1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Bitcode/BitcodeCommon.h" 29 #include "llvm/Bitcode/BitcodeReader.h" 30 #include "llvm/Bitcode/LLVMBitCodes.h" 31 #include "llvm/Bitstream/BitCodes.h" 32 #include "llvm/Bitstream/BitstreamWriter.h" 33 #include "llvm/Config/llvm-config.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/Comdat.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSummaryIndex.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/UseListOrder.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/ValueSymbolTable.h" 61 #include "llvm/MC/StringTableBuilder.h" 62 #include "llvm/MC/TargetRegistry.h" 63 #include "llvm/Object/IRSymtab.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Endian.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/SHA1.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <memory> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 99 100 namespace { 101 102 /// These are manifest constants used by the bitcode writer. They do not need to 103 /// be kept in sync with the reader, but need to be consistent within this file. 104 enum { 105 // VALUE_SYMTAB_BLOCK abbrev id's. 106 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 107 VST_ENTRY_7_ABBREV, 108 VST_ENTRY_6_ABBREV, 109 VST_BBENTRY_6_ABBREV, 110 111 // CONSTANTS_BLOCK abbrev id's. 112 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 113 CONSTANTS_INTEGER_ABBREV, 114 CONSTANTS_CE_CAST_Abbrev, 115 CONSTANTS_NULL_Abbrev, 116 117 // FUNCTION_BLOCK abbrev id's. 118 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 119 FUNCTION_INST_UNOP_ABBREV, 120 FUNCTION_INST_UNOP_FLAGS_ABBREV, 121 FUNCTION_INST_BINOP_ABBREV, 122 FUNCTION_INST_BINOP_FLAGS_ABBREV, 123 FUNCTION_INST_CAST_ABBREV, 124 FUNCTION_INST_RET_VOID_ABBREV, 125 FUNCTION_INST_RET_VAL_ABBREV, 126 FUNCTION_INST_UNREACHABLE_ABBREV, 127 FUNCTION_INST_GEP_ABBREV, 128 }; 129 130 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 131 /// file type. 132 class BitcodeWriterBase { 133 protected: 134 /// The stream created and owned by the client. 135 BitstreamWriter &Stream; 136 137 StringTableBuilder &StrtabBuilder; 138 139 public: 140 /// Constructs a BitcodeWriterBase object that writes to the provided 141 /// \p Stream. 142 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 143 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 144 145 protected: 146 void writeModuleVersion(); 147 }; 148 149 void BitcodeWriterBase::writeModuleVersion() { 150 // VERSION: [version#] 151 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 152 } 153 154 /// Base class to manage the module bitcode writing, currently subclassed for 155 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 156 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 157 protected: 158 /// The Module to write to bitcode. 159 const Module &M; 160 161 /// Enumerates ids for all values in the module. 162 ValueEnumerator VE; 163 164 /// Optional per-module index to write for ThinLTO. 165 const ModuleSummaryIndex *Index; 166 167 /// Map that holds the correspondence between GUIDs in the summary index, 168 /// that came from indirect call profiles, and a value id generated by this 169 /// class to use in the VST and summary block records. 170 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 171 172 /// Tracks the last value id recorded in the GUIDToValueMap. 173 unsigned GlobalValueId; 174 175 /// Saves the offset of the VSTOffset record that must eventually be 176 /// backpatched with the offset of the actual VST. 177 uint64_t VSTOffsetPlaceholder = 0; 178 179 public: 180 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 181 /// writing to the provided \p Buffer. 182 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 183 BitstreamWriter &Stream, 184 bool ShouldPreserveUseListOrder, 185 const ModuleSummaryIndex *Index) 186 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 187 VE(M, ShouldPreserveUseListOrder), Index(Index) { 188 // Assign ValueIds to any callee values in the index that came from 189 // indirect call profiles and were recorded as a GUID not a Value* 190 // (which would have been assigned an ID by the ValueEnumerator). 191 // The starting ValueId is just after the number of values in the 192 // ValueEnumerator, so that they can be emitted in the VST. 193 GlobalValueId = VE.getValues().size(); 194 if (!Index) 195 return; 196 for (const auto &GUIDSummaryLists : *Index) 197 // Examine all summaries for this GUID. 198 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 199 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 200 // For each call in the function summary, see if the call 201 // is to a GUID (which means it is for an indirect call, 202 // otherwise we would have a Value for it). If so, synthesize 203 // a value id. 204 for (auto &CallEdge : FS->calls()) 205 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 206 assignValueId(CallEdge.first.getGUID()); 207 } 208 209 protected: 210 void writePerModuleGlobalValueSummary(); 211 212 private: 213 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 214 GlobalValueSummary *Summary, 215 unsigned ValueID, 216 unsigned FSCallsAbbrev, 217 unsigned FSCallsProfileAbbrev, 218 const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIGenericSubrange(const DIGenericSubrange *N, 304 SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDIEnumerator(const DIEnumerator *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIStringType(const DIStringType *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDIDerivedType(const DIDerivedType *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDICompositeType(const DICompositeType *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDISubroutineType(const DISubroutineType *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICompileUnit(const DICompileUnit *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDISubprogram(const DISubprogram *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDILexicalBlock(const DILexicalBlock *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDICommonBlock(const DICommonBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDIGlobalVariable(const DIGlobalVariable *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDILocalVariable(const DILocalVariable *N, 352 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 353 void writeDILabel(const DILabel *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDIExpression(const DIExpression *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIObjCProperty(const DIObjCProperty *N, 361 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 362 void writeDIImportedEntity(const DIImportedEntity *N, 363 SmallVectorImpl<uint64_t> &Record, 364 unsigned Abbrev); 365 unsigned createNamedMetadataAbbrev(); 366 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 367 unsigned createMetadataStringsAbbrev(); 368 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 369 SmallVectorImpl<uint64_t> &Record); 370 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 371 SmallVectorImpl<uint64_t> &Record, 372 std::vector<unsigned> *MDAbbrevs = nullptr, 373 std::vector<uint64_t> *IndexPos = nullptr); 374 void writeModuleMetadata(); 375 void writeFunctionMetadata(const Function &F); 376 void writeFunctionMetadataAttachment(const Function &F); 377 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 378 const GlobalObject &GO); 379 void writeModuleMetadataKinds(); 380 void writeOperandBundleTags(); 381 void writeSyncScopeNames(); 382 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 383 void writeModuleConstants(); 384 bool pushValueAndType(const Value *V, unsigned InstID, 385 SmallVectorImpl<unsigned> &Vals); 386 void writeOperandBundles(const CallBase &CB, unsigned InstID); 387 void pushValue(const Value *V, unsigned InstID, 388 SmallVectorImpl<unsigned> &Vals); 389 void pushValueSigned(const Value *V, unsigned InstID, 390 SmallVectorImpl<uint64_t> &Vals); 391 void writeInstruction(const Instruction &I, unsigned InstID, 392 SmallVectorImpl<unsigned> &Vals); 393 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 394 void writeGlobalValueSymbolTable( 395 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 396 void writeUseList(UseListOrder &&Order); 397 void writeUseListBlock(const Function *F); 398 void 399 writeFunction(const Function &F, 400 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 401 void writeBlockInfo(); 402 void writeModuleHash(size_t BlockStartPos); 403 404 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 405 return unsigned(SSID); 406 } 407 408 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 409 }; 410 411 /// Class to manage the bitcode writing for a combined index. 412 class IndexBitcodeWriter : public BitcodeWriterBase { 413 /// The combined index to write to bitcode. 414 const ModuleSummaryIndex &Index; 415 416 /// When writing a subset of the index for distributed backends, client 417 /// provides a map of modules to the corresponding GUIDs/summaries to write. 418 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 419 420 /// Map that holds the correspondence between the GUID used in the combined 421 /// index and a value id generated by this class to use in references. 422 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 423 424 /// Tracks the last value id recorded in the GUIDToValueMap. 425 unsigned GlobalValueId = 0; 426 427 public: 428 /// Constructs a IndexBitcodeWriter object for the given combined index, 429 /// writing to the provided \p Buffer. When writing a subset of the index 430 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 431 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 432 const ModuleSummaryIndex &Index, 433 const std::map<std::string, GVSummaryMapTy> 434 *ModuleToSummariesForIndex = nullptr) 435 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 436 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 437 // Assign unique value ids to all summaries to be written, for use 438 // in writing out the call graph edges. Save the mapping from GUID 439 // to the new global value id to use when writing those edges, which 440 // are currently saved in the index in terms of GUID. 441 forEachSummary([&](GVInfo I, bool) { 442 GUIDToValueIdMap[I.first] = ++GlobalValueId; 443 }); 444 } 445 446 /// The below iterator returns the GUID and associated summary. 447 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 448 449 /// Calls the callback for each value GUID and summary to be written to 450 /// bitcode. This hides the details of whether they are being pulled from the 451 /// entire index or just those in a provided ModuleToSummariesForIndex map. 452 template<typename Functor> 453 void forEachSummary(Functor Callback) { 454 if (ModuleToSummariesForIndex) { 455 for (auto &M : *ModuleToSummariesForIndex) 456 for (auto &Summary : M.second) { 457 Callback(Summary, false); 458 // Ensure aliasee is handled, e.g. for assigning a valueId, 459 // even if we are not importing the aliasee directly (the 460 // imported alias will contain a copy of aliasee). 461 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 462 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 463 } 464 } else { 465 for (auto &Summaries : Index) 466 for (auto &Summary : Summaries.second.SummaryList) 467 Callback({Summaries.first, Summary.get()}, false); 468 } 469 } 470 471 /// Calls the callback for each entry in the modulePaths StringMap that 472 /// should be written to the module path string table. This hides the details 473 /// of whether they are being pulled from the entire index or just those in a 474 /// provided ModuleToSummariesForIndex map. 475 template <typename Functor> void forEachModule(Functor Callback) { 476 if (ModuleToSummariesForIndex) { 477 for (const auto &M : *ModuleToSummariesForIndex) { 478 const auto &MPI = Index.modulePaths().find(M.first); 479 if (MPI == Index.modulePaths().end()) { 480 // This should only happen if the bitcode file was empty, in which 481 // case we shouldn't be importing (the ModuleToSummariesForIndex 482 // would only include the module we are writing and index for). 483 assert(ModuleToSummariesForIndex->size() == 1); 484 continue; 485 } 486 Callback(*MPI); 487 } 488 } else { 489 for (const auto &MPSE : Index.modulePaths()) 490 Callback(MPSE); 491 } 492 } 493 494 /// Main entry point for writing a combined index to bitcode. 495 void write(); 496 497 private: 498 void writeModStrings(); 499 void writeCombinedGlobalValueSummary(); 500 501 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 502 auto VMI = GUIDToValueIdMap.find(ValGUID); 503 if (VMI == GUIDToValueIdMap.end()) 504 return None; 505 return VMI->second; 506 } 507 508 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 509 }; 510 511 } // end anonymous namespace 512 513 static unsigned getEncodedCastOpcode(unsigned Opcode) { 514 switch (Opcode) { 515 default: llvm_unreachable("Unknown cast instruction!"); 516 case Instruction::Trunc : return bitc::CAST_TRUNC; 517 case Instruction::ZExt : return bitc::CAST_ZEXT; 518 case Instruction::SExt : return bitc::CAST_SEXT; 519 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 520 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 521 case Instruction::UIToFP : return bitc::CAST_UITOFP; 522 case Instruction::SIToFP : return bitc::CAST_SITOFP; 523 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 524 case Instruction::FPExt : return bitc::CAST_FPEXT; 525 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 526 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 527 case Instruction::BitCast : return bitc::CAST_BITCAST; 528 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 529 } 530 } 531 532 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 533 switch (Opcode) { 534 default: llvm_unreachable("Unknown binary instruction!"); 535 case Instruction::FNeg: return bitc::UNOP_FNEG; 536 } 537 } 538 539 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 540 switch (Opcode) { 541 default: llvm_unreachable("Unknown binary instruction!"); 542 case Instruction::Add: 543 case Instruction::FAdd: return bitc::BINOP_ADD; 544 case Instruction::Sub: 545 case Instruction::FSub: return bitc::BINOP_SUB; 546 case Instruction::Mul: 547 case Instruction::FMul: return bitc::BINOP_MUL; 548 case Instruction::UDiv: return bitc::BINOP_UDIV; 549 case Instruction::FDiv: 550 case Instruction::SDiv: return bitc::BINOP_SDIV; 551 case Instruction::URem: return bitc::BINOP_UREM; 552 case Instruction::FRem: 553 case Instruction::SRem: return bitc::BINOP_SREM; 554 case Instruction::Shl: return bitc::BINOP_SHL; 555 case Instruction::LShr: return bitc::BINOP_LSHR; 556 case Instruction::AShr: return bitc::BINOP_ASHR; 557 case Instruction::And: return bitc::BINOP_AND; 558 case Instruction::Or: return bitc::BINOP_OR; 559 case Instruction::Xor: return bitc::BINOP_XOR; 560 } 561 } 562 563 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 564 switch (Op) { 565 default: llvm_unreachable("Unknown RMW operation!"); 566 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 567 case AtomicRMWInst::Add: return bitc::RMW_ADD; 568 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 569 case AtomicRMWInst::And: return bitc::RMW_AND; 570 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 571 case AtomicRMWInst::Or: return bitc::RMW_OR; 572 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 573 case AtomicRMWInst::Max: return bitc::RMW_MAX; 574 case AtomicRMWInst::Min: return bitc::RMW_MIN; 575 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 576 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 577 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 578 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 579 } 580 } 581 582 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 583 switch (Ordering) { 584 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 585 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 586 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 587 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 588 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 589 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 590 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 591 } 592 llvm_unreachable("Invalid ordering"); 593 } 594 595 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 596 StringRef Str, unsigned AbbrevToUse) { 597 SmallVector<unsigned, 64> Vals; 598 599 // Code: [strchar x N] 600 for (char C : Str) { 601 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 602 AbbrevToUse = 0; 603 Vals.push_back(C); 604 } 605 606 // Emit the finished record. 607 Stream.EmitRecord(Code, Vals, AbbrevToUse); 608 } 609 610 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 611 switch (Kind) { 612 case Attribute::Alignment: 613 return bitc::ATTR_KIND_ALIGNMENT; 614 case Attribute::AllocAlign: 615 return bitc::ATTR_KIND_ALLOC_ALIGN; 616 case Attribute::AllocSize: 617 return bitc::ATTR_KIND_ALLOC_SIZE; 618 case Attribute::AlwaysInline: 619 return bitc::ATTR_KIND_ALWAYS_INLINE; 620 case Attribute::ArgMemOnly: 621 return bitc::ATTR_KIND_ARGMEMONLY; 622 case Attribute::Builtin: 623 return bitc::ATTR_KIND_BUILTIN; 624 case Attribute::ByVal: 625 return bitc::ATTR_KIND_BY_VAL; 626 case Attribute::Convergent: 627 return bitc::ATTR_KIND_CONVERGENT; 628 case Attribute::InAlloca: 629 return bitc::ATTR_KIND_IN_ALLOCA; 630 case Attribute::Cold: 631 return bitc::ATTR_KIND_COLD; 632 case Attribute::DisableSanitizerInstrumentation: 633 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 634 case Attribute::Hot: 635 return bitc::ATTR_KIND_HOT; 636 case Attribute::ElementType: 637 return bitc::ATTR_KIND_ELEMENTTYPE; 638 case Attribute::InaccessibleMemOnly: 639 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 640 case Attribute::InaccessibleMemOrArgMemOnly: 641 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 642 case Attribute::InlineHint: 643 return bitc::ATTR_KIND_INLINE_HINT; 644 case Attribute::InReg: 645 return bitc::ATTR_KIND_IN_REG; 646 case Attribute::JumpTable: 647 return bitc::ATTR_KIND_JUMP_TABLE; 648 case Attribute::MinSize: 649 return bitc::ATTR_KIND_MIN_SIZE; 650 case Attribute::Naked: 651 return bitc::ATTR_KIND_NAKED; 652 case Attribute::Nest: 653 return bitc::ATTR_KIND_NEST; 654 case Attribute::NoAlias: 655 return bitc::ATTR_KIND_NO_ALIAS; 656 case Attribute::NoBuiltin: 657 return bitc::ATTR_KIND_NO_BUILTIN; 658 case Attribute::NoCallback: 659 return bitc::ATTR_KIND_NO_CALLBACK; 660 case Attribute::NoCapture: 661 return bitc::ATTR_KIND_NO_CAPTURE; 662 case Attribute::NoDuplicate: 663 return bitc::ATTR_KIND_NO_DUPLICATE; 664 case Attribute::NoFree: 665 return bitc::ATTR_KIND_NOFREE; 666 case Attribute::NoImplicitFloat: 667 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 668 case Attribute::NoInline: 669 return bitc::ATTR_KIND_NO_INLINE; 670 case Attribute::NoRecurse: 671 return bitc::ATTR_KIND_NO_RECURSE; 672 case Attribute::NoMerge: 673 return bitc::ATTR_KIND_NO_MERGE; 674 case Attribute::NonLazyBind: 675 return bitc::ATTR_KIND_NON_LAZY_BIND; 676 case Attribute::NonNull: 677 return bitc::ATTR_KIND_NON_NULL; 678 case Attribute::Dereferenceable: 679 return bitc::ATTR_KIND_DEREFERENCEABLE; 680 case Attribute::DereferenceableOrNull: 681 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 682 case Attribute::NoRedZone: 683 return bitc::ATTR_KIND_NO_RED_ZONE; 684 case Attribute::NoReturn: 685 return bitc::ATTR_KIND_NO_RETURN; 686 case Attribute::NoSync: 687 return bitc::ATTR_KIND_NOSYNC; 688 case Attribute::NoCfCheck: 689 return bitc::ATTR_KIND_NOCF_CHECK; 690 case Attribute::NoProfile: 691 return bitc::ATTR_KIND_NO_PROFILE; 692 case Attribute::NoUnwind: 693 return bitc::ATTR_KIND_NO_UNWIND; 694 case Attribute::NoSanitizeBounds: 695 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 696 case Attribute::NoSanitizeCoverage: 697 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 698 case Attribute::NullPointerIsValid: 699 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 700 case Attribute::OptForFuzzing: 701 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 702 case Attribute::OptimizeForSize: 703 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 704 case Attribute::OptimizeNone: 705 return bitc::ATTR_KIND_OPTIMIZE_NONE; 706 case Attribute::ReadNone: 707 return bitc::ATTR_KIND_READ_NONE; 708 case Attribute::ReadOnly: 709 return bitc::ATTR_KIND_READ_ONLY; 710 case Attribute::Returned: 711 return bitc::ATTR_KIND_RETURNED; 712 case Attribute::ReturnsTwice: 713 return bitc::ATTR_KIND_RETURNS_TWICE; 714 case Attribute::SExt: 715 return bitc::ATTR_KIND_S_EXT; 716 case Attribute::Speculatable: 717 return bitc::ATTR_KIND_SPECULATABLE; 718 case Attribute::StackAlignment: 719 return bitc::ATTR_KIND_STACK_ALIGNMENT; 720 case Attribute::StackProtect: 721 return bitc::ATTR_KIND_STACK_PROTECT; 722 case Attribute::StackProtectReq: 723 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 724 case Attribute::StackProtectStrong: 725 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 726 case Attribute::SafeStack: 727 return bitc::ATTR_KIND_SAFESTACK; 728 case Attribute::ShadowCallStack: 729 return bitc::ATTR_KIND_SHADOWCALLSTACK; 730 case Attribute::StrictFP: 731 return bitc::ATTR_KIND_STRICT_FP; 732 case Attribute::StructRet: 733 return bitc::ATTR_KIND_STRUCT_RET; 734 case Attribute::SanitizeAddress: 735 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 736 case Attribute::SanitizeHWAddress: 737 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 738 case Attribute::SanitizeThread: 739 return bitc::ATTR_KIND_SANITIZE_THREAD; 740 case Attribute::SanitizeMemory: 741 return bitc::ATTR_KIND_SANITIZE_MEMORY; 742 case Attribute::SpeculativeLoadHardening: 743 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 744 case Attribute::SwiftError: 745 return bitc::ATTR_KIND_SWIFT_ERROR; 746 case Attribute::SwiftSelf: 747 return bitc::ATTR_KIND_SWIFT_SELF; 748 case Attribute::SwiftAsync: 749 return bitc::ATTR_KIND_SWIFT_ASYNC; 750 case Attribute::UWTable: 751 return bitc::ATTR_KIND_UW_TABLE; 752 case Attribute::VScaleRange: 753 return bitc::ATTR_KIND_VSCALE_RANGE; 754 case Attribute::WillReturn: 755 return bitc::ATTR_KIND_WILLRETURN; 756 case Attribute::WriteOnly: 757 return bitc::ATTR_KIND_WRITEONLY; 758 case Attribute::ZExt: 759 return bitc::ATTR_KIND_Z_EXT; 760 case Attribute::ImmArg: 761 return bitc::ATTR_KIND_IMMARG; 762 case Attribute::SanitizeMemTag: 763 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 764 case Attribute::Preallocated: 765 return bitc::ATTR_KIND_PREALLOCATED; 766 case Attribute::NoUndef: 767 return bitc::ATTR_KIND_NOUNDEF; 768 case Attribute::ByRef: 769 return bitc::ATTR_KIND_BYREF; 770 case Attribute::MustProgress: 771 return bitc::ATTR_KIND_MUSTPROGRESS; 772 case Attribute::EndAttrKinds: 773 llvm_unreachable("Can not encode end-attribute kinds marker."); 774 case Attribute::None: 775 llvm_unreachable("Can not encode none-attribute."); 776 case Attribute::EmptyKey: 777 case Attribute::TombstoneKey: 778 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 779 } 780 781 llvm_unreachable("Trying to encode unknown attribute"); 782 } 783 784 void ModuleBitcodeWriter::writeAttributeGroupTable() { 785 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 786 VE.getAttributeGroups(); 787 if (AttrGrps.empty()) return; 788 789 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 790 791 SmallVector<uint64_t, 64> Record; 792 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 793 unsigned AttrListIndex = Pair.first; 794 AttributeSet AS = Pair.second; 795 Record.push_back(VE.getAttributeGroupID(Pair)); 796 Record.push_back(AttrListIndex); 797 798 for (Attribute Attr : AS) { 799 if (Attr.isEnumAttribute()) { 800 Record.push_back(0); 801 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 802 } else if (Attr.isIntAttribute()) { 803 Record.push_back(1); 804 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 805 Record.push_back(Attr.getValueAsInt()); 806 } else if (Attr.isStringAttribute()) { 807 StringRef Kind = Attr.getKindAsString(); 808 StringRef Val = Attr.getValueAsString(); 809 810 Record.push_back(Val.empty() ? 