpl<uint64_t> &Record, 1453 unsigned Abbrev) { 1454 Record.push_back(N->isDistinct()); 1455 Record.push_back(N->getTag()); 1456 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1457 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1458 Record.push_back(N->getLine()); 1459 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1460 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1461 Record.push_back(N->getSizeInBits()); 1462 Record.push_back(N->getAlignInBits()); 1463 Record.push_back(N->getOffsetInBits()); 1464 Record.push_back(N->getFlags()); 1465 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1466 1467 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1468 Record.clear(); 1469 } 1470 1471 void ModuleBitcodeWriter::writeDICompositeType( 1472 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1473 unsigned Abbrev) { 1474 const unsigned IsNotUsedInOldTypeRef = 0x2; 1475 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1476 Record.push_back(N->getTag()); 1477 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1478 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1479 Record.push_back(N->getLine()); 1480 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1481 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1482 Record.push_back(N->getSizeInBits()); 1483 Record.push_back(N->getAlignInBits()); 1484 Record.push_back(N->getOffsetInBits()); 1485 Record.push_back(N->getFlags()); 1486 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1487 Record.push_back(N->getRuntimeLang()); 1488 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1489 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1490 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1491 1492 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1493 Record.clear(); 1494 } 1495 1496 void ModuleBitcodeWriter::writeDISubroutineType( 1497 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1498 unsigned Abbrev) { 1499 const unsigned HasNoOldTypeRefs = 0x2; 1500 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1501 Record.push_back(N->getFlags()); 1502 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1503 Record.push_back(N->getCC()); 1504 1505 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1506 Record.clear(); 1507 } 1508 1509 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1510 SmallVectorImpl<uint64_t> &Record, 1511 unsigned Abbrev) { 1512 Record.push_back(N->isDistinct()); 1513 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1514 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1515 1516 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1517 Record.clear(); 1518 } 1519 1520 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1521 SmallVectorImpl<uint64_t> &Record, 1522 unsigned Abbrev) { 1523 assert(N->isDistinct() && "Expected distinct compile units"); 1524 Record.push_back(/* IsDistinct */ true); 1525 Record.push_back(N->getSourceLanguage()); 1526 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1527 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1528 Record.push_back(N->isOptimized()); 1529 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1530 Record.push_back(N->getRuntimeVersion()); 1531 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1532 Record.push_back(N->getEmissionKind()); 1533 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1534 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1535 Record.push_back(/* subprograms */ 0); 1536 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1537 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1538 Record.push_back(N->getDWOId()); 1539 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1540 Record.push_back(N->getSplitDebugInlining()); 1541 1542 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1543 Record.clear(); 1544 } 1545 1546 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1547 SmallVectorImpl<uint64_t> &Record, 1548 unsigned Abbrev) { 1549 uint64_t HasUnitFlag = 1 << 1; 1550 Record.push_back(N->isDistinct() | HasUnitFlag); 1551 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1552 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1553 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1554 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1555 Record.push_back(N->getLine()); 1556 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1557 Record.push_back(N->isLocalToUnit()); 1558 Record.push_back(N->isDefinition()); 1559 Record.push_back(N->getScopeLine()); 1560 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1561 Record.push_back(N->getVirtuality()); 1562 Record.push_back(N->getVirtualIndex()); 1563 Record.push_back(N->getFlags()); 1564 Record.push_back(N->isOptimized()); 1565 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1566 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1567 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1568 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1569 Record.push_back(N->getThisAdjustment()); 1570 1571 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1572 Record.clear(); 1573 } 1574 1575 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1576 SmallVectorImpl<uint64_t> &Record, 1577 unsigned Abbrev) { 1578 Record.push_back(N->isDistinct()); 1579 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1580 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1581 Record.push_back(N->getLine()); 1582 Record.push_back(N->getColumn()); 1583 1584 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1585 Record.clear(); 1586 } 1587 1588 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1589 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1590 unsigned Abbrev) { 1591 Record.push_back(N->isDistinct()); 1592 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1593 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1594 Record.push_back(N->getDiscriminator()); 1595 1596 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1597 Record.clear(); 1598 } 1599 1600 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1601 SmallVectorImpl<uint64_t> &Record, 1602 unsigned Abbrev) { 1603 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1604 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1605 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1606 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1607 Record.push_back(N->getLine()); 1608 1609 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1610 Record.clear(); 1611 } 1612 1613 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1614 SmallVectorImpl<uint64_t> &Record, 1615 unsigned Abbrev) { 1616 Record.push_back(N->isDistinct()); 1617 Record.push_back(N->getMacinfoType()); 1618 Record.push_back(N->getLine()); 1619 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1620 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1621 1622 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1623 Record.clear(); 1624 } 1625 1626 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1627 SmallVectorImpl<uint64_t> &Record, 1628 unsigned Abbrev) { 1629 Record.push_back(N->isDistinct()); 1630 Record.push_back(N->getMacinfoType()); 1631 Record.push_back(N->getLine()); 1632 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1633 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1634 1635 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1636 Record.clear(); 1637 } 1638 1639 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1640 SmallVectorImpl<uint64_t> &Record, 1641 unsigned Abbrev) { 1642 Record.push_back(N->isDistinct()); 1643 for (auto &I : N->operands()) 1644 Record.push_back(VE.getMetadataOrNullID(I)); 1645 1646 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1647 Record.clear(); 1648 } 1649 1650 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1651 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1652 unsigned Abbrev) { 1653 Record.push_back(N->isDistinct()); 1654 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1655 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1656 1657 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1658 Record.clear(); 1659 } 1660 1661 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1662 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1663 unsigned Abbrev) { 1664 Record.push_back(N->isDistinct()); 1665 Record.push_back(N->getTag()); 1666 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1667 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1668 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1669 1670 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1671 Record.clear(); 1672 } 1673 1674 void ModuleBitcodeWriter::writeDIGlobalVariable( 1675 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1676 unsigned Abbrev) { 1677 Record.push_back(N->isDistinct()); 1678 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1679 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1680 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1681 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1682 Record.push_back(N->getLine()); 1683 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1684 Record.push_back(N->isLocalToUnit()); 1685 Record.push_back(N->isDefinition()); 1686 Record.push_back(VE.getMetadataOrNullID(N->getRawExpr())); 1687 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1688 Record.push_back(N->getAlignInBits()); 1689 1690 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1691 Record.clear(); 1692 } 1693 1694 void ModuleBitcodeWriter::writeDILocalVariable( 1695 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1696 unsigned Abbrev) { 1697 // In order to support all possible bitcode formats in BitcodeReader we need 1698 // to distinguish the following cases: 1699 // 1) Record has no artificial tag (Record[1]), 1700 // has no obsolete inlinedAt field (Record[9]). 1701 // In this case Record size will be 8, HasAlignment flag is false. 1702 // 2) Record has artificial tag (Record[1]), 1703 // has no obsolete inlignedAt field (Record[9]). 1704 // In this case Record size will be 9, HasAlignment flag is false. 1705 // 3) Record has both artificial tag (Record[1]) and 1706 // obsolete inlignedAt field (Record[9]). 1707 // In this case Record size will be 10, HasAlignment flag is false. 1708 // 4) Record has neither artificial tag, nor inlignedAt field, but 1709 // HasAlignment flag is true and Record[8] contains alignment value. 