1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV, 60 FUNCTION_INST_GEP_ABBREV, 61 }; 62 63 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 64 switch (Opcode) { 65 default: llvm_unreachable("Unknown cast instruction!"); 66 case Instruction::Trunc : return bitc::CAST_TRUNC; 67 case Instruction::ZExt : return bitc::CAST_ZEXT; 68 case Instruction::SExt : return bitc::CAST_SEXT; 69 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 70 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 71 case Instruction::UIToFP : return bitc::CAST_UITOFP; 72 case Instruction::SIToFP : return bitc::CAST_SITOFP; 73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 74 case Instruction::FPExt : return bitc::CAST_FPEXT; 75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 77 case Instruction::BitCast : return bitc::CAST_BITCAST; 78 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 79 } 80 } 81 82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 83 switch (Opcode) { 84 default: llvm_unreachable("Unknown binary instruction!"); 85 case Instruction::Add: 86 case Instruction::FAdd: return bitc::BINOP_ADD; 87 case Instruction::Sub: 88 case Instruction::FSub: return bitc::BINOP_SUB; 89 case Instruction::Mul: 90 case Instruction::FMul: return bitc::BINOP_MUL; 91 case Instruction::UDiv: return bitc::BINOP_UDIV; 92 case Instruction::FDiv: 93 case Instruction::SDiv: return bitc::BINOP_SDIV; 94 case Instruction::URem: return bitc::BINOP_UREM; 95 case Instruction::FRem: 96 case Instruction::SRem: return bitc::BINOP_SREM; 97 case Instruction::Shl: return bitc::BINOP_SHL; 98 case Instruction::LShr: return bitc::BINOP_LSHR; 99 case Instruction::AShr: return bitc::BINOP_ASHR; 100 case Instruction::And: return bitc::BINOP_AND; 101 case Instruction::Or: return bitc::BINOP_OR; 102 case Instruction::Xor: return bitc::BINOP_XOR; 103 } 104 } 105 106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 107 switch (Op) { 108 default: llvm_unreachable("Unknown RMW operation!"); 109 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 110 case AtomicRMWInst::Add: return bitc::RMW_ADD; 111 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 112 case AtomicRMWInst::And: return bitc::RMW_AND; 113 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 114 case AtomicRMWInst::Or: return bitc::RMW_OR; 115 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 116 case AtomicRMWInst::Max: return bitc::RMW_MAX; 117 case AtomicRMWInst::Min: return bitc::RMW_MIN; 118 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 119 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 120 } 121 } 122 123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 124 switch (Ordering) { 125 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 126 case Unordered: return bitc::ORDERING_UNORDERED; 127 case Monotonic: return bitc::ORDERING_MONOTONIC; 128 case Acquire: return bitc::ORDERING_ACQUIRE; 129 case Release: return bitc::ORDERING_RELEASE; 130 case AcquireRelease: return bitc::ORDERING_ACQREL; 131 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 132 } 133 llvm_unreachable("Invalid ordering"); 134 } 135 136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 137 switch (SynchScope) { 138 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 139 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 140 } 141 llvm_unreachable("Invalid synch scope"); 142 } 143 144 static void WriteStringRecord(unsigned Code, StringRef Str, 145 unsigned AbbrevToUse, BitstreamWriter &Stream) { 146 SmallVector<unsigned, 64> Vals; 147 148 // Code: [strchar x N] 149 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 150 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 151 AbbrevToUse = 0; 152 Vals.push_back(Str[i]); 153 } 154 155 // Emit the finished record. 156 Stream.EmitRecord(Code, Vals, AbbrevToUse); 157 } 158 159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 160 switch (Kind) { 161 case Attribute::Alignment: 162 return bitc::ATTR_KIND_ALIGNMENT; 163 case Attribute::AlwaysInline: 164 return bitc::ATTR_KIND_ALWAYS_INLINE; 165 case Attribute::ArgMemOnly: 166 return bitc::ATTR_KIND_ARGMEMONLY; 167 case Attribute::Builtin: 168 return bitc::ATTR_KIND_BUILTIN; 169 case Attribute::ByVal: 170 return bitc::ATTR_KIND_BY_VAL; 171 case Attribute::Convergent: 172 return bitc::ATTR_KIND_CONVERGENT; 173 case Attribute::InAlloca: 174 return bitc::ATTR_KIND_IN_ALLOCA; 175 case Attribute::Cold: 176 return bitc::ATTR_KIND_COLD; 177 case Attribute::InlineHint: 178 return bitc::ATTR_KIND_INLINE_HINT; 179 case Attribute::InReg: 180 return bitc::ATTR_KIND_IN_REG; 181 case Attribute::JumpTable: 182 return bitc::ATTR_KIND_JUMP_TABLE; 183 case Attribute::MinSize: 184 return bitc::ATTR_KIND_MIN_SIZE; 185 case Attribute::Naked: 186 return bitc::ATTR_KIND_NAKED; 187 case Attribute::Nest: 188 return bitc::ATTR_KIND_NEST; 189 case Attribute::NoAlias: 190 return bitc::ATTR_KIND_NO_ALIAS; 191 case Attribute::NoBuiltin: 192 return bitc::ATTR_KIND_NO_BUILTIN; 193 case Attribute::NoCapture: 194 return bitc::ATTR_KIND_NO_CAPTURE; 195 case Attribute::NoDuplicate: 196 return bitc::ATTR_KIND_NO_DUPLICATE; 197 case Attribute::NoImplicitFloat: 198 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 199 case Attribute::NoInline: 200 return bitc::ATTR_KIND_NO_INLINE; 201 case Attribute::NonLazyBind: 202 return bitc::ATTR_KIND_NON_LAZY_BIND; 203 case Attribute::NonNull: 204 return bitc::ATTR_KIND_NON_NULL; 205 case Attribute::Dereferenceable: 206 return bitc::ATTR_KIND_DEREFERENCEABLE; 207 case Attribute::DereferenceableOrNull: 208 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 209 case Attribute::NoRedZone: 210 return bitc::ATTR_KIND_NO_RED_ZONE; 211 case Attribute::NoReturn: 212 return bitc::ATTR_KIND_NO_RETURN; 213 case Attribute::NoUnwind: 214 return bitc::ATTR_KIND_NO_UNWIND; 215 case Attribute::OptimizeForSize: 216 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 217 case Attribute::OptimizeNone: 218 return bitc::ATTR_KIND_OPTIMIZE_NONE; 219 case Attribute::ReadNone: 220 return bitc::ATTR_KIND_READ_NONE; 221 case Attribute::ReadOnly: 222 return bitc::ATTR_KIND_READ_ONLY; 223 case Attribute::Returned: 224 return bitc::ATTR_KIND_RETURNED; 225 case Attribute::ReturnsTwice: 226 return bitc::ATTR_KIND_RETURNS_TWICE; 227 case Attribute::SExt: 228 return bitc::ATTR_KIND_S_EXT; 229 case Attribute::StackAlignment: 230 return bitc::ATTR_KIND_STACK_ALIGNMENT; 231 case Attribute::StackProtect: 232 return bitc::ATTR_KIND_STACK_PROTECT; 233 case Attribute::StackProtectReq: 234 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 235 case Attribute::StackProtectStrong: 236 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 237 case Attribute::SafeStack: 238 return bitc::ATTR_KIND_SAFESTACK; 239 case Attribute::StructRet: 240 return bitc::ATTR_KIND_STRUCT_RET; 241 case Attribute::SanitizeAddress: 242 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 243 case Attribute::SanitizeThread: 244 return bitc::ATTR_KIND_SANITIZE_THREAD; 245 case Attribute::SanitizeMemory: 246 return bitc::ATTR_KIND_SANITIZE_MEMORY; 247 case Attribute::UWTable: 248 return bitc::ATTR_KIND_UW_TABLE; 249 case Attribute::ZExt: 250 return bitc::ATTR_KIND_Z_EXT; 251 case Attribute::EndAttrKinds: 252 llvm_unreachable("Can not encode end-attribute kinds marker."); 253 case Attribute::None: 254 llvm_unreachable("Can not encode none-attribute."); 255 } 256 257 llvm_unreachable("Trying to encode unknown attribute"); 258 } 259 260 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 261 BitstreamWriter &Stream) { 262 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 263 if (AttrGrps.empty()) return; 264 265 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 266 267 SmallVector<uint64_t, 64> Record; 268 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 269 AttributeSet AS = AttrGrps[i]; 270 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 271 AttributeSet A = AS.getSlotAttributes(i); 272 273 Record.push_back(VE.getAttributeGroupID(A)); 274 Record.push_back(AS.getSlotIndex(i)); 275 276 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 277 I != E; ++I) { 278 Attribute Attr = *I; 279 if (Attr.isEnumAttribute()) { 280 Record.push_back(0); 281 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 282 } else if (Attr.isIntAttribute()) { 283 Record.push_back(1); 284 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 285 Record.push_back(Attr.getValueAsInt()); 286 } else { 287 StringRef Kind = Attr.getKindAsString(); 288 StringRef Val = Attr.getValueAsString(); 289 290 Record.push_back(Val.empty() ? 3 : 4); 291 Record.append(Kind.begin(), Kind.end()); 292 Record.push_back(0); 293 if (!Val.empty()) { 294 Record.append(Val.begin(), Val.end()); 295 Record.push_back(0); 296 } 297 } 298 } 299 300 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 301 Record.clear(); 302 } 303 } 304 305 Stream.ExitBlock(); 306 } 307 308 static void WriteAttributeTable(const ValueEnumerator &VE, 309 BitstreamWriter &Stream) { 310 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 311 if (Attrs.empty()) return; 312 313 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 314 315 SmallVector<uint64_t, 64> Record; 316 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 317 const AttributeSet &A = Attrs[i]; 318 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 319 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 320 321 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 322 Record.clear(); 323 } 324 325 Stream.ExitBlock(); 326 } 327 328 /// WriteTypeTable - Write out the type table for a module. 329 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 330 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 331 332 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 333 SmallVector<uint64_t, 64> TypeVals; 334 335 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 336 337 // Abbrev for TYPE_CODE_POINTER. 338 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 339 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 342 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_FUNCTION. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_ANON. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 359 360 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 361 362 // Abbrev for TYPE_CODE_STRUCT_NAME. 363 Abbv = new BitCodeAbbrev(); 364 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 367 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_STRUCT_NAMED. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 375 376 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 377 378 // Abbrev for TYPE_CODE_ARRAY. 379 Abbv = new BitCodeAbbrev(); 380 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 383 384 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 385 386 // Emit an entry count so the reader can reserve space. 387 TypeVals.push_back(TypeList.size()); 388 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 389 TypeVals.clear(); 390 391 // Loop over all of the types, emitting each in turn. 392 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 393 Type *T = TypeList[i]; 394 int AbbrevToUse = 0; 395 unsigned Code = 0; 396 397 switch (T->getTypeID()) { 398 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 399 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 400 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 401 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 402 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 403 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 404 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 405 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 406 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 407 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 408 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 409 case Type::IntegerTyID: 410 // INTEGER: [width] 411 Code = bitc::TYPE_CODE_INTEGER; 412 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 413 break; 414 case Type::PointerTyID: { 415 PointerType *PTy = cast<PointerType>(T); 416 // POINTER: [pointee type, address space] 417 Code = bitc::TYPE_CODE_POINTER; 418 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 419 unsigned AddressSpace = PTy->getAddressSpace(); 420 TypeVals.push_back(AddressSpace); 421 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 422 break; 423 } 424 case Type::FunctionTyID: { 425 FunctionType *FT = cast<FunctionType>(T); 426 // FUNCTION: [isvararg, retty, paramty x N] 427 Code = bitc::TYPE_CODE_FUNCTION; 428 TypeVals.push_back(FT->isVarArg()); 429 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 430 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 431 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 432 AbbrevToUse = FunctionAbbrev; 433 break; 434 } 435 case Type::StructTyID: { 436 StructType *ST = cast<StructType>(T); 437 // STRUCT: [ispacked, eltty x N] 438 TypeVals.push_back(ST->isPacked()); 439 // Output all of the element types. 