3 : 4); 811 Record.append(Kind.begin(), Kind.end()); 812 Record.push_back(0); 813 if (!Val.empty()) { 814 Record.append(Val.begin(), Val.end()); 815 Record.push_back(0); 816 } 817 } else { 818 assert(Attr.isTypeAttribute()); 819 Type *Ty = Attr.getValueAsType(); 820 Record.push_back(Ty ? 6 : 5); 821 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 822 if (Ty) 823 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 824 } 825 } 826 827 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 828 Record.clear(); 829 } 830 831 Stream.ExitBlock(); 832 } 833 834 void ModuleBitcodeWriter::writeAttributeTable() { 835 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 836 if (Attrs.empty()) return; 837 838 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 839 840 SmallVector<uint64_t, 64> Record; 841 for (const AttributeList &AL : Attrs) { 842 for (unsigned i : AL.indexes()) { 843 AttributeSet AS = AL.getAttributes(i); 844 if (AS.hasAttributes()) 845 Record.push_back(VE.getAttributeGroupID({i, AS})); 846 } 847 848 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 849 Record.clear(); 850 } 851 852 Stream.ExitBlock(); 853 } 854 855 /// WriteTypeTable - Write out the type table for a module. 856 void ModuleBitcodeWriter::writeTypeTable() { 857 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 858 859 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 860 SmallVector<uint64_t, 64> TypeVals; 861 862 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 863 864 // Abbrev for TYPE_CODE_POINTER. 865 auto Abbv = std::make_shared<BitCodeAbbrev>(); 866 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 868 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 869 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 870 871 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 872 Abbv = std::make_shared<BitCodeAbbrev>(); 873 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 874 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 875 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 876 877 // Abbrev for TYPE_CODE_FUNCTION. 878 Abbv = std::make_shared<BitCodeAbbrev>(); 879 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 883 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 884 885 // Abbrev for TYPE_CODE_STRUCT_ANON. 886 Abbv = std::make_shared<BitCodeAbbrev>(); 887 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 891 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 892 893 // Abbrev for TYPE_CODE_STRUCT_NAME. 894 Abbv = std::make_shared<BitCodeAbbrev>(); 895 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 898 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 899 900 // Abbrev for TYPE_CODE_STRUCT_NAMED. 901 Abbv = std::make_shared<BitCodeAbbrev>(); 902 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 906 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 907 908 // Abbrev for TYPE_CODE_ARRAY. 909 Abbv = std::make_shared<BitCodeAbbrev>(); 910 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 913 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 914 915 // Emit an entry count so the reader can reserve space. 916 TypeVals.push_back(TypeList.size()); 917 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 918 TypeVals.clear(); 919 920 // Loop over all of the types, emitting each in turn. 921 for (Type *T : TypeList) { 922 int AbbrevToUse = 0; 923 unsigned Code = 0; 924 925 switch (T->getTypeID()) { 926 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 927 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 928 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 929 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 930 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 931 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 932 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 933 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 934 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 935 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 936 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 937 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 938 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 939 case Type::IntegerTyID: 940 // INTEGER: [width] 941 Code = bitc::TYPE_CODE_INTEGER; 942 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 943 break; 944 case Type::PointerTyID: { 945 PointerType *PTy = cast<PointerType>(T); 946 unsigned AddressSpace = PTy->getAddressSpace(); 947 if (PTy->isOpaque()) { 948 // OPAQUE_POINTER: [address space] 949 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 950 TypeVals.push_back(AddressSpace); 951 if (AddressSpace == 0) 952 AbbrevToUse = OpaquePtrAbbrev; 953 } else { 954 // POINTER: [pointee type, address space] 955 Code = bitc::TYPE_CODE_POINTER; 956 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 957 TypeVals.push_back(AddressSpace); 958 if (AddressSpace == 0) 959 AbbrevToUse = PtrAbbrev; 960 } 961 break; 962 } 963 case Type::FunctionTyID: { 964 FunctionType *FT = cast<FunctionType>(T); 965 // FUNCTION: [isvararg, retty, paramty x N] 966 Code = bitc::TYPE_CODE_FUNCTION; 967 TypeVals.push_back(FT->isVarArg()); 968 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 969 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 970 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 971 AbbrevToUse = FunctionAbbrev; 972 break; 973 } 974 case Type::StructTyID: { 975 StructType *ST = cast<StructType>(T); 976 // STRUCT: [ispacked, eltty x N] 977 TypeVals.push_back(ST->isPacked()); 978 // Output all of the element types. 979 for (Type *ET : ST->elements()) 980 TypeVals.push_back(VE.getTypeID(ET)); 981 982 if (ST->isLiteral()) { 983 Code = bitc::TYPE_CODE_STRUCT_ANON; 984 AbbrevToUse = StructAnonAbbrev; 985 } else { 986 if (ST->isOpaque()) { 987 Code = bitc::TYPE_CODE_OPAQUE; 988 } else { 989 Code = bitc::TYPE_CODE_STRUCT_NAMED; 990 AbbrevToUse = StructNamedAbbrev; 991 } 992 993 // Emit the name if it is present. 994 if (!ST->getName().empty()) 995 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 996 StructNameAbbrev); 997 } 998 break; 999 } 1000 case Type::ArrayTyID: { 1001 ArrayType *AT = cast<ArrayType>(T); 1002 // ARRAY: [numelts, eltty] 1003 Code = bitc::TYPE_CODE_ARRAY; 1004 TypeVals.push_back(AT->getNumElements()); 1005 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1006 AbbrevToUse = ArrayAbbrev; 1007 break; 1008 } 1009 case Type::FixedVectorTyID: 1010 case Type::ScalableVectorTyID: { 1011 VectorType *VT = cast<VectorType>(T); 1012 // VECTOR [numelts, eltty] or 1013 // [numelts, eltty, scalable] 1014 Code = bitc::TYPE_CODE_VECTOR; 1015 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1016 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1017 if (isa<ScalableVectorType>(VT)) 1018 TypeVals.push_back(true); 1019 break; 1020 } 1021 } 1022 1023 // Emit the finished record. 1024 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1025 TypeVals.clear(); 1026 } 1027 1028 Stream.ExitBlock(); 1029 } 1030 1031 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1032 switch (Linkage) { 1033 case GlobalValue::ExternalLinkage: 1034 return 0; 1035 case GlobalValue::WeakAnyLinkage: 1036 return 16; 1037 case GlobalValue::AppendingLinkage: 1038 return 2; 1039 case GlobalValue::InternalLinkage: 1040 return 3; 1041 case GlobalValue::LinkOnceAnyLinkage: 1042 return 18; 1043 case GlobalValue::ExternalWeakLinkage: 1044 return 7; 1045 case GlobalValue::CommonLinkage: 1046 return 8; 1047 case GlobalValue::PrivateLinkage: 1048 return 9; 1049 case GlobalValue::WeakODRLinkage: 1050 return 17; 1051 case GlobalValue::LinkOnceODRLinkage: 1052 return 19; 1053 case GlobalValue::AvailableExternallyLinkage: 1054 return 12; 1055 } 1056 llvm_unreachable("Invalid linkage"); 1057 } 1058 1059 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1060 return getEncodedLinkage(GV.getLinkage()); 1061 } 1062 1063 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1064 uint64_t RawFlags = 0; 1065 RawFlags |= Flags.ReadNone; 1066 RawFlags |= (Flags.ReadOnly << 1); 1067 RawFlags |= (Flags.NoRecurse << 2); 1068 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1069 RawFlags |= (Flags.NoInline << 4); 1070 RawFlags |= (Flags.AlwaysInline << 5); 1071 RawFlags |= (Flags.NoUnwind << 6); 1072 RawFlags |= (Flags.MayThrow << 7); 1073 RawFlags |= (Flags.HasUnknownCall << 8); 1074 RawFlags |= (Flags.MustBeUnreachable << 9); 1075 return RawFlags; 1076 } 1077 1078 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1079 // in BitcodeReader.cpp. 1080 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1081 uint64_t RawFlags = 0; 1082 1083 RawFlags |= Flags.NotEligibleToImport; // bool 1084 RawFlags |= (Flags.Live << 1); 1085 RawFlags |= (Flags.DSOLocal << 2); 1086 RawFlags |= (Flags.CanAutoHide << 3); 1087 1088 // Linkage don't need to be remapped at that time for the summary. Any future 1089 // change to the getEncodedLinkage() function will need to be taken into 1090 // account here as well. 1091 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1092 1093 RawFlags |= (Flags.Visibility << 8); // 2 bits 1094 1095 return RawFlags; 1096 } 1097 1098 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1099 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1100 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1101 return RawFlags; 1102 } 1103 1104 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1105 switch (GV.getVisibility()) { 1106 case GlobalValue::DefaultVisibility: return 0; 1107 case GlobalValue::HiddenVisibility: return 1; 1108 case GlobalValue::ProtectedVisibility: return 2; 1109 } 1110 llvm_unreachable("Invalid visibility"); 1111 } 1112 1113 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1114 switch (GV.getDLLStorageClass()) { 1115 case GlobalValue::DefaultStorageClass: return 0; 1116 case GlobalValue::DLLImportStorageClass: return 1; 1117 case GlobalValue::DLLExportStorageClass: return 2; 1118 } 1119 llvm_unreachable("Invalid DLL storage class"); 1120 } 1121 1122 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1123 switch (GV.getThreadLocalMode()) { 1124 case GlobalVariable::NotThreadLocal: return 0; 1125 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1126 case GlobalVariable::LocalDynamicTLSModel: return 2; 1127 case GlobalVariable::InitialExecTLSModel: return 3; 1128 case GlobalVariable::LocalExecTLSModel: return 4; 1129 } 1130 llvm_unreachable("Invalid TLS model"); 1131 } 1132 1133 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1134 switch (C.getSelectionKind()) { 1135 case Comdat::Any: 1136 return bitc::COMDAT_SELECTION_KIND_ANY; 1137 case Comdat::ExactMatch: 1138 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1139 case Comdat::Largest: 1140 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1141 case Comdat::NoDeduplicate: 1142 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1143 case Comdat::SameSize: 1144 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1145 } 1146 llvm_unreachable("Invalid selection kind"); 1147 } 1148 1149 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1150 switch (GV.getUnnamedAddr()) { 1151 case GlobalValue::UnnamedAddr::None: return 0; 1152 case GlobalValue::UnnamedAddr::Local: return 2; 1153 case GlobalValue::UnnamedAddr::Global: return 1; 1154 } 1155 llvm_unreachable("Invalid unnamed_addr"); 1156 } 1157 1158 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1159 if (GenerateHash) 1160 Hasher.update(Str); 1161 return StrtabBuilder.add(Str); 1162 } 1163 1164 void ModuleBitcodeWriter::writeComdats() { 1165 SmallVector<unsigned, 64> Vals; 1166 for (const Comdat *C : VE.getComdats()) { 1167 // COMDAT: [strtab offset, strtab size, selection_kind] 1168 Vals.push_back(addToStrtab(C->getName())); 1169 Vals.push_back(C->getName().size()); 1170 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1171 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1172 Vals.clear(); 1173 } 1174 } 1175 1176 /// Write a record that will eventually hold the word offset of the 1177 /// module-level VST. For now the offset is 0, which will be backpatched 1178 /// after the real VST is written. Saves the bit offset to backpatch. 1179 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1180 // Write a placeholder value in for the offset of the real VST, 1181 // which is written after the function blocks so that it can include 1182 // the offset of each function. The placeholder offset will be 1183 // updated when the real VST is written. 1184 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1185 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1186 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1187 // hold the real VST offset. Must use fixed instead of VBR as we don't 1188 // know how many VBR chunks to reserve ahead of time. 1189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1190 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1191 1192 // Emit the placeholder 1193 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1194 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1195 1196 // Compute and save the bit offset to the placeholder, which will be 1197 // patched when the real VST is written. We can simply subtract the 32-bit 1198 // fixed size from the current bit number to get the location to backpatch. 1199 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1200 } 1201 1202 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1203 1204 /// Determine the encoding to use for the given string name and length. 1205 static StringEncoding getStringEncoding(StringRef Str) { 1206 bool isChar6 = true; 1207 for (char C : Str) { 1208 if (isChar6) 1209 isChar6 = BitCodeAbbrevOp::isChar6(C); 1210 if ((unsigned char)C & 128) 1211 // don't bother scanning the rest. 1212 return SE_Fixed8; 1213 } 1214 if (isChar6) 1215 return SE_Char6; 1216 return SE_Fixed7; 1217 } 1218 1219 /// Emit top-level description of module, including target triple, inline asm, 1220 /// descriptors for global variables, and function prototype info. 1221 /// Returns the bit offset to backpatch with the location of the real VST. 1222 void ModuleBitcodeWriter::writeModuleInfo() { 1223 // Emit various pieces of data attached to a module. 1224 if (!M.getTargetTriple().empty()) 1225 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1226 0 /*TODO*/); 1227 const std::string &DL = M.getDataLayoutStr(); 1228 if (!DL.empty()) 1229 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1230 if (!M.getModuleInlineAsm().empty()) 1231 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1232 0 /*TODO*/); 1233 1234 // Emit information about sections and GC, computing how many there are. Also 1235 // compute the maximum alignment value. 1236 std::map<std::string, unsigned> SectionMap; 1237 std::map<std::string, unsigned> GCMap; 1238 MaybeAlign MaxAlignment; 1239 unsigned MaxGlobalType = 0; 1240 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1241 if (A) 1242 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1243 }; 1244 for (const GlobalVariable &GV : M.globals()) { 1245 UpdateMaxAlignment(GV.getAlign()); 1246 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1247 if (GV.hasSection()) { 1248 // Give section names unique ID's. 1249 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1250 if (!Entry) { 1251 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1252 0 /*TODO*/); 1253 Entry = SectionMap.size(); 1254 } 1255 } 1256 } 1257 for (const Function &F : M) { 1258 UpdateMaxAlignment(F.getAlign()); 1259 if (F.hasSection()) { 1260 // Give section names unique ID's. 1261 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1262 if (!Entry) { 1263 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1264 0 /*TODO*/); 1265 Entry = SectionMap.size(); 1266 } 1267 } 1268 if (F.hasGC()) { 1269 // Same for GC names. 1270 unsigned &Entry = GCMap[F.getGC()]; 1271 if (!Entry) { 1272 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1273 0 /*TODO*/); 1274 Entry = GCMap.size(); 1275 } 1276 } 1277 } 1278 1279 // Emit abbrev for globals, now that we know # sections and max alignment. 1280 unsigned SimpleGVarAbbrev = 0; 1281 if (!M.global_empty()) { 1282 // Add an abbrev for common globals with no visibility or thread localness. 1283 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1284 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1288 Log2_32_Ceil(MaxGlobalType+1))); 1289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1290 //| explicitType << 1 1291 //| constant 1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1294 if (!MaxAlignment) // Alignment. 1295 Abbv->Add(BitCodeAbbrevOp(0)); 1296 else { 1297 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1299 Log2_32_Ceil(MaxEncAlignment+1))); 1300 } 1301 if (SectionMap.empty()) // Section. 1302 Abbv->Add(BitCodeAbbrevOp(0)); 1303 else 1304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1305 Log2_32_Ceil(SectionMap.size()+1))); 1306 // Don't bother emitting vis + thread local. 1307 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1308 } 1309 1310 SmallVector<unsigned, 64> Vals; 1311 // Emit the module's source file name. 1312 { 1313 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1314 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1315 if (Bits == SE_Char6) 1316 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1317 else if (Bits == SE_Fixed7) 1318 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1319 1320 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1321 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1322 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1324 Abbv->Add(AbbrevOpToUse); 1325 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1326 1327 for (const auto P : M.getSourceFileName()) 1328 Vals.push_back((unsigned char)P); 1329 1330 // Emit the finished record. 1331 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1332 Vals.clear(); 1333 } 1334 1335 // Emit the global variable information. 1336 for (const GlobalVariable &GV : M.globals()) { 1337 unsigned AbbrevToUse = 0; 1338 1339 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1340 // linkage, alignment, section, visibility, threadlocal, 1341 // unnamed_addr, externally_initialized, dllstorageclass, 1342 // comdat, attributes, DSO_Local] 1343 Vals.push_back(addToStrtab(GV.getName())); 1344 Vals.push_back(GV.getName().size()); 1345 Vals.push_back(VE.getTypeID(GV.getValueType())); 1346 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1347 Vals.push_back(GV.isDeclaration() ? 