1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitstream/BitCodes.h" 28 #include "llvm/Bitstream/BitstreamWriter.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_UNOP_ABBREV, 115 FUNCTION_INST_UNOP_FLAGS_ABBREV, 116 FUNCTION_INST_BINOP_ABBREV, 117 FUNCTION_INST_BINOP_FLAGS_ABBREV, 118 FUNCTION_INST_CAST_ABBREV, 119 FUNCTION_INST_RET_VOID_ABBREV, 120 FUNCTION_INST_RET_VAL_ABBREV, 121 FUNCTION_INST_UNREACHABLE_ABBREV, 122 FUNCTION_INST_GEP_ABBREV, 123 }; 124 125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 126 /// file type. 127 class BitcodeWriterBase { 128 protected: 129 /// The stream created and owned by the client. 130 BitstreamWriter &Stream; 131 132 StringTableBuilder &StrtabBuilder; 133 134 public: 135 /// Constructs a BitcodeWriterBase object that writes to the provided 136 /// \p Stream. 137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 139 140 protected: 141 void writeBitcodeHeader(); 142 void writeModuleVersion(); 143 }; 144 145 void BitcodeWriterBase::writeModuleVersion() { 146 // VERSION: [version#] 147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 148 } 149 150 /// Base class to manage the module bitcode writing, currently subclassed for 151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 152 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 153 protected: 154 /// The Module to write to bitcode. 155 const Module &M; 156 157 /// Enumerates ids for all values in the module. 158 ValueEnumerator VE; 159 160 /// Optional per-module index to write for ThinLTO. 161 const ModuleSummaryIndex *Index; 162 163 /// Map that holds the correspondence between GUIDs in the summary index, 164 /// that came from indirect call profiles, and a value id generated by this 165 /// class to use in the VST and summary block records. 166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 167 168 /// Tracks the last value id recorded in the GUIDToValueMap. 169 unsigned GlobalValueId; 170 171 /// Saves the offset of the VSTOffset record that must eventually be 172 /// backpatched with the offset of the actual VST. 173 uint64_t VSTOffsetPlaceholder = 0; 174 175 public: 176 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 177 /// writing to the provided \p Buffer. 178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 179 BitstreamWriter &Stream, 180 bool ShouldPreserveUseListOrder, 181 const ModuleSummaryIndex *Index) 182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 183 VE(M, ShouldPreserveUseListOrder), Index(Index) { 184 // Assign ValueIds to any callee values in the index that came from 185 // indirect call profiles and were recorded as a GUID not a Value* 186 // (which would have been assigned an ID by the ValueEnumerator). 187 // The starting ValueId is just after the number of values in the 188 // ValueEnumerator, so that they can be emitted in the VST. 189 GlobalValueId = VE.getValues().size(); 190 if (!Index) 191 return; 192 for (const auto &GUIDSummaryLists : *Index) 193 // Examine all summaries for this GUID. 194 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 196 // For each call in the function summary, see if the call 197 // is to a GUID (which means it is for an indirect call, 198 // otherwise we would have a Value for it). If so, synthesize 199 // a value id. 200 for (auto &CallEdge : FS->calls()) 201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 202 assignValueId(CallEdge.first.getGUID()); 203 } 204 205 protected: 206 void writePerModuleGlobalValueSummary(); 207 208 private: 209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 210 GlobalValueSummary *Summary, 211 unsigned ValueID, 212 unsigned FSCallsAbbrev, 213 unsigned FSCallsProfileAbbrev, 214 const Function &F); 215 void writeModuleLevelReferences(const GlobalVariable &V, 216 SmallVector<uint64_t, 64> &NameVals, 217 unsigned FSModRefsAbbrev, 218 unsigned FSModVTableRefsAbbrev); 219 220 void assignValueId(GlobalValue::GUID ValGUID) { 221 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 222 } 223 224 unsigned getValueId(GlobalValue::GUID ValGUID) { 225 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 226 // Expect that any GUID value had a value Id assigned by an 227 // earlier call to assignValueId. 228 assert(VMI != GUIDToValueIdMap.end() && 229 "GUID does not have assigned value Id"); 230 return VMI->second; 231 } 232 233 // Helper to get the valueId for the type of value recorded in VI. 234 unsigned getValueId(ValueInfo VI) { 235 if (!VI.haveGVs() || !VI.getValue()) 236 return getValueId(VI.getGUID()); 237 return VE.getValueID(VI.getValue()); 238 } 239 240 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 241 }; 242 243 /// Class to manage the bitcode writing for a module. 244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 245 /// Pointer to the buffer allocated by caller for bitcode writing. 246 const SmallVectorImpl<char> &Buffer; 247 248 /// True if a module hash record should be written. 249 bool GenerateHash; 250 251 /// If non-null, when GenerateHash is true, the resulting hash is written 252 /// into ModHash. 253 ModuleHash *ModHash; 254 255 SHA1 Hasher; 256 257 /// The start bit of the identification block. 258 uint64_t BitcodeStartBit; 259 260 public: 261 /// Constructs a ModuleBitcodeWriter object for the given Module, 262 /// writing to the provided \p Buffer. 263 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 264 StringTableBuilder &StrtabBuilder, 265 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 266 const ModuleSummaryIndex *Index, bool GenerateHash, 267 ModuleHash *ModHash = nullptr) 268 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 269 ShouldPreserveUseListOrder, Index), 270 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 271 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 272 273 /// Emit the current module to the bitstream. 274 void write(); 275 276 private: 277 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 278 279 size_t addToStrtab(StringRef Str); 280 281 void writeAttributeGroupTable(); 282 void writeAttributeTable(); 283 void writeTypeTable(); 284 void writeComdats(); 285 void writeValueSymbolTableForwardDecl(); 286 void writeModuleInfo(); 287 void writeValueAsMetadata(const ValueAsMetadata *MD, 288 SmallVectorImpl<uint64_t> &Record); 289 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 290 unsigned Abbrev); 291 unsigned createDILocationAbbrev(); 292 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned &Abbrev); 294 unsigned createGenericDINodeAbbrev(); 295 void writeGenericDINode(const GenericDINode *N, 296 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 297 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned Abbrev); 299 void writeDIEnumerator(const DIEnumerator *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 301 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIDerivedType(const DIDerivedType *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDICompositeType(const DICompositeType *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDISubroutineType(const DISubroutineType *N, 308 SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDICompileUnit(const DICompileUnit *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDISubprogram(const DISubprogram *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDILexicalBlock(const DILexicalBlock *N, 317 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 318 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 319 SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICommonBlock(const DICommonBlock *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 326 unsigned Abbrev); 327 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 335 SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIGlobalVariable(const DIGlobalVariable *N, 338 SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDILocalVariable(const DILocalVariable *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDILabel(const DILabel *N, 343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 344 void writeDIExpression(const DIExpression *N, 345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 346 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIObjCProperty(const DIObjCProperty *N, 350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 351 void writeDIImportedEntity(const DIImportedEntity *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 unsigned createNamedMetadataAbbrev(); 355 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 356 unsigned createMetadataStringsAbbrev(); 357 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 358 SmallVectorImpl<uint64_t> &Record); 359 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 360 SmallVectorImpl<uint64_t> &Record, 361 std::vector<unsigned> *MDAbbrevs = nullptr, 362 std::vector<uint64_t> *IndexPos = nullptr); 363 void writeModuleMetadata(); 364 void writeFunctionMetadata(const Function &F); 365 void writeFunctionMetadataAttachment(const Function &F); 366 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 367 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 368 const GlobalObject &GO); 369 void writeModuleMetadataKinds(); 370 void writeOperandBundleTags(); 371 void writeSyncScopeNames(); 372 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 373 void writeModuleConstants(); 374 bool pushValueAndType(const Value *V, unsigned InstID, 375 SmallVectorImpl<unsigned> &Vals); 376 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 377 void pushValue(const Value *V, unsigned InstID, 378 SmallVectorImpl<unsigned> &Vals); 379 void pushValueSigned(const Value *V, unsigned InstID, 380 SmallVectorImpl<uint64_t> &Vals); 381 void writeInstruction(const Instruction &I, unsigned InstID, 382 SmallVectorImpl<unsigned> &Vals); 383 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 384 void writeGlobalValueSymbolTable( 385 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 386 void writeUseList(UseListOrder &&Order); 387 void writeUseListBlock(const Function *F); 388 void 389 writeFunction(const Function &F, 390 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 391 void writeBlockInfo(); 392 void writeModuleHash(size_t BlockStartPos); 393 394 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 395 return unsigned(SSID); 396 } 397 }; 398 399 /// Class to manage the bitcode writing for a combined index. 400 class IndexBitcodeWriter : public BitcodeWriterBase { 401 /// The combined index to write to bitcode. 402 const ModuleSummaryIndex &Index; 403 404 /// When writing a subset of the index for distributed backends, client 405 /// provides a map of modules to the corresponding GUIDs/summaries to write. 406 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 407 408 /// Map that holds the correspondence between the GUID used in the combined 409 /// index and a value id generated by this class to use in references. 410 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 411 412 /// Tracks the last value id recorded in the GUIDToValueMap. 413 unsigned GlobalValueId = 0; 414 415 public: 416 /// Constructs a IndexBitcodeWriter object for the given combined index, 417 /// writing to the provided \p Buffer. When writing a subset of the index 418 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 419 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 420 const ModuleSummaryIndex &Index, 421 const std::map<std::string, GVSummaryMapTy> 422 *ModuleToSummariesForIndex = nullptr) 423 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 424 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 425 // Assign unique value ids to all summaries to be written, for use 426 // in writing out the call graph edges. Save the mapping from GUID 427 // to the new global value id to use when writing those edges, which 428 // are currently saved in the index in terms of GUID. 429 forEachSummary([&](GVInfo I, bool) { 430 GUIDToValueIdMap[I.first] = ++GlobalValueId; 431 }); 432 } 433 434 /// The below iterator returns the GUID and associated summary. 435 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 436 437 /// Calls the callback for each value GUID and summary to be written to 438 /// bitcode. This hides the details of whether they are being pulled from the 439 /// entire index or just those in a provided ModuleToSummariesForIndex map. 440 template<typename Functor> 441 void forEachSummary(Functor Callback) { 442 if (ModuleToSummariesForIndex) { 443 for (auto &M : *ModuleToSummariesForIndex) 444 for (auto &Summary : M.second) { 445 Callback(Summary, false); 446 // Ensure aliasee is handled, e.g. for assigning a valueId, 447 // even if we are not importing the aliasee directly (the 448 // imported alias will contain a copy of aliasee). 449 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 450 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 451 } 452 } else { 453 for (auto &Summaries : Index) 454 for (auto &Summary : Summaries.second.SummaryList) 455 Callback({Summaries.first, Summary.get()}, false); 456 } 457 } 458 459 /// Calls the callback for each entry in the modulePaths StringMap that 460 /// should be written to the module path string table. This hides the details 461 /// of whether they are being pulled from the entire index or just those in a 462 /// provided ModuleToSummariesForIndex map. 463 template <typename Functor> void forEachModule(Functor Callback) { 464 if (ModuleToSummariesForIndex) { 465 for (const auto &M : *ModuleToSummariesForIndex) { 466 const auto &MPI = Index.modulePaths().find(M.first); 467 if (MPI == Index.modulePaths().end()) { 468 // This should only happen if the bitcode file was empty, in which 469 // case we shouldn't be importing (the ModuleToSummariesForIndex 470 // would only include the module we are writing and index for). 471 assert(ModuleToSummariesForIndex->size() == 1); 472 continue; 473 } 474 Callback(*MPI); 475 } 476 } else { 477 for (const auto &MPSE : Index.modulePaths()) 478 Callback(MPSE); 479 } 480 } 481 482 /// Main entry point for writing a combined index to bitcode. 