440 for (StructType::element_iterator I = ST->element_begin(), 441 E = ST->element_end(); I != E; ++I) 442 TypeVals.push_back(VE.getTypeID(*I)); 443 444 if (ST->isLiteral()) { 445 Code = bitc::TYPE_CODE_STRUCT_ANON; 446 AbbrevToUse = StructAnonAbbrev; 447 } else { 448 if (ST->isOpaque()) { 449 Code = bitc::TYPE_CODE_OPAQUE; 450 } else { 451 Code = bitc::TYPE_CODE_STRUCT_NAMED; 452 AbbrevToUse = StructNamedAbbrev; 453 } 454 455 // Emit the name if it is present. 456 if (!ST->getName().empty()) 457 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 458 StructNameAbbrev, Stream); 459 } 460 break; 461 } 462 case Type::ArrayTyID: { 463 ArrayType *AT = cast<ArrayType>(T); 464 // ARRAY: [numelts, eltty] 465 Code = bitc::TYPE_CODE_ARRAY; 466 TypeVals.push_back(AT->getNumElements()); 467 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 468 AbbrevToUse = ArrayAbbrev; 469 break; 470 } 471 case Type::VectorTyID: { 472 VectorType *VT = cast<VectorType>(T); 473 // VECTOR [numelts, eltty] 474 Code = bitc::TYPE_CODE_VECTOR; 475 TypeVals.push_back(VT->getNumElements()); 476 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 477 break; 478 } 479 } 480 481 // Emit the finished record. 482 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 483 TypeVals.clear(); 484 } 485 486 Stream.ExitBlock(); 487 } 488 489 static unsigned getEncodedLinkage(const GlobalValue &GV) { 490 switch (GV.getLinkage()) { 491 case GlobalValue::ExternalLinkage: 492 return 0; 493 case GlobalValue::WeakAnyLinkage: 494 return 16; 495 case GlobalValue::AppendingLinkage: 496 return 2; 497 case GlobalValue::InternalLinkage: 498 return 3; 499 case GlobalValue::LinkOnceAnyLinkage: 500 return 18; 501 case GlobalValue::ExternalWeakLinkage: 502 return 7; 503 case GlobalValue::CommonLinkage: 504 return 8; 505 case GlobalValue::PrivateLinkage: 506 return 9; 507 case GlobalValue::WeakODRLinkage: 508 return 17; 509 case GlobalValue::LinkOnceODRLinkage: 510 return 19; 511 case GlobalValue::AvailableExternallyLinkage: 512 return 12; 513 } 514 llvm_unreachable("Invalid linkage"); 515 } 516 517 static unsigned getEncodedVisibility(const GlobalValue &GV) { 518 switch (GV.getVisibility()) { 519 case GlobalValue::DefaultVisibility: return 0; 520 case GlobalValue::HiddenVisibility: return 1; 521 case GlobalValue::ProtectedVisibility: return 2; 522 } 523 llvm_unreachable("Invalid visibility"); 524 } 525 526 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 527 switch (GV.getDLLStorageClass()) { 528 case GlobalValue::DefaultStorageClass: return 0; 529 case GlobalValue::DLLImportStorageClass: return 1; 530 case GlobalValue::DLLExportStorageClass: return 2; 531 } 532 llvm_unreachable("Invalid DLL storage class"); 533 } 534 535 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 536 switch (GV.getThreadLocalMode()) { 537 case GlobalVariable::NotThreadLocal: return 0; 538 case GlobalVariable::GeneralDynamicTLSModel: return 1; 539 case GlobalVariable::LocalDynamicTLSModel: return 2; 540 case GlobalVariable::InitialExecTLSModel: return 3; 541 case GlobalVariable::LocalExecTLSModel: return 4; 542 } 543 llvm_unreachable("Invalid TLS model"); 544 } 545 546 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 547 switch (C.getSelectionKind()) { 548 case Comdat::Any: 549 return bitc::COMDAT_SELECTION_KIND_ANY; 550 case Comdat::ExactMatch: 551 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 552 case Comdat::Largest: 553 return bitc::COMDAT_SELECTION_KIND_LARGEST; 554 case Comdat::NoDuplicates: 555 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 556 case Comdat::SameSize: 557 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 558 } 559 llvm_unreachable("Invalid selection kind"); 560 } 561 562 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 563 SmallVector<uint16_t, 64> Vals; 564 for (const Comdat *C : VE.getComdats()) { 565 // COMDAT: [selection_kind, name] 566 Vals.push_back(getEncodedComdatSelectionKind(*C)); 567 size_t Size = C->getName().size(); 568 assert(isUInt<16>(Size)); 569 Vals.push_back(Size); 570 for (char Chr : C->getName()) 571 Vals.push_back((unsigned char)Chr); 572 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 573 Vals.clear(); 574 } 575 } 576 577 /// Write a record that will eventually hold the word offset of the 578 /// module-level VST. For now the offset is 0, which will be backpatched 579 /// after the real VST is written. Returns the bit offset to backpatch. 580 static uint64_t WriteValueSymbolTableForwardDecl(const ValueSymbolTable &VST, 581 BitstreamWriter &Stream) { 582 if (VST.empty()) return 0; 583 584 // Write a placeholder value in for the offset of the real VST, 585 // which is written after the function blocks so that it can include 586 // the offset of each function. The placeholder offset will be 587 // updated when the real VST is written. 588 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 589 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 590 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 591 // hold the real VST offset. Must use fixed instead of VBR as we don't 592 // know how many VBR chunks to reserve ahead of time. 593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 594 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 595 596 // Emit the placeholder 597 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 598 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 599 600 // Compute and return the bit offset to the placeholder, which will be 601 // patched when the real VST is written. We can simply subtract the 32-bit 602 // fixed size from the current bit number to get the location to backpatch. 603 return Stream.GetCurrentBitNo() - 32; 604 } 605 606 /// Emit top-level description of module, including target triple, inline asm, 607 /// descriptors for global variables, and function prototype info. 608 /// Returns the bit offset to backpatch with the location of the real VST. 609 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 610 BitstreamWriter &Stream) { 611 // Emit various pieces of data attached to a module. 612 if (!M->getTargetTriple().empty()) 613 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 614 0/*TODO*/, Stream); 615 const std::string &DL = M->getDataLayoutStr(); 616 if (!DL.empty()) 617 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 618 if (!M->getModuleInlineAsm().empty()) 619 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 620 0/*TODO*/, Stream); 621 622 // Emit information about sections and GC, computing how many there are. Also 623 // compute the maximum alignment value. 624 std::map<std::string, unsigned> SectionMap; 625 std::map<std::string, unsigned> GCMap; 626 unsigned MaxAlignment = 0; 627 unsigned MaxGlobalType = 0; 628 for (const GlobalValue &GV : M->globals()) { 629 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 630 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 631 if (GV.hasSection()) { 632 // Give section names unique ID's. 633 unsigned &Entry = SectionMap[GV.getSection()]; 634 if (!Entry) { 635 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 636 0/*TODO*/, Stream); 637 Entry = SectionMap.size(); 638 } 639 } 640 } 641 for (const Function &F : *M) { 642 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 643 if (F.hasSection()) { 644 // Give section names unique ID's. 645 unsigned &Entry = SectionMap[F.getSection()]; 646 if (!Entry) { 647 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 648 0/*TODO*/, Stream); 649 Entry = SectionMap.size(); 650 } 651 } 652 if (F.hasGC()) { 653 // Same for GC names. 654 unsigned &Entry = GCMap[F.getGC()]; 655 if (!Entry) { 656 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 657 0/*TODO*/, Stream); 658 Entry = GCMap.size(); 659 } 660 } 661 } 662 663 // Emit abbrev for globals, now that we know # sections and max alignment. 664 unsigned SimpleGVarAbbrev = 0; 665 if (!M->global_empty()) { 666 // Add an abbrev for common globals with no visibility or thread localness. 667 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 668 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 670 Log2_32_Ceil(MaxGlobalType+1))); 671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 672 //| explicitType << 1 673 //| constant 674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 676 if (MaxAlignment == 0) // Alignment. 677 Abbv->Add(BitCodeAbbrevOp(0)); 678 else { 679 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 681 Log2_32_Ceil(MaxEncAlignment+1))); 682 } 683 if (SectionMap.empty()) // Section. 684 Abbv->Add(BitCodeAbbrevOp(0)); 685 else 686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 687 Log2_32_Ceil(SectionMap.size()+1))); 688 // Don't bother emitting vis + thread local. 689 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 690 } 691 692 // Emit the global variable information. 693 SmallVector<unsigned, 64> Vals; 694 for (const GlobalVariable &GV : M->globals()) { 695 unsigned AbbrevToUse = 0; 696 697 // GLOBALVAR: [type, isconst, initid, 698 // linkage, alignment, section, visibility, threadlocal, 699 // unnamed_addr, externally_initialized, dllstorageclass, 700 // comdat] 701 Vals.push_back(VE.getTypeID(GV.getValueType())); 702 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 703 Vals.push_back(GV.isDeclaration() ? 0 : 704 (VE.getValueID(GV.getInitializer()) + 1)); 705 Vals.push_back(getEncodedLinkage(GV)); 706 Vals.push_back(Log2_32(GV.getAlignment())+1); 707 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 708 if (GV.isThreadLocal() || 709 GV.getVisibility() != GlobalValue::DefaultVisibility || 710 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 711 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 712 GV.hasComdat()) { 713 Vals.push_back(getEncodedVisibility(GV)); 714 Vals.push_back(getEncodedThreadLocalMode(GV)); 715 Vals.push_back(GV.hasUnnamedAddr()); 716 Vals.push_back(GV.isExternallyInitialized()); 717 Vals.push_back(getEncodedDLLStorageClass(GV)); 718 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 719 } else { 720 AbbrevToUse = SimpleGVarAbbrev; 721 } 722 723 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 724 Vals.clear(); 725 } 726 727 // Emit the function proto information. 728 for (const Function &F : *M) { 729 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 730 // section, visibility, gc, unnamed_addr, prologuedata, 731 // dllstorageclass, comdat, prefixdata, personalityfn] 732 Vals.push_back(VE.getTypeID(F.getFunctionType())); 733 Vals.push_back(F.getCallingConv()); 734 Vals.push_back(F.isDeclaration()); 735 Vals.push_back(getEncodedLinkage(F)); 736 Vals.push_back(VE.getAttributeID(F.getAttributes())); 737 Vals.push_back(Log2_32(F.getAlignment())+1); 738 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 739 Vals.push_back(getEncodedVisibility(F)); 740 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 741 Vals.push_back(F.hasUnnamedAddr()); 742 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 743 : 0); 744 Vals.push_back(getEncodedDLLStorageClass(F)); 745 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 746 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 747 : 0); 748 Vals.push_back( 749 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 750 751 unsigned AbbrevToUse = 0; 752 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 753 Vals.clear(); 754 } 755 756 // Emit the alias information. 