0 : 1348 (VE.getValueID(GV.getInitializer()) + 1)); 1349 Vals.push_back(getEncodedLinkage(GV)); 1350 Vals.push_back(getEncodedAlign(GV.getAlign())); 1351 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1352 : 0); 1353 if (GV.isThreadLocal() || 1354 GV.getVisibility() != GlobalValue::DefaultVisibility || 1355 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1356 GV.isExternallyInitialized() || 1357 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1358 GV.hasComdat() || 1359 GV.hasAttributes() || 1360 GV.isDSOLocal() || 1361 GV.hasPartition()) { 1362 Vals.push_back(getEncodedVisibility(GV)); 1363 Vals.push_back(getEncodedThreadLocalMode(GV)); 1364 Vals.push_back(getEncodedUnnamedAddr(GV)); 1365 Vals.push_back(GV.isExternallyInitialized()); 1366 Vals.push_back(getEncodedDLLStorageClass(GV)); 1367 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1368 1369 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1370 Vals.push_back(VE.getAttributeListID(AL)); 1371 1372 Vals.push_back(GV.isDSOLocal()); 1373 Vals.push_back(addToStrtab(GV.getPartition())); 1374 Vals.push_back(GV.getPartition().size()); 1375 } else { 1376 AbbrevToUse = SimpleGVarAbbrev; 1377 } 1378 1379 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1380 Vals.clear(); 1381 } 1382 1383 // Emit the function proto information. 1384 for (const Function &F : M) { 1385 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1386 // linkage, paramattrs, alignment, section, visibility, gc, 1387 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1388 // prefixdata, personalityfn, DSO_Local, addrspace] 1389 Vals.push_back(addToStrtab(F.getName())); 1390 Vals.push_back(F.getName().size()); 1391 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1392 Vals.push_back(F.getCallingConv()); 1393 Vals.push_back(F.isDeclaration()); 1394 Vals.push_back(getEncodedLinkage(F)); 1395 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1396 Vals.push_back(getEncodedAlign(F.getAlign())); 1397 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1398 : 0); 1399 Vals.push_back(getEncodedVisibility(F)); 1400 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1401 Vals.push_back(getEncodedUnnamedAddr(F)); 1402 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1403 : 0); 1404 Vals.push_back(getEncodedDLLStorageClass(F)); 1405 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1406 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1407 : 0); 1408 Vals.push_back( 1409 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1410 1411 Vals.push_back(F.isDSOLocal()); 1412 Vals.push_back(F.getAddressSpace()); 1413 Vals.push_back(addToStrtab(F.getPartition())); 1414 Vals.push_back(F.getPartition().size()); 1415 1416 unsigned AbbrevToUse = 0; 1417 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1418 Vals.clear(); 1419 } 1420 1421 // Emit the alias information. 1422 for (const GlobalAlias &A : M.aliases()) { 1423 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1424 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1425 // DSO_Local] 1426 Vals.push_back(addToStrtab(A.getName())); 1427 Vals.push_back(A.getName().size()); 1428 Vals.push_back(VE.getTypeID(A.getValueType())); 1429 Vals.push_back(A.getType()->getAddressSpace()); 1430 Vals.push_back(VE.getValueID(A.getAliasee())); 1431 Vals.push_back(getEncodedLinkage(A)); 1432 Vals.push_back(getEncodedVisibility(A)); 1433 Vals.push_back(getEncodedDLLStorageClass(A)); 1434 Vals.push_back(getEncodedThreadLocalMode(A)); 1435 Vals.push_back(getEncodedUnnamedAddr(A)); 1436 Vals.push_back(A.isDSOLocal()); 1437 Vals.push_back(addToStrtab(A.getPartition())); 1438 Vals.push_back(A.getPartition().size()); 1439 1440 unsigned AbbrevToUse = 0; 1441 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1442 Vals.clear(); 1443 } 1444 1445 // Emit the ifunc information. 1446 for (const GlobalIFunc &I : M.ifuncs()) { 1447 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1448 // val#, linkage, visibility, DSO_Local] 1449 Vals.push_back(addToStrtab(I.getName())); 1450 Vals.push_back(I.getName().size()); 1451 Vals.push_back(VE.getTypeID(I.getValueType())); 1452 Vals.push_back(I.getType()->getAddressSpace()); 1453 Vals.push_back(VE.getValueID(I.getResolver())); 1454 Vals.push_back(getEncodedLinkage(I)); 1455 Vals.push_back(getEncodedVisibility(I)); 1456 Vals.push_back(I.isDSOLocal()); 1457 Vals.push_back(addToStrtab(I.getPartition())); 1458 Vals.push_back(I.getPartition().size()); 1459 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1460 Vals.clear(); 1461 } 1462 1463 writeValueSymbolTableForwardDecl(); 1464 } 1465 1466 static uint64_t getOptimizationFlags(const Value *V) { 1467 uint64_t Flags = 0; 1468 1469 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1470 if (OBO->hasNoSignedWrap()) 1471 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1472 if (OBO->hasNoUnsignedWrap()) 1473 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1474 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1475 if (PEO->isExact()) 1476 Flags |= 1 << bitc::PEO_EXACT; 1477 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1478 if (FPMO->hasAllowReassoc()) 1479 Flags |= bitc::AllowReassoc; 1480 if (FPMO->hasNoNaNs()) 1481 Flags |= bitc::NoNaNs; 1482 if (FPMO->hasNoInfs()) 1483 Flags |= bitc::NoInfs; 1484 if (FPMO->hasNoSignedZeros()) 1485 Flags |= bitc::NoSignedZeros; 1486 if (FPMO->hasAllowReciprocal()) 1487 Flags |= bitc::AllowReciprocal; 1488 if (FPMO->hasAllowContract()) 1489 Flags |= bitc::AllowContract; 1490 if (FPMO->hasApproxFunc()) 1491 Flags |= bitc::ApproxFunc; 1492 } 1493 1494 return Flags; 1495 } 1496 1497 void ModuleBitcodeWriter::writeValueAsMetadata( 1498 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1499 // Mimic an MDNode with a value as one operand. 1500 Value *V = MD->getValue(); 1501 Record.push_back(VE.getTypeID(V->getType())); 1502 Record.push_back(VE.getValueID(V)); 1503 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1504 Record.clear(); 1505 } 1506 1507 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1508 SmallVectorImpl<uint64_t> &Record, 1509 unsigned Abbrev) { 1510 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1511 Metadata *MD = N->getOperand(i); 1512 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1513 "Unexpected function-local metadata"); 1514 Record.push_back(VE.getMetadataOrNullID(MD)); 1515 } 1516 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1517 : bitc::METADATA_NODE, 1518 Record, Abbrev); 1519 Record.clear(); 1520 } 1521 1522 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1523 // Assume the column is usually under 128, and always output the inlined-at 1524 // location (it's never more expensive than building an array size 1). 1525 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1526 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1533 return Stream.EmitAbbrev(std::move(Abbv)); 1534 } 1535 1536 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1537 SmallVectorImpl<uint64_t> &Record, 1538 unsigned &Abbrev) { 1539 if (!Abbrev) 1540 Abbrev = createDILocationAbbrev(); 1541 1542 Record.push_back(N->isDistinct()); 1543 Record.push_back(N->getLine()); 1544 Record.push_back(N->getColumn()); 1545 Record.push_back(VE.getMetadataID(N->getScope())); 1546 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1547 Record.push_back(N->isImplicitCode()); 1548 1549 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1550 Record.clear(); 1551 } 1552 1553 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1554 // Assume the column is usually under 128, and always output the inlined-at 1555 // location (it's never more expensive than building an array size 1). 1556 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1557 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1564 return Stream.EmitAbbrev(std::move(Abbv)); 1565 } 1566 1567 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1568 SmallVectorImpl<uint64_t> &Record, 1569 unsigned &Abbrev) { 1570 if (!Abbrev) 1571 Abbrev = createGenericDINodeAbbrev(); 1572 1573 Record.push_back(N->isDistinct()); 1574 Record.push_back(N->getTag()); 1575 Record.push_back(0); // Per-tag version field; unused for now. 1576 1577 for (auto &I : N->operands()) 1578 Record.push_back(VE.getMetadataOrNullID(I)); 1579 1580 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1581 Record.clear(); 1582 } 1583 1584 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1585 SmallVectorImpl<uint64_t> &Record, 1586 unsigned Abbrev) { 1587 const uint64_t Version = 2 << 1; 1588 Record.push_back((uint64_t)N->isDistinct() | Version); 1589 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1590 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1591 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1593 1594 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1595 Record.clear(); 1596 } 1597 1598 void ModuleBitcodeWriter::writeDIGenericSubrange( 1599 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1600 unsigned Abbrev) { 1601 Record.push_back((uint64_t)N->isDistinct()); 1602 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1603 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1604 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1605 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1606 1607 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1608 Record.clear(); 1609 } 1610 1611 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1612 if ((int64_t)V >= 0) 1613 Vals.push_back(V << 1); 1614 else 1615 Vals.push_back((-V << 1) | 1); 1616 } 1617 1618 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1619 // We have an arbitrary precision integer value to write whose 1620 // bit width is > 64. However, in canonical unsigned integer 1621 // format it is likely that the high bits are going to be zero. 1622 // So, we only write the number of active words. 1623 unsigned NumWords = A.getActiveWords(); 1624 const uint64_t *RawData = A.getRawData(); 1625 for (unsigned i = 0; i < NumWords; i++) 1626 emitSignedInt64(Vals, RawData[i]); 1627 } 1628 1629 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1630 SmallVectorImpl<uint64_t> &Record, 1631 unsigned Abbrev) { 1632 const uint64_t IsBigInt = 1 << 2; 1633 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1634 Record.push_back(N->getValue().getBitWidth()); 1635 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1636 emitWideAPInt(Record, N->getValue()); 1637 1638 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1639 Record.clear(); 1640 } 1641 1642 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1643 SmallVectorImpl<uint64_t> &Record, 1644 unsigned Abbrev) { 1645 Record.push_back(N->isDistinct()); 1646 Record.push_back(N->getTag()); 1647 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1648 Record.push_back(N->getSizeInBits()); 1649 Record.push_back(N->getAlignInBits()); 1650 Record.push_back(N->getEncoding()); 1651 Record.push_back(N->getFlags()); 1652 1653 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1654 Record.clear(); 1655 } 1656 1657 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1658 SmallVectorImpl<uint64_t> &Record, 1659 unsigned Abbrev) { 1660 Record.push_back(N->isDistinct()); 1661 Record.push_back(N->getTag()); 1662 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1663 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1664 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1665 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1666 Record.push_back(N->getSizeInBits()); 1667 Record.push_back(N->getAlignInBits()); 1668 Record.push_back(N->getEncoding()); 1669 1670 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1671 Record.clear(); 1672 } 1673 1674 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1675 SmallVectorImpl<uint64_t> &Record, 1676 unsigned Abbrev) { 1677 Record.push_back(N->isDistinct()); 1678 Record.push_back(N->getTag()); 1679 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1680 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1681 Record.push_back(N->getLine()); 1682 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1683 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1684 Record.push_back(N->getSizeInBits()); 1685 Record.push_back(N->getAlignInBits()); 1686 Record.push_back(N->getOffsetInBits()); 1687 Record.push_back(N->getFlags()); 1688 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1689 1690 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1691 // that there is no DWARF address space associated with DIDerivedType. 1692 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1693 Record.push_back(*DWARFAddressSpace + 1); 1694 else 1695 Record.push_back(0); 1696 1697 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1698 1699 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1700 Record.clear(); 1701 } 1702 1703 void ModuleBitcodeWriter::writeDICompositeType( 1704 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1705 unsigned Abbrev) { 1706 const unsigned IsNotUsedInOldTypeRef = 0x2; 1707 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1708 Record.push_back(N->getTag()); 1709 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1711 Record.push_back(N->getLine()); 1712 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1713 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1714 Record.push_back(N->getSizeInBits()); 1715 Record.push_back(N->getAlignInBits()); 1716 Record.push_back(N->getOffsetInBits()); 1717 Record.push_back(N->getFlags()); 1718 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1719 Record.push_back(N->getRuntimeLang()); 1720 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1726 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1727 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1728 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1729 1730 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1731 Record.clear(); 1732 } 1733 1734 void ModuleBitcodeWriter::writeDISubroutineType( 1735 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1736 unsigned Abbrev) { 1737 const unsigned HasNoOldTypeRefs = 0x2; 1738 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1739 Record.push_back(N->getFlags()); 1740 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1741 Record.push_back(N->getCC()); 1742 1743 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1744 Record.clear(); 1745 } 1746 1747 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1748 SmallVectorImpl<uint64_t> &Record, 1749 unsigned Abbrev) { 1750 Record.push_back(N->isDistinct()); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1752 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1753 if (N->getRawChecksum()) { 1754 Record.push_back(N->getRawChecksum()->Kind); 1755 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1756 } else { 1757 // Maintain backwards compatibility with the old internal representation of 1758 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1759 Record.push_back(0); 1760 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1761 } 1762 auto Source = N->getRawSource(); 1763 if (Source) 1764 Record.push_back(VE.getMetadataOrNullID(*Source)); 1765 1766 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1767 Record.clear(); 1768 } 1769 1770 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1771 SmallVectorImpl<uint64_t> &Record, 1772 unsigned Abbrev) { 1773 assert(N->isDistinct() && "Expected distinct compile units"); 1774 Record.push_back(/* IsDistinct */ true); 1775 Record.push_back(N->getSourceLanguage()); 1776 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1778 Record.push_back(N->isOptimized()); 1779 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1780 Record.push_back(N->getRuntimeVersion()); 1781 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1782 Record.push_back(N->getEmissionKind()); 1783 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1784 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1785 Record.push_back(/* subprograms */ 0); 1786 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1787 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1788 Record.push_back(N->getDWOId()); 1789 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1790 Record.push_back(N->getSplitDebugInlining()); 1791 Record.push_back(N->getDebugInfoForProfiling()); 1792 Record.push_back((unsigned)N->getNameTableKind()); 1793 Record.push_back(N->getRangesBaseAddress()); 1794 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1795 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1796 1797 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1798 Record.clear(); 1799 } 1800 1801 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1802 SmallVectorImpl<uint64_t> &Record, 1803 unsigned Abbrev) { 1804 const uint64_t HasUnitFlag = 1 << 1; 1805 const uint64_t HasSPFlagsFlag = 1 << 2; 1806 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1807 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1808 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1809 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1810 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1811 Record.push_back(N->getLine()); 1812 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1813 Record.push_back(N->getScopeLine()); 1814 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1815 Record.push_back(N->getSPFlags()); 1816 Record.push_back(N->getVirtualIndex()); 1817 Record.push_back(N->getFlags()); 1818 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1819 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1820 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1821 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1822 Record.push_back(N->getThisAdjustment()); 1823 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1824 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1825 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1826 1827 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1828 Record.clear(); 1829 } 1830 1831 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1832 SmallVectorImpl<uint64_t> &Record, 1833 unsigned Abbrev) { 1834 Record.push_back(N->isDistinct()); 1835 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1836 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1837 Record.push_back(N->getLine()); 1838 Record.push_back(N->getColumn()); 1839 1840 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1841 Record.clear(); 1842 } 1843 1844 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1845 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1846 unsigned Abbrev) { 1847 Record.push_back(N->isDistinct()); 1848 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1849 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1850 Record.push_back(N->getDiscriminator()); 1851 1852 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1853 Record.clear(); 1854 } 1855 1856 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1857 SmallVectorImpl<uint64_t> &Record, 1858 unsigned Abbrev) { 1859 Record.push_back(N->isDistinct()); 1860 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1861 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1862 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1863 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1864 Record.push_back(N->getLineNo()); 1865 1866 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1867 Record.clear(); 1868 } 1869 1870 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1871 SmallVectorImpl<uint64_t> &Record, 1872 unsigned Abbrev) { 1873 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1874 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1875 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1876 1877 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1878 Record.clear(); 1879 } 1880 1881 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1882 SmallVectorImpl<uint64_t> &Record, 1883 unsigned Abbrev) { 1884 Record.push_back(N->isDistinct()); 1885 Record.push_back(N->getMacinfoType()); 1886 Record.push_back(N->getLine()); 1887 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1888 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1889 1890 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1891 Record.clear(); 1892 } 1893 1894 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1895 SmallVectorImpl<uint64_t> &Record, 1896 unsigned Abbrev) { 1897 Record.push_back(N->isDistinct()); 1898 Record.push_back(N->getMacinfoType()); 1899 Record.push_back(N->getLine()); 1900 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1901 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1902 1903 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1904 Record.clear(); 1905 } 1906 1907 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1908 SmallVectorImpl<uint64_t> &Record, 1909 unsigned Abbrev) { 1910 Record.reserve(N->getArgs().size()); 1911 for (ValueAsMetadata *MD : N->getArgs()) 1912 Record.push_back(VE.getMetadataID(MD)); 1913 1914 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1915 Record.clear(); 1916 } 1917 1918 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1919 SmallVectorImpl<uint64_t> &Record, 1920 unsigned Abbrev) { 1921 Record.push_back(N->isDistinct()); 1922 for (auto &I : N->operands()) 1923 Record.push_back(VE.getMetadataOrNullID(I)); 1924 Record.push_back(N->getLineNo()); 1925 Record.push_back(N->getIsDecl()); 1926 1927 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1928 Record.clear(); 1929 } 1930 1931 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1932 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1933 unsigned Abbrev) { 1934 Record.push_back(N->isDistinct()); 1935 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1936 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1937 Record.push_back(N->isDefault()); 1938 1939 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1940 Record.clear(); 1941 } 1942 1943 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1944 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1945 unsigned Abbrev) { 1946 Record.push_back(N->isDistinct()); 1947 Record.push_back(N->getTag()); 1948 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1949 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1950 Record.push_back(N->isDefault()); 1951 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1952 1953 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1954 Record.clear(); 1955 } 1956 1957 void ModuleBitcodeWriter::writeDIGlobalVariable( 1958 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1959 unsigned Abbrev) { 1960 const uint64_t Version = 2 << 1; 1961 Record.push_back((uint64_t)N->isDistinct() | Version); 1962 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1963 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1964 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1965 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1966 Record.push_back(N->getLine()); 1967 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1968 Record.push_back(N->isLocalToUnit()); 1969 Record.push_back(N->isDefinition()); 1970 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1971 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1972 Record.push_back(N->getAlignInBits()); 1973 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1974 1975 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1976 Record.clear(); 1977 } 1978 1979 void ModuleBitcodeWriter::writeDILocalVariable( 1980 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1981 unsigned Abbrev) { 1982 // In order to support all possible bitcode formats in BitcodeReader we need 1983 // to distinguish the following cases: 1984 // 1) Record has no artificial tag (Record[1]), 1985 // has no obsolete inlinedAt field (Record[9]). 