483 void write(); 484 485 private: 486 void writeModStrings(); 487 void writeCombinedGlobalValueSummary(); 488 489 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 490 auto VMI = GUIDToValueIdMap.find(ValGUID); 491 if (VMI == GUIDToValueIdMap.end()) 492 return None; 493 return VMI->second; 494 } 495 496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 497 }; 498 499 } // end anonymous namespace 500 501 static unsigned getEncodedCastOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown cast instruction!"); 504 case Instruction::Trunc : return bitc::CAST_TRUNC; 505 case Instruction::ZExt : return bitc::CAST_ZEXT; 506 case Instruction::SExt : return bitc::CAST_SEXT; 507 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 508 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 509 case Instruction::UIToFP : return bitc::CAST_UITOFP; 510 case Instruction::SIToFP : return bitc::CAST_SITOFP; 511 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 512 case Instruction::FPExt : return bitc::CAST_FPEXT; 513 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 514 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 515 case Instruction::BitCast : return bitc::CAST_BITCAST; 516 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 517 } 518 } 519 520 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 521 switch (Opcode) { 522 default: llvm_unreachable("Unknown binary instruction!"); 523 case Instruction::FNeg: return bitc::UNOP_NEG; 524 } 525 } 526 527 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 528 switch (Opcode) { 529 default: llvm_unreachable("Unknown binary instruction!"); 530 case Instruction::Add: 531 case Instruction::FAdd: return bitc::BINOP_ADD; 532 case Instruction::Sub: 533 case Instruction::FSub: return bitc::BINOP_SUB; 534 case Instruction::Mul: 535 case Instruction::FMul: return bitc::BINOP_MUL; 536 case Instruction::UDiv: return bitc::BINOP_UDIV; 537 case Instruction::FDiv: 538 case Instruction::SDiv: return bitc::BINOP_SDIV; 539 case Instruction::URem: return bitc::BINOP_UREM; 540 case Instruction::FRem: 541 case Instruction::SRem: return bitc::BINOP_SREM; 542 case Instruction::Shl: return bitc::BINOP_SHL; 543 case Instruction::LShr: return bitc::BINOP_LSHR; 544 case Instruction::AShr: return bitc::BINOP_ASHR; 545 case Instruction::And: return bitc::BINOP_AND; 546 case Instruction::Or: return bitc::BINOP_OR; 547 case Instruction::Xor: return bitc::BINOP_XOR; 548 } 549 } 550 551 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 552 switch (Op) { 553 default: llvm_unreachable("Unknown RMW operation!"); 554 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 555 case AtomicRMWInst::Add: return bitc::RMW_ADD; 556 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 557 case AtomicRMWInst::And: return bitc::RMW_AND; 558 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 559 case AtomicRMWInst::Or: return bitc::RMW_OR; 560 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 561 case AtomicRMWInst::Max: return bitc::RMW_MAX; 562 case AtomicRMWInst::Min: return bitc::RMW_MIN; 563 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 564 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 565 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 566 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 567 } 568 } 569 570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 571 switch (Ordering) { 572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 579 } 580 llvm_unreachable("Invalid ordering"); 581 } 582 583 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 584 StringRef Str, unsigned AbbrevToUse) { 585 SmallVector<unsigned, 64> Vals; 586 587 // Code: [strchar x N] 588 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 589 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 590 AbbrevToUse = 0; 591 Vals.push_back(Str[i]); 592 } 593 594 // Emit the finished record. 595 Stream.EmitRecord(Code, Vals, AbbrevToUse); 596 } 597 598 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 599 switch (Kind) { 600 case Attribute::Alignment: 601 return bitc::ATTR_KIND_ALIGNMENT; 602 case Attribute::AllocSize: 603 return bitc::ATTR_KIND_ALLOC_SIZE; 604 case Attribute::AlwaysInline: 605 return bitc::ATTR_KIND_ALWAYS_INLINE; 606 case Attribute::ArgMemOnly: 607 return bitc::ATTR_KIND_ARGMEMONLY; 608 case Attribute::Builtin: 609 return bitc::ATTR_KIND_BUILTIN; 610 case Attribute::ByVal: 611 return bitc::ATTR_KIND_BY_VAL; 612 case Attribute::Convergent: 613 return bitc::ATTR_KIND_CONVERGENT; 614 case Attribute::InAlloca: 615 return bitc::ATTR_KIND_IN_ALLOCA; 616 case Attribute::Cold: 617 return bitc::ATTR_KIND_COLD; 618 case Attribute::InaccessibleMemOnly: 619 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 620 case Attribute::InaccessibleMemOrArgMemOnly: 621 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 622 case Attribute::InlineHint: 623 return bitc::ATTR_KIND_INLINE_HINT; 624 case Attribute::InReg: 625 return bitc::ATTR_KIND_IN_REG; 626 case Attribute::JumpTable: 627 return bitc::ATTR_KIND_JUMP_TABLE; 628 case Attribute::MinSize: 629 return bitc::ATTR_KIND_MIN_SIZE; 630 case Attribute::Naked: 631 return bitc::ATTR_KIND_NAKED; 632 case Attribute::Nest: 633 return bitc::ATTR_KIND_NEST; 634 case Attribute::NoAlias: 635 return bitc::ATTR_KIND_NO_ALIAS; 636 case Attribute::NoBuiltin: 637 return bitc::ATTR_KIND_NO_BUILTIN; 638 case Attribute::NoCapture: 639 return bitc::ATTR_KIND_NO_CAPTURE; 640 case Attribute::NoDuplicate: 641 return bitc::ATTR_KIND_NO_DUPLICATE; 642 case Attribute::NoFree: 643 return bitc::ATTR_KIND_NOFREE; 644 case Attribute::NoImplicitFloat: 645 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 646 case Attribute::NoInline: 647 return bitc::ATTR_KIND_NO_INLINE; 648 case Attribute::NoRecurse: 649 return bitc::ATTR_KIND_NO_RECURSE; 650 case Attribute::NonLazyBind: 651 return bitc::ATTR_KIND_NON_LAZY_BIND; 652 case Attribute::NonNull: 653 return bitc::ATTR_KIND_NON_NULL; 654 case Attribute::Dereferenceable: 655 return bitc::ATTR_KIND_DEREFERENCEABLE; 656 case Attribute::DereferenceableOrNull: 657 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 658 case Attribute::NoRedZone: 659 return bitc::ATTR_KIND_NO_RED_ZONE; 660 case Attribute::NoReturn: 661 return bitc::ATTR_KIND_NO_RETURN; 662 case Attribute::NoCfCheck: 663 return bitc::ATTR_KIND_NOCF_CHECK; 664 case Attribute::NoUnwind: 665 return bitc::ATTR_KIND_NO_UNWIND; 666 case Attribute::OptForFuzzing: 667 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 668 case Attribute::OptimizeForSize: 669 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 670 case Attribute::OptimizeNone: 671 return bitc::ATTR_KIND_OPTIMIZE_NONE; 672 case Attribute::ReadNone: 673 return bitc::ATTR_KIND_READ_NONE; 674 case Attribute::ReadOnly: 675 return bitc::ATTR_KIND_READ_ONLY; 676 case Attribute::Returned: 677 return bitc::ATTR_KIND_RETURNED; 678 case Attribute::ReturnsTwice: 679 return bitc::ATTR_KIND_RETURNS_TWICE; 680 case Attribute::SExt: 681 return bitc::ATTR_KIND_S_EXT; 682 case Attribute::Speculatable: 683 return bitc::ATTR_KIND_SPECULATABLE; 684 case Attribute::StackAlignment: 685 return bitc::ATTR_KIND_STACK_ALIGNMENT; 686 case Attribute::StackProtect: 687 return bitc::ATTR_KIND_STACK_PROTECT; 688 case Attribute::StackProtectReq: 689 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 690 case Attribute::StackProtectStrong: 691 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 692 case Attribute::SafeStack: 693 return bitc::ATTR_KIND_SAFESTACK; 694 case Attribute::ShadowCallStack: 695 return bitc::ATTR_KIND_SHADOWCALLSTACK; 696 case Attribute::StrictFP: 697 return bitc::ATTR_KIND_STRICT_FP; 698 case Attribute::StructRet: 699 return bitc::ATTR_KIND_STRUCT_RET; 700 case Attribute::SanitizeAddress: 701 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 702 case Attribute::SanitizeHWAddress: 703 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 704 case Attribute::SanitizeThread: 705 return bitc::ATTR_KIND_SANITIZE_THREAD; 706 case Attribute::SanitizeMemory: 707 return bitc::ATTR_KIND_SANITIZE_MEMORY; 708 case Attribute::SpeculativeLoadHardening: 709 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 710 case Attribute::SwiftError: 711 return bitc::ATTR_KIND_SWIFT_ERROR; 712 case Attribute::SwiftSelf: 713 return bitc::ATTR_KIND_SWIFT_SELF; 714 case Attribute::UWTable: 715 return bitc::ATTR_KIND_UW_TABLE; 716 case Attribute::WillReturn: 717 return bitc::ATTR_KIND_WILLRETURN; 718 case Attribute::WriteOnly: 719 return bitc::ATTR_KIND_WRITEONLY; 720 case Attribute::ZExt: 721 return bitc::ATTR_KIND_Z_EXT; 722 case Attribute::ImmArg: 723 return bitc::ATTR_KIND_IMMARG; 724 case Attribute::EndAttrKinds: 725 llvm_unreachable("Can not encode end-attribute kinds marker."); 726 case Attribute::None: 727 llvm_unreachable("Can not encode none-attribute."); 728 } 729 730 llvm_unreachable("Trying to encode unknown attribute"); 731 } 732 733 void ModuleBitcodeWriter::writeAttributeGroupTable() { 734 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 735 VE.getAttributeGroups(); 736 if (AttrGrps.empty()) return; 737 738 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 739 740 SmallVector<uint64_t, 64> Record; 741 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 742 unsigned AttrListIndex = Pair.first; 743 AttributeSet AS = Pair.second; 744 Record.push_back(VE.getAttributeGroupID(Pair)); 745 Record.push_back(AttrListIndex); 746 747 for (Attribute Attr : AS) { 748 if (Attr.isEnumAttribute()) { 749 Record.push_back(0); 750 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 751 } else if (Attr.isIntAttribute()) { 752 Record.push_back(1); 753 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 754 Record.push_back(Attr.getValueAsInt()); 755 } else if (Attr.isStringAttribute()) { 756 StringRef Kind = Attr.getKindAsString(); 757 StringRef Val = Attr.getValueAsString(); 758 759 Record.push_back(Val.empty() ? 3 : 4); 760 Record.append(Kind.begin(), Kind.end()); 761 Record.push_back(0); 762 if (!Val.empty()) { 763 Record.append(Val.begin(), Val.end()); 764 Record.push_back(0); 765 } 766 } else { 767 assert(Attr.isTypeAttribute()); 768 Type *Ty = Attr.getValueAsType(); 769 Record.push_back(Ty ? 6 : 5); 770 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 771 if (Ty) 772 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 773 } 774 } 775 776 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 777 Record.clear(); 778 } 779 780 Stream.ExitBlock(); 781 } 782 783 void ModuleBitcodeWriter::writeAttributeTable() { 784 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 785 if (Attrs.empty()) return; 786 787 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 788 789 SmallVector<uint64_t, 64> Record; 790 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 791 AttributeList AL = Attrs[i]; 792 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 793 AttributeSet AS = AL.getAttributes(i); 794 if (AS.hasAttributes()) 795 Record.push_back(VE.getAttributeGroupID({i, AS})); 796 } 797 798 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 799 Record.clear(); 800 } 801 802 Stream.ExitBlock(); 803 } 804 805 /// WriteTypeTable - Write out the type table for a module. 806 void ModuleBitcodeWriter::writeTypeTable() { 807 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 808 809 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 810 SmallVector<uint64_t, 64> TypeVals; 811 812 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 813 814 // Abbrev for TYPE_CODE_POINTER. 815 auto Abbv = std::make_shared<BitCodeAbbrev>(); 816 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 818 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 819 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 820 821 // Abbrev for TYPE_CODE_FUNCTION. 822 Abbv = std::make_shared<BitCodeAbbrev>(); 823 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 827 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 828 829 // Abbrev for TYPE_CODE_STRUCT_ANON. 830 Abbv = std::make_shared<BitCodeAbbrev>(); 831 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 835 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 836 837 // Abbrev for TYPE_CODE_STRUCT_NAME. 838 Abbv = std::make_shared<BitCodeAbbrev>(); 839 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 842 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 843 844 // Abbrev for TYPE_CODE_STRUCT_NAMED. 845 Abbv = std::make_shared<BitCodeAbbrev>(); 846 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 850 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 851 852 // Abbrev for TYPE_CODE_ARRAY. 853 Abbv = std::make_shared<BitCodeAbbrev>(); 854 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 857 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 858 859 // Emit an entry count so the reader can reserve space. 860 TypeVals.push_back(TypeList.size()); 861 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 862 TypeVals.clear(); 863 864 // Loop over all of the types, emitting each in turn. 865 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 866 Type *T = TypeList[i]; 867 int AbbrevToUse = 0; 868 unsigned Code = 0; 869 870 switch (T->getTypeID()) { 871 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 872 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 873 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 874 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 875 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 876 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 877 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 878 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 879 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 880 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 881 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 882 case Type::IntegerTyID: 883 // INTEGER: [width] 884 Code = bitc::TYPE_CODE_INTEGER; 885 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 886 break; 887 case Type::PointerTyID: { 888 PointerType *PTy = cast<PointerType>(T); 889 // POINTER: [pointee type, address space] 890 Code = bitc::TYPE_CODE_POINTER; 891 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 892 unsigned AddressSpace = PTy->getAddressSpace(); 893 TypeVals.push_back(AddressSpace); 894 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 895 break; 896 } 897 case Type::FunctionTyID: { 898 FunctionType *FT = cast<FunctionType>(T); 899 // FUNCTION: [isvararg, retty, paramty x N] 900 Code = bitc::TYPE_CODE_FUNCTION; 901 TypeVals.push_back(FT->isVarArg()); 902 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 903 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 904 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 905 AbbrevToUse = FunctionAbbrev; 906 break; 907 } 908 case Type::StructTyID: { 909 StructType *ST = cast<StructType>(T); 910 // STRUCT: [ispacked, eltty x N] 911 TypeVals.push_back(ST->isPacked()); 912 // Output all of the element types. 