1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV 60 }; 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 78 } 79 } 80 81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 82 switch (Opcode) { 83 default: llvm_unreachable("Unknown binary instruction!"); 84 case Instruction::Add: 85 case Instruction::FAdd: return bitc::BINOP_ADD; 86 case Instruction::Sub: 87 case Instruction::FSub: return bitc::BINOP_SUB; 88 case Instruction::Mul: 89 case Instruction::FMul: return bitc::BINOP_MUL; 90 case Instruction::UDiv: return bitc::BINOP_UDIV; 91 case Instruction::FDiv: 92 case Instruction::SDiv: return bitc::BINOP_SDIV; 93 case Instruction::URem: return bitc::BINOP_UREM; 94 case Instruction::FRem: 95 case Instruction::SRem: return bitc::BINOP_SREM; 96 case Instruction::Shl: return bitc::BINOP_SHL; 97 case Instruction::LShr: return bitc::BINOP_LSHR; 98 case Instruction::AShr: return bitc::BINOP_ASHR; 99 case Instruction::And: return bitc::BINOP_AND; 100 case Instruction::Or: return bitc::BINOP_OR; 101 case Instruction::Xor: return bitc::BINOP_XOR; 102 } 103 } 104 105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 106 switch (Op) { 107 default: llvm_unreachable("Unknown RMW operation!"); 108 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 109 case AtomicRMWInst::Add: return bitc::RMW_ADD; 110 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 111 case AtomicRMWInst::And: return bitc::RMW_AND; 112 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 113 case AtomicRMWInst::Or: return bitc::RMW_OR; 114 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 115 case AtomicRMWInst::Max: return bitc::RMW_MAX; 116 case AtomicRMWInst::Min: return bitc::RMW_MIN; 117 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 118 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 119 } 120 } 121 122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 123 switch (Ordering) { 124 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 125 case Unordered: return bitc::ORDERING_UNORDERED; 126 case Monotonic: return bitc::ORDERING_MONOTONIC; 127 case Acquire: return bitc::ORDERING_ACQUIRE; 128 case Release: return bitc::ORDERING_RELEASE; 129 case AcquireRelease: return bitc::ORDERING_ACQREL; 130 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 131 } 132 llvm_unreachable("Invalid ordering"); 133 } 134 135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 136 switch (SynchScope) { 137 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 138 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 139 } 140 llvm_unreachable("Invalid synch scope"); 141 } 142 143 static void WriteStringRecord(unsigned Code, StringRef Str, 144 unsigned AbbrevToUse, BitstreamWriter &Stream) { 145 SmallVector<unsigned, 64> Vals; 146 147 // Code: [strchar x N] 148 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 149 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 150 AbbrevToUse = 0; 151 Vals.push_back(Str[i]); 152 } 153 154 // Emit the finished record. 155 Stream.EmitRecord(Code, Vals, AbbrevToUse); 156 } 157 158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 159 switch (Kind) { 160 case Attribute::Alignment: 161 return bitc::ATTR_KIND_ALIGNMENT; 162 case Attribute::AlwaysInline: 163 return bitc::ATTR_KIND_ALWAYS_INLINE; 164 case Attribute::Builtin: 165 return bitc::ATTR_KIND_BUILTIN; 166 case Attribute::ByVal: 167 return bitc::ATTR_KIND_BY_VAL; 168 case Attribute::InAlloca: 169 return bitc::ATTR_KIND_IN_ALLOCA; 170 case Attribute::Cold: 171 return bitc::ATTR_KIND_COLD; 172 case Attribute::InlineHint: 173 return bitc::ATTR_KIND_INLINE_HINT; 174 case Attribute::InReg: 175 return bitc::ATTR_KIND_IN_REG; 176 case Attribute::JumpTable: 177 return bitc::ATTR_KIND_JUMP_TABLE; 178 case Attribute::MinSize: 179 return bitc::ATTR_KIND_MIN_SIZE; 180 case Attribute::Naked: 181 return bitc::ATTR_KIND_NAKED; 182 case Attribute::Nest: 183 return bitc::ATTR_KIND_NEST; 184 case Attribute::NoAlias: 185 return bitc::ATTR_KIND_NO_ALIAS; 186 case Attribute::NoBuiltin: 187 return bitc::ATTR_KIND_NO_BUILTIN; 188 case Attribute::NoCapture: 189 return bitc::ATTR_KIND_NO_CAPTURE; 190 case Attribute::NoDuplicate: 191 return bitc::ATTR_KIND_NO_DUPLICATE; 192 case Attribute::NoImplicitFloat: 193 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 194 case Attribute::NoInline: 195 return bitc::ATTR_KIND_NO_INLINE; 196 case Attribute::NonLazyBind: 197 return bitc::ATTR_KIND_NON_LAZY_BIND; 198 case Attribute::NonNull: 199 return bitc::ATTR_KIND_NON_NULL; 200 case Attribute::Dereferenceable: 201 return bitc::ATTR_KIND_DEREFERENCEABLE; 202 case Attribute::NoRedZone: 203 return bitc::ATTR_KIND_NO_RED_ZONE; 204 case Attribute::NoReturn: 205 return bitc::ATTR_KIND_NO_RETURN; 206 case Attribute::NoUnwind: 207 return bitc::ATTR_KIND_NO_UNWIND; 208 case Attribute::OptimizeForSize: 209 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 210 case Attribute::OptimizeNone: 211 return bitc::ATTR_KIND_OPTIMIZE_NONE; 212 case Attribute::ReadNone: 213 return bitc::ATTR_KIND_READ_NONE; 214 case Attribute::ReadOnly: 215 return bitc::ATTR_KIND_READ_ONLY; 216 case Attribute::Returned: 217 return bitc::ATTR_KIND_RETURNED; 218 case Attribute::ReturnsTwice: 219 return bitc::ATTR_KIND_RETURNS_TWICE; 220 case Attribute::SExt: 221 return bitc::ATTR_KIND_S_EXT; 222 case Attribute::StackAlignment: 223 return bitc::ATTR_KIND_STACK_ALIGNMENT; 224 case Attribute::StackProtect: 225 return bitc::ATTR_KIND_STACK_PROTECT; 226 case Attribute::StackProtectReq: 227 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 228 case Attribute::StackProtectStrong: 229 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 230 case Attribute::StructRet: 231 return bitc::ATTR_KIND_STRUCT_RET; 232 case Attribute::SanitizeAddress: 233 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 234 case Attribute::SanitizeThread: 235 return bitc::ATTR_KIND_SANITIZE_THREAD; 236 case Attribute::SanitizeMemory: 237 return bitc::ATTR_KIND_SANITIZE_MEMORY; 238 case Attribute::UWTable: 239 return bitc::ATTR_KIND_UW_TABLE; 240 case Attribute::ZExt: 241 return bitc::ATTR_KIND_Z_EXT; 242 case Attribute::EndAttrKinds: 243 llvm_unreachable("Can not encode end-attribute kinds marker."); 244 case Attribute::None: 245 llvm_unreachable("Can not encode none-attribute."); 246 } 247 248 llvm_unreachable("Trying to encode unknown attribute"); 249 } 250 251 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 252 BitstreamWriter &Stream) { 253 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 254 if (AttrGrps.empty()) return; 255 256 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 257 258 SmallVector<uint64_t, 64> Record; 259 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 260 AttributeSet AS = AttrGrps[i]; 261 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 262 AttributeSet A = AS.getSlotAttributes(i); 263 264 Record.push_back(VE.getAttributeGroupID(A)); 265 Record.push_back(AS.getSlotIndex(i)); 266 267 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 268 I != E; ++I) { 269 Attribute Attr = *I; 270 if (Attr.isEnumAttribute()) { 271 Record.push_back(0); 272 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 273 } else if (Attr.isIntAttribute()) { 274 Record.push_back(1); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 Record.push_back(Attr.getValueAsInt()); 277 } else { 278 StringRef Kind = Attr.getKindAsString(); 279 StringRef Val = Attr.getValueAsString(); 280 281 Record.push_back(Val.empty() ? 3 : 4); 282 Record.append(Kind.begin(), Kind.end()); 283 Record.push_back(0); 284 if (!Val.empty()) { 285 Record.append(Val.begin(), Val.end()); 286 Record.push_back(0); 287 } 288 } 289 } 290 291 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 292 Record.clear(); 293 } 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static void WriteAttributeTable(const ValueEnumerator &VE, 300 BitstreamWriter &Stream) { 301 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 302 if (Attrs.empty()) return; 303 304 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 305 306 SmallVector<uint64_t, 64> Record; 307 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 308 const AttributeSet &A = Attrs[i]; 309 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 310 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 311 312 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 313 Record.clear(); 314 } 315 316 Stream.ExitBlock(); 317 } 318 319 /// WriteTypeTable - Write out the type table for a module. 320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 321 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 322 323 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 324 SmallVector<uint64_t, 64> TypeVals; 325 326 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 327 328 // Abbrev for TYPE_CODE_POINTER. 329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 330 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 332 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 333 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 334 335 // Abbrev for TYPE_CODE_FUNCTION. 