1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/Program.h" 34 #include "llvm/Support/SHA1.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cctype> 37 #include <map> 38 using namespace llvm; 39 40 namespace { 41 42 cl::opt<unsigned> 43 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 44 cl::desc("Number of metadatas above which we emit an index " 45 "to enable lazy-loading")); 46 /// These are manifest constants used by the bitcode writer. They do not need to 47 /// be kept in sync with the reader, but need to be consistent within this file. 48 enum { 49 // VALUE_SYMTAB_BLOCK abbrev id's. 50 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 VST_ENTRY_7_ABBREV, 52 VST_ENTRY_6_ABBREV, 53 VST_BBENTRY_6_ABBREV, 54 55 // CONSTANTS_BLOCK abbrev id's. 56 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 57 CONSTANTS_INTEGER_ABBREV, 58 CONSTANTS_CE_CAST_Abbrev, 59 CONSTANTS_NULL_Abbrev, 60 61 // FUNCTION_BLOCK abbrev id's. 62 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 63 FUNCTION_INST_BINOP_ABBREV, 64 FUNCTION_INST_BINOP_FLAGS_ABBREV, 65 FUNCTION_INST_CAST_ABBREV, 66 FUNCTION_INST_RET_VOID_ABBREV, 67 FUNCTION_INST_RET_VAL_ABBREV, 68 FUNCTION_INST_UNREACHABLE_ABBREV, 69 FUNCTION_INST_GEP_ABBREV, 70 }; 71 72 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 73 /// file type. 74 class BitcodeWriterBase { 75 protected: 76 /// The stream created and owned by the client. 77 BitstreamWriter &Stream; 78 79 /// Saves the offset of the VSTOffset record that must eventually be 80 /// backpatched with the offset of the actual VST. 81 uint64_t VSTOffsetPlaceholder = 0; 82 83 public: 84 /// Constructs a BitcodeWriterBase object that writes to the provided 85 /// \p Stream. 86 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 87 88 protected: 89 bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; } 90 void writeValueSymbolTableForwardDecl(); 91 void writeBitcodeHeader(); 92 }; 93 94 /// Class to manage the bitcode writing for a module. 95 class ModuleBitcodeWriter : public BitcodeWriterBase { 96 /// Pointer to the buffer allocated by caller for bitcode writing. 97 const SmallVectorImpl<char> &Buffer; 98 99 /// The Module to write to bitcode. 100 const Module &M; 101 102 /// Enumerates ids for all values in the module. 103 ValueEnumerator VE; 104 105 /// Optional per-module index to write for ThinLTO. 106 const ModuleSummaryIndex *Index; 107 108 /// True if a module hash record should be written. 109 bool GenerateHash; 110 111 /// The start bit of the identification block. 112 uint64_t BitcodeStartBit; 113 114 /// Map that holds the correspondence between GUIDs in the summary index, 115 /// that came from indirect call profiles, and a value id generated by this 116 /// class to use in the VST and summary block records. 117 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 118 119 /// Tracks the last value id recorded in the GUIDToValueMap. 120 unsigned GlobalValueId; 121 122 public: 123 /// Constructs a ModuleBitcodeWriter object for the given Module, 124 /// writing to the provided \p Buffer. 125 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 126 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 127 const ModuleSummaryIndex *Index, bool GenerateHash) 128 : BitcodeWriterBase(Stream), Buffer(Buffer), M(*M), 129 VE(*M, ShouldPreserveUseListOrder), Index(Index), 130 GenerateHash(GenerateHash), BitcodeStartBit(Stream.GetCurrentBitNo()) { 131 // Assign ValueIds to any callee values in the index that came from 132 // indirect call profiles and were recorded as a GUID not a Value* 133 // (which would have been assigned an ID by the ValueEnumerator). 134 // The starting ValueId is just after the number of values in the 135 // ValueEnumerator, so that they can be emitted in the VST. 136 GlobalValueId = VE.getValues().size(); 137 if (!Index) 138 return; 139 for (const auto &GUIDSummaryLists : *Index) 140 // Examine all summaries for this GUID. 141 for (auto &Summary : GUIDSummaryLists.second) 142 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 143 // For each call in the function summary, see if the call 144 // is to a GUID (which means it is for an indirect call, 145 // otherwise we would have a Value for it). If so, synthesize 146 // a value id. 147 for (auto &CallEdge : FS->calls()) 148 if (CallEdge.first.isGUID()) 149 assignValueId(CallEdge.first.getGUID()); 150 } 151 152 /// Emit the current module to the bitstream. 153 void write(); 154 155 private: 156 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 157 158 void writeAttributeGroupTable(); 159 void writeAttributeTable(); 160 void writeTypeTable(); 161 void writeComdats(); 162 void writeModuleInfo(); 163 void writeValueAsMetadata(const ValueAsMetadata *MD, 164 SmallVectorImpl<uint64_t> &Record); 165 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 166 unsigned Abbrev); 167 unsigned createDILocationAbbrev(); 168 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 169 unsigned &Abbrev); 170 unsigned createGenericDINodeAbbrev(); 171 void writeGenericDINode(const GenericDINode *N, 172 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 173 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 174 unsigned Abbrev); 175 void writeDIEnumerator(const DIEnumerator *N, 176 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 177 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 178 unsigned Abbrev); 179 void writeDIDerivedType(const DIDerivedType *N, 180 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 181 void writeDICompositeType(const DICompositeType *N, 182 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 183 void writeDISubroutineType(const DISubroutineType *N, 184 SmallVectorImpl<uint64_t> &Record, 185 unsigned Abbrev); 186 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 187 unsigned Abbrev); 188 void writeDICompileUnit(const DICompileUnit *N, 189 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 190 void writeDISubprogram(const DISubprogram *N, 191 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 192 void writeDILexicalBlock(const DILexicalBlock *N, 193 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 194 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 195 SmallVectorImpl<uint64_t> &Record, 196 unsigned Abbrev); 197 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 198 unsigned Abbrev); 199 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 200 unsigned Abbrev); 201 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 202 unsigned Abbrev); 203 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 206 SmallVectorImpl<uint64_t> &Record, 207 unsigned Abbrev); 208 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 209 SmallVectorImpl<uint64_t> &Record, 210 unsigned Abbrev); 211 void writeDIGlobalVariable(const DIGlobalVariable *N, 212 SmallVectorImpl<uint64_t> &Record, 213 unsigned Abbrev); 214 void writeDILocalVariable(const DILocalVariable *N, 215 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 216 void writeDIExpression(const DIExpression *N, 217 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 218 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 219 SmallVectorImpl<uint64_t> &Record, 220 unsigned Abbrev); 221 void writeDIObjCProperty(const DIObjCProperty *N, 222 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 223 void writeDIImportedEntity(const DIImportedEntity *N, 224 SmallVectorImpl<uint64_t> &Record, 225 unsigned Abbrev); 226 unsigned createNamedMetadataAbbrev(); 227 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 228 unsigned createMetadataStringsAbbrev(); 229 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 230 SmallVectorImpl<uint64_t> &Record); 231 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 232 SmallVectorImpl<uint64_t> &Record, 233 std::vector<unsigned> *MDAbbrevs = nullptr, 234 std::vector<uint64_t> *IndexPos = nullptr); 235 void writeModuleMetadata(); 236 void writeFunctionMetadata(const Function &F); 237 void writeFunctionMetadataAttachment(const Function &F); 238 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 239 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 240 const GlobalObject &GO); 241 void writeModuleMetadataKinds(); 242 void writeOperandBundleTags(); 243 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 244 void writeModuleConstants(); 245 bool pushValueAndType(const Value *V, unsigned InstID, 246 SmallVectorImpl<unsigned> &Vals); 247 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 248 void pushValue(const Value *V, unsigned InstID, 249 SmallVectorImpl<unsigned> &Vals); 250 void pushValueSigned(const Value *V, unsigned InstID, 251 SmallVectorImpl<uint64_t> &Vals); 252 void writeInstruction(const Instruction &I, unsigned InstID, 253 SmallVectorImpl<unsigned> &Vals); 254 void writeValueSymbolTable( 255 const ValueSymbolTable &VST, bool IsModuleLevel = false, 256 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr); 257 void writeUseList(UseListOrder &&Order); 258 void writeUseListBlock(const Function *F); 259 void 260 writeFunction(const Function &F, 261 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 262 void writeBlockInfo(); 263 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 264 GlobalValueSummary *Summary, 265 unsigned ValueID, 266 unsigned FSCallsAbbrev, 267 unsigned FSCallsProfileAbbrev, 268 const Function &F); 269 void writeModuleLevelReferences(const GlobalVariable &V, 270 SmallVector<uint64_t, 64> &NameVals, 271 unsigned FSModRefsAbbrev); 272 void writePerModuleGlobalValueSummary(); 273 void writeModuleHash(size_t BlockStartPos); 274 275 void assignValueId(GlobalValue::GUID ValGUID) { 276 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 277 } 278 unsigned getValueId(GlobalValue::GUID ValGUID) { 279 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 280 // Expect that any GUID value had a value Id assigned by an 281 // earlier call to assignValueId. 282 assert(VMI != GUIDToValueIdMap.end() && 283 "GUID does not have assigned value Id"); 284 return VMI->second; 285 } 286 // Helper to get the valueId for the type of value recorded in VI. 287 unsigned getValueId(ValueInfo VI) { 288 if (VI.isGUID()) 289 return getValueId(VI.getGUID()); 290 return VE.getValueID(VI.getValue()); 291 } 292 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 293 }; 294 295 /// Class to manage the bitcode writing for a combined index. 296 class IndexBitcodeWriter : public BitcodeWriterBase { 297 /// The combined index to write to bitcode. 298 const ModuleSummaryIndex &Index; 299 300 /// When writing a subset of the index for distributed backends, client 301 /// provides a map of modules to the corresponding GUIDs/summaries to write. 302 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 303 304 /// Map that holds the correspondence between the GUID used in the combined 305 /// index and a value id generated by this class to use in references. 306 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 307 308 /// Tracks the last value id recorded in the GUIDToValueMap. 309 unsigned GlobalValueId = 0; 310 311 public: 312 /// Constructs a IndexBitcodeWriter object for the given combined index, 313 /// writing to the provided \p Buffer. When writing a subset of the index 314 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 315 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 316 const std::map<std::string, GVSummaryMapTy> 317 *ModuleToSummariesForIndex = nullptr) 318 : BitcodeWriterBase(Stream), Index(Index), 319 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 320 // Assign unique value ids to all summaries to be written, for use 321 // in writing out the call graph edges. Save the mapping from GUID 322 // to the new global value id to use when writing those edges, which 323 // are currently saved in the index in terms of GUID. 324 for (const auto &I : *this) 325 GUIDToValueIdMap[I.first] = ++GlobalValueId; 326 } 327 328 /// The below iterator returns the GUID and associated summary. 329 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 330 331 /// Iterator over the value GUID and summaries to be written to bitcode, 332 /// hides the details of whether they are being pulled from the entire 333 /// index or just those in a provided ModuleToSummariesForIndex map. 334 class iterator 335 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 336 GVInfo> { 337 /// Enables access to parent class. 338 const IndexBitcodeWriter &Writer; 339 340 // Iterators used when writing only those summaries in a provided 341 // ModuleToSummariesForIndex map: 342 343 /// Points to the last element in outer ModuleToSummariesForIndex map. 344 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack; 345 /// Iterator on outer ModuleToSummariesForIndex map. 346 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter; 347 /// Iterator on an inner global variable summary map. 348 GVSummaryMapTy::const_iterator ModuleGVSummariesIter; 349 350 // Iterators used when writing all summaries in the index: 351 352 /// Points to the last element in the Index outer GlobalValueMap. 353 const_gvsummary_iterator IndexSummariesBack; 354 /// Iterator on outer GlobalValueMap. 355 const_gvsummary_iterator IndexSummariesIter; 356 /// Iterator on an inner GlobalValueSummaryList. 357 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 358 359 public: 360 /// Construct iterator from parent \p Writer and indicate if we are 361 /// constructing the end iterator. 362 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 363 // Set up the appropriate set of iterators given whether we are writing 364 // the full index or just a subset. 365 // Can't setup the Back or inner iterators if the corresponding map 366 // is empty. This will be handled specially in operator== as well. 367 if (Writer.ModuleToSummariesForIndex && 368 !Writer.ModuleToSummariesForIndex->empty()) { 369 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 370 std::next(ModuleSummariesBack) != 371 Writer.ModuleToSummariesForIndex->end(); 372 ModuleSummariesBack++) 373 ; 374 ModuleSummariesIter = !IsAtEnd 375 ? Writer.ModuleToSummariesForIndex->begin() 376 : ModuleSummariesBack; 377 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 378 : ModuleSummariesBack->second.end(); 379 } else if (!Writer.ModuleToSummariesForIndex && 380 Writer.Index.begin() != Writer.Index.end()) { 381 for (IndexSummariesBack = Writer.Index.begin(); 382 std::next(IndexSummariesBack) != Writer.Index.end(); 383 IndexSummariesBack++) 384 ; 385 IndexSummariesIter = 386 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 387 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 388 : IndexSummariesBack->second.end(); 389 } 390 } 391 392 /// Increment the appropriate set of iterators. 393 iterator &operator++() { 394 // First the inner iterator is incremented, then if it is at the end 395 // and there are more outer iterations to go, the inner is reset to 396 // the start of the next inner list. 397 if (Writer.ModuleToSummariesForIndex) { 398 ++ModuleGVSummariesIter; 399 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 400 ModuleSummariesIter != ModuleSummariesBack) { 401 ++ModuleSummariesIter; 402 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 403 } 404 } else { 405 ++IndexGVSummariesIter; 406 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 407 IndexSummariesIter != IndexSummariesBack) { 408 ++IndexSummariesIter; 409 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 410 } 411 } 412 return *this; 413 } 414 415 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 416 /// outer and inner iterator positions. 417 GVInfo operator*() { 418 if (Writer.ModuleToSummariesForIndex) 419 return std::make_pair(ModuleGVSummariesIter->first, 420 ModuleGVSummariesIter->second); 421 return std::make_pair(IndexSummariesIter->first, 422 IndexGVSummariesIter->get()); 423 } 424 425 /// Checks if the iterators are equal, with special handling for empty 426 /// indexes. 427 bool operator==(const iterator &RHS) const { 428 if (Writer.ModuleToSummariesForIndex) { 429 // First ensure that both are writing the same subset. 430 if (Writer.ModuleToSummariesForIndex != 431 RHS.Writer.ModuleToSummariesForIndex) 432 return false; 433 // Already determined above that maps are the same, so if one is 434 // empty, they both are. 435 if (Writer.ModuleToSummariesForIndex->empty()) 436 return true; 437 // Ensure the ModuleGVSummariesIter are iterating over the same 438 // container before checking them below. 439 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 440 return false; 441 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 442 } 443 // First ensure RHS also writing the full index, and that both are 444 // writing the same full index. 445 if (RHS.Writer.ModuleToSummariesForIndex || 446 &Writer.Index != &RHS.Writer.Index) 447 return false; 448 // Already determined above that maps are the same, so if one is 449 // empty, they both are. 450 if (Writer.Index.begin() == Writer.Index.end()) 451 return true; 452 // Ensure the IndexGVSummariesIter are iterating over the same 453 // container before checking them below. 454 if (IndexSummariesIter != RHS.IndexSummariesIter) 455 return false; 456 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 457 } 458 }; 459 460 /// Obtain the start iterator over the summaries to be written. 461 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 462 /// Obtain the end iterator over the summaries to be written. 463 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 464 465 /// Main entry point for writing a combined index to bitcode. 