1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/System/Program.h" 30 using namespace llvm; 31 32 /// These are manifest constants used by the bitcode writer. They do not need to 33 /// be kept in sync with the reader, but need to be consistent within this file. 34 enum { 35 CurVersion = 0, 36 37 // VALUE_SYMTAB_BLOCK abbrev id's. 38 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 39 VST_ENTRY_7_ABBREV, 40 VST_ENTRY_6_ABBREV, 41 VST_BBENTRY_6_ABBREV, 42 43 // CONSTANTS_BLOCK abbrev id's. 44 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 45 CONSTANTS_INTEGER_ABBREV, 46 CONSTANTS_CE_CAST_Abbrev, 47 CONSTANTS_NULL_Abbrev, 48 49 // FUNCTION_BLOCK abbrev id's. 50 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 FUNCTION_INST_BINOP_ABBREV, 52 FUNCTION_INST_BINOP_FLAGS_ABBREV, 53 FUNCTION_INST_CAST_ABBREV, 54 FUNCTION_INST_RET_VOID_ABBREV, 55 FUNCTION_INST_RET_VAL_ABBREV, 56 FUNCTION_INST_UNREACHABLE_ABBREV 57 }; 58 59 60 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 61 switch (Opcode) { 62 default: llvm_unreachable("Unknown cast instruction!"); 63 case Instruction::Trunc : return bitc::CAST_TRUNC; 64 case Instruction::ZExt : return bitc::CAST_ZEXT; 65 case Instruction::SExt : return bitc::CAST_SEXT; 66 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 67 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 68 case Instruction::UIToFP : return bitc::CAST_UITOFP; 69 case Instruction::SIToFP : return bitc::CAST_SITOFP; 70 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 71 case Instruction::FPExt : return bitc::CAST_FPEXT; 72 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 73 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 74 case Instruction::BitCast : return bitc::CAST_BITCAST; 75 } 76 } 77 78 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 79 switch (Opcode) { 80 default: llvm_unreachable("Unknown binary instruction!"); 81 case Instruction::Add: 82 case Instruction::FAdd: return bitc::BINOP_ADD; 83 case Instruction::Sub: 84 case Instruction::FSub: return bitc::BINOP_SUB; 85 case Instruction::Mul: 86 case Instruction::FMul: return bitc::BINOP_MUL; 87 case Instruction::UDiv: return bitc::BINOP_UDIV; 88 case Instruction::FDiv: 89 case Instruction::SDiv: return bitc::BINOP_SDIV; 90 case Instruction::URem: return bitc::BINOP_UREM; 91 case Instruction::FRem: 92 case Instruction::SRem: return bitc::BINOP_SREM; 93 case Instruction::Shl: return bitc::BINOP_SHL; 94 case Instruction::LShr: return bitc::BINOP_LSHR; 95 case Instruction::AShr: return bitc::BINOP_ASHR; 96 case Instruction::And: return bitc::BINOP_AND; 97 case Instruction::Or: return bitc::BINOP_OR; 98 case Instruction::Xor: return bitc::BINOP_XOR; 99 } 100 } 101 102 103 104 static void WriteStringRecord(unsigned Code, const std::string &Str, 105 unsigned AbbrevToUse, BitstreamWriter &Stream) { 106 SmallVector<unsigned, 64> Vals; 107 108 // Code: [strchar x N] 109 for (unsigned i = 0, e = Str.size(); i != e; ++i) 110 Vals.push_back(Str[i]); 111 112 // Emit the finished record. 113 Stream.EmitRecord(Code, Vals, AbbrevToUse); 114 } 115 116 // Emit information about parameter attributes. 117 static void WriteAttributeTable(const ValueEnumerator &VE, 118 BitstreamWriter &Stream) { 119 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 120 if (Attrs.empty()) return; 121 122 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 123 124 SmallVector<uint64_t, 64> Record; 125 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 126 const AttrListPtr &A = Attrs[i]; 127 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 128 const AttributeWithIndex &PAWI = A.getSlot(i); 129 Record.push_back(PAWI.Index); 130 131 // FIXME: remove in LLVM 3.0 132 // Store the alignment in the bitcode as a 16-bit raw value instead of a 133 // 5-bit log2 encoded value. Shift the bits above the alignment up by 134 // 11 bits. 135 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 136 if (PAWI.Attrs & Attribute::Alignment) 137 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 138 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 139 140 Record.push_back(FauxAttr); 141 } 142 143 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 144 Record.clear(); 145 } 146 147 Stream.ExitBlock(); 148 } 149 150 /// WriteTypeTable - Write out the type table for a module. 151 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 152 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 153 154 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 155 SmallVector<uint64_t, 64> TypeVals; 156 157 // Abbrev for TYPE_CODE_POINTER. 158 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 161 Log2_32_Ceil(VE.getTypes().size()+1))); 162 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 163 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 164 165 // Abbrev for TYPE_CODE_FUNCTION. 166 Abbv = new BitCodeAbbrev(); 167 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 169 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 172 Log2_32_Ceil(VE.getTypes().size()+1))); 173 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 174 175 // Abbrev for TYPE_CODE_STRUCT. 176 Abbv = new BitCodeAbbrev(); 177 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 181 Log2_32_Ceil(VE.getTypes().size()+1))); 182 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 183 184 // Abbrev for TYPE_CODE_ARRAY. 185 Abbv = new BitCodeAbbrev(); 186 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 189 Log2_32_Ceil(VE.getTypes().size()+1))); 190 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 191 192 // Emit an entry count so the reader can reserve space. 193 TypeVals.push_back(TypeList.size()); 194 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 195 TypeVals.clear(); 196 197 // Loop over all of the types, emitting each in turn. 198 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 199 const Type *T = TypeList[i].first; 200 int AbbrevToUse = 0; 201 unsigned Code = 0; 202 203 switch (T->getTypeID()) { 204 default: llvm_unreachable("Unknown type!"); 205 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 206 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 207 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 208 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 209 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 210 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 211 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 212 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 213 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 214 case Type::IntegerTyID: 215 // INTEGER: [width] 216 Code = bitc::TYPE_CODE_INTEGER; 217 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 218 break; 219 case Type::PointerTyID: { 220 const PointerType *PTy = cast<PointerType>(T); 221 // POINTER: [pointee type, address space] 222 Code = bitc::TYPE_CODE_POINTER; 223 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 224 unsigned AddressSpace = PTy->getAddressSpace(); 225 TypeVals.push_back(AddressSpace); 226 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 227 break; 228 } 229 case Type::FunctionTyID: { 230 const FunctionType *FT = cast<FunctionType>(T); 231 // FUNCTION: [isvararg, attrid, retty, paramty x N] 232 Code = bitc::TYPE_CODE_FUNCTION; 233 TypeVals.push_back(FT->isVarArg()); 234 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 235 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 236 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 237 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 238 AbbrevToUse = FunctionAbbrev; 239 break; 240 } 241 case Type::StructTyID: { 242 const StructType *ST = cast<StructType>(T); 243 // STRUCT: [ispacked, eltty x N] 244 Code = bitc::TYPE_CODE_STRUCT; 245 TypeVals.push_back(ST->isPacked()); 246 // Output all of the element types. 