1986 // In this case Record size will be 8, HasAlignment flag is false. 1987 // 2) Record has artificial tag (Record[1]), 1988 // has no obsolete inlignedAt field (Record[9]). 1989 // In this case Record size will be 9, HasAlignment flag is false. 1990 // 3) Record has both artificial tag (Record[1]) and 1991 // obsolete inlignedAt field (Record[9]). 1992 // In this case Record size will be 10, HasAlignment flag is false. 1993 // 4) Record has neither artificial tag, nor inlignedAt field, but 1994 // HasAlignment flag is true and Record[8] contains alignment value. 1995 const uint64_t HasAlignmentFlag = 1 << 1; 1996 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1997 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1998 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1999 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2000 Record.push_back(N->getLine()); 2001 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2002 Record.push_back(N->getArg()); 2003 Record.push_back(N->getFlags()); 2004 Record.push_back(N->getAlignInBits()); 2005 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2006 2007 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2008 Record.clear(); 2009 } 2010 2011 void ModuleBitcodeWriter::writeDILabel( 2012 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2013 unsigned Abbrev) { 2014 Record.push_back((uint64_t)N->isDistinct()); 2015 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2016 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2017 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2018 Record.push_back(N->getLine()); 2019 2020 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2021 Record.clear(); 2022 } 2023 2024 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2025 SmallVectorImpl<uint64_t> &Record, 2026 unsigned Abbrev) { 2027 Record.reserve(N->getElements().size() + 1); 2028 const uint64_t Version = 3 << 1; 2029 Record.push_back((uint64_t)N->isDistinct() | Version); 2030 Record.append(N->elements_begin(), N->elements_end()); 2031 2032 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2033 Record.clear(); 2034 } 2035 2036 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2037 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2038 unsigned Abbrev) { 2039 Record.push_back(N->isDistinct()); 2040 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2041 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2042 2043 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2044 Record.clear(); 2045 } 2046 2047 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2048 SmallVectorImpl<uint64_t> &Record, 2049 unsigned Abbrev) { 2050 Record.push_back(N->isDistinct()); 2051 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2052 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2053 Record.push_back(N->getLine()); 2054 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2055 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2056 Record.push_back(N->getAttributes()); 2057 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2058 2059 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2060 Record.clear(); 2061 } 2062 2063 void ModuleBitcodeWriter::writeDIImportedEntity( 2064 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2065 unsigned Abbrev) { 2066 Record.push_back(N->isDistinct()); 2067 Record.push_back(N->getTag()); 2068 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2069 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2070 Record.push_back(N->getLine()); 2071 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2072 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2073 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2074 2075 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2076 Record.clear(); 2077 } 2078 2079 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2080 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2081 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2084 return Stream.EmitAbbrev(std::move(Abbv)); 2085 } 2086 2087 void ModuleBitcodeWriter::writeNamedMetadata( 2088 SmallVectorImpl<uint64_t> &Record) { 2089 if (M.named_metadata_empty()) 2090 return; 2091 2092 unsigned Abbrev = createNamedMetadataAbbrev(); 2093 for (const NamedMDNode &NMD : M.named_metadata()) { 2094 // Write name. 2095 StringRef Str = NMD.getName(); 2096 Record.append(Str.bytes_begin(), Str.bytes_end()); 2097 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2098 Record.clear(); 2099 2100 // Write named metadata operands. 2101 for (const MDNode *N : NMD.operands()) 2102 Record.push_back(VE.getMetadataID(N)); 2103 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2104 Record.clear(); 2105 } 2106 } 2107 2108 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2109 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2110 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2114 return Stream.EmitAbbrev(std::move(Abbv)); 2115 } 2116 2117 /// Write out a record for MDString. 2118 /// 2119 /// All the metadata strings in a metadata block are emitted in a single 2120 /// record. The sizes and strings themselves are shoved into a blob. 2121 void ModuleBitcodeWriter::writeMetadataStrings( 2122 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2123 if (Strings.empty()) 2124 return; 2125 2126 // Start the record with the number of strings. 2127 Record.push_back(bitc::METADATA_STRINGS); 2128 Record.push_back(Strings.size()); 2129 2130 // Emit the sizes of the strings in the blob. 2131 SmallString<256> Blob; 2132 { 2133 BitstreamWriter W(Blob); 2134 for (const Metadata *MD : Strings) 2135 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2136 W.FlushToWord(); 2137 } 2138 2139 // Add the offset to the strings to the record. 2140 Record.push_back(Blob.size()); 2141 2142 // Add the strings to the blob. 2143 for (const Metadata *MD : Strings) 2144 Blob.append(cast<MDString>(MD)->getString()); 2145 2146 // Emit the final record. 2147 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2148 Record.clear(); 2149 } 2150 2151 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2152 enum MetadataAbbrev : unsigned { 2153 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2154 #include "llvm/IR/Metadata.def" 2155 LastPlusOne 2156 }; 2157 2158 void ModuleBitcodeWriter::writeMetadataRecords( 2159 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2160 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2161 if (MDs.empty()) 2162 return; 2163 2164 // Initialize MDNode abbreviations. 2165 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2166 #include "llvm/IR/Metadata.def" 2167 2168 for (const Metadata *MD : MDs) { 2169 if (IndexPos) 2170 IndexPos->push_back(Stream.GetCurrentBitNo()); 2171 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2172 assert(N->isResolved() && "Expected forward references to be resolved"); 2173 2174 switch (N->getMetadataID()) { 2175 default: 2176 llvm_unreachable("Invalid MDNode subclass"); 2177 #define HANDLE_MDNODE_LEAF(CLASS) \ 2178 case Metadata::CLASS##Kind: \ 2179 if (MDAbbrevs) \ 2180 write##CLASS(cast<CLASS>(N), Record, \ 2181 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2182 else \ 2183 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2184 continue; 2185 #include "llvm/IR/Metadata.def" 2186 } 2187 } 2188 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2189 } 2190 } 2191 2192 void ModuleBitcodeWriter::writeModuleMetadata() { 2193 if (!VE.hasMDs() && M.named_metadata_empty()) 2194 return; 2195 2196 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2197 SmallVector<uint64_t, 64> Record; 2198 2199 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2200 // block and load any metadata. 2201 std::vector<unsigned> MDAbbrevs; 2202 2203 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2204 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2205 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2206 createGenericDINodeAbbrev(); 2207 2208 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2209 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2212 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2213 2214 Abbv = std::make_shared<BitCodeAbbrev>(); 2215 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2218 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2219 2220 // Emit MDStrings together upfront. 2221 writeMetadataStrings(VE.getMDStrings(), Record); 2222 2223 // We only emit an index for the metadata record if we have more than a given 2224 // (naive) threshold of metadatas, otherwise it is not worth it. 2225 if (VE.getNonMDStrings().size() > IndexThreshold) { 2226 // Write a placeholder value in for the offset of the metadata index, 2227 // which is written after the records, so that it can include 2228 // the offset of each entry. The placeholder offset will be 2229 // updated after all records are emitted. 2230 uint64_t Vals[] = {0, 0}; 2231 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2232 } 2233 2234 // Compute and save the bit offset to the current position, which will be 2235 // patched when we emit the index later. We can simply subtract the 64-bit 2236 // fixed size from the current bit number to get the location to backpatch. 2237 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2238 2239 // This index will contain the bitpos for each individual record. 2240 std::vector<uint64_t> IndexPos; 2241 IndexPos.reserve(VE.getNonMDStrings().size()); 2242 2243 // Write all the records 2244 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2245 2246 if (VE.getNonMDStrings().size() > IndexThreshold) { 2247 // Now that we have emitted all the records we will emit the index. But 2248 // first 2249 // backpatch the forward reference so that the reader can skip the records 2250 // efficiently. 2251 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2252 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2253 2254 // Delta encode the index. 2255 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2256 for (auto &Elt : IndexPos) { 2257 auto EltDelta = Elt - PreviousValue; 2258 PreviousValue = Elt; 2259 Elt = EltDelta; 2260 } 2261 // Emit the index record. 2262 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2263 IndexPos.clear(); 2264 } 2265 2266 // Write the named metadata now. 2267 writeNamedMetadata(Record); 2268 2269 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2270 SmallVector<uint64_t, 4> Record; 2271 Record.push_back(VE.getValueID(&GO)); 2272 pushGlobalMetadataAttachment(Record, GO); 2273 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2274 }; 2275 for (const Function &F : M) 2276 if (F.isDeclaration() && F.hasMetadata()) 2277 AddDeclAttachedMetadata(F); 2278 // FIXME: Only store metadata for declarations here, and move data for global 2279 // variable definitions to a separate block (PR28134). 2280 for (const GlobalVariable &GV : M.globals()) 2281 if (GV.hasMetadata()) 2282 AddDeclAttachedMetadata(GV); 2283 2284 Stream.ExitBlock(); 2285 } 2286 2287 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2288 if (!VE.hasMDs()) 2289 return; 2290 2291 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2292 SmallVector<uint64_t, 64> Record; 2293 writeMetadataStrings(VE.getMDStrings(), Record); 2294 writeMetadataRecords(VE.getNonMDStrings(), Record); 2295 Stream.ExitBlock(); 2296 } 2297 2298 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2299 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2300 // [n x [id, mdnode]] 2301 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2302 GO.getAllMetadata(MDs); 2303 for (const auto &I : MDs) { 2304 Record.push_back(I.first); 2305 Record.push_back(VE.getMetadataID(I.second)); 2306 } 2307 } 2308 2309 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2310 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2311 2312 SmallVector<uint64_t, 64> Record; 2313 2314 if (F.hasMetadata()) { 2315 pushGlobalMetadataAttachment(Record, F); 2316 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2317 Record.clear(); 2318 } 2319 2320 // Write metadata attachments 2321 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2322 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2323 for (const BasicBlock &BB : F) 2324 for (const Instruction &I : BB) { 2325 MDs.clear(); 2326 I.getAllMetadataOtherThanDebugLoc(MDs); 2327 2328 // If no metadata, ignore instruction. 2329 if (MDs.empty()) continue; 2330 2331 Record.push_back(VE.getInstructionID(&I)); 2332 2333 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2334 Record.push_back(MDs[i].first); 2335 Record.push_back(VE.getMetadataID(MDs[i].second)); 2336 } 2337 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2338 Record.clear(); 2339 } 2340 2341 Stream.ExitBlock(); 2342 } 2343 2344 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2345 SmallVector<uint64_t, 64> Record; 2346 2347 // Write metadata kinds 2348 // METADATA_KIND - [n x [id, name]] 2349 SmallVector<StringRef, 8> Names; 2350 M.getMDKindNames(Names); 2351 2352 if (Names.empty()) return; 2353 2354 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2355 2356 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2357 Record.push_back(MDKindID); 2358 StringRef KName = Names[MDKindID]; 2359 Record.append(KName.begin(), KName.end()); 2360 2361 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2362 Record.clear(); 2363 } 2364 2365 Stream.ExitBlock(); 2366 } 2367 2368 void ModuleBitcodeWriter::writeOperandBundleTags() { 2369 // Write metadata kinds 2370 // 2371 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2372 // 2373 // OPERAND_BUNDLE_TAG - [strchr x N] 2374 2375 SmallVector<StringRef, 8> Tags; 2376 M.getOperandBundleTags(Tags); 2377 2378 if (Tags.empty()) 2379 return; 2380 2381 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2382 2383 SmallVector<uint64_t, 64> Record; 2384 2385 for (auto Tag : Tags) { 2386 Record.append(Tag.begin(), Tag.end()); 2387 2388 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2389 Record.clear(); 2390 } 2391 2392 Stream.ExitBlock(); 2393 } 2394 2395 void ModuleBitcodeWriter::writeSyncScopeNames() { 2396 SmallVector<StringRef, 8> SSNs; 2397 M.getContext().getSyncScopeNames(SSNs); 2398 if (SSNs.empty()) 2399 return; 2400 2401 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2402 2403 SmallVector<uint64_t, 64> Record; 2404 for (auto SSN : SSNs) { 2405 Record.append(SSN.begin(), SSN.end()); 2406 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2407 Record.clear(); 2408 } 2409 2410 Stream.ExitBlock(); 2411 } 2412 2413 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2414 bool isGlobal) { 2415 if (FirstVal == LastVal) return; 2416 2417 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2418 2419 unsigned AggregateAbbrev = 0; 2420 unsigned String8Abbrev = 0; 2421 unsigned CString7Abbrev = 0; 2422 unsigned CString6Abbrev = 0; 2423 // If this is a constant pool for the module, emit module-specific abbrevs. 2424 if (isGlobal) { 2425 // Abbrev for CST_CODE_AGGREGATE. 2426 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2427 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2430 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2431 2432 // Abbrev for CST_CODE_STRING. 2433 Abbv = std::make_shared<BitCodeAbbrev>(); 2434 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2437 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2438 // Abbrev for CST_CODE_CSTRING. 2439 Abbv = std::make_shared<BitCodeAbbrev>(); 2440 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2443 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2444 // Abbrev for CST_CODE_CSTRING. 2445 Abbv = std::make_shared<BitCodeAbbrev>(); 2446 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2449 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2450 } 2451 2452 SmallVector<uint64_t, 64> Record; 2453 2454 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2455 Type *LastTy = nullptr; 2456 for (unsigned i = FirstVal; i != LastVal; ++i) { 2457 const Value *V = Vals[i].first; 2458 // If we need to switch types, do so now. 2459 if (V->getType() != LastTy) { 2460 LastTy = V->getType(); 2461 Record.push_back(VE.getTypeID(LastTy)); 2462 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2463 CONSTANTS_SETTYPE_ABBREV); 2464 Record.clear(); 2465 } 2466 2467 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2468 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2469 Record.push_back( 2470 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2471 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2472 2473 // Add the asm string. 2474 const std::string &AsmStr = IA->getAsmString(); 2475 Record.push_back(AsmStr.size()); 2476 Record.append(AsmStr.begin(), AsmStr.end()); 2477 2478 // Add the constraint string. 2479 const std::string &ConstraintStr = IA->getConstraintString(); 2480 Record.push_back(ConstraintStr.size()); 2481 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2482 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2483 Record.clear(); 2484 continue; 2485 } 2486 const Constant *C = cast<Constant>(V); 2487 unsigned Code = -1U; 2488 unsigned AbbrevToUse = 0; 2489 if (C->isNullValue()) { 2490 Code = bitc::CST_CODE_NULL; 2491 } else if (isa<PoisonValue>(C)) { 2492 Code = bitc::CST_CODE_POISON; 2493 } else if (isa<UndefValue>(C)) { 2494 Code = bitc::CST_CODE_UNDEF; 2495 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2496 if (IV->getBitWidth() <= 64) { 2497 uint64_t V = IV->getSExtValue(); 2498 emitSignedInt64(Record, V); 2499 Code = bitc::CST_CODE_INTEGER; 2500 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2501 } else { // Wide integers, > 64 bits in size. 2502 emitWideAPInt(Record, IV->getValue()); 2503 Code = bitc::CST_CODE_WIDE_INTEGER; 2504 } 2505 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2506 Code = bitc::CST_CODE_FLOAT; 2507 Type *Ty = CFP->getType(); 2508 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2509 Ty->isDoubleTy()) { 2510 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2511 } else if (Ty->isX86_FP80Ty()) { 2512 // api needed to prevent premature destruction 2513 // bits are not in the same order as a normal i80 APInt, compensate. 2514 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2515 const uint64_t *p = api.getRawData(); 2516 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2517 Record.push_back(p[0] & 0xffffLL); 2518 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2519 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2520 const uint64_t *p = api.getRawData(); 2521 Record.push_back(p[0]); 2522 Record.push_back(p[1]); 2523 } else { 2524 assert(0 && "Unknown FP type!"); 2525 } 2526 } else if (isa<ConstantDataSequential>(C) && 2527 cast<ConstantDataSequential>(C)->isString()) { 2528 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2529 // Emit constant strings specially. 2530 unsigned NumElts = Str->getNumElements(); 2531 // If this is a null-terminated string, use the denser CSTRING encoding. 2532 if (Str->isCString()) { 2533 Code = bitc::CST_CODE_CSTRING; 2534 --NumElts; // Don't encode the null, which isn't allowed by char6. 