913 for (StructType::element_iterator I = ST->element_begin(), 914 E = ST->element_end(); I != E; ++I) 915 TypeVals.push_back(VE.getTypeID(*I)); 916 917 if (ST->isLiteral()) { 918 Code = bitc::TYPE_CODE_STRUCT_ANON; 919 AbbrevToUse = StructAnonAbbrev; 920 } else { 921 if (ST->isOpaque()) { 922 Code = bitc::TYPE_CODE_OPAQUE; 923 } else { 924 Code = bitc::TYPE_CODE_STRUCT_NAMED; 925 AbbrevToUse = StructNamedAbbrev; 926 } 927 928 // Emit the name if it is present. 929 if (!ST->getName().empty()) 930 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 931 StructNameAbbrev); 932 } 933 break; 934 } 935 case Type::ArrayTyID: { 936 ArrayType *AT = cast<ArrayType>(T); 937 // ARRAY: [numelts, eltty] 938 Code = bitc::TYPE_CODE_ARRAY; 939 TypeVals.push_back(AT->getNumElements()); 940 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 941 AbbrevToUse = ArrayAbbrev; 942 break; 943 } 944 case Type::VectorTyID: { 945 VectorType *VT = cast<VectorType>(T); 946 // VECTOR [numelts, eltty] or 947 // [numelts, eltty, scalable] 948 Code = bitc::TYPE_CODE_VECTOR; 949 TypeVals.push_back(VT->getNumElements()); 950 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 951 if (VT->isScalable()) 952 TypeVals.push_back(VT->isScalable()); 953 break; 954 } 955 } 956 957 // Emit the finished record. 958 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 959 TypeVals.clear(); 960 } 961 962 Stream.ExitBlock(); 963 } 964 965 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 966 switch (Linkage) { 967 case GlobalValue::ExternalLinkage: 968 return 0; 969 case GlobalValue::WeakAnyLinkage: 970 return 16; 971 case GlobalValue::AppendingLinkage: 972 return 2; 973 case GlobalValue::InternalLinkage: 974 return 3; 975 case GlobalValue::LinkOnceAnyLinkage: 976 return 18; 977 case GlobalValue::ExternalWeakLinkage: 978 return 7; 979 case GlobalValue::CommonLinkage: 980 return 8; 981 case GlobalValue::PrivateLinkage: 982 return 9; 983 case GlobalValue::WeakODRLinkage: 984 return 17; 985 case GlobalValue::LinkOnceODRLinkage: 986 return 19; 987 case GlobalValue::AvailableExternallyLinkage: 988 return 12; 989 } 990 llvm_unreachable("Invalid linkage"); 991 } 992 993 static unsigned getEncodedLinkage(const GlobalValue &GV) { 994 return getEncodedLinkage(GV.getLinkage()); 995 } 996 997 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 998 uint64_t RawFlags = 0; 999 RawFlags |= Flags.ReadNone; 1000 RawFlags |= (Flags.ReadOnly << 1); 1001 RawFlags |= (Flags.NoRecurse << 2); 1002 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1003 RawFlags |= (Flags.NoInline << 4); 1004 return RawFlags; 1005 } 1006 1007 // Decode the flags for GlobalValue in the summary 1008 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1009 uint64_t RawFlags = 0; 1010 1011 RawFlags |= Flags.NotEligibleToImport; // bool 1012 RawFlags |= (Flags.Live << 1); 1013 RawFlags |= (Flags.DSOLocal << 2); 1014 RawFlags |= (Flags.CanAutoHide << 3); 1015 1016 // Linkage don't need to be remapped at that time for the summary. Any future 1017 // change to the getEncodedLinkage() function will need to be taken into 1018 // account here as well. 1019 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1020 1021 return RawFlags; 1022 } 1023 1024 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1025 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1); 1026 return RawFlags; 1027 } 1028 1029 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1030 switch (GV.getVisibility()) { 1031 case GlobalValue::DefaultVisibility: return 0; 1032 case GlobalValue::HiddenVisibility: return 1; 1033 case GlobalValue::ProtectedVisibility: return 2; 1034 } 1035 llvm_unreachable("Invalid visibility"); 1036 } 1037 1038 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1039 switch (GV.getDLLStorageClass()) { 1040 case GlobalValue::DefaultStorageClass: return 0; 1041 case GlobalValue::DLLImportStorageClass: return 1; 1042 case GlobalValue::DLLExportStorageClass: return 2; 1043 } 1044 llvm_unreachable("Invalid DLL storage class"); 1045 } 1046 1047 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1048 switch (GV.getThreadLocalMode()) { 1049 case GlobalVariable::NotThreadLocal: return 0; 1050 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1051 case GlobalVariable::LocalDynamicTLSModel: return 2; 1052 case GlobalVariable::InitialExecTLSModel: return 3; 1053 case GlobalVariable::LocalExecTLSModel: return 4; 1054 } 1055 llvm_unreachable("Invalid TLS model"); 1056 } 1057 1058 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1059 switch (C.getSelectionKind()) { 1060 case Comdat::Any: 1061 return bitc::COMDAT_SELECTION_KIND_ANY; 1062 case Comdat::ExactMatch: 1063 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1064 case Comdat::Largest: 1065 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1066 case Comdat::NoDuplicates: 1067 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1068 case Comdat::SameSize: 1069 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1070 } 1071 llvm_unreachable("Invalid selection kind"); 1072 } 1073 1074 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1075 switch (GV.getUnnamedAddr()) { 1076 case GlobalValue::UnnamedAddr::None: return 0; 1077 case GlobalValue::UnnamedAddr::Local: return 2; 1078 case GlobalValue::UnnamedAddr::Global: return 1; 1079 } 1080 llvm_unreachable("Invalid unnamed_addr"); 1081 } 1082 1083 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1084 if (GenerateHash) 1085 Hasher.update(Str); 1086 return StrtabBuilder.add(Str); 1087 } 1088 1089 void ModuleBitcodeWriter::writeComdats() { 1090 SmallVector<unsigned, 64> Vals; 1091 for (const Comdat *C : VE.getComdats()) { 1092 // COMDAT: [strtab offset, strtab size, selection_kind] 1093 Vals.push_back(addToStrtab(C->getName())); 1094 Vals.push_back(C->getName().size()); 1095 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1096 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1097 Vals.clear(); 1098 } 1099 } 1100 1101 /// Write a record that will eventually hold the word offset of the 1102 /// module-level VST. For now the offset is 0, which will be backpatched 1103 /// after the real VST is written. Saves the bit offset to backpatch. 1104 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1105 // Write a placeholder value in for the offset of the real VST, 1106 // which is written after the function blocks so that it can include 1107 // the offset of each function. The placeholder offset will be 1108 // updated when the real VST is written. 1109 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1110 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1111 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1112 // hold the real VST offset. Must use fixed instead of VBR as we don't 1113 // know how many VBR chunks to reserve ahead of time. 1114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1115 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1116 1117 // Emit the placeholder 1118 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1119 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1120 1121 // Compute and save the bit offset to the placeholder, which will be 1122 // patched when the real VST is written. We can simply subtract the 32-bit 1123 // fixed size from the current bit number to get the location to backpatch. 1124 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1125 } 1126 1127 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1128 1129 /// Determine the encoding to use for the given string name and length. 1130 static StringEncoding getStringEncoding(StringRef Str) { 1131 bool isChar6 = true; 1132 for (char C : Str) { 1133 if (isChar6) 1134 isChar6 = BitCodeAbbrevOp::isChar6(C); 1135 if ((unsigned char)C & 128) 1136 // don't bother scanning the rest. 1137 return SE_Fixed8; 1138 } 1139 if (isChar6) 1140 return SE_Char6; 1141 return SE_Fixed7; 1142 } 1143 1144 /// Emit top-level description of module, including target triple, inline asm, 1145 /// descriptors for global variables, and function prototype info. 1146 /// Returns the bit offset to backpatch with the location of the real VST. 1147 void ModuleBitcodeWriter::writeModuleInfo() { 1148 // Emit various pieces of data attached to a module. 1149 if (!M.getTargetTriple().empty()) 1150 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1151 0 /*TODO*/); 1152 const std::string &DL = M.getDataLayoutStr(); 1153 if (!DL.empty()) 1154 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1155 if (!M.getModuleInlineAsm().empty()) 1156 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1157 0 /*TODO*/); 1158 1159 // Emit information about sections and GC, computing how many there are. Also 1160 // compute the maximum alignment value. 1161 std::map<std::string, unsigned> SectionMap; 1162 std::map<std::string, unsigned> GCMap; 1163 unsigned MaxAlignment = 0; 1164 unsigned MaxGlobalType = 0; 1165 for (const GlobalValue &GV : M.globals()) { 1166 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1167 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1168 if (GV.hasSection()) { 1169 // Give section names unique ID's. 1170 unsigned &Entry = SectionMap[GV.getSection()]; 1171 if (!Entry) { 1172 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1173 0 /*TODO*/); 1174 Entry = SectionMap.size(); 1175 } 1176 } 1177 } 1178 for (const Function &F : M) { 1179 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1180 if (F.hasSection()) { 1181 // Give section names unique ID's. 1182 unsigned &Entry = SectionMap[F.getSection()]; 1183 if (!Entry) { 1184 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1185 0 /*TODO*/); 1186 Entry = SectionMap.size(); 1187 } 1188 } 1189 if (F.hasGC()) { 1190 // Same for GC names. 1191 unsigned &Entry = GCMap[F.getGC()]; 1192 if (!Entry) { 1193 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1194 0 /*TODO*/); 1195 Entry = GCMap.size(); 1196 } 1197 } 1198 } 1199 1200 // Emit abbrev for globals, now that we know # sections and max alignment. 1201 unsigned SimpleGVarAbbrev = 0; 1202 if (!M.global_empty()) { 1203 // Add an abbrev for common globals with no visibility or thread localness. 1204 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1205 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1209 Log2_32_Ceil(MaxGlobalType+1))); 1210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1211 //| explicitType << 1 1212 //| constant 1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1215 if (MaxAlignment == 0) // Alignment. 1216 Abbv->Add(BitCodeAbbrevOp(0)); 1217 else { 1218 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1220 Log2_32_Ceil(MaxEncAlignment+1))); 1221 } 1222 if (SectionMap.empty()) // Section. 1223 Abbv->Add(BitCodeAbbrevOp(0)); 1224 else 1225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1226 Log2_32_Ceil(SectionMap.size()+1))); 1227 // Don't bother emitting vis + thread local. 1228 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1229 } 1230 1231 SmallVector<unsigned, 64> Vals; 1232 // Emit the module's source file name. 1233 { 1234 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1235 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1236 if (Bits == SE_Char6) 1237 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1238 else if (Bits == SE_Fixed7) 1239 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1240 1241 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1242 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1243 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1245 Abbv->Add(AbbrevOpToUse); 1246 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1247 1248 for (const auto P : M.getSourceFileName()) 1249 Vals.push_back((unsigned char)P); 1250 1251 // Emit the finished record. 1252 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1253 Vals.clear(); 1254 } 1255 1256 // Emit the global variable information. 1257 for (const GlobalVariable &GV : M.globals()) { 1258 unsigned AbbrevToUse = 0; 1259 1260 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1261 // linkage, alignment, section, visibility, threadlocal, 1262 // unnamed_addr, externally_initialized, dllstorageclass, 1263 // comdat, attributes, DSO_Local] 1264 Vals.push_back(addToStrtab(GV.getName())); 1265 Vals.push_back(GV.getName().size()); 1266 Vals.push_back(VE.getTypeID(GV.getValueType())); 1267 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1268 Vals.push_back(GV.isDeclaration() ? 0 : 1269 (VE.getValueID(GV.getInitializer()) + 1)); 1270 Vals.push_back(getEncodedLinkage(GV)); 1271 Vals.push_back(Log2_32(GV.getAlignment())+1); 1272 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1273 if (GV.isThreadLocal() || 1274 GV.getVisibility() != GlobalValue::DefaultVisibility || 1275 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1276 GV.isExternallyInitialized() || 1277 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1278 GV.hasComdat() || 1279 GV.hasAttributes() || 1280 GV.isDSOLocal() || 1281 GV.hasPartition()) { 1282 Vals.push_back(getEncodedVisibility(GV)); 1283 Vals.push_back(getEncodedThreadLocalMode(GV)); 1284 Vals.push_back(getEncodedUnnamedAddr(GV)); 1285 Vals.push_back(GV.isExternallyInitialized()); 1286 Vals.push_back(getEncodedDLLStorageClass(GV)); 1287 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1288 1289 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1290 Vals.push_back(VE.getAttributeListID(AL)); 1291 1292 Vals.push_back(GV.isDSOLocal()); 1293 Vals.push_back(addToStrtab(GV.getPartition())); 1294 Vals.push_back(GV.getPartition().size()); 1295 } else { 1296 AbbrevToUse = SimpleGVarAbbrev; 1297 } 1298 1299 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1300 Vals.clear(); 1301 } 1302 1303 // Emit the function proto information. 1304 for (const Function &F : M) { 1305 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1306 // linkage, paramattrs, alignment, section, visibility, gc, 1307 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1308 // prefixdata, personalityfn, DSO_Local, addrspace] 1309 Vals.push_back(addToStrtab(F.getName())); 1310 Vals.push_back(F.getName().size()); 1311 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1312 Vals.push_back(F.getCallingConv()); 1313 Vals.push_back(F.isDeclaration()); 1314 Vals.push_back(getEncodedLinkage(F)); 1315 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1316 Vals.push_back(Log2_32(F.getAlignment())+1); 1317 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1318 Vals.push_back(getEncodedVisibility(F)); 1319 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1320 Vals.push_back(getEncodedUnnamedAddr(F)); 1321 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1322 : 0); 1323 Vals.push_back(getEncodedDLLStorageClass(F)); 1324 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1325 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1326 : 0); 1327 Vals.push_back( 1328 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1329 1330 Vals.push_back(F.isDSOLocal()); 1331 Vals.push_back(F.getAddressSpace()); 1332 Vals.push_back(addToStrtab(F.getPartition())); 1333 Vals.push_back(F.getPartition().size()); 1334 1335 unsigned AbbrevToUse = 0; 1336 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1337 Vals.clear(); 1338 } 1339 1340 // Emit the alias information. 