247 for (StructType::element_iterator I = ST->element_begin(), 248 E = ST->element_end(); I != E; ++I) 249 TypeVals.push_back(VE.getTypeID(*I)); 250 AbbrevToUse = StructAbbrev; 251 break; 252 } 253 case Type::ArrayTyID: { 254 const ArrayType *AT = cast<ArrayType>(T); 255 // ARRAY: [numelts, eltty] 256 Code = bitc::TYPE_CODE_ARRAY; 257 TypeVals.push_back(AT->getNumElements()); 258 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 259 AbbrevToUse = ArrayAbbrev; 260 break; 261 } 262 case Type::VectorTyID: { 263 const VectorType *VT = cast<VectorType>(T); 264 // VECTOR [numelts, eltty] 265 Code = bitc::TYPE_CODE_VECTOR; 266 TypeVals.push_back(VT->getNumElements()); 267 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 268 break; 269 } 270 } 271 272 // Emit the finished record. 273 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 274 TypeVals.clear(); 275 } 276 277 Stream.ExitBlock(); 278 } 279 280 static unsigned getEncodedLinkage(const GlobalValue *GV) { 281 switch (GV->getLinkage()) { 282 default: llvm_unreachable("Invalid linkage!"); 283 case GlobalValue::ExternalLinkage: return 0; 284 case GlobalValue::WeakAnyLinkage: return 1; 285 case GlobalValue::AppendingLinkage: return 2; 286 case GlobalValue::InternalLinkage: return 3; 287 case GlobalValue::LinkOnceAnyLinkage: return 4; 288 case GlobalValue::DLLImportLinkage: return 5; 289 case GlobalValue::DLLExportLinkage: return 6; 290 case GlobalValue::ExternalWeakLinkage: return 7; 291 case GlobalValue::CommonLinkage: return 8; 292 case GlobalValue::PrivateLinkage: return 9; 293 case GlobalValue::WeakODRLinkage: return 10; 294 case GlobalValue::LinkOnceODRLinkage: return 11; 295 case GlobalValue::AvailableExternallyLinkage: return 12; 296 case GlobalValue::LinkerPrivateLinkage: return 13; 297 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 298 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15; 299 } 300 } 301 302 static unsigned getEncodedVisibility(const GlobalValue *GV) { 303 switch (GV->getVisibility()) { 304 default: llvm_unreachable("Invalid visibility!"); 305 case GlobalValue::DefaultVisibility: return 0; 306 case GlobalValue::HiddenVisibility: return 1; 307 case GlobalValue::ProtectedVisibility: return 2; 308 } 309 } 310 311 // Emit top-level description of module, including target triple, inline asm, 312 // descriptors for global variables, and function prototype info. 313 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 314 BitstreamWriter &Stream) { 315 // Emit the list of dependent libraries for the Module. 316 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 317 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 318 319 // Emit various pieces of data attached to a module. 320 if (!M->getTargetTriple().empty()) 321 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 322 0/*TODO*/, Stream); 323 if (!M->getDataLayout().empty()) 324 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 325 0/*TODO*/, Stream); 326 if (!M->getModuleInlineAsm().empty()) 327 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 328 0/*TODO*/, Stream); 329 330 // Emit information about sections and GC, computing how many there are. Also 331 // compute the maximum alignment value. 332 std::map<std::string, unsigned> SectionMap; 333 std::map<std::string, unsigned> GCMap; 334 unsigned MaxAlignment = 0; 335 unsigned MaxGlobalType = 0; 336 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 337 GV != E; ++GV) { 338 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 339 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 340 341 if (!GV->hasSection()) continue; 342 // Give section names unique ID's. 343 unsigned &Entry = SectionMap[GV->getSection()]; 344 if (Entry != 0) continue; 345 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 346 0/*TODO*/, Stream); 347 Entry = SectionMap.size(); 348 } 349 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 350 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 351 if (F->hasSection()) { 352 // Give section names unique ID's. 353 unsigned &Entry = SectionMap[F->getSection()]; 354 if (!Entry) { 355 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 356 0/*TODO*/, Stream); 357 Entry = SectionMap.size(); 358 } 359 } 360 if (F->hasGC()) { 361 // Same for GC names. 362 unsigned &Entry = GCMap[F->getGC()]; 363 if (!Entry) { 364 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 365 0/*TODO*/, Stream); 366 Entry = GCMap.size(); 367 } 368 } 369 } 370 371 // Emit abbrev for globals, now that we know # sections and max alignment. 372 unsigned SimpleGVarAbbrev = 0; 373 if (!M->global_empty()) { 374 // Add an abbrev for common globals with no visibility or thread localness. 375 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 376 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 378 Log2_32_Ceil(MaxGlobalType+1))); 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 382 if (MaxAlignment == 0) // Alignment. 383 Abbv->Add(BitCodeAbbrevOp(0)); 384 else { 385 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 387 Log2_32_Ceil(MaxEncAlignment+1))); 388 } 389 if (SectionMap.empty()) // Section. 390 Abbv->Add(BitCodeAbbrevOp(0)); 391 else 392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 393 Log2_32_Ceil(SectionMap.size()+1))); 394 // Don't bother emitting vis + thread local. 395 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 396 } 397 398 // Emit the global variable information. 399 SmallVector<unsigned, 64> Vals; 400 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 401 GV != E; ++GV) { 402 unsigned AbbrevToUse = 0; 403 404 // GLOBALVAR: [type, isconst, initid, 405 // linkage, alignment, section, visibility, threadlocal] 406 Vals.push_back(VE.getTypeID(GV->getType())); 407 Vals.push_back(GV->isConstant()); 408 Vals.push_back(GV->isDeclaration() ? 0 : 409 (VE.getValueID(GV->getInitializer()) + 1)); 410 Vals.push_back(getEncodedLinkage(GV)); 411 Vals.push_back(Log2_32(GV->getAlignment())+1); 412 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 413 if (GV->isThreadLocal() || 414 GV->getVisibility() != GlobalValue::DefaultVisibility) { 415 Vals.push_back(getEncodedVisibility(GV)); 416 Vals.push_back(GV->isThreadLocal()); 417 } else { 418 AbbrevToUse = SimpleGVarAbbrev; 419 } 420 421 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 422 Vals.clear(); 423 } 424 425 // Emit the function proto information. 