757 for (const GlobalAlias &A : M->aliases()) { 758 // ALIAS: [alias type, aliasee val#, linkage, visibility] 759 Vals.push_back(VE.getTypeID(A.getValueType())); 760 Vals.push_back(A.getType()->getAddressSpace()); 761 Vals.push_back(VE.getValueID(A.getAliasee())); 762 Vals.push_back(getEncodedLinkage(A)); 763 Vals.push_back(getEncodedVisibility(A)); 764 Vals.push_back(getEncodedDLLStorageClass(A)); 765 Vals.push_back(getEncodedThreadLocalMode(A)); 766 Vals.push_back(A.hasUnnamedAddr()); 767 unsigned AbbrevToUse = 0; 768 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 769 Vals.clear(); 770 } 771 772 uint64_t VSTOffsetPlaceholder = 773 WriteValueSymbolTableForwardDecl(M->getValueSymbolTable(), Stream); 774 return VSTOffsetPlaceholder; 775 } 776 777 static uint64_t GetOptimizationFlags(const Value *V) { 778 uint64_t Flags = 0; 779 780 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 781 if (OBO->hasNoSignedWrap()) 782 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 783 if (OBO->hasNoUnsignedWrap()) 784 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 785 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 786 if (PEO->isExact()) 787 Flags |= 1 << bitc::PEO_EXACT; 788 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 789 if (FPMO->hasUnsafeAlgebra()) 790 Flags |= FastMathFlags::UnsafeAlgebra; 791 if (FPMO->hasNoNaNs()) 792 Flags |= FastMathFlags::NoNaNs; 793 if (FPMO->hasNoInfs()) 794 Flags |= FastMathFlags::NoInfs; 795 if (FPMO->hasNoSignedZeros()) 796 Flags |= FastMathFlags::NoSignedZeros; 797 if (FPMO->hasAllowReciprocal()) 798 Flags |= FastMathFlags::AllowReciprocal; 799 } 800 801 return Flags; 802 } 803 804 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 805 const ValueEnumerator &VE, 806 BitstreamWriter &Stream, 807 SmallVectorImpl<uint64_t> &Record) { 808 // Mimic an MDNode with a value as one operand. 809 Value *V = MD->getValue(); 810 Record.push_back(VE.getTypeID(V->getType())); 811 Record.push_back(VE.getValueID(V)); 812 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 813 Record.clear(); 814 } 815 816 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 817 BitstreamWriter &Stream, 818 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 819 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 820 Metadata *MD = N->getOperand(i); 821 assert(!(MD && isa<LocalAsMetadata>(MD)) && 822 "Unexpected function-local metadata"); 823 Record.push_back(VE.getMetadataOrNullID(MD)); 824 } 825 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 826 : bitc::METADATA_NODE, 827 Record, Abbrev); 828 Record.clear(); 829 } 830 831 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE, 832 BitstreamWriter &Stream, 833 SmallVectorImpl<uint64_t> &Record, 834 unsigned Abbrev) { 835 Record.push_back(N->isDistinct()); 836 Record.push_back(N->getLine()); 837 Record.push_back(N->getColumn()); 838 Record.push_back(VE.getMetadataID(N->getScope())); 839 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 840 841 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 842 Record.clear(); 843 } 844 845 static void WriteGenericDINode(const GenericDINode *N, 846 const ValueEnumerator &VE, 847 BitstreamWriter &Stream, 848 SmallVectorImpl<uint64_t> &Record, 849 unsigned Abbrev) { 850 Record.push_back(N->isDistinct()); 851 Record.push_back(N->getTag()); 852 Record.push_back(0); // Per-tag version field; unused for now. 853 854 for (auto &I : N->operands()) 855 Record.push_back(VE.getMetadataOrNullID(I)); 856 857 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 858 Record.clear(); 859 } 860 861 static uint64_t rotateSign(int64_t I) { 862 uint64_t U = I; 863 return I < 0 ? ~(U << 1) : U << 1; 864 } 865 866 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &, 867 BitstreamWriter &Stream, 868 SmallVectorImpl<uint64_t> &Record, 869 unsigned Abbrev) { 870 Record.push_back(N->isDistinct()); 871 Record.push_back(N->getCount()); 872 Record.push_back(rotateSign(N->getLowerBound())); 873 874 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 875 Record.clear(); 876 } 877 878 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 879 BitstreamWriter &Stream, 880 SmallVectorImpl<uint64_t> &Record, 881 unsigned Abbrev) { 882 Record.push_back(N->isDistinct()); 883 Record.push_back(rotateSign(N->getValue())); 884 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 885 886 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 887 Record.clear(); 888 } 889 890 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 891 BitstreamWriter &Stream, 892 SmallVectorImpl<uint64_t> &Record, 893 unsigned Abbrev) { 894 Record.push_back(N->isDistinct()); 895 Record.push_back(N->getTag()); 896 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 897 Record.push_back(N->getSizeInBits()); 898 Record.push_back(N->getAlignInBits()); 899 Record.push_back(N->getEncoding()); 900 901 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 902 Record.clear(); 903 } 904 905 static void WriteDIDerivedType(const DIDerivedType *N, 906 const ValueEnumerator &VE, 907 BitstreamWriter &Stream, 908 SmallVectorImpl<uint64_t> &Record, 909 unsigned Abbrev) { 910 Record.push_back(N->isDistinct()); 911 Record.push_back(N->getTag()); 912 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 913 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 914 Record.push_back(N->getLine()); 915 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 916 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 917 Record.push_back(N->getSizeInBits()); 918 Record.push_back(N->getAlignInBits()); 919 Record.push_back(N->getOffsetInBits()); 920 Record.push_back(N->getFlags()); 921 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 922 923 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 924 Record.clear(); 925 } 926 927 static void WriteDICompositeType(const DICompositeType *N, 928 const ValueEnumerator &VE, 929 BitstreamWriter &Stream, 930 SmallVectorImpl<uint64_t> &Record, 931 unsigned Abbrev) { 932 Record.push_back(N->isDistinct()); 933 Record.push_back(N->getTag()); 934 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 935 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 936 Record.push_back(N->getLine()); 937 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 938 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 939 Record.push_back(N->getSizeInBits()); 940 Record.push_back(N->getAlignInBits()); 941 Record.push_back(N->getOffsetInBits()); 942 Record.push_back(N->getFlags()); 943 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 944 Record.push_back(N->getRuntimeLang()); 945 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 946 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 947 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 948 949 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 950 Record.clear(); 951 } 952 953 static void WriteDISubroutineType(const DISubroutineType *N, 954 const ValueEnumerator &VE, 955 BitstreamWriter &Stream, 956 SmallVectorImpl<uint64_t> &Record, 957 unsigned Abbrev) { 958 Record.push_back(N->isDistinct()); 959 Record.push_back(N->getFlags()); 960 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 961 962 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 963 Record.clear(); 964 } 965 966 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE, 967 BitstreamWriter &Stream, 968 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 969 Record.push_back(N->isDistinct()); 970 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 971 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 972 973 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 974 Record.clear(); 975 } 976 977 static void WriteDICompileUnit(const DICompileUnit *N, 978 const ValueEnumerator &VE, 979 BitstreamWriter &Stream, 980 SmallVectorImpl<uint64_t> &Record, 981 unsigned Abbrev) { 982 assert(N->isDistinct() && "Expected distinct compile units"); 983 Record.push_back(/* IsDistinct */ true); 984 Record.push_back(N->getSourceLanguage()); 985 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 986 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 987 Record.push_back(N->isOptimized()); 988 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 989 Record.push_back(N->getRuntimeVersion()); 990 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 991 Record.push_back(N->getEmissionKind()); 992 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 993 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 994 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 995 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 996 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 997 Record.push_back(N->getDWOId()); 998 999 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1000 Record.clear(); 1001 } 1002 1003 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 1004 BitstreamWriter &Stream, 1005 SmallVectorImpl<uint64_t> &Record, 1006 unsigned Abbrev) { 1007 Record.push_back(N->isDistinct()); 1008 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1009 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1010 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1011 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1012 Record.push_back(N->getLine()); 1013 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1014 Record.push_back(N->isLocalToUnit()); 1015 Record.push_back(N->isDefinition()); 1016 Record.push_back(N->getScopeLine()); 1017 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1018 Record.push_back(N->getVirtuality()); 1019 Record.push_back(N->getVirtualIndex()); 1020 Record.push_back(N->getFlags()); 1021 Record.push_back(N->isOptimized()); 1022 Record.push_back(VE.getMetadataOrNullID(N->getRawFunction())); 1023 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1024 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1025 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1026 1027 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1028 Record.clear(); 1029 } 1030 1031 static void WriteDILexicalBlock(const DILexicalBlock *N, 1032 const ValueEnumerator &VE, 1033 BitstreamWriter &Stream, 1034 SmallVectorImpl<uint64_t> &Record, 1035 unsigned Abbrev) { 1036 Record.push_back(N->isDistinct()); 1037 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1038 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1039 Record.push_back(N->getLine()); 1040 Record.push_back(N->getColumn()); 1041 1042 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1043 Record.clear(); 1044 } 1045 1046 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N, 1047 const ValueEnumerator &VE, 1048 BitstreamWriter &Stream, 1049 SmallVectorImpl<uint64_t> &Record, 1050 unsigned Abbrev) { 1051 Record.push_back(N->isDistinct()); 1052 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1053 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1054 Record.push_back(N->getDiscriminator()); 1055 1056 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1057 Record.clear(); 1058 } 1059 1060 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1061 BitstreamWriter &Stream, 1062 SmallVectorImpl<uint64_t> &Record, 1063 unsigned Abbrev) { 1064 Record.push_back(N->isDistinct()); 1065 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1066 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1067 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1068 Record.push_back(N->getLine()); 