1341 for (const GlobalAlias &A : M.aliases()) { 1342 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1343 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1344 // DSO_Local] 1345 Vals.push_back(addToStrtab(A.getName())); 1346 Vals.push_back(A.getName().size()); 1347 Vals.push_back(VE.getTypeID(A.getValueType())); 1348 Vals.push_back(A.getType()->getAddressSpace()); 1349 Vals.push_back(VE.getValueID(A.getAliasee())); 1350 Vals.push_back(getEncodedLinkage(A)); 1351 Vals.push_back(getEncodedVisibility(A)); 1352 Vals.push_back(getEncodedDLLStorageClass(A)); 1353 Vals.push_back(getEncodedThreadLocalMode(A)); 1354 Vals.push_back(getEncodedUnnamedAddr(A)); 1355 Vals.push_back(A.isDSOLocal()); 1356 Vals.push_back(addToStrtab(A.getPartition())); 1357 Vals.push_back(A.getPartition().size()); 1358 1359 unsigned AbbrevToUse = 0; 1360 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1361 Vals.clear(); 1362 } 1363 1364 // Emit the ifunc information. 1365 for (const GlobalIFunc &I : M.ifuncs()) { 1366 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1367 // val#, linkage, visibility, DSO_Local] 1368 Vals.push_back(addToStrtab(I.getName())); 1369 Vals.push_back(I.getName().size()); 1370 Vals.push_back(VE.getTypeID(I.getValueType())); 1371 Vals.push_back(I.getType()->getAddressSpace()); 1372 Vals.push_back(VE.getValueID(I.getResolver())); 1373 Vals.push_back(getEncodedLinkage(I)); 1374 Vals.push_back(getEncodedVisibility(I)); 1375 Vals.push_back(I.isDSOLocal()); 1376 Vals.push_back(addToStrtab(I.getPartition())); 1377 Vals.push_back(I.getPartition().size()); 1378 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1379 Vals.clear(); 1380 } 1381 1382 writeValueSymbolTableForwardDecl(); 1383 } 1384 1385 static uint64_t getOptimizationFlags(const Value *V) { 1386 uint64_t Flags = 0; 1387 1388 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1389 if (OBO->hasNoSignedWrap()) 1390 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1391 if (OBO->hasNoUnsignedWrap()) 1392 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1393 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1394 if (PEO->isExact()) 1395 Flags |= 1 << bitc::PEO_EXACT; 1396 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1397 if (FPMO->hasAllowReassoc()) 1398 Flags |= bitc::AllowReassoc; 1399 if (FPMO->hasNoNaNs()) 1400 Flags |= bitc::NoNaNs; 1401 if (FPMO->hasNoInfs()) 1402 Flags |= bitc::NoInfs; 1403 if (FPMO->hasNoSignedZeros()) 1404 Flags |= bitc::NoSignedZeros; 1405 if (FPMO->hasAllowReciprocal()) 1406 Flags |= bitc::AllowReciprocal; 1407 if (FPMO->hasAllowContract()) 1408 Flags |= bitc::AllowContract; 1409 if (FPMO->hasApproxFunc()) 1410 Flags |= bitc::ApproxFunc; 1411 } 1412 1413 return Flags; 1414 } 1415 1416 void ModuleBitcodeWriter::writeValueAsMetadata( 1417 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1418 // Mimic an MDNode with a value as one operand. 1419 Value *V = MD->getValue(); 1420 Record.push_back(VE.getTypeID(V->getType())); 1421 Record.push_back(VE.getValueID(V)); 1422 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1423 Record.clear(); 1424 } 1425 1426 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1427 SmallVectorImpl<uint64_t> &Record, 1428 unsigned Abbrev) { 1429 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1430 Metadata *MD = N->getOperand(i); 1431 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1432 "Unexpected function-local metadata"); 1433 Record.push_back(VE.getMetadataOrNullID(MD)); 1434 } 1435 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1436 : bitc::METADATA_NODE, 1437 Record, Abbrev); 1438 Record.clear(); 1439 } 1440 1441 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1442 // Assume the column is usually under 128, and always output the inlined-at 1443 // location (it's never more expensive than building an array size 1). 1444 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1445 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1452 return Stream.EmitAbbrev(std::move(Abbv)); 1453 } 1454 1455 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1456 SmallVectorImpl<uint64_t> &Record, 1457 unsigned &Abbrev) { 1458 if (!Abbrev) 1459 Abbrev = createDILocationAbbrev(); 1460 1461 Record.push_back(N->isDistinct()); 1462 Record.push_back(N->getLine()); 1463 Record.push_back(N->getColumn()); 1464 Record.push_back(VE.getMetadataID(N->getScope())); 1465 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1466 Record.push_back(N->isImplicitCode()); 1467 1468 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1469 Record.clear(); 1470 } 1471 1472 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1473 // Assume the column is usually under 128, and always output the inlined-at 1474 // location (it's never more expensive than building an array size 1). 1475 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1476 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1483 return Stream.EmitAbbrev(std::move(Abbv)); 1484 } 1485 1486 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1487 SmallVectorImpl<uint64_t> &Record, 1488 unsigned &Abbrev) { 1489 if (!Abbrev) 1490 Abbrev = createGenericDINodeAbbrev(); 1491 1492 Record.push_back(N->isDistinct()); 1493 Record.push_back(N->getTag()); 1494 Record.push_back(0); // Per-tag version field; unused for now. 1495 1496 for (auto &I : N->operands()) 1497 Record.push_back(VE.getMetadataOrNullID(I)); 1498 1499 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1500 Record.clear(); 1501 } 1502 1503 static uint64_t rotateSign(int64_t I) { 1504 uint64_t U = I; 1505 return I < 0 ? ~(U << 1) : U << 1; 1506 } 1507 1508 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1509 SmallVectorImpl<uint64_t> &Record, 1510 unsigned Abbrev) { 1511 const uint64_t Version = 1 << 1; 1512 Record.push_back((uint64_t)N->isDistinct() | Version); 1513 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1514 Record.push_back(rotateSign(N->getLowerBound())); 1515 1516 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1517 Record.clear(); 1518 } 1519 1520 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1521 SmallVectorImpl<uint64_t> &Record, 1522 unsigned Abbrev) { 1523 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1524 Record.push_back(rotateSign(N->getValue())); 1525 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1526 1527 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1528 Record.clear(); 1529 } 1530 1531 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1532 SmallVectorImpl<uint64_t> &Record, 1533 unsigned Abbrev) { 1534 Record.push_back(N->isDistinct()); 1535 Record.push_back(N->getTag()); 1536 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1537 Record.push_back(N->getSizeInBits()); 1538 Record.push_back(N->getAlignInBits()); 1539 Record.push_back(N->getEncoding()); 1540 Record.push_back(N->getFlags()); 1541 1542 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1543 Record.clear(); 1544 } 1545 1546 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1547 SmallVectorImpl<uint64_t> &Record, 1548 unsigned Abbrev) { 1549 Record.push_back(N->isDistinct()); 1550 Record.push_back(N->getTag()); 1551 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1552 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1553 Record.push_back(N->getLine()); 1554 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1555 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1556 Record.push_back(N->getSizeInBits()); 1557 Record.push_back(N->getAlignInBits()); 1558 Record.push_back(N->getOffsetInBits()); 1559 Record.push_back(N->getFlags()); 1560 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1561 1562 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1563 // that there is no DWARF address space associated with DIDerivedType. 1564 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1565 Record.push_back(*DWARFAddressSpace + 1); 1566 else 1567 Record.push_back(0); 1568 1569 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1570 Record.clear(); 1571 } 1572 1573 void ModuleBitcodeWriter::writeDICompositeType( 1574 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1575 unsigned Abbrev) { 1576 const unsigned IsNotUsedInOldTypeRef = 0x2; 1577 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1578 Record.push_back(N->getTag()); 1579 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1580 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1581 Record.push_back(N->getLine()); 1582 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1583 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1584 Record.push_back(N->getSizeInBits()); 1585 Record.push_back(N->getAlignInBits()); 1586 Record.push_back(N->getOffsetInBits()); 1587 Record.push_back(N->getFlags()); 1588 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1589 Record.push_back(N->getRuntimeLang()); 1590 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1591 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1593 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1594 1595 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1596 Record.clear(); 1597 } 1598 1599 void ModuleBitcodeWriter::writeDISubroutineType( 1600 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1601 unsigned Abbrev) { 1602 const unsigned HasNoOldTypeRefs = 0x2; 1603 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1604 Record.push_back(N->getFlags()); 1605 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1606 Record.push_back(N->getCC()); 1607 1608 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1609 Record.clear(); 1610 } 1611 1612 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1613 SmallVectorImpl<uint64_t> &Record, 1614 unsigned Abbrev) { 1615 Record.push_back(N->isDistinct()); 1616 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1617 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1618 if (N->getRawChecksum()) { 1619 Record.push_back(N->getRawChecksum()->Kind); 1620 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1621 } else { 1622 // Maintain backwards compatibility with the old internal representation of 1623 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1624 Record.push_back(0); 1625 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1626 } 1627 auto Source = N->getRawSource(); 1628 if (Source) 1629 Record.push_back(VE.getMetadataOrNullID(*Source)); 1630 1631 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1632 Record.clear(); 1633 } 1634 1635 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1636 SmallVectorImpl<uint64_t> &Record, 1637 unsigned Abbrev) { 1638 assert(N->isDistinct() && "Expected distinct compile units"); 1639 Record.push_back(/* IsDistinct */ true); 1640 Record.push_back(N->getSourceLanguage()); 1641 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1642 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1643 Record.push_back(N->isOptimized()); 1644 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1645 Record.push_back(N->getRuntimeVersion()); 1646 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1647 Record.push_back(N->getEmissionKind()); 1648 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1649 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1650 Record.push_back(/* subprograms */ 0); 1651 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1652 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1653 Record.push_back(N->getDWOId()); 1654 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1655 Record.push_back(N->getSplitDebugInlining()); 1656 Record.push_back(N->getDebugInfoForProfiling()); 1657 Record.push_back((unsigned)N->getNameTableKind()); 1658 1659 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1660 Record.clear(); 1661 } 1662 1663 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1664 SmallVectorImpl<uint64_t> &Record, 1665 unsigned Abbrev) { 1666 const uint64_t HasUnitFlag = 1 << 1; 1667 const uint64_t HasSPFlagsFlag = 1 << 2; 1668 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1669 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1670 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1671 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1672 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1673 Record.push_back(N->getLine()); 1674 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1675 Record.push_back(N->getScopeLine()); 1676 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1677 Record.push_back(N->getSPFlags()); 1678 Record.push_back(N->getVirtualIndex()); 1679 Record.push_back(N->getFlags()); 1680 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1681 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1682 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1683 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1684 Record.push_back(N->getThisAdjustment()); 1685 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1686 1687 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1688 Record.clear(); 1689 } 1690 1691 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1692 SmallVectorImpl<uint64_t> &Record, 1693 unsigned Abbrev) { 1694 Record.push_back(N->isDistinct()); 1695 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1696 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1697 Record.push_back(N->getLine()); 1698 Record.push_back(N->getColumn()); 1699 1700 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1701 Record.clear(); 1702 } 1703 1704 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1705 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1706 unsigned Abbrev) { 1707 Record.push_back(N->isDistinct()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1710 Record.push_back(N->getDiscriminator()); 1711 1712 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1713 Record.clear(); 1714 } 1715 1716 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1717 SmallVectorImpl<uint64_t> &Record, 1718 unsigned Abbrev) { 1719 Record.push_back(N->isDistinct()); 1720 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1724 Record.push_back(N->getLineNo()); 1725 1726 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1727 Record.clear(); 1728 } 1729 1730 