426 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 427 // FUNCTION: [type, callingconv, isproto, paramattr, 428 // linkage, alignment, section, visibility, gc] 429 Vals.push_back(VE.getTypeID(F->getType())); 430 Vals.push_back(F->getCallingConv()); 431 Vals.push_back(F->isDeclaration()); 432 Vals.push_back(getEncodedLinkage(F)); 433 Vals.push_back(VE.getAttributeID(F->getAttributes())); 434 Vals.push_back(Log2_32(F->getAlignment())+1); 435 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 436 Vals.push_back(getEncodedVisibility(F)); 437 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 438 439 unsigned AbbrevToUse = 0; 440 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 441 Vals.clear(); 442 } 443 444 445 // Emit the alias information. 446 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 447 AI != E; ++AI) { 448 Vals.push_back(VE.getTypeID(AI->getType())); 449 Vals.push_back(VE.getValueID(AI->getAliasee())); 450 Vals.push_back(getEncodedLinkage(AI)); 451 Vals.push_back(getEncodedVisibility(AI)); 452 unsigned AbbrevToUse = 0; 453 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 454 Vals.clear(); 455 } 456 } 457 458 static uint64_t GetOptimizationFlags(const Value *V) { 459 uint64_t Flags = 0; 460 461 if (const OverflowingBinaryOperator *OBO = 462 dyn_cast<OverflowingBinaryOperator>(V)) { 463 if (OBO->hasNoSignedWrap()) 464 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 465 if (OBO->hasNoUnsignedWrap()) 466 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 467 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { 468 if (Div->isExact()) 469 Flags |= 1 << bitc::SDIV_EXACT; 470 } 471 472 return Flags; 473 } 474 475 static void WriteMDNode(const MDNode *N, 476 const ValueEnumerator &VE, 477 BitstreamWriter &Stream, 478 SmallVector<uint64_t, 64> &Record) { 479 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 480 if (N->getOperand(i)) { 481 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 482 Record.push_back(VE.getValueID(N->getOperand(i))); 483 } else { 484 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 485 Record.push_back(0); 486 } 487 } 488 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE2 : 489 bitc::METADATA_NODE2; 490 Stream.EmitRecord(MDCode, Record, 0); 491 Record.clear(); 492 } 493 494 static void WriteModuleMetadata(const Module *M, 495 const ValueEnumerator &VE, 496 BitstreamWriter &Stream) { 497 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 498 bool StartedMetadataBlock = false; 499 unsigned MDSAbbrev = 0; 500 SmallVector<uint64_t, 64> Record; 501 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 502 503 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 504 if (!N->isFunctionLocal() || !N->getFunction()) { 505 if (!StartedMetadataBlock) { 506 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 507 StartedMetadataBlock = true; 508 } 509 WriteMDNode(N, VE, Stream, Record); 510 } 511 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 512 if (!StartedMetadataBlock) { 513 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 514 515 // Abbrev for METADATA_STRING. 516 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 517 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 520 MDSAbbrev = Stream.EmitAbbrev(Abbv); 521 StartedMetadataBlock = true; 522 } 523 524 // Code: [strchar x N] 525 Record.append(MDS->begin(), MDS->end()); 526 527 // Emit the finished record. 528 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 529 Record.clear(); 530 } 531 } 532 533 // Write named metadata. 534 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 535 E = M->named_metadata_end(); I != E; ++I) { 536 const NamedMDNode *NMD = I; 537 if (!StartedMetadataBlock) { 538 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 539 StartedMetadataBlock = true; 540 } 541 542 // Write name. 543 StringRef Str = NMD->getName(); 544 for (unsigned i = 0, e = Str.size(); i != e; ++i) 545 Record.push_back(Str[i]); 546 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 547 Record.clear(); 548 549 // Write named metadata operands. 550 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 551 Record.push_back(VE.getValueID(NMD->getOperand(i))); 552 Stream.EmitRecord(bitc::METADATA_NAMED_NODE2, Record, 0); 553 Record.clear(); 554 } 555 556 if (StartedMetadataBlock) 557 Stream.ExitBlock(); 558 } 559 560 static void WriteFunctionLocalMetadata(const Function &F, 561 const ValueEnumerator &VE, 562 BitstreamWriter &Stream) { 563 bool StartedMetadataBlock = false; 564 SmallVector<uint64_t, 64> Record; 565 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 566 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 567 if (const MDNode *N = Vals[i]) 568 if (N->isFunctionLocal() && N->getFunction() == &F) { 569 if (!StartedMetadataBlock) { 570 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 571 StartedMetadataBlock = true; 572 } 573 WriteMDNode(N, VE, Stream, Record); 574 } 575 576 if (StartedMetadataBlock) 577 Stream.ExitBlock(); 578 } 579 580 static void WriteMetadataAttachment(const Function &F, 581 const ValueEnumerator &VE, 582 BitstreamWriter &Stream) { 583 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 584 585 SmallVector<uint64_t, 64> Record; 586 587 // Write metadata attachments 588 // METADATA_ATTACHMENT2 - [m x [value, [n x [id, mdnode]]] 589 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 590 591 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 592 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 593 I != E; ++I) { 594 MDs.clear(); 595 I->getAllMetadataOtherThanDebugLoc(MDs); 596 597 // If no metadata, ignore instruction. 598 if (MDs.empty()) continue; 599 600 Record.push_back(VE.getInstructionID(I)); 601 602 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 603 Record.push_back(MDs[i].first); 604 Record.push_back(VE.getValueID(MDs[i].second)); 605 } 606 Stream.EmitRecord(bitc::METADATA_ATTACHMENT2, Record, 0); 607 Record.clear(); 608 } 609 610 Stream.ExitBlock(); 611 } 612 613 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 614 SmallVector<uint64_t, 64> Record; 615 616 // Write metadata kinds 617 // METADATA_KIND - [n x [id, name]] 618 SmallVector<StringRef, 4> Names; 619 M->getMDKindNames(Names); 620 621 if (Names.empty()) return; 622 623 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 624 625 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 626 Record.push_back(MDKindID); 627 StringRef KName = Names[MDKindID]; 628 Record.append(KName.begin(), KName.end()); 629 630 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 631 Record.clear(); 632 } 633 634 Stream.ExitBlock(); 635 } 636 637 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 638 const ValueEnumerator &VE, 639 BitstreamWriter &Stream, bool isGlobal) { 640 if (FirstVal == LastVal) return; 641 642 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 643 644 unsigned AggregateAbbrev = 0; 645 unsigned String8Abbrev = 0; 646 unsigned CString7Abbrev = 0; 647 unsigned CString6Abbrev = 0; 648 // If this is a constant pool for the module, emit module-specific abbrevs. 649 if (isGlobal) { 650 // Abbrev for CST_CODE_AGGREGATE. 651 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 652 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 655 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 656 657 // Abbrev for CST_CODE_STRING. 