1069 1070 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1071 Record.clear(); 1072 } 1073 1074 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE, 1075 BitstreamWriter &Stream, 1076 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1077 Record.push_back(N->isDistinct()); 1078 for (auto &I : N->operands()) 1079 Record.push_back(VE.getMetadataOrNullID(I)); 1080 1081 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1082 Record.clear(); 1083 } 1084 1085 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N, 1086 const ValueEnumerator &VE, 1087 BitstreamWriter &Stream, 1088 SmallVectorImpl<uint64_t> &Record, 1089 unsigned Abbrev) { 1090 Record.push_back(N->isDistinct()); 1091 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1092 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1093 1094 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1095 Record.clear(); 1096 } 1097 1098 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N, 1099 const ValueEnumerator &VE, 1100 BitstreamWriter &Stream, 1101 SmallVectorImpl<uint64_t> &Record, 1102 unsigned Abbrev) { 1103 Record.push_back(N->isDistinct()); 1104 Record.push_back(N->getTag()); 1105 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1106 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1107 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1108 1109 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1110 Record.clear(); 1111 } 1112 1113 static void WriteDIGlobalVariable(const DIGlobalVariable *N, 1114 const ValueEnumerator &VE, 1115 BitstreamWriter &Stream, 1116 SmallVectorImpl<uint64_t> &Record, 1117 unsigned Abbrev) { 1118 Record.push_back(N->isDistinct()); 1119 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1120 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1121 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1122 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1123 Record.push_back(N->getLine()); 1124 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1125 Record.push_back(N->isLocalToUnit()); 1126 Record.push_back(N->isDefinition()); 1127 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1128 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1129 1130 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1131 Record.clear(); 1132 } 1133 1134 static void WriteDILocalVariable(const DILocalVariable *N, 1135 const ValueEnumerator &VE, 1136 BitstreamWriter &Stream, 1137 SmallVectorImpl<uint64_t> &Record, 1138 unsigned Abbrev) { 1139 Record.push_back(N->isDistinct()); 1140 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1141 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1142 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1143 Record.push_back(N->getLine()); 1144 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1145 Record.push_back(N->getArg()); 1146 Record.push_back(N->getFlags()); 1147 1148 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1149 Record.clear(); 1150 } 1151 1152 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &, 1153 BitstreamWriter &Stream, 1154 SmallVectorImpl<uint64_t> &Record, 1155 unsigned Abbrev) { 1156 Record.reserve(N->getElements().size() + 1); 1157 1158 Record.push_back(N->isDistinct()); 1159 Record.append(N->elements_begin(), N->elements_end()); 1160 1161 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1162 Record.clear(); 1163 } 1164 1165 static void WriteDIObjCProperty(const DIObjCProperty *N, 1166 const ValueEnumerator &VE, 1167 BitstreamWriter &Stream, 1168 SmallVectorImpl<uint64_t> &Record, 1169 unsigned Abbrev) { 1170 Record.push_back(N->isDistinct()); 1171 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1172 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1173 Record.push_back(N->getLine()); 1174 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1175 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1176 Record.push_back(N->getAttributes()); 1177 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1178 1179 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1180 Record.clear(); 1181 } 1182 1183 static void WriteDIImportedEntity(const DIImportedEntity *N, 1184 const ValueEnumerator &VE, 1185 BitstreamWriter &Stream, 1186 SmallVectorImpl<uint64_t> &Record, 1187 unsigned Abbrev) { 1188 Record.push_back(N->isDistinct()); 1189 Record.push_back(N->getTag()); 1190 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1191 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1192 Record.push_back(N->getLine()); 1193 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1194 1195 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1196 Record.clear(); 1197 } 1198 1199 static void WriteModuleMetadata(const Module *M, 1200 const ValueEnumerator &VE, 1201 BitstreamWriter &Stream) { 1202 const auto &MDs = VE.getMDs(); 1203 if (MDs.empty() && M->named_metadata_empty()) 1204 return; 1205 1206 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1207 1208 unsigned MDSAbbrev = 0; 1209 if (VE.hasMDString()) { 1210 // Abbrev for METADATA_STRING. 1211 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1212 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1215 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1216 } 1217 1218 // Initialize MDNode abbreviations. 1219 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1220 #include "llvm/IR/Metadata.def" 1221 1222 if (VE.hasDILocation()) { 1223 // Abbrev for METADATA_LOCATION. 1224 // 1225 // Assume the column is usually under 128, and always output the inlined-at 1226 // location (it's never more expensive than building an array size 1). 1227 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1228 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1234 DILocationAbbrev = Stream.EmitAbbrev(Abbv); 1235 } 1236 1237 if (VE.hasGenericDINode()) { 1238 // Abbrev for METADATA_GENERIC_DEBUG. 1239 // 1240 // Assume the column is usually under 128, and always output the inlined-at 1241 // location (it's never more expensive than building an array size 1). 1242 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1243 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1250 GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv); 1251 } 1252 1253 unsigned NameAbbrev = 0; 1254 if (!M->named_metadata_empty()) { 1255 // Abbrev for METADATA_NAME. 1256 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1257 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1260 NameAbbrev = Stream.EmitAbbrev(Abbv); 1261 } 1262 1263 SmallVector<uint64_t, 64> Record; 1264 for (const Metadata *MD : MDs) { 1265 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1266 assert(N->isResolved() && "Expected forward references to be resolved"); 1267 1268 switch (N->getMetadataID()) { 1269 default: 1270 llvm_unreachable("Invalid MDNode subclass"); 1271 #define HANDLE_MDNODE_LEAF(CLASS) \ 1272 case Metadata::CLASS##Kind: \ 1273 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1274 continue; 1275 #include "llvm/IR/Metadata.def" 1276 } 1277 } 1278 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1279 WriteValueAsMetadata(MDC, VE, Stream, Record); 1280 continue; 1281 } 1282 const MDString *MDS = cast<MDString>(MD); 1283 // Code: [strchar x N] 1284 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1285 1286 // Emit the finished record. 1287 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1288 Record.clear(); 1289 } 1290 1291 // Write named metadata. 1292 for (const NamedMDNode &NMD : M->named_metadata()) { 1293 // Write name. 1294 StringRef Str = NMD.getName(); 1295 Record.append(Str.bytes_begin(), Str.bytes_end()); 1296 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1297 Record.clear(); 1298 1299 // Write named metadata operands. 1300 for (const MDNode *N : NMD.operands()) 1301 Record.push_back(VE.getMetadataID(N)); 1302 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1303 Record.clear(); 1304 } 1305 1306 Stream.ExitBlock(); 1307 } 1308 1309 static void WriteFunctionLocalMetadata(const Function &F, 1310 const ValueEnumerator &VE, 1311 BitstreamWriter &Stream) { 1312 bool StartedMetadataBlock = false; 1313 SmallVector<uint64_t, 64> Record; 1314 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1315 VE.getFunctionLocalMDs(); 1316 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1317 assert(MDs[i] && "Expected valid function-local metadata"); 1318 if (!StartedMetadataBlock) { 1319 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1320 StartedMetadataBlock = true; 1321 } 1322 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1323 } 1324 1325 if (StartedMetadataBlock) 1326 Stream.ExitBlock(); 1327 } 1328 1329 static void WriteMetadataAttachment(const Function &F, 1330 const ValueEnumerator &VE, 1331 BitstreamWriter &Stream) { 1332 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1333 1334 SmallVector<uint64_t, 64> Record; 1335 1336 // Write metadata attachments 1337 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1338 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1339 F.getAllMetadata(MDs); 1340 if (!MDs.empty()) { 1341 for (const auto &I : MDs) { 1342 Record.push_back(I.first); 1343 Record.push_back(VE.getMetadataID(I.second)); 1344 } 1345 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1346 Record.clear(); 1347 } 1348 1349 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1350 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1351 I != E; ++I) { 1352 MDs.clear(); 1353 I->getAllMetadataOtherThanDebugLoc(MDs); 1354 1355 // If no metadata, ignore instruction. 1356 if (MDs.empty()) continue; 1357 1358 Record.push_back(VE.getInstructionID(I)); 1359 1360 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1361 Record.push_back(MDs[i].first); 1362 Record.push_back(VE.getMetadataID(MDs[i].second)); 1363 } 1364 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1365 Record.clear(); 1366 } 1367 1368 Stream.ExitBlock(); 1369 } 1370 1371 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1372 SmallVector<uint64_t, 64> Record; 1373 1374 // Write metadata kinds 1375 // METADATA_KIND - [n x [id, name]] 1376 SmallVector<StringRef, 8> Names; 1377 M->getMDKindNames(Names); 1378 1379 if (Names.empty()) return; 1380 1381 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1382 1383 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1384 Record.push_back(MDKindID); 1385 StringRef KName = Names[MDKindID]; 1386 Record.append(KName.begin(), KName.end()); 1387 1388 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1389 Record.clear(); 1390 } 1391 1392 Stream.ExitBlock(); 1393 } 1394 1395 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1396 if ((int64_t)V >= 0) 1397 Vals.push_back(V << 1); 1398 else 1399 Vals.push_back((-V << 1) | 1); 1400 } 1401 1402 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1403 const ValueEnumerator &VE, 1404 BitstreamWriter &Stream, bool isGlobal) { 1405 if (FirstVal == LastVal) return; 1406 1407 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1408 1409 unsigned AggregateAbbrev = 0; 1410 unsigned String8Abbrev = 0; 1411 unsigned CString7Abbrev = 0; 1412 unsigned CString6Abbrev = 0; 1413 // If this is a constant pool for the module, emit module-specific abbrevs. 1414 if (isGlobal) { 1415 // Abbrev for CST_CODE_AGGREGATE. 1416 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1417 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1420 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1421 1422 // Abbrev for CST_CODE_STRING. 1423 Abbv = new BitCodeAbbrev(); 1424 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1427 String8Abbrev = Stream.EmitAbbrev(Abbv); 1428 // Abbrev for CST_CODE_CSTRING. 1429 Abbv = new BitCodeAbbrev(); 1430 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1433 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1434 // Abbrev for CST_CODE_CSTRING. 