2535 } else { 2536 Code = bitc::CST_CODE_STRING; 2537 AbbrevToUse = String8Abbrev; 2538 } 2539 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2540 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2541 for (unsigned i = 0; i != NumElts; ++i) { 2542 unsigned char V = Str->getElementAsInteger(i); 2543 Record.push_back(V); 2544 isCStr7 &= (V & 128) == 0; 2545 if (isCStrChar6) 2546 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2547 } 2548 2549 if (isCStrChar6) 2550 AbbrevToUse = CString6Abbrev; 2551 else if (isCStr7) 2552 AbbrevToUse = CString7Abbrev; 2553 } else if (const ConstantDataSequential *CDS = 2554 dyn_cast<ConstantDataSequential>(C)) { 2555 Code = bitc::CST_CODE_DATA; 2556 Type *EltTy = CDS->getElementType(); 2557 if (isa<IntegerType>(EltTy)) { 2558 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2559 Record.push_back(CDS->getElementAsInteger(i)); 2560 } else { 2561 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2562 Record.push_back( 2563 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2564 } 2565 } else if (isa<ConstantAggregate>(C)) { 2566 Code = bitc::CST_CODE_AGGREGATE; 2567 for (const Value *Op : C->operands()) 2568 Record.push_back(VE.getValueID(Op)); 2569 AbbrevToUse = AggregateAbbrev; 2570 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2571 switch (CE->getOpcode()) { 2572 default: 2573 if (Instruction::isCast(CE->getOpcode())) { 2574 Code = bitc::CST_CODE_CE_CAST; 2575 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2576 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2577 Record.push_back(VE.getValueID(C->getOperand(0))); 2578 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2579 } else { 2580 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2581 Code = bitc::CST_CODE_CE_BINOP; 2582 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2583 Record.push_back(VE.getValueID(C->getOperand(0))); 2584 Record.push_back(VE.getValueID(C->getOperand(1))); 2585 uint64_t Flags = getOptimizationFlags(CE); 2586 if (Flags != 0) 2587 Record.push_back(Flags); 2588 } 2589 break; 2590 case Instruction::FNeg: { 2591 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2592 Code = bitc::CST_CODE_CE_UNOP; 2593 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2594 Record.push_back(VE.getValueID(C->getOperand(0))); 2595 uint64_t Flags = getOptimizationFlags(CE); 2596 if (Flags != 0) 2597 Record.push_back(Flags); 2598 break; 2599 } 2600 case Instruction::GetElementPtr: { 2601 Code = bitc::CST_CODE_CE_GEP; 2602 const auto *GO = cast<GEPOperator>(C); 2603 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2604 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2605 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2606 Record.push_back((*Idx << 1) | GO->isInBounds()); 2607 } else if (GO->isInBounds()) 2608 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2609 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2610 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2611 Record.push_back(VE.getValueID(C->getOperand(i))); 2612 } 2613 break; 2614 } 2615 case Instruction::Select: 2616 Code = bitc::CST_CODE_CE_SELECT; 2617 Record.push_back(VE.getValueID(C->getOperand(0))); 2618 Record.push_back(VE.getValueID(C->getOperand(1))); 2619 Record.push_back(VE.getValueID(C->getOperand(2))); 2620 break; 2621 case Instruction::ExtractElement: 2622 Code = bitc::CST_CODE_CE_EXTRACTELT; 2623 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2624 Record.push_back(VE.getValueID(C->getOperand(0))); 2625 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2626 Record.push_back(VE.getValueID(C->getOperand(1))); 2627 break; 2628 case Instruction::InsertElement: 2629 Code = bitc::CST_CODE_CE_INSERTELT; 2630 Record.push_back(VE.getValueID(C->getOperand(0))); 2631 Record.push_back(VE.getValueID(C->getOperand(1))); 2632 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2633 Record.push_back(VE.getValueID(C->getOperand(2))); 2634 break; 2635 case Instruction::ShuffleVector: 2636 // If the return type and argument types are the same, this is a 2637 // standard shufflevector instruction. If the types are different, 2638 // then the shuffle is widening or truncating the input vectors, and 2639 // the argument type must also be encoded. 2640 if (C->getType() == C->getOperand(0)->getType()) { 2641 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2642 } else { 2643 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2644 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2645 } 2646 Record.push_back(VE.getValueID(C->getOperand(0))); 2647 Record.push_back(VE.getValueID(C->getOperand(1))); 2648 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2649 break; 2650 case Instruction::ICmp: 2651 case Instruction::FCmp: 2652 Code = bitc::CST_CODE_CE_CMP; 2653 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2654 Record.push_back(VE.getValueID(C->getOperand(0))); 2655 Record.push_back(VE.getValueID(C->getOperand(1))); 2656 Record.push_back(CE->getPredicate()); 2657 break; 2658 case Instruction::ExtractValue: 2659 case Instruction::InsertValue: 2660 report_fatal_error("extractvalue/insertvalue constexprs not supported"); 2661 break; 2662 } 2663 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2664 Code = bitc::CST_CODE_BLOCKADDRESS; 2665 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2666 Record.push_back(VE.getValueID(BA->getFunction())); 2667 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2668 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2669 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2670 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2671 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2672 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2673 Code = bitc::CST_CODE_NO_CFI_VALUE; 2674 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2675 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2676 } else { 2677 #ifndef NDEBUG 2678 C->dump(); 2679 #endif 2680 llvm_unreachable("Unknown constant!"); 2681 } 2682 Stream.EmitRecord(Code, Record, AbbrevToUse); 2683 Record.clear(); 2684 } 2685 2686 Stream.ExitBlock(); 2687 } 2688 2689 void ModuleBitcodeWriter::writeModuleConstants() { 2690 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2691 2692 // Find the first constant to emit, which is the first non-globalvalue value. 2693 // We know globalvalues have been emitted by WriteModuleInfo. 2694 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2695 if (!isa<GlobalValue>(Vals[i].first)) { 2696 writeConstants(i, Vals.size(), true); 2697 return; 2698 } 2699 } 2700 } 2701 2702 /// pushValueAndType - The file has to encode both the value and type id for 2703 /// many values, because we need to know what type to create for forward 2704 /// references. However, most operands are not forward references, so this type 2705 /// field is not needed. 2706 /// 2707 /// This function adds V's value ID to Vals. If the value ID is higher than the 2708 /// instruction ID, then it is a forward reference, and it also includes the 2709 /// type ID. The value ID that is written is encoded relative to the InstID. 2710 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2711 SmallVectorImpl<unsigned> &Vals) { 2712 unsigned ValID = VE.getValueID(V); 2713 // Make encoding relative to the InstID. 2714 Vals.push_back(InstID - ValID); 2715 if (ValID >= InstID) { 2716 Vals.push_back(VE.getTypeID(V->getType())); 2717 return true; 2718 } 2719 return false; 2720 } 2721 2722 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2723 unsigned InstID) { 2724 SmallVector<unsigned, 64> Record; 2725 LLVMContext &C = CS.getContext(); 2726 2727 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2728 const auto &Bundle = CS.getOperandBundleAt(i); 2729 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2730 2731 for (auto &Input : Bundle.Inputs) 2732 pushValueAndType(Input, InstID, Record); 2733 2734 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2735 Record.clear(); 2736 } 2737 } 2738 2739 /// pushValue - Like pushValueAndType, but where the type of the value is 2740 /// omitted (perhaps it was already encoded in an earlier operand). 2741 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2742 SmallVectorImpl<unsigned> &Vals) { 2743 unsigned ValID = VE.getValueID(V); 2744 Vals.push_back(InstID - ValID); 2745 } 2746 2747 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2748 SmallVectorImpl<uint64_t> &Vals) { 2749 unsigned ValID = VE.getValueID(V); 2750 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2751 emitSignedInt64(Vals, diff); 2752 } 2753 2754 /// WriteInstruction - Emit an instruction to the specified stream. 2755 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2756 unsigned InstID, 2757 SmallVectorImpl<unsigned> &Vals) { 2758 unsigned Code = 0; 2759 unsigned AbbrevToUse = 0; 2760 VE.setInstructionID(&I); 2761 switch (I.getOpcode()) { 2762 default: 2763 if (Instruction::isCast(I.getOpcode())) { 2764 Code = bitc::FUNC_CODE_INST_CAST; 2765 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2766 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2767 Vals.push_back(VE.getTypeID(I.getType())); 2768 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2769 } else { 2770 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2771 Code = bitc::FUNC_CODE_INST_BINOP; 2772 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2773 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2774 pushValue(I.getOperand(1), InstID, Vals); 2775 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2776 uint64_t Flags = getOptimizationFlags(&I); 2777 if (Flags != 0) { 2778 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2779 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2780 Vals.push_back(Flags); 2781 } 2782 } 2783 break; 2784 case Instruction::FNeg: { 2785 Code = bitc::FUNC_CODE_INST_UNOP; 2786 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2787 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2788 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2789 uint64_t Flags = getOptimizationFlags(&I); 2790 if (Flags != 0) { 2791 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2792 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2793 Vals.push_back(Flags); 2794 } 2795 break; 2796 } 2797 case Instruction::GetElementPtr: { 2798 Code = bitc::FUNC_CODE_INST_GEP; 2799 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2800 auto &GEPInst = cast<GetElementPtrInst>(I); 2801 Vals.push_back(GEPInst.isInBounds()); 2802 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2803 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2804 pushValueAndType(I.getOperand(i), InstID, Vals); 2805 break; 2806 } 2807 case Instruction::ExtractValue: { 2808 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2809 pushValueAndType(I.getOperand(0), InstID, Vals); 2810 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2811 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2812 break; 2813 } 2814 case Instruction::InsertValue: { 2815 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2816 pushValueAndType(I.getOperand(0), InstID, Vals); 2817 pushValueAndType(I.getOperand(1), InstID, Vals); 2818 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2819 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2820 break; 2821 } 2822 case Instruction::Select: { 2823 Code = bitc::FUNC_CODE_INST_VSELECT; 2824 pushValueAndType(I.getOperand(1), InstID, Vals); 2825 pushValue(I.getOperand(2), InstID, Vals); 2826 pushValueAndType(I.getOperand(0), InstID, Vals); 2827 uint64_t Flags = getOptimizationFlags(&I); 2828 if (Flags != 0) 2829 Vals.push_back(Flags); 2830 break; 2831 } 2832 case Instruction::ExtractElement: 2833 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2834 pushValueAndType(I.getOperand(0), InstID, Vals); 2835 pushValueAndType(I.getOperand(1), InstID, Vals); 2836 break; 2837 case Instruction::InsertElement: 2838 Code = bitc::FUNC_CODE_INST_INSERTELT; 2839 pushValueAndType(I.getOperand(0), InstID, Vals); 2840 pushValue(I.getOperand(1), InstID, Vals); 2841 pushValueAndType(I.getOperand(2), InstID, Vals); 2842 break; 2843 case Instruction::ShuffleVector: 2844 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2845 pushValueAndType(I.getOperand(0), InstID, Vals); 2846 pushValue(I.getOperand(1), InstID, Vals); 2847 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2848 Vals); 2849 break; 2850 case Instruction::ICmp: 2851 case Instruction::FCmp: { 2852 // compare returning Int1Ty or vector of Int1Ty 2853 Code = bitc::FUNC_CODE_INST_CMP2; 2854 pushValueAndType(I.getOperand(0), InstID, Vals); 2855 pushValue(I.getOperand(1), InstID, Vals); 2856 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2857 uint64_t Flags = getOptimizationFlags(&I); 2858 if (Flags != 0) 2859 Vals.push_back(Flags); 2860 break; 2861 } 2862 2863 case Instruction::Ret: 2864 { 2865 Code = bitc::FUNC_CODE_INST_RET; 2866 unsigned NumOperands = I.getNumOperands(); 2867 if (NumOperands == 0) 2868 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2869 else if (NumOperands == 1) { 2870 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2871 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2872 } else { 2873 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2874 pushValueAndType(I.getOperand(i), InstID, Vals); 2875 } 2876 } 2877 break; 2878 case Instruction::Br: 2879 { 2880 Code = bitc::FUNC_CODE_INST_BR; 2881 const BranchInst &II = cast<BranchInst>(I); 2882 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2883 if (II.isConditional()) { 2884 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2885 pushValue(II.getCondition(), InstID, Vals); 2886 } 2887 } 2888 break; 2889 case Instruction::Switch: 2890 { 2891 Code = bitc::FUNC_CODE_INST_SWITCH; 2892 const SwitchInst &SI = cast<SwitchInst>(I); 2893 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2894 pushValue(SI.getCondition(), InstID, Vals); 2895 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2896 for (auto Case : SI.cases()) { 2897 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2898 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2899 } 2900 } 2901 break; 2902 case Instruction::IndirectBr: 2903 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2904 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2905 // Encode the address operand as relative, but not the basic blocks. 2906 pushValue(I.getOperand(0), InstID, Vals); 2907 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2908 Vals.push_back(VE.getValueID(I.getOperand(i))); 2909 break; 2910 2911 case Instruction::Invoke: { 2912 const InvokeInst *II = cast<InvokeInst>(&I); 2913 const Value *Callee = II->getCalledOperand(); 2914 FunctionType *FTy = II->getFunctionType(); 2915 2916 if (II->hasOperandBundles()) 2917 writeOperandBundles(*II, InstID); 2918 2919 Code = bitc::FUNC_CODE_INST_INVOKE; 2920 2921 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2922 Vals.push_back(II->getCallingConv() | 1 << 13); 2923 Vals.push_back(VE.getValueID(II->getNormalDest())); 2924 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2925 Vals.push_back(VE.getTypeID(FTy)); 2926 pushValueAndType(Callee, InstID, Vals); 2927 2928 // Emit value #'s for the fixed parameters. 2929 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2930 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2931 2932 // Emit type/value pairs for varargs params. 2933 if (FTy->isVarArg()) { 2934 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2935 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2936 } 2937 break; 2938 } 2939 case Instruction::Resume: 2940 Code = bitc::FUNC_CODE_INST_RESUME; 2941 pushValueAndType(I.getOperand(0), InstID, Vals); 2942 break; 2943 case Instruction::CleanupRet: { 2944 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2945 const auto &CRI = cast<CleanupReturnInst>(I); 2946 pushValue(CRI.getCleanupPad(), InstID, Vals); 2947 if (CRI.hasUnwindDest()) 2948 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2949 break; 2950 } 2951 case Instruction::CatchRet: { 2952 Code = bitc::FUNC_CODE_INST_CATCHRET; 2953 const auto &CRI = cast<CatchReturnInst>(I); 2954 pushValue(CRI.getCatchPad(), InstID, Vals); 2955 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2956 break; 2957 } 2958 case Instruction::CleanupPad: 2959 case Instruction::CatchPad: { 2960 const auto &FuncletPad = cast<FuncletPadInst>(I); 2961 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2962 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2963 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2964 2965 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2966 Vals.push_back(NumArgOperands); 2967 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2968 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2969 break; 2970 } 2971 case Instruction::CatchSwitch: { 2972 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2973 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2974 2975 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2976 2977 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2978 Vals.push_back(NumHandlers); 2979 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2980 Vals.push_back(VE.getValueID(CatchPadBB)); 2981 2982 if (CatchSwitch.hasUnwindDest()) 2983 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2984 break; 2985 } 2986 case Instruction::CallBr: { 2987 const CallBrInst *CBI = cast<CallBrInst>(&I); 2988 const Value *Callee = CBI->getCalledOperand(); 2989 FunctionType *FTy = CBI->getFunctionType(); 2990 2991 if (CBI->hasOperandBundles()) 2992 writeOperandBundles(*CBI, InstID); 2993 2994 Code = bitc::FUNC_CODE_INST_CALLBR; 2995 2996 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2997 2998 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2999 1 << bitc::CALL_EXPLICIT_TYPE); 3000 3001 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3002 Vals.push_back(CBI->getNumIndirectDests()); 3003 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3004 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3005 3006 Vals.push_back(VE.getTypeID(FTy)); 3007 pushValueAndType(Callee, InstID, Vals); 3008 3009 // Emit value #'s for the fixed parameters. 3010 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3011 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3012 3013 // Emit type/value pairs for varargs params. 3014 if (FTy->isVarArg()) { 3015 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3016 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3017 } 3018 break; 3019 } 3020 case Instruction::Unreachable: 3021 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3022 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3023 break; 3024 3025 case Instruction::PHI: { 3026 const PHINode &PN = cast<PHINode>(I); 3027 Code = bitc::FUNC_CODE_INST_PHI; 3028 // With the newer instruction encoding, forward references could give 3029 // negative valued IDs. This is most common for PHIs, so we use 3030 // signed VBRs. 3031 SmallVector<uint64_t, 128> Vals64; 3032 Vals64.push_back(VE.getTypeID(PN.getType())); 3033 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3034 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3035 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3036 } 3037 3038 uint64_t Flags = getOptimizationFlags(&I); 3039 if (Flags != 0) 3040 Vals64.push_back(Flags); 3041 3042 // Emit a Vals64 vector and exit. 3043 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3044 Vals64.clear(); 3045 return; 3046 } 3047 3048 case Instruction::LandingPad: { 3049 const LandingPadInst &LP = cast<LandingPadInst>(I); 3050 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3051 Vals.push_back(VE.getTypeID(LP.getType())); 3052 Vals.push_back(LP.isCleanup()); 3053 Vals.push_back(LP.getNumClauses()); 3054 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3055 if (LP.isCatch(I)) 3056 Vals.push_back(LandingPadInst::Catch); 3057 else 3058 Vals.push_back(LandingPadInst::Filter); 3059 pushValueAndType(LP.getClause(I), InstID, Vals); 3060 } 3061 break; 3062 } 3063 3064 case Instruction::Alloca: { 3065 Code = bitc::FUNC_CODE_INST_ALLOCA; 3066 const AllocaInst &AI = cast<AllocaInst>(I); 3067 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3068 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3069 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3070 using APV = AllocaPackedValues; 3071 unsigned Record = 0; 3072 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3073 Bitfield::set<APV::AlignLower>( 3074 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3075 Bitfield::set<APV::AlignUpper>(Record, 3076 EncodedAlign >> APV::AlignLower::Bits); 3077 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3078 Bitfield::set<APV::ExplicitType>(Record, true); 3079 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3080 Vals.push_back(Record); 3081 3082 unsigned AS = AI.getAddressSpace(); 3083 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3084 Vals.push_back(AS); 3085 break; 3086 } 3087 3088 case Instruction::Load: 3089 if (cast<LoadInst>(I).isAtomic()) { 3090 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3091 pushValueAndType(I.getOperand(0), InstID, Vals); 3092 } else { 3093 Code = bitc::FUNC_CODE_INST_LOAD; 3094 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3095 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3096 } 3097 Vals.push_back(VE.getTypeID(I.getType())); 3098 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3099 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3100 if (cast<LoadInst>(I).isAtomic()) { 3101 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3102 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3103 } 3104 break; 3105 case Instruction::Store: 3106 if (cast<StoreInst>(I).isAtomic()) 3107 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3108 else 3109 Code = bitc::FUNC_CODE_INST_STORE; 3110 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3111 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3112 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3113 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3114 if (cast<StoreInst>(I).isAtomic()) { 3115 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3116 Vals.push_back( 3117 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3118 } 3119 break; 3120 case Instruction::AtomicCmpXchg: 3121 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3122 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3123 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3124 pushValue(I.getOperand(2), InstID, Vals); // newval. 