466 void write(); 467 468 private: 469 void writeIndex(); 470 void writeModStrings(); 471 void writeCombinedValueSymbolTable(); 472 void writeCombinedGlobalValueSummary(); 473 474 /// Indicates whether the provided \p ModulePath should be written into 475 /// the module string table, e.g. if full index written or if it is in 476 /// the provided subset. 477 bool doIncludeModule(StringRef ModulePath) { 478 return !ModuleToSummariesForIndex || 479 ModuleToSummariesForIndex->count(ModulePath); 480 } 481 482 bool hasValueId(GlobalValue::GUID ValGUID) { 483 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 484 return VMI != GUIDToValueIdMap.end(); 485 } 486 unsigned getValueId(GlobalValue::GUID ValGUID) { 487 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 488 // If this GUID doesn't have an entry, assign one. 489 if (VMI == GUIDToValueIdMap.end()) { 490 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 491 return GlobalValueId; 492 } else { 493 return VMI->second; 494 } 495 } 496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 497 }; 498 } // end anonymous namespace 499 500 static unsigned getEncodedCastOpcode(unsigned Opcode) { 501 switch (Opcode) { 502 default: llvm_unreachable("Unknown cast instruction!"); 503 case Instruction::Trunc : return bitc::CAST_TRUNC; 504 case Instruction::ZExt : return bitc::CAST_ZEXT; 505 case Instruction::SExt : return bitc::CAST_SEXT; 506 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 507 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 508 case Instruction::UIToFP : return bitc::CAST_UITOFP; 509 case Instruction::SIToFP : return bitc::CAST_SITOFP; 510 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 511 case Instruction::FPExt : return bitc::CAST_FPEXT; 512 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 513 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 514 case Instruction::BitCast : return bitc::CAST_BITCAST; 515 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 516 } 517 } 518 519 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 520 switch (Opcode) { 521 default: llvm_unreachable("Unknown binary instruction!"); 522 case Instruction::Add: 523 case Instruction::FAdd: return bitc::BINOP_ADD; 524 case Instruction::Sub: 525 case Instruction::FSub: return bitc::BINOP_SUB; 526 case Instruction::Mul: 527 case Instruction::FMul: return bitc::BINOP_MUL; 528 case Instruction::UDiv: return bitc::BINOP_UDIV; 529 case Instruction::FDiv: 530 case Instruction::SDiv: return bitc::BINOP_SDIV; 531 case Instruction::URem: return bitc::BINOP_UREM; 532 case Instruction::FRem: 533 case Instruction::SRem: return bitc::BINOP_SREM; 534 case Instruction::Shl: return bitc::BINOP_SHL; 535 case Instruction::LShr: return bitc::BINOP_LSHR; 536 case Instruction::AShr: return bitc::BINOP_ASHR; 537 case Instruction::And: return bitc::BINOP_AND; 538 case Instruction::Or: return bitc::BINOP_OR; 539 case Instruction::Xor: return bitc::BINOP_XOR; 540 } 541 } 542 543 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 544 switch (Op) { 545 default: llvm_unreachable("Unknown RMW operation!"); 546 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 547 case AtomicRMWInst::Add: return bitc::RMW_ADD; 548 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 549 case AtomicRMWInst::And: return bitc::RMW_AND; 550 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 551 case AtomicRMWInst::Or: return bitc::RMW_OR; 552 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 553 case AtomicRMWInst::Max: return bitc::RMW_MAX; 554 case AtomicRMWInst::Min: return bitc::RMW_MIN; 555 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 556 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 557 } 558 } 559 560 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 561 switch (Ordering) { 562 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 563 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 564 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 565 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 566 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 567 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 568 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 569 } 570 llvm_unreachable("Invalid ordering"); 571 } 572 573 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 574 switch (SynchScope) { 575 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 576 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 577 } 578 llvm_unreachable("Invalid synch scope"); 579 } 580 581 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 582 StringRef Str, unsigned AbbrevToUse) { 583 SmallVector<unsigned, 64> Vals; 584 585 // Code: [strchar x N] 586 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 587 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 588 AbbrevToUse = 0; 589 Vals.push_back(Str[i]); 590 } 591 592 // Emit the finished record. 593 Stream.EmitRecord(Code, Vals, AbbrevToUse); 594 } 595 596 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 597 switch (Kind) { 598 case Attribute::Alignment: 599 return bitc::ATTR_KIND_ALIGNMENT; 600 case Attribute::AllocSize: 601 return bitc::ATTR_KIND_ALLOC_SIZE; 602 case Attribute::AlwaysInline: 603 return bitc::ATTR_KIND_ALWAYS_INLINE; 604 case Attribute::ArgMemOnly: 605 return bitc::ATTR_KIND_ARGMEMONLY; 606 case Attribute::Builtin: 607 return bitc::ATTR_KIND_BUILTIN; 608 case Attribute::ByVal: 609 return bitc::ATTR_KIND_BY_VAL; 610 case Attribute::Convergent: 611 return bitc::ATTR_KIND_CONVERGENT; 612 case Attribute::InAlloca: 613 return bitc::ATTR_KIND_IN_ALLOCA; 614 case Attribute::Cold: 615 return bitc::ATTR_KIND_COLD; 616 case Attribute::InaccessibleMemOnly: 617 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 618 case Attribute::InaccessibleMemOrArgMemOnly: 619 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 620 case Attribute::InlineHint: 621 return bitc::ATTR_KIND_INLINE_HINT; 622 case Attribute::InReg: 623 return bitc::ATTR_KIND_IN_REG; 624 case Attribute::JumpTable: 625 return bitc::ATTR_KIND_JUMP_TABLE; 626 case Attribute::MinSize: 627 return bitc::ATTR_KIND_MIN_SIZE; 628 case Attribute::Naked: 629 return bitc::ATTR_KIND_NAKED; 630 case Attribute::Nest: 631 return bitc::ATTR_KIND_NEST; 632 case Attribute::NoAlias: 633 return bitc::ATTR_KIND_NO_ALIAS; 634 case Attribute::NoBuiltin: 635 return bitc::ATTR_KIND_NO_BUILTIN; 636 case Attribute::NoCapture: 637 return bitc::ATTR_KIND_NO_CAPTURE; 638 case Attribute::NoDuplicate: 639 return bitc::ATTR_KIND_NO_DUPLICATE; 640 case Attribute::NoImplicitFloat: 641 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 642 case Attribute::NoInline: 643 return bitc::ATTR_KIND_NO_INLINE; 644 case Attribute::NoRecurse: 645 return bitc::ATTR_KIND_NO_RECURSE; 646 case Attribute::NonLazyBind: 647 return bitc::ATTR_KIND_NON_LAZY_BIND; 648 case Attribute::NonNull: 649 return bitc::ATTR_KIND_NON_NULL; 650 case Attribute::Dereferenceable: 651 return bitc::ATTR_KIND_DEREFERENCEABLE; 652 case Attribute::DereferenceableOrNull: 653 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 654 case Attribute::NoRedZone: 655 return bitc::ATTR_KIND_NO_RED_ZONE; 656 case Attribute::NoReturn: 657 return bitc::ATTR_KIND_NO_RETURN; 658 case Attribute::NoUnwind: 659 return bitc::ATTR_KIND_NO_UNWIND; 660 case Attribute::OptimizeForSize: 661 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 662 case Attribute::OptimizeNone: 663 return bitc::ATTR_KIND_OPTIMIZE_NONE; 664 case Attribute::ReadNone: 665 return bitc::ATTR_KIND_READ_NONE; 666 case Attribute::ReadOnly: 667 return bitc::ATTR_KIND_READ_ONLY; 668 case Attribute::Returned: 669 return bitc::ATTR_KIND_RETURNED; 670 case Attribute::ReturnsTwice: 671 return bitc::ATTR_KIND_RETURNS_TWICE; 672 case Attribute::SExt: 673 return bitc::ATTR_KIND_S_EXT; 674 case Attribute::StackAlignment: 675 return bitc::ATTR_KIND_STACK_ALIGNMENT; 676 case Attribute::StackProtect: 677 return bitc::ATTR_KIND_STACK_PROTECT; 678 case Attribute::StackProtectReq: 679 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 680 case Attribute::StackProtectStrong: 681 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 682 case Attribute::SafeStack: 683 return bitc::ATTR_KIND_SAFESTACK; 684 case Attribute::StructRet: 685 return bitc::ATTR_KIND_STRUCT_RET; 686 case Attribute::SanitizeAddress: 687 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 688 case Attribute::SanitizeThread: 689 return bitc::ATTR_KIND_SANITIZE_THREAD; 690 case Attribute::SanitizeMemory: 691 return bitc::ATTR_KIND_SANITIZE_MEMORY; 692 case Attribute::SwiftError: 693 return bitc::ATTR_KIND_SWIFT_ERROR; 694 case Attribute::SwiftSelf: 695 return bitc::ATTR_KIND_SWIFT_SELF; 696 case Attribute::UWTable: 697 return bitc::ATTR_KIND_UW_TABLE; 698 case Attribute::WriteOnly: 699 return bitc::ATTR_KIND_WRITEONLY; 700 case Attribute::ZExt: 701 return bitc::ATTR_KIND_Z_EXT; 702 case Attribute::EndAttrKinds: 703 llvm_unreachable("Can not encode end-attribute kinds marker."); 704 case Attribute::None: 705 llvm_unreachable("Can not encode none-attribute."); 706 } 707 708 llvm_unreachable("Trying to encode unknown attribute"); 709 } 710 711 void ModuleBitcodeWriter::writeAttributeGroupTable() { 712 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 713 if (AttrGrps.empty()) return; 714 715 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 716 717 SmallVector<uint64_t, 64> Record; 718 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 719 AttributeSet AS = AttrGrps[i]; 720 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 721 AttributeSet A = AS.getSlotAttributes(i); 722 723 Record.push_back(VE.getAttributeGroupID(A)); 724 Record.push_back(AS.getSlotIndex(i)); 725 726 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 727 I != E; ++I) { 728 Attribute Attr = *I; 729 if (Attr.isEnumAttribute()) { 730 Record.push_back(0); 731 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 732 } else if (Attr.isIntAttribute()) { 733 Record.push_back(1); 734 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 735 Record.push_back(Attr.getValueAsInt()); 736 } else { 737 StringRef Kind = Attr.getKindAsString(); 738 StringRef Val = Attr.getValueAsString(); 739 740 Record.push_back(Val.empty() ? 3 : 4); 741 Record.append(Kind.begin(), Kind.end()); 742 Record.push_back(0); 743 if (!Val.empty()) { 744 Record.append(Val.begin(), Val.end()); 745 Record.push_back(0); 746 } 747 } 748 } 749 750 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 751 Record.clear(); 752 } 753 } 754 755 Stream.ExitBlock(); 756 } 757 758 void ModuleBitcodeWriter::writeAttributeTable() { 759 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 760 if (Attrs.empty()) return; 761 762 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 763 764 SmallVector<uint64_t, 64> Record; 765 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 766 const AttributeSet &A = Attrs[i]; 767 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 768 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 769 770 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 771 Record.clear(); 772 } 773 774 Stream.ExitBlock(); 775 } 776 777 /// WriteTypeTable - Write out the type table for a module. 778 void ModuleBitcodeWriter::writeTypeTable() { 779 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 780 781 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 782 SmallVector<uint64_t, 64> TypeVals; 783 784 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 785 786 // Abbrev for TYPE_CODE_POINTER. 787 auto Abbv = std::make_shared<BitCodeAbbrev>(); 788 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 790 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 791 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 792 793 // Abbrev for TYPE_CODE_FUNCTION. 794 Abbv = std::make_shared<BitCodeAbbrev>(); 795 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 799 800 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 801 802 // Abbrev for TYPE_CODE_STRUCT_ANON. 803 Abbv = std::make_shared<BitCodeAbbrev>(); 804 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 808 809 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 810 811 // Abbrev for TYPE_CODE_STRUCT_NAME. 812 Abbv = std::make_shared<BitCodeAbbrev>(); 813 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 816 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 817 818 // Abbrev for TYPE_CODE_STRUCT_NAMED. 819 Abbv = std::make_shared<BitCodeAbbrev>(); 820 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 824 825 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 826 827 // Abbrev for TYPE_CODE_ARRAY. 828 Abbv = std::make_shared<BitCodeAbbrev>(); 829 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 832 833 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 834 835 // Emit an entry count so the reader can reserve space. 836 TypeVals.push_back(TypeList.size()); 837 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 838 TypeVals.clear(); 839 840 // Loop over all of the types, emitting each in turn. 841 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 842 Type *T = TypeList[i]; 843 int AbbrevToUse = 0; 844 unsigned Code = 0; 845 846 switch (T->getTypeID()) { 847 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 848 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 849 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 850 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 851 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 852 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 853 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 854 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 855 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 856 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 857 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 858 case Type::IntegerTyID: 859 // INTEGER: [width] 860 Code = bitc::TYPE_CODE_INTEGER; 861 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 862 break; 863 case Type::PointerTyID: { 864 PointerType *PTy = cast<PointerType>(T); 865 // POINTER: [pointee type, address space] 866 Code = bitc::TYPE_CODE_POINTER; 867 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 868 unsigned AddressSpace = PTy->getAddressSpace(); 869 TypeVals.push_back(AddressSpace); 870 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 871 break; 872 } 873 case Type::FunctionTyID: { 874 FunctionType *FT = cast<FunctionType>(T); 875 // FUNCTION: [isvararg, retty, paramty x N] 876 Code = bitc::TYPE_CODE_FUNCTION; 877 TypeVals.push_back(FT->isVarArg()); 878 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 879 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 880 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 881 AbbrevToUse = FunctionAbbrev; 882 break; 883 } 884 case Type::StructTyID: { 885 StructType *ST = cast<StructType>(T); 886 // STRUCT: [ispacked, eltty x N] 887 TypeVals.push_back(ST->isPacked()); 888 // Output all of the element types. 889 for (StructType::element_iterator I = ST->element_begin(), 890 E = ST->element_end(); I != E; ++I) 891 TypeVals.push_back(VE.getTypeID(*I)); 892 893 if (ST->isLiteral()) { 894 Code = bitc::TYPE_CODE_STRUCT_ANON; 895 AbbrevToUse = StructAnonAbbrev; 896 } else { 897 if (ST->isOpaque()) { 898 Code = bitc::TYPE_CODE_OPAQUE; 899 } else { 900 Code = bitc::TYPE_CODE_STRUCT_NAMED; 901 AbbrevToUse = StructNamedAbbrev; 902 } 903 904 // Emit the name if it is present. 905 if (!ST->getName().empty()) 906 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 907 StructNameAbbrev); 908 } 909 break; 910 } 911 case Type::ArrayTyID: { 912 ArrayType *AT = cast<ArrayType>(T); 913 // ARRAY: [numelts, eltty] 914 Code = bitc::TYPE_CODE_ARRAY; 915 TypeVals.push_back(AT->getNumElements()); 916 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 917 AbbrevToUse = ArrayAbbrev; 918 break; 919 } 920 case Type::VectorTyID: { 921 VectorType *VT = cast<VectorType>(T); 922 // VECTOR [numelts, eltty] 923 Code = bitc::TYPE_CODE_VECTOR; 924 TypeVals.push_back(VT->getNumElements()); 925 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 926 break; 927 } 928 } 929 930 // Emit the finished record. 