658 Abbv = new BitCodeAbbrev(); 659 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 661 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 662 String8Abbrev = Stream.EmitAbbrev(Abbv); 663 // Abbrev for CST_CODE_CSTRING. 664 Abbv = new BitCodeAbbrev(); 665 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 668 CString7Abbrev = Stream.EmitAbbrev(Abbv); 669 // Abbrev for CST_CODE_CSTRING. 670 Abbv = new BitCodeAbbrev(); 671 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 674 CString6Abbrev = Stream.EmitAbbrev(Abbv); 675 } 676 677 SmallVector<uint64_t, 64> Record; 678 679 const ValueEnumerator::ValueList &Vals = VE.getValues(); 680 const Type *LastTy = 0; 681 for (unsigned i = FirstVal; i != LastVal; ++i) { 682 const Value *V = Vals[i].first; 683 // If we need to switch types, do so now. 684 if (V->getType() != LastTy) { 685 LastTy = V->getType(); 686 Record.push_back(VE.getTypeID(LastTy)); 687 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 688 CONSTANTS_SETTYPE_ABBREV); 689 Record.clear(); 690 } 691 692 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 693 Record.push_back(unsigned(IA->hasSideEffects()) | 694 unsigned(IA->isAlignStack()) << 1); 695 696 // Add the asm string. 697 const std::string &AsmStr = IA->getAsmString(); 698 Record.push_back(AsmStr.size()); 699 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 700 Record.push_back(AsmStr[i]); 701 702 // Add the constraint string. 703 const std::string &ConstraintStr = IA->getConstraintString(); 704 Record.push_back(ConstraintStr.size()); 705 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 706 Record.push_back(ConstraintStr[i]); 707 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 708 Record.clear(); 709 continue; 710 } 711 const Constant *C = cast<Constant>(V); 712 unsigned Code = -1U; 713 unsigned AbbrevToUse = 0; 714 if (C->isNullValue()) { 715 Code = bitc::CST_CODE_NULL; 716 } else if (isa<UndefValue>(C)) { 717 Code = bitc::CST_CODE_UNDEF; 718 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 719 if (IV->getBitWidth() <= 64) { 720 uint64_t V = IV->getSExtValue(); 721 if ((int64_t)V >= 0) 722 Record.push_back(V << 1); 723 else 724 Record.push_back((-V << 1) | 1); 725 Code = bitc::CST_CODE_INTEGER; 726 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 727 } else { // Wide integers, > 64 bits in size. 728 // We have an arbitrary precision integer value to write whose 729 // bit width is > 64. However, in canonical unsigned integer 730 // format it is likely that the high bits are going to be zero. 731 // So, we only write the number of active words. 732 unsigned NWords = IV->getValue().getActiveWords(); 733 const uint64_t *RawWords = IV->getValue().getRawData(); 734 for (unsigned i = 0; i != NWords; ++i) { 735 int64_t V = RawWords[i]; 736 if (V >= 0) 737 Record.push_back(V << 1); 738 else 739 Record.push_back((-V << 1) | 1); 740 } 741 Code = bitc::CST_CODE_WIDE_INTEGER; 742 } 743 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 744 Code = bitc::CST_CODE_FLOAT; 745 const Type *Ty = CFP->getType(); 746 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 747 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 748 } else if (Ty->isX86_FP80Ty()) { 749 // api needed to prevent premature destruction 750 // bits are not in the same order as a normal i80 APInt, compensate. 751 APInt api = CFP->getValueAPF().bitcastToAPInt(); 752 const uint64_t *p = api.getRawData(); 753 Record.push_back((p[1] << 48) | (p[0] >> 16)); 754 Record.push_back(p[0] & 0xffffLL); 755 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 756 APInt api = CFP->getValueAPF().bitcastToAPInt(); 757 const uint64_t *p = api.getRawData(); 758 Record.push_back(p[0]); 759 Record.push_back(p[1]); 760 } else { 761 assert (0 && "Unknown FP type!"); 762 } 763 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 764 const ConstantArray *CA = cast<ConstantArray>(C); 765 // Emit constant strings specially. 766 unsigned NumOps = CA->getNumOperands(); 767 // If this is a null-terminated string, use the denser CSTRING encoding. 768 if (CA->getOperand(NumOps-1)->isNullValue()) { 769 Code = bitc::CST_CODE_CSTRING; 770 --NumOps; // Don't encode the null, which isn't allowed by char6. 771 } else { 772 Code = bitc::CST_CODE_STRING; 773 AbbrevToUse = String8Abbrev; 774 } 775 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 776 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 777 for (unsigned i = 0; i != NumOps; ++i) { 778 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); 779 Record.push_back(V); 780 isCStr7 &= (V & 128) == 0; 781 if (isCStrChar6) 782 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 783 } 784 785 if (isCStrChar6) 786 AbbrevToUse = CString6Abbrev; 787 else if (isCStr7) 788 AbbrevToUse = CString7Abbrev; 789 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 790 isa<ConstantVector>(V)) { 791 Code = bitc::CST_CODE_AGGREGATE; 792 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 793 Record.push_back(VE.getValueID(C->getOperand(i))); 794 AbbrevToUse = AggregateAbbrev; 795 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 796 switch (CE->getOpcode()) { 797 default: 798 if (Instruction::isCast(CE->getOpcode())) { 799 Code = bitc::CST_CODE_CE_CAST; 800 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 801 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 802 Record.push_back(VE.getValueID(C->getOperand(0))); 803 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 804 } else { 805 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 806 Code = bitc::CST_CODE_CE_BINOP; 807 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 808 Record.push_back(VE.getValueID(C->getOperand(0))); 809 Record.push_back(VE.getValueID(C->getOperand(1))); 810 uint64_t Flags = GetOptimizationFlags(CE); 811 if (Flags != 0) 812 Record.push_back(Flags); 813 } 814 break; 815 case Instruction::GetElementPtr: 816 Code = bitc::CST_CODE_CE_GEP; 817 if (cast<GEPOperator>(C)->isInBounds()) 818 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 819 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 820 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 821 Record.push_back(VE.getValueID(C->getOperand(i))); 822 } 823 break; 824 case Instruction::Select: 825 Code = bitc::CST_CODE_CE_SELECT; 826 Record.push_back(VE.getValueID(C->getOperand(0))); 827 Record.push_back(VE.getValueID(C->getOperand(1))); 828 Record.push_back(VE.getValueID(C->getOperand(2))); 829 break; 830 case Instruction::ExtractElement: 831 Code = bitc::CST_CODE_CE_EXTRACTELT; 832 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 833 Record.push_back(VE.getValueID(C->getOperand(0))); 834 Record.push_back(VE.getValueID(C->getOperand(1))); 835 break; 836 case Instruction::InsertElement: 837 Code = bitc::CST_CODE_CE_INSERTELT; 838 Record.push_back(VE.getValueID(C->getOperand(0))); 839 Record.push_back(VE.getValueID(C->getOperand(1))); 840 Record.push_back(VE.getValueID(C->getOperand(2))); 841 break; 842 case Instruction::ShuffleVector: 843 // If the return type and argument types are the same, this is a 844 // standard shufflevector instruction. If the types are different, 845 // then the shuffle is widening or truncating the input vectors, and 846 // the argument type must also be encoded. 