336 Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 342 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_STRUCT_ANON. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_NAME. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 358 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAMED. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_ARRAY. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Emit an entry count so the reader can reserve space. 378 TypeVals.push_back(TypeList.size()); 379 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 380 TypeVals.clear(); 381 382 // Loop over all of the types, emitting each in turn. 383 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 384 Type *T = TypeList[i]; 385 int AbbrevToUse = 0; 386 unsigned Code = 0; 387 388 switch (T->getTypeID()) { 389 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 390 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 391 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 392 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 393 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 394 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 395 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 396 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 397 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 398 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 399 case Type::IntegerTyID: 400 // INTEGER: [width] 401 Code = bitc::TYPE_CODE_INTEGER; 402 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 403 break; 404 case Type::PointerTyID: { 405 PointerType *PTy = cast<PointerType>(T); 406 // POINTER: [pointee type, address space] 407 Code = bitc::TYPE_CODE_POINTER; 408 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 409 unsigned AddressSpace = PTy->getAddressSpace(); 410 TypeVals.push_back(AddressSpace); 411 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 412 break; 413 } 414 case Type::FunctionTyID: { 415 FunctionType *FT = cast<FunctionType>(T); 416 // FUNCTION: [isvararg, retty, paramty x N] 417 Code = bitc::TYPE_CODE_FUNCTION; 418 TypeVals.push_back(FT->isVarArg()); 419 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 420 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 421 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 422 AbbrevToUse = FunctionAbbrev; 423 break; 424 } 425 case Type::StructTyID: { 426 StructType *ST = cast<StructType>(T); 427 // STRUCT: [ispacked, eltty x N] 428 TypeVals.push_back(ST->isPacked()); 429 // Output all of the element types. 430 for (StructType::element_iterator I = ST->element_begin(), 431 E = ST->element_end(); I != E; ++I) 432 TypeVals.push_back(VE.getTypeID(*I)); 433 434 if (ST->isLiteral()) { 435 Code = bitc::TYPE_CODE_STRUCT_ANON; 436 AbbrevToUse = StructAnonAbbrev; 437 } else { 438 if (ST->isOpaque()) { 439 Code = bitc::TYPE_CODE_OPAQUE; 440 } else { 441 Code = bitc::TYPE_CODE_STRUCT_NAMED; 442 AbbrevToUse = StructNamedAbbrev; 443 } 444 445 // Emit the name if it is present. 446 if (!ST->getName().empty()) 447 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 448 StructNameAbbrev, Stream); 449 } 450 break; 451 } 452 case Type::ArrayTyID: { 453 ArrayType *AT = cast<ArrayType>(T); 454 // ARRAY: [numelts, eltty] 455 Code = bitc::TYPE_CODE_ARRAY; 456 TypeVals.push_back(AT->getNumElements()); 457 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 458 AbbrevToUse = ArrayAbbrev; 459 break; 460 } 461 case Type::VectorTyID: { 462 VectorType *VT = cast<VectorType>(T); 463 // VECTOR [numelts, eltty] 464 Code = bitc::TYPE_CODE_VECTOR; 465 TypeVals.push_back(VT->getNumElements()); 466 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 467 break; 468 } 469 } 470 471 // Emit the finished record. 472 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 473 TypeVals.clear(); 474 } 475 476 Stream.ExitBlock(); 477 } 478 479 static unsigned getEncodedLinkage(const GlobalValue &GV) { 480 switch (GV.getLinkage()) { 481 case GlobalValue::ExternalLinkage: 482 return 0; 483 case GlobalValue::WeakAnyLinkage: 484 return 16; 485 case GlobalValue::AppendingLinkage: 486 return 2; 487 case GlobalValue::InternalLinkage: 488 return 3; 489 case GlobalValue::LinkOnceAnyLinkage: 490 return 18; 491 case GlobalValue::ExternalWeakLinkage: 492 return 7; 493 case GlobalValue::CommonLinkage: 494 return 8; 495 case GlobalValue::PrivateLinkage: 496 return 9; 497 case GlobalValue::WeakODRLinkage: 498 return 17; 499 case GlobalValue::LinkOnceODRLinkage: 500 return 19; 501 case GlobalValue::AvailableExternallyLinkage: 502 return 12; 503 } 504 llvm_unreachable("Invalid linkage"); 505 } 506 507 static unsigned getEncodedVisibility(const GlobalValue &GV) { 508 switch (GV.getVisibility()) { 509 case GlobalValue::DefaultVisibility: return 0; 510 case GlobalValue::HiddenVisibility: return 1; 511 case GlobalValue::ProtectedVisibility: return 2; 512 } 513 llvm_unreachable("Invalid visibility"); 514 } 515 516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 517 switch (GV.getDLLStorageClass()) { 518 case GlobalValue::DefaultStorageClass: return 0; 519 case GlobalValue::DLLImportStorageClass: return 1; 520 case GlobalValue::DLLExportStorageClass: return 2; 521 } 522 llvm_unreachable("Invalid DLL storage class"); 523 } 524 525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 526 switch (GV.getThreadLocalMode()) { 527 case GlobalVariable::NotThreadLocal: return 0; 528 case GlobalVariable::GeneralDynamicTLSModel: return 1; 529 case GlobalVariable::LocalDynamicTLSModel: return 2; 530 case GlobalVariable::InitialExecTLSModel: return 3; 531 case GlobalVariable::LocalExecTLSModel: return 4; 532 } 533 llvm_unreachable("Invalid TLS model"); 534 } 535 536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 537 switch (C.getSelectionKind()) { 538 case Comdat::Any: 539 return bitc::COMDAT_SELECTION_KIND_ANY; 540 case Comdat::ExactMatch: 541 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 542 case Comdat::Largest: 543 return bitc::COMDAT_SELECTION_KIND_LARGEST; 544 case Comdat::NoDuplicates: 545 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 546 case Comdat::SameSize: 547 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 548 } 549 llvm_unreachable("Invalid selection kind"); 550 } 551 552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 553 SmallVector<uint16_t, 64> Vals; 554 for (const Comdat *C : VE.getComdats()) { 555 // COMDAT: [selection_kind, name] 556 Vals.push_back(getEncodedComdatSelectionKind(*C)); 557 size_t Size = C->getName().size(); 558 assert(isUInt<16>(Size)); 559 Vals.push_back(Size); 560 for (char Chr : C->getName()) 561 Vals.push_back((unsigned char)Chr); 562 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 563 Vals.clear(); 564 } 565 } 566 567 // Emit top-level description of module, including target triple, inline asm, 568 // descriptors for global variables, and function prototype info. 569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 570 BitstreamWriter &Stream) { 571 // Emit various pieces of data attached to a module. 572 if (!M->getTargetTriple().empty()) 573 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 574 0/*TODO*/, Stream); 575 const std::string &DL = M->getDataLayoutStr(); 576 if (!DL.empty()) 577 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 578 if (!M->getModuleInlineAsm().empty()) 579 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 580 0/*TODO*/, Stream); 581 582 // Emit information about sections and GC, computing how many there are. Also 583 // compute the maximum alignment value. 584 std::map<std::string, unsigned> SectionMap; 585 std::map<std::string, unsigned> GCMap; 586 unsigned MaxAlignment = 0; 587 unsigned MaxGlobalType = 0; 588 for (const GlobalValue &GV : M->globals()) { 589 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 590 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 591 if (GV.hasSection()) { 592 // Give section names unique ID's. 593 unsigned &Entry = SectionMap[GV.getSection()]; 594 if (!Entry) { 595 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 596 0/*TODO*/, Stream); 597 Entry = SectionMap.size(); 598 } 599 } 600 } 601 for (const Function &F : *M) { 602 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 603 if (F.hasSection()) { 604 // Give section names unique ID's. 605 unsigned &Entry = SectionMap[F.getSection()]; 606 if (!Entry) { 607 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 608 0/*TODO*/, Stream); 609 Entry = SectionMap.size(); 610 } 611 } 612 if (F.hasGC()) { 613 // Same for GC names. 614 unsigned &Entry = GCMap[F.getGC()]; 615 if (!Entry) { 616 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 617 0/*TODO*/, Stream); 618 Entry = GCMap.size(); 619 } 620 } 621 } 622 623 // Emit abbrev for globals, now that we know # sections and max alignment. 