3125 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3126 Vals.push_back( 3127 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3128 Vals.push_back( 3129 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3130 Vals.push_back( 3131 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3132 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3133 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3134 break; 3135 case Instruction::AtomicRMW: 3136 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3137 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3138 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3139 Vals.push_back( 3140 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3141 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3142 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3143 Vals.push_back( 3144 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3145 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3146 break; 3147 case Instruction::Fence: 3148 Code = bitc::FUNC_CODE_INST_FENCE; 3149 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3150 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3151 break; 3152 case Instruction::Call: { 3153 const CallInst &CI = cast<CallInst>(I); 3154 FunctionType *FTy = CI.getFunctionType(); 3155 3156 if (CI.hasOperandBundles()) 3157 writeOperandBundles(CI, InstID); 3158 3159 Code = bitc::FUNC_CODE_INST_CALL; 3160 3161 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3162 3163 unsigned Flags = getOptimizationFlags(&I); 3164 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3165 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3166 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3167 1 << bitc::CALL_EXPLICIT_TYPE | 3168 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3169 unsigned(Flags != 0) << bitc::CALL_FMF); 3170 if (Flags != 0) 3171 Vals.push_back(Flags); 3172 3173 Vals.push_back(VE.getTypeID(FTy)); 3174 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3175 3176 // Emit value #'s for the fixed parameters. 3177 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3178 // Check for labels (can happen with asm labels). 3179 if (FTy->getParamType(i)->isLabelTy()) 3180 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3181 else 3182 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3183 } 3184 3185 // Emit type/value pairs for varargs params. 3186 if (FTy->isVarArg()) { 3187 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3188 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3189 } 3190 break; 3191 } 3192 case Instruction::VAArg: 3193 Code = bitc::FUNC_CODE_INST_VAARG; 3194 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3195 pushValue(I.getOperand(0), InstID, Vals); // valist. 3196 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3197 break; 3198 case Instruction::Freeze: 3199 Code = bitc::FUNC_CODE_INST_FREEZE; 3200 pushValueAndType(I.getOperand(0), InstID, Vals); 3201 break; 3202 } 3203 3204 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3205 Vals.clear(); 3206 } 3207 3208 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3209 /// to allow clients to efficiently find the function body. 3210 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3211 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3212 // Get the offset of the VST we are writing, and backpatch it into 3213 // the VST forward declaration record. 3214 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3215 // The BitcodeStartBit was the stream offset of the identification block. 3216 VSTOffset -= bitcodeStartBit(); 3217 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3218 // Note that we add 1 here because the offset is relative to one word 3219 // before the start of the identification block, which was historically 3220 // always the start of the regular bitcode header. 3221 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3222 3223 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3224 3225 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3226 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3229 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3230 3231 for (const Function &F : M) { 3232 uint64_t Record[2]; 3233 3234 if (F.isDeclaration()) 3235 continue; 3236 3237 Record[0] = VE.getValueID(&F); 3238 3239 // Save the word offset of the function (from the start of the 3240 // actual bitcode written to the stream). 3241 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3242 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3243 // Note that we add 1 here because the offset is relative to one word 3244 // before the start of the identification block, which was historically 3245 // always the start of the regular bitcode header. 3246 Record[1] = BitcodeIndex / 32 + 1; 3247 3248 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3249 } 3250 3251 Stream.ExitBlock(); 3252 } 3253 3254 /// Emit names for arguments, instructions and basic blocks in a function. 3255 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3256 const ValueSymbolTable &VST) { 3257 if (VST.empty()) 3258 return; 3259 3260 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3261 3262 // FIXME: Set up the abbrev, we know how many values there are! 3263 // FIXME: We know if the type names can use 7-bit ascii. 3264 SmallVector<uint64_t, 64> NameVals; 3265 3266 for (const ValueName &Name : VST) { 3267 // Figure out the encoding to use for the name. 3268 StringEncoding Bits = getStringEncoding(Name.getKey()); 3269 3270 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3271 NameVals.push_back(VE.getValueID(Name.getValue())); 3272 3273 // VST_CODE_ENTRY: [valueid, namechar x N] 3274 // VST_CODE_BBENTRY: [bbid, namechar x N] 3275 unsigned Code; 3276 if (isa<BasicBlock>(Name.getValue())) { 3277 Code = bitc::VST_CODE_BBENTRY; 3278 if (Bits == SE_Char6) 3279 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3280 } else { 3281 Code = bitc::VST_CODE_ENTRY; 3282 if (Bits == SE_Char6) 3283 AbbrevToUse = VST_ENTRY_6_ABBREV; 3284 else if (Bits == SE_Fixed7) 3285 AbbrevToUse = VST_ENTRY_7_ABBREV; 3286 } 3287 3288 for (const auto P : Name.getKey()) 3289 NameVals.push_back((unsigned char)P); 3290 3291 // Emit the finished record. 3292 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3293 NameVals.clear(); 3294 } 3295 3296 Stream.ExitBlock(); 3297 } 3298 3299 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3300 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3301 unsigned Code; 3302 if (isa<BasicBlock>(Order.V)) 3303 Code = bitc::USELIST_CODE_BB; 3304 else 3305 Code = bitc::USELIST_CODE_DEFAULT; 3306 3307 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3308 Record.push_back(VE.getValueID(Order.V)); 3309 Stream.EmitRecord(Code, Record); 3310 } 3311 3312 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3313 assert(VE.shouldPreserveUseListOrder() && 3314 "Expected to be preserving use-list order"); 3315 3316 auto hasMore = [&]() { 3317 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3318 }; 3319 if (!hasMore()) 3320 // Nothing to do. 3321 return; 3322 3323 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3324 while (hasMore()) { 3325 writeUseList(std::move(VE.UseListOrders.back())); 3326 VE.UseListOrders.pop_back(); 3327 } 3328 Stream.ExitBlock(); 3329 } 3330 3331 /// Emit a function body to the module stream. 3332 void ModuleBitcodeWriter::writeFunction( 3333 const Function &F, 3334 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3335 // Save the bitcode index of the start of this function block for recording 3336 // in the VST. 3337 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3338 3339 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3340 VE.incorporateFunction(F); 3341 3342 SmallVector<unsigned, 64> Vals; 3343 3344 // Emit the number of basic blocks, so the reader can create them ahead of 3345 // time. 3346 Vals.push_back(VE.getBasicBlocks().size()); 3347 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3348 Vals.clear(); 3349 3350 // If there are function-local constants, emit them now. 3351 unsigned CstStart, CstEnd; 3352 VE.getFunctionConstantRange(CstStart, CstEnd); 3353 writeConstants(CstStart, CstEnd, false); 3354 3355 // If there is function-local metadata, emit it now. 3356 writeFunctionMetadata(F); 3357 3358 // Keep a running idea of what the instruction ID is. 3359 unsigned InstID = CstEnd; 3360 3361 bool NeedsMetadataAttachment = F.hasMetadata(); 3362 3363 DILocation *LastDL = nullptr; 3364 SmallPtrSet<Function *, 4> BlockAddressUsers; 3365 3366 // Finally, emit all the instructions, in order. 3367 for (const BasicBlock &BB : F) { 3368 for (const Instruction &I : BB) { 3369 writeInstruction(I, InstID, Vals); 3370 3371 if (!I.getType()->isVoidTy()) 3372 ++InstID; 3373 3374 // If the instruction has metadata, write a metadata attachment later. 3375 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3376 3377 // If the instruction has a debug location, emit it. 3378 DILocation *DL = I.getDebugLoc(); 3379 if (!DL) 3380 continue; 3381 3382 if (DL == LastDL) { 3383 // Just repeat the same debug loc as last time. 3384 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3385 continue; 3386 } 3387 3388 Vals.push_back(DL->getLine()); 3389 Vals.push_back(DL->getColumn()); 3390 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3391 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3392 Vals.push_back(DL->isImplicitCode()); 3393 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3394 Vals.clear(); 3395 3396 LastDL = DL; 3397 } 3398 3399 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3400 for (User *U : BA->users()) { 3401 if (auto *I = dyn_cast<Instruction>(U)) { 3402 Function *P = I->getParent()->getParent(); 3403 if (P != &F) 3404 BlockAddressUsers.insert(P); 3405 } 3406 } 3407 } 3408 } 3409 3410 if (!BlockAddressUsers.empty()) { 3411 SmallVector<uint64_t, 4> Record; 3412 Record.reserve(BlockAddressUsers.size()); 3413 for (Function *F : BlockAddressUsers) 3414 Record.push_back(VE.getValueID(F)); 3415 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Record); 3416 } 3417 3418 // Emit names for all the instructions etc. 3419 if (auto *Symtab = F.getValueSymbolTable()) 3420 writeFunctionLevelValueSymbolTable(*Symtab); 3421 3422 if (NeedsMetadataAttachment) 3423 writeFunctionMetadataAttachment(F); 3424 if (VE.shouldPreserveUseListOrder()) 3425 writeUseListBlock(&F); 3426 VE.purgeFunction(); 3427 Stream.ExitBlock(); 3428 } 3429 3430 // Emit blockinfo, which defines the standard abbreviations etc. 3431 void ModuleBitcodeWriter::writeBlockInfo() { 3432 // We only want to emit block info records for blocks that have multiple 3433 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3434 // Other blocks can define their abbrevs inline. 3435 Stream.EnterBlockInfoBlock(); 3436 3437 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3438 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3443 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3444 VST_ENTRY_8_ABBREV) 3445 llvm_unreachable("Unexpected abbrev ordering!"); 3446 } 3447 3448 { // 7-bit fixed width VST_CODE_ENTRY strings. 3449 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3450 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3454 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3455 VST_ENTRY_7_ABBREV) 3456 llvm_unreachable("Unexpected abbrev ordering!"); 3457 } 3458 { // 6-bit char6 VST_CODE_ENTRY strings. 3459 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3460 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3464 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3465 VST_ENTRY_6_ABBREV) 3466 llvm_unreachable("Unexpected abbrev ordering!"); 3467 } 3468 { // 6-bit char6 VST_CODE_BBENTRY strings. 3469 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3470 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3474 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3475 VST_BBENTRY_6_ABBREV) 3476 llvm_unreachable("Unexpected abbrev ordering!"); 3477 } 3478 3479 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3480 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3481 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3483 VE.computeBitsRequiredForTypeIndicies())); 3484 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3485 CONSTANTS_SETTYPE_ABBREV) 3486 llvm_unreachable("Unexpected abbrev ordering!"); 3487 } 3488 3489 { // INTEGER abbrev for CONSTANTS_BLOCK. 3490 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3491 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3493 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3494 CONSTANTS_INTEGER_ABBREV) 3495 llvm_unreachable("Unexpected abbrev ordering!"); 3496 } 3497 3498 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3499 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3500 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3503 VE.computeBitsRequiredForTypeIndicies())); 3504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3505 3506 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3507 CONSTANTS_CE_CAST_Abbrev) 3508 llvm_unreachable("Unexpected abbrev ordering!"); 3509 } 3510 { // NULL abbrev for CONSTANTS_BLOCK. 3511 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3512 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3513 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3514 CONSTANTS_NULL_Abbrev) 3515 llvm_unreachable("Unexpected abbrev ordering!"); 3516 } 3517 3518 // FIXME: This should only use space for first class types! 3519 3520 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3521 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3522 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3525 VE.computeBitsRequiredForTypeIndicies())); 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3528 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3529 FUNCTION_INST_LOAD_ABBREV) 3530 llvm_unreachable("Unexpected abbrev ordering!"); 3531 } 3532 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3533 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3534 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3537 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3538 FUNCTION_INST_UNOP_ABBREV) 3539 llvm_unreachable("Unexpected abbrev ordering!"); 3540 } 3541 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3542 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3543 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3547 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3548 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3549 llvm_unreachable("Unexpected abbrev ordering!"); 3550 } 3551 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3552 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3553 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3557 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3558 FUNCTION_INST_BINOP_ABBREV) 3559 llvm_unreachable("Unexpected abbrev ordering!"); 3560 } 3561 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3562 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3563 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3568 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3569 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3570 llvm_unreachable("Unexpected abbrev ordering!"); 3571 } 3572 { // INST_CAST abbrev for FUNCTION_BLOCK. 3573 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3574 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3577 VE.computeBitsRequiredForTypeIndicies())); 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3579 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3580 FUNCTION_INST_CAST_ABBREV) 3581 llvm_unreachable("Unexpected abbrev ordering!"); 3582 } 3583 3584 { // INST_RET abbrev for FUNCTION_BLOCK. 3585 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3586 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3587 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3588 FUNCTION_INST_RET_VOID_ABBREV) 3589 llvm_unreachable("Unexpected abbrev ordering!"); 3590 } 3591 { // INST_RET abbrev for FUNCTION_BLOCK. 3592 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3593 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3595 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3596 FUNCTION_INST_RET_VAL_ABBREV) 3597 llvm_unreachable("Unexpected abbrev ordering!"); 3598 } 3599 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3600 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3601 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3602 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3603 FUNCTION_INST_UNREACHABLE_ABBREV) 3604 llvm_unreachable("Unexpected abbrev ordering!"); 3605 } 3606 { 3607 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3608 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3611 Log2_32_Ceil(VE.getTypes().size() + 1))); 3612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3614 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3615 FUNCTION_INST_GEP_ABBREV) 3616 llvm_unreachable("Unexpected abbrev ordering!"); 3617 } 3618 3619 Stream.ExitBlock(); 3620 } 3621 3622 /// Write the module path strings, currently only used when generating 3623 /// a combined index file. 3624 void IndexBitcodeWriter::writeModStrings() { 3625 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3626 3627 // TODO: See which abbrev sizes we actually need to emit 3628 3629 // 8-bit fixed-width MST_ENTRY strings. 3630 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3631 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3635 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3636 3637 // 7-bit fixed width MST_ENTRY strings. 3638 Abbv = std::make_shared<BitCodeAbbrev>(); 3639 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3643 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3644 3645 // 6-bit char6 MST_ENTRY strings. 3646 Abbv = std::make_shared<BitCodeAbbrev>(); 3647 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3651 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3652 3653 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3654 Abbv = std::make_shared<BitCodeAbbrev>(); 3655 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3661 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3662 3663 SmallVector<unsigned, 64> Vals; 3664 forEachModule( 3665 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3666 StringRef Key = MPSE.getKey(); 3667 const auto &Value = MPSE.getValue(); 3668 StringEncoding Bits = getStringEncoding(Key); 3669 unsigned AbbrevToUse = Abbrev8Bit; 3670 if (Bits == SE_Char6) 3671 AbbrevToUse = Abbrev6Bit; 3672 else if (Bits == SE_Fixed7) 3673 AbbrevToUse = Abbrev7Bit; 3674 3675 Vals.push_back(Value.first); 3676 Vals.append(Key.begin(), Key.end()); 3677 3678 // Emit the finished record. 3679 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3680 3681 // Emit an optional hash for the module now 3682 const auto &Hash = Value.second; 3683 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3684 Vals.assign(Hash.begin(), Hash.end()); 3685 // Emit the hash record. 3686 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3687 } 3688 3689 Vals.clear(); 3690 }); 3691 Stream.ExitBlock(); 3692 } 3693 3694 /// Write the function type metadata related records that need to appear before 3695 /// a function summary entry (whether per-module or combined). 3696 template <typename Fn> 3697 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3698 FunctionSummary *FS, 3699 Fn GetValueID) { 3700 if (!FS->type_tests().empty()) 3701 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3702 3703 SmallVector<uint64_t, 64> Record; 3704 3705 auto WriteVFuncIdVec = [&](uint64_t Ty, 3706 ArrayRef<FunctionSummary::VFuncId> VFs) { 3707 if (VFs.empty()) 3708 return; 3709 Record.clear(); 3710 for (auto &VF : VFs) { 3711 Record.push_back(VF.GUID); 3712 Record.push_back(VF.Offset); 3713 } 3714 Stream.EmitRecord(Ty, Record); 3715 }; 3716 3717 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3718 FS->type_test_assume_vcalls()); 3719 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3720 FS->type_checked_load_vcalls()); 3721 3722 auto WriteConstVCallVec = [&](uint64_t Ty, 3723 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3724 for (auto &VC : VCs) { 3725 Record.clear(); 3726 Record.push_back(VC.VFunc.GUID); 3727 Record.push_back(VC.VFunc.Offset); 3728 llvm::append_range(Record, VC.Args); 3729 Stream.EmitRecord(Ty, Record); 3730 } 3731 }; 3732 3733 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3734 FS->type_test_assume_const_vcalls()); 3735 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3736 FS->type_checked_load_const_vcalls()); 3737 3738 auto WriteRange = [&](ConstantRange Range) { 3739 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3740 assert(Range.getLower().getNumWords() == 1); 3741 assert(Range.getUpper().getNumWords() == 1); 3742 emitSignedInt64(Record, *Range.getLower().getRawData()); 3743 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3744 }; 3745 3746 if (!FS->paramAccesses().empty()) { 3747 Record.clear(); 3748 for (auto &Arg : FS->paramAccesses()) { 3749 size_t UndoSize = Record.size(); 3750 Record.push_back(Arg.ParamNo); 3751 WriteRange(Arg.Use); 3752 Record.push_back(Arg.Calls.size()); 3753 for (auto &Call : Arg.Calls) { 3754 Record.push_back(Call.ParamNo); 3755 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3756 if (!ValueID) { 3757 // If ValueID is unknown we can't drop just this call, we must drop 3758 // entire parameter. 