847 if (C->getType() == C->getOperand(0)->getType()) { 848 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 849 } else { 850 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 851 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 852 } 853 Record.push_back(VE.getValueID(C->getOperand(0))); 854 Record.push_back(VE.getValueID(C->getOperand(1))); 855 Record.push_back(VE.getValueID(C->getOperand(2))); 856 break; 857 case Instruction::ICmp: 858 case Instruction::FCmp: 859 Code = bitc::CST_CODE_CE_CMP; 860 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 861 Record.push_back(VE.getValueID(C->getOperand(0))); 862 Record.push_back(VE.getValueID(C->getOperand(1))); 863 Record.push_back(CE->getPredicate()); 864 break; 865 } 866 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 867 assert(BA->getFunction() == BA->getBasicBlock()->getParent() && 868 "Malformed blockaddress"); 869 Code = bitc::CST_CODE_BLOCKADDRESS; 870 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 871 Record.push_back(VE.getValueID(BA->getFunction())); 872 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 873 } else { 874 #ifndef NDEBUG 875 C->dump(); 876 #endif 877 llvm_unreachable("Unknown constant!"); 878 } 879 Stream.EmitRecord(Code, Record, AbbrevToUse); 880 Record.clear(); 881 } 882 883 Stream.ExitBlock(); 884 } 885 886 static void WriteModuleConstants(const ValueEnumerator &VE, 887 BitstreamWriter &Stream) { 888 const ValueEnumerator::ValueList &Vals = VE.getValues(); 889 890 // Find the first constant to emit, which is the first non-globalvalue value. 891 // We know globalvalues have been emitted by WriteModuleInfo. 892 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 893 if (!isa<GlobalValue>(Vals[i].first)) { 894 WriteConstants(i, Vals.size(), VE, Stream, true); 895 return; 896 } 897 } 898 } 899 900 /// PushValueAndType - The file has to encode both the value and type id for 901 /// many values, because we need to know what type to create for forward 902 /// references. However, most operands are not forward references, so this type 903 /// field is not needed. 904 /// 905 /// This function adds V's value ID to Vals. If the value ID is higher than the 906 /// instruction ID, then it is a forward reference, and it also includes the 907 /// type ID. 908 static bool PushValueAndType(const Value *V, unsigned InstID, 909 SmallVector<unsigned, 64> &Vals, 910 ValueEnumerator &VE) { 911 unsigned ValID = VE.getValueID(V); 912 Vals.push_back(ValID); 913 if (ValID >= InstID) { 914 Vals.push_back(VE.getTypeID(V->getType())); 915 return true; 916 } 917 return false; 918 } 919 920 /// WriteInstruction - Emit an instruction to the specified stream. 921 static void WriteInstruction(const Instruction &I, unsigned InstID, 922 ValueEnumerator &VE, BitstreamWriter &Stream, 923 SmallVector<unsigned, 64> &Vals) { 924 unsigned Code = 0; 925 unsigned AbbrevToUse = 0; 926 VE.setInstructionID(&I); 927 switch (I.getOpcode()) { 928 default: 929 if (Instruction::isCast(I.getOpcode())) { 930 Code = bitc::FUNC_CODE_INST_CAST; 931 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 932 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 933 Vals.push_back(VE.getTypeID(I.getType())); 934 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 935 } else { 936 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 937 Code = bitc::FUNC_CODE_INST_BINOP; 938 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 939 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 940 Vals.push_back(VE.getValueID(I.getOperand(1))); 941 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 942 uint64_t Flags = GetOptimizationFlags(&I); 943 if (Flags != 0) { 944 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 945 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 946 Vals.push_back(Flags); 947 } 948 } 949 break; 950 951 case Instruction::GetElementPtr: 952 Code = bitc::FUNC_CODE_INST_GEP; 953 if (cast<GEPOperator>(&I)->isInBounds()) 954 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 955 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 956 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 957 break; 958 case Instruction::ExtractValue: { 959 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 960 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 961 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 962 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 963 Vals.push_back(*i); 964 break; 965 } 966 case Instruction::InsertValue: { 967 Code = bitc::FUNC_CODE_INST_INSERTVAL; 968 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 969 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 970 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 971 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 972 Vals.push_back(*i); 973 break; 974 } 975 case Instruction::Select: 976 Code = bitc::FUNC_CODE_INST_VSELECT; 977 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 978 Vals.push_back(VE.getValueID(I.getOperand(2))); 979 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 980 break; 981 case Instruction::ExtractElement: 982 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 983 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 984 Vals.push_back(VE.getValueID(I.getOperand(1))); 985 break; 986 case Instruction::InsertElement: 987 Code = bitc::FUNC_CODE_INST_INSERTELT; 988 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 989 Vals.push_back(VE.getValueID(I.getOperand(1))); 990 Vals.push_back(VE.getValueID(I.getOperand(2))); 991 break; 992 case Instruction::ShuffleVector: 993 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 994 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 995 Vals.push_back(VE.getValueID(I.getOperand(1))); 996 Vals.push_back(VE.getValueID(I.getOperand(2))); 997 break; 998 case Instruction::ICmp: 999 case Instruction::FCmp: 1000 // compare returning Int1Ty or vector of Int1Ty 1001 Code = bitc::FUNC_CODE_INST_CMP2; 1002 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1003 Vals.push_back(VE.getValueID(I.getOperand(1))); 1004 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1005 break; 1006 1007 case Instruction::Ret: 1008 { 1009 Code = bitc::FUNC_CODE_INST_RET; 1010 unsigned NumOperands = I.getNumOperands(); 1011 if (NumOperands == 0) 1012 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1013 else if (NumOperands == 1) { 1014 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1015 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1016 } else { 1017 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1018 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1019 } 1020 } 1021 break; 1022 case Instruction::Br: 1023 { 1024 Code = bitc::FUNC_CODE_INST_BR; 1025 BranchInst &II = cast<BranchInst>(I); 1026 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1027 if (II.isConditional()) { 1028 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1029 Vals.push_back(VE.getValueID(II.getCondition())); 1030 } 1031 } 1032 break; 1033 case Instruction::Switch: 