1710 const uint64_t HasAlignmentFlag = 1 << 1; 1711 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1712 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1713 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1714 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1715 Record.push_back(N->getLine()); 1716 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1717 Record.push_back(N->getArg()); 1718 Record.push_back(N->getFlags()); 1719 Record.push_back(N->getAlignInBits()); 1720 1721 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1722 Record.clear(); 1723 } 1724 1725 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1726 SmallVectorImpl<uint64_t> &Record, 1727 unsigned Abbrev) { 1728 Record.reserve(N->getElements().size() + 1); 1729 1730 const uint64_t HasOpFragmentFlag = 1 << 1; 1731 Record.push_back((uint64_t)N->isDistinct() | HasOpFragmentFlag); 1732 Record.append(N->elements_begin(), N->elements_end()); 1733 1734 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1735 Record.clear(); 1736 } 1737 1738 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1739 SmallVectorImpl<uint64_t> &Record, 1740 unsigned Abbrev) { 1741 Record.push_back(N->isDistinct()); 1742 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1743 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1744 Record.push_back(N->getLine()); 1745 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1746 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1747 Record.push_back(N->getAttributes()); 1748 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1749 1750 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1751 Record.clear(); 1752 } 1753 1754 void ModuleBitcodeWriter::writeDIImportedEntity( 1755 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1756 unsigned Abbrev) { 1757 Record.push_back(N->isDistinct()); 1758 Record.push_back(N->getTag()); 1759 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1760 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1761 Record.push_back(N->getLine()); 1762 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1763 1764 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1765 Record.clear(); 1766 } 1767 1768 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1769 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1770 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1773 return Stream.EmitAbbrev(Abbv); 1774 } 1775 1776 void ModuleBitcodeWriter::writeNamedMetadata( 1777 SmallVectorImpl<uint64_t> &Record) { 1778 if (M.named_metadata_empty()) 1779 return; 1780 1781 unsigned Abbrev = createNamedMetadataAbbrev(); 1782 for (const NamedMDNode &NMD : M.named_metadata()) { 1783 // Write name. 1784 StringRef Str = NMD.getName(); 1785 Record.append(Str.bytes_begin(), Str.bytes_end()); 1786 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1787 Record.clear(); 1788 1789 // Write named metadata operands. 1790 for (const MDNode *N : NMD.operands()) 1791 Record.push_back(VE.getMetadataID(N)); 1792 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1793 Record.clear(); 1794 } 1795 } 1796 1797 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1798 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1799 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1803 return Stream.EmitAbbrev(Abbv); 1804 } 1805 1806 /// Write out a record for MDString. 1807 /// 1808 /// All the metadata strings in a metadata block are emitted in a single 1809 /// record. The sizes and strings themselves are shoved into a blob. 1810 void ModuleBitcodeWriter::writeMetadataStrings( 1811 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1812 if (Strings.empty()) 1813 return; 1814 1815 // Start the record with the number of strings. 1816 Record.push_back(bitc::METADATA_STRINGS); 1817 Record.push_back(Strings.size()); 1818 1819 // Emit the sizes of the strings in the blob. 1820 SmallString<256> Blob; 1821 { 1822 BitstreamWriter W(Blob); 1823 for (const Metadata *MD : Strings) 1824 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1825 W.FlushToWord(); 1826 } 1827 1828 // Add the offset to the strings to the record. 1829 Record.push_back(Blob.size()); 1830 1831 // Add the strings to the blob. 1832 for (const Metadata *MD : Strings) 1833 Blob.append(cast<MDString>(MD)->getString()); 1834 1835 // Emit the final record. 1836 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1837 Record.clear(); 1838 } 1839 1840 void ModuleBitcodeWriter::writeMetadataRecords( 1841 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record) { 1842 if (MDs.empty()) 1843 return; 1844 1845 // Initialize MDNode abbreviations. 1846 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1847 #include "llvm/IR/Metadata.def" 1848 1849 for (const Metadata *MD : MDs) { 1850 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1851 assert(N->isResolved() && "Expected forward references to be resolved"); 1852 1853 switch (N->getMetadataID()) { 1854 default: 1855 llvm_unreachable("Invalid MDNode subclass"); 1856 #define HANDLE_MDNODE_LEAF(CLASS) \ 1857 case Metadata::CLASS##Kind: \ 1858 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1859 continue; 1860 #include "llvm/IR/Metadata.def" 1861 } 1862 } 1863 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1864 } 1865 } 1866 1867 void ModuleBitcodeWriter::writeModuleMetadata() { 1868 if (!VE.hasMDs() && M.named_metadata_empty()) 1869 return; 1870 1871 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1872 SmallVector<uint64_t, 64> Record; 1873 writeMetadataStrings(VE.getMDStrings(), Record); 1874 writeMetadataRecords(VE.getNonMDStrings(), Record); 1875 writeNamedMetadata(Record); 1876 1877 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1878 SmallVector<uint64_t, 4> Record; 1879 Record.push_back(VE.getValueID(&GO)); 1880 pushGlobalMetadataAttachment(Record, GO); 1881 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1882 }; 1883 for (const Function &F : M) 1884 if (F.isDeclaration() && F.hasMetadata()) 1885 AddDeclAttachedMetadata(F); 1886 // FIXME: Only store metadata for declarations here, and move data for global 1887 // variable definitions to a separate block (PR28134). 1888 for (const GlobalVariable &GV : M.globals()) 1889 if (GV.hasMetadata()) 1890 AddDeclAttachedMetadata(GV); 1891 1892 Stream.ExitBlock(); 1893 } 1894 1895 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1896 if (!VE.hasMDs()) 1897 return; 1898 1899 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1900 SmallVector<uint64_t, 64> Record; 1901 writeMetadataStrings(VE.getMDStrings(), Record); 1902 writeMetadataRecords(VE.getNonMDStrings(), Record); 1903 Stream.ExitBlock(); 1904 } 1905 1906 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1907 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1908 // [n x [id, mdnode]] 1909 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1910 GO.getAllMetadata(MDs); 1911 for (const auto &I : MDs) { 1912 Record.push_back(I.first); 1913 Record.push_back(VE.getMetadataID(I.second)); 1914 } 1915 } 1916 1917 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1918 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1919 1920 SmallVector<uint64_t, 64> Record; 1921 1922 if (F.hasMetadata()) { 1923 pushGlobalMetadataAttachment(Record, F); 1924 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1925 Record.clear(); 1926 } 1927 1928 // Write metadata attachments 1929 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1930 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1931 for (const BasicBlock &BB : F) 1932 for (const Instruction &I : BB) { 1933 MDs.clear(); 1934 I.getAllMetadataOtherThanDebugLoc(MDs); 1935 1936 // If no metadata, ignore instruction. 1937 if (MDs.empty()) continue; 1938 1939 Record.push_back(VE.getInstructionID(&I)); 1940 1941 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1942 Record.push_back(MDs[i].first); 1943 Record.push_back(VE.getMetadataID(MDs[i].second)); 1944 } 1945 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1946 Record.clear(); 1947 } 1948 1949 Stream.ExitBlock(); 1950 } 1951 1952 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 1953 SmallVector<uint64_t, 64> Record; 1954 1955 // Write metadata kinds 1956 // METADATA_KIND - [n x [id, name]] 1957 SmallVector<StringRef, 8> Names; 1958 M.getMDKindNames(Names); 1959 1960 if (Names.empty()) return; 1961 1962 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1963 1964 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1965 Record.push_back(MDKindID); 1966 StringRef KName = Names[MDKindID]; 1967 Record.append(KName.begin(), KName.end()); 1968 1969 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1970 Record.clear(); 1971 } 1972 1973 Stream.ExitBlock(); 1974 } 1975 1976 void ModuleBitcodeWriter::writeOperandBundleTags() { 1977 // Write metadata kinds 1978 // 1979 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1980 // 1981 // OPERAND_BUNDLE_TAG - [strchr x N] 1982 1983 SmallVector<StringRef, 8> Tags; 1984 M.getOperandBundleTags(Tags); 1985 1986 if (Tags.empty()) 1987 return; 1988 1989 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1990 1991 SmallVector<uint64_t, 64> Record; 1992 1993 for (auto Tag : Tags) { 1994 Record.append(Tag.begin(), Tag.end()); 1995 1996 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 1997 Record.clear(); 1998 } 1999 2000 Stream.ExitBlock(); 2001 } 2002 2003 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2004 if ((int64_t)V >= 0) 2005 Vals.push_back(V << 1); 2006 else 2007 Vals.push_back((-V << 1) | 1); 2008 } 2009 2010 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2011 bool isGlobal) { 2012 if (FirstVal == LastVal) return; 2013 2014 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2015 2016 unsigned AggregateAbbrev = 0; 2017 unsigned String8Abbrev = 0; 2018 unsigned CString7Abbrev = 0; 2019 unsigned CString6Abbrev = 0; 2020 // If this is a constant pool for the module, emit module-specific abbrevs. 2021 if (isGlobal) { 2022 // Abbrev for CST_CODE_AGGREGATE. 2023 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2024 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2027 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 2028 2029 // Abbrev for CST_CODE_STRING. 2030 Abbv = new BitCodeAbbrev(); 2031 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2034 String8Abbrev = Stream.EmitAbbrev(Abbv); 2035 // Abbrev for CST_CODE_CSTRING. 2036 Abbv = new BitCodeAbbrev(); 2037 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2040 CString7Abbrev = Stream.EmitAbbrev(Abbv); 2041 // Abbrev for CST_CODE_CSTRING. 2042 Abbv = new BitCodeAbbrev(); 2043 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2046 CString6Abbrev = Stream.EmitAbbrev(Abbv); 2047 } 2048 2049 SmallVector<uint64_t, 64> Record; 2050 2051 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2052 Type *LastTy = nullptr; 2053 for (unsigned i = FirstVal; i != LastVal; ++i) { 2054 const Value *V = Vals[i].first; 2055 // If we need to switch types, do so now. 2056 if (V->getType() != LastTy) { 2057 LastTy = V->getType(); 2058 Record.push_back(VE.getTypeID(LastTy)); 2059 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2060 CONSTANTS_SETTYPE_ABBREV); 2061 Record.clear(); 2062 } 2063 2064 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2065 Record.push_back(unsigned(IA->hasSideEffects()) | 2066 unsigned(IA->isAlignStack()) << 1 | 2067 unsigned(IA->getDialect()&1) << 2); 2068 2069 // Add the asm string. 