1435 Abbv = new BitCodeAbbrev(); 1436 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1439 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1440 } 1441 1442 SmallVector<uint64_t, 64> Record; 1443 1444 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1445 Type *LastTy = nullptr; 1446 for (unsigned i = FirstVal; i != LastVal; ++i) { 1447 const Value *V = Vals[i].first; 1448 // If we need to switch types, do so now. 1449 if (V->getType() != LastTy) { 1450 LastTy = V->getType(); 1451 Record.push_back(VE.getTypeID(LastTy)); 1452 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1453 CONSTANTS_SETTYPE_ABBREV); 1454 Record.clear(); 1455 } 1456 1457 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1458 Record.push_back(unsigned(IA->hasSideEffects()) | 1459 unsigned(IA->isAlignStack()) << 1 | 1460 unsigned(IA->getDialect()&1) << 2); 1461 1462 // Add the asm string. 1463 const std::string &AsmStr = IA->getAsmString(); 1464 Record.push_back(AsmStr.size()); 1465 Record.append(AsmStr.begin(), AsmStr.end()); 1466 1467 // Add the constraint string. 1468 const std::string &ConstraintStr = IA->getConstraintString(); 1469 Record.push_back(ConstraintStr.size()); 1470 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1471 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1472 Record.clear(); 1473 continue; 1474 } 1475 const Constant *C = cast<Constant>(V); 1476 unsigned Code = -1U; 1477 unsigned AbbrevToUse = 0; 1478 if (C->isNullValue()) { 1479 Code = bitc::CST_CODE_NULL; 1480 } else if (isa<UndefValue>(C)) { 1481 Code = bitc::CST_CODE_UNDEF; 1482 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1483 if (IV->getBitWidth() <= 64) { 1484 uint64_t V = IV->getSExtValue(); 1485 emitSignedInt64(Record, V); 1486 Code = bitc::CST_CODE_INTEGER; 1487 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1488 } else { // Wide integers, > 64 bits in size. 1489 // We have an arbitrary precision integer value to write whose 1490 // bit width is > 64. However, in canonical unsigned integer 1491 // format it is likely that the high bits are going to be zero. 1492 // So, we only write the number of active words. 1493 unsigned NWords = IV->getValue().getActiveWords(); 1494 const uint64_t *RawWords = IV->getValue().getRawData(); 1495 for (unsigned i = 0; i != NWords; ++i) { 1496 emitSignedInt64(Record, RawWords[i]); 1497 } 1498 Code = bitc::CST_CODE_WIDE_INTEGER; 1499 } 1500 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1501 Code = bitc::CST_CODE_FLOAT; 1502 Type *Ty = CFP->getType(); 1503 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1504 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1505 } else if (Ty->isX86_FP80Ty()) { 1506 // api needed to prevent premature destruction 1507 // bits are not in the same order as a normal i80 APInt, compensate. 1508 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1509 const uint64_t *p = api.getRawData(); 1510 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1511 Record.push_back(p[0] & 0xffffLL); 1512 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1513 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1514 const uint64_t *p = api.getRawData(); 1515 Record.push_back(p[0]); 1516 Record.push_back(p[1]); 1517 } else { 1518 assert (0 && "Unknown FP type!"); 1519 } 1520 } else if (isa<ConstantDataSequential>(C) && 1521 cast<ConstantDataSequential>(C)->isString()) { 1522 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1523 // Emit constant strings specially. 1524 unsigned NumElts = Str->getNumElements(); 1525 // If this is a null-terminated string, use the denser CSTRING encoding. 1526 if (Str->isCString()) { 1527 Code = bitc::CST_CODE_CSTRING; 1528 --NumElts; // Don't encode the null, which isn't allowed by char6. 1529 } else { 1530 Code = bitc::CST_CODE_STRING; 1531 AbbrevToUse = String8Abbrev; 1532 } 1533 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1534 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1535 for (unsigned i = 0; i != NumElts; ++i) { 1536 unsigned char V = Str->getElementAsInteger(i); 1537 Record.push_back(V); 1538 isCStr7 &= (V & 128) == 0; 1539 if (isCStrChar6) 1540 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1541 } 1542 1543 if (isCStrChar6) 1544 AbbrevToUse = CString6Abbrev; 1545 else if (isCStr7) 1546 AbbrevToUse = CString7Abbrev; 1547 } else if (const ConstantDataSequential *CDS = 1548 dyn_cast<ConstantDataSequential>(C)) { 1549 Code = bitc::CST_CODE_DATA; 1550 Type *EltTy = CDS->getType()->getElementType(); 1551 if (isa<IntegerType>(EltTy)) { 1552 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1553 Record.push_back(CDS->getElementAsInteger(i)); 1554 } else if (EltTy->isFloatTy()) { 1555 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1556 union { float F; uint32_t I; }; 1557 F = CDS->getElementAsFloat(i); 1558 Record.push_back(I); 1559 } 1560 } else { 1561 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1562 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1563 union { double F; uint64_t I; }; 1564 F = CDS->getElementAsDouble(i); 1565 Record.push_back(I); 1566 } 1567 } 1568 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1569 isa<ConstantVector>(C)) { 1570 Code = bitc::CST_CODE_AGGREGATE; 1571 for (const Value *Op : C->operands()) 1572 Record.push_back(VE.getValueID(Op)); 1573 AbbrevToUse = AggregateAbbrev; 1574 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1575 switch (CE->getOpcode()) { 1576 default: 1577 if (Instruction::isCast(CE->getOpcode())) { 1578 Code = bitc::CST_CODE_CE_CAST; 1579 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1580 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1581 Record.push_back(VE.getValueID(C->getOperand(0))); 1582 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1583 } else { 1584 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1585 Code = bitc::CST_CODE_CE_BINOP; 1586 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1587 Record.push_back(VE.getValueID(C->getOperand(0))); 1588 Record.push_back(VE.getValueID(C->getOperand(1))); 1589 uint64_t Flags = GetOptimizationFlags(CE); 1590 if (Flags != 0) 1591 Record.push_back(Flags); 1592 } 1593 break; 1594 case Instruction::GetElementPtr: { 1595 Code = bitc::CST_CODE_CE_GEP; 1596 const auto *GO = cast<GEPOperator>(C); 1597 if (GO->isInBounds()) 1598 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1599 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1600 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1601 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1602 Record.push_back(VE.getValueID(C->getOperand(i))); 1603 } 1604 break; 1605 } 1606 case Instruction::Select: 1607 Code = bitc::CST_CODE_CE_SELECT; 1608 Record.push_back(VE.getValueID(C->getOperand(0))); 1609 Record.push_back(VE.getValueID(C->getOperand(1))); 1610 Record.push_back(VE.getValueID(C->getOperand(2))); 1611 break; 1612 case Instruction::ExtractElement: 1613 Code = bitc::CST_CODE_CE_EXTRACTELT; 1614 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1615 Record.push_back(VE.getValueID(C->getOperand(0))); 1616 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1617 Record.push_back(VE.getValueID(C->getOperand(1))); 1618 break; 1619 case Instruction::InsertElement: 1620 Code = bitc::CST_CODE_CE_INSERTELT; 1621 Record.push_back(VE.getValueID(C->getOperand(0))); 1622 Record.push_back(VE.getValueID(C->getOperand(1))); 1623 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1624 Record.push_back(VE.getValueID(C->getOperand(2))); 1625 break; 1626 case Instruction::ShuffleVector: 1627 // If the return type and argument types are the same, this is a 1628 // standard shufflevector instruction. If the types are different, 1629 // then the shuffle is widening or truncating the input vectors, and 1630 // the argument type must also be encoded. 1631 if (C->getType() == C->getOperand(0)->getType()) { 1632 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1633 } else { 1634 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1635 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1636 } 1637 Record.push_back(VE.getValueID(C->getOperand(0))); 1638 Record.push_back(VE.getValueID(C->getOperand(1))); 1639 Record.push_back(VE.getValueID(C->getOperand(2))); 1640 break; 1641 case Instruction::ICmp: 1642 case Instruction::FCmp: 1643 Code = bitc::CST_CODE_CE_CMP; 1644 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1645 Record.push_back(VE.getValueID(C->getOperand(0))); 1646 Record.push_back(VE.getValueID(C->getOperand(1))); 1647 Record.push_back(CE->getPredicate()); 1648 break; 1649 } 1650 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1651 Code = bitc::CST_CODE_BLOCKADDRESS; 1652 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1653 Record.push_back(VE.getValueID(BA->getFunction())); 1654 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1655 } else { 1656 #ifndef NDEBUG 1657 C->dump(); 1658 #endif 1659 llvm_unreachable("Unknown constant!"); 1660 } 1661 Stream.EmitRecord(Code, Record, AbbrevToUse); 1662 Record.clear(); 1663 } 1664 1665 Stream.ExitBlock(); 1666 } 1667 1668 static void WriteModuleConstants(const ValueEnumerator &VE, 1669 BitstreamWriter &Stream) { 1670 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1671 1672 // Find the first constant to emit, which is the first non-globalvalue value. 1673 // We know globalvalues have been emitted by WriteModuleInfo. 1674 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1675 if (!isa<GlobalValue>(Vals[i].first)) { 1676 WriteConstants(i, Vals.size(), VE, Stream, true); 1677 return; 1678 } 1679 } 1680 } 1681 1682 /// PushValueAndType - The file has to encode both the value and type id for 1683 /// many values, because we need to know what type to create for forward 1684 /// references. However, most operands are not forward references, so this type 1685 /// field is not needed. 1686 /// 1687 /// This function adds V's value ID to Vals. If the value ID is higher than the 1688 /// instruction ID, then it is a forward reference, and it also includes the 1689 /// type ID. The value ID that is written is encoded relative to the InstID. 1690 static bool PushValueAndType(const Value *V, unsigned InstID, 1691 SmallVectorImpl<unsigned> &Vals, 1692 ValueEnumerator &VE) { 1693 unsigned ValID = VE.getValueID(V); 1694 // Make encoding relative to the InstID. 1695 Vals.push_back(InstID - ValID); 1696 if (ValID >= InstID) { 1697 Vals.push_back(VE.getTypeID(V->getType())); 1698 return true; 1699 } 1700 return false; 1701 } 1702 1703 /// pushValue - Like PushValueAndType, but where the type of the value is 1704 /// omitted (perhaps it was already encoded in an earlier operand). 1705 static void pushValue(const Value *V, unsigned InstID, 1706 SmallVectorImpl<unsigned> &Vals, 1707 ValueEnumerator &VE) { 1708 unsigned ValID = VE.getValueID(V); 1709 Vals.push_back(InstID - ValID); 1710 } 1711 1712 static void pushValueSigned(const Value *V, unsigned InstID, 1713 SmallVectorImpl<uint64_t> &Vals, 1714 ValueEnumerator &VE) { 1715 unsigned ValID = VE.getValueID(V); 1716 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1717 emitSignedInt64(Vals, diff); 1718 } 1719 1720 /// WriteInstruction - Emit an instruction to the specified stream. 