1034 Code = bitc::FUNC_CODE_INST_SWITCH; 1035 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1036 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1037 Vals.push_back(VE.getValueID(I.getOperand(i))); 1038 break; 1039 case Instruction::IndirectBr: 1040 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1041 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1042 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1043 Vals.push_back(VE.getValueID(I.getOperand(i))); 1044 break; 1045 1046 case Instruction::Invoke: { 1047 const InvokeInst *II = cast<InvokeInst>(&I); 1048 const Value *Callee(II->getCalledValue()); 1049 const PointerType *PTy = cast<PointerType>(Callee->getType()); 1050 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1051 Code = bitc::FUNC_CODE_INST_INVOKE; 1052 1053 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1054 Vals.push_back(II->getCallingConv()); 1055 Vals.push_back(VE.getValueID(II->getNormalDest())); 1056 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1057 PushValueAndType(Callee, InstID, Vals, VE); 1058 1059 // Emit value #'s for the fixed parameters. 1060 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1061 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1062 1063 // Emit type/value pairs for varargs params. 1064 if (FTy->isVarArg()) { 1065 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1066 i != e; ++i) 1067 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1068 } 1069 break; 1070 } 1071 case Instruction::Unwind: 1072 Code = bitc::FUNC_CODE_INST_UNWIND; 1073 break; 1074 case Instruction::Unreachable: 1075 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1076 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1077 break; 1078 1079 case Instruction::PHI: 1080 Code = bitc::FUNC_CODE_INST_PHI; 1081 Vals.push_back(VE.getTypeID(I.getType())); 1082 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1083 Vals.push_back(VE.getValueID(I.getOperand(i))); 1084 break; 1085 1086 case Instruction::Alloca: 1087 Code = bitc::FUNC_CODE_INST_ALLOCA; 1088 Vals.push_back(VE.getTypeID(I.getType())); 1089 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1090 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1091 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1092 break; 1093 1094 case Instruction::Load: 1095 Code = bitc::FUNC_CODE_INST_LOAD; 1096 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1097 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1098 1099 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1100 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1101 break; 1102 case Instruction::Store: 1103 Code = bitc::FUNC_CODE_INST_STORE2; 1104 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1105 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1106 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1107 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1108 break; 1109 case Instruction::Call: { 1110 const CallInst &CI = cast<CallInst>(I); 1111 const PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1112 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1113 1114 Code = bitc::FUNC_CODE_INST_CALL2; 1115 1116 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1117 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1118 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1119 1120 // Emit value #'s for the fixed parameters. 1121 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1122 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1123 1124 // Emit type/value pairs for varargs params. 1125 if (FTy->isVarArg()) { 1126 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1127 i != e; ++i) 1128 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1129 } 1130 break; 1131 } 1132 case Instruction::VAArg: 1133 Code = bitc::FUNC_CODE_INST_VAARG; 1134 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1135 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1136 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1137 break; 1138 } 1139 1140 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1141 Vals.clear(); 1142 } 1143 1144 // Emit names for globals/functions etc. 1145 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1146 const ValueEnumerator &VE, 1147 BitstreamWriter &Stream) { 1148 if (VST.empty()) return; 1149 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1150 1151 // FIXME: Set up the abbrev, we know how many values there are! 1152 // FIXME: We know if the type names can use 7-bit ascii. 1153 SmallVector<unsigned, 64> NameVals; 1154 1155 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1156 SI != SE; ++SI) { 1157 1158 const ValueName &Name = *SI; 1159 1160 // Figure out the encoding to use for the name. 1161 bool is7Bit = true; 1162 bool isChar6 = true; 1163 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1164 C != E; ++C) { 1165 if (isChar6) 1166 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1167 if ((unsigned char)*C & 128) { 1168 is7Bit = false; 1169 break; // don't bother scanning the rest. 1170 } 1171 } 1172 1173 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1174 1175 // VST_ENTRY: [valueid, namechar x N] 1176 // VST_BBENTRY: [bbid, namechar x N] 1177 unsigned Code; 1178 if (isa<BasicBlock>(SI->getValue())) { 1179 Code = bitc::VST_CODE_BBENTRY; 1180 if (isChar6) 1181 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1182 } else { 1183 Code = bitc::VST_CODE_ENTRY; 1184 if (isChar6) 1185 AbbrevToUse = VST_ENTRY_6_ABBREV; 1186 else if (is7Bit) 1187 AbbrevToUse = VST_ENTRY_7_ABBREV; 1188 } 1189 1190 NameVals.push_back(VE.getValueID(SI->getValue())); 1191 for (const char *P = Name.getKeyData(), 1192 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1193 NameVals.push_back((unsigned char)*P); 1194 1195 // Emit the finished record. 1196 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1197 NameVals.clear(); 1198 } 1199 Stream.ExitBlock(); 1200 } 1201 1202 /// WriteFunction - Emit a function body to the module stream. 1203 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1204 BitstreamWriter &Stream) { 1205 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1206 VE.incorporateFunction(F); 1207 1208 SmallVector<unsigned, 64> Vals; 1209 1210 // Emit the number of basic blocks, so the reader can create them ahead of 1211 // time. 1212 Vals.push_back(VE.getBasicBlocks().size()); 1213 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1214 Vals.clear(); 1215 1216 // If there are function-local constants, emit them now. 1217 unsigned CstStart, CstEnd; 1218 VE.getFunctionConstantRange(CstStart, CstEnd); 1219 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1220 1221 // If there is function-local metadata, emit it now. 1222 WriteFunctionLocalMetadata(F, VE, Stream); 1223 1224 // Keep a running idea of what the instruction ID is. 1225 unsigned InstID = CstEnd; 1226 1227 bool NeedsMetadataAttachment = false; 1228 1229 DebugLoc LastDL; 1230 1231 // Finally, emit all the instructions, in order. 1232 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1233 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1234 I != E; ++I) { 1235 WriteInstruction(*I, InstID, VE, Stream, Vals); 1236 1237 if (!I->getType()->isVoidTy()) 1238 ++InstID; 1239 1240 // If the instruction has metadata, write a metadata attachment later. 