2070 const std::string &AsmStr = IA->getAsmString(); 2071 Record.push_back(AsmStr.size()); 2072 Record.append(AsmStr.begin(), AsmStr.end()); 2073 2074 // Add the constraint string. 2075 const std::string &ConstraintStr = IA->getConstraintString(); 2076 Record.push_back(ConstraintStr.size()); 2077 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2078 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2079 Record.clear(); 2080 continue; 2081 } 2082 const Constant *C = cast<Constant>(V); 2083 unsigned Code = -1U; 2084 unsigned AbbrevToUse = 0; 2085 if (C->isNullValue()) { 2086 Code = bitc::CST_CODE_NULL; 2087 } else if (isa<UndefValue>(C)) { 2088 Code = bitc::CST_CODE_UNDEF; 2089 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2090 if (IV->getBitWidth() <= 64) { 2091 uint64_t V = IV->getSExtValue(); 2092 emitSignedInt64(Record, V); 2093 Code = bitc::CST_CODE_INTEGER; 2094 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2095 } else { // Wide integers, > 64 bits in size. 2096 // We have an arbitrary precision integer value to write whose 2097 // bit width is > 64. However, in canonical unsigned integer 2098 // format it is likely that the high bits are going to be zero. 2099 // So, we only write the number of active words. 2100 unsigned NWords = IV->getValue().getActiveWords(); 2101 const uint64_t *RawWords = IV->getValue().getRawData(); 2102 for (unsigned i = 0; i != NWords; ++i) { 2103 emitSignedInt64(Record, RawWords[i]); 2104 } 2105 Code = bitc::CST_CODE_WIDE_INTEGER; 2106 } 2107 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2108 Code = bitc::CST_CODE_FLOAT; 2109 Type *Ty = CFP->getType(); 2110 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2111 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2112 } else if (Ty->isX86_FP80Ty()) { 2113 // api needed to prevent premature destruction 2114 // bits are not in the same order as a normal i80 APInt, compensate. 2115 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2116 const uint64_t *p = api.getRawData(); 2117 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2118 Record.push_back(p[0] & 0xffffLL); 2119 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2120 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2121 const uint64_t *p = api.getRawData(); 2122 Record.push_back(p[0]); 2123 Record.push_back(p[1]); 2124 } else { 2125 assert (0 && "Unknown FP type!"); 2126 } 2127 } else if (isa<ConstantDataSequential>(C) && 2128 cast<ConstantDataSequential>(C)->isString()) { 2129 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2130 // Emit constant strings specially. 2131 unsigned NumElts = Str->getNumElements(); 2132 // If this is a null-terminated string, use the denser CSTRING encoding. 2133 if (Str->isCString()) { 2134 Code = bitc::CST_CODE_CSTRING; 2135 --NumElts; // Don't encode the null, which isn't allowed by char6. 2136 } else { 2137 Code = bitc::CST_CODE_STRING; 2138 AbbrevToUse = String8Abbrev; 2139 } 2140 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2141 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2142 for (unsigned i = 0; i != NumElts; ++i) { 2143 unsigned char V = Str->getElementAsInteger(i); 2144 Record.push_back(V); 2145 isCStr7 &= (V & 128) == 0; 2146 if (isCStrChar6) 2147 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2148 } 2149 2150 if (isCStrChar6) 2151 AbbrevToUse = CString6Abbrev; 2152 else if (isCStr7) 2153 AbbrevToUse = CString7Abbrev; 2154 } else if (const ConstantDataSequential *CDS = 2155 dyn_cast<ConstantDataSequential>(C)) { 2156 Code = bitc::CST_CODE_DATA; 2157 Type *EltTy = CDS->getType()->getElementType(); 2158 if (isa<IntegerType>(EltTy)) { 2159 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2160 Record.push_back(CDS->getElementAsInteger(i)); 2161 } else { 2162 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2163 Record.push_back( 2164 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2165 } 2166 } else if (isa<ConstantAggregate>(C)) { 2167 Code = bitc::CST_CODE_AGGREGATE; 2168 for (const Value *Op : C->operands()) 2169 Record.push_back(VE.getValueID(Op)); 2170 AbbrevToUse = AggregateAbbrev; 2171 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2172 switch (CE->getOpcode()) { 2173 default: 2174 if (Instruction::isCast(CE->getOpcode())) { 2175 Code = bitc::CST_CODE_CE_CAST; 2176 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2177 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2178 Record.push_back(VE.getValueID(C->getOperand(0))); 2179 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2180 } else { 2181 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2182 Code = bitc::CST_CODE_CE_BINOP; 2183 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2184 Record.push_back(VE.getValueID(C->getOperand(0))); 2185 Record.push_back(VE.getValueID(C->getOperand(1))); 2186 uint64_t Flags = getOptimizationFlags(CE); 2187 if (Flags != 0) 2188 Record.push_back(Flags); 2189 } 2190 break; 2191 case Instruction::GetElementPtr: { 2192 Code = bitc::CST_CODE_CE_GEP; 2193 const auto *GO = cast<GEPOperator>(C); 2194 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2195 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2196 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2197 Record.push_back((*Idx << 1) | GO->isInBounds()); 2198 } else if (GO->isInBounds()) 2199 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2200 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2201 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2202 Record.push_back(VE.getValueID(C->getOperand(i))); 2203 } 2204 break; 2205 } 2206 case Instruction::Select: 2207 Code = bitc::CST_CODE_CE_SELECT; 2208 Record.push_back(VE.getValueID(C->getOperand(0))); 2209 Record.push_back(VE.getValueID(C->getOperand(1))); 2210 Record.push_back(VE.getValueID(C->getOperand(2))); 2211 break; 2212 case Instruction::ExtractElement: 2213 Code = bitc::CST_CODE_CE_EXTRACTELT; 2214 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2215 Record.push_back(VE.getValueID(C->getOperand(0))); 2216 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2217 Record.push_back(VE.getValueID(C->getOperand(1))); 2218 break; 2219 case Instruction::InsertElement: 2220 Code = bitc::CST_CODE_CE_INSERTELT; 2221 Record.push_back(VE.getValueID(C->getOperand(0))); 2222 Record.push_back(VE.getValueID(C->getOperand(1))); 2223 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2224 Record.push_back(VE.getValueID(C->getOperand(2))); 2225 break; 2226 case Instruction::ShuffleVector: 2227 // If the return type and argument types are the same, this is a 2228 // standard shufflevector instruction. If the types are different, 2229 // then the shuffle is widening or truncating the input vectors, and 2230 // the argument type must also be encoded. 2231 if (C->getType() == C->getOperand(0)->getType()) { 2232 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2233 } else { 2234 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2235 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2236 } 2237 Record.push_back(VE.getValueID(C->getOperand(0))); 2238 Record.push_back(VE.getValueID(C->getOperand(1))); 2239 Record.push_back(VE.getValueID(C->getOperand(2))); 2240 break; 2241 case Instruction::ICmp: 2242 case Instruction::FCmp: 2243 Code = bitc::CST_CODE_CE_CMP; 2244 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2245 Record.push_back(VE.getValueID(C->getOperand(0))); 2246 Record.push_back(VE.getValueID(C->getOperand(1))); 2247 Record.push_back(CE->getPredicate()); 2248 break; 2249 } 2250 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2251 Code = bitc::CST_CODE_BLOCKADDRESS; 2252 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2253 Record.push_back(VE.getValueID(BA->getFunction())); 2254 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2255 } else { 2256 #ifndef NDEBUG 2257 C->dump(); 2258 #endif 2259 llvm_unreachable("Unknown constant!"); 2260 } 2261 Stream.EmitRecord(Code, Record, AbbrevToUse); 2262 Record.clear(); 2263 } 2264 2265 Stream.ExitBlock(); 2266 } 2267 2268 void ModuleBitcodeWriter::writeModuleConstants() { 2269 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2270 2271 // Find the first constant to emit, which is the first non-globalvalue value. 2272 // We know globalvalues have been emitted by WriteModuleInfo. 2273 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2274 if (!isa<GlobalValue>(Vals[i].first)) { 2275 writeConstants(i, Vals.size(), true); 2276 return; 2277 } 2278 } 2279 } 2280 2281 /// pushValueAndType - The file has to encode both the value and type id for 2282 /// many values, because we need to know what type to create for forward 2283 /// references. However, most operands are not forward references, so this type 2284 /// field is not needed. 2285 /// 2286 /// This function adds V's value ID to Vals. If the value ID is higher than the 2287 /// instruction ID, then it is a forward reference, and it also includes the 2288 /// type ID. The value ID that is written is encoded relative to the InstID. 2289 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2290 SmallVectorImpl<unsigned> &Vals) { 2291 unsigned ValID = VE.getValueID(V); 2292 // Make encoding relative to the InstID. 2293 Vals.push_back(InstID - ValID); 2294 if (ValID >= InstID) { 2295 Vals.push_back(VE.getTypeID(V->getType())); 2296 return true; 2297 } 2298 return false; 2299 } 2300 2301 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2302 unsigned InstID) { 2303 SmallVector<unsigned, 64> Record; 2304 LLVMContext &C = CS.getInstruction()->getContext(); 2305 2306 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2307 const auto &Bundle = CS.getOperandBundleAt(i); 2308 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2309 2310 for (auto &Input : Bundle.Inputs) 2311 pushValueAndType(Input, InstID, Record); 2312 2313 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2314 Record.clear(); 2315 } 2316 } 2317 2318 /// pushValue - Like pushValueAndType, but where the type of the value is 2319 /// omitted (perhaps it was already encoded in an earlier operand). 2320 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2321 SmallVectorImpl<unsigned> &Vals) { 2322 unsigned ValID = VE.getValueID(V); 2323 Vals.push_back(InstID - ValID); 2324 } 2325 2326 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2327 SmallVectorImpl<uint64_t> &Vals) { 2328 unsigned ValID = VE.getValueID(V); 2329 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2330 emitSignedInt64(Vals, diff); 2331 } 2332 2333 /// WriteInstruction - Emit an instruction to the specified stream. 