931 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 932 TypeVals.clear(); 933 } 934 935 Stream.ExitBlock(); 936 } 937 938 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 939 switch (Linkage) { 940 case GlobalValue::ExternalLinkage: 941 return 0; 942 case GlobalValue::WeakAnyLinkage: 943 return 16; 944 case GlobalValue::AppendingLinkage: 945 return 2; 946 case GlobalValue::InternalLinkage: 947 return 3; 948 case GlobalValue::LinkOnceAnyLinkage: 949 return 18; 950 case GlobalValue::ExternalWeakLinkage: 951 return 7; 952 case GlobalValue::CommonLinkage: 953 return 8; 954 case GlobalValue::PrivateLinkage: 955 return 9; 956 case GlobalValue::WeakODRLinkage: 957 return 17; 958 case GlobalValue::LinkOnceODRLinkage: 959 return 19; 960 case GlobalValue::AvailableExternallyLinkage: 961 return 12; 962 } 963 llvm_unreachable("Invalid linkage"); 964 } 965 966 static unsigned getEncodedLinkage(const GlobalValue &GV) { 967 return getEncodedLinkage(GV.getLinkage()); 968 } 969 970 // Decode the flags for GlobalValue in the summary 971 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 972 uint64_t RawFlags = 0; 973 974 RawFlags |= Flags.NotEligibleToImport; // bool 975 RawFlags |= (Flags.LiveRoot << 1); 976 // Linkage don't need to be remapped at that time for the summary. Any future 977 // change to the getEncodedLinkage() function will need to be taken into 978 // account here as well. 979 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 980 981 return RawFlags; 982 } 983 984 static unsigned getEncodedVisibility(const GlobalValue &GV) { 985 switch (GV.getVisibility()) { 986 case GlobalValue::DefaultVisibility: return 0; 987 case GlobalValue::HiddenVisibility: return 1; 988 case GlobalValue::ProtectedVisibility: return 2; 989 } 990 llvm_unreachable("Invalid visibility"); 991 } 992 993 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 994 switch (GV.getDLLStorageClass()) { 995 case GlobalValue::DefaultStorageClass: return 0; 996 case GlobalValue::DLLImportStorageClass: return 1; 997 case GlobalValue::DLLExportStorageClass: return 2; 998 } 999 llvm_unreachable("Invalid DLL storage class"); 1000 } 1001 1002 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1003 switch (GV.getThreadLocalMode()) { 1004 case GlobalVariable::NotThreadLocal: return 0; 1005 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1006 case GlobalVariable::LocalDynamicTLSModel: return 2; 1007 case GlobalVariable::InitialExecTLSModel: return 3; 1008 case GlobalVariable::LocalExecTLSModel: return 4; 1009 } 1010 llvm_unreachable("Invalid TLS model"); 1011 } 1012 1013 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1014 switch (C.getSelectionKind()) { 1015 case Comdat::Any: 1016 return bitc::COMDAT_SELECTION_KIND_ANY; 1017 case Comdat::ExactMatch: 1018 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1019 case Comdat::Largest: 1020 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1021 case Comdat::NoDuplicates: 1022 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1023 case Comdat::SameSize: 1024 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1025 } 1026 llvm_unreachable("Invalid selection kind"); 1027 } 1028 1029 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1030 switch (GV.getUnnamedAddr()) { 1031 case GlobalValue::UnnamedAddr::None: return 0; 1032 case GlobalValue::UnnamedAddr::Local: return 2; 1033 case GlobalValue::UnnamedAddr::Global: return 1; 1034 } 1035 llvm_unreachable("Invalid unnamed_addr"); 1036 } 1037 1038 void ModuleBitcodeWriter::writeComdats() { 1039 SmallVector<unsigned, 64> Vals; 1040 for (const Comdat *C : VE.getComdats()) { 1041 // COMDAT: [selection_kind, name] 1042 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1043 size_t Size = C->getName().size(); 1044 assert(isUInt<32>(Size)); 1045 Vals.push_back(Size); 1046 for (char Chr : C->getName()) 1047 Vals.push_back((unsigned char)Chr); 1048 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1049 Vals.clear(); 1050 } 1051 } 1052 1053 /// Write a record that will eventually hold the word offset of the 1054 /// module-level VST. For now the offset is 0, which will be backpatched 1055 /// after the real VST is written. Saves the bit offset to backpatch. 1056 void BitcodeWriterBase::writeValueSymbolTableForwardDecl() { 1057 // Write a placeholder value in for the offset of the real VST, 1058 // which is written after the function blocks so that it can include 1059 // the offset of each function. The placeholder offset will be 1060 // updated when the real VST is written. 1061 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1062 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1063 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1064 // hold the real VST offset. Must use fixed instead of VBR as we don't 1065 // know how many VBR chunks to reserve ahead of time. 1066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1067 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1068 1069 // Emit the placeholder 1070 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1071 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1072 1073 // Compute and save the bit offset to the placeholder, which will be 1074 // patched when the real VST is written. We can simply subtract the 32-bit 1075 // fixed size from the current bit number to get the location to backpatch. 1076 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1077 } 1078 1079 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1080 1081 /// Determine the encoding to use for the given string name and length. 1082 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1083 bool isChar6 = true; 1084 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1085 if (isChar6) 1086 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1087 if ((unsigned char)*C & 128) 1088 // don't bother scanning the rest. 1089 return SE_Fixed8; 1090 } 1091 if (isChar6) 1092 return SE_Char6; 1093 else 1094 return SE_Fixed7; 1095 } 1096 1097 /// Emit top-level description of module, including target triple, inline asm, 1098 /// descriptors for global variables, and function prototype info. 1099 /// Returns the bit offset to backpatch with the location of the real VST. 1100 void ModuleBitcodeWriter::writeModuleInfo() { 1101 // Emit various pieces of data attached to a module. 1102 if (!M.getTargetTriple().empty()) 1103 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1104 0 /*TODO*/); 1105 const std::string &DL = M.getDataLayoutStr(); 1106 if (!DL.empty()) 1107 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1108 if (!M.getModuleInlineAsm().empty()) 1109 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1110 0 /*TODO*/); 1111 1112 // Emit information about sections and GC, computing how many there are. Also 1113 // compute the maximum alignment value. 1114 std::map<std::string, unsigned> SectionMap; 1115 std::map<std::string, unsigned> GCMap; 1116 unsigned MaxAlignment = 0; 1117 unsigned MaxGlobalType = 0; 1118 for (const GlobalValue &GV : M.globals()) { 1119 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1120 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1121 if (GV.hasSection()) { 1122 // Give section names unique ID's. 1123 unsigned &Entry = SectionMap[GV.getSection()]; 1124 if (!Entry) { 1125 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1126 0 /*TODO*/); 1127 Entry = SectionMap.size(); 1128 } 1129 } 1130 } 1131 for (const Function &F : M) { 1132 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1133 if (F.hasSection()) { 1134 // Give section names unique ID's. 1135 unsigned &Entry = SectionMap[F.getSection()]; 1136 if (!Entry) { 1137 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1138 0 /*TODO*/); 1139 Entry = SectionMap.size(); 1140 } 1141 } 1142 if (F.hasGC()) { 1143 // Same for GC names. 1144 unsigned &Entry = GCMap[F.getGC()]; 1145 if (!Entry) { 1146 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1147 0 /*TODO*/); 1148 Entry = GCMap.size(); 1149 } 1150 } 1151 } 1152 1153 // Emit abbrev for globals, now that we know # sections and max alignment. 1154 unsigned SimpleGVarAbbrev = 0; 1155 if (!M.global_empty()) { 1156 // Add an abbrev for common globals with no visibility or thread localness. 1157 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1158 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1160 Log2_32_Ceil(MaxGlobalType+1))); 1161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1162 //| explicitType << 1 1163 //| constant 1164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1166 if (MaxAlignment == 0) // Alignment. 1167 Abbv->Add(BitCodeAbbrevOp(0)); 1168 else { 1169 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1171 Log2_32_Ceil(MaxEncAlignment+1))); 1172 } 1173 if (SectionMap.empty()) // Section. 1174 Abbv->Add(BitCodeAbbrevOp(0)); 1175 else 1176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1177 Log2_32_Ceil(SectionMap.size()+1))); 1178 // Don't bother emitting vis + thread local. 1179 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1180 } 1181 1182 // Emit the global variable information. 1183 SmallVector<unsigned, 64> Vals; 1184 for (const GlobalVariable &GV : M.globals()) { 1185 unsigned AbbrevToUse = 0; 1186 1187 // GLOBALVAR: [type, isconst, initid, 1188 // linkage, alignment, section, visibility, threadlocal, 1189 // unnamed_addr, externally_initialized, dllstorageclass, 1190 // comdat] 1191 Vals.push_back(VE.getTypeID(GV.getValueType())); 1192 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1193 Vals.push_back(GV.isDeclaration() ? 0 : 1194 (VE.getValueID(GV.getInitializer()) + 1)); 1195 Vals.push_back(getEncodedLinkage(GV)); 1196 Vals.push_back(Log2_32(GV.getAlignment())+1); 1197 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1198 if (GV.isThreadLocal() || 1199 GV.getVisibility() != GlobalValue::DefaultVisibility || 1200 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1201 GV.isExternallyInitialized() || 1202 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1203 GV.hasComdat()) { 1204 Vals.push_back(getEncodedVisibility(GV)); 1205 Vals.push_back(getEncodedThreadLocalMode(GV)); 1206 Vals.push_back(getEncodedUnnamedAddr(GV)); 1207 Vals.push_back(GV.isExternallyInitialized()); 1208 Vals.push_back(getEncodedDLLStorageClass(GV)); 1209 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1210 } else { 1211 AbbrevToUse = SimpleGVarAbbrev; 1212 } 1213 1214 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1215 Vals.clear(); 1216 } 1217 1218 // Emit the function proto information. 1219 for (const Function &F : M) { 1220 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1221 // section, visibility, gc, unnamed_addr, prologuedata, 1222 // dllstorageclass, comdat, prefixdata, personalityfn] 1223 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1224 Vals.push_back(F.getCallingConv()); 1225 Vals.push_back(F.isDeclaration()); 1226 Vals.push_back(getEncodedLinkage(F)); 1227 Vals.push_back(VE.getAttributeID(F.getAttributes())); 1228 Vals.push_back(Log2_32(F.getAlignment())+1); 1229 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1230 Vals.push_back(getEncodedVisibility(F)); 1231 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1232 Vals.push_back(getEncodedUnnamedAddr(F)); 1233 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1234 : 0); 1235 Vals.push_back(getEncodedDLLStorageClass(F)); 1236 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1237 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1238 : 0); 1239 Vals.push_back( 1240 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1241 1242 unsigned AbbrevToUse = 0; 1243 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1244 Vals.clear(); 1245 } 1246 1247 // Emit the alias information. 1248 for (const GlobalAlias &A : M.aliases()) { 1249 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass, 1250 // threadlocal, unnamed_addr] 1251 Vals.push_back(VE.getTypeID(A.getValueType())); 1252 Vals.push_back(A.getType()->getAddressSpace()); 1253 Vals.push_back(VE.getValueID(A.getAliasee())); 1254 Vals.push_back(getEncodedLinkage(A)); 1255 Vals.push_back(getEncodedVisibility(A)); 1256 Vals.push_back(getEncodedDLLStorageClass(A)); 1257 Vals.push_back(getEncodedThreadLocalMode(A)); 1258 Vals.push_back(getEncodedUnnamedAddr(A)); 1259 unsigned AbbrevToUse = 0; 1260 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1261 Vals.clear(); 1262 } 1263 1264 // Emit the ifunc information. 1265 for (const GlobalIFunc &I : M.ifuncs()) { 1266 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 1267 Vals.push_back(VE.getTypeID(I.getValueType())); 1268 Vals.push_back(I.getType()->getAddressSpace()); 1269 Vals.push_back(VE.getValueID(I.getResolver())); 1270 Vals.push_back(getEncodedLinkage(I)); 1271 Vals.push_back(getEncodedVisibility(I)); 1272 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1273 Vals.clear(); 1274 } 1275 1276 // Emit the module's source file name. 1277 { 1278 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1279 M.getSourceFileName().size()); 1280 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1281 if (Bits == SE_Char6) 1282 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1283 else if (Bits == SE_Fixed7) 1284 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1285 1286 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1287 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1288 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1290 Abbv->Add(AbbrevOpToUse); 1291 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1292 1293 for (const auto P : M.getSourceFileName()) 1294 Vals.push_back((unsigned char)P); 1295 1296 // Emit the finished record. 1297 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1298 Vals.clear(); 1299 } 1300 1301 // If we have a VST, write the VSTOFFSET record placeholder. 1302 if (M.getValueSymbolTable().empty()) 1303 return; 1304 writeValueSymbolTableForwardDecl(); 1305 } 1306 1307 static uint64_t getOptimizationFlags(const Value *V) { 1308 uint64_t Flags = 0; 1309 1310 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1311 if (OBO->hasNoSignedWrap()) 1312 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1313 if (OBO->hasNoUnsignedWrap()) 1314 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1315 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1316 if (PEO->isExact()) 1317 Flags |= 1 << bitc::PEO_EXACT; 1318 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1319 if (FPMO->hasUnsafeAlgebra()) 1320 Flags |= FastMathFlags::UnsafeAlgebra; 1321 if (FPMO->hasNoNaNs()) 1322 Flags |= FastMathFlags::NoNaNs; 1323 if (FPMO->hasNoInfs()) 1324 Flags |= FastMathFlags::NoInfs; 1325 if (FPMO->hasNoSignedZeros()) 1326 Flags |= FastMathFlags::NoSignedZeros; 1327 if (FPMO->hasAllowReciprocal()) 1328 Flags |= FastMathFlags::AllowReciprocal; 1329 } 1330 1331 return Flags; 1332 } 1333 1334 void ModuleBitcodeWriter::writeValueAsMetadata( 1335 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1336 // Mimic an MDNode with a value as one operand. 1337 Value *V = MD->getValue(); 1338 Record.push_back(VE.getTypeID(V->getType())); 1339 Record.push_back(VE.getValueID(V)); 1340 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1341 Record.clear(); 1342 } 1343 1344 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1345 SmallVectorImpl<uint64_t> &Record, 1346 unsigned Abbrev) { 1347 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1348 Metadata *MD = N->getOperand(i); 1349 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1350 "Unexpected function-local metadata"); 1351 Record.push_back(VE.getMetadataOrNullID(MD)); 1352 } 1353 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1354 : bitc::METADATA_NODE, 1355 Record, Abbrev); 1356 Record.clear(); 1357 } 1358 1359 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1360 // Assume the column is usually under 128, and always output the inlined-at 1361 // location (it's never more expensive than building an array size 1). 1362 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1363 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1369 return Stream.EmitAbbrev(std::move(Abbv)); 1370 } 1371 1372 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1373 SmallVectorImpl<uint64_t> &Record, 1374 unsigned &Abbrev) { 1375 if (!Abbrev) 1376 Abbrev = createDILocationAbbrev(); 1377 1378 Record.push_back(N->isDistinct()); 1379 Record.push_back(N->getLine()); 1380 Record.push_back(N->getColumn()); 1381 Record.push_back(VE.getMetadataID(N->getScope())); 1382 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1383 1384 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1385 Record.clear(); 1386 } 1387 1388 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1389 // Assume the column is usually under 128, and always output the inlined-at 1390 // location (it's never more expensive than building an array size 1). 