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1731 SmallVectorImpl<uint64_t> &Record, 1732 unsigned Abbrev) { 1733 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1734 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1735 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1736 1737 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1738 Record.clear(); 1739 } 1740 1741 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1742 SmallVectorImpl<uint64_t> &Record, 1743 unsigned Abbrev) { 1744 Record.push_back(N->isDistinct()); 1745 Record.push_back(N->getMacinfoType()); 1746 Record.push_back(N->getLine()); 1747 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1749 1750 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1751 Record.clear(); 1752 } 1753 1754 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1755 SmallVectorImpl<uint64_t> &Record, 1756 unsigned Abbrev) { 1757 Record.push_back(N->isDistinct()); 1758 Record.push_back(N->getMacinfoType()); 1759 Record.push_back(N->getLine()); 1760 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1761 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1762 1763 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1764 Record.clear(); 1765 } 1766 1767 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1768 SmallVectorImpl<uint64_t> &Record, 1769 unsigned Abbrev) { 1770 Record.push_back(N->isDistinct()); 1771 for (auto &I : N->operands()) 1772 Record.push_back(VE.getMetadataOrNullID(I)); 1773 1774 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1775 Record.clear(); 1776 } 1777 1778 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1779 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1780 unsigned Abbrev) { 1781 Record.push_back(N->isDistinct()); 1782 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1783 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1784 1785 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1786 Record.clear(); 1787 } 1788 1789 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1790 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1791 unsigned Abbrev) { 1792 Record.push_back(N->isDistinct()); 1793 Record.push_back(N->getTag()); 1794 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1795 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1796 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1797 1798 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1799 Record.clear(); 1800 } 1801 1802 void ModuleBitcodeWriter::writeDIGlobalVariable( 1803 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1804 unsigned Abbrev) { 1805 const uint64_t Version = 2 << 1; 1806 Record.push_back((uint64_t)N->isDistinct() | Version); 1807 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1808 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1809 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1810 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1811 Record.push_back(N->getLine()); 1812 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1813 Record.push_back(N->isLocalToUnit()); 1814 Record.push_back(N->isDefinition()); 1815 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1817 Record.push_back(N->getAlignInBits()); 1818 1819 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1820 Record.clear(); 1821 } 1822 1823 void ModuleBitcodeWriter::writeDILocalVariable( 1824 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1825 unsigned Abbrev) { 1826 // In order to support all possible bitcode formats in BitcodeReader we need 1827 // to distinguish the following cases: 1828 // 1) Record has no artificial tag (Record[1]), 1829 // has no obsolete inlinedAt field (Record[9]). 1830 // In this case Record size will be 8, HasAlignment flag is false. 1831 // 2) Record has artificial tag (Record[1]), 1832 // has no obsolete inlignedAt field (Record[9]). 1833 // In this case Record size will be 9, HasAlignment flag is false. 1834 // 3) Record has both artificial tag (Record[1]) and 1835 // obsolete inlignedAt field (Record[9]). 1836 // In this case Record size will be 10, HasAlignment flag is false. 1837 // 4) Record has neither artificial tag, nor inlignedAt field, but 1838 // HasAlignment flag is true and Record[8] contains alignment value. 1839 const uint64_t HasAlignmentFlag = 1 << 1; 1840 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1841 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1842 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1843 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1844 Record.push_back(N->getLine()); 1845 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1846 Record.push_back(N->getArg()); 1847 Record.push_back(N->getFlags()); 1848 Record.push_back(N->getAlignInBits()); 1849 1850 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1851 Record.clear(); 1852 } 1853 1854 void ModuleBitcodeWriter::writeDILabel( 1855 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1856 unsigned Abbrev) { 1857 Record.push_back((uint64_t)N->isDistinct()); 1858 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1859 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1860 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1861 Record.push_back(N->getLine()); 1862 1863 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1864 Record.clear(); 1865 } 1866 1867 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1868 SmallVectorImpl<uint64_t> &Record, 1869 unsigned Abbrev) { 1870 Record.reserve(N->getElements().size() + 1); 1871 const uint64_t Version = 3 << 1; 1872 Record.push_back((uint64_t)N->isDistinct() | Version); 1873 Record.append(N->elements_begin(), N->elements_end()); 1874 1875 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1876 Record.clear(); 1877 } 1878 1879 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1880 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1881 unsigned Abbrev) { 1882 Record.push_back(N->isDistinct()); 1883 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1884 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1885 1886 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1887 Record.clear(); 1888 } 1889 1890 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1891 SmallVectorImpl<uint64_t> &Record, 1892 unsigned Abbrev) { 1893 Record.push_back(N->isDistinct()); 1894 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1895 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1896 Record.push_back(N->getLine()); 1897 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1898 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1899 Record.push_back(N->getAttributes()); 1900 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1901 1902 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1903 Record.clear(); 1904 } 1905 1906 void ModuleBitcodeWriter::writeDIImportedEntity( 1907 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1908 unsigned Abbrev) { 1909 Record.push_back(N->isDistinct()); 1910 Record.push_back(N->getTag()); 1911 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1912 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1913 Record.push_back(N->getLine()); 1914 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1915 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1916 1917 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1918 Record.clear(); 1919 } 1920 1921 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1922 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1923 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1926 return Stream.EmitAbbrev(std::move(Abbv)); 1927 } 1928 1929 void ModuleBitcodeWriter::writeNamedMetadata( 1930 SmallVectorImpl<uint64_t> &Record) { 1931 if (M.named_metadata_empty()) 1932 return; 1933 1934 unsigned Abbrev = createNamedMetadataAbbrev(); 1935 for (const NamedMDNode &NMD : M.named_metadata()) { 1936 // Write name. 1937 StringRef Str = NMD.getName(); 1938 Record.append(Str.bytes_begin(), Str.bytes_end()); 1939 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1940 Record.clear(); 1941 1942 // Write named metadata operands. 1943 for (const MDNode *N : NMD.operands()) 1944 Record.push_back(VE.getMetadataID(N)); 1945 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1946 Record.clear(); 1947 } 1948 } 1949 1950 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1951 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1952 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1956 return Stream.EmitAbbrev(std::move(Abbv)); 1957 } 1958 1959 /// Write out a record for MDString. 1960 /// 1961 /// All the metadata strings in a metadata block are emitted in a single 1962 /// record. The sizes and strings themselves are shoved into a blob. 1963 void ModuleBitcodeWriter::writeMetadataStrings( 1964 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1965 if (Strings.empty()) 1966 return; 1967 1968 // Start the record with the number of strings. 1969 Record.push_back(bitc::METADATA_STRINGS); 1970 Record.push_back(Strings.size()); 1971 1972 // Emit the sizes of the strings in the blob. 1973 SmallString<256> Blob; 1974 { 1975 BitstreamWriter W(Blob); 1976 for (const Metadata *MD : Strings) 1977 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1978 W.FlushToWord(); 1979 } 1980 1981 // Add the offset to the strings to the record. 1982 Record.push_back(Blob.size()); 1983 1984 // Add the strings to the blob. 1985 for (const Metadata *MD : Strings) 1986 Blob.append(cast<MDString>(MD)->getString()); 1987 1988 // Emit the final record. 1989 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1990 Record.clear(); 1991 } 1992 1993 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1994 enum MetadataAbbrev : unsigned { 1995 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1996 #include "llvm/IR/Metadata.def" 1997 LastPlusOne 1998 }; 1999 2000 void ModuleBitcodeWriter::writeMetadataRecords( 2001 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2002 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2003 if (MDs.empty()) 2004 return; 2005 2006 // Initialize MDNode abbreviations. 2007 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2008 #include "llvm/IR/Metadata.def" 2009 2010 for (const Metadata *MD : MDs) { 2011 if (IndexPos) 2012 IndexPos->push_back(Stream.GetCurrentBitNo()); 2013 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2014 assert(N->isResolved() && "Expected forward references to be resolved"); 2015 2016 switch (N->getMetadataID()) { 2017 default: 2018 llvm_unreachable("Invalid MDNode subclass"); 2019 #define HANDLE_MDNODE_LEAF(CLASS) \ 2020 case Metadata::CLASS##Kind: \ 2021 if (MDAbbrevs) \ 2022 write##CLASS(cast<CLASS>(N), Record, \ 2023 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2024 else \ 2025 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2026 continue; 2027 #include "llvm/IR/Metadata.def" 2028 } 2029 } 2030 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2031 } 2032 } 2033 2034 void ModuleBitcodeWriter::writeModuleMetadata() { 2035 if (!VE.hasMDs() && M.named_metadata_empty()) 2036 return; 2037 2038 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2039 SmallVector<uint64_t, 64> Record; 2040 2041 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2042 // block and load any metadata. 2043 std::vector<unsigned> MDAbbrevs; 2044 2045 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2046 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2047 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2048 createGenericDINodeAbbrev(); 2049 2050 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2051 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2054 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2055 2056 Abbv = std::make_shared<BitCodeAbbrev>(); 2057 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2060 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2061 2062 // Emit MDStrings together upfront. 2063 writeMetadataStrings(VE.getMDStrings(), Record); 2064 2065 // We only emit an index for the metadata record if we have more than a given 2066 // (naive) threshold of metadatas, otherwise it is not worth it. 2067 if (VE.getNonMDStrings().size() > IndexThreshold) { 2068 // Write a placeholder value in for the offset of the metadata index, 2069 // which is written after the records, so that it can include 2070 // the offset of each entry. The placeholder offset will be 2071 // updated after all records are emitted. 2072 uint64_t Vals[] = {0, 0}; 2073 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2074 } 2075 2076 // Compute and save the bit offset to the current position, which will be 2077 // patched when we emit the index later. We can simply subtract the 64-bit 2078 // fixed size from the current bit number to get the location to backpatch. 2079 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2080 2081 // This index will contain the bitpos for each individual record. 2082 std::vector<uint64_t> IndexPos; 2083 IndexPos.reserve(VE.getNonMDStrings().size()); 2084 2085 // Write all the records 2086 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2087 2088 if (VE.getNonMDStrings().size() > IndexThreshold) { 2089 // Now that we have emitted all the records we will emit the index. But 2090 // first 2091 // backpatch the forward reference so that the reader can skip the records 2092 // efficiently. 2093 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2094 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2095 2096 // Delta encode the index. 2097 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2098 for (auto &Elt : IndexPos) { 2099 auto EltDelta = Elt - PreviousValue; 2100 PreviousValue = Elt; 2101 Elt = EltDelta; 2102 } 2103 // Emit the index record. 2104 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2105 IndexPos.clear(); 2106 } 2107 2108 // Write the named metadata now. 2109 writeNamedMetadata(Record); 2110 2111 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2112 SmallVector<uint64_t, 4> Record; 2113 Record.push_back(VE.getValueID(&GO)); 2114 pushGlobalMetadataAttachment(Record, GO); 2115 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2116 }; 2117 for (const Function &F : M) 2118 if (F.isDeclaration() && F.hasMetadata()) 2119 AddDeclAttachedMetadata(F); 2120 // FIXME: Only store metadata for declarations here, and move data for global 2121 // variable definitions to a separate block (PR28134). 