2334 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2335 unsigned InstID, 2336 SmallVectorImpl<unsigned> &Vals) { 2337 unsigned Code = 0; 2338 unsigned AbbrevToUse = 0; 2339 VE.setInstructionID(&I); 2340 switch (I.getOpcode()) { 2341 default: 2342 if (Instruction::isCast(I.getOpcode())) { 2343 Code = bitc::FUNC_CODE_INST_CAST; 2344 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2345 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2346 Vals.push_back(VE.getTypeID(I.getType())); 2347 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2348 } else { 2349 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2350 Code = bitc::FUNC_CODE_INST_BINOP; 2351 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2352 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2353 pushValue(I.getOperand(1), InstID, Vals); 2354 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2355 uint64_t Flags = getOptimizationFlags(&I); 2356 if (Flags != 0) { 2357 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2358 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2359 Vals.push_back(Flags); 2360 } 2361 } 2362 break; 2363 2364 case Instruction::GetElementPtr: { 2365 Code = bitc::FUNC_CODE_INST_GEP; 2366 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2367 auto &GEPInst = cast<GetElementPtrInst>(I); 2368 Vals.push_back(GEPInst.isInBounds()); 2369 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2370 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2371 pushValueAndType(I.getOperand(i), InstID, Vals); 2372 break; 2373 } 2374 case Instruction::ExtractValue: { 2375 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2376 pushValueAndType(I.getOperand(0), InstID, Vals); 2377 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2378 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2379 break; 2380 } 2381 case Instruction::InsertValue: { 2382 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2383 pushValueAndType(I.getOperand(0), InstID, Vals); 2384 pushValueAndType(I.getOperand(1), InstID, Vals); 2385 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2386 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2387 break; 2388 } 2389 case Instruction::Select: 2390 Code = bitc::FUNC_CODE_INST_VSELECT; 2391 pushValueAndType(I.getOperand(1), InstID, Vals); 2392 pushValue(I.getOperand(2), InstID, Vals); 2393 pushValueAndType(I.getOperand(0), InstID, Vals); 2394 break; 2395 case Instruction::ExtractElement: 2396 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2397 pushValueAndType(I.getOperand(0), InstID, Vals); 2398 pushValueAndType(I.getOperand(1), InstID, Vals); 2399 break; 2400 case Instruction::InsertElement: 2401 Code = bitc::FUNC_CODE_INST_INSERTELT; 2402 pushValueAndType(I.getOperand(0), InstID, Vals); 2403 pushValue(I.getOperand(1), InstID, Vals); 2404 pushValueAndType(I.getOperand(2), InstID, Vals); 2405 break; 2406 case Instruction::ShuffleVector: 2407 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2408 pushValueAndType(I.getOperand(0), InstID, Vals); 2409 pushValue(I.getOperand(1), InstID, Vals); 2410 pushValue(I.getOperand(2), InstID, Vals); 2411 break; 2412 case Instruction::ICmp: 2413 case Instruction::FCmp: { 2414 // compare returning Int1Ty or vector of Int1Ty 2415 Code = bitc::FUNC_CODE_INST_CMP2; 2416 pushValueAndType(I.getOperand(0), InstID, Vals); 2417 pushValue(I.getOperand(1), InstID, Vals); 2418 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2419 uint64_t Flags = getOptimizationFlags(&I); 2420 if (Flags != 0) 2421 Vals.push_back(Flags); 2422 break; 2423 } 2424 2425 case Instruction::Ret: 2426 { 2427 Code = bitc::FUNC_CODE_INST_RET; 2428 unsigned NumOperands = I.getNumOperands(); 2429 if (NumOperands == 0) 2430 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2431 else if (NumOperands == 1) { 2432 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2433 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2434 } else { 2435 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2436 pushValueAndType(I.getOperand(i), InstID, Vals); 2437 } 2438 } 2439 break; 2440 case Instruction::Br: 2441 { 2442 Code = bitc::FUNC_CODE_INST_BR; 2443 const BranchInst &II = cast<BranchInst>(I); 2444 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2445 if (II.isConditional()) { 2446 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2447 pushValue(II.getCondition(), InstID, Vals); 2448 } 2449 } 2450 break; 2451 case Instruction::Switch: 2452 { 2453 Code = bitc::FUNC_CODE_INST_SWITCH; 2454 const SwitchInst &SI = cast<SwitchInst>(I); 2455 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2456 pushValue(SI.getCondition(), InstID, Vals); 2457 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2458 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2459 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2460 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2461 } 2462 } 2463 break; 2464 case Instruction::IndirectBr: 2465 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2466 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2467 // Encode the address operand as relative, but not the basic blocks. 2468 pushValue(I.getOperand(0), InstID, Vals); 2469 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2470 Vals.push_back(VE.getValueID(I.getOperand(i))); 2471 break; 2472 2473 case Instruction::Invoke: { 2474 const InvokeInst *II = cast<InvokeInst>(&I); 2475 const Value *Callee = II->getCalledValue(); 2476 FunctionType *FTy = II->getFunctionType(); 2477 2478 if (II->hasOperandBundles()) 2479 writeOperandBundles(II, InstID); 2480 2481 Code = bitc::FUNC_CODE_INST_INVOKE; 2482 2483 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2484 Vals.push_back(II->getCallingConv() | 1 << 13); 2485 Vals.push_back(VE.getValueID(II->getNormalDest())); 2486 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2487 Vals.push_back(VE.getTypeID(FTy)); 2488 pushValueAndType(Callee, InstID, Vals); 2489 2490 // Emit value #'s for the fixed parameters. 2491 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2492 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2493 2494 // Emit type/value pairs for varargs params. 2495 if (FTy->isVarArg()) { 2496 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2497 i != e; ++i) 2498 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2499 } 2500 break; 2501 } 2502 case Instruction::Resume: 2503 Code = bitc::FUNC_CODE_INST_RESUME; 2504 pushValueAndType(I.getOperand(0), InstID, Vals); 2505 break; 2506 case Instruction::CleanupRet: { 2507 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2508 const auto &CRI = cast<CleanupReturnInst>(I); 2509 pushValue(CRI.getCleanupPad(), InstID, Vals); 2510 if (CRI.hasUnwindDest()) 2511 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2512 break; 2513 } 2514 case Instruction::CatchRet: { 2515 Code = bitc::FUNC_CODE_INST_CATCHRET; 2516 const auto &CRI = cast<CatchReturnInst>(I); 2517 pushValue(CRI.getCatchPad(), InstID, Vals); 2518 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2519 break; 2520 } 2521 case Instruction::CleanupPad: 2522 case Instruction::CatchPad: { 2523 const auto &FuncletPad = cast<FuncletPadInst>(I); 2524 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2525 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2526 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2527 2528 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2529 Vals.push_back(NumArgOperands); 2530 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2531 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2532 break; 2533 } 2534 case Instruction::CatchSwitch: { 2535 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2536 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2537 2538 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2539 2540 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2541 Vals.push_back(NumHandlers); 2542 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2543 Vals.push_back(VE.getValueID(CatchPadBB)); 2544 2545 if (CatchSwitch.hasUnwindDest()) 2546 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2547 break; 2548 } 2549 case Instruction::Unreachable: 2550 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2551 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2552 break; 2553 2554 case Instruction::PHI: { 2555 const PHINode &PN = cast<PHINode>(I); 2556 Code = bitc::FUNC_CODE_INST_PHI; 2557 // With the newer instruction encoding, forward references could give 2558 // negative valued IDs. This is most common for PHIs, so we use 2559 // signed VBRs. 2560 SmallVector<uint64_t, 128> Vals64; 2561 Vals64.push_back(VE.getTypeID(PN.getType())); 2562 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2563 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2564 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2565 } 2566 // Emit a Vals64 vector and exit. 2567 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2568 Vals64.clear(); 2569 return; 2570 } 2571 2572 case Instruction::LandingPad: { 2573 const LandingPadInst &LP = cast<LandingPadInst>(I); 2574 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2575 Vals.push_back(VE.getTypeID(LP.getType())); 2576 Vals.push_back(LP.isCleanup()); 2577 Vals.push_back(LP.getNumClauses()); 2578 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2579 if (LP.isCatch(I)) 2580 Vals.push_back(LandingPadInst::Catch); 2581 else 2582 Vals.push_back(LandingPadInst::Filter); 2583 pushValueAndType(LP.getClause(I), InstID, Vals); 2584 } 2585 break; 2586 } 2587 2588 case Instruction::Alloca: { 2589 Code = bitc::FUNC_CODE_INST_ALLOCA; 2590 const AllocaInst &AI = cast<AllocaInst>(I); 2591 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2592 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2593 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2594 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2595 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2596 "not enough bits for maximum alignment"); 2597 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2598 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2599 AlignRecord |= 1 << 6; 2600 AlignRecord |= AI.isSwiftError() << 7; 2601 Vals.push_back(AlignRecord); 2602 break; 2603 } 2604 2605 case Instruction::Load: 2606 if (cast<LoadInst>(I).isAtomic()) { 2607 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2608 pushValueAndType(I.getOperand(0), InstID, Vals); 2609 } else { 2610 Code = bitc::FUNC_CODE_INST_LOAD; 2611 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2612 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2613 } 2614 Vals.push_back(VE.getTypeID(I.getType())); 2615 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2616 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2617 if (cast<LoadInst>(I).isAtomic()) { 2618 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2619 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2620 } 2621 break; 2622 case Instruction::Store: 2623 if (cast<StoreInst>(I).isAtomic()) 2624 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2625 else 2626 Code = bitc::FUNC_CODE_INST_STORE; 2627 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2628 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2629 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2630 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2631 if (cast<StoreInst>(I).isAtomic()) { 2632 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2633 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2634 } 2635 break; 2636 case Instruction::AtomicCmpXchg: 2637 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2638 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2639 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2640 pushValue(I.getOperand(2), InstID, Vals); // newval. 