3759 Record.resize(UndoSize); 3760 break; 3761 } 3762 Record.push_back(*ValueID); 3763 WriteRange(Call.Offsets); 3764 } 3765 } 3766 if (!Record.empty()) 3767 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3768 } 3769 } 3770 3771 /// Collect type IDs from type tests used by function. 3772 static void 3773 getReferencedTypeIds(FunctionSummary *FS, 3774 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3775 if (!FS->type_tests().empty()) 3776 for (auto &TT : FS->type_tests()) 3777 ReferencedTypeIds.insert(TT); 3778 3779 auto GetReferencedTypesFromVFuncIdVec = 3780 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3781 for (auto &VF : VFs) 3782 ReferencedTypeIds.insert(VF.GUID); 3783 }; 3784 3785 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3786 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3787 3788 auto GetReferencedTypesFromConstVCallVec = 3789 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3790 for (auto &VC : VCs) 3791 ReferencedTypeIds.insert(VC.VFunc.GUID); 3792 }; 3793 3794 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3795 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3796 } 3797 3798 static void writeWholeProgramDevirtResolutionByArg( 3799 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3800 const WholeProgramDevirtResolution::ByArg &ByArg) { 3801 NameVals.push_back(args.size()); 3802 llvm::append_range(NameVals, args); 3803 3804 NameVals.push_back(ByArg.TheKind); 3805 NameVals.push_back(ByArg.Info); 3806 NameVals.push_back(ByArg.Byte); 3807 NameVals.push_back(ByArg.Bit); 3808 } 3809 3810 static void writeWholeProgramDevirtResolution( 3811 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3812 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3813 NameVals.push_back(Id); 3814 3815 NameVals.push_back(Wpd.TheKind); 3816 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3817 NameVals.push_back(Wpd.SingleImplName.size()); 3818 3819 NameVals.push_back(Wpd.ResByArg.size()); 3820 for (auto &A : Wpd.ResByArg) 3821 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3822 } 3823 3824 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3825 StringTableBuilder &StrtabBuilder, 3826 const std::string &Id, 3827 const TypeIdSummary &Summary) { 3828 NameVals.push_back(StrtabBuilder.add(Id)); 3829 NameVals.push_back(Id.size()); 3830 3831 NameVals.push_back(Summary.TTRes.TheKind); 3832 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3833 NameVals.push_back(Summary.TTRes.AlignLog2); 3834 NameVals.push_back(Summary.TTRes.SizeM1); 3835 NameVals.push_back(Summary.TTRes.BitMask); 3836 NameVals.push_back(Summary.TTRes.InlineBits); 3837 3838 for (auto &W : Summary.WPDRes) 3839 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3840 W.second); 3841 } 3842 3843 static void writeTypeIdCompatibleVtableSummaryRecord( 3844 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3845 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3846 ValueEnumerator &VE) { 3847 NameVals.push_back(StrtabBuilder.add(Id)); 3848 NameVals.push_back(Id.size()); 3849 3850 for (auto &P : Summary) { 3851 NameVals.push_back(P.AddressPointOffset); 3852 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3853 } 3854 } 3855 3856 // Helper to emit a single function summary record. 3857 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3858 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3859 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3860 const Function &F) { 3861 NameVals.push_back(ValueID); 3862 3863 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3864 3865 writeFunctionTypeMetadataRecords( 3866 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3867 return {VE.getValueID(VI.getValue())}; 3868 }); 3869 3870 auto SpecialRefCnts = FS->specialRefCounts(); 3871 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3872 NameVals.push_back(FS->instCount()); 3873 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3874 NameVals.push_back(FS->refs().size()); 3875 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3876 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3877 3878 for (auto &RI : FS->refs()) 3879 NameVals.push_back(VE.getValueID(RI.getValue())); 3880 3881 bool HasProfileData = 3882 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3883 for (auto &ECI : FS->calls()) { 3884 NameVals.push_back(getValueId(ECI.first)); 3885 if (HasProfileData) 3886 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3887 else if (WriteRelBFToSummary) 3888 NameVals.push_back(ECI.second.RelBlockFreq); 3889 } 3890 3891 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3892 unsigned Code = 3893 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3894 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3895 : bitc::FS_PERMODULE)); 3896 3897 // Emit the finished record. 3898 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3899 NameVals.clear(); 3900 } 3901 3902 // Collect the global value references in the given variable's initializer, 3903 // and emit them in a summary record. 3904 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3905 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3906 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3907 auto VI = Index->getValueInfo(V.getGUID()); 3908 if (!VI || VI.getSummaryList().empty()) { 3909 // Only declarations should not have a summary (a declaration might however 3910 // have a summary if the def was in module level asm). 3911 assert(V.isDeclaration()); 3912 return; 3913 } 3914 auto *Summary = VI.getSummaryList()[0].get(); 3915 NameVals.push_back(VE.getValueID(&V)); 3916 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3917 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3918 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3919 3920 auto VTableFuncs = VS->vTableFuncs(); 3921 if (!VTableFuncs.empty()) 3922 NameVals.push_back(VS->refs().size()); 3923 3924 unsigned SizeBeforeRefs = NameVals.size(); 3925 for (auto &RI : VS->refs()) 3926 NameVals.push_back(VE.getValueID(RI.getValue())); 3927 // Sort the refs for determinism output, the vector returned by FS->refs() has 3928 // been initialized from a DenseSet. 3929 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3930 3931 if (VTableFuncs.empty()) 3932 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3933 FSModRefsAbbrev); 3934 else { 3935 // VTableFuncs pairs should already be sorted by offset. 3936 for (auto &P : VTableFuncs) { 3937 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3938 NameVals.push_back(P.VTableOffset); 3939 } 3940 3941 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3942 FSModVTableRefsAbbrev); 3943 } 3944 NameVals.clear(); 3945 } 3946 3947 /// Emit the per-module summary section alongside the rest of 3948 /// the module's bitcode. 3949 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3950 // By default we compile with ThinLTO if the module has a summary, but the 3951 // client can request full LTO with a module flag. 3952 bool IsThinLTO = true; 3953 if (auto *MD = 3954 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3955 IsThinLTO = MD->getZExtValue(); 3956 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3957 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3958 4); 3959 3960 Stream.EmitRecord( 3961 bitc::FS_VERSION, 3962 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3963 3964 // Write the index flags. 3965 uint64_t Flags = 0; 3966 // Bits 1-3 are set only in the combined index, skip them. 3967 if (Index->enableSplitLTOUnit()) 3968 Flags |= 0x8; 3969 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3970 3971 if (Index->begin() == Index->end()) { 3972 Stream.ExitBlock(); 3973 return; 3974 } 3975 3976 for (const auto &GVI : valueIds()) { 3977 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3978 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3979 } 3980 3981 // Abbrev for FS_PERMODULE_PROFILE. 3982 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3983 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3991 // numrefs x valueid, n x (valueid, hotness) 3992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3994 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3995 3996 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3997 Abbv = std::make_shared<BitCodeAbbrev>(); 3998 if (WriteRelBFToSummary) 3999 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4000 else 4001 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4009 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4012 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4013 4014 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4015 Abbv = std::make_shared<BitCodeAbbrev>(); 4016 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4021 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4022 4023 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4024 Abbv = std::make_shared<BitCodeAbbrev>(); 4025 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4029 // numrefs x valueid, n x (valueid , offset) 4030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4032 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4033 4034 // Abbrev for FS_ALIAS. 4035 Abbv = std::make_shared<BitCodeAbbrev>(); 4036 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4040 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4041 4042 // Abbrev for FS_TYPE_ID_METADATA 4043 Abbv = std::make_shared<BitCodeAbbrev>(); 4044 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4047 // n x (valueid , offset) 4048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4050 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4051 4052 SmallVector<uint64_t, 64> NameVals; 4053 // Iterate over the list of functions instead of the Index to 4054 // ensure the ordering is stable. 4055 for (const Function &F : M) { 4056 // Summary emission does not support anonymous functions, they have to 4057 // renamed using the anonymous function renaming pass. 4058 if (!F.hasName()) 4059 report_fatal_error("Unexpected anonymous function when writing summary"); 4060 4061 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4062 if (!VI || VI.getSummaryList().empty()) { 4063 // Only declarations should not have a summary (a declaration might 4064 // however have a summary if the def was in module level asm). 4065 assert(F.isDeclaration()); 4066 continue; 4067 } 4068 auto *Summary = VI.getSummaryList()[0].get(); 4069 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4070 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4071 } 4072 4073 // Capture references from GlobalVariable initializers, which are outside 4074 // of a function scope. 4075 for (const GlobalVariable &G : M.globals()) 4076 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4077 FSModVTableRefsAbbrev); 4078 4079 for (const GlobalAlias &A : M.aliases()) { 4080 auto *Aliasee = A.getAliaseeObject(); 4081 if (!Aliasee->hasName()) 4082 // Nameless function don't have an entry in the summary, skip it. 4083 continue; 4084 auto AliasId = VE.getValueID(&A); 4085 auto AliaseeId = VE.getValueID(Aliasee); 4086 NameVals.push_back(AliasId); 4087 auto *Summary = Index->getGlobalValueSummary(A); 4088 AliasSummary *AS = cast<AliasSummary>(Summary); 4089 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4090 NameVals.push_back(AliaseeId); 4091 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4092 NameVals.clear(); 4093 } 4094 4095 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4096 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4097 S.second, VE); 4098 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4099 TypeIdCompatibleVtableAbbrev); 4100 NameVals.clear(); 4101 } 4102 4103 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4104 ArrayRef<uint64_t>{Index->getBlockCount()}); 4105 4106 Stream.ExitBlock(); 4107 } 4108 4109 /// Emit the combined summary section into the combined index file. 4110 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4111 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4112 Stream.EmitRecord( 4113 bitc::FS_VERSION, 4114 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4115 4116 // Write the index flags. 4117 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4118 4119 for (const auto &GVI : valueIds()) { 4120 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4121 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4122 } 4123 4124 // Abbrev for FS_COMBINED. 4125 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4126 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4136 // numrefs x valueid, n x (valueid) 4137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4139 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4140 4141 // Abbrev for FS_COMBINED_PROFILE. 4142 Abbv = std::make_shared<BitCodeAbbrev>(); 4143 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4153 // numrefs x valueid, n x (valueid, hotness) 4154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4156 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4157 4158 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4159 Abbv = std::make_shared<BitCodeAbbrev>(); 4160 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4166 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4167 4168 // Abbrev for FS_COMBINED_ALIAS. 4169 Abbv = std::make_shared<BitCodeAbbrev>(); 4170 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4175 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4176 4177 // The aliases are emitted as a post-pass, and will point to the value 4178 // id of the aliasee. Save them in a vector for post-processing. 4179 SmallVector<AliasSummary *, 64> Aliases; 4180 4181 // Save the value id for each summary for alias emission. 4182 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4183 4184 SmallVector<uint64_t, 64> NameVals; 4185 4186 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4187 // with the type ids referenced by this index file. 4188 std::set<GlobalValue::GUID> ReferencedTypeIds; 4189 4190 // For local linkage, we also emit the original name separately 4191 // immediately after the record. 4192 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4193 // We don't need to emit the original name if we are writing the index for 4194 // distributed backends (in which case ModuleToSummariesForIndex is 4195 // non-null). The original name is only needed during the thin link, since 4196 // for SamplePGO the indirect call targets for local functions have 4197 // have the original name annotated in profile. 4198 // Continue to emit it when writing out the entire combined index, which is 4199 // used in testing the thin link via llvm-lto. 4200 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4201 return; 4202 NameVals.push_back(S.getOriginalName()); 4203 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4204 NameVals.clear(); 4205 }; 4206 4207 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4208 forEachSummary([&](GVInfo I, bool IsAliasee) { 4209 GlobalValueSummary *S = I.second; 4210 assert(S); 4211 DefOrUseGUIDs.insert(I.first); 4212 for (const ValueInfo &VI : S->refs()) 4213 DefOrUseGUIDs.insert(VI.getGUID()); 4214 4215 auto ValueId = getValueId(I.first); 4216 assert(ValueId); 4217 SummaryToValueIdMap[S] = *ValueId; 4218 4219 // If this is invoked for an aliasee, we want to record the above 4220 // mapping, but then not emit a summary entry (if the aliasee is 4221 // to be imported, we will invoke this separately with IsAliasee=false). 4222 if (IsAliasee) 4223 return; 4224 4225 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4226 // Will process aliases as a post-pass because the reader wants all 4227 // global to be loaded first. 4228 Aliases.push_back(AS); 4229 return; 4230 } 4231 4232 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4233 NameVals.push_back(*ValueId); 4234 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4235 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4236 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4237 for (auto &RI : VS->refs()) { 4238 auto RefValueId = getValueId(RI.getGUID()); 4239 if (!RefValueId) 4240 continue; 4241 NameVals.push_back(*RefValueId); 4242 } 4243 4244 // Emit the finished record. 4245 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4246 FSModRefsAbbrev); 4247 NameVals.clear(); 4248 MaybeEmitOriginalName(*S); 4249 return; 4250 } 4251 4252 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4253 return getValueId(VI.getGUID()); 4254 }; 4255 4256 auto *FS = cast<FunctionSummary>(S); 4257 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4258 getReferencedTypeIds(FS, ReferencedTypeIds); 4259 4260 NameVals.push_back(*ValueId); 4261 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4262 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4263 NameVals.push_back(FS->instCount()); 4264 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4265 NameVals.push_back(FS->entryCount()); 4266 4267 // Fill in below 4268 NameVals.push_back(0); // numrefs 4269 NameVals.push_back(0); // rorefcnt 4270 NameVals.push_back(0); // worefcnt 4271 4272 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4273 for (auto &RI : FS->refs()) { 4274 auto RefValueId = getValueId(RI.getGUID()); 4275 if (!RefValueId) 4276 continue; 4277 NameVals.push_back(*RefValueId); 4278 if (RI.isReadOnly()) 4279 RORefCnt++; 4280 else if (RI.isWriteOnly()) 4281 WORefCnt++; 4282 Count++; 4283 } 4284 NameVals[6] = Count; 4285 NameVals[7] = RORefCnt; 4286 NameVals[8] = WORefCnt; 4287 4288 bool HasProfileData = false; 4289 for (auto &EI : FS->calls()) { 4290 HasProfileData |= 4291 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4292 if (HasProfileData) 4293 break; 4294 } 4295 4296 for (auto &EI : FS->calls()) { 4297 // If this GUID doesn't have a value id, it doesn't have a function 4298 // summary and we don't need to record any calls to it. 4299 Optional<unsigned> CallValueId = GetValueId(EI.first); 4300 if (!CallValueId) 4301 continue; 4302 NameVals.push_back(*CallValueId); 4303 if (HasProfileData) 4304 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4305 } 4306 4307 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4308 unsigned Code = 4309 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4310 4311 // Emit the finished record. 4312 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4313 NameVals.clear(); 4314 MaybeEmitOriginalName(*S); 4315 }); 4316 4317 for (auto *AS : Aliases) { 4318 auto AliasValueId = SummaryToValueIdMap[AS]; 4319 assert(AliasValueId); 4320 NameVals.push_back(AliasValueId); 4321 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4322 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4323 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4324 assert(AliaseeValueId); 4325 NameVals.push_back(AliaseeValueId); 4326 4327 // Emit the finished record. 4328 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4329 NameVals.clear(); 4330 MaybeEmitOriginalName(*AS); 4331 4332 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4333 getReferencedTypeIds(FS, ReferencedTypeIds); 4334 } 4335 4336 if (!Index.cfiFunctionDefs().empty()) { 4337 for (auto &S : Index.cfiFunctionDefs()) { 4338 if (DefOrUseGUIDs.count( 4339 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4340 NameVals.push_back(StrtabBuilder.add(S)); 4341 NameVals.push_back(S.size()); 4342 } 4343 } 4344 if (!NameVals.empty()) { 4345 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4346 NameVals.clear(); 4347 } 4348 } 4349 4350 if (!Index.cfiFunctionDecls().empty()) { 4351 for (auto &S : Index.cfiFunctionDecls()) { 4352 if (DefOrUseGUIDs.count( 4353 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4354 NameVals.push_back(StrtabBuilder.add(S)); 4355 NameVals.push_back(S.size()); 4356 } 4357 } 4358 if (!NameVals.empty()) { 4359 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4360 NameVals.clear(); 4361 } 4362 } 4363 4364 // Walk the GUIDs that were referenced, and write the 4365 // corresponding type id records. 4366 for (auto &T : ReferencedTypeIds) { 4367 auto TidIter = Index.typeIds().equal_range(T); 4368 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4369 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4370 It->second.second); 4371 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4372 NameVals.clear(); 4373 } 4374 } 4375 4376 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4377 ArrayRef<uint64_t>{Index.getBlockCount()}); 4378 4379 Stream.ExitBlock(); 4380 } 4381 4382 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4383 /// current llvm version, and a record for the epoch number. 