1241 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1242 1243 // If the instruction has a debug location, emit it. 1244 DebugLoc DL = I->getDebugLoc(); 1245 if (DL.isUnknown()) { 1246 // nothing todo. 1247 } else if (DL == LastDL) { 1248 // Just repeat the same debug loc as last time. 1249 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1250 } else { 1251 MDNode *Scope, *IA; 1252 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1253 1254 Vals.push_back(DL.getLine()); 1255 Vals.push_back(DL.getCol()); 1256 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1257 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1258 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC2, Vals); 1259 Vals.clear(); 1260 1261 LastDL = DL; 1262 } 1263 } 1264 1265 // Emit names for all the instructions etc. 1266 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1267 1268 if (NeedsMetadataAttachment) 1269 WriteMetadataAttachment(F, VE, Stream); 1270 VE.purgeFunction(); 1271 Stream.ExitBlock(); 1272 } 1273 1274 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1275 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1276 const ValueEnumerator &VE, 1277 BitstreamWriter &Stream) { 1278 if (TST.empty()) return; 1279 1280 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1281 1282 // 7-bit fixed width VST_CODE_ENTRY strings. 1283 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1284 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1286 Log2_32_Ceil(VE.getTypes().size()+1))); 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1289 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1290 1291 SmallVector<unsigned, 64> NameVals; 1292 1293 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1294 TI != TE; ++TI) { 1295 // TST_ENTRY: [typeid, namechar x N] 1296 NameVals.push_back(VE.getTypeID(TI->second)); 1297 1298 const std::string &Str = TI->first; 1299 bool is7Bit = true; 1300 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1301 NameVals.push_back((unsigned char)Str[i]); 1302 if (Str[i] & 128) 1303 is7Bit = false; 1304 } 1305 1306 // Emit the finished record. 1307 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1308 NameVals.clear(); 1309 } 1310 1311 Stream.ExitBlock(); 1312 } 1313 1314 // Emit blockinfo, which defines the standard abbreviations etc. 1315 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1316 // We only want to emit block info records for blocks that have multiple 1317 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1318 // blocks can defined their abbrevs inline. 1319 Stream.EnterBlockInfoBlock(2); 1320 1321 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1322 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1327 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1328 Abbv) != VST_ENTRY_8_ABBREV) 1329 llvm_unreachable("Unexpected abbrev ordering!"); 1330 } 1331 1332 { // 7-bit fixed width VST_ENTRY strings. 1333 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1334 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1338 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1339 Abbv) != VST_ENTRY_7_ABBREV) 1340 llvm_unreachable("Unexpected abbrev ordering!"); 1341 } 1342 { // 6-bit char6 VST_ENTRY strings. 1343 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1344 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1348 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1349 Abbv) != VST_ENTRY_6_ABBREV) 1350 llvm_unreachable("Unexpected abbrev ordering!"); 1351 } 1352 { // 6-bit char6 VST_BBENTRY strings. 1353 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1354 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1358 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1359 Abbv) != VST_BBENTRY_6_ABBREV) 1360 llvm_unreachable("Unexpected abbrev ordering!"); 1361 } 1362 1363 1364 1365 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1366 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1367 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1369 Log2_32_Ceil(VE.getTypes().size()+1))); 1370 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1371 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1372 llvm_unreachable("Unexpected abbrev ordering!"); 1373 } 1374 1375 { // INTEGER abbrev for CONSTANTS_BLOCK. 1376 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1377 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1379 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1380 Abbv) != CONSTANTS_INTEGER_ABBREV) 1381 llvm_unreachable("Unexpected abbrev ordering!"); 1382 } 1383 1384 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1385 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1386 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1389 Log2_32_Ceil(VE.getTypes().size()+1))); 1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1391 1392 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1393 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1394 llvm_unreachable("Unexpected abbrev ordering!"); 1395 } 1396 { // NULL abbrev for CONSTANTS_BLOCK. 1397 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1398 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1399 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1400 Abbv) != CONSTANTS_NULL_Abbrev) 1401 llvm_unreachable("Unexpected abbrev ordering!"); 1402 } 1403 1404 // FIXME: This should only use space for first class types! 1405 1406 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1407 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1408 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1412 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1413 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1414 llvm_unreachable("Unexpected abbrev ordering!"); 1415 } 1416 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1417 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1418 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1422 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1423 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1424 llvm_unreachable("Unexpected abbrev ordering!"); 1425 } 1426 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1427 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1428 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1433 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1434 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1435 llvm_unreachable("Unexpected abbrev ordering!"); 1436 } 1437 { // INST_CAST abbrev for FUNCTION_BLOCK. 1438 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1439 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1442 Log2_32_Ceil(VE.getTypes().size()+1))); 1443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1444 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1445 Abbv) != FUNCTION_INST_CAST_ABBREV) 1446 llvm_unreachable("Unexpected abbrev ordering!"); 1447 } 1448 1449 { // INST_RET abbrev for FUNCTION_BLOCK. 