2641 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2642 Vals.push_back( 2643 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2644 Vals.push_back( 2645 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2646 Vals.push_back( 2647 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2648 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2649 break; 2650 case Instruction::AtomicRMW: 2651 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2652 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2653 pushValue(I.getOperand(1), InstID, Vals); // val. 2654 Vals.push_back( 2655 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2656 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2657 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2658 Vals.push_back( 2659 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2660 break; 2661 case Instruction::Fence: 2662 Code = bitc::FUNC_CODE_INST_FENCE; 2663 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2664 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2665 break; 2666 case Instruction::Call: { 2667 const CallInst &CI = cast<CallInst>(I); 2668 FunctionType *FTy = CI.getFunctionType(); 2669 2670 if (CI.hasOperandBundles()) 2671 writeOperandBundles(&CI, InstID); 2672 2673 Code = bitc::FUNC_CODE_INST_CALL; 2674 2675 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2676 2677 unsigned Flags = getOptimizationFlags(&I); 2678 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2679 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2680 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2681 1 << bitc::CALL_EXPLICIT_TYPE | 2682 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2683 unsigned(Flags != 0) << bitc::CALL_FMF); 2684 if (Flags != 0) 2685 Vals.push_back(Flags); 2686 2687 Vals.push_back(VE.getTypeID(FTy)); 2688 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2689 2690 // Emit value #'s for the fixed parameters. 2691 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2692 // Check for labels (can happen with asm labels). 2693 if (FTy->getParamType(i)->isLabelTy()) 2694 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2695 else 2696 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2697 } 2698 2699 // Emit type/value pairs for varargs params. 2700 if (FTy->isVarArg()) { 2701 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2702 i != e; ++i) 2703 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2704 } 2705 break; 2706 } 2707 case Instruction::VAArg: 2708 Code = bitc::FUNC_CODE_INST_VAARG; 2709 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2710 pushValue(I.getOperand(0), InstID, Vals); // valist. 2711 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2712 break; 2713 } 2714 2715 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2716 Vals.clear(); 2717 } 2718 2719 /// Emit names for globals/functions etc. \p IsModuleLevel is true when 2720 /// we are writing the module-level VST, where we are including a function 2721 /// bitcode index and need to backpatch the VST forward declaration record. 2722 void ModuleBitcodeWriter::writeValueSymbolTable( 2723 const ValueSymbolTable &VST, bool IsModuleLevel, 2724 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) { 2725 if (VST.empty()) { 2726 // writeValueSymbolTableForwardDecl should have returned early as 2727 // well. Ensure this handling remains in sync by asserting that 2728 // the placeholder offset is not set. 2729 assert(!IsModuleLevel || !hasVSTOffsetPlaceholder()); 2730 return; 2731 } 2732 2733 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2734 // Get the offset of the VST we are writing, and backpatch it into 2735 // the VST forward declaration record. 2736 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2737 // The BitcodeStartBit was the stream offset of the identification block. 2738 VSTOffset -= bitcodeStartBit(); 2739 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2740 // Note that we add 1 here because the offset is relative to one word 2741 // before the start of the identification block, which was historically 2742 // always the start of the regular bitcode header. 2743 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2744 } 2745 2746 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2747 2748 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2749 // records, which are not used in the per-function VSTs. 2750 unsigned FnEntry8BitAbbrev; 2751 unsigned FnEntry7BitAbbrev; 2752 unsigned FnEntry6BitAbbrev; 2753 unsigned GUIDEntryAbbrev; 2754 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2755 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2756 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2757 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2762 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2763 2764 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2765 Abbv = new BitCodeAbbrev(); 2766 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2771 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2772 2773 // 6-bit char6 VST_CODE_FNENTRY function strings. 2774 Abbv = new BitCodeAbbrev(); 2775 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2780 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2781 2782 // FIXME: Change the name of this record as it is now used by 2783 // the per-module index as well. 2784 Abbv = new BitCodeAbbrev(); 2785 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2788 GUIDEntryAbbrev = Stream.EmitAbbrev(Abbv); 2789 } 2790 2791 // FIXME: Set up the abbrev, we know how many values there are! 2792 // FIXME: We know if the type names can use 7-bit ascii. 2793 SmallVector<uint64_t, 64> NameVals; 2794 2795 for (const ValueName &Name : VST) { 2796 // Figure out the encoding to use for the name. 2797 StringEncoding Bits = 2798 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2799 2800 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2801 NameVals.push_back(VE.getValueID(Name.getValue())); 2802 2803 Function *F = dyn_cast<Function>(Name.getValue()); 2804 if (!F) { 2805 // If value is an alias, need to get the aliased base object to 2806 // see if it is a function. 2807 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2808 if (GA && GA->getBaseObject()) 2809 F = dyn_cast<Function>(GA->getBaseObject()); 2810 } 2811 2812 // VST_CODE_ENTRY: [valueid, namechar x N] 2813 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2814 // VST_CODE_BBENTRY: [bbid, namechar x N] 2815 unsigned Code; 2816 if (isa<BasicBlock>(Name.getValue())) { 2817 Code = bitc::VST_CODE_BBENTRY; 2818 if (Bits == SE_Char6) 2819 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2820 } else if (F && !F->isDeclaration()) { 2821 // Must be the module-level VST, where we pass in the Index and 2822 // have a VSTOffsetPlaceholder. The function-level VST should not 2823 // contain any Function symbols. 2824 assert(FunctionToBitcodeIndex); 2825 assert(hasVSTOffsetPlaceholder()); 2826 2827 // Save the word offset of the function (from the start of the 2828 // actual bitcode written to the stream). 2829 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit(); 2830 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2831 // Note that we add 1 here because the offset is relative to one word 2832 // before the start of the identification block, which was historically 2833 // always the start of the regular bitcode header. 2834 NameVals.push_back(BitcodeIndex / 32 + 1); 2835 2836 Code = bitc::VST_CODE_FNENTRY; 2837 AbbrevToUse = FnEntry8BitAbbrev; 2838 if (Bits == SE_Char6) 2839 AbbrevToUse = FnEntry6BitAbbrev; 2840 else if (Bits == SE_Fixed7) 2841 AbbrevToUse = FnEntry7BitAbbrev; 2842 } else { 2843 Code = bitc::VST_CODE_ENTRY; 2844 if (Bits == SE_Char6) 2845 AbbrevToUse = VST_ENTRY_6_ABBREV; 2846 else if (Bits == SE_Fixed7) 2847 AbbrevToUse = VST_ENTRY_7_ABBREV; 2848 } 2849 2850 for (const auto P : Name.getKey()) 2851 NameVals.push_back((unsigned char)P); 2852 2853 // Emit the finished record. 2854 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2855 NameVals.clear(); 2856 } 2857 // Emit any GUID valueIDs created for indirect call edges into the 2858 // module-level VST. 2859 if (IsModuleLevel && hasVSTOffsetPlaceholder()) 2860 for (const auto &GI : valueIds()) { 2861 NameVals.push_back(GI.second); 2862 NameVals.push_back(GI.first); 2863 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, 2864 GUIDEntryAbbrev); 2865 NameVals.clear(); 2866 } 2867 Stream.ExitBlock(); 2868 } 2869 2870 /// Emit function names and summary offsets for the combined index 2871 /// used by ThinLTO. 2872 void IndexBitcodeWriter::writeCombinedValueSymbolTable() { 2873 assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder"); 2874 // Get the offset of the VST we are writing, and backpatch it into 2875 // the VST forward declaration record. 2876 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2877 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2878 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2879 2880 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2881 2882 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2883 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2886 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2887 2888 SmallVector<uint64_t, 64> NameVals; 2889 for (const auto &GVI : valueIds()) { 2890 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2891 NameVals.push_back(GVI.second); 2892 NameVals.push_back(GVI.first); 2893 2894 // Emit the finished record. 