1721 static void WriteInstruction(const Instruction &I, unsigned InstID, 1722 ValueEnumerator &VE, BitstreamWriter &Stream, 1723 SmallVectorImpl<unsigned> &Vals) { 1724 unsigned Code = 0; 1725 unsigned AbbrevToUse = 0; 1726 VE.setInstructionID(&I); 1727 switch (I.getOpcode()) { 1728 default: 1729 if (Instruction::isCast(I.getOpcode())) { 1730 Code = bitc::FUNC_CODE_INST_CAST; 1731 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1732 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1733 Vals.push_back(VE.getTypeID(I.getType())); 1734 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1735 } else { 1736 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1737 Code = bitc::FUNC_CODE_INST_BINOP; 1738 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1739 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1740 pushValue(I.getOperand(1), InstID, Vals, VE); 1741 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1742 uint64_t Flags = GetOptimizationFlags(&I); 1743 if (Flags != 0) { 1744 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1745 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1746 Vals.push_back(Flags); 1747 } 1748 } 1749 break; 1750 1751 case Instruction::GetElementPtr: { 1752 Code = bitc::FUNC_CODE_INST_GEP; 1753 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1754 auto &GEPInst = cast<GetElementPtrInst>(I); 1755 Vals.push_back(GEPInst.isInBounds()); 1756 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1757 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1758 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1759 break; 1760 } 1761 case Instruction::ExtractValue: { 1762 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1763 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1764 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1765 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1766 break; 1767 } 1768 case Instruction::InsertValue: { 1769 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1770 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1771 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1772 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1773 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1774 break; 1775 } 1776 case Instruction::Select: 1777 Code = bitc::FUNC_CODE_INST_VSELECT; 1778 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1779 pushValue(I.getOperand(2), InstID, Vals, VE); 1780 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1781 break; 1782 case Instruction::ExtractElement: 1783 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1784 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1785 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1786 break; 1787 case Instruction::InsertElement: 1788 Code = bitc::FUNC_CODE_INST_INSERTELT; 1789 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1790 pushValue(I.getOperand(1), InstID, Vals, VE); 1791 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1792 break; 1793 case Instruction::ShuffleVector: 1794 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1795 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1796 pushValue(I.getOperand(1), InstID, Vals, VE); 1797 pushValue(I.getOperand(2), InstID, Vals, VE); 1798 break; 1799 case Instruction::ICmp: 1800 case Instruction::FCmp: { 1801 // compare returning Int1Ty or vector of Int1Ty 1802 Code = bitc::FUNC_CODE_INST_CMP2; 1803 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1804 pushValue(I.getOperand(1), InstID, Vals, VE); 1805 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1806 uint64_t Flags = GetOptimizationFlags(&I); 1807 if (Flags != 0) 1808 Vals.push_back(Flags); 1809 break; 1810 } 1811 1812 case Instruction::Ret: 1813 { 1814 Code = bitc::FUNC_CODE_INST_RET; 1815 unsigned NumOperands = I.getNumOperands(); 1816 if (NumOperands == 0) 1817 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1818 else if (NumOperands == 1) { 1819 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1820 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1821 } else { 1822 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1823 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1824 } 1825 } 1826 break; 1827 case Instruction::Br: 1828 { 1829 Code = bitc::FUNC_CODE_INST_BR; 1830 const BranchInst &II = cast<BranchInst>(I); 1831 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1832 if (II.isConditional()) { 1833 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1834 pushValue(II.getCondition(), InstID, Vals, VE); 1835 } 1836 } 1837 break; 1838 case Instruction::Switch: 1839 { 1840 Code = bitc::FUNC_CODE_INST_SWITCH; 1841 const SwitchInst &SI = cast<SwitchInst>(I); 1842 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1843 pushValue(SI.getCondition(), InstID, Vals, VE); 1844 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1845 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1846 i != e; ++i) { 1847 Vals.push_back(VE.getValueID(i.getCaseValue())); 1848 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1849 } 1850 } 1851 break; 1852 case Instruction::IndirectBr: 1853 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1854 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1855 // Encode the address operand as relative, but not the basic blocks. 1856 pushValue(I.getOperand(0), InstID, Vals, VE); 1857 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1858 Vals.push_back(VE.getValueID(I.getOperand(i))); 1859 break; 1860 1861 case Instruction::Invoke: { 1862 const InvokeInst *II = cast<InvokeInst>(&I); 1863 const Value *Callee = II->getCalledValue(); 1864 FunctionType *FTy = II->getFunctionType(); 1865 Code = bitc::FUNC_CODE_INST_INVOKE; 1866 1867 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1868 Vals.push_back(II->getCallingConv() | 1 << 13); 1869 Vals.push_back(VE.getValueID(II->getNormalDest())); 1870 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1871 Vals.push_back(VE.getTypeID(FTy)); 1872 PushValueAndType(Callee, InstID, Vals, VE); 1873 1874 // Emit value #'s for the fixed parameters. 1875 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1876 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1877 1878 // Emit type/value pairs for varargs params. 1879 if (FTy->isVarArg()) { 1880 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1881 i != e; ++i) 1882 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1883 } 1884 break; 1885 } 1886 case Instruction::Resume: 1887 Code = bitc::FUNC_CODE_INST_RESUME; 1888 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1889 break; 1890 case Instruction::CleanupRet: { 1891 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 1892 const auto &CRI = cast<CleanupReturnInst>(I); 1893 pushValue(CRI.getCleanupPad(), InstID, Vals, VE); 1894 if (CRI.hasUnwindDest()) 1895 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 1896 break; 1897 } 1898 case Instruction::CatchRet: { 1899 Code = bitc::FUNC_CODE_INST_CATCHRET; 1900 const auto &CRI = cast<CatchReturnInst>(I); 1901 pushValue(CRI.getCatchPad(), InstID, Vals, VE); 1902 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 1903 break; 1904 } 1905 case Instruction::CatchPad: { 1906 Code = bitc::FUNC_CODE_INST_CATCHPAD; 1907 const auto &CPI = cast<CatchPadInst>(I); 1908 Vals.push_back(VE.getValueID(CPI.getNormalDest())); 1909 Vals.push_back(VE.getValueID(CPI.getUnwindDest())); 1910 unsigned NumArgOperands = CPI.getNumArgOperands(); 1911 Vals.push_back(NumArgOperands); 1912 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 1913 PushValueAndType(CPI.getArgOperand(Op), InstID, Vals, VE); 1914 break; 1915 } 1916 case Instruction::TerminatePad: { 1917 Code = bitc::FUNC_CODE_INST_TERMINATEPAD; 1918 const auto &TPI = cast<TerminatePadInst>(I); 1919 Vals.push_back(TPI.hasUnwindDest()); 1920 if (TPI.hasUnwindDest()) 1921 Vals.push_back(VE.getValueID(TPI.getUnwindDest())); 1922 unsigned NumArgOperands = TPI.getNumArgOperands(); 1923 Vals.push_back(NumArgOperands); 1924 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 1925 PushValueAndType(TPI.getArgOperand(Op), InstID, Vals, VE); 1926 break; 1927 } 1928 case Instruction::CleanupPad: { 1929 Code = bitc::FUNC_CODE_INST_CLEANUPPAD; 1930 const auto &CPI = cast<CleanupPadInst>(I); 1931 unsigned NumOperands = CPI.getNumOperands(); 1932 Vals.push_back(NumOperands); 1933 for (unsigned Op = 0; Op != NumOperands; ++Op) 1934 PushValueAndType(CPI.getOperand(Op), InstID, Vals, VE); 1935 break; 1936 } 1937 case Instruction::CatchEndPad: { 1938 Code = bitc::FUNC_CODE_INST_CATCHENDPAD; 1939 const auto &CEPI = cast<CatchEndPadInst>(I); 1940 if (CEPI.hasUnwindDest()) 1941 Vals.push_back(VE.getValueID(CEPI.getUnwindDest())); 1942 break; 1943 } 1944 case Instruction::CleanupEndPad: { 1945 Code = bitc::FUNC_CODE_INST_CLEANUPENDPAD; 1946 const auto &CEPI = cast<CleanupEndPadInst>(I); 1947 pushValue(CEPI.getCleanupPad(), InstID, Vals, VE); 1948 if (CEPI.hasUnwindDest()) 1949 Vals.push_back(VE.getValueID(CEPI.getUnwindDest())); 1950 break; 1951 } 1952 case Instruction::Unreachable: 1953 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1954 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1955 break; 1956 1957 case Instruction::PHI: { 1958 const PHINode &PN = cast<PHINode>(I); 1959 Code = bitc::FUNC_CODE_INST_PHI; 1960 // With the newer instruction encoding, forward references could give 1961 // negative valued IDs. This is most common for PHIs, so we use 1962 // signed VBRs. 1963 SmallVector<uint64_t, 128> Vals64; 1964 Vals64.push_back(VE.getTypeID(PN.getType())); 1965 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1966 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1967 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1968 } 1969 // Emit a Vals64 vector and exit. 1970 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1971 Vals64.clear(); 1972 return; 1973 } 1974 1975 case Instruction::LandingPad: { 1976 const LandingPadInst &LP = cast<LandingPadInst>(I); 1977 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1978 Vals.push_back(VE.getTypeID(LP.getType())); 1979 Vals.push_back(LP.isCleanup()); 1980 Vals.push_back(LP.getNumClauses()); 1981 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1982 if (LP.isCatch(I)) 1983 Vals.push_back(LandingPadInst::Catch); 1984 else 1985 Vals.push_back(LandingPadInst::Filter); 1986 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1987 } 1988 break; 1989 } 1990 1991 case Instruction::Alloca: { 1992 Code = bitc::FUNC_CODE_INST_ALLOCA; 1993 const AllocaInst &AI = cast<AllocaInst>(I); 1994 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 1995 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1996 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1997 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1998 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1999 "not enough bits for maximum alignment"); 2000 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2001 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2002 AlignRecord |= 1 << 6; 2003 // Reserve bit 7 for SwiftError flag. 2004 // AlignRecord |= AI.isSwiftError() << 7; 2005 Vals.push_back(AlignRecord); 2006 break; 2007 } 2008 2009 case Instruction::Load: 2010 if (cast<LoadInst>(I).isAtomic()) { 2011 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2012 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2013 } else { 2014 Code = bitc::FUNC_CODE_INST_LOAD; 2015 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 2016 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2017 } 2018 Vals.push_back(VE.getTypeID(I.getType())); 2019 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2020 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2021 if (cast<LoadInst>(I).isAtomic()) { 2022 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2023 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2024 } 2025 break; 2026 case Instruction::Store: 2027 if (cast<StoreInst>(I).isAtomic()) 2028 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2029 else 2030 Code = bitc::FUNC_CODE_INST_STORE; 2031 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 2032 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 2033 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2034 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2035 if (cast<StoreInst>(I).isAtomic()) { 2036 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2037 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2038 } 2039 break; 2040 case Instruction::AtomicCmpXchg: 2041 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2042 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2043 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 2044 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 2045 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2046 Vals.push_back(GetEncodedOrdering( 2047 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2048 Vals.push_back(GetEncodedSynchScope( 2049 cast<AtomicCmpXchgInst>(I).getSynchScope())); 2050 Vals.push_back(GetEncodedOrdering( 2051 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2052 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2053 break; 2054 case Instruction::AtomicRMW: 2055 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2056 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2057 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 2058 Vals.push_back(GetEncodedRMWOperation( 2059 cast<AtomicRMWInst>(I).getOperation())); 2060 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2061 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2062 Vals.push_back(GetEncodedSynchScope( 2063 cast<AtomicRMWInst>(I).getSynchScope())); 2064 break; 2065 case Instruction::Fence: 2066 Code = bitc::FUNC_CODE_INST_FENCE; 2067 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2068 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2069 break; 2070 case Instruction::Call: { 2071 const CallInst &CI = cast<CallInst>(I); 2072 FunctionType *FTy = CI.getFunctionType(); 2073 2074 Code = bitc::FUNC_CODE_INST_CALL; 2075 2076 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2077 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 2078 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 2079 Vals.push_back(VE.getTypeID(FTy)); 2080 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 2081 2082 // Emit value #'s for the fixed parameters. 