4384 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4385 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4386 4387 // Write the "user readable" string identifying the bitcode producer 4388 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4389 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4392 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4393 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4394 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4395 4396 // Write the epoch version 4397 Abbv = std::make_shared<BitCodeAbbrev>(); 4398 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4400 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4401 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4402 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4403 Stream.ExitBlock(); 4404 } 4405 4406 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4407 // Emit the module's hash. 4408 // MODULE_CODE_HASH: [5*i32] 4409 if (GenerateHash) { 4410 uint32_t Vals[5]; 4411 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4412 Buffer.size() - BlockStartPos)); 4413 std::array<uint8_t, 20> Hash = Hasher.result(); 4414 for (int Pos = 0; Pos < 20; Pos += 4) { 4415 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4416 } 4417 4418 // Emit the finished record. 4419 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4420 4421 if (ModHash) 4422 // Save the written hash value. 4423 llvm::copy(Vals, std::begin(*ModHash)); 4424 } 4425 } 4426 4427 void ModuleBitcodeWriter::write() { 4428 writeIdentificationBlock(Stream); 4429 4430 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4431 size_t BlockStartPos = Buffer.size(); 4432 4433 writeModuleVersion(); 4434 4435 // Emit blockinfo, which defines the standard abbreviations etc. 4436 writeBlockInfo(); 4437 4438 // Emit information describing all of the types in the module. 4439 writeTypeTable(); 4440 4441 // Emit information about attribute groups. 4442 writeAttributeGroupTable(); 4443 4444 // Emit information about parameter attributes. 4445 writeAttributeTable(); 4446 4447 writeComdats(); 4448 4449 // Emit top-level description of module, including target triple, inline asm, 4450 // descriptors for global variables, and function prototype info. 4451 writeModuleInfo(); 4452 4453 // Emit constants. 4454 writeModuleConstants(); 4455 4456 // Emit metadata kind names. 4457 writeModuleMetadataKinds(); 4458 4459 // Emit metadata. 4460 writeModuleMetadata(); 4461 4462 // Emit module-level use-lists. 4463 if (VE.shouldPreserveUseListOrder()) 4464 writeUseListBlock(nullptr); 4465 4466 writeOperandBundleTags(); 4467 writeSyncScopeNames(); 4468 4469 // Emit function bodies. 4470 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4471 for (const Function &F : M) 4472 if (!F.isDeclaration()) 4473 writeFunction(F, FunctionToBitcodeIndex); 4474 4475 // Need to write after the above call to WriteFunction which populates 4476 // the summary information in the index. 4477 if (Index) 4478 writePerModuleGlobalValueSummary(); 4479 4480 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4481 4482 writeModuleHash(BlockStartPos); 4483 4484 Stream.ExitBlock(); 4485 } 4486 4487 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4488 uint32_t &Position) { 4489 support::endian::write32le(&Buffer[Position], Value); 4490 Position += 4; 4491 } 4492 4493 /// If generating a bc file on darwin, we have to emit a 4494 /// header and trailer to make it compatible with the system archiver. To do 4495 /// this we emit the following header, and then emit a trailer that pads the 4496 /// file out to be a multiple of 16 bytes. 4497 /// 4498 /// struct bc_header { 4499 /// uint32_t Magic; // 0x0B17C0DE 4500 /// uint32_t Version; // Version, currently always 0. 4501 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4502 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4503 /// uint32_t CPUType; // CPU specifier. 4504 /// ... potentially more later ... 4505 /// }; 4506 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4507 const Triple &TT) { 4508 unsigned CPUType = ~0U; 4509 4510 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4511 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4512 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4513 // specific constants here because they are implicitly part of the Darwin ABI. 4514 enum { 4515 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4516 DARWIN_CPU_TYPE_X86 = 7, 4517 DARWIN_CPU_TYPE_ARM = 12, 4518 DARWIN_CPU_TYPE_POWERPC = 18 4519 }; 4520 4521 Triple::ArchType Arch = TT.getArch(); 4522 if (Arch == Triple::x86_64) 4523 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4524 else if (Arch == Triple::x86) 4525 CPUType = DARWIN_CPU_TYPE_X86; 4526 else if (Arch == Triple::ppc) 4527 CPUType = DARWIN_CPU_TYPE_POWERPC; 4528 else if (Arch == Triple::ppc64) 4529 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4530 else if (Arch == Triple::arm || Arch == Triple::thumb) 4531 CPUType = DARWIN_CPU_TYPE_ARM; 4532 4533 // Traditional Bitcode starts after header. 4534 assert(Buffer.size() >= BWH_HeaderSize && 4535 "Expected header size to be reserved"); 4536 unsigned BCOffset = BWH_HeaderSize; 4537 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4538 4539 // Write the magic and version. 4540 unsigned Position = 0; 4541 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4542 writeInt32ToBuffer(0, Buffer, Position); // Version. 4543 writeInt32ToBuffer(BCOffset, Buffer, Position); 4544 writeInt32ToBuffer(BCSize, Buffer, Position); 4545 writeInt32ToBuffer(CPUType, Buffer, Position); 4546 4547 // If the file is not a multiple of 16 bytes, insert dummy padding. 4548 while (Buffer.size() & 15) 4549 Buffer.push_back(0); 4550 } 4551 4552 /// Helper to write the header common to all bitcode files. 4553 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4554 // Emit the file header. 4555 Stream.Emit((unsigned)'B', 8); 4556 Stream.Emit((unsigned)'C', 8); 4557 Stream.Emit(0x0, 4); 4558 Stream.Emit(0xC, 4); 4559 Stream.Emit(0xE, 4); 4560 Stream.Emit(0xD, 4); 4561 } 4562 4563 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4564 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4565 writeBitcodeHeader(*Stream); 4566 } 4567 4568 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4569 4570 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4571 Stream->EnterSubblock(Block, 3); 4572 4573 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4574 Abbv->Add(BitCodeAbbrevOp(Record)); 4575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4576 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4577 4578 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4579 4580 Stream->ExitBlock(); 4581 } 4582 4583 void BitcodeWriter::writeSymtab() { 4584 assert(!WroteStrtab && !WroteSymtab); 4585 4586 // If any module has module-level inline asm, we will require a registered asm 4587 // parser for the target so that we can create an accurate symbol table for 4588 // the module. 4589 for (Module *M : Mods) { 4590 if (M->getModuleInlineAsm().empty()) 4591 continue; 4592 4593 std::string Err; 4594 const Triple TT(M->getTargetTriple()); 4595 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4596 if (!T || !T->hasMCAsmParser()) 4597 return; 4598 } 4599 4600 WroteSymtab = true; 4601 SmallVector<char, 0> Symtab; 4602 // The irsymtab::build function may be unable to create a symbol table if the 4603 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4604 // table is not required for correctness, but we still want to be able to 4605 // write malformed modules to bitcode files, so swallow the error. 4606 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4607 consumeError(std::move(E)); 4608 return; 4609 } 4610 4611 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4612 {Symtab.data(), Symtab.size()}); 4613 } 4614 4615 void BitcodeWriter::writeStrtab() { 4616 assert(!WroteStrtab); 4617 4618 std::vector<char> Strtab; 4619 StrtabBuilder.finalizeInOrder(); 4620 Strtab.resize(StrtabBuilder.getSize()); 4621 StrtabBuilder.write((uint8_t *)Strtab.data()); 4622 4623 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4624 {Strtab.data(), Strtab.size()}); 4625 4626 WroteStrtab = true; 4627 } 4628 4629 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4630 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4631 WroteStrtab = true; 4632 } 4633 4634 void BitcodeWriter::writeModule(const Module &M, 4635 bool ShouldPreserveUseListOrder, 4636 const ModuleSummaryIndex *Index, 4637 bool GenerateHash, ModuleHash *ModHash) { 4638 assert(!WroteStrtab); 4639 4640 // The Mods vector is used by irsymtab::build, which requires non-const 4641 // Modules in case it needs to materialize metadata. But the bitcode writer 4642 // requires that the module is materialized, so we can cast to non-const here, 4643 // after checking that it is in fact materialized. 4644 assert(M.isMaterialized()); 4645 Mods.push_back(const_cast<Module *>(&M)); 4646 4647 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4648 ShouldPreserveUseListOrder, Index, 4649 GenerateHash, ModHash); 4650 ModuleWriter.write(); 4651 } 4652 4653 void BitcodeWriter::writeIndex( 4654 const ModuleSummaryIndex *Index, 4655 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4656 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4657 ModuleToSummariesForIndex); 4658 IndexWriter.write(); 4659 } 4660 4661 /// Write the specified module to the specified output stream. 4662 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4663 bool ShouldPreserveUseListOrder, 4664 const ModuleSummaryIndex *Index, 4665 bool GenerateHash, ModuleHash *ModHash) { 4666 SmallVector<char, 0> Buffer; 4667 Buffer.reserve(256*1024); 4668 4669 // If this is darwin or another generic macho target, reserve space for the 4670 // header. 4671 Triple TT(M.getTargetTriple()); 4672 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4673 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4674 4675 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4676 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4677 ModHash); 4678 Writer.writeSymtab(); 4679 Writer.writeStrtab(); 4680 4681 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4682 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4683 4684 // Write the generated bitstream to "Out". 4685 if (!Buffer.empty()) 4686 Out.write((char *)&Buffer.front(), Buffer.size()); 4687 } 4688 4689 void IndexBitcodeWriter::write() { 4690 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4691 4692 writeModuleVersion(); 4693 4694 // Write the module paths in the combined index. 4695 writeModStrings(); 4696 4697 // Write the summary combined index records. 4698 writeCombinedGlobalValueSummary(); 4699 4700 Stream.ExitBlock(); 4701 } 4702 4703 // Write the specified module summary index to the given raw output stream, 4704 // where it will be written in a new bitcode block. This is used when 4705 // writing the combined index file for ThinLTO. When writing a subset of the 4706 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4707 void llvm::writeIndexToFile( 4708 const ModuleSummaryIndex &Index, raw_ostream &Out, 4709 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4710 SmallVector<char, 0> Buffer; 4711 Buffer.reserve(256 * 1024); 4712 4713 BitcodeWriter Writer(Buffer); 4714 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4715 Writer.writeStrtab(); 4716 4717 Out.write((char *)&Buffer.front(), Buffer.size()); 4718 } 4719 4720 namespace { 4721 4722 /// Class to manage the bitcode writing for a thin link bitcode file. 4723 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4724 /// ModHash is for use in ThinLTO incremental build, generated while writing 4725 /// the module bitcode file. 4726 const ModuleHash *ModHash; 4727 4728 public: 4729 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4730 BitstreamWriter &Stream, 4731 const ModuleSummaryIndex &Index, 4732 const ModuleHash &ModHash) 4733 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4734 /*ShouldPreserveUseListOrder=*/false, &Index), 4735 ModHash(&ModHash) {} 4736 4737 void write(); 4738 4739 private: 4740 void writeSimplifiedModuleInfo(); 4741 }; 4742 4743 } // end anonymous namespace 4744 4745 // This function writes a simpilified module info for thin link bitcode file. 4746 // It only contains the source file name along with the name(the offset and 4747 // size in strtab) and linkage for global values. For the global value info 4748 // entry, in order to keep linkage at offset 5, there are three zeros used 4749 // as padding. 4750 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4751 SmallVector<unsigned, 64> Vals; 4752 // Emit the module's source file name. 4753 { 4754 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4755 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4756 if (Bits == SE_Char6) 4757 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4758 else if (Bits == SE_Fixed7) 4759 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4760 4761 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4762 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4763 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4765 Abbv->Add(AbbrevOpToUse); 4766 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4767 4768 for (const auto P : M.getSourceFileName()) 4769 Vals.push_back((unsigned char)P); 4770 4771 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4772 Vals.clear(); 4773 } 4774 4775 // Emit the global variable information. 4776 for (const GlobalVariable &GV : M.globals()) { 4777 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4778 Vals.push_back(StrtabBuilder.add(GV.getName())); 4779 Vals.push_back(GV.getName().size()); 4780 Vals.push_back(0); 4781 Vals.push_back(0); 4782 Vals.push_back(0); 4783 Vals.push_back(getEncodedLinkage(GV)); 4784 4785 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4786 Vals.clear(); 4787 } 4788 4789 // Emit the function proto information. 4790 for (const Function &F : M) { 4791 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4792 Vals.push_back(StrtabBuilder.add(F.getName())); 4793 Vals.push_back(F.getName().size()); 4794 Vals.push_back(0); 4795 Vals.push_back(0); 4796 Vals.push_back(0); 4797 Vals.push_back(getEncodedLinkage(F)); 4798 4799 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4800 Vals.clear(); 4801 } 4802 4803 // Emit the alias information. 4804 for (const GlobalAlias &A : M.aliases()) { 4805 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4806 Vals.push_back(StrtabBuilder.add(A.getName())); 4807 Vals.push_back(A.getName().size()); 4808 Vals.push_back(0); 4809 Vals.push_back(0); 4810 Vals.push_back(0); 4811 Vals.push_back(getEncodedLinkage(A)); 4812 4813 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4814 Vals.clear(); 4815 } 4816 4817 // Emit the ifunc information. 4818 for (const GlobalIFunc &I : M.ifuncs()) { 4819 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4820 Vals.push_back(StrtabBuilder.add(I.getName())); 4821 Vals.push_back(I.getName().size()); 4822 Vals.push_back(0); 4823 Vals.push_back(0); 4824 Vals.push_back(0); 4825 Vals.push_back(getEncodedLinkage(I)); 4826 4827 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4828 Vals.clear(); 4829 } 4830 } 4831 4832 void ThinLinkBitcodeWriter::write() { 4833 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4834 4835 writeModuleVersion(); 4836 4837 writeSimplifiedModuleInfo(); 4838 4839 writePerModuleGlobalValueSummary(); 4840 4841 // Write module hash. 4842 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4843 4844 Stream.ExitBlock(); 4845 } 4846 4847 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4848 const ModuleSummaryIndex &Index, 4849 const ModuleHash &ModHash) { 4850 assert(!WroteStrtab); 4851 4852 // The Mods vector is used by irsymtab::build, which requires non-const 4853 // Modules in case it needs to materialize metadata. But the bitcode writer 4854 // requires that the module is materialized, so we can cast to non-const here, 4855 // after checking that it is in fact materialized. 4856 assert(M.isMaterialized()); 4857 Mods.push_back(const_cast<Module *>(&M)); 4858 4859 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4860 ModHash); 4861 ThinLinkWriter.write(); 4862 } 4863 4864 // Write the specified thin link bitcode file to the given raw output stream, 4865 // where it will be written in a new bitcode block. This is used when 4866 // writing the per-module index file for ThinLTO. 4867 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4868 const ModuleSummaryIndex &Index, 4869 const ModuleHash &ModHash) { 4870 SmallVector<char, 0> Buffer; 4871 Buffer.reserve(256 * 1024); 4872 4873 BitcodeWriter Writer(Buffer); 4874 Writer.writeThinLinkBitcode(M, Index, ModHash); 4875 Writer.writeSymtab(); 4876 Writer.writeStrtab(); 4877 4878 Out.write((char *)&Buffer.front(), Buffer.size()); 4879 } 4880 4881 static const char *getSectionNameForBitcode(const Triple &T) { 4882 switch (T.getObjectFormat()) { 4883 case Triple::MachO: 4884 return "__LLVM,__bitcode"; 4885 case Triple::COFF: 4886 case Triple::ELF: 4887 case Triple::Wasm: 4888 case Triple::UnknownObjectFormat: 4889 return ".llvmbc"; 4890 case Triple::GOFF: 4891 llvm_unreachable("GOFF is not yet implemented"); 4892 break; 4893 case Triple::SPIRV: 4894 llvm_unreachable("SPIRV is not yet implemented"); 4895 break; 4896 case Triple::XCOFF: 4897 llvm_unreachable("XCOFF is not yet implemented"); 4898 break; 4899 case Triple::DXContainer: 4900 llvm_unreachable("DXContainer is not yet implemented"); 4901 break; 4902 } 4903 llvm_unreachable("Unimplemented ObjectFormatType"); 4904 } 4905 4906 static const char *getSectionNameForCommandline(const Triple &T) { 4907 switch (T.getObjectFormat()) { 4908 case Triple::MachO: 4909 return "__LLVM,__cmdline"; 4910 case Triple::COFF: 4911 case Triple::ELF: 4912 case Triple::Wasm: 4913 case Triple::UnknownObjectFormat: 4914 return ".llvmcmd"; 4915 case Triple::GOFF: 4916 llvm_unreachable("GOFF is not yet implemented"); 4917 break; 4918 case Triple::SPIRV: 4919 llvm_unreachable("SPIRV is not yet implemented"); 4920 break; 4921 case Triple::XCOFF: 4922 llvm_unreachable("XCOFF is not yet implemented"); 4923 break; 4924 case Triple::DXContainer: 4925 llvm_unreachable("DXC is not yet implemented"); 4926 break; 4927 } 4928 llvm_unreachable("Unimplemented ObjectFormatType"); 4929 } 4930 4931 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4932 bool EmbedBitcode, bool EmbedCmdline, 4933 const std::vector<uint8_t> &CmdArgs) { 4934 // Save llvm.compiler.used and remove it. 4935 SmallVector<Constant *, 2> UsedArray; 4936 SmallVector<GlobalValue *, 4> UsedGlobals; 4937 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4938 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4939 for (auto *GV : UsedGlobals) { 4940 if (GV->getName() != "llvm.embedded.module" && 4941 GV->getName() != "llvm.cmdline") 4942 UsedArray.push_back( 4943 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4944 } 4945 if (Used) 4946 Used->eraseFromParent(); 4947 4948 // Embed the bitcode for the llvm module. 4949 std::string Data; 4950 ArrayRef<uint8_t> ModuleData; 4951 Triple T(M.getTargetTriple()); 4952 4953 if (EmbedBitcode) { 4954 if (Buf.getBufferSize() == 0 || 4955 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4956 (const unsigned char *)Buf.getBufferEnd())) { 4957 // If the input is LLVM Assembly, bitcode is produced by serializing 4958 // the module. Use-lists order need to be preserved in this case. 4959 llvm::raw_string_ostream OS(Data); 4960 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4961 ModuleData = 4962 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4963 } else 4964 // If the input is LLVM bitcode, write the input byte stream directly. 4965 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4966 Buf.getBufferSize()); 4967 } 4968 llvm::Constant *ModuleConstant = 4969 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4970 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4971 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4972 ModuleConstant); 4973 GV->setSection(getSectionNameForBitcode(T)); 4974 // Set alignment to 1 to prevent padding between two contributions from input 4975 // sections after linking. 4976 GV->setAlignment(Align(1)); 4977 UsedArray.push_back( 4978 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4979 if (llvm::GlobalVariable *Old = 4980 M.getGlobalVariable("llvm.embedded.module", true)) { 4981 assert(Old->hasZeroLiveUses() && 4982 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4983 GV->takeName(Old); 4984 Old->eraseFromParent(); 4985 } else { 4986 GV->setName("llvm.embedded.module"); 4987 } 4988 4989 // Skip if only bitcode needs to be embedded. 4990 if (EmbedCmdline) { 4991 // Embed command-line options. 4992 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4993 CmdArgs.size()); 4994 llvm::Constant *CmdConstant = 4995 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4996 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4997 llvm::GlobalValue::PrivateLinkage, 4998 CmdConstant); 4999 GV->setSection(getSectionNameForCommandline(T)); 5000 GV->setAlignment(Align(1)); 5001 UsedArray.push_back( 5002 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5003 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5004 assert(Old->hasZeroLiveUses() && 5005 "llvm.cmdline can only be used once in llvm.compiler.used"); 5006 GV->takeName(Old); 5007 Old->eraseFromParent(); 5008 } else { 5009 GV->setName("llvm.cmdline"); 5010 } 5011 } 5012 5013 if (UsedArray.empty()) 5014 return; 5015 5016 // Recreate llvm.compiler.used. 5017 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5018 auto *NewUsed = new GlobalVariable( 5019 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5020 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5021 NewUsed->setSection("llvm.metadata"); 5022 } 5023