2895 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2896 NameVals.clear(); 2897 } 2898 Stream.ExitBlock(); 2899 } 2900 2901 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2902 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2903 unsigned Code; 2904 if (isa<BasicBlock>(Order.V)) 2905 Code = bitc::USELIST_CODE_BB; 2906 else 2907 Code = bitc::USELIST_CODE_DEFAULT; 2908 2909 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2910 Record.push_back(VE.getValueID(Order.V)); 2911 Stream.EmitRecord(Code, Record); 2912 } 2913 2914 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2915 assert(VE.shouldPreserveUseListOrder() && 2916 "Expected to be preserving use-list order"); 2917 2918 auto hasMore = [&]() { 2919 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2920 }; 2921 if (!hasMore()) 2922 // Nothing to do. 2923 return; 2924 2925 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2926 while (hasMore()) { 2927 writeUseList(std::move(VE.UseListOrders.back())); 2928 VE.UseListOrders.pop_back(); 2929 } 2930 Stream.ExitBlock(); 2931 } 2932 2933 /// Emit a function body to the module stream. 2934 void ModuleBitcodeWriter::writeFunction( 2935 const Function &F, 2936 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2937 // Save the bitcode index of the start of this function block for recording 2938 // in the VST. 2939 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2940 2941 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2942 VE.incorporateFunction(F); 2943 2944 SmallVector<unsigned, 64> Vals; 2945 2946 // Emit the number of basic blocks, so the reader can create them ahead of 2947 // time. 2948 Vals.push_back(VE.getBasicBlocks().size()); 2949 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2950 Vals.clear(); 2951 2952 // If there are function-local constants, emit them now. 2953 unsigned CstStart, CstEnd; 2954 VE.getFunctionConstantRange(CstStart, CstEnd); 2955 writeConstants(CstStart, CstEnd, false); 2956 2957 // If there is function-local metadata, emit it now. 2958 writeFunctionMetadata(F); 2959 2960 // Keep a running idea of what the instruction ID is. 2961 unsigned InstID = CstEnd; 2962 2963 bool NeedsMetadataAttachment = F.hasMetadata(); 2964 2965 DILocation *LastDL = nullptr; 2966 // Finally, emit all the instructions, in order. 2967 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2968 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2969 I != E; ++I) { 2970 writeInstruction(*I, InstID, Vals); 2971 2972 if (!I->getType()->isVoidTy()) 2973 ++InstID; 2974 2975 // If the instruction has metadata, write a metadata attachment later. 2976 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2977 2978 // If the instruction has a debug location, emit it. 2979 DILocation *DL = I->getDebugLoc(); 2980 if (!DL) 2981 continue; 2982 2983 if (DL == LastDL) { 2984 // Just repeat the same debug loc as last time. 2985 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2986 continue; 2987 } 2988 2989 Vals.push_back(DL->getLine()); 2990 Vals.push_back(DL->getColumn()); 2991 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2992 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2993 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2994 Vals.clear(); 2995 2996 LastDL = DL; 2997 } 2998 2999 // Emit names for all the instructions etc. 3000 if (auto *Symtab = F.getValueSymbolTable()) 3001 writeValueSymbolTable(*Symtab); 3002 3003 if (NeedsMetadataAttachment) 3004 writeFunctionMetadataAttachment(F); 3005 if (VE.shouldPreserveUseListOrder()) 3006 writeUseListBlock(&F); 3007 VE.purgeFunction(); 3008 Stream.ExitBlock(); 3009 } 3010 3011 // Emit blockinfo, which defines the standard abbreviations etc. 3012 void ModuleBitcodeWriter::writeBlockInfo() { 3013 // We only want to emit block info records for blocks that have multiple 3014 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3015 // Other blocks can define their abbrevs inline. 3016 Stream.EnterBlockInfoBlock(); 3017 3018 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3019 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3024 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3025 VST_ENTRY_8_ABBREV) 3026 llvm_unreachable("Unexpected abbrev ordering!"); 3027 } 3028 3029 { // 7-bit fixed width VST_CODE_ENTRY strings. 3030 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3031 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3035 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3036 VST_ENTRY_7_ABBREV) 3037 llvm_unreachable("Unexpected abbrev ordering!"); 3038 } 3039 { // 6-bit char6 VST_CODE_ENTRY strings. 3040 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3041 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3045 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3046 VST_ENTRY_6_ABBREV) 3047 llvm_unreachable("Unexpected abbrev ordering!"); 3048 } 3049 { // 6-bit char6 VST_CODE_BBENTRY strings. 3050 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3051 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3055 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3056 VST_BBENTRY_6_ABBREV) 3057 llvm_unreachable("Unexpected abbrev ordering!"); 3058 } 3059 3060 3061 3062 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3063 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3064 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3066 VE.computeBitsRequiredForTypeIndicies())); 3067 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3068 CONSTANTS_SETTYPE_ABBREV) 3069 llvm_unreachable("Unexpected abbrev ordering!"); 3070 } 3071 3072 { // INTEGER abbrev for CONSTANTS_BLOCK. 3073 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3074 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3076 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3077 CONSTANTS_INTEGER_ABBREV) 3078 llvm_unreachable("Unexpected abbrev ordering!"); 3079 } 3080 3081 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3082 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3083 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3086 VE.computeBitsRequiredForTypeIndicies())); 3087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3088 3089 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3090 CONSTANTS_CE_CAST_Abbrev) 3091 llvm_unreachable("Unexpected abbrev ordering!"); 3092 } 3093 { // NULL abbrev for CONSTANTS_BLOCK. 3094 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3095 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3096 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3097 CONSTANTS_NULL_Abbrev) 3098 llvm_unreachable("Unexpected abbrev ordering!"); 3099 } 3100 3101 // FIXME: This should only use space for first class types! 3102 3103 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3104 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3105 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3108 VE.computeBitsRequiredForTypeIndicies())); 3109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3111 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3112 FUNCTION_INST_LOAD_ABBREV) 3113 llvm_unreachable("Unexpected abbrev ordering!"); 3114 } 3115 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3116 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3117 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3121 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3122 FUNCTION_INST_BINOP_ABBREV) 3123 llvm_unreachable("Unexpected abbrev ordering!"); 3124 } 3125 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3126 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3127 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3132 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3133 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3134 llvm_unreachable("Unexpected abbrev ordering!"); 3135 } 3136 { // INST_CAST abbrev for FUNCTION_BLOCK. 3137 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3138 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3141 VE.computeBitsRequiredForTypeIndicies())); 3142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3143 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3144 FUNCTION_INST_CAST_ABBREV) 3145 llvm_unreachable("Unexpected abbrev ordering!"); 3146 } 3147 3148 { // INST_RET abbrev for FUNCTION_BLOCK. 3149 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3150 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3151 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3152 FUNCTION_INST_RET_VOID_ABBREV) 3153 llvm_unreachable("Unexpected abbrev ordering!"); 3154 } 3155 { // INST_RET abbrev for FUNCTION_BLOCK. 3156 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3157 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3159 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3160 FUNCTION_INST_RET_VAL_ABBREV) 3161 llvm_unreachable("Unexpected abbrev ordering!"); 3162 } 3163 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3164 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3165 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3166 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3167 FUNCTION_INST_UNREACHABLE_ABBREV) 3168 llvm_unreachable("Unexpected abbrev ordering!"); 3169 } 3170 { 3171 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3172 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3175 Log2_32_Ceil(VE.getTypes().size() + 1))); 3176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3178 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3179 FUNCTION_INST_GEP_ABBREV) 3180 llvm_unreachable("Unexpected abbrev ordering!"); 3181 } 3182 3183 Stream.ExitBlock(); 3184 } 3185 3186 /// Write the module path strings, currently only used when generating 3187 /// a combined index file. 3188 void IndexBitcodeWriter::writeModStrings() { 3189 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3190 3191 // TODO: See which abbrev sizes we actually need to emit 3192 3193 // 8-bit fixed-width MST_ENTRY strings. 3194 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3195 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3199 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 3200 3201 // 7-bit fixed width MST_ENTRY strings. 3202 Abbv = new BitCodeAbbrev(); 3203 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3207 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 3208 3209 // 6-bit char6 MST_ENTRY strings. 