2083 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2084 // Check for labels (can happen with asm labels). 2085 if (FTy->getParamType(i)->isLabelTy()) 2086 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2087 else 2088 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 2089 } 2090 2091 // Emit type/value pairs for varargs params. 2092 if (FTy->isVarArg()) { 2093 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2094 i != e; ++i) 2095 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 2096 } 2097 break; 2098 } 2099 case Instruction::VAArg: 2100 Code = bitc::FUNC_CODE_INST_VAARG; 2101 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2102 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 2103 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2104 break; 2105 } 2106 2107 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2108 Vals.clear(); 2109 } 2110 2111 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 2112 2113 /// Determine the encoding to use for the given string name and length. 2114 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 2115 bool isChar6 = true; 2116 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 2117 if (isChar6) 2118 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2119 if ((unsigned char)*C & 128) 2120 // don't bother scanning the rest. 2121 return SE_Fixed8; 2122 } 2123 if (isChar6) 2124 return SE_Char6; 2125 else 2126 return SE_Fixed7; 2127 } 2128 2129 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder, 2130 /// BitcodeStartBit and FunctionIndex are only passed for the module-level 2131 /// VST, where we are including a function bitcode index and need to 2132 /// backpatch the VST forward declaration record. 2133 static void WriteValueSymbolTable( 2134 const ValueSymbolTable &VST, const ValueEnumerator &VE, 2135 BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0, 2136 uint64_t BitcodeStartBit = 0, 2137 DenseMap<const Function *, uint64_t> *FunctionIndex = nullptr) { 2138 if (VST.empty()) { 2139 // WriteValueSymbolTableForwardDecl should have returned early as 2140 // well. Ensure this handling remains in sync by asserting that 2141 // the placeholder offset is not set. 2142 assert(VSTOffsetPlaceholder == 0); 2143 return; 2144 } 2145 2146 if (VSTOffsetPlaceholder > 0) { 2147 // Get the offset of the VST we are writing, and backpatch it into 2148 // the VST forward declaration record. 2149 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2150 // The BitcodeStartBit was the stream offset of the actual bitcode 2151 // (e.g. excluding any initial darwin header). 2152 VSTOffset -= BitcodeStartBit; 2153 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2154 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2155 } 2156 2157 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2158 2159 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2160 // records, which are not used in the per-function VSTs. 2161 unsigned FnEntry8BitAbbrev; 2162 unsigned FnEntry7BitAbbrev; 2163 unsigned FnEntry6BitAbbrev; 2164 if (VSTOffsetPlaceholder > 0) { 2165 // 8-bit fixed-width VST_FNENTRY function strings. 2166 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2167 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2172 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2173 2174 // 7-bit fixed width VST_FNENTRY function strings. 2175 Abbv = new BitCodeAbbrev(); 2176 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2181 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2182 2183 // 6-bit char6 VST_FNENTRY function strings. 2184 Abbv = new BitCodeAbbrev(); 2185 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2190 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2191 } 2192 2193 // FIXME: Set up the abbrev, we know how many values there are! 2194 // FIXME: We know if the type names can use 7-bit ascii. 2195 SmallVector<unsigned, 64> NameVals; 2196 2197 for (const ValueName &Name : VST) { 2198 // Figure out the encoding to use for the name. 2199 StringEncoding Bits = 2200 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2201 2202 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2203 NameVals.push_back(VE.getValueID(Name.getValue())); 2204 2205 Function *F = dyn_cast<Function>(Name.getValue()); 2206 if (!F) { 2207 // If value is an alias, need to get the aliased base object to 2208 // see if it is a function. 2209 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2210 if (GA && GA->getBaseObject()) 2211 F = dyn_cast<Function>(GA->getBaseObject()); 2212 } 2213 2214 // VST_ENTRY: [valueid, namechar x N] 2215 // VST_FNENTRY: [valueid, funcoffset, namechar x N] 2216 // VST_BBENTRY: [bbid, namechar x N] 2217 unsigned Code; 2218 if (isa<BasicBlock>(Name.getValue())) { 2219 Code = bitc::VST_CODE_BBENTRY; 2220 if (Bits == SE_Char6) 2221 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2222 } else if (F && !F->isDeclaration()) { 2223 // Must be the module-level VST, where we pass in the Index and 2224 // have a VSTOffsetPlaceholder. The function-level VST should not 2225 // contain any Function symbols. 2226 assert(FunctionIndex); 2227 assert(VSTOffsetPlaceholder > 0); 2228 2229 // Save the word offset of the function (from the start of the 2230 // actual bitcode written to the stream). 2231 assert(FunctionIndex->count(F) == 1); 2232 uint64_t BitcodeIndex = (*FunctionIndex)[F] - BitcodeStartBit; 2233 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2234 NameVals.push_back(BitcodeIndex / 32); 2235 2236 Code = bitc::VST_CODE_FNENTRY; 2237 AbbrevToUse = FnEntry8BitAbbrev; 2238 if (Bits == SE_Char6) 2239 AbbrevToUse = FnEntry6BitAbbrev; 2240 else if (Bits == SE_Fixed7) 2241 AbbrevToUse = FnEntry7BitAbbrev; 2242 } else { 2243 Code = bitc::VST_CODE_ENTRY; 2244 if (Bits == SE_Char6) 2245 AbbrevToUse = VST_ENTRY_6_ABBREV; 2246 else if (Bits == SE_Fixed7) 2247 AbbrevToUse = VST_ENTRY_7_ABBREV; 2248 } 2249 2250 for (const char *P = Name.getKeyData(), 2251 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 2252 NameVals.push_back((unsigned char)*P); 2253 2254 // Emit the finished record. 2255 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2256 NameVals.clear(); 2257 } 2258 Stream.ExitBlock(); 2259 } 2260 2261 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2262 BitstreamWriter &Stream) { 2263 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2264 unsigned Code; 2265 if (isa<BasicBlock>(Order.V)) 2266 Code = bitc::USELIST_CODE_BB; 2267 else 2268 Code = bitc::USELIST_CODE_DEFAULT; 2269 2270 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2271 Record.push_back(VE.getValueID(Order.V)); 2272 Stream.EmitRecord(Code, Record); 2273 } 2274 2275 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2276 BitstreamWriter &Stream) { 2277 assert(VE.shouldPreserveUseListOrder() && 2278 "Expected to be preserving use-list order"); 2279 2280 auto hasMore = [&]() { 2281 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2282 }; 2283 if (!hasMore()) 2284 // Nothing to do. 2285 return; 2286 2287 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2288 while (hasMore()) { 2289 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2290 VE.UseListOrders.pop_back(); 2291 } 2292 Stream.ExitBlock(); 2293 } 2294 2295 /// WriteFunction - Emit a function body to the module stream. 2296 static void WriteFunction(const Function &F, ValueEnumerator &VE, 2297 BitstreamWriter &Stream, 2298 DenseMap<const Function *, uint64_t> &FunctionIndex) { 2299 // Save the bitcode index of the start of this function block for recording 2300 // in the VST. 2301 uint64_t BitcodeIndex = Stream.GetCurrentBitNo(); 2302 FunctionIndex[&F] = BitcodeIndex; 2303 2304 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2305 VE.incorporateFunction(F); 2306 2307 SmallVector<unsigned, 64> Vals; 2308 2309 // Emit the number of basic blocks, so the reader can create them ahead of 2310 // time. 2311 Vals.push_back(VE.getBasicBlocks().size()); 2312 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2313 Vals.clear(); 2314 2315 // If there are function-local constants, emit them now. 2316 unsigned CstStart, CstEnd; 2317 VE.getFunctionConstantRange(CstStart, CstEnd); 2318 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2319 2320 // If there is function-local metadata, emit it now. 2321 WriteFunctionLocalMetadata(F, VE, Stream); 2322 2323 // Keep a running idea of what the instruction ID is. 2324 unsigned InstID = CstEnd; 2325 2326 bool NeedsMetadataAttachment = F.hasMetadata(); 2327 2328 DILocation *LastDL = nullptr; 2329 2330 // Finally, emit all the instructions, in order. 2331 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2332 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2333 I != E; ++I) { 2334 WriteInstruction(*I, InstID, VE, Stream, Vals); 2335 2336 if (!I->getType()->isVoidTy()) 2337 ++InstID; 2338 2339 // If the instruction has metadata, write a metadata attachment later. 2340 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2341 2342 // If the instruction has a debug location, emit it. 2343 DILocation *DL = I->getDebugLoc(); 2344 if (!DL) 2345 continue; 2346 2347 if (DL == LastDL) { 2348 // Just repeat the same debug loc as last time. 2349 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2350 continue; 2351 } 2352 2353 Vals.push_back(DL->getLine()); 2354 Vals.push_back(DL->getColumn()); 2355 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2356 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2357 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2358 Vals.clear(); 2359 2360 LastDL = DL; 2361 } 2362 2363 // Emit names for all the instructions etc. 2364 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2365 2366 if (NeedsMetadataAttachment) 2367 WriteMetadataAttachment(F, VE, Stream); 2368 if (VE.shouldPreserveUseListOrder()) 2369 WriteUseListBlock(&F, VE, Stream); 2370 VE.purgeFunction(); 2371 Stream.ExitBlock(); 2372 } 2373 2374 // Emit blockinfo, which defines the standard abbreviations etc. 2375 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2376 // We only want to emit block info records for blocks that have multiple 2377 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2378 // Other blocks can define their abbrevs inline. 