624 unsigned SimpleGVarAbbrev = 0; 625 if (!M->global_empty()) { 626 // Add an abbrev for common globals with no visibility or thread localness. 627 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 628 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 630 Log2_32_Ceil(MaxGlobalType+1))); 631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 634 if (MaxAlignment == 0) // Alignment. 635 Abbv->Add(BitCodeAbbrevOp(0)); 636 else { 637 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 639 Log2_32_Ceil(MaxEncAlignment+1))); 640 } 641 if (SectionMap.empty()) // Section. 642 Abbv->Add(BitCodeAbbrevOp(0)); 643 else 644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 645 Log2_32_Ceil(SectionMap.size()+1))); 646 // Don't bother emitting vis + thread local. 647 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 648 } 649 650 // Emit the global variable information. 651 SmallVector<unsigned, 64> Vals; 652 for (const GlobalVariable &GV : M->globals()) { 653 unsigned AbbrevToUse = 0; 654 655 // GLOBALVAR: [type, isconst, initid, 656 // linkage, alignment, section, visibility, threadlocal, 657 // unnamed_addr, externally_initialized, dllstorageclass, 658 // comdat] 659 Vals.push_back(VE.getTypeID(GV.getType())); 660 Vals.push_back(GV.isConstant()); 661 Vals.push_back(GV.isDeclaration() ? 0 : 662 (VE.getValueID(GV.getInitializer()) + 1)); 663 Vals.push_back(getEncodedLinkage(GV)); 664 Vals.push_back(Log2_32(GV.getAlignment())+1); 665 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 666 if (GV.isThreadLocal() || 667 GV.getVisibility() != GlobalValue::DefaultVisibility || 668 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 669 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 670 GV.hasComdat()) { 671 Vals.push_back(getEncodedVisibility(GV)); 672 Vals.push_back(getEncodedThreadLocalMode(GV)); 673 Vals.push_back(GV.hasUnnamedAddr()); 674 Vals.push_back(GV.isExternallyInitialized()); 675 Vals.push_back(getEncodedDLLStorageClass(GV)); 676 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 677 } else { 678 AbbrevToUse = SimpleGVarAbbrev; 679 } 680 681 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 682 Vals.clear(); 683 } 684 685 // Emit the function proto information. 686 for (const Function &F : *M) { 687 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 688 // section, visibility, gc, unnamed_addr, prologuedata, 689 // dllstorageclass, comdat, prefixdata] 690 Vals.push_back(VE.getTypeID(F.getType())); 691 Vals.push_back(F.getCallingConv()); 692 Vals.push_back(F.isDeclaration()); 693 Vals.push_back(getEncodedLinkage(F)); 694 Vals.push_back(VE.getAttributeID(F.getAttributes())); 695 Vals.push_back(Log2_32(F.getAlignment())+1); 696 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 697 Vals.push_back(getEncodedVisibility(F)); 698 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 699 Vals.push_back(F.hasUnnamedAddr()); 700 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 701 : 0); 702 Vals.push_back(getEncodedDLLStorageClass(F)); 703 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 704 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 705 : 0); 706 707 unsigned AbbrevToUse = 0; 708 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 709 Vals.clear(); 710 } 711 712 // Emit the alias information. 713 for (const GlobalAlias &A : M->aliases()) { 714 // ALIAS: [alias type, aliasee val#, linkage, visibility] 715 Vals.push_back(VE.getTypeID(A.getType())); 716 Vals.push_back(VE.getValueID(A.getAliasee())); 717 Vals.push_back(getEncodedLinkage(A)); 718 Vals.push_back(getEncodedVisibility(A)); 719 Vals.push_back(getEncodedDLLStorageClass(A)); 720 Vals.push_back(getEncodedThreadLocalMode(A)); 721 Vals.push_back(A.hasUnnamedAddr()); 722 unsigned AbbrevToUse = 0; 723 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 724 Vals.clear(); 725 } 726 } 727 728 static uint64_t GetOptimizationFlags(const Value *V) { 729 uint64_t Flags = 0; 730 731 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 732 if (OBO->hasNoSignedWrap()) 733 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 734 if (OBO->hasNoUnsignedWrap()) 735 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 736 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 737 if (PEO->isExact()) 738 Flags |= 1 << bitc::PEO_EXACT; 739 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 740 if (FPMO->hasUnsafeAlgebra()) 741 Flags |= FastMathFlags::UnsafeAlgebra; 742 if (FPMO->hasNoNaNs()) 743 Flags |= FastMathFlags::NoNaNs; 744 if (FPMO->hasNoInfs()) 745 Flags |= FastMathFlags::NoInfs; 746 if (FPMO->hasNoSignedZeros()) 747 Flags |= FastMathFlags::NoSignedZeros; 748 if (FPMO->hasAllowReciprocal()) 749 Flags |= FastMathFlags::AllowReciprocal; 750 } 751 752 return Flags; 753 } 754 755 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 756 const ValueEnumerator &VE, 757 BitstreamWriter &Stream, 758 SmallVectorImpl<uint64_t> &Record) { 759 // Mimic an MDNode with a value as one operand. 760 Value *V = MD->getValue(); 761 Record.push_back(VE.getTypeID(V->getType())); 762 Record.push_back(VE.getValueID(V)); 763 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 764 Record.clear(); 765 } 766 767 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 768 BitstreamWriter &Stream, 769 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 770 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 771 Metadata *MD = N->getOperand(i); 772 assert(!(MD && isa<LocalAsMetadata>(MD)) && 773 "Unexpected function-local metadata"); 774 Record.push_back(VE.getMetadataOrNullID(MD)); 775 } 776 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 777 : bitc::METADATA_NODE, 778 Record, Abbrev); 779 Record.clear(); 780 } 781 782 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 783 BitstreamWriter &Stream, 784 SmallVectorImpl<uint64_t> &Record, 785 unsigned Abbrev) { 786 Record.push_back(N->isDistinct()); 787 Record.push_back(N->getLine()); 788 Record.push_back(N->getColumn()); 789 Record.push_back(VE.getMetadataID(N->getScope())); 790 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 791 792 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 793 Record.clear(); 794 } 795 796 static void WriteGenericDebugNode(const GenericDebugNode *N, 797 const ValueEnumerator &VE, 798 BitstreamWriter &Stream, 799 SmallVectorImpl<uint64_t> &Record, 800 unsigned Abbrev) { 801 Record.push_back(N->isDistinct()); 802 Record.push_back(N->getTag()); 803 Record.push_back(0); // Per-tag version field; unused for now. 804 805 for (auto &I : N->operands()) 806 Record.push_back(VE.getMetadataOrNullID(I)); 807 808 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 809 Record.clear(); 810 } 811 812 static void WriteModuleMetadata(const Module *M, 813 const ValueEnumerator &VE, 814 BitstreamWriter &Stream) { 815 const auto &MDs = VE.getMDs(); 816 if (MDs.empty() && M->named_metadata_empty()) 817 return; 818 819 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 820 821 unsigned MDSAbbrev = 0; 822 if (VE.hasMDString()) { 823 // Abbrev for METADATA_STRING. 824 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 825 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 828 MDSAbbrev = Stream.EmitAbbrev(Abbv); 829 } 830 831 // Initialize MDNode abbreviations. 832 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 833 #include "llvm/IR/Metadata.def" 834 835 if (VE.hasMDLocation()) { 836 // Abbrev for METADATA_LOCATION. 837 // 838 // Assume the column is usually under 128, and always output the inlined-at 839 // location (it's never more expensive than building an array size 1). 840 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 841 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 847 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 848 } 849 850 if (VE.hasGenericDebugNode()) { 851 // Abbrev for METADATA_GENERIC_DEBUG. 852 // 853 // Assume the column is usually under 128, and always output the inlined-at 854 // location (it's never more expensive than building an array size 1). 855 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 856 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 863 GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv); 864 } 865 866 unsigned NameAbbrev = 0; 867 if (!M->named_metadata_empty()) { 868 // Abbrev for METADATA_NAME. 869 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 870 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 873 NameAbbrev = Stream.EmitAbbrev(Abbv); 874 } 875 876 SmallVector<uint64_t, 64> Record; 877 for (const Metadata *MD : MDs) { 878 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 879 switch (N->getMetadataID()) { 880 default: 881 llvm_unreachable("Invalid MDNode subclass"); 882 #define HANDLE_MDNODE_LEAF(CLASS) \ 883 case Metadata::CLASS##Kind: \ 884 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 885 continue; 886 #include "llvm/IR/Metadata.def" 887 } 888 } 889 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 890 WriteValueAsMetadata(MDC, VE, Stream, Record); 891 continue; 892 } 893 const MDString *MDS = cast<MDString>(MD); 894 // Code: [strchar x N] 895 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 896 897 // Emit the finished record. 