2122 for (const GlobalVariable &GV : M.globals()) 2123 if (GV.hasMetadata()) 2124 AddDeclAttachedMetadata(GV); 2125 2126 Stream.ExitBlock(); 2127 } 2128 2129 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2130 if (!VE.hasMDs()) 2131 return; 2132 2133 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2134 SmallVector<uint64_t, 64> Record; 2135 writeMetadataStrings(VE.getMDStrings(), Record); 2136 writeMetadataRecords(VE.getNonMDStrings(), Record); 2137 Stream.ExitBlock(); 2138 } 2139 2140 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2141 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2142 // [n x [id, mdnode]] 2143 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2144 GO.getAllMetadata(MDs); 2145 for (const auto &I : MDs) { 2146 Record.push_back(I.first); 2147 Record.push_back(VE.getMetadataID(I.second)); 2148 } 2149 } 2150 2151 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2152 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2153 2154 SmallVector<uint64_t, 64> Record; 2155 2156 if (F.hasMetadata()) { 2157 pushGlobalMetadataAttachment(Record, F); 2158 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2159 Record.clear(); 2160 } 2161 2162 // Write metadata attachments 2163 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2164 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2165 for (const BasicBlock &BB : F) 2166 for (const Instruction &I : BB) { 2167 MDs.clear(); 2168 I.getAllMetadataOtherThanDebugLoc(MDs); 2169 2170 // If no metadata, ignore instruction. 2171 if (MDs.empty()) continue; 2172 2173 Record.push_back(VE.getInstructionID(&I)); 2174 2175 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2176 Record.push_back(MDs[i].first); 2177 Record.push_back(VE.getMetadataID(MDs[i].second)); 2178 } 2179 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2180 Record.clear(); 2181 } 2182 2183 Stream.ExitBlock(); 2184 } 2185 2186 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2187 SmallVector<uint64_t, 64> Record; 2188 2189 // Write metadata kinds 2190 // METADATA_KIND - [n x [id, name]] 2191 SmallVector<StringRef, 8> Names; 2192 M.getMDKindNames(Names); 2193 2194 if (Names.empty()) return; 2195 2196 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2197 2198 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2199 Record.push_back(MDKindID); 2200 StringRef KName = Names[MDKindID]; 2201 Record.append(KName.begin(), KName.end()); 2202 2203 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2204 Record.clear(); 2205 } 2206 2207 Stream.ExitBlock(); 2208 } 2209 2210 void ModuleBitcodeWriter::writeOperandBundleTags() { 2211 // Write metadata kinds 2212 // 2213 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2214 // 2215 // OPERAND_BUNDLE_TAG - [strchr x N] 2216 2217 SmallVector<StringRef, 8> Tags; 2218 M.getOperandBundleTags(Tags); 2219 2220 if (Tags.empty()) 2221 return; 2222 2223 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2224 2225 SmallVector<uint64_t, 64> Record; 2226 2227 for (auto Tag : Tags) { 2228 Record.append(Tag.begin(), Tag.end()); 2229 2230 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2231 Record.clear(); 2232 } 2233 2234 Stream.ExitBlock(); 2235 } 2236 2237 void ModuleBitcodeWriter::writeSyncScopeNames() { 2238 SmallVector<StringRef, 8> SSNs; 2239 M.getContext().getSyncScopeNames(SSNs); 2240 if (SSNs.empty()) 2241 return; 2242 2243 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2244 2245 SmallVector<uint64_t, 64> Record; 2246 for (auto SSN : SSNs) { 2247 Record.append(SSN.begin(), SSN.end()); 2248 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2249 Record.clear(); 2250 } 2251 2252 Stream.ExitBlock(); 2253 } 2254 2255 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2256 if ((int64_t)V >= 0) 2257 Vals.push_back(V << 1); 2258 else 2259 Vals.push_back((-V << 1) | 1); 2260 } 2261 2262 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2263 bool isGlobal) { 2264 if (FirstVal == LastVal) return; 2265 2266 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2267 2268 unsigned AggregateAbbrev = 0; 2269 unsigned String8Abbrev = 0; 2270 unsigned CString7Abbrev = 0; 2271 unsigned CString6Abbrev = 0; 2272 // If this is a constant pool for the module, emit module-specific abbrevs. 2273 if (isGlobal) { 2274 // Abbrev for CST_CODE_AGGREGATE. 2275 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2276 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2279 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2280 2281 // Abbrev for CST_CODE_STRING. 2282 Abbv = std::make_shared<BitCodeAbbrev>(); 2283 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2286 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2287 // Abbrev for CST_CODE_CSTRING. 2288 Abbv = std::make_shared<BitCodeAbbrev>(); 2289 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2292 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2293 // Abbrev for CST_CODE_CSTRING. 2294 Abbv = std::make_shared<BitCodeAbbrev>(); 2295 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2298 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2299 } 2300 2301 SmallVector<uint64_t, 64> Record; 2302 2303 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2304 Type *LastTy = nullptr; 2305 for (unsigned i = FirstVal; i != LastVal; ++i) { 2306 const Value *V = Vals[i].first; 2307 // If we need to switch types, do so now. 2308 if (V->getType() != LastTy) { 2309 LastTy = V->getType(); 2310 Record.push_back(VE.getTypeID(LastTy)); 2311 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2312 CONSTANTS_SETTYPE_ABBREV); 2313 Record.clear(); 2314 } 2315 2316 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2317 Record.push_back(unsigned(IA->hasSideEffects()) | 2318 unsigned(IA->isAlignStack()) << 1 | 2319 unsigned(IA->getDialect()&1) << 2); 2320 2321 // Add the asm string. 2322 const std::string &AsmStr = IA->getAsmString(); 2323 Record.push_back(AsmStr.size()); 2324 Record.append(AsmStr.begin(), AsmStr.end()); 2325 2326 // Add the constraint string. 2327 const std::string &ConstraintStr = IA->getConstraintString(); 2328 Record.push_back(ConstraintStr.size()); 2329 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2330 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2331 Record.clear(); 2332 continue; 2333 } 2334 const Constant *C = cast<Constant>(V); 2335 unsigned Code = -1U; 2336 unsigned AbbrevToUse = 0; 2337 if (C->isNullValue()) { 2338 Code = bitc::CST_CODE_NULL; 2339 } else if (isa<UndefValue>(C)) { 2340 Code = bitc::CST_CODE_UNDEF; 2341 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2342 if (IV->getBitWidth() <= 64) { 2343 uint64_t V = IV->getSExtValue(); 2344 emitSignedInt64(Record, V); 2345 Code = bitc::CST_CODE_INTEGER; 2346 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2347 } else { // Wide integers, > 64 bits in size. 2348 // We have an arbitrary precision integer value to write whose 2349 // bit width is > 64. However, in canonical unsigned integer 2350 // format it is likely that the high bits are going to be zero. 2351 // So, we only write the number of active words. 2352 unsigned NWords = IV->getValue().getActiveWords(); 2353 const uint64_t *RawWords = IV->getValue().getRawData(); 2354 for (unsigned i = 0; i != NWords; ++i) { 2355 emitSignedInt64(Record, RawWords[i]); 2356 } 2357 Code = bitc::CST_CODE_WIDE_INTEGER; 2358 } 2359 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2360 Code = bitc::CST_CODE_FLOAT; 2361 Type *Ty = CFP->getType(); 2362 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2363 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2364 } else if (Ty->isX86_FP80Ty()) { 2365 // api needed to prevent premature destruction 2366 // bits are not in the same order as a normal i80 APInt, compensate. 2367 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2368 const uint64_t *p = api.getRawData(); 2369 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2370 Record.push_back(p[0] & 0xffffLL); 2371 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2372 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2373 const uint64_t *p = api.getRawData(); 2374 Record.push_back(p[0]); 2375 Record.push_back(p[1]); 2376 } else { 2377 assert(0 && "Unknown FP type!"); 2378 } 2379 } else if (isa<ConstantDataSequential>(C) && 2380 cast<ConstantDataSequential>(C)->isString()) { 2381 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2382 // Emit constant strings specially. 2383 unsigned NumElts = Str->getNumElements(); 2384 // If this is a null-terminated string, use the denser CSTRING encoding. 2385 if (Str->isCString()) { 2386 Code = bitc::CST_CODE_CSTRING; 2387 --NumElts; // Don't encode the null, which isn't allowed by char6. 2388 } else { 2389 Code = bitc::CST_CODE_STRING; 2390 AbbrevToUse = String8Abbrev; 2391 } 2392 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2393 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2394 for (unsigned i = 0; i != NumElts; ++i) { 2395 unsigned char V = Str->getElementAsInteger(i); 2396 Record.push_back(V); 2397 isCStr7 &= (V & 128) == 0; 2398 if (isCStrChar6) 2399 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2400 } 2401 2402 if (isCStrChar6) 2403 AbbrevToUse = CString6Abbrev; 2404 else if (isCStr7) 2405 AbbrevToUse = CString7Abbrev; 2406 } else if (const ConstantDataSequential *CDS = 2407 dyn_cast<ConstantDataSequential>(C)) { 2408 Code = bitc::CST_CODE_DATA; 2409 Type *EltTy = CDS->getType()->getElementType(); 2410 if (isa<IntegerType>(EltTy)) { 2411 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2412 Record.push_back(CDS->getElementAsInteger(i)); 2413 } else { 2414 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2415 Record.push_back( 2416 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2417 } 2418 } else if (isa<ConstantAggregate>(C)) { 2419 Code = bitc::CST_CODE_AGGREGATE; 2420 for (const Value *Op : C->operands()) 2421 Record.push_back(VE.getValueID(Op)); 2422 AbbrevToUse = AggregateAbbrev; 2423 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2424 switch (CE->getOpcode()) { 2425 default: 2426 if (Instruction::isCast(CE->getOpcode())) { 2427 Code = bitc::CST_CODE_CE_CAST; 2428 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2429 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2430 Record.push_back(VE.getValueID(C->getOperand(0))); 2431 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2432 } else { 2433 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2434 Code = bitc::CST_CODE_CE_BINOP; 2435 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2436 Record.push_back(VE.getValueID(C->getOperand(0))); 2437 Record.push_back(VE.getValueID(C->getOperand(1))); 2438 uint64_t Flags = getOptimizationFlags(CE); 2439 if (Flags != 0) 2440 Record.push_back(Flags); 2441 } 2442 break; 2443 case Instruction::FNeg: { 2444 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2445 Code = bitc::CST_CODE_CE_UNOP; 2446 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2447 Record.push_back(VE.getValueID(C->getOperand(0))); 2448 uint64_t Flags = getOptimizationFlags(CE); 2449 if (Flags != 0) 2450 Record.push_back(Flags); 2451 break; 2452 } 2453 case Instruction::GetElementPtr: { 2454 Code = bitc::CST_CODE_CE_GEP; 2455 const auto *GO = cast<GEPOperator>(C); 2456 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2457 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2458 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2459 Record.push_back((*Idx << 1) | GO->isInBounds()); 2460 } else if (GO->isInBounds()) 2461 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2462 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2463 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2464 Record.push_back(VE.getValueID(C->getOperand(i))); 2465 } 2466 break; 2467 } 2468 case Instruction::Select: 2469 Code = bitc::CST_CODE_CE_SELECT; 2470 Record.push_back(VE.getValueID(C->getOperand(0))); 2471 Record.push_back(VE.getValueID(C->getOperand(1))); 2472 Record.push_back(VE.getValueID(C->getOperand(2))); 2473 break; 2474 case Instruction::ExtractElement: 2475 Code = bitc::CST_CODE_CE_EXTRACTELT; 2476 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2477 Record.push_back(VE.getValueID(C->getOperand(0))); 2478 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2479 Record.push_back(VE.getValueID(C->getOperand(1))); 2480 break; 2481 case Instruction::InsertElement: 2482 Code = bitc::CST_CODE_CE_INSERTELT; 2483 Record.push_back(VE.getValueID(C->getOperand(0))); 2484 Record.push_back(VE.getValueID(C->getOperand(1))); 2485 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2486 Record.push_back(VE.getValueID(C->getOperand(2))); 2487 break; 2488 case Instruction::ShuffleVector: 2489 // If the return type and argument types are the same, this is a 2490 // standard shufflevector instruction. If the types are different, 2491 // then the shuffle is widening or truncating the input vectors, and 2492 // the argument type must also be encoded. 2493 if (C->getType() == C->getOperand(0)->getType()) { 2494 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2495 } else { 2496 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2497 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2498 } 2499 Record.push_back(VE.getValueID(C->getOperand(0))); 2500 Record.push_back(VE.getValueID(C->getOperand(1))); 2501 Record.push_back(VE.getValueID(C->getOperand(2))); 2502 break; 2503 case Instruction::ICmp: 2504 case Instruction::FCmp: 2505 Code = bitc::CST_CODE_CE_CMP; 2506 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2507 Record.push_back(VE.getValueID(C->getOperand(0))); 2508 Record.push_back(VE.getValueID(C->getOperand(1))); 2509 Record.push_back(CE->getPredicate()); 2510 break; 2511 } 2512 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2513 Code = bitc::CST_CODE_BLOCKADDRESS; 2514 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2515 Record.push_back(VE.getValueID(BA->getFunction())); 2516 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2517 } else { 2518 #ifndef NDEBUG 2519 C->dump(); 2520 #endif 2521 llvm_unreachable("Unknown constant!"); 2522 } 2523 Stream.EmitRecord(Code, Record, AbbrevToUse); 2524 Record.clear(); 2525 } 2526 2527 Stream.ExitBlock(); 2528 } 2529 2530 void ModuleBitcodeWriter::writeModuleConstants() { 2531 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2532 2533 // Find the first constant to emit, which is the first non-globalvalue value. 2534 // We know globalvalues have been emitted by WriteModuleInfo. 2535 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2536 if (!isa<GlobalValue>(Vals[i].first)) { 2537 writeConstants(i, Vals.size(), true); 2538 return; 2539 } 2540 } 2541 } 2542 2543 /// pushValueAndType - The file has to encode both the value and type id for 2544 /// many values, because we need to know what type to create for forward 2545 /// references. However, most operands are not forward references, so this type 2546 /// field is not needed. 