2379 Stream.EnterBlockInfoBlock(2); 2380 2381 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2382 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2387 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2388 Abbv) != VST_ENTRY_8_ABBREV) 2389 llvm_unreachable("Unexpected abbrev ordering!"); 2390 } 2391 2392 { // 7-bit fixed width VST_ENTRY strings. 2393 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2394 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2398 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2399 Abbv) != VST_ENTRY_7_ABBREV) 2400 llvm_unreachable("Unexpected abbrev ordering!"); 2401 } 2402 { // 6-bit char6 VST_ENTRY strings. 2403 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2404 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2408 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2409 Abbv) != VST_ENTRY_6_ABBREV) 2410 llvm_unreachable("Unexpected abbrev ordering!"); 2411 } 2412 { // 6-bit char6 VST_BBENTRY strings. 2413 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2414 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2418 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2419 Abbv) != VST_BBENTRY_6_ABBREV) 2420 llvm_unreachable("Unexpected abbrev ordering!"); 2421 } 2422 2423 2424 2425 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2426 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2427 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2429 VE.computeBitsRequiredForTypeIndicies())); 2430 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2431 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2432 llvm_unreachable("Unexpected abbrev ordering!"); 2433 } 2434 2435 { // INTEGER abbrev for CONSTANTS_BLOCK. 2436 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2437 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2439 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2440 Abbv) != CONSTANTS_INTEGER_ABBREV) 2441 llvm_unreachable("Unexpected abbrev ordering!"); 2442 } 2443 2444 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2445 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2446 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2449 VE.computeBitsRequiredForTypeIndicies())); 2450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2451 2452 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2453 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2454 llvm_unreachable("Unexpected abbrev ordering!"); 2455 } 2456 { // NULL abbrev for CONSTANTS_BLOCK. 2457 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2458 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2459 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2460 Abbv) != CONSTANTS_NULL_Abbrev) 2461 llvm_unreachable("Unexpected abbrev ordering!"); 2462 } 2463 2464 // FIXME: This should only use space for first class types! 2465 2466 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2467 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2468 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2471 VE.computeBitsRequiredForTypeIndicies())); 2472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2474 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2475 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2476 llvm_unreachable("Unexpected abbrev ordering!"); 2477 } 2478 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2479 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2480 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2484 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2485 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2486 llvm_unreachable("Unexpected abbrev ordering!"); 2487 } 2488 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2489 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2490 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2495 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2496 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2497 llvm_unreachable("Unexpected abbrev ordering!"); 2498 } 2499 { // INST_CAST abbrev for FUNCTION_BLOCK. 2500 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2501 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2504 VE.computeBitsRequiredForTypeIndicies())); 2505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2506 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2507 Abbv) != FUNCTION_INST_CAST_ABBREV) 2508 llvm_unreachable("Unexpected abbrev ordering!"); 2509 } 2510 2511 { // INST_RET abbrev for FUNCTION_BLOCK. 2512 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2513 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2514 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2515 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2516 llvm_unreachable("Unexpected abbrev ordering!"); 2517 } 2518 { // INST_RET abbrev for FUNCTION_BLOCK. 2519 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2520 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2522 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2523 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2524 llvm_unreachable("Unexpected abbrev ordering!"); 2525 } 2526 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2527 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2528 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2529 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2530 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2531 llvm_unreachable("Unexpected abbrev ordering!"); 2532 } 2533 { 2534 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2535 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2538 Log2_32_Ceil(VE.getTypes().size() + 1))); 2539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2541 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2542 FUNCTION_INST_GEP_ABBREV) 2543 llvm_unreachable("Unexpected abbrev ordering!"); 2544 } 2545 2546 Stream.ExitBlock(); 2547 } 2548 2549 /// WriteModule - Emit the specified module to the bitstream. 2550 static void WriteModule(const Module *M, BitstreamWriter &Stream, 2551 bool ShouldPreserveUseListOrder, 2552 uint64_t BitcodeStartBit) { 2553 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2554 2555 SmallVector<unsigned, 1> Vals; 2556 unsigned CurVersion = 1; 2557 Vals.push_back(CurVersion); 2558 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2559 2560 // Analyze the module, enumerating globals, functions, etc. 2561 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 2562 2563 // Emit blockinfo, which defines the standard abbreviations etc. 2564 WriteBlockInfo(VE, Stream); 2565 2566 // Emit information about attribute groups. 2567 WriteAttributeGroupTable(VE, Stream); 2568 2569 // Emit information about parameter attributes. 2570 WriteAttributeTable(VE, Stream); 2571 2572 // Emit information describing all of the types in the module. 2573 WriteTypeTable(VE, Stream); 2574 2575 writeComdats(VE, Stream); 2576 2577 // Emit top-level description of module, including target triple, inline asm, 2578 // descriptors for global variables, and function prototype info. 2579 uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream); 2580 2581 // Emit constants. 2582 WriteModuleConstants(VE, Stream); 2583 2584 // Emit metadata. 2585 WriteModuleMetadata(M, VE, Stream); 2586 2587 // Emit metadata. 2588 WriteModuleMetadataStore(M, Stream); 2589 2590 // Emit module-level use-lists. 2591 if (VE.shouldPreserveUseListOrder()) 2592 WriteUseListBlock(nullptr, VE, Stream); 2593 2594 // Emit function bodies. 2595 DenseMap<const Function *, uint64_t> FunctionIndex; 2596 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2597 if (!F->isDeclaration()) 2598 WriteFunction(*F, VE, Stream, FunctionIndex); 2599 2600 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream, 2601 VSTOffsetPlaceholder, BitcodeStartBit, &FunctionIndex); 2602 2603 Stream.ExitBlock(); 2604 } 2605 2606 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2607 /// header and trailer to make it compatible with the system archiver. To do 2608 /// this we emit the following header, and then emit a trailer that pads the 2609 /// file out to be a multiple of 16 bytes. 2610 /// 2611 /// struct bc_header { 2612 /// uint32_t Magic; // 0x0B17C0DE 2613 /// uint32_t Version; // Version, currently always 0. 2614 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2615 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2616 /// uint32_t CPUType; // CPU specifier. 2617 /// ... potentially more later ... 2618 /// }; 2619 enum { 2620 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2621 DarwinBCHeaderSize = 5*4 2622 }; 2623 2624 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2625 uint32_t &Position) { 2626 support::endian::write32le(&Buffer[Position], Value); 2627 Position += 4; 2628 } 2629 2630 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2631 const Triple &TT) { 2632 unsigned CPUType = ~0U; 2633 2634 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2635 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2636 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2637 // specific constants here because they are implicitly part of the Darwin ABI. 2638 enum { 2639 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2640 DARWIN_CPU_TYPE_X86 = 7, 2641 DARWIN_CPU_TYPE_ARM = 12, 2642 DARWIN_CPU_TYPE_POWERPC = 18 2643 }; 2644 2645 Triple::ArchType Arch = TT.getArch(); 2646 if (Arch == Triple::x86_64) 2647 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2648 else if (Arch == Triple::x86) 2649 CPUType = DARWIN_CPU_TYPE_X86; 2650 else if (Arch == Triple::ppc) 2651 CPUType = DARWIN_CPU_TYPE_POWERPC; 2652 else if (Arch == Triple::ppc64) 2653 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2654 else if (Arch == Triple::arm || Arch == Triple::thumb) 2655 CPUType = DARWIN_CPU_TYPE_ARM; 2656 2657 // Traditional Bitcode starts after header. 2658 assert(Buffer.size() >= DarwinBCHeaderSize && 2659 "Expected header size to be reserved"); 2660 unsigned BCOffset = DarwinBCHeaderSize; 2661 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2662 2663 // Write the magic and version. 2664 unsigned Position = 0; 2665 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2666 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2667 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2668 WriteInt32ToBuffer(BCSize , Buffer, Position); 2669 WriteInt32ToBuffer(CPUType , Buffer, Position); 2670 2671 // If the file is not a multiple of 16 bytes, insert dummy padding. 2672 while (Buffer.size() & 15) 2673 Buffer.push_back(0); 2674 } 2675 2676 /// WriteBitcodeToFile - Write the specified module to the specified output 2677 /// stream. 2678 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 2679 bool ShouldPreserveUseListOrder) { 2680 SmallVector<char, 0> Buffer; 2681 Buffer.reserve(256*1024); 2682 2683 // If this is darwin or another generic macho target, reserve space for the 2684 // header. 2685 Triple TT(M->getTargetTriple()); 2686 if (TT.isOSDarwin()) 2687 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2688 2689 // Emit the module into the buffer. 2690 { 2691 BitstreamWriter Stream(Buffer); 2692 // Save the start bit of the actual bitcode, in case there is space 2693 // saved at the start for the darwin header above. The reader stream 2694 // will start at the bitcode, and we need the offset of the VST 2695 // to line up. 2696 uint64_t BitcodeStartBit = Stream.GetCurrentBitNo(); 2697 2698 // Emit the file header. 2699 Stream.Emit((unsigned)'B', 8); 2700 Stream.Emit((unsigned)'C', 8); 2701 Stream.Emit(0x0, 4); 2702 Stream.Emit(0xC, 4); 2703 Stream.Emit(0xE, 4); 2704 Stream.Emit(0xD, 4); 2705 2706 // Emit the module. 2707 WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit); 2708 } 2709 2710 if (TT.isOSDarwin()) 2711 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2712 2713 // Write the generated bitstream to "Out". 2714 Out.write((char*)&Buffer.front(), Buffer.size()); 2715 } 2716