898 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 899 Record.clear(); 900 } 901 902 // Write named metadata. 903 for (const NamedMDNode &NMD : M->named_metadata()) { 904 // Write name. 905 StringRef Str = NMD.getName(); 906 Record.append(Str.bytes_begin(), Str.bytes_end()); 907 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 908 Record.clear(); 909 910 // Write named metadata operands. 911 for (const MDNode *N : NMD.operands()) 912 Record.push_back(VE.getMetadataID(N)); 913 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 914 Record.clear(); 915 } 916 917 Stream.ExitBlock(); 918 } 919 920 static void WriteFunctionLocalMetadata(const Function &F, 921 const ValueEnumerator &VE, 922 BitstreamWriter &Stream) { 923 bool StartedMetadataBlock = false; 924 SmallVector<uint64_t, 64> Record; 925 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 926 VE.getFunctionLocalMDs(); 927 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 928 assert(MDs[i] && "Expected valid function-local metadata"); 929 if (!StartedMetadataBlock) { 930 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 931 StartedMetadataBlock = true; 932 } 933 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 934 } 935 936 if (StartedMetadataBlock) 937 Stream.ExitBlock(); 938 } 939 940 static void WriteMetadataAttachment(const Function &F, 941 const ValueEnumerator &VE, 942 BitstreamWriter &Stream) { 943 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 944 945 SmallVector<uint64_t, 64> Record; 946 947 // Write metadata attachments 948 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 949 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 950 951 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 952 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 953 I != E; ++I) { 954 MDs.clear(); 955 I->getAllMetadataOtherThanDebugLoc(MDs); 956 957 // If no metadata, ignore instruction. 958 if (MDs.empty()) continue; 959 960 Record.push_back(VE.getInstructionID(I)); 961 962 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 963 Record.push_back(MDs[i].first); 964 Record.push_back(VE.getMetadataID(MDs[i].second)); 965 } 966 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 967 Record.clear(); 968 } 969 970 Stream.ExitBlock(); 971 } 972 973 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 974 SmallVector<uint64_t, 64> Record; 975 976 // Write metadata kinds 977 // METADATA_KIND - [n x [id, name]] 978 SmallVector<StringRef, 8> Names; 979 M->getMDKindNames(Names); 980 981 if (Names.empty()) return; 982 983 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 984 985 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 986 Record.push_back(MDKindID); 987 StringRef KName = Names[MDKindID]; 988 Record.append(KName.begin(), KName.end()); 989 990 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 991 Record.clear(); 992 } 993 994 Stream.ExitBlock(); 995 } 996 997 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 998 if ((int64_t)V >= 0) 999 Vals.push_back(V << 1); 1000 else 1001 Vals.push_back((-V << 1) | 1); 1002 } 1003 1004 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1005 const ValueEnumerator &VE, 1006 BitstreamWriter &Stream, bool isGlobal) { 1007 if (FirstVal == LastVal) return; 1008 1009 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1010 1011 unsigned AggregateAbbrev = 0; 1012 unsigned String8Abbrev = 0; 1013 unsigned CString7Abbrev = 0; 1014 unsigned CString6Abbrev = 0; 1015 // If this is a constant pool for the module, emit module-specific abbrevs. 1016 if (isGlobal) { 1017 // Abbrev for CST_CODE_AGGREGATE. 1018 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1019 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1022 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1023 1024 // Abbrev for CST_CODE_STRING. 1025 Abbv = new BitCodeAbbrev(); 1026 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1029 String8Abbrev = Stream.EmitAbbrev(Abbv); 1030 // Abbrev for CST_CODE_CSTRING. 1031 Abbv = new BitCodeAbbrev(); 1032 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1035 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1036 // Abbrev for CST_CODE_CSTRING. 1037 Abbv = new BitCodeAbbrev(); 1038 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1041 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1042 } 1043 1044 SmallVector<uint64_t, 64> Record; 1045 1046 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1047 Type *LastTy = nullptr; 1048 for (unsigned i = FirstVal; i != LastVal; ++i) { 1049 const Value *V = Vals[i].first; 1050 // If we need to switch types, do so now. 1051 if (V->getType() != LastTy) { 1052 LastTy = V->getType(); 1053 Record.push_back(VE.getTypeID(LastTy)); 1054 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1055 CONSTANTS_SETTYPE_ABBREV); 1056 Record.clear(); 1057 } 1058 1059 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1060 Record.push_back(unsigned(IA->hasSideEffects()) | 1061 unsigned(IA->isAlignStack()) << 1 | 1062 unsigned(IA->getDialect()&1) << 2); 1063 1064 // Add the asm string. 1065 const std::string &AsmStr = IA->getAsmString(); 1066 Record.push_back(AsmStr.size()); 1067 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 1068 Record.push_back(AsmStr[i]); 1069 1070 // Add the constraint string. 1071 const std::string &ConstraintStr = IA->getConstraintString(); 1072 Record.push_back(ConstraintStr.size()); 1073 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 1074 Record.push_back(ConstraintStr[i]); 1075 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1076 Record.clear(); 1077 continue; 1078 } 1079 const Constant *C = cast<Constant>(V); 1080 unsigned Code = -1U; 1081 unsigned AbbrevToUse = 0; 1082 if (C->isNullValue()) { 1083 Code = bitc::CST_CODE_NULL; 1084 } else if (isa<UndefValue>(C)) { 1085 Code = bitc::CST_CODE_UNDEF; 1086 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1087 if (IV->getBitWidth() <= 64) { 1088 uint64_t V = IV->getSExtValue(); 1089 emitSignedInt64(Record, V); 1090 Code = bitc::CST_CODE_INTEGER; 1091 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1092 } else { // Wide integers, > 64 bits in size. 1093 // We have an arbitrary precision integer value to write whose 1094 // bit width is > 64. However, in canonical unsigned integer 1095 // format it is likely that the high bits are going to be zero. 1096 // So, we only write the number of active words. 1097 unsigned NWords = IV->getValue().getActiveWords(); 1098 const uint64_t *RawWords = IV->getValue().getRawData(); 1099 for (unsigned i = 0; i != NWords; ++i) { 1100 emitSignedInt64(Record, RawWords[i]); 1101 } 1102 Code = bitc::CST_CODE_WIDE_INTEGER; 1103 } 1104 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1105 Code = bitc::CST_CODE_FLOAT; 1106 Type *Ty = CFP->getType(); 1107 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1108 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1109 } else if (Ty->isX86_FP80Ty()) { 1110 // api needed to prevent premature destruction 1111 // bits are not in the same order as a normal i80 APInt, compensate. 1112 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1113 const uint64_t *p = api.getRawData(); 1114 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1115 Record.push_back(p[0] & 0xffffLL); 1116 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1117 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1118 const uint64_t *p = api.getRawData(); 1119 Record.push_back(p[0]); 1120 Record.push_back(p[1]); 1121 } else { 1122 assert (0 && "Unknown FP type!"); 1123 } 1124 } else if (isa<ConstantDataSequential>(C) && 1125 cast<ConstantDataSequential>(C)->isString()) { 1126 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1127 // Emit constant strings specially. 1128 unsigned NumElts = Str->getNumElements(); 1129 // If this is a null-terminated string, use the denser CSTRING encoding. 1130 if (Str->isCString()) { 1131 Code = bitc::CST_CODE_CSTRING; 1132 --NumElts; // Don't encode the null, which isn't allowed by char6. 