2547 /// 2548 /// This function adds V's value ID to Vals. If the value ID is higher than the 2549 /// instruction ID, then it is a forward reference, and it also includes the 2550 /// type ID. The value ID that is written is encoded relative to the InstID. 2551 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2552 SmallVectorImpl<unsigned> &Vals) { 2553 unsigned ValID = VE.getValueID(V); 2554 // Make encoding relative to the InstID. 2555 Vals.push_back(InstID - ValID); 2556 if (ValID >= InstID) { 2557 Vals.push_back(VE.getTypeID(V->getType())); 2558 return true; 2559 } 2560 return false; 2561 } 2562 2563 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2564 unsigned InstID) { 2565 SmallVector<unsigned, 64> Record; 2566 LLVMContext &C = CS.getInstruction()->getContext(); 2567 2568 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2569 const auto &Bundle = CS.getOperandBundleAt(i); 2570 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2571 2572 for (auto &Input : Bundle.Inputs) 2573 pushValueAndType(Input, InstID, Record); 2574 2575 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2576 Record.clear(); 2577 } 2578 } 2579 2580 /// pushValue - Like pushValueAndType, but where the type of the value is 2581 /// omitted (perhaps it was already encoded in an earlier operand). 2582 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2583 SmallVectorImpl<unsigned> &Vals) { 2584 unsigned ValID = VE.getValueID(V); 2585 Vals.push_back(InstID - ValID); 2586 } 2587 2588 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2589 SmallVectorImpl<uint64_t> &Vals) { 2590 unsigned ValID = VE.getValueID(V); 2591 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2592 emitSignedInt64(Vals, diff); 2593 } 2594 2595 /// WriteInstruction - Emit an instruction to the specified stream. 2596 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2597 unsigned InstID, 2598 SmallVectorImpl<unsigned> &Vals) { 2599 unsigned Code = 0; 2600 unsigned AbbrevToUse = 0; 2601 VE.setInstructionID(&I); 2602 switch (I.getOpcode()) { 2603 default: 2604 if (Instruction::isCast(I.getOpcode())) { 2605 Code = bitc::FUNC_CODE_INST_CAST; 2606 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2607 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2608 Vals.push_back(VE.getTypeID(I.getType())); 2609 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2610 } else { 2611 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2612 Code = bitc::FUNC_CODE_INST_BINOP; 2613 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2614 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2615 pushValue(I.getOperand(1), InstID, Vals); 2616 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2617 uint64_t Flags = getOptimizationFlags(&I); 2618 if (Flags != 0) { 2619 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2620 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2621 Vals.push_back(Flags); 2622 } 2623 } 2624 break; 2625 case Instruction::FNeg: { 2626 Code = bitc::FUNC_CODE_INST_UNOP; 2627 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2628 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2629 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2630 uint64_t Flags = getOptimizationFlags(&I); 2631 if (Flags != 0) { 2632 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2633 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2634 Vals.push_back(Flags); 2635 } 2636 break; 2637 } 2638 case Instruction::GetElementPtr: { 2639 Code = bitc::FUNC_CODE_INST_GEP; 2640 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2641 auto &GEPInst = cast<GetElementPtrInst>(I); 2642 Vals.push_back(GEPInst.isInBounds()); 2643 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2644 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2645 pushValueAndType(I.getOperand(i), InstID, Vals); 2646 break; 2647 } 2648 case Instruction::ExtractValue: { 2649 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2650 pushValueAndType(I.getOperand(0), InstID, Vals); 2651 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2652 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2653 break; 2654 } 2655 case Instruction::InsertValue: { 2656 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2657 pushValueAndType(I.getOperand(0), InstID, Vals); 2658 pushValueAndType(I.getOperand(1), InstID, Vals); 2659 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2660 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2661 break; 2662 } 2663 case Instruction::Select: { 2664 Code = bitc::FUNC_CODE_INST_VSELECT; 2665 pushValueAndType(I.getOperand(1), InstID, Vals); 2666 pushValue(I.getOperand(2), InstID, Vals); 2667 pushValueAndType(I.getOperand(0), InstID, Vals); 2668 uint64_t Flags = getOptimizationFlags(&I); 2669 if (Flags != 0) 2670 Vals.push_back(Flags); 2671 break; 2672 } 2673 case Instruction::ExtractElement: 2674 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2675 pushValueAndType(I.getOperand(0), InstID, Vals); 2676 pushValueAndType(I.getOperand(1), InstID, Vals); 2677 break; 2678 case Instruction::InsertElement: 2679 Code = bitc::FUNC_CODE_INST_INSERTELT; 2680 pushValueAndType(I.getOperand(0), InstID, Vals); 2681 pushValue(I.getOperand(1), InstID, Vals); 2682 pushValueAndType(I.getOperand(2), InstID, Vals); 2683 break; 2684 case Instruction::ShuffleVector: 2685 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2686 pushValueAndType(I.getOperand(0), InstID, Vals); 2687 pushValue(I.getOperand(1), InstID, Vals); 2688 pushValue(I.getOperand(2), InstID, Vals); 2689 break; 2690 case Instruction::ICmp: 2691 case Instruction::FCmp: { 2692 // compare returning Int1Ty or vector of Int1Ty 2693 Code = bitc::FUNC_CODE_INST_CMP2; 2694 pushValueAndType(I.getOperand(0), InstID, Vals); 2695 pushValue(I.getOperand(1), InstID, Vals); 2696 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2697 uint64_t Flags = getOptimizationFlags(&I); 2698 if (Flags != 0) 2699 Vals.push_back(Flags); 2700 break; 2701 } 2702 2703 case Instruction::Ret: 2704 { 2705 Code = bitc::FUNC_CODE_INST_RET; 2706 unsigned NumOperands = I.getNumOperands(); 2707 if (NumOperands == 0) 2708 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2709 else if (NumOperands == 1) { 2710 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2711 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2712 } else { 2713 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2714 pushValueAndType(I.getOperand(i), InstID, Vals); 2715 } 2716 } 2717 break; 2718 case Instruction::Br: 2719 { 2720 Code = bitc::FUNC_CODE_INST_BR; 2721 const BranchInst &II = cast<BranchInst>(I); 2722 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2723 if (II.isConditional()) { 2724 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2725 pushValue(II.getCondition(), InstID, Vals); 2726 } 2727 } 2728 break; 2729 case Instruction::Switch: 2730 { 2731 Code = bitc::FUNC_CODE_INST_SWITCH; 2732 const SwitchInst &SI = cast<SwitchInst>(I); 2733 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2734 pushValue(SI.getCondition(), InstID, Vals); 2735 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2736 for (auto Case : SI.cases()) { 2737 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2738 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2739 } 2740 } 2741 break; 2742 case Instruction::IndirectBr: 2743 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2744 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2745 // Encode the address operand as relative, but not the basic blocks. 2746 pushValue(I.getOperand(0), InstID, Vals); 2747 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2748 Vals.push_back(VE.getValueID(I.getOperand(i))); 2749 break; 2750 2751 case Instruction::Invoke: { 2752 const InvokeInst *II = cast<InvokeInst>(&I); 2753 const Value *Callee = II->getCalledValue(); 2754 FunctionType *FTy = II->getFunctionType(); 2755 2756 if (II->hasOperandBundles()) 2757 writeOperandBundles(II, InstID); 2758 2759 Code = bitc::FUNC_CODE_INST_INVOKE; 2760 2761 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2762 Vals.push_back(II->getCallingConv() | 1 << 13); 2763 Vals.push_back(VE.getValueID(II->getNormalDest())); 2764 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2765 Vals.push_back(VE.getTypeID(FTy)); 2766 pushValueAndType(Callee, InstID, Vals); 2767 2768 // Emit value #'s for the fixed parameters. 2769 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2770 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2771 2772 // Emit type/value pairs for varargs params. 2773 if (FTy->isVarArg()) { 2774 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2775 i != e; ++i) 2776 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2777 } 2778 break; 2779 } 2780 case Instruction::Resume: 2781 Code = bitc::FUNC_CODE_INST_RESUME; 2782 pushValueAndType(I.getOperand(0), InstID, Vals); 2783 break; 2784 case Instruction::CleanupRet: { 2785 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2786 const auto &CRI = cast<CleanupReturnInst>(I); 2787 pushValue(CRI.getCleanupPad(), InstID, Vals); 2788 if (CRI.hasUnwindDest()) 2789 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2790 break; 2791 } 2792 case Instruction::CatchRet: { 2793 Code = bitc::FUNC_CODE_INST_CATCHRET; 2794 const auto &CRI = cast<CatchReturnInst>(I); 2795 pushValue(CRI.getCatchPad(), InstID, Vals); 2796 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2797 break; 2798 } 2799 case Instruction::CleanupPad: 2800 case Instruction::CatchPad: { 2801 const auto &FuncletPad = cast<FuncletPadInst>(I); 2802 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2803 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2804 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2805 2806 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2807 Vals.push_back(NumArgOperands); 2808 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2809 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2810 break; 2811 } 2812 case Instruction::CatchSwitch: { 2813 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2814 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2815 2816 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2817 2818 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2819 Vals.push_back(NumHandlers); 2820 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2821 Vals.push_back(VE.getValueID(CatchPadBB)); 2822 2823 if (CatchSwitch.hasUnwindDest()) 2824 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2825 break; 2826 } 2827 case Instruction::CallBr: { 2828 const CallBrInst *CBI = cast<CallBrInst>(&I); 2829 const Value *Callee = CBI->getCalledValue(); 2830 FunctionType *FTy = CBI->getFunctionType(); 2831 2832 if (CBI->hasOperandBundles()) 2833 writeOperandBundles(CBI, InstID); 2834 2835 Code = bitc::FUNC_CODE_INST_CALLBR; 2836 2837 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2838 2839 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2840 1 << bitc::CALL_EXPLICIT_TYPE); 2841 2842 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2843 Vals.push_back(CBI->getNumIndirectDests()); 2844 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2845 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2846 2847 Vals.push_back(VE.getTypeID(FTy)); 2848 pushValueAndType(Callee, InstID, Vals); 2849 2850 // Emit value #'s for the fixed parameters. 2851 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2852 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2853 2854 // Emit type/value pairs for varargs params. 2855 if (FTy->isVarArg()) { 2856 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2857 i != e; ++i) 2858 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2859 } 2860 break; 2861 } 2862 case Instruction::Unreachable: 2863 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2864 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2865 break; 2866 2867 case Instruction::PHI: { 2868 const PHINode &PN = cast<PHINode>(I); 2869 Code = bitc::FUNC_CODE_INST_PHI; 2870 // With the newer instruction encoding, forward references could give 2871 // negative valued IDs. This is most common for PHIs, so we use 2872 // signed VBRs. 2873 SmallVector<uint64_t, 128> Vals64; 2874 Vals64.push_back(VE.getTypeID(PN.getType())); 2875 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2876 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2877 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2878 } 2879 // Emit a Vals64 vector and exit. 2880 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2881 Vals64.clear(); 2882 return; 2883 } 2884 2885 case Instruction::LandingPad: { 2886 const LandingPadInst &LP = cast<LandingPadInst>(I); 2887 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2888 Vals.push_back(VE.getTypeID(LP.getType())); 2889 Vals.push_back(LP.isCleanup()); 2890 Vals.push_back(LP.getNumClauses()); 2891 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2892 if (LP.isCatch(I)) 2893 Vals.push_back(LandingPadInst::Catch); 2894 else 2895 Vals.push_back(LandingPadInst::Filter); 2896 pushValueAndType(LP.getClause(I), InstID, Vals); 2897 } 2898 break; 2899 } 2900 2901 case Instruction::Alloca: { 2902 Code = bitc::FUNC_CODE_INST_ALLOCA; 2903 const AllocaInst &AI = cast<AllocaInst>(I); 2904 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2905 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2906 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2907 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2908 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2909 "not enough bits for maximum alignment"); 2910 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2911 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2912 AlignRecord |= 1 << 6; 2913 AlignRecord |= AI.isSwiftError() << 7; 2914 Vals.push_back(AlignRecord); 2915 break; 2916 } 2917 2918 case Instruction::Load: 2919 if (cast<LoadInst>(I).isAtomic()) { 2920 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2921 pushValueAndType(I.getOperand(0), InstID, Vals); 2922 } else { 2923 Code = bitc::FUNC_CODE_INST_LOAD; 2924 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2925 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2926 } 2927 Vals.push_back(VE.getTypeID(I.getType())); 2928 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2929 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2930 if (cast<LoadInst>(I).isAtomic()) { 2931 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2932 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2933 } 2934 break; 2935 case Instruction::Store: 2936 if (cast<StoreInst>(I).isAtomic()) 2937 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2938 else 2939 Code = bitc::FUNC_CODE_INST_STORE; 2940 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2941 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2942 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2943 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2944 if (cast<StoreInst>(I).isAtomic()) { 2945 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2946 Vals.push_back( 2947 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2948 } 2949 break; 2950 case Instruction::AtomicCmpXchg: 2951 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2952 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2953 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2954 pushValue(I.getOperand(2), InstID, Vals); // newval. 