1391 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1392 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1399 return Stream.EmitAbbrev(std::move(Abbv)); 1400 } 1401 1402 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1403 SmallVectorImpl<uint64_t> &Record, 1404 unsigned &Abbrev) { 1405 if (!Abbrev) 1406 Abbrev = createGenericDINodeAbbrev(); 1407 1408 Record.push_back(N->isDistinct()); 1409 Record.push_back(N->getTag()); 1410 Record.push_back(0); // Per-tag version field; unused for now. 1411 1412 for (auto &I : N->operands()) 1413 Record.push_back(VE.getMetadataOrNullID(I)); 1414 1415 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1416 Record.clear(); 1417 } 1418 1419 static uint64_t rotateSign(int64_t I) { 1420 uint64_t U = I; 1421 return I < 0 ? ~(U << 1) : U << 1; 1422 } 1423 1424 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1425 SmallVectorImpl<uint64_t> &Record, 1426 unsigned Abbrev) { 1427 Record.push_back(N->isDistinct()); 1428 Record.push_back(N->getCount()); 1429 Record.push_back(rotateSign(N->getLowerBound())); 1430 1431 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1432 Record.clear(); 1433 } 1434 1435 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1436 SmallVectorImpl<uint64_t> &Record, 1437 unsigned Abbrev) { 1438 Record.push_back(N->isDistinct()); 1439 Record.push_back(rotateSign(N->getValue())); 1440 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1441 1442 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1443 Record.clear(); 1444 } 1445 1446 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1447 SmallVectorImpl<uint64_t> &Record, 1448 unsigned Abbrev) { 1449 Record.push_back(N->isDistinct()); 1450 Record.push_back(N->getTag()); 1451 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1452 Record.push_back(N->getSizeInBits()); 1453 Record.push_back(N->getAlignInBits()); 1454 Record.push_back(N->getEncoding()); 1455 1456 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1457 Record.clear(); 1458 } 1459 1460 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1461 SmallVectorImpl<uint64_t> &Record, 1462 unsigned Abbrev) { 1463 Record.push_back(N->isDistinct()); 1464 Record.push_back(N->getTag()); 1465 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1466 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1467 Record.push_back(N->getLine()); 1468 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1469 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1470 Record.push_back(N->getSizeInBits()); 1471 Record.push_back(N->getAlignInBits()); 1472 Record.push_back(N->getOffsetInBits()); 1473 Record.push_back(N->getFlags()); 1474 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1475 1476 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1477 Record.clear(); 1478 } 1479 1480 void ModuleBitcodeWriter::writeDICompositeType( 1481 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1482 unsigned Abbrev) { 1483 const unsigned IsNotUsedInOldTypeRef = 0x2; 1484 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1485 Record.push_back(N->getTag()); 1486 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1487 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1488 Record.push_back(N->getLine()); 1489 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1490 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1491 Record.push_back(N->getSizeInBits()); 1492 Record.push_back(N->getAlignInBits()); 1493 Record.push_back(N->getOffsetInBits()); 1494 Record.push_back(N->getFlags()); 1495 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1496 Record.push_back(N->getRuntimeLang()); 1497 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1498 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1499 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1500 1501 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1502 Record.clear(); 1503 } 1504 1505 void ModuleBitcodeWriter::writeDISubroutineType( 1506 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1507 unsigned Abbrev) { 1508 const unsigned HasNoOldTypeRefs = 0x2; 1509 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1510 Record.push_back(N->getFlags()); 1511 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1512 Record.push_back(N->getCC()); 1513 1514 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1515 Record.clear(); 1516 } 1517 1518 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1519 SmallVectorImpl<uint64_t> &Record, 1520 unsigned Abbrev) { 1521 Record.push_back(N->isDistinct()); 1522 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1523 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1524 Record.push_back(N->getChecksumKind()); 1525 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1526 1527 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1528 Record.clear(); 1529 } 1530 1531 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1532 SmallVectorImpl<uint64_t> &Record, 1533 unsigned Abbrev) { 1534 assert(N->isDistinct() && "Expected distinct compile units"); 1535 Record.push_back(/* IsDistinct */ true); 1536 Record.push_back(N->getSourceLanguage()); 1537 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1538 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1539 Record.push_back(N->isOptimized()); 1540 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1541 Record.push_back(N->getRuntimeVersion()); 1542 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1543 Record.push_back(N->getEmissionKind()); 1544 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1545 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1546 Record.push_back(/* subprograms */ 0); 1547 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1548 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1549 Record.push_back(N->getDWOId()); 1550 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1551 Record.push_back(N->getSplitDebugInlining()); 1552 1553 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1554 Record.clear(); 1555 } 1556 1557 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1558 SmallVectorImpl<uint64_t> &Record, 1559 unsigned Abbrev) { 1560 uint64_t HasUnitFlag = 1 << 1; 1561 Record.push_back(N->isDistinct() | HasUnitFlag); 1562 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1563 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1564 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1565 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1566 Record.push_back(N->getLine()); 1567 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1568 Record.push_back(N->isLocalToUnit()); 1569 Record.push_back(N->isDefinition()); 1570 Record.push_back(N->getScopeLine()); 1571 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1572 Record.push_back(N->getVirtuality()); 1573 Record.push_back(N->getVirtualIndex()); 1574 Record.push_back(N->getFlags()); 1575 Record.push_back(N->isOptimized()); 1576 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1577 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1578 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1579 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1580 Record.push_back(N->getThisAdjustment()); 1581 1582 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1583 Record.clear(); 1584 } 1585 1586 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1587 SmallVectorImpl<uint64_t> &Record, 1588 unsigned Abbrev) { 1589 Record.push_back(N->isDistinct()); 1590 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1591 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1592 Record.push_back(N->getLine()); 1593 Record.push_back(N->getColumn()); 1594 1595 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1596 Record.clear(); 1597 } 1598 1599 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1600 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1601 unsigned Abbrev) { 1602 Record.push_back(N->isDistinct()); 1603 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1604 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1605 Record.push_back(N->getDiscriminator()); 1606 1607 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1608 Record.clear(); 1609 } 1610 1611 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1612 SmallVectorImpl<uint64_t> &Record, 1613 unsigned Abbrev) { 1614 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1615 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1616 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1617 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1618 Record.push_back(N->getLine()); 1619 1620 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1621 Record.clear(); 1622 } 1623 1624 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1625 SmallVectorImpl<uint64_t> &Record, 1626 unsigned Abbrev) { 1627 Record.push_back(N->isDistinct()); 1628 Record.push_back(N->getMacinfoType()); 1629 Record.push_back(N->getLine()); 1630 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1631 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1632 1633 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1634 Record.clear(); 1635 } 1636 1637 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1638 SmallVectorImpl<uint64_t> &Record, 1639 unsigned Abbrev) { 1640 Record.push_back(N->isDistinct()); 1641 Record.push_back(N->getMacinfoType()); 1642 Record.push_back(N->getLine()); 1643 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1644 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1645 1646 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1647 Record.clear(); 1648 } 1649 1650 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1651 SmallVectorImpl<uint64_t> &Record, 1652 unsigned Abbrev) { 1653 Record.push_back(N->isDistinct()); 1654 for (auto &I : N->operands()) 1655 Record.push_back(VE.getMetadataOrNullID(I)); 1656 1657 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1658 Record.clear(); 1659 } 1660 1661 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1662 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1663 unsigned Abbrev) { 1664 Record.push_back(N->isDistinct()); 1665 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1666 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1667 1668 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1669 Record.clear(); 1670 } 1671 1672 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1673 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1674 unsigned Abbrev) { 1675 Record.push_back(N->isDistinct()); 1676 Record.push_back(N->getTag()); 1677 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1678 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1679 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1680 1681 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1682 Record.clear(); 1683 } 1684 1685 void ModuleBitcodeWriter::writeDIGlobalVariable( 1686 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1687 unsigned Abbrev) { 1688 const uint64_t Version = 1 << 1; 1689 Record.push_back((uint64_t)N->isDistinct() | Version); 1690 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1691 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1693 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1694 Record.push_back(N->getLine()); 1695 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1696 Record.push_back(N->isLocalToUnit()); 1697 Record.push_back(N->isDefinition()); 1698 Record.push_back(/* expr */ 0); 1699 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1700 Record.push_back(N->getAlignInBits()); 1701 1702 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1703 Record.clear(); 1704 } 1705 1706 void ModuleBitcodeWriter::writeDILocalVariable( 1707 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1708 unsigned Abbrev) { 1709 // In order to support all possible bitcode formats in BitcodeReader we need 1710 // to distinguish the following cases: 1711 // 1) Record has no artificial tag (Record[1]), 1712 // has no obsolete inlinedAt field (Record[9]). 1713 // In this case Record size will be 8, HasAlignment flag is false. 1714 // 2) Record has artificial tag (Record[1]), 1715 // has no obsolete inlignedAt field (Record[9]). 1716 // In this case Record size will be 9, HasAlignment flag is false. 1717 // 3) Record has both artificial tag (Record[1]) and 1718 // obsolete inlignedAt field (Record[9]). 1719 // In this case Record size will be 10, HasAlignment flag is false. 1720 // 4) Record has neither artificial tag, nor inlignedAt field, but 1721 // HasAlignment flag is true and Record[8] contains alignment value. 1722 const uint64_t HasAlignmentFlag = 1 << 1; 1723 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1724 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1726 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1727 Record.push_back(N->getLine()); 1728 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1729 Record.push_back(N->getArg()); 1730 Record.push_back(N->getFlags()); 1731 Record.push_back(N->getAlignInBits()); 1732 1733 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1734 Record.clear(); 1735 } 1736 1737 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1738 SmallVectorImpl<uint64_t> &Record, 1739 unsigned Abbrev) { 1740 Record.reserve(N->getElements().size() + 1); 1741 1742 const uint64_t HasOpFragmentFlag = 1 << 1; 1743 Record.push_back((uint64_t)N->isDistinct() | HasOpFragmentFlag); 1744 Record.append(N->elements_begin(), N->elements_end()); 1745 1746 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1747 Record.clear(); 1748 } 1749 1750 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1751 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1752 unsigned Abbrev) { 1753 Record.push_back(N->isDistinct()); 1754 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1755 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1756 1757 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1758 Record.clear(); 1759 } 1760 1761 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1762 SmallVectorImpl<uint64_t> &Record, 1763 unsigned Abbrev) { 1764 Record.push_back(N->isDistinct()); 1765 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1766 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1767 Record.push_back(N->getLine()); 1768 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1769 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1770 Record.push_back(N->getAttributes()); 1771 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1772 1773 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1774 Record.clear(); 1775 } 1776 1777 void ModuleBitcodeWriter::writeDIImportedEntity( 1778 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1779 unsigned Abbrev) { 1780 Record.push_back(N->isDistinct()); 1781 Record.push_back(N->getTag()); 1782 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1783 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1784 Record.push_back(N->getLine()); 1785 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1786 1787 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1788 Record.clear(); 1789 } 1790 1791 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1792 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1793 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1796 return Stream.EmitAbbrev(std::move(Abbv)); 1797 } 1798 1799 void ModuleBitcodeWriter::writeNamedMetadata( 1800 SmallVectorImpl<uint64_t> &Record) { 1801 if (M.named_metadata_empty()) 1802 return; 1803 1804 unsigned Abbrev = createNamedMetadataAbbrev(); 1805 for (const NamedMDNode &NMD : M.named_metadata()) { 1806 // Write name. 1807 StringRef Str = NMD.getName(); 1808 Record.append(Str.bytes_begin(), Str.bytes_end()); 1809 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1810 Record.clear(); 1811 1812 // Write named metadata operands. 1813 for (const MDNode *N : NMD.operands()) 1814 Record.push_back(VE.getMetadataID(N)); 1815 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1816 Record.clear(); 1817 } 1818 } 1819 1820 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1821 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1822 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1826 return Stream.EmitAbbrev(std::move(Abbv)); 1827 } 1828 1829 /// Write out a record for MDString. 1830 /// 1831 /// All the metadata strings in a metadata block are emitted in a single 1832 /// record. The sizes and strings themselves are shoved into a blob. 1833 void ModuleBitcodeWriter::writeMetadataStrings( 1834 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1835 if (Strings.empty()) 1836 return; 1837 1838 // Start the record with the number of strings. 1839 Record.push_back(bitc::METADATA_STRINGS); 1840 Record.push_back(Strings.size()); 1841 1842 // Emit the sizes of the strings in the blob. 1843 SmallString<256> Blob; 1844 { 1845 BitstreamWriter W(Blob); 1846 for (const Metadata *MD : Strings) 1847 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1848 W.FlushToWord(); 1849 } 1850 1851 // Add the offset to the strings to the record. 1852 Record.push_back(Blob.size()); 1853 1854 // Add the strings to the blob. 1855 for (const Metadata *MD : Strings) 1856 Blob.append(cast<MDString>(MD)->getString()); 1857 1858 // Emit the final record. 1859 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1860 Record.clear(); 1861 } 1862 1863 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1864 enum MetadataAbbrev : unsigned { 1865 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1866 #include "llvm/IR/Metadata.def" 1867 LastPlusOne 1868 }; 1869 1870 void ModuleBitcodeWriter::writeMetadataRecords( 1871 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1872 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1873 if (MDs.empty()) 1874 return; 1875 1876 // Initialize MDNode abbreviations. 1877 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1878 #include "llvm/IR/Metadata.def" 1879 1880 for (const Metadata *MD : MDs) { 1881 if (IndexPos) 1882 IndexPos->push_back(Stream.GetCurrentBitNo()); 1883 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1884 assert(N->isResolved() && "Expected forward references to be resolved"); 1885 1886 switch (N->getMetadataID()) { 1887 default: 1888 llvm_unreachable("Invalid MDNode subclass"); 1889 #define HANDLE_MDNODE_LEAF(CLASS) \ 1890 case Metadata::CLASS##Kind: \ 1891 if (MDAbbrevs) \ 1892 write##CLASS(cast<CLASS>(N), Record, \ 1893 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1894 else \ 1895 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1896 continue; 1897 #include "llvm/IR/Metadata.def" 1898 } 1899 } 1900 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1901 } 1902 } 1903 1904 void ModuleBitcodeWriter::writeModuleMetadata() { 1905 if (!VE.hasMDs() && M.named_metadata_empty()) 1906 return; 1907 1908 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1909 SmallVector<uint64_t, 64> Record; 1910 1911 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1912 // block and load any metadata. 1913 std::vector<unsigned> MDAbbrevs; 1914 1915 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1916 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1917 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1918 createGenericDINodeAbbrev(); 1919 1920 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1921 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1924 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1925 1926 Abbv = std::make_shared<BitCodeAbbrev>(); 1927 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1930 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1931 1932 // Emit MDStrings together upfront. 1933 writeMetadataStrings(VE.getMDStrings(), Record); 1934 1935 // We only emit an index for the metadata record if we have more than a given 1936 // (naive) threshold of metadatas, otherwise it is not worth it. 1937 if (VE.getNonMDStrings().size() > IndexThreshold) { 1938 // Write a placeholder value in for the offset of the metadata index, 1939 // which is written after the records, so that it can include 1940 // the offset of each entry. The placeholder offset will be 1941 // updated after all records are emitted. 1942 uint64_t Vals[] = {0, 0}; 1943 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1944 } 1945 1946 // Compute and save the bit offset to the current position, which will be 1947 // patched when we emit the index later. We can simply subtract the 64-bit 1948 // fixed size from the current bit number to get the location to backpatch. 