1133 } else { 1134 Code = bitc::CST_CODE_STRING; 1135 AbbrevToUse = String8Abbrev; 1136 } 1137 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1138 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1139 for (unsigned i = 0; i != NumElts; ++i) { 1140 unsigned char V = Str->getElementAsInteger(i); 1141 Record.push_back(V); 1142 isCStr7 &= (V & 128) == 0; 1143 if (isCStrChar6) 1144 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1145 } 1146 1147 if (isCStrChar6) 1148 AbbrevToUse = CString6Abbrev; 1149 else if (isCStr7) 1150 AbbrevToUse = CString7Abbrev; 1151 } else if (const ConstantDataSequential *CDS = 1152 dyn_cast<ConstantDataSequential>(C)) { 1153 Code = bitc::CST_CODE_DATA; 1154 Type *EltTy = CDS->getType()->getElementType(); 1155 if (isa<IntegerType>(EltTy)) { 1156 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1157 Record.push_back(CDS->getElementAsInteger(i)); 1158 } else if (EltTy->isFloatTy()) { 1159 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1160 union { float F; uint32_t I; }; 1161 F = CDS->getElementAsFloat(i); 1162 Record.push_back(I); 1163 } 1164 } else { 1165 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1166 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1167 union { double F; uint64_t I; }; 1168 F = CDS->getElementAsDouble(i); 1169 Record.push_back(I); 1170 } 1171 } 1172 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1173 isa<ConstantVector>(C)) { 1174 Code = bitc::CST_CODE_AGGREGATE; 1175 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1176 Record.push_back(VE.getValueID(C->getOperand(i))); 1177 AbbrevToUse = AggregateAbbrev; 1178 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1179 switch (CE->getOpcode()) { 1180 default: 1181 if (Instruction::isCast(CE->getOpcode())) { 1182 Code = bitc::CST_CODE_CE_CAST; 1183 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1184 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1185 Record.push_back(VE.getValueID(C->getOperand(0))); 1186 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1187 } else { 1188 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1189 Code = bitc::CST_CODE_CE_BINOP; 1190 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1191 Record.push_back(VE.getValueID(C->getOperand(0))); 1192 Record.push_back(VE.getValueID(C->getOperand(1))); 1193 uint64_t Flags = GetOptimizationFlags(CE); 1194 if (Flags != 0) 1195 Record.push_back(Flags); 1196 } 1197 break; 1198 case Instruction::GetElementPtr: 1199 Code = bitc::CST_CODE_CE_GEP; 1200 if (cast<GEPOperator>(C)->isInBounds()) 1201 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1202 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1203 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1204 Record.push_back(VE.getValueID(C->getOperand(i))); 1205 } 1206 break; 1207 case Instruction::Select: 1208 Code = bitc::CST_CODE_CE_SELECT; 1209 Record.push_back(VE.getValueID(C->getOperand(0))); 1210 Record.push_back(VE.getValueID(C->getOperand(1))); 1211 Record.push_back(VE.getValueID(C->getOperand(2))); 1212 break; 1213 case Instruction::ExtractElement: 1214 Code = bitc::CST_CODE_CE_EXTRACTELT; 1215 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1216 Record.push_back(VE.getValueID(C->getOperand(0))); 1217 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1218 Record.push_back(VE.getValueID(C->getOperand(1))); 1219 break; 1220 case Instruction::InsertElement: 1221 Code = bitc::CST_CODE_CE_INSERTELT; 1222 Record.push_back(VE.getValueID(C->getOperand(0))); 1223 Record.push_back(VE.getValueID(C->getOperand(1))); 1224 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1225 Record.push_back(VE.getValueID(C->getOperand(2))); 1226 break; 1227 case Instruction::ShuffleVector: 1228 // If the return type and argument types are the same, this is a 1229 // standard shufflevector instruction. If the types are different, 1230 // then the shuffle is widening or truncating the input vectors, and 1231 // the argument type must also be encoded. 1232 if (C->getType() == C->getOperand(0)->getType()) { 1233 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1234 } else { 1235 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1236 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1237 } 1238 Record.push_back(VE.getValueID(C->getOperand(0))); 1239 Record.push_back(VE.getValueID(C->getOperand(1))); 1240 Record.push_back(VE.getValueID(C->getOperand(2))); 1241 break; 1242 case Instruction::ICmp: 1243 case Instruction::FCmp: 1244 Code = bitc::CST_CODE_CE_CMP; 1245 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1246 Record.push_back(VE.getValueID(C->getOperand(0))); 1247 Record.push_back(VE.getValueID(C->getOperand(1))); 1248 Record.push_back(CE->getPredicate()); 1249 break; 1250 } 1251 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1252 Code = bitc::CST_CODE_BLOCKADDRESS; 1253 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1254 Record.push_back(VE.getValueID(BA->getFunction())); 1255 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1256 } else { 1257 #ifndef NDEBUG 1258 C->dump(); 1259 #endif 1260 llvm_unreachable("Unknown constant!"); 1261 } 1262 Stream.EmitRecord(Code, Record, AbbrevToUse); 1263 Record.clear(); 1264 } 1265 1266 Stream.ExitBlock(); 1267 } 1268 1269 static void WriteModuleConstants(const ValueEnumerator &VE, 1270 BitstreamWriter &Stream) { 1271 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1272 1273 // Find the first constant to emit, which is the first non-globalvalue value. 1274 // We know globalvalues have been emitted by WriteModuleInfo. 1275 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1276 if (!isa<GlobalValue>(Vals[i].first)) { 1277 WriteConstants(i, Vals.size(), VE, Stream, true); 1278 return; 1279 } 1280 } 1281 } 1282 1283 /// PushValueAndType - The file has to encode both the value and type id for 1284 /// many values, because we need to know what type to create for forward 1285 /// references. However, most operands are not forward references, so this type 1286 /// field is not needed. 1287 /// 1288 /// This function adds V's value ID to Vals. If the value ID is higher than the 1289 /// instruction ID, then it is a forward reference, and it also includes the 1290 /// type ID. The value ID that is written is encoded relative to the InstID. 1291 static bool PushValueAndType(const Value *V, unsigned InstID, 1292 SmallVectorImpl<unsigned> &Vals, 1293 ValueEnumerator &VE) { 1294 unsigned ValID = VE.getValueID(V); 1295 // Make encoding relative to the InstID. 1296 Vals.push_back(InstID - ValID); 1297 if (ValID >= InstID) { 1298 Vals.push_back(VE.getTypeID(V->getType())); 1299 return true; 1300 } 1301 return false; 1302 } 1303 1304 /// pushValue - Like PushValueAndType, but where the type of the value is 1305 /// omitted (perhaps it was already encoded in an earlier operand). 1306 static void pushValue(const Value *V, unsigned InstID, 1307 SmallVectorImpl<unsigned> &Vals, 1308 ValueEnumerator &VE) { 1309 unsigned ValID = VE.getValueID(V); 1310 Vals.push_back(InstID - ValID); 1311 } 1312 1313 static void pushValueSigned(const Value *V, unsigned InstID, 1314 SmallVectorImpl<uint64_t> &Vals, 1315 ValueEnumerator &VE) { 1316 unsigned ValID = VE.getValueID(V); 1317 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1318 emitSignedInt64(Vals, diff); 1319 } 1320 1321 /// WriteInstruction - Emit an instruction to the specified stream. 1322 static void WriteInstruction(const Instruction &I, unsigned InstID, 1323 ValueEnumerator &VE, BitstreamWriter &Stream, 1324 SmallVectorImpl<unsigned> &Vals) { 1325 unsigned Code = 0; 1326 unsigned AbbrevToUse = 0; 1327 VE.setInstructionID(&I); 1328 switch (I.getOpcode()) { 1329 default: 1330 if (Instruction::isCast(I.getOpcode())) { 1331 Code = bitc::FUNC_CODE_INST_CAST; 1332 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1333 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1334 Vals.push_back(VE.getTypeID(I.getType())); 1335 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1336 } else { 1337 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1338 Code = bitc::FUNC_CODE_INST_BINOP; 1339 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1340 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1341 pushValue(I.getOperand(1), InstID, Vals, VE); 1342 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1343 uint64_t Flags = GetOptimizationFlags(&I); 1344 if (Flags != 0) { 1345 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1346 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1347 Vals.push_back(Flags); 1348 } 1349 } 1350 break; 1351 1352 case Instruction::GetElementPtr: 1353 Code = bitc::FUNC_CODE_INST_GEP; 1354 if (cast<GEPOperator>(&I)->isInBounds()) 1355 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1356 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1357 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1358 break; 1359 case Instruction::ExtractValue: { 1360 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1361 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1362 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1363 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1364 Vals.push_back(*i); 1365 break; 1366 } 1367 case Instruction::InsertValue: { 1368 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1369 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1370 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1371 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1372 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1373 Vals.push_back(*i); 1374 break; 1375 } 1376 case Instruction::Select: 1377 Code = bitc::FUNC_CODE_INST_VSELECT; 1378 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1379 