3210 Abbv = new BitCodeAbbrev(); 3211 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3215 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 3216 3217 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3218 Abbv = new BitCodeAbbrev(); 3219 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3225 unsigned AbbrevHash = Stream.EmitAbbrev(Abbv); 3226 3227 SmallVector<unsigned, 64> Vals; 3228 for (const auto &MPSE : Index.modulePaths()) { 3229 if (!doIncludeModule(MPSE.getKey())) 3230 continue; 3231 StringEncoding Bits = 3232 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3233 unsigned AbbrevToUse = Abbrev8Bit; 3234 if (Bits == SE_Char6) 3235 AbbrevToUse = Abbrev6Bit; 3236 else if (Bits == SE_Fixed7) 3237 AbbrevToUse = Abbrev7Bit; 3238 3239 Vals.push_back(MPSE.getValue().first); 3240 3241 for (const auto P : MPSE.getKey()) 3242 Vals.push_back((unsigned char)P); 3243 3244 // Emit the finished record. 3245 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3246 3247 Vals.clear(); 3248 // Emit an optional hash for the module now 3249 auto &Hash = MPSE.getValue().second; 3250 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3251 for (auto Val : Hash) { 3252 if (Val) 3253 AllZero = false; 3254 Vals.push_back(Val); 3255 } 3256 if (!AllZero) { 3257 // Emit the hash record. 3258 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3259 } 3260 3261 Vals.clear(); 3262 } 3263 Stream.ExitBlock(); 3264 } 3265 3266 // Helper to emit a single function summary record. 3267 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3268 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3269 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3270 const Function &F) { 3271 NameVals.push_back(ValueID); 3272 3273 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3274 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3275 NameVals.push_back(FS->instCount()); 3276 NameVals.push_back(FS->refs().size()); 3277 3278 unsigned SizeBeforeRefs = NameVals.size(); 3279 for (auto &RI : FS->refs()) 3280 NameVals.push_back(VE.getValueID(RI.getValue())); 3281 // Sort the refs for determinism output, the vector returned by FS->refs() has 3282 // been initialized from a DenseSet. 3283 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3284 3285 std::vector<FunctionSummary::EdgeTy> Calls = FS->calls(); 3286 std::sort(Calls.begin(), Calls.end(), 3287 [this](const FunctionSummary::EdgeTy &L, 3288 const FunctionSummary::EdgeTy &R) { 3289 return getValueId(L.first) < getValueId(R.first); 3290 }); 3291 bool HasProfileData = F.getEntryCount().hasValue(); 3292 for (auto &ECI : Calls) { 3293 NameVals.push_back(getValueId(ECI.first)); 3294 if (HasProfileData) 3295 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3296 } 3297 3298 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3299 unsigned Code = 3300 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3301 3302 // Emit the finished record. 3303 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3304 NameVals.clear(); 3305 } 3306 3307 // Collect the global value references in the given variable's initializer, 3308 // and emit them in a summary record. 3309 void ModuleBitcodeWriter::writeModuleLevelReferences( 3310 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3311 unsigned FSModRefsAbbrev) { 3312 auto Summaries = 3313 Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName())); 3314 if (Summaries == Index->end()) { 3315 // Only declarations should not have a summary (a declaration might however 3316 // have a summary if the def was in module level asm). 3317 assert(V.isDeclaration()); 3318 return; 3319 } 3320 auto *Summary = Summaries->second.front().get(); 3321 NameVals.push_back(VE.getValueID(&V)); 3322 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3323 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3324 3325 unsigned SizeBeforeRefs = NameVals.size(); 3326 for (auto &RI : VS->refs()) 3327 NameVals.push_back(VE.getValueID(RI.getValue())); 3328 // Sort the refs for determinism output, the vector returned by FS->refs() has 3329 // been initialized from a DenseSet. 3330 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3331 3332 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3333 FSModRefsAbbrev); 3334 NameVals.clear(); 3335 } 3336 3337 // Current version for the summary. 3338 // This is bumped whenever we introduce changes in the way some record are 3339 // interpreted, like flags for instance. 3340 static const uint64_t INDEX_VERSION = 2; 3341 3342 /// Emit the per-module summary section alongside the rest of 3343 /// the module's bitcode. 3344 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3345 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3346 3347 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3348 3349 if (Index->begin() == Index->end()) { 3350 Stream.ExitBlock(); 3351 return; 3352 } 3353 3354 // Abbrev for FS_PERMODULE. 3355 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3356 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3361 // numrefs x valueid, n x (valueid) 3362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3364 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3365 3366 // Abbrev for FS_PERMODULE_PROFILE. 3367 Abbv = new BitCodeAbbrev(); 3368 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3373 // numrefs x valueid, n x (valueid, hotness) 3374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3376 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3377 3378 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3379 Abbv = new BitCodeAbbrev(); 3380 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3385 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3386 3387 // Abbrev for FS_ALIAS. 3388 Abbv = new BitCodeAbbrev(); 3389 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3393 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 3394 3395 SmallVector<uint64_t, 64> NameVals; 3396 // Iterate over the list of functions instead of the Index to 3397 // ensure the ordering is stable. 3398 for (const Function &F : M) { 3399 // Summary emission does not support anonymous functions, they have to 3400 // renamed using the anonymous function renaming pass. 3401 if (!F.hasName()) 3402 report_fatal_error("Unexpected anonymous function when writing summary"); 3403 3404 auto Summaries = 3405 Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName())); 3406 if (Summaries == Index->end()) { 3407 // Only declarations should not have a summary (a declaration might 3408 // however have a summary if the def was in module level asm). 3409 assert(F.isDeclaration()); 3410 continue; 3411 } 3412 auto *Summary = Summaries->second.front().get(); 3413 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3414 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3415 } 3416 3417 // Capture references from GlobalVariable initializers, which are outside 3418 // of a function scope. 3419 for (const GlobalVariable &G : M.globals()) 3420 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3421 3422 for (const GlobalAlias &A : M.aliases()) { 3423 auto *Aliasee = A.getBaseObject(); 3424 if (!Aliasee->hasName()) 3425 // Nameless function don't have an entry in the summary, skip it. 3426 continue; 3427 auto AliasId = VE.getValueID(&A); 3428 auto AliaseeId = VE.getValueID(Aliasee); 3429 NameVals.push_back(AliasId); 3430 auto *Summary = Index->getGlobalValueSummary(A); 3431 AliasSummary *AS = cast<AliasSummary>(Summary); 3432 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3433 NameVals.push_back(AliaseeId); 3434 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3435 NameVals.clear(); 3436 } 3437 3438 Stream.ExitBlock(); 3439 } 3440 3441 /// Emit the combined summary section into the combined index file. 3442 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3443 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3444 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3445 3446 // Abbrev for FS_COMBINED. 3447 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3448 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3454 // numrefs x valueid, n x (valueid) 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3457 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3458 3459 // Abbrev for FS_COMBINED_PROFILE. 3460 Abbv = new BitCodeAbbrev(); 3461 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3467 // numrefs x valueid, n x (valueid, hotness) 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3470 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3471 3472 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3473 Abbv = new BitCodeAbbrev(); 3474 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3480 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3481 3482 // Abbrev for FS_COMBINED_ALIAS. 3483 Abbv = new BitCodeAbbrev(); 3484 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3489 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 3490 3491 // The aliases are emitted as a post-pass, and will point to the value 3492 // id of the aliasee. Save them in a vector for post-processing. 3493 SmallVector<AliasSummary *, 64> Aliases; 3494 3495 // Save the value id for each summary for alias emission. 3496 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3497 3498 SmallVector<uint64_t, 64> NameVals; 3499 3500 // For local linkage, we also emit the original name separately 3501 // immediately after the record. 3502 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3503 if (!GlobalValue::isLocalLinkage(S.linkage())) 3504 return; 3505 NameVals.push_back(S.getOriginalName()); 3506 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3507 NameVals.clear(); 3508 }; 3509 3510 for (const auto &I : *this) { 3511 GlobalValueSummary *S = I.second; 3512 assert(S); 3513 3514 assert(hasValueId(I.first)); 3515 unsigned ValueId = getValueId(I.first); 3516 SummaryToValueIdMap[S] = ValueId; 3517 3518 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3519 // Will process aliases as a post-pass because the reader wants all 3520 // global to be loaded first. 3521 Aliases.push_back(AS); 3522 continue; 3523 } 3524 3525 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3526 NameVals.push_back(ValueId); 3527 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3528 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3529 for (auto &RI : VS->refs()) { 3530 NameVals.push_back(getValueId(RI.getGUID())); 3531 } 3532 3533 // Emit the finished record. 