2955 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2956 Vals.push_back( 2957 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2958 Vals.push_back( 2959 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2960 Vals.push_back( 2961 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2962 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2963 break; 2964 case Instruction::AtomicRMW: 2965 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2966 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2967 pushValue(I.getOperand(1), InstID, Vals); // val. 2968 Vals.push_back( 2969 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2970 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2971 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2972 Vals.push_back( 2973 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2974 break; 2975 case Instruction::Fence: 2976 Code = bitc::FUNC_CODE_INST_FENCE; 2977 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2978 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2979 break; 2980 case Instruction::Call: { 2981 const CallInst &CI = cast<CallInst>(I); 2982 FunctionType *FTy = CI.getFunctionType(); 2983 2984 if (CI.hasOperandBundles()) 2985 writeOperandBundles(&CI, InstID); 2986 2987 Code = bitc::FUNC_CODE_INST_CALL; 2988 2989 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2990 2991 unsigned Flags = getOptimizationFlags(&I); 2992 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2993 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2994 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2995 1 << bitc::CALL_EXPLICIT_TYPE | 2996 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2997 unsigned(Flags != 0) << bitc::CALL_FMF); 2998 if (Flags != 0) 2999 Vals.push_back(Flags); 3000 3001 Vals.push_back(VE.getTypeID(FTy)); 3002 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 3003 3004 // Emit value #'s for the fixed parameters. 3005 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3006 // Check for labels (can happen with asm labels). 3007 if (FTy->getParamType(i)->isLabelTy()) 3008 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3009 else 3010 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3011 } 3012 3013 // Emit type/value pairs for varargs params. 3014 if (FTy->isVarArg()) { 3015 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3016 i != e; ++i) 3017 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3018 } 3019 break; 3020 } 3021 case Instruction::VAArg: 3022 Code = bitc::FUNC_CODE_INST_VAARG; 3023 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3024 pushValue(I.getOperand(0), InstID, Vals); // valist. 3025 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3026 break; 3027 } 3028 3029 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3030 Vals.clear(); 3031 } 3032 3033 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3034 /// to allow clients to efficiently find the function body. 3035 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3036 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3037 // Get the offset of the VST we are writing, and backpatch it into 3038 // the VST forward declaration record. 3039 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3040 // The BitcodeStartBit was the stream offset of the identification block. 3041 VSTOffset -= bitcodeStartBit(); 3042 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3043 // Note that we add 1 here because the offset is relative to one word 3044 // before the start of the identification block, which was historically 3045 // always the start of the regular bitcode header. 3046 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3047 3048 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3049 3050 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3051 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3054 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3055 3056 for (const Function &F : M) { 3057 uint64_t Record[2]; 3058 3059 if (F.isDeclaration()) 3060 continue; 3061 3062 Record[0] = VE.getValueID(&F); 3063 3064 // Save the word offset of the function (from the start of the 3065 // actual bitcode written to the stream). 3066 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3067 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3068 // Note that we add 1 here because the offset is relative to one word 3069 // before the start of the identification block, which was historically 3070 // always the start of the regular bitcode header. 3071 Record[1] = BitcodeIndex / 32 + 1; 3072 3073 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3074 } 3075 3076 Stream.ExitBlock(); 3077 } 3078 3079 /// Emit names for arguments, instructions and basic blocks in a function. 3080 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3081 const ValueSymbolTable &VST) { 3082 if (VST.empty()) 3083 return; 3084 3085 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3086 3087 // FIXME: Set up the abbrev, we know how many values there are! 3088 // FIXME: We know if the type names can use 7-bit ascii. 3089 SmallVector<uint64_t, 64> NameVals; 3090 3091 for (const ValueName &Name : VST) { 3092 // Figure out the encoding to use for the name. 3093 StringEncoding Bits = getStringEncoding(Name.getKey()); 3094 3095 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3096 NameVals.push_back(VE.getValueID(Name.getValue())); 3097 3098 // VST_CODE_ENTRY: [valueid, namechar x N] 3099 // VST_CODE_BBENTRY: [bbid, namechar x N] 3100 unsigned Code; 3101 if (isa<BasicBlock>(Name.getValue())) { 3102 Code = bitc::VST_CODE_BBENTRY; 3103 if (Bits == SE_Char6) 3104 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3105 } else { 3106 Code = bitc::VST_CODE_ENTRY; 3107 if (Bits == SE_Char6) 3108 AbbrevToUse = VST_ENTRY_6_ABBREV; 3109 else if (Bits == SE_Fixed7) 3110 AbbrevToUse = VST_ENTRY_7_ABBREV; 3111 } 3112 3113 for (const auto P : Name.getKey()) 3114 NameVals.push_back((unsigned char)P); 3115 3116 // Emit the finished record. 3117 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3118 NameVals.clear(); 3119 } 3120 3121 Stream.ExitBlock(); 3122 } 3123 3124 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3125 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3126 unsigned Code; 3127 if (isa<BasicBlock>(Order.V)) 3128 Code = bitc::USELIST_CODE_BB; 3129 else 3130 Code = bitc::USELIST_CODE_DEFAULT; 3131 3132 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3133 Record.push_back(VE.getValueID(Order.V)); 3134 Stream.EmitRecord(Code, Record); 3135 } 3136 3137 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3138 assert(VE.shouldPreserveUseListOrder() && 3139 "Expected to be preserving use-list order"); 3140 3141 auto hasMore = [&]() { 3142 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3143 }; 3144 if (!hasMore()) 3145 // Nothing to do. 3146 return; 3147 3148 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3149 while (hasMore()) { 3150 writeUseList(std::move(VE.UseListOrders.back())); 3151 VE.UseListOrders.pop_back(); 3152 } 3153 Stream.ExitBlock(); 3154 } 3155 3156 /// Emit a function body to the module stream. 3157 void ModuleBitcodeWriter::writeFunction( 3158 const Function &F, 3159 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3160 // Save the bitcode index of the start of this function block for recording 3161 // in the VST. 3162 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3163 3164 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3165 VE.incorporateFunction(F); 3166 3167 SmallVector<unsigned, 64> Vals; 3168 3169 // Emit the number of basic blocks, so the reader can create them ahead of 3170 // time. 3171 Vals.push_back(VE.getBasicBlocks().size()); 3172 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3173 Vals.clear(); 3174 3175 // If there are function-local constants, emit them now. 3176 unsigned CstStart, CstEnd; 3177 VE.getFunctionConstantRange(CstStart, CstEnd); 3178 writeConstants(CstStart, CstEnd, false); 3179 3180 // If there is function-local metadata, emit it now. 3181 writeFunctionMetadata(F); 3182 3183 // Keep a running idea of what the instruction ID is. 3184 unsigned InstID = CstEnd; 3185 3186 bool NeedsMetadataAttachment = F.hasMetadata(); 3187 3188 DILocation *LastDL = nullptr; 3189 // Finally, emit all the instructions, in order. 3190 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3191 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3192 I != E; ++I) { 3193 writeInstruction(*I, InstID, Vals); 3194 3195 if (!I->getType()->isVoidTy()) 3196 ++InstID; 3197 3198 // If the instruction has metadata, write a metadata attachment later. 3199 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3200 3201 // If the instruction has a debug location, emit it. 3202 DILocation *DL = I->getDebugLoc(); 3203 if (!DL) 3204 continue; 3205 3206 if (DL == LastDL) { 3207 // Just repeat the same debug loc as last time. 3208 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3209 continue; 3210 } 3211 3212 Vals.push_back(DL->getLine()); 3213 Vals.push_back(DL->getColumn()); 3214 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3215 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3216 Vals.push_back(DL->isImplicitCode()); 3217 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3218 Vals.clear(); 3219 3220 LastDL = DL; 3221 } 3222 3223 // Emit names for all the instructions etc. 3224 if (auto *Symtab = F.getValueSymbolTable()) 3225 writeFunctionLevelValueSymbolTable(*Symtab); 3226 3227 if (NeedsMetadataAttachment) 3228 writeFunctionMetadataAttachment(F); 3229 if (VE.shouldPreserveUseListOrder()) 3230 writeUseListBlock(&F); 3231 VE.purgeFunction(); 3232 Stream.ExitBlock(); 3233 } 3234 3235 // Emit blockinfo, which defines the standard abbreviations etc. 3236 void ModuleBitcodeWriter::writeBlockInfo() { 3237 // We only want to emit block info records for blocks that have multiple 3238 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3239 // Other blocks can define their abbrevs inline. 3240 Stream.EnterBlockInfoBlock(); 3241 3242 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3243 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3248 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3249 VST_ENTRY_8_ABBREV) 3250 llvm_unreachable("Unexpected abbrev ordering!"); 3251 } 3252 3253 { // 7-bit fixed width VST_CODE_ENTRY strings. 3254 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3255 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3259 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3260 VST_ENTRY_7_ABBREV) 3261 llvm_unreachable("Unexpected abbrev ordering!"); 3262 } 3263 { // 6-bit char6 VST_CODE_ENTRY strings. 3264 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3265 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3269 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3270 VST_ENTRY_6_ABBREV) 3271 llvm_unreachable("Unexpected abbrev ordering!"); 3272 } 3273 { // 6-bit char6 VST_CODE_BBENTRY strings. 3274 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3275 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3279 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3280 VST_BBENTRY_6_ABBREV) 3281 llvm_unreachable("Unexpected abbrev ordering!"); 3282 } 3283 3284 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3285 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3286 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3288 VE.computeBitsRequiredForTypeIndicies())); 3289 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3290 CONSTANTS_SETTYPE_ABBREV) 3291 llvm_unreachable("Unexpected abbrev ordering!"); 3292 } 3293 3294 { // INTEGER abbrev for CONSTANTS_BLOCK. 3295 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3296 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3298 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3299 CONSTANTS_INTEGER_ABBREV) 3300 llvm_unreachable("Unexpected abbrev ordering!"); 3301 } 3302 3303 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3304 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3305 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3308 VE.computeBitsRequiredForTypeIndicies())); 3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3310 3311 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3312 CONSTANTS_CE_CAST_Abbrev) 3313 llvm_unreachable("Unexpected abbrev ordering!"); 3314 } 3315 { // NULL abbrev for CONSTANTS_BLOCK. 3316 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3317 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3318 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3319 CONSTANTS_NULL_Abbrev) 3320 llvm_unreachable("Unexpected abbrev ordering!"); 3321 } 3322 3323 // FIXME: This should only use space for first class types! 3324 3325 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3326 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3327 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3330 VE.computeBitsRequiredForTypeIndicies())); 3331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3333 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3334 FUNCTION_INST_LOAD_ABBREV) 3335 llvm_unreachable("Unexpected abbrev ordering!"); 3336 } 3337 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3338 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3339 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3342 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3343 FUNCTION_INST_UNOP_ABBREV) 3344 llvm_unreachable("Unexpected abbrev ordering!"); 3345 } 3346 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3347 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3348 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