pushValue(I.getOperand(2), InstID, Vals, VE); 1380 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1381 break; 1382 case Instruction::ExtractElement: 1383 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1384 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1385 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1386 break; 1387 case Instruction::InsertElement: 1388 Code = bitc::FUNC_CODE_INST_INSERTELT; 1389 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1390 pushValue(I.getOperand(1), InstID, Vals, VE); 1391 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1392 break; 1393 case Instruction::ShuffleVector: 1394 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1395 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1396 pushValue(I.getOperand(1), InstID, Vals, VE); 1397 pushValue(I.getOperand(2), InstID, Vals, VE); 1398 break; 1399 case Instruction::ICmp: 1400 case Instruction::FCmp: 1401 // compare returning Int1Ty or vector of Int1Ty 1402 Code = bitc::FUNC_CODE_INST_CMP2; 1403 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1404 pushValue(I.getOperand(1), InstID, Vals, VE); 1405 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1406 break; 1407 1408 case Instruction::Ret: 1409 { 1410 Code = bitc::FUNC_CODE_INST_RET; 1411 unsigned NumOperands = I.getNumOperands(); 1412 if (NumOperands == 0) 1413 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1414 else if (NumOperands == 1) { 1415 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1416 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1417 } else { 1418 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1419 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1420 } 1421 } 1422 break; 1423 case Instruction::Br: 1424 { 1425 Code = bitc::FUNC_CODE_INST_BR; 1426 const BranchInst &II = cast<BranchInst>(I); 1427 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1428 if (II.isConditional()) { 1429 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1430 pushValue(II.getCondition(), InstID, Vals, VE); 1431 } 1432 } 1433 break; 1434 case Instruction::Switch: 1435 { 1436 Code = bitc::FUNC_CODE_INST_SWITCH; 1437 const SwitchInst &SI = cast<SwitchInst>(I); 1438 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1439 pushValue(SI.getCondition(), InstID, Vals, VE); 1440 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1441 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1442 i != e; ++i) { 1443 Vals.push_back(VE.getValueID(i.getCaseValue())); 1444 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1445 } 1446 } 1447 break; 1448 case Instruction::IndirectBr: 1449 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1450 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1451 // Encode the address operand as relative, but not the basic blocks. 1452 pushValue(I.getOperand(0), InstID, Vals, VE); 1453 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1454 Vals.push_back(VE.getValueID(I.getOperand(i))); 1455 break; 1456 1457 case Instruction::Invoke: { 1458 const InvokeInst *II = cast<InvokeInst>(&I); 1459 const Value *Callee(II->getCalledValue()); 1460 PointerType *PTy = cast<PointerType>(Callee->getType()); 1461 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1462 Code = bitc::FUNC_CODE_INST_INVOKE; 1463 1464 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1465 Vals.push_back(II->getCallingConv()); 1466 Vals.push_back(VE.getValueID(II->getNormalDest())); 1467 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1468 PushValueAndType(Callee, InstID, Vals, VE); 1469 1470 // Emit value #'s for the fixed parameters. 1471 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1472 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1473 1474 // Emit type/value pairs for varargs params. 1475 if (FTy->isVarArg()) { 1476 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1477 i != e; ++i) 1478 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1479 } 1480 break; 1481 } 1482 case Instruction::Resume: 1483 Code = bitc::FUNC_CODE_INST_RESUME; 1484 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1485 break; 1486 case Instruction::Unreachable: 1487 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1488 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1489 break; 1490 1491 case Instruction::PHI: { 1492 const PHINode &PN = cast<PHINode>(I); 1493 Code = bitc::FUNC_CODE_INST_PHI; 1494 // With the newer instruction encoding, forward references could give 1495 // negative valued IDs. This is most common for PHIs, so we use 1496 // signed VBRs. 1497 SmallVector<uint64_t, 128> Vals64; 1498 Vals64.push_back(VE.getTypeID(PN.getType())); 1499 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1500 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1501 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1502 } 1503 // Emit a Vals64 vector and exit. 1504 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1505 Vals64.clear(); 1506 return; 1507 } 1508 1509 case Instruction::LandingPad: { 1510 const LandingPadInst &LP = cast<LandingPadInst>(I); 1511 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1512 Vals.push_back(VE.getTypeID(LP.getType())); 1513 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1514 Vals.push_back(LP.isCleanup()); 1515 Vals.push_back(LP.getNumClauses()); 1516 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1517 if (LP.isCatch(I)) 1518 Vals.push_back(LandingPadInst::Catch); 1519 else 1520 Vals.push_back(LandingPadInst::Filter); 1521 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1522 } 1523 break; 1524 } 1525 1526 case Instruction::Alloca: { 1527 Code = bitc::FUNC_CODE_INST_ALLOCA; 1528 Vals.push_back(VE.getTypeID(I.getType())); 1529 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1530 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1531 const AllocaInst &AI = cast<AllocaInst>(I); 1532 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1533 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1534 "not enough bits for maximum alignment"); 1535 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1536 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1537 Vals.push_back(AlignRecord); 1538 break; 1539 } 1540 1541 case Instruction::Load: 1542 if (cast<LoadInst>(I).isAtomic()) { 1543 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1544 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1545 } else { 1546 Code = bitc::FUNC_CODE_INST_LOAD; 1547 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1548 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1549 } 1550 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1551 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1552 if (cast<LoadInst>(I).isAtomic()) { 1553 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1554 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1555 } 1556 break; 1557 case Instruction::Store: 1558 if (cast<StoreInst>(I).isAtomic()) 1559 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1560 else 1561 Code = bitc::FUNC_CODE_INST_STORE; 1562 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1563 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1564 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1565 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1566 if (cast<StoreInst>(I).isAtomic()) { 1567 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1568 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1569 } 1570 break; 1571 case Instruction::AtomicCmpXchg: 1572 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1573 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1574 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1575 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1576 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1577 Vals.push_back(GetEncodedOrdering( 1578 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1579 Vals.push_back(GetEncodedSynchScope( 1580 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1581 Vals.push_back(GetEncodedOrdering( 1582 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1583 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1584 break; 1585 case Instruction::AtomicRMW: 1586 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1587 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1588 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1589 Vals.push_back(GetEncodedRMWOperation( 1590 cast<AtomicRMWInst>(I).getOperation())); 1591 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1592 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1593 Vals.push_back(GetEncodedSynchScope( 1594 cast<AtomicRMWInst>(I).getSynchScope())); 1595 break; 1596 case Instruction::Fence: 1597 Code = bitc::FUNC_CODE_INST_FENCE; 1598 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1599 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1600 break; 1601 case Instruction::Call: { 1602 const CallInst &CI = cast<CallInst>(I); 1603 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1604 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1605 1606 Code = bitc::FUNC_CODE_INST_CALL; 1607 1608 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1609 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1610 unsigned(CI.isMustTailCall()) << 14); 1611 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1612 1613 // Emit value #'s for the fixed parameters. 