3534 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3535 FSModRefsAbbrev); 3536 NameVals.clear(); 3537 MaybeEmitOriginalName(*S); 3538 continue; 3539 } 3540 3541 auto *FS = cast<FunctionSummary>(S); 3542 NameVals.push_back(ValueId); 3543 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3544 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3545 NameVals.push_back(FS->instCount()); 3546 NameVals.push_back(FS->refs().size()); 3547 3548 for (auto &RI : FS->refs()) { 3549 NameVals.push_back(getValueId(RI.getGUID())); 3550 } 3551 3552 bool HasProfileData = false; 3553 for (auto &EI : FS->calls()) { 3554 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3555 if (HasProfileData) 3556 break; 3557 } 3558 3559 for (auto &EI : FS->calls()) { 3560 // If this GUID doesn't have a value id, it doesn't have a function 3561 // summary and we don't need to record any calls to it. 3562 if (!hasValueId(EI.first.getGUID())) 3563 continue; 3564 NameVals.push_back(getValueId(EI.first.getGUID())); 3565 if (HasProfileData) 3566 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3567 } 3568 3569 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3570 unsigned Code = 3571 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3572 3573 // Emit the finished record. 3574 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3575 NameVals.clear(); 3576 MaybeEmitOriginalName(*S); 3577 } 3578 3579 for (auto *AS : Aliases) { 3580 auto AliasValueId = SummaryToValueIdMap[AS]; 3581 assert(AliasValueId); 3582 NameVals.push_back(AliasValueId); 3583 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3584 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3585 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3586 assert(AliaseeValueId); 3587 NameVals.push_back(AliaseeValueId); 3588 3589 // Emit the finished record. 3590 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3591 NameVals.clear(); 3592 MaybeEmitOriginalName(*AS); 3593 } 3594 3595 Stream.ExitBlock(); 3596 } 3597 3598 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3599 /// current llvm version, and a record for the epoch number. 3600 void writeIdentificationBlock(BitstreamWriter &Stream) { 3601 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3602 3603 // Write the "user readable" string identifying the bitcode producer 3604 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3605 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3608 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3609 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3610 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3611 3612 // Write the epoch version 3613 Abbv = new BitCodeAbbrev(); 3614 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3616 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3617 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3618 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3619 Stream.ExitBlock(); 3620 } 3621 3622 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3623 // Emit the module's hash. 3624 // MODULE_CODE_HASH: [5*i32] 3625 SHA1 Hasher; 3626 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3627 Buffer.size() - BlockStartPos)); 3628 StringRef Hash = Hasher.result(); 3629 uint32_t Vals[5]; 3630 for (int Pos = 0; Pos < 20; Pos += 4) { 3631 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3632 } 3633 3634 // Emit the finished record. 3635 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3636 } 3637 3638 void ModuleBitcodeWriter::write() { 3639 writeIdentificationBlock(Stream); 3640 3641 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3642 size_t BlockStartPos = Buffer.size(); 3643 3644 SmallVector<unsigned, 1> Vals; 3645 unsigned CurVersion = 1; 3646 Vals.push_back(CurVersion); 3647 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3648 3649 // Emit blockinfo, which defines the standard abbreviations etc. 3650 writeBlockInfo(); 3651 3652 // Emit information about attribute groups. 3653 writeAttributeGroupTable(); 3654 3655 // Emit information about parameter attributes. 3656 writeAttributeTable(); 3657 3658 // Emit information describing all of the types in the module. 3659 writeTypeTable(); 3660 3661 writeComdats(); 3662 3663 // Emit top-level description of module, including target triple, inline asm, 3664 // descriptors for global variables, and function prototype info. 3665 writeModuleInfo(); 3666 3667 // Emit constants. 3668 writeModuleConstants(); 3669 3670 // Emit metadata kind names. 3671 writeModuleMetadataKinds(); 3672 3673 // Emit metadata. 3674 writeModuleMetadata(); 3675 3676 // Emit module-level use-lists. 3677 if (VE.shouldPreserveUseListOrder()) 3678 writeUseListBlock(nullptr); 3679 3680 writeOperandBundleTags(); 3681 3682 // Emit function bodies. 3683 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3684 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3685 if (!F->isDeclaration()) 3686 writeFunction(*F, FunctionToBitcodeIndex); 3687 3688 // Need to write after the above call to WriteFunction which populates 3689 // the summary information in the index. 3690 if (Index) 3691 writePerModuleGlobalValueSummary(); 3692 3693 writeValueSymbolTable(M.getValueSymbolTable(), 3694 /* IsModuleLevel */ true, &FunctionToBitcodeIndex); 3695 3696 if (GenerateHash) { 3697 writeModuleHash(BlockStartPos); 3698 } 3699 3700 Stream.ExitBlock(); 3701 } 3702 3703 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3704 uint32_t &Position) { 3705 support::endian::write32le(&Buffer[Position], Value); 3706 Position += 4; 3707 } 3708 3709 /// If generating a bc file on darwin, we have to emit a 3710 /// header and trailer to make it compatible with the system archiver. To do 3711 /// this we emit the following header, and then emit a trailer that pads the 3712 /// file out to be a multiple of 16 bytes. 3713 /// 3714 /// struct bc_header { 3715 /// uint32_t Magic; // 0x0B17C0DE 3716 /// uint32_t Version; // Version, currently always 0. 3717 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3718 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3719 /// uint32_t CPUType; // CPU specifier. 3720 /// ... potentially more later ... 3721 /// }; 3722 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3723 const Triple &TT) { 3724 unsigned CPUType = ~0U; 3725 3726 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3727 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3728 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3729 // specific constants here because they are implicitly part of the Darwin ABI. 3730 enum { 3731 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3732 DARWIN_CPU_TYPE_X86 = 7, 3733 DARWIN_CPU_TYPE_ARM = 12, 3734 DARWIN_CPU_TYPE_POWERPC = 18 3735 }; 3736 3737 Triple::ArchType Arch = TT.getArch(); 3738 if (Arch == Triple::x86_64) 3739 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3740 else if (Arch == Triple::x86) 3741 CPUType = DARWIN_CPU_TYPE_X86; 3742 else if (Arch == Triple::ppc) 3743 CPUType = DARWIN_CPU_TYPE_POWERPC; 3744 else if (Arch == Triple::ppc64) 3745 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3746 else if (Arch == Triple::arm || Arch == Triple::thumb) 3747 CPUType = DARWIN_CPU_TYPE_ARM; 3748 3749 // Traditional Bitcode starts after header. 3750 assert(Buffer.size() >= BWH_HeaderSize && 3751 "Expected header size to be reserved"); 3752 unsigned BCOffset = BWH_HeaderSize; 3753 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3754 3755 // Write the magic and version. 3756 unsigned Position = 0; 3757 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3758 writeInt32ToBuffer(0, Buffer, Position); // Version. 3759 writeInt32ToBuffer(BCOffset, Buffer, Position); 3760 writeInt32ToBuffer(BCSize, Buffer, Position); 3761 writeInt32ToBuffer(CPUType, Buffer, Position); 3762 3763 // If the file is not a multiple of 16 bytes, insert dummy padding. 3764 while (Buffer.size() & 15) 3765 Buffer.push_back(0); 3766 } 3767 3768 /// Helper to write the header common to all bitcode files. 3769 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3770 // Emit the file header. 3771 Stream.Emit((unsigned)'B', 8); 3772 Stream.Emit((unsigned)'C', 8); 3773 Stream.Emit(0x0, 4); 3774 Stream.Emit(0xC, 4); 3775 Stream.Emit(0xE, 4); 3776 Stream.Emit(0xD, 4); 3777 } 3778 3779 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3780 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3781 writeBitcodeHeader(*Stream); 3782 } 3783 3784 BitcodeWriter::~BitcodeWriter() = default; 3785 3786 void BitcodeWriter::writeModule(const Module *M, 3787 bool ShouldPreserveUseListOrder, 3788 const ModuleSummaryIndex *Index, 3789 bool GenerateHash) { 3790 ModuleBitcodeWriter ModuleWriter( 3791 M, Buffer, *Stream, ShouldPreserveUseListOrder, Index, GenerateHash); 3792 ModuleWriter.write(); 3793 } 3794 3795 /// WriteBitcodeToFile - Write the specified module to the specified output 3796 /// stream. 3797 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3798 bool ShouldPreserveUseListOrder, 3799 const ModuleSummaryIndex *Index, 3800 bool GenerateHash) { 3801 SmallVector<char, 0> Buffer; 3802 Buffer.reserve(256*1024); 3803 3804 // If this is darwin or another generic macho target, reserve space for the 3805 // header. 3806 Triple TT(M->getTargetTriple()); 3807 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3808 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3809 3810 BitcodeWriter Writer(Buffer); 3811 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash); 3812 3813 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3814 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3815 3816 // Write the generated bitstream to "Out". 3817 Out.write((char*)&Buffer.front(), Buffer.size()); 3818 } 3819 3820 void IndexBitcodeWriter::write() { 3821 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3822 3823 SmallVector<unsigned, 1> Vals; 3824 unsigned CurVersion = 1; 3825 Vals.push_back(CurVersion); 3826 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3827 3828 // If we have a VST, write the VSTOFFSET record placeholder. 3829 writeValueSymbolTableForwardDecl(); 3830 3831 // Write the module paths in the combined index. 3832 writeModStrings(); 3833 3834 // Write the summary combined index records. 3835 writeCombinedGlobalValueSummary(); 3836 3837 // Need a special VST writer for the combined index (we don't have a 3838 // real VST and real values when this is invoked). 3839 writeCombinedValueSymbolTable(); 3840 3841 Stream.ExitBlock(); 3842 } 3843 3844 // Write the specified module summary index to the given raw output stream, 3845 // where it will be written in a new bitcode block. This is used when 3846 // writing the combined index file for ThinLTO. When writing a subset of the 3847 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3848 void llvm::WriteIndexToFile( 3849 const ModuleSummaryIndex &Index, raw_ostream &Out, 3850 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3851 SmallVector<char, 0> Buffer; 3852 Buffer.reserve(256 * 1024); 3853 3854 BitstreamWriter Stream(Buffer); 3855 writeBitcodeHeader(Stream); 3856 3857 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 3858 IndexWriter.write(); 3859 3860 Out.write((char *)&Buffer.front(), Buffer.size()); 3861 } 3862