1450 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1451 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1452 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1453 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1454 llvm_unreachable("Unexpected abbrev ordering!"); 1455 } 1456 { // INST_RET abbrev for FUNCTION_BLOCK. 1457 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1458 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1460 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1461 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1462 llvm_unreachable("Unexpected abbrev ordering!"); 1463 } 1464 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1465 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1466 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1467 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1468 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1469 llvm_unreachable("Unexpected abbrev ordering!"); 1470 } 1471 1472 Stream.ExitBlock(); 1473 } 1474 1475 1476 /// WriteModule - Emit the specified module to the bitstream. 1477 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1478 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1479 1480 // Emit the version number if it is non-zero. 1481 if (CurVersion) { 1482 SmallVector<unsigned, 1> Vals; 1483 Vals.push_back(CurVersion); 1484 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1485 } 1486 1487 // Analyze the module, enumerating globals, functions, etc. 1488 ValueEnumerator VE(M); 1489 1490 // Emit blockinfo, which defines the standard abbreviations etc. 1491 WriteBlockInfo(VE, Stream); 1492 1493 // Emit information about parameter attributes. 1494 WriteAttributeTable(VE, Stream); 1495 1496 // Emit information describing all of the types in the module. 1497 WriteTypeTable(VE, Stream); 1498 1499 // Emit top-level description of module, including target triple, inline asm, 1500 // descriptors for global variables, and function prototype info. 1501 WriteModuleInfo(M, VE, Stream); 1502 1503 // Emit constants. 1504 WriteModuleConstants(VE, Stream); 1505 1506 // Emit metadata. 1507 WriteModuleMetadata(M, VE, Stream); 1508 1509 // Emit function bodies. 1510 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1511 if (!I->isDeclaration()) 1512 WriteFunction(*I, VE, Stream); 1513 1514 // Emit metadata. 1515 WriteModuleMetadataStore(M, Stream); 1516 1517 // Emit the type symbol table information. 1518 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1519 1520 // Emit names for globals/functions etc. 1521 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1522 1523 Stream.ExitBlock(); 1524 } 1525 1526 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1527 /// header and trailer to make it compatible with the system archiver. To do 1528 /// this we emit the following header, and then emit a trailer that pads the 1529 /// file out to be a multiple of 16 bytes. 1530 /// 1531 /// struct bc_header { 1532 /// uint32_t Magic; // 0x0B17C0DE 1533 /// uint32_t Version; // Version, currently always 0. 1534 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1535 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1536 /// uint32_t CPUType; // CPU specifier. 1537 /// ... potentially more later ... 1538 /// }; 1539 enum { 1540 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1541 DarwinBCHeaderSize = 5*4 1542 }; 1543 1544 /// isARMTriplet - Return true if the triplet looks like: 1545 /// arm-*, thumb-*, armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. 1546 static bool isARMTriplet(const std::string &TT) { 1547 size_t Pos = 0; 1548 size_t Size = TT.size(); 1549 if (Size >= 6 && 1550 TT[0] == 't' && TT[1] == 'h' && TT[2] == 'u' && 1551 TT[3] == 'm' && TT[4] == 'b') 1552 Pos = 5; 1553 else if (Size >= 4 && TT[0] == 'a' && TT[1] == 'r' && TT[2] == 'm') 1554 Pos = 3; 1555 else 1556 return false; 1557 1558 if (TT[Pos] == '-') 1559 return true; 1560 else if (TT[Pos] == 'v') { 1561 if (Size >= Pos+4 && 1562 TT[Pos+1] == '6' && TT[Pos+2] == 't' && TT[Pos+3] == '2') 1563 return true; 1564 else if (Size >= Pos+4 && 1565 TT[Pos+1] == '5' && TT[Pos+2] == 't' && TT[Pos+3] == 'e') 1566 return true; 1567 } else 1568 return false; 1569 while (++Pos < Size && TT[Pos] != '-') { 1570 if (!isdigit(TT[Pos])) 1571 return false; 1572 } 1573 return true; 1574 } 1575 1576 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1577 const std::string &TT) { 1578 unsigned CPUType = ~0U; 1579 1580 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1581 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1582 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1583 // specific constants here because they are implicitly part of the Darwin ABI. 1584 enum { 1585 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1586 DARWIN_CPU_TYPE_X86 = 7, 1587 DARWIN_CPU_TYPE_ARM = 12, 1588 DARWIN_CPU_TYPE_POWERPC = 18 1589 }; 1590 1591 if (TT.find("x86_64-") == 0) 1592 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1593 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1594 TT[4] == '-' && TT[1] - '3' < 6) 1595 CPUType = DARWIN_CPU_TYPE_X86; 1596 else if (TT.find("powerpc-") == 0) 1597 CPUType = DARWIN_CPU_TYPE_POWERPC; 1598 else if (TT.find("powerpc64-") == 0) 1599 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1600 else if (isARMTriplet(TT)) 1601 CPUType = DARWIN_CPU_TYPE_ARM; 1602 1603 // Traditional Bitcode starts after header. 1604 unsigned BCOffset = DarwinBCHeaderSize; 1605 1606 Stream.Emit(0x0B17C0DE, 32); 1607 Stream.Emit(0 , 32); // Version. 1608 Stream.Emit(BCOffset , 32); 1609 Stream.Emit(0 , 32); // Filled in later. 1610 Stream.Emit(CPUType , 32); 1611 } 1612 1613 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1614 /// finalize the header. 1615 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1616 // Update the size field in the header. 1617 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1618 1619 // If the file is not a multiple of 16 bytes, insert dummy padding. 1620 while (BufferSize & 15) { 1621 Stream.Emit(0, 8); 1622 ++BufferSize; 1623 } 1624 } 1625 1626 1627 /// WriteBitcodeToFile - Write the specified module to the specified output 1628 /// stream. 1629 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1630 std::vector<unsigned char> Buffer; 1631 BitstreamWriter Stream(Buffer); 1632 1633 Buffer.reserve(256*1024); 1634 1635 WriteBitcodeToStream( M, Stream ); 1636 1637 // Write the generated bitstream to "Out". 1638 Out.write((char*)&Buffer.front(), Buffer.size()); 1639 } 1640 1641 /// WriteBitcodeToStream - Write the specified module to the specified output 1642 /// stream. 1643 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1644 // If this is darwin, emit a file header and trailer if needed. 1645 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1646 if (isDarwin) 1647 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1648 1649 // Emit the file header. 1650 Stream.Emit((unsigned)'B', 8); 1651 Stream.Emit((unsigned)'C', 8); 1652 Stream.Emit(0x0, 4); 1653 Stream.Emit(0xC, 4); 1654 Stream.Emit(0xE, 4); 1655 Stream.Emit(0xD, 4); 1656 1657 // Emit the module. 1658 WriteModule(M, Stream); 1659 1660 if (isDarwin) 1661 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1662 } 1663