1614 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1615 // Check for labels (can happen with asm labels). 1616 if (FTy->getParamType(i)->isLabelTy()) 1617 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1618 else 1619 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1620 } 1621 1622 // Emit type/value pairs for varargs params. 1623 if (FTy->isVarArg()) { 1624 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1625 i != e; ++i) 1626 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1627 } 1628 break; 1629 } 1630 case Instruction::VAArg: 1631 Code = bitc::FUNC_CODE_INST_VAARG; 1632 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1633 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1634 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1635 break; 1636 } 1637 1638 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1639 Vals.clear(); 1640 } 1641 1642 // Emit names for globals/functions etc. 1643 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1644 const ValueEnumerator &VE, 1645 BitstreamWriter &Stream) { 1646 if (VST.empty()) return; 1647 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1648 1649 // FIXME: Set up the abbrev, we know how many values there are! 1650 // FIXME: We know if the type names can use 7-bit ascii. 1651 SmallVector<unsigned, 64> NameVals; 1652 1653 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1654 SI != SE; ++SI) { 1655 1656 const ValueName &Name = *SI; 1657 1658 // Figure out the encoding to use for the name. 1659 bool is7Bit = true; 1660 bool isChar6 = true; 1661 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1662 C != E; ++C) { 1663 if (isChar6) 1664 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1665 if ((unsigned char)*C & 128) { 1666 is7Bit = false; 1667 break; // don't bother scanning the rest. 1668 } 1669 } 1670 1671 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1672 1673 // VST_ENTRY: [valueid, namechar x N] 1674 // VST_BBENTRY: [bbid, namechar x N] 1675 unsigned Code; 1676 if (isa<BasicBlock>(SI->getValue())) { 1677 Code = bitc::VST_CODE_BBENTRY; 1678 if (isChar6) 1679 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1680 } else { 1681 Code = bitc::VST_CODE_ENTRY; 1682 if (isChar6) 1683 AbbrevToUse = VST_ENTRY_6_ABBREV; 1684 else if (is7Bit) 1685 AbbrevToUse = VST_ENTRY_7_ABBREV; 1686 } 1687 1688 NameVals.push_back(VE.getValueID(SI->getValue())); 1689 for (const char *P = Name.getKeyData(), 1690 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1691 NameVals.push_back((unsigned char)*P); 1692 1693 // Emit the finished record. 1694 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1695 NameVals.clear(); 1696 } 1697 Stream.ExitBlock(); 1698 } 1699 1700 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 1701 BitstreamWriter &Stream) { 1702 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1703 unsigned Code; 1704 if (isa<BasicBlock>(Order.V)) 1705 Code = bitc::USELIST_CODE_BB; 1706 else 1707 Code = bitc::USELIST_CODE_DEFAULT; 1708 1709 SmallVector<uint64_t, 64> Record; 1710 for (unsigned I : Order.Shuffle) 1711 Record.push_back(I); 1712 Record.push_back(VE.getValueID(Order.V)); 1713 Stream.EmitRecord(Code, Record); 1714 } 1715 1716 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 1717 BitstreamWriter &Stream) { 1718 auto hasMore = [&]() { 1719 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1720 }; 1721 if (!hasMore()) 1722 // Nothing to do. 1723 return; 1724 1725 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1726 while (hasMore()) { 1727 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1728 VE.UseListOrders.pop_back(); 1729 } 1730 Stream.ExitBlock(); 1731 } 1732 1733 /// WriteFunction - Emit a function body to the module stream. 1734 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1735 BitstreamWriter &Stream) { 1736 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1737 VE.incorporateFunction(F); 1738 1739 SmallVector<unsigned, 64> Vals; 1740 1741 // Emit the number of basic blocks, so the reader can create them ahead of 1742 // time. 1743 Vals.push_back(VE.getBasicBlocks().size()); 1744 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1745 Vals.clear(); 1746 1747 // If there are function-local constants, emit them now. 1748 unsigned CstStart, CstEnd; 1749 VE.getFunctionConstantRange(CstStart, CstEnd); 1750 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1751 1752 // If there is function-local metadata, emit it now. 1753 WriteFunctionLocalMetadata(F, VE, Stream); 1754 1755 // Keep a running idea of what the instruction ID is. 1756 unsigned InstID = CstEnd; 1757 1758 bool NeedsMetadataAttachment = false; 1759 1760 DebugLoc LastDL; 1761 1762 // Finally, emit all the instructions, in order. 1763 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1764 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1765 I != E; ++I) { 1766 WriteInstruction(*I, InstID, VE, Stream, Vals); 1767 1768 if (!I->getType()->isVoidTy()) 1769 ++InstID; 1770 1771 // If the instruction has metadata, write a metadata attachment later. 1772 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1773 1774 // If the instruction has a debug location, emit it. 1775 DebugLoc DL = I->getDebugLoc(); 1776 if (DL.isUnknown()) { 1777 // nothing todo. 1778 } else if (DL == LastDL) { 1779 // Just repeat the same debug loc as last time. 1780 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1781 } else { 1782 MDNode *Scope, *IA; 1783 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1784 assert(Scope && "Expected valid scope"); 1785 1786 Vals.push_back(DL.getLine()); 1787 Vals.push_back(DL.getCol()); 1788 Vals.push_back(VE.getMetadataOrNullID(Scope)); 1789 Vals.push_back(VE.getMetadataOrNullID(IA)); 1790 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1791 Vals.clear(); 1792 1793 LastDL = DL; 1794 } 1795 } 1796 1797 // Emit names for all the instructions etc. 1798 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1799 1800 if (NeedsMetadataAttachment) 1801 WriteMetadataAttachment(F, VE, Stream); 1802 if (shouldPreserveBitcodeUseListOrder()) 1803 WriteUseListBlock(&F, VE, Stream); 1804 VE.purgeFunction(); 1805 Stream.ExitBlock(); 1806 } 1807 1808 // Emit blockinfo, which defines the standard abbreviations etc. 1809 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1810 // We only want to emit block info records for blocks that have multiple 1811 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1812 // Other blocks can define their abbrevs inline. 1813 Stream.EnterBlockInfoBlock(2); 1814 1815 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1816 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1821 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1822 Abbv) != VST_ENTRY_8_ABBREV) 1823 llvm_unreachable("Unexpected abbrev ordering!"); 1824 } 1825 1826 { // 7-bit fixed width VST_ENTRY strings. 1827 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1828 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1832 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1833 Abbv) != VST_ENTRY_7_ABBREV) 1834 llvm_unreachable("Unexpected abbrev ordering!"); 1835 } 1836 { // 6-bit char6 VST_ENTRY strings. 1837 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1838 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1842 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1843 Abbv) != VST_ENTRY_6_ABBREV) 1844 llvm_unreachable("Unexpected abbrev ordering!"); 1845 } 1846 { // 6-bit char6 VST_BBENTRY strings. 1847 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1848 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1852 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1853 Abbv) != VST_BBENTRY_6_ABBREV) 1854 llvm_unreachable("Unexpected abbrev ordering!"); 1855 } 1856 1857 1858 1859 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1860 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1861 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1863 Log2_32_Ceil(VE.getTypes().size()+1))); 1864 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1865 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1866 llvm_unreachable("Unexpected abbrev ordering!"); 1867 } 1868 1869 { // INTEGER abbrev for CONSTANTS_BLOCK. 