1949 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1950 1951 // This index will contain the bitpos for each individual record. 1952 std::vector<uint64_t> IndexPos; 1953 IndexPos.reserve(VE.getNonMDStrings().size()); 1954 1955 // Write all the records 1956 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1957 1958 if (VE.getNonMDStrings().size() > IndexThreshold) { 1959 // Now that we have emitted all the records we will emit the index. But 1960 // first 1961 // backpatch the forward reference so that the reader can skip the records 1962 // efficiently. 1963 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1964 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1965 1966 // Delta encode the index. 1967 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1968 for (auto &Elt : IndexPos) { 1969 auto EltDelta = Elt - PreviousValue; 1970 PreviousValue = Elt; 1971 Elt = EltDelta; 1972 } 1973 // Emit the index record. 1974 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1975 IndexPos.clear(); 1976 } 1977 1978 // Write the named metadata now. 1979 writeNamedMetadata(Record); 1980 1981 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1982 SmallVector<uint64_t, 4> Record; 1983 Record.push_back(VE.getValueID(&GO)); 1984 pushGlobalMetadataAttachment(Record, GO); 1985 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1986 }; 1987 for (const Function &F : M) 1988 if (F.isDeclaration() && F.hasMetadata()) 1989 AddDeclAttachedMetadata(F); 1990 // FIXME: Only store metadata for declarations here, and move data for global 1991 // variable definitions to a separate block (PR28134). 1992 for (const GlobalVariable &GV : M.globals()) 1993 if (GV.hasMetadata()) 1994 AddDeclAttachedMetadata(GV); 1995 1996 Stream.ExitBlock(); 1997 } 1998 1999 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2000 if (!VE.hasMDs()) 2001 return; 2002 2003 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2004 SmallVector<uint64_t, 64> Record; 2005 writeMetadataStrings(VE.getMDStrings(), Record); 2006 writeMetadataRecords(VE.getNonMDStrings(), Record); 2007 Stream.ExitBlock(); 2008 } 2009 2010 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2011 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2012 // [n x [id, mdnode]] 2013 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2014 GO.getAllMetadata(MDs); 2015 for (const auto &I : MDs) { 2016 Record.push_back(I.first); 2017 Record.push_back(VE.getMetadataID(I.second)); 2018 } 2019 } 2020 2021 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2022 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2023 2024 SmallVector<uint64_t, 64> Record; 2025 2026 if (F.hasMetadata()) { 2027 pushGlobalMetadataAttachment(Record, F); 2028 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2029 Record.clear(); 2030 } 2031 2032 // Write metadata attachments 2033 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2034 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2035 for (const BasicBlock &BB : F) 2036 for (const Instruction &I : BB) { 2037 MDs.clear(); 2038 I.getAllMetadataOtherThanDebugLoc(MDs); 2039 2040 // If no metadata, ignore instruction. 2041 if (MDs.empty()) continue; 2042 2043 Record.push_back(VE.getInstructionID(&I)); 2044 2045 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2046 Record.push_back(MDs[i].first); 2047 Record.push_back(VE.getMetadataID(MDs[i].second)); 2048 } 2049 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2050 Record.clear(); 2051 } 2052 2053 Stream.ExitBlock(); 2054 } 2055 2056 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2057 SmallVector<uint64_t, 64> Record; 2058 2059 // Write metadata kinds 2060 // METADATA_KIND - [n x [id, name]] 2061 SmallVector<StringRef, 8> Names; 2062 M.getMDKindNames(Names); 2063 2064 if (Names.empty()) return; 2065 2066 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2067 2068 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2069 Record.push_back(MDKindID); 2070 StringRef KName = Names[MDKindID]; 2071 Record.append(KName.begin(), KName.end()); 2072 2073 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2074 Record.clear(); 2075 } 2076 2077 Stream.ExitBlock(); 2078 } 2079 2080 void ModuleBitcodeWriter::writeOperandBundleTags() { 2081 // Write metadata kinds 2082 // 2083 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2084 // 2085 // OPERAND_BUNDLE_TAG - [strchr x N] 2086 2087 SmallVector<StringRef, 8> Tags; 2088 M.getOperandBundleTags(Tags); 2089 2090 if (Tags.empty()) 2091 return; 2092 2093 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2094 2095 SmallVector<uint64_t, 64> Record; 2096 2097 for (auto Tag : Tags) { 2098 Record.append(Tag.begin(), Tag.end()); 2099 2100 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2101 Record.clear(); 2102 } 2103 2104 Stream.ExitBlock(); 2105 } 2106 2107 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2108 if ((int64_t)V >= 0) 2109 Vals.push_back(V << 1); 2110 else 2111 Vals.push_back((-V << 1) | 1); 2112 } 2113 2114 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2115 bool isGlobal) { 2116 if (FirstVal == LastVal) return; 2117 2118 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2119 2120 unsigned AggregateAbbrev = 0; 2121 unsigned String8Abbrev = 0; 2122 unsigned CString7Abbrev = 0; 2123 unsigned CString6Abbrev = 0; 2124 // If this is a constant pool for the module, emit module-specific abbrevs. 2125 if (isGlobal) { 2126 // Abbrev for CST_CODE_AGGREGATE. 2127 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2128 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2131 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2132 2133 // Abbrev for CST_CODE_STRING. 2134 Abbv = std::make_shared<BitCodeAbbrev>(); 2135 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2138 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2139 // Abbrev for CST_CODE_CSTRING. 2140 Abbv = std::make_shared<BitCodeAbbrev>(); 2141 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2144 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2145 // Abbrev for CST_CODE_CSTRING. 2146 Abbv = std::make_shared<BitCodeAbbrev>(); 2147 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2150 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2151 } 2152 2153 SmallVector<uint64_t, 64> Record; 2154 2155 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2156 Type *LastTy = nullptr; 2157 for (unsigned i = FirstVal; i != LastVal; ++i) { 2158 const Value *V = Vals[i].first; 2159 // If we need to switch types, do so now. 2160 if (V->getType() != LastTy) { 2161 LastTy = V->getType(); 2162 Record.push_back(VE.getTypeID(LastTy)); 2163 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2164 CONSTANTS_SETTYPE_ABBREV); 2165 Record.clear(); 2166 } 2167 2168 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2169 Record.push_back(unsigned(IA->hasSideEffects()) | 2170 unsigned(IA->isAlignStack()) << 1 | 2171 unsigned(IA->getDialect()&1) << 2); 2172 2173 // Add the asm string. 2174 const std::string &AsmStr = IA->getAsmString(); 2175 Record.push_back(AsmStr.size()); 2176 Record.append(AsmStr.begin(), AsmStr.end()); 2177 2178 // Add the constraint string. 2179 const std::string &ConstraintStr = IA->getConstraintString(); 2180 Record.push_back(ConstraintStr.size()); 2181 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2182 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2183 Record.clear(); 2184 continue; 2185 } 2186 const Constant *C = cast<Constant>(V); 2187 unsigned Code = -1U; 2188 unsigned AbbrevToUse = 0; 2189 if (C->isNullValue()) { 2190 Code = bitc::CST_CODE_NULL; 2191 } else if (isa<UndefValue>(C)) { 2192 Code = bitc::CST_CODE_UNDEF; 2193 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2194 if (IV->getBitWidth() <= 64) { 2195 uint64_t V = IV->getSExtValue(); 2196 emitSignedInt64(Record, V); 2197 Code = bitc::CST_CODE_INTEGER; 2198 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2199 } else { // Wide integers, > 64 bits in size. 2200 // We have an arbitrary precision integer value to write whose 2201 // bit width is > 64. However, in canonical unsigned integer 2202 // format it is likely that the high bits are going to be zero. 2203 // So, we only write the number of active words. 2204 unsigned NWords = IV->getValue().getActiveWords(); 2205 const uint64_t *RawWords = IV->getValue().getRawData(); 2206 for (unsigned i = 0; i != NWords; ++i) { 2207 emitSignedInt64(Record, RawWords[i]); 2208 } 2209 Code = bitc::CST_CODE_WIDE_INTEGER; 2210 } 2211 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2212 Code = bitc::CST_CODE_FLOAT; 2213 Type *Ty = CFP->getType(); 2214 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2215 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2216 } else if (Ty->isX86_FP80Ty()) { 2217 // api needed to prevent premature destruction 2218 // bits are not in the same order as a normal i80 APInt, compensate. 2219 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2220 const uint64_t *p = api.getRawData(); 2221 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2222 Record.push_back(p[0] & 0xffffLL); 2223 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2224 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2225 const uint64_t *p = api.getRawData(); 2226 Record.push_back(p[0]); 2227 Record.push_back(p[1]); 2228 } else { 2229 assert (0 && "Unknown FP type!"); 2230 } 2231 } else if (isa<ConstantDataSequential>(C) && 2232 cast<ConstantDataSequential>(C)->isString()) { 2233 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2234 // Emit constant strings specially. 2235 unsigned NumElts = Str->getNumElements(); 2236 // If this is a null-terminated string, use the denser CSTRING encoding. 2237 if (Str->isCString()) { 2238 Code = bitc::CST_CODE_CSTRING; 2239 --NumElts; // Don't encode the null, which isn't allowed by char6. 2240 } else { 2241 Code = bitc::CST_CODE_STRING; 2242 AbbrevToUse = String8Abbrev; 2243 } 2244 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2245 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2246 for (unsigned i = 0; i != NumElts; ++i) { 2247 unsigned char V = Str->getElementAsInteger(i); 2248 Record.push_back(V); 2249 isCStr7 &= (V & 128) == 0; 2250 if (isCStrChar6) 2251 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2252 } 2253 2254 if (isCStrChar6) 2255 AbbrevToUse = CString6Abbrev; 2256 else if (isCStr7) 2257 AbbrevToUse = CString7Abbrev; 2258 } else if (const ConstantDataSequential *CDS = 2259 dyn_cast<ConstantDataSequential>(C)) { 2260 Code = bitc::CST_CODE_DATA; 2261 Type *EltTy = CDS->getType()->getElementType(); 2262 if (isa<IntegerType>(EltTy)) { 2263 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2264 Record.push_back(CDS->getElementAsInteger(i)); 2265 } else { 2266 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2267 Record.push_back( 2268 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2269 } 2270 } else if (isa<ConstantAggregate>(C)) { 2271 Code = bitc::CST_CODE_AGGREGATE; 2272 for (const Value *Op : C->operands()) 2273 Record.push_back(VE.getValueID(Op)); 2274 AbbrevToUse = AggregateAbbrev; 2275 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2276 switch (CE->getOpcode()) { 2277 default: 2278 if (Instruction::isCast(CE->getOpcode())) { 2279 Code = bitc::CST_CODE_CE_CAST; 2280 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2281 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2282 Record.push_back(VE.getValueID(C->getOperand(0))); 2283 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2284 } else { 2285 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2286 Code = bitc::CST_CODE_CE_BINOP; 2287 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2288 Record.push_back(VE.getValueID(C->getOperand(0))); 2289 Record.push_back(VE.getValueID(C->getOperand(1))); 2290 uint64_t Flags = getOptimizationFlags(CE); 2291 if (Flags != 0) 2292 Record.push_back(Flags); 2293 } 2294 break; 2295 case Instruction::GetElementPtr: { 2296 Code = bitc::CST_CODE_CE_GEP; 2297 const auto *GO = cast<GEPOperator>(C); 2298 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2299 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2300 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2301 Record.push_back((*Idx << 1) | GO->isInBounds()); 2302 } else if (GO->isInBounds()) 2303 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2304 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2305 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2306 Record.push_back(VE.getValueID(C->getOperand(i))); 2307 } 2308 break; 2309 } 2310 case Instruction::Select: 2311 Code = bitc::CST_CODE_CE_SELECT; 2312 Record.push_back(VE.getValueID(C->getOperand(0))); 2313 Record.push_back(VE.getValueID(C->getOperand(1))); 2314 Record.push_back(VE.getValueID(C->getOperand(2))); 2315 break; 2316 case Instruction::ExtractElement: 2317 Code = bitc::CST_CODE_CE_EXTRACTELT; 2318 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2319 Record.push_back(VE.getValueID(C->getOperand(0))); 2320 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2321 Record.push_back(VE.getValueID(C->getOperand(1))); 2322 break; 2323 case Instruction::InsertElement: 2324 Code = bitc::CST_CODE_CE_INSERTELT; 2325 Record.push_back(VE.getValueID(C->getOperand(0))); 2326 Record.push_back(VE.getValueID(C->getOperand(1))); 2327 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2328 Record.push_back(VE.getValueID(C->getOperand(2))); 2329 break; 2330 case Instruction::ShuffleVector: 2331 // If the return type and argument types are the same, this is a 2332 // standard shufflevector instruction. If the types are different, 2333 // then the shuffle is widening or truncating the input vectors, and 2334 // the argument type must also be encoded. 2335 if (C->getType() == C->getOperand(0)->getType()) { 2336 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2337 } else { 2338 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2339 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2340 } 2341 Record.push_back(VE.getValueID(C->getOperand(0))); 2342 Record.push_back(VE.getValueID(C->getOperand(1))); 2343 Record.push_back(VE.getValueID(C->getOperand(2))); 2344 break; 2345 case Instruction::ICmp: 2346 case Instruction::FCmp: 2347 Code = bitc::CST_CODE_CE_CMP; 2348 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2349 Record.push_back(VE.getValueID(C->getOperand(0))); 2350 Record.push_back(VE.getValueID(C->getOperand(1))); 2351 Record.push_back(CE->getPredicate()); 2352 break; 2353 } 2354 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2355 Code = bitc::CST_CODE_BLOCKADDRESS; 2356 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2357 Record.push_back(VE.getValueID(BA->getFunction())); 2358 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2359 } else { 2360 #ifndef NDEBUG 2361 C->dump(); 2362 #endif 2363 llvm_unreachable("Unknown constant!"); 2364 } 2365 Stream.EmitRecord(Code, Record, AbbrevToUse); 2366 Record.clear(); 2367 } 2368 2369 Stream.ExitBlock(); 2370 } 2371 2372 void ModuleBitcodeWriter::writeModuleConstants() { 2373 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2374 2375 // Find the first constant to emit, which is the first non-globalvalue value. 2376 // We know globalvalues have been emitted by WriteModuleInfo. 2377 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2378 if (!isa<GlobalValue>(Vals[i].first)) { 2379 writeConstants(i, Vals.size(), true); 2380 return; 2381 } 2382 } 2383 } 2384 2385 /// pushValueAndType - The file has to encode both the value and type id for 2386 /// many values, because we need to know what type to create for forward 2387 /// references. However, most operands are not forward references, so this type 2388 /// field is not needed. 2389 /// 2390 /// This function adds V's value ID to Vals. If the value ID is higher than the 2391 /// instruction ID, then it is a forward reference, and it also includes the 2392 /// type ID. The value ID that is written is encoded relative to the InstID. 2393 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2394 SmallVectorImpl<unsigned> &Vals) { 2395 unsigned ValID = VE.getValueID(V); 2396 // Make encoding relative to the InstID. 2397 Vals.push_back(InstID - ValID); 2398 if (ValID >= InstID) { 2399 Vals.push_back(VE.getTypeID(V->getType())); 2400 return true; 2401 } 2402 return false; 2403 } 2404 2405 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2406 unsigned InstID) { 2407 SmallVector<unsigned, 64> Record; 2408 LLVMContext &C = CS.getInstruction()->getContext(); 2409 2410 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2411 const auto &Bundle = CS.getOperandBundleAt(i); 2412 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2413 2414 for (auto &Input : Bundle.Inputs) 2415 pushValueAndType(Input, InstID, Record); 2416 2417 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2418 Record.clear(); 2419 } 2420 } 2421 2422 /// pushValue - Like pushValueAndType, but where the type of the value is 2423 /// omitted (perhaps it was already encoded in an earlier operand). 2424 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2425 SmallVectorImpl<unsigned> &Vals) { 2426 unsigned ValID = VE.getValueID(V); 2427 Vals.push_back(InstID - ValID); 2428 } 2429 2430 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2431 SmallVectorImpl<uint64_t> &Vals) { 2432 unsigned ValID = VE.getValueID(V); 2433 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2434 emitSignedInt64(Vals, diff); 2435 } 2436 2437 /// WriteInstruction - Emit an instruction to the specified stream. 2438 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2439 unsigned InstID, 2440 SmallVectorImpl<unsigned> &Vals) { 2441 unsigned Code = 0; 2442 unsigned AbbrevToUse = 0; 2443 VE.setInstructionID(&I); 2444 switch (I.getOpcode()) { 2445 default: 2446 if (Instruction::isCast(I.getOpcode())) { 2447 Code = bitc::FUNC_CODE_INST_CAST; 2448 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2449 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2450 Vals.push_back(VE.getTypeID(I.getType())); 2451 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2452 } else { 2453 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2454 Code = bitc::FUNC_CODE_INST_BINOP; 2455 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2456 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2457 pushValue(I.getOperand(1), InstID, Vals); 2458 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2459 uint64_t Flags = getOptimizationFlags(&I); 2460 if (Flags != 0) { 2461 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2462 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2463 Vals.push_back(Flags); 2464 } 2465 } 2466 break; 2467 2468 case Instruction::GetElementPtr: { 2469 Code = bitc::FUNC_CODE_INST_GEP; 2470 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2471 auto &GEPInst = cast<GetElementPtrInst>(I); 2472 Vals.push_back(GEPInst.isInBounds()); 2473 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2474 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2475 pushValueAndType(I.getOperand(i), InstID, Vals); 2476 break; 2477 } 2478 case Instruction::ExtractValue: { 2479 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2480 pushValueAndType(I.getOperand(0), InstID, Vals); 2481 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2482 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2483 break; 2484 } 2485 case Instruction::InsertValue: { 2486 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2487 pushValueAndType(I.getOperand(0), InstID, Vals); 2488 pushValueAndType(I.getOperand(1), InstID, Vals); 2489 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2490 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2491 break; 2492 } 2493 case Instruction::Select: 2494 Code = bitc::FUNC_CODE_INST_VSELECT; 2495 pushValueAndType(I.getOperand(1), InstID, Vals); 2496 pushValue(I.getOperand(2), InstID, Vals); 2497 pushValueAndType(I.getOperand(0), InstID, Vals); 2498 break; 2499 case Instruction::ExtractElement: 2500 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2501 pushValueAndType(I.getOperand(0), InstID, Vals); 2502 pushValueAndType(I.getOperand(1), InstID, Vals); 2503 break; 2504 case Instruction::InsertElement: 2505 Code = bitc::FUNC_CODE_INST_INSERTELT; 2506 pushValueAndType(I.getOperand(0), InstID, Vals); 2507 pushValue(I.getOperand(1), InstID, Vals); 2508 pushValueAndType(I.getOperand(2), InstID, Vals); 2509 break; 2510 case Instruction::ShuffleVector: 2511 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2512 pushValueAndType(I.getOperand(0), InstID, Vals); 2513 pushValue(I.getOperand(1), InstID, Vals); 2514 pushValue(I.getOperand(2), InstID, Vals); 2515 break; 2516 case Instruction::ICmp: 2517 case Instruction::FCmp: { 2518 // compare returning Int1Ty or vector of Int1Ty 2519 Code = bitc::FUNC_CODE_INST_CMP2; 2520 pushValueAndType(I.getOperand(0), InstID, Vals); 2521 pushValue(I.getOperand(1), InstID, Vals); 2522 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2523 uint64_t Flags = getOptimizationFlags(&I); 2524 if (Flags != 0) 2525 Vals.push_back(Flags); 2526 break; 2527 } 2528 2529 case Instruction::Ret: 2530 { 2531 Code = bitc::FUNC_CODE_INST_RET; 2532 unsigned NumOperands = I.getNumOperands(); 2533 if (NumOperands == 0) 2534 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2535 else if (NumOperands == 1) { 2536 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2537 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2538 } else { 2539 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2540 pushValueAndType(I.getOperand(i), InstID, Vals); 2541 } 2542 } 2543 break; 2544 case Instruction::Br: 2545 { 2546 Code = bitc::FUNC_CODE_INST_BR; 2547 const BranchInst &II = cast<BranchInst>(I); 2548 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2549 if (II.isConditional()) { 2550 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2551 pushValue(II.getCondition(), InstID, Vals); 2552 } 2553 } 2554 break; 2555 case Instruction::Switch: 2556 { 2557 Code = bitc::FUNC_CODE_INST_SWITCH; 2558 const SwitchInst &SI = cast<SwitchInst>(I); 2559 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2560 pushValue(SI.getCondition(), InstID, Vals); 2561 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2562 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2563 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2564 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2565 } 2566 } 2567 break; 2568 case Instruction::IndirectBr: 2569 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2570 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2571 // Encode the address operand as relative, but not the basic blocks. 2572 pushValue(I.getOperand(0), InstID, Vals); 2573 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2574 Vals.push_back(VE.getValueID(I.getOperand(i))); 2575 break; 2576 2577 case Instruction::Invoke: { 2578 const InvokeInst *II = cast<InvokeInst>(&I); 2579 const Value *Callee = II->getCalledValue(); 2580 FunctionType *FTy = II->getFunctionType(); 2581 2582 if (II->hasOperandBundles()) 2583 writeOperandBundles(II, InstID); 2584 2585 Code = bitc::FUNC_CODE_INST_INVOKE; 2586 2587 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2588 Vals.push_back(II->getCallingConv() | 1 << 13); 2589 Vals.push_back(VE.getValueID(II->getNormalDest())); 2590 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2591 Vals.push_back(VE.getTypeID(FTy)); 2592 pushValueAndType(Callee, InstID, Vals); 2593 2594 // Emit value #'s for the fixed parameters. 2595 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2596 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2597 2598 // Emit type/value pairs for varargs params. 2599 if (FTy->isVarArg()) { 2600 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2601 i != e; ++i) 2602 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2603 } 2604 break; 2605 } 2606 case Instruction::Resume: 2607 Code = bitc::FUNC_CODE_INST_RESUME; 2608 pushValueAndType(I.getOperand(0), InstID, Vals); 2609 break; 2610 case Instruction::CleanupRet: { 2611 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2612 const auto &CRI = cast<CleanupReturnInst>(I); 2613 pushValue(CRI.getCleanupPad(), InstID, Vals); 2614 if (CRI.hasUnwindDest()) 2615 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2616 break; 2617 } 2618 case Instruction::CatchRet: { 2619 Code = bitc::FUNC_CODE_INST_CATCHRET; 2620 const auto &CRI = cast<CatchReturnInst>(I); 2621 pushValue(CRI.getCatchPad(), InstID, Vals); 2622 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2623 break; 2624 } 2625 case Instruction::CleanupPad: 2626 case Instruction::CatchPad: { 2627 const auto &FuncletPad = cast<FuncletPadInst>(I); 2628 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2629 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2630 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2631 2632 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2633 Vals.push_back(NumArgOperands); 2634 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2635 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2636 break; 2637 } 2638 case Instruction::CatchSwitch: { 2639 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2640 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2641 2642 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2643 2644 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2645 Vals.push_back(NumHandlers); 2646 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2647 Vals.push_back(VE.getValueID(CatchPadBB)); 2648 2649 if (CatchSwitch.hasUnwindDest()) 2650 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2651 break; 2652 } 2653 case Instruction::Unreachable: 2654 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2655 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2656 break; 2657 2658 case Instruction::PHI: { 2659 const PHINode &PN = cast<PHINode>(I); 2660 Code = bitc::FUNC_CODE_INST_PHI; 2661 // With the newer instruction encoding, forward references could give 2662 // negative valued IDs. This is most common for PHIs, so we use 2663 // signed VBRs. 2664 SmallVector<uint64_t, 128> Vals64; 2665 Vals64.push_back(VE.getTypeID(PN.getType())); 2666 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2667 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2668 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2669 } 2670 // Emit a Vals64 vector and exit. 2671 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2672 Vals64.clear(); 2673 return; 2674 } 2675 2676 case Instruction::LandingPad: { 2677 const LandingPadInst &LP = cast<LandingPadInst>(I); 2678 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2679 Vals.push_back(VE.getTypeID(LP.getType())); 2680 Vals.push_back(LP.isCleanup()); 2681 Vals.push_back(LP.getNumClauses()); 2682 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2683 if (LP.isCatch(I)) 2684 Vals.push_back(LandingPadInst::Catch); 2685 else 2686 Vals.push_back(LandingPadInst::Filter); 2687 pushValueAndType(LP.getClause(I), InstID, Vals); 2688 } 2689 break; 2690 } 2691 2692 case Instruction::Alloca: { 2693 Code = bitc::FUNC_CODE_INST_ALLOCA; 2694 const AllocaInst &AI = cast<AllocaInst>(I); 2695 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2696 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2697 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2698 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2699 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2700 "not enough bits for maximum alignment"); 2701 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2702 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2703 AlignRecord |= 1 << 6; 2704 AlignRecord |= AI.isSwiftError() << 7; 2705 Vals.push_back(AlignRecord); 2706 break; 2707 } 2708 2709 case Instruction::Load: 2710 if (cast<LoadInst>(I).isAtomic()) { 2711 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2712 pushValueAndType(I.getOperand(0), InstID, Vals); 2713 } else { 2714 Code = bitc::FUNC_CODE_INST_LOAD; 2715 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2716 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2717 } 2718 Vals.push_back(VE.getTypeID(I.getType())); 2719 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2720 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2721 if (cast<LoadInst>(I).isAtomic()) { 2722 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2723 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2724 } 2725 break; 2726 case Instruction::Store: 2727 if (cast<StoreInst>(I).isAtomic()) 2728 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2729 else 2730 Code = bitc::FUNC_CODE_INST_STORE; 2731 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2732 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2733 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2734 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2735 if (cast<StoreInst>(I).isAtomic()) { 2736 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2737 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2738 } 2739 break; 2740 case Instruction::AtomicCmpXchg: 2741 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2742 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2743 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2744 pushValue(I.getOperand(2), InstID, Vals); // newval. 2745 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2746 Vals.push_back( 2747 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2748 Vals.push_back( 2749 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2750 Vals.push_back( 2751 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2752 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2753 break; 2754 case Instruction::AtomicRMW: 2755 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2756 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2757 pushValue(I.getOperand(1), InstID, Vals); // val. 2758 Vals.push_back( 2759 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2760 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2761 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2762 Vals.push_back( 2763 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2764 break; 2765 case Instruction::Fence: 2766 Code = bitc::FUNC_CODE_INST_FENCE; 2767 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2768 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2769 break; 2770 case Instruction::Call: { 2771 const CallInst &CI = cast<CallInst>(I); 2772 FunctionType *FTy = CI.getFunctionType(); 2773 2774 if (CI.hasOperandBundles()) 2775 writeOperandBundles(&CI, InstID); 2776 2777 Code = bitc::FUNC_CODE_INST_CALL; 2778 2779 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2780 2781 unsigned Flags = getOptimizationFlags(&I); 2782 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2783 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2784 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2785 1 << bitc::CALL_EXPLICIT_TYPE | 2786 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2787 unsigned(Flags != 0) << bitc::CALL_FMF); 2788 if (Flags != 0) 2789 Vals.push_back(Flags); 2790 2791 Vals.push_back(VE.getTypeID(FTy)); 2792 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2793 2794 // Emit value #'s for the fixed parameters. 2795 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2796 // Check for labels (can happen with asm labels). 2797 if (FTy->getParamType(i)->isLabelTy()) 2798 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2799 else 2800 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2801 } 2802 2803 // Emit type/value pairs for varargs params. 2804 if (FTy->isVarArg()) { 2805 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2806 i != e; ++i) 2807 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2808 } 2809 break; 2810 } 2811 case Instruction::VAArg: 2812 Code = bitc::FUNC_CODE_INST_VAARG; 2813 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2814 pushValue(I.getOperand(0), InstID, Vals); // valist. 2815 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2816 break; 2817 } 2818 2819 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2820 Vals.clear(); 2821 } 2822 2823 /// Emit names for globals/functions etc. \p IsModuleLevel is true when 2824 /// we are writing the module-level VST, where we are including a function 2825 /// bitcode index and need to backpatch the VST forward declaration record. 2826 void ModuleBitcodeWriter::writeValueSymbolTable( 2827 const ValueSymbolTable &VST, bool IsModuleLevel, 2828 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) { 2829 if (VST.empty()) { 2830 // writeValueSymbolTableForwardDecl should have returned early as 2831 // well. Ensure this handling remains in sync by asserting that 2832 // the placeholder offset is not set. 2833 assert(!IsModuleLevel || !hasVSTOffsetPlaceholder()); 2834 return; 2835 } 2836 2837 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2838 // Get the offset of the VST we are writing, and backpatch it into 2839 // the VST forward declaration record. 2840 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2841 // The BitcodeStartBit was the stream offset of the identification block. 2842 VSTOffset -= bitcodeStartBit(); 2843 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2844 // Note that we add 1 here because the offset is relative to one word 2845 // before the start of the identification block, which was historically 2846 // always the start of the regular bitcode header. 2847 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2848 } 2849 2850 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2851 2852 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2853 // records, which are not used in the per-function VSTs. 2854 unsigned FnEntry8BitAbbrev; 2855 unsigned FnEntry7BitAbbrev; 2856 unsigned FnEntry6BitAbbrev; 2857 unsigned GUIDEntryAbbrev; 2858 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2859 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2860 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2861 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2866 FnEntry8BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2867 2868 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2869 Abbv = std::make_shared<BitCodeAbbrev>(); 2870 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2875 FnEntry7BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2876 2877 // 6-bit char6 VST_CODE_FNENTRY function strings. 2878 Abbv = std::make_shared<BitCodeAbbrev>(); 2879 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2884 FnEntry6BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2885 2886 // FIXME: Change the name of this record as it is now used by 2887 // the per-module index as well. 2888 Abbv = std::make_shared<BitCodeAbbrev>(); 2889 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2892 GUIDEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2893 } 2894 2895 // FIXME: Set up the abbrev, we know how many values there are! 2896 // FIXME: We know if the type names can use 7-bit ascii. 2897 SmallVector<uint64_t, 64> NameVals; 2898 2899 for (const ValueName &Name : VST) { 2900 // Figure out the encoding to use for the name. 2901 StringEncoding Bits = 2902 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2903 2904 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2905 NameVals.push_back(VE.getValueID(Name.getValue())); 2906 2907 Function *F = dyn_cast<Function>(Name.getValue()); 2908 if (!F) { 2909 // If value is an alias, need to get the aliased base object to 2910 // see if it is a function. 2911 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2912 if (GA && GA->getBaseObject()) 2913 F = dyn_cast<Function>(GA->getBaseObject()); 2914 } 2915 2916 // VST_CODE_ENTRY: [valueid, namechar x N] 2917 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2918 // VST_CODE_BBENTRY: [bbid, namechar x N] 2919 unsigned Code; 2920 if (isa<BasicBlock>(Name.getValue())) { 2921 Code = bitc::VST_CODE_BBENTRY; 2922 if (Bits == SE_Char6) 2923 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2924 } else if (F && !F->isDeclaration()) { 2925 // Must be the module-level VST, where we pass in the Index and 2926 // have a VSTOffsetPlaceholder. The function-level VST should not 2927 // contain any Function symbols. 2928 assert(FunctionToBitcodeIndex); 2929 assert(hasVSTOffsetPlaceholder()); 2930 2931 // Save the word offset of the function (from the start of the 2932 // actual bitcode written to the stream). 2933 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit(); 2934 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2935 // Note that we add 1 here because the offset is relative to one word 2936 // before the start of the identification block, which was historically 2937 // always the start of the regular bitcode header. 2938 NameVals.push_back(BitcodeIndex / 32 + 1); 2939 2940 Code = bitc::VST_CODE_FNENTRY; 2941 AbbrevToUse = FnEntry8BitAbbrev; 2942 if (Bits == SE_Char6) 2943 AbbrevToUse = FnEntry6BitAbbrev; 2944 else if (Bits == SE_Fixed7) 2945 AbbrevToUse = FnEntry7BitAbbrev; 2946 } else { 2947 Code = bitc::VST_CODE_ENTRY; 2948 if (Bits == SE_Char6) 2949 AbbrevToUse = VST_ENTRY_6_ABBREV; 2950 else if (Bits == SE_Fixed7) 2951 AbbrevToUse = VST_ENTRY_7_ABBREV; 2952 } 2953 2954 for (const auto P : Name.getKey()) 2955 NameVals.push_back((unsigned char)P); 2956 2957 // Emit the finished record. 2958 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2959 NameVals.clear(); 2960 } 2961 // Emit any GUID valueIDs created for indirect call edges into the 2962 // module-level VST. 2963 if (IsModuleLevel && hasVSTOffsetPlaceholder()) 2964 for (const auto &GI : valueIds()) { 2965 NameVals.push_back(GI.second); 2966 NameVals.push_back(GI.first); 2967 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, 2968 GUIDEntryAbbrev); 2969 NameVals.clear(); 2970 } 2971 Stream.ExitBlock(); 2972 } 2973 2974 /// Emit function names and summary offsets for the combined index 2975 /// used by ThinLTO. 2976 void IndexBitcodeWriter::writeCombinedValueSymbolTable() { 2977 assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder"); 2978 // Get the offset of the VST we are writing, and backpatch it into 2979 // the VST forward declaration record. 2980 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2981 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2982 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2983 2984 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2985 2986 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2987 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2990 unsigned EntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2991 2992 SmallVector<uint64_t, 64> NameVals; 2993 for (const auto &GVI : valueIds()) { 2994 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2995 NameVals.push_back(GVI.second); 2996 NameVals.push_back(GVI.first); 2997 2998 // Emit the finished record. 2999 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 3000 NameVals.clear(); 3001 } 3002 Stream.ExitBlock(); 3003 } 3004 3005 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3006 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3007 unsigned Code; 3008 if (isa<BasicBlock>(Order.V)) 3009 Code = bitc::USELIST_CODE_BB; 3010 else 3011 Code = bitc::USELIST_CODE_DEFAULT; 3012 3013 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3014 Record.push_back(VE.getValueID(Order.V)); 3015 Stream.EmitRecord(Code, Record); 3016 } 3017 3018 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3019 assert(VE.shouldPreserveUseListOrder() && 3020 "Expected to be preserving use-list order"); 3021 3022 auto hasMore = [&]() { 3023 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3024 }; 3025 if (!hasMore()) 3026 // Nothing to do. 3027 return; 3028 3029 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3030 while (hasMore()) { 3031 writeUseList(std::move(VE.UseListOrders.back())); 3032 VE.UseListOrders.pop_back(); 3033 } 3034 Stream.ExitBlock(); 3035 } 3036 3037 /// Emit a function body to the module stream. 3038 void ModuleBitcodeWriter::writeFunction( 3039 const Function &F, 3040 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3041 // Save the bitcode index of the start of this function block for recording 3042 // in the VST. 3043 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3044 3045 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3046 VE.incorporateFunction(F); 3047 3048 SmallVector<unsigned, 64> Vals; 3049 3050 // Emit the number of basic blocks, so the reader can create them ahead of 3051 // time. 3052 Vals.push_back(VE.getBasicBlocks().size()); 3053 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3054 Vals.clear(); 3055 3056 // If there are function-local constants, emit them now. 3057 unsigned CstStart, CstEnd; 3058 VE.getFunctionConstantRange(CstStart, CstEnd); 3059 writeConstants(CstStart, CstEnd, false); 3060 3061 // If there is function-local metadata, emit it now. 3062 writeFunctionMetadata(F); 3063 3064 // Keep a running idea of what the instruction ID is. 3065 unsigned InstID = CstEnd; 3066 3067 bool NeedsMetadataAttachment = F.hasMetadata(); 3068 3069 DILocation *LastDL = nullptr; 3070 // Finally, emit all the instructions, in order. 3071 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3072 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3073 I != E; ++I) { 3074 writeInstruction(*I, InstID, Vals); 3075 3076 if (!I->getType()->isVoidTy()) 3077 ++InstID; 3078 3079 // If the instruction has metadata, write a metadata attachment later. 3080 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3081 3082 // If the instruction has a debug location, emit it. 3083 DILocation *DL = I->getDebugLoc(); 3084 if (!DL) 3085 continue; 3086 3087 if (DL == LastDL) { 3088 // Just repeat the same debug loc as last time. 3089 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3090 continue; 3091 } 3092 3093 Vals.push_back(DL->getLine()); 3094 Vals.push_back(DL->getColumn()); 3095 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3096 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3097 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3098 Vals.clear(); 3099 3100 LastDL = DL; 3101 } 3102 3103 // Emit names for all the instructions etc. 3104 if (auto *Symtab = F.getValueSymbolTable()) 3105 writeValueSymbolTable(*Symtab); 3106 3107 if (NeedsMetadataAttachment) 3108 writeFunctionMetadataAttachment(F); 3109 if (VE.shouldPreserveUseListOrder()) 3110 writeUseListBlock(&F); 3111 VE.purgeFunction(); 3112 Stream.ExitBlock(); 3113 } 3114 3115 // Emit blockinfo, which defines the standard abbreviations etc. 3116 void ModuleBitcodeWriter::writeBlockInfo() { 3117 // We only want to emit block info records for blocks that have multiple 3118 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3119 // Other blocks can define their abbrevs inline. 3120 Stream.EnterBlockInfoBlock(); 3121 3122 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3123 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3128 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3129 VST_ENTRY_8_ABBREV) 3130 llvm_unreachable("Unexpected abbrev ordering!"); 3131 } 3132 3133 { // 7-bit fixed width VST_CODE_ENTRY strings. 3134 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3135 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3139 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3140 VST_ENTRY_7_ABBREV) 3141 llvm_unreachable("Unexpected abbrev ordering!"); 3142 } 3143 { // 6-bit char6 VST_CODE_ENTRY strings. 3144 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3145 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3149 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3150 VST_ENTRY_6_ABBREV) 3151 llvm_unreachable("Unexpected abbrev ordering!"); 3152 } 3153 { // 6-bit char6 VST_CODE_BBENTRY strings. 3154 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3155 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3159 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3160 VST_BBENTRY_6_ABBREV) 3161 llvm_unreachable("Unexpected abbrev ordering!"); 3162 } 3163 3164 3165 3166 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3167 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3168 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3170 VE.computeBitsRequiredForTypeIndicies())); 3171 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3172 CONSTANTS_SETTYPE_ABBREV) 3173 llvm_unreachable("Unexpected abbrev ordering!"); 3174 } 3175 3176 { // INTEGER abbrev for CONSTANTS_BLOCK. 3177 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3178 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3180 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3181 CONSTANTS_INTEGER_ABBREV) 3182 llvm_unreachable("Unexpected abbrev ordering!"); 3183 } 3184 3185 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3186 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3187 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3190 VE.computeBitsRequiredForTypeIndicies())); 3191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3192 3193 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3194 CONSTANTS_CE_CAST_Abbrev) 3195 llvm_unreachable("Unexpected abbrev ordering!"); 3196 } 3197 { // NULL abbrev for CONSTANTS_BLOCK. 3198 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3199 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3200 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3201 CONSTANTS_NULL_Abbrev) 3202 llvm_unreachable("Unexpected abbrev ordering!"); 3203 } 3204 3205 // FIXME: This should only use space for first class types! 3206 3207 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3208 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3209 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3212 VE.computeBitsRequiredForTypeIndicies())); 3213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3215 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3216 FUNCTION_INST_LOAD_ABBREV) 3217 llvm_unreachable("Unexpected abbrev ordering!"); 3218 } 3219 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3220 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3221 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3225 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3226 FUNCTION_INST_BINOP_ABBREV) 3227 llvm_unreachable("Unexpected abbrev ordering!"); 3228 } 3229 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3230 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3231 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3236 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3237 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3238 llvm_unreachable("Unexpected abbrev ordering!"); 3239 } 3240 { // INST_CAST abbrev for FUNCTION_BLOCK. 3241 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3242 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3245 VE.computeBitsRequiredForTypeIndicies())); 3246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3247 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3248 FUNCTION_INST_CAST_ABBREV) 3249 llvm_unreachable("Unexpected abbrev ordering!"); 3250 } 3251 3252 { // INST_RET abbrev for FUNCTION_BLOCK. 3253 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3254 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3255 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3256 FUNCTION_INST_RET_VOID_ABBREV) 3257 llvm_unreachable("Unexpected abbrev ordering!"); 3258 } 3259 { // INST_RET abbrev for FUNCTION_BLOCK. 3260 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3261 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3263 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3264 FUNCTION_INST_RET_VAL_ABBREV) 3265 llvm_unreachable("Unexpected abbrev ordering!"); 3266 } 3267 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3268 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3269 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3270 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3271 FUNCTION_INST_UNREACHABLE_ABBREV) 3272 llvm_unreachable("Unexpected abbrev ordering!"); 3273 } 3274 { 3275 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3276 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3279 Log2_32_Ceil(VE.getTypes().size() + 1))); 3280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3282 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3283 FUNCTION_INST_GEP_ABBREV) 3284 llvm_unreachable("Unexpected abbrev ordering!"); 3285 } 3286 3287 Stream.ExitBlock(); 3288 } 3289 3290 /// Write the module path strings, currently only used when generating 3291 /// a combined index file. 3292 void IndexBitcodeWriter::writeModStrings() { 3293 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3294 3295 // TODO: See which abbrev sizes we actually need to emit 3296 3297 // 8-bit fixed-width MST_ENTRY strings. 3298 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3299 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3303 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3304 3305 // 7-bit fixed width MST_ENTRY strings. 3306 Abbv = std::make_shared<BitCodeAbbrev>(); 3307 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3311 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3312 3313 // 6-bit char6 MST_ENTRY strings. 3314 Abbv = std::make_shared<BitCodeAbbrev>(); 3315 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3319 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3320 3321 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3322 Abbv = std::make_shared<BitCodeAbbrev>(); 3323 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3329 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3330 3331 SmallVector<unsigned, 64> Vals; 3332 for (const auto &MPSE : Index.modulePaths()) { 3333 if (!doIncludeModule(MPSE.getKey())) 3334 continue; 3335 StringEncoding Bits = 3336 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3337 unsigned AbbrevToUse = Abbrev8Bit; 3338 if (Bits == SE_Char6) 3339 AbbrevToUse = Abbrev6Bit; 3340 else if (Bits == SE_Fixed7) 3341 AbbrevToUse = Abbrev7Bit; 3342 3343 Vals.push_back(MPSE.getValue().first); 3344 3345 for (const auto P : MPSE.getKey()) 3346 Vals.push_back((unsigned char)P); 3347 3348 // Emit the finished record. 3349 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3350 3351 Vals.clear(); 3352 // Emit an optional hash for the module now 3353 auto &Hash = MPSE.getValue().second; 3354 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3355 for (auto Val : Hash) { 3356 if (Val) 3357 AllZero = false; 3358 Vals.push_back(Val); 3359 } 3360 if (!AllZero) { 3361 // Emit the hash record. 3362 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3363 } 3364 3365 Vals.clear(); 3366 } 3367 Stream.ExitBlock(); 3368 } 3369 3370 // Helper to emit a single function summary record. 3371 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3372 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3373 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3374 const Function &F) { 3375 NameVals.push_back(ValueID); 3376 3377 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3378 if (!FS->type_tests().empty()) 3379 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3380 3381 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3382 NameVals.push_back(FS->instCount()); 3383 NameVals.push_back(FS->refs().size()); 3384 3385 for (auto &RI : FS->refs()) 3386 NameVals.push_back(VE.getValueID(RI.getValue())); 3387 3388 bool HasProfileData = F.getEntryCount().hasValue(); 3389 for (auto &ECI : FS->calls()) { 3390 NameVals.push_back(getValueId(ECI.first)); 3391 if (HasProfileData) 3392 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3393 } 3394 3395 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3396 unsigned Code = 3397 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3398 3399 // Emit the finished record. 3400 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3401 NameVals.clear(); 3402 } 3403 3404 // Collect the global value references in the given variable's initializer, 3405 // and emit them in a summary record. 3406 void ModuleBitcodeWriter::writeModuleLevelReferences( 3407 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3408 unsigned FSModRefsAbbrev) { 3409 auto Summaries = 3410 Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName())); 3411 if (Summaries == Index->end()) { 3412 // Only declarations should not have a summary (a declaration might however 3413 // have a summary if the def was in module level asm). 3414 assert(V.isDeclaration()); 3415 return; 3416 } 3417 auto *Summary = Summaries->second.front().get(); 3418 NameVals.push_back(VE.getValueID(&V)); 3419 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3420 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3421 3422 unsigned SizeBeforeRefs = NameVals.size(); 3423 for (auto &RI : VS->refs()) 3424 NameVals.push_back(VE.getValueID(RI.getValue())); 3425 // Sort the refs for determinism output, the vector returned by FS->refs() has 3426 // been initialized from a DenseSet. 3427 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3428 3429 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3430 FSModRefsAbbrev); 3431 NameVals.clear(); 3432 } 3433 3434 // Current version for the summary. 3435 // This is bumped whenever we introduce changes in the way some record are 3436 // interpreted, like flags for instance. 3437 static const uint64_t INDEX_VERSION = 3; 3438 3439 /// Emit the per-module summary section alongside the rest of 3440 /// the module's bitcode. 3441 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3442 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3443 3444 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3445 3446 if (Index->begin() == Index->end()) { 3447 Stream.ExitBlock(); 3448 return; 3449 } 3450 3451 // Abbrev for FS_PERMODULE. 3452 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3453 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3458 // numrefs x valueid, n x (valueid) 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3461 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3462 3463 // Abbrev for FS_PERMODULE_PROFILE. 3464 Abbv = std::make_shared<BitCodeAbbrev>(); 3465 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3470 // numrefs x valueid, n x (valueid, hotness) 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3473 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3474 3475 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3476 Abbv = std::make_shared<BitCodeAbbrev>(); 3477 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3482 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3483 3484 // Abbrev for FS_ALIAS. 3485 Abbv = std::make_shared<BitCodeAbbrev>(); 3486 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3490 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3491 3492 SmallVector<uint64_t, 64> NameVals; 3493 // Iterate over the list of functions instead of the Index to 3494 // ensure the ordering is stable. 3495 for (const Function &F : M) { 3496 // Summary emission does not support anonymous functions, they have to 3497 // renamed using the anonymous function renaming pass. 3498 if (!F.hasName()) 3499 report_fatal_error("Unexpected anonymous function when writing summary"); 3500 3501 auto Summaries = 3502 Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName())); 3503 if (Summaries == Index->end()) { 3504 // Only declarations should not have a summary (a declaration might 3505 // however have a summary if the def was in module level asm). 3506 assert(F.isDeclaration()); 3507 continue; 3508 } 3509 auto *Summary = Summaries->second.front().get(); 3510 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3511 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3512 } 3513 3514 // Capture references from GlobalVariable initializers, which are outside 3515 // of a function scope. 3516 for (const GlobalVariable &G : M.globals()) 3517 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3518 3519 for (const GlobalAlias &A : M.aliases()) { 3520 auto *Aliasee = A.getBaseObject(); 3521 if (!Aliasee->hasName()) 3522 // Nameless function don't have an entry in the summary, skip it. 3523 continue; 3524 auto AliasId = VE.getValueID(&A); 3525 auto AliaseeId = VE.getValueID(Aliasee); 3526 NameVals.push_back(AliasId); 3527 auto *Summary = Index->getGlobalValueSummary(A); 3528 AliasSummary *AS = cast<AliasSummary>(Summary); 3529 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3530 NameVals.push_back(AliaseeId); 3531 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3532 NameVals.clear(); 3533 } 3534 3535 Stream.ExitBlock(); 3536 } 3537 3538 /// Emit the combined summary section into the combined index file. 3539 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3540 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3541 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3542 3543 // Abbrev for FS_COMBINED. 3544 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3545 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3551 // numrefs x valueid, n x (valueid) 3552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3554 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3555 3556 // Abbrev for FS_COMBINED_PROFILE. 3557 Abbv = std::make_shared<BitCodeAbbrev>(); 3558 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3564 // numrefs x valueid, n x (valueid, hotness) 3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3567 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3568 3569 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3570 Abbv = std::make_shared<BitCodeAbbrev>(); 3571 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3577 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3578 3579 // Abbrev for FS_COMBINED_ALIAS. 3580 Abbv = std::make_shared<BitCodeAbbrev>(); 3581 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3586 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3587 3588 // The aliases are emitted as a post-pass, and will point to the value 3589 // id of the aliasee. Save them in a vector for post-processing. 3590 SmallVector<AliasSummary *, 64> Aliases; 3591 3592 // Save the value id for each summary for alias emission. 3593 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3594 3595 SmallVector<uint64_t, 64> NameVals; 3596 3597 // For local linkage, we also emit the original name separately 3598 // immediately after the record. 3599 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3600 if (!GlobalValue::isLocalLinkage(S.linkage())) 3601 return; 3602 NameVals.push_back(S.getOriginalName()); 3603 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3604 NameVals.clear(); 3605 }; 3606 3607 for (const auto &I : *this) { 3608 GlobalValueSummary *S = I.second; 3609 assert(S); 3610 3611 assert(hasValueId(I.first)); 3612 unsigned ValueId = getValueId(I.first); 3613 SummaryToValueIdMap[S] = ValueId; 3614 3615 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3616 // Will process aliases as a post-pass because the reader wants all 3617 // global to be loaded first. 3618 Aliases.push_back(AS); 3619 continue; 3620 } 3621 3622 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3623 NameVals.push_back(ValueId); 3624 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3625 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3626 for (auto &RI : VS->refs()) { 3627 NameVals.push_back(getValueId(RI.getGUID())); 3628 } 3629 3630 // Emit the finished record. 3631 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3632 FSModRefsAbbrev); 3633 NameVals.clear(); 3634 MaybeEmitOriginalName(*S); 3635 continue; 3636 } 3637 3638 auto *FS = cast<FunctionSummary>(S); 3639 if (!FS->type_tests().empty()) 3640 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3641 3642 NameVals.push_back(ValueId); 3643 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3644 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3645 NameVals.push_back(FS->instCount()); 3646 NameVals.push_back(FS->refs().size()); 3647 3648 for (auto &RI : FS->refs()) { 3649 NameVals.push_back(getValueId(RI.getGUID())); 3650 } 3651 3652 bool HasProfileData = false; 3653 for (auto &EI : FS->calls()) { 3654 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3655 if (HasProfileData) 3656 break; 3657 } 3658 3659 for (auto &EI : FS->calls()) { 3660 // If this GUID doesn't have a value id, it doesn't have a function 3661 // summary and we don't need to record any calls to it. 3662 if (!hasValueId(EI.first.getGUID())) 3663 continue; 3664 NameVals.push_back(getValueId(EI.first.getGUID())); 3665 if (HasProfileData) 3666 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3667 } 3668 3669 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3670 unsigned Code = 3671 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3672 3673 // Emit the finished record. 3674 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3675 NameVals.clear(); 3676 MaybeEmitOriginalName(*S); 3677 } 3678 3679 for (auto *AS : Aliases) { 3680 auto AliasValueId = SummaryToValueIdMap[AS]; 3681 assert(AliasValueId); 3682 NameVals.push_back(AliasValueId); 3683 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3684 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3685 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3686 assert(AliaseeValueId); 3687 NameVals.push_back(AliaseeValueId); 3688 3689 // Emit the finished record. 3690 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3691 NameVals.clear(); 3692 MaybeEmitOriginalName(*AS); 3693 } 3694 3695 Stream.ExitBlock(); 3696 } 3697 3698 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3699 /// current llvm version, and a record for the epoch number. 3700 void writeIdentificationBlock(BitstreamWriter &Stream) { 3701 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3702 3703 // Write the "user readable" string identifying the bitcode producer 3704 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3705 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3708 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3709 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3710 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3711 3712 // Write the epoch version 3713 Abbv = std::make_shared<BitCodeAbbrev>(); 3714 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3716 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3717 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3718 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3719 Stream.ExitBlock(); 3720 } 3721 3722 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3723 // Emit the module's hash. 3724 // MODULE_CODE_HASH: [5*i32] 3725 SHA1 Hasher; 3726 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3727 Buffer.size() - BlockStartPos)); 3728 StringRef Hash = Hasher.result(); 3729 uint32_t Vals[5]; 3730 for (int Pos = 0; Pos < 20; Pos += 4) { 3731 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3732 } 3733 3734 // Emit the finished record. 3735 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3736 } 3737 3738 void ModuleBitcodeWriter::write() { 3739 writeIdentificationBlock(Stream); 3740 3741 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3742 size_t BlockStartPos = Buffer.size(); 3743 3744 SmallVector<unsigned, 1> Vals; 3745 unsigned CurVersion = 1; 3746 Vals.push_back(CurVersion); 3747 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3748 3749 // Emit blockinfo, which defines the standard abbreviations etc. 3750 writeBlockInfo(); 3751 3752 // Emit information about attribute groups. 3753 writeAttributeGroupTable(); 3754 3755 // Emit information about parameter attributes. 3756 writeAttributeTable(); 3757 3758 // Emit information describing all of the types in the module. 3759 writeTypeTable(); 3760 3761 writeComdats(); 3762 3763 // Emit top-level description of module, including target triple, inline asm, 3764 // descriptors for global variables, and function prototype info. 3765 writeModuleInfo(); 3766 3767 // Emit constants. 3768 writeModuleConstants(); 3769 3770 // Emit metadata kind names. 3771 writeModuleMetadataKinds(); 3772 3773 // Emit metadata. 3774 writeModuleMetadata(); 3775 3776 // Emit module-level use-lists. 3777 if (VE.shouldPreserveUseListOrder()) 3778 writeUseListBlock(nullptr); 3779 3780 writeOperandBundleTags(); 3781 3782 // Emit function bodies. 3783 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3784 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3785 if (!F->isDeclaration()) 3786 writeFunction(*F, FunctionToBitcodeIndex); 3787 3788 // Need to write after the above call to WriteFunction which populates 3789 // the summary information in the index. 3790 if (Index) 3791 writePerModuleGlobalValueSummary(); 3792 3793 writeValueSymbolTable(M.getValueSymbolTable(), 3794 /* IsModuleLevel */ true, &FunctionToBitcodeIndex); 3795 3796 if (GenerateHash) { 3797 writeModuleHash(BlockStartPos); 3798 } 3799 3800 Stream.ExitBlock(); 3801 } 3802 3803 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3804 uint32_t &Position) { 3805 support::endian::write32le(&Buffer[Position], Value); 3806 Position += 4; 3807 } 3808 3809 /// If generating a bc file on darwin, we have to emit a 3810 /// header and trailer to make it compatible with the system archiver. To do 3811 /// this we emit the following header, and then emit a trailer that pads the 3812 /// file out to be a multiple of 16 bytes. 3813 /// 3814 /// struct bc_header { 3815 /// uint32_t Magic; // 0x0B17C0DE 3816 /// uint32_t Version; // Version, currently always 0. 3817 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3818 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3819 /// uint32_t CPUType; // CPU specifier. 3820 /// ... potentially more later ... 3821 /// }; 3822 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3823 const Triple &TT) { 3824 unsigned CPUType = ~0U; 3825 3826 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3827 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3828 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3829 // specific constants here because they are implicitly part of the Darwin ABI. 3830 enum { 3831 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3832 DARWIN_CPU_TYPE_X86 = 7, 3833 DARWIN_CPU_TYPE_ARM = 12, 3834 DARWIN_CPU_TYPE_POWERPC = 18 3835 }; 3836 3837 Triple::ArchType Arch = TT.getArch(); 3838 if (Arch == Triple::x86_64) 3839 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3840 else if (Arch == Triple::x86) 3841 CPUType = DARWIN_CPU_TYPE_X86; 3842 else if (Arch == Triple::ppc) 3843 CPUType = DARWIN_CPU_TYPE_POWERPC; 3844 else if (Arch == Triple::ppc64) 3845 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3846 else if (Arch == Triple::arm || Arch == Triple::thumb) 3847 CPUType = DARWIN_CPU_TYPE_ARM; 3848 3849 // Traditional Bitcode starts after header. 3850 assert(Buffer.size() >= BWH_HeaderSize && 3851 "Expected header size to be reserved"); 3852 unsigned BCOffset = BWH_HeaderSize; 3853 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3854 3855 // Write the magic and version. 3856 unsigned Position = 0; 3857 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3858 writeInt32ToBuffer(0, Buffer, Position); // Version. 3859 writeInt32ToBuffer(BCOffset, Buffer, Position); 3860 writeInt32ToBuffer(BCSize, Buffer, Position); 3861 writeInt32ToBuffer(CPUType, Buffer, Position); 3862 3863 // If the file is not a multiple of 16 bytes, insert dummy padding. 3864 while (Buffer.size() & 15) 3865 Buffer.push_back(0); 3866 } 3867 3868 /// Helper to write the header common to all bitcode files. 3869 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3870 // Emit the file header. 3871 Stream.Emit((unsigned)'B', 8); 3872 Stream.Emit((unsigned)'C', 8); 3873 Stream.Emit(0x0, 4); 3874 Stream.Emit(0xC, 4); 3875 Stream.Emit(0xE, 4); 3876 Stream.Emit(0xD, 4); 3877 } 3878 3879 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3880 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3881 writeBitcodeHeader(*Stream); 3882 } 3883 3884 BitcodeWriter::~BitcodeWriter() = default; 3885 3886 void BitcodeWriter::writeModule(const Module *M, 3887 bool ShouldPreserveUseListOrder, 3888 const ModuleSummaryIndex *Index, 3889 bool GenerateHash) { 3890 ModuleBitcodeWriter ModuleWriter( 3891 M, Buffer, *Stream, ShouldPreserveUseListOrder, Index, GenerateHash); 3892 ModuleWriter.write(); 3893 } 3894 3895 /// WriteBitcodeToFile - Write the specified module to the specified output 3896 /// stream. 3897 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3898 bool ShouldPreserveUseListOrder, 3899 const ModuleSummaryIndex *Index, 3900 bool GenerateHash) { 3901 SmallVector<char, 0> Buffer; 3902 Buffer.reserve(256*1024); 3903 3904 // If this is darwin or another generic macho target, reserve space for the 3905 // header. 3906 Triple TT(M->getTargetTriple()); 3907 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3908 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3909 3910 BitcodeWriter Writer(Buffer); 3911 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash); 3912 3913 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3914 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3915 3916 // Write the generated bitstream to "Out". 3917 Out.write((char*)&Buffer.front(), Buffer.size()); 3918 } 3919 3920 void IndexBitcodeWriter::write() { 3921 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3922 3923 SmallVector<unsigned, 1> Vals; 3924 unsigned CurVersion = 1; 3925 Vals.push_back(CurVersion); 3926 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3927 3928 // If we have a VST, write the VSTOFFSET record placeholder. 3929 writeValueSymbolTableForwardDecl(); 3930 3931 // Write the module paths in the combined index. 3932 writeModStrings(); 3933 3934 // Write the summary combined index records. 3935 writeCombinedGlobalValueSummary(); 3936 3937 // Need a special VST writer for the combined index (we don't have a 3938 // real VST and real values when this is invoked). 3939 writeCombinedValueSymbolTable(); 3940 3941 Stream.ExitBlock(); 3942 } 3943 3944 // Write the specified module summary index to the given raw output stream, 3945 // where it will be written in a new bitcode block. This is used when 3946 // writing the combined index file for ThinLTO. When writing a subset of the 3947 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3948 void llvm::WriteIndexToFile( 3949 const ModuleSummaryIndex &Index, raw_ostream &Out, 3950 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3951 SmallVector<char, 0> Buffer; 3952 Buffer.reserve(256 * 1024); 3953 3954 BitstreamWriter Stream(Buffer); 3955 writeBitcodeHeader(Stream); 3956 3957 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 3958 IndexWriter.write(); 3959 3960 Out.write((char *)&Buffer.front(), Buffer.size()); 3961 } 3962