1870 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1871 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1873 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1874 Abbv) != CONSTANTS_INTEGER_ABBREV) 1875 llvm_unreachable("Unexpected abbrev ordering!"); 1876 } 1877 1878 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1879 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1880 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1883 Log2_32_Ceil(VE.getTypes().size()+1))); 1884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1885 1886 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1887 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1888 llvm_unreachable("Unexpected abbrev ordering!"); 1889 } 1890 { // NULL abbrev for CONSTANTS_BLOCK. 1891 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1892 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1893 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1894 Abbv) != CONSTANTS_NULL_Abbrev) 1895 llvm_unreachable("Unexpected abbrev ordering!"); 1896 } 1897 1898 // FIXME: This should only use space for first class types! 1899 1900 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1901 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1902 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1906 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1907 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1908 llvm_unreachable("Unexpected abbrev ordering!"); 1909 } 1910 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1911 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1912 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1916 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1917 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1918 llvm_unreachable("Unexpected abbrev ordering!"); 1919 } 1920 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1921 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1922 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1927 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1928 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1929 llvm_unreachable("Unexpected abbrev ordering!"); 1930 } 1931 { // INST_CAST abbrev for FUNCTION_BLOCK. 1932 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1933 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1936 Log2_32_Ceil(VE.getTypes().size()+1))); 1937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1938 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1939 Abbv) != FUNCTION_INST_CAST_ABBREV) 1940 llvm_unreachable("Unexpected abbrev ordering!"); 1941 } 1942 1943 { // INST_RET abbrev for FUNCTION_BLOCK. 1944 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1945 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1946 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1947 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1948 llvm_unreachable("Unexpected abbrev ordering!"); 1949 } 1950 { // INST_RET abbrev for FUNCTION_BLOCK. 1951 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1952 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1954 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1955 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1956 llvm_unreachable("Unexpected abbrev ordering!"); 1957 } 1958 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1959 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1960 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1961 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1962 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1963 llvm_unreachable("Unexpected abbrev ordering!"); 1964 } 1965 1966 Stream.ExitBlock(); 1967 } 1968 1969 /// WriteModule - Emit the specified module to the bitstream. 1970 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1971 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1972 1973 SmallVector<unsigned, 1> Vals; 1974 unsigned CurVersion = 1; 1975 Vals.push_back(CurVersion); 1976 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1977 1978 // Analyze the module, enumerating globals, functions, etc. 1979 ValueEnumerator VE(*M); 1980 1981 // Emit blockinfo, which defines the standard abbreviations etc. 1982 WriteBlockInfo(VE, Stream); 1983 1984 // Emit information about attribute groups. 1985 WriteAttributeGroupTable(VE, Stream); 1986 1987 // Emit information about parameter attributes. 1988 WriteAttributeTable(VE, Stream); 1989 1990 // Emit information describing all of the types in the module. 1991 WriteTypeTable(VE, Stream); 1992 1993 writeComdats(VE, Stream); 1994 1995 // Emit top-level description of module, including target triple, inline asm, 1996 // descriptors for global variables, and function prototype info. 1997 WriteModuleInfo(M, VE, Stream); 1998 1999 // Emit constants. 2000 WriteModuleConstants(VE, Stream); 2001 2002 // Emit metadata. 2003 WriteModuleMetadata(M, VE, Stream); 2004 2005 // Emit metadata. 2006 WriteModuleMetadataStore(M, Stream); 2007 2008 // Emit names for globals/functions etc. 2009 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2010 2011 // Emit module-level use-lists. 2012 if (shouldPreserveBitcodeUseListOrder()) 2013 WriteUseListBlock(nullptr, VE, Stream); 2014 2015 // Emit function bodies. 2016 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2017 if (!F->isDeclaration()) 2018 WriteFunction(*F, VE, Stream); 2019 2020 Stream.ExitBlock(); 2021 } 2022 2023 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2024 /// header and trailer to make it compatible with the system archiver. To do 2025 /// this we emit the following header, and then emit a trailer that pads the 2026 /// file out to be a multiple of 16 bytes. 2027 /// 2028 /// struct bc_header { 2029 /// uint32_t Magic; // 0x0B17C0DE 2030 /// uint32_t Version; // Version, currently always 0. 2031 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2032 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2033 /// uint32_t CPUType; // CPU specifier. 2034 /// ... potentially more later ... 2035 /// }; 2036 enum { 2037 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2038 DarwinBCHeaderSize = 5*4 2039 }; 2040 2041 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2042 uint32_t &Position) { 2043 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2044 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2045 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2046 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2047 Position += 4; 2048 } 2049 2050 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2051 const Triple &TT) { 2052 unsigned CPUType = ~0U; 2053 2054 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2055 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2056 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2057 // specific constants here because they are implicitly part of the Darwin ABI. 2058 enum { 2059 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2060 DARWIN_CPU_TYPE_X86 = 7, 2061 DARWIN_CPU_TYPE_ARM = 12, 2062 DARWIN_CPU_TYPE_POWERPC = 18 2063 }; 2064 2065 Triple::ArchType Arch = TT.getArch(); 2066 if (Arch == Triple::x86_64) 2067 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2068 else if (Arch == Triple::x86) 2069 CPUType = DARWIN_CPU_TYPE_X86; 2070 else if (Arch == Triple::ppc) 2071 CPUType = DARWIN_CPU_TYPE_POWERPC; 2072 else if (Arch == Triple::ppc64) 2073 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2074 else if (Arch == Triple::arm || Arch == Triple::thumb) 2075 CPUType = DARWIN_CPU_TYPE_ARM; 2076 2077 // Traditional Bitcode starts after header. 2078 assert(Buffer.size() >= DarwinBCHeaderSize && 2079 "Expected header size to be reserved"); 2080 unsigned BCOffset = DarwinBCHeaderSize; 2081 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2082 2083 // Write the magic and version. 2084 unsigned Position = 0; 2085 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2086 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2087 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2088 WriteInt32ToBuffer(BCSize , Buffer, Position); 2089 WriteInt32ToBuffer(CPUType , Buffer, Position); 2090 2091 // If the file is not a multiple of 16 bytes, insert dummy padding. 2092 while (Buffer.size() & 15) 2093 Buffer.push_back(0); 2094 } 2095 2096 /// WriteBitcodeToFile - Write the specified module to the specified output 2097 /// stream. 2098 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2099 SmallVector<char, 0> Buffer; 2100 Buffer.reserve(256*1024); 2101 2102 // If this is darwin or another generic macho target, reserve space for the 2103 // header. 2104 Triple TT(M->getTargetTriple()); 2105 if (TT.isOSDarwin()) 2106 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2107 2108 // Emit the module into the buffer. 2109 { 2110 BitstreamWriter Stream(Buffer); 2111 2112 // Emit the file header. 2113 Stream.Emit((unsigned)'B', 8); 2114 Stream.Emit((unsigned)'C', 8); 2115 Stream.Emit(0x0, 4); 2116 Stream.Emit(0xC, 4); 2117 Stream.Emit(0xE, 4); 2118 Stream.Emit(0xD, 4); 2119 2120 // Emit the module. 2121 WriteModule(M, Stream); 2122 } 2123 2124 if (TT.isOSDarwin()) 2125 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2126 2127 // Write the generated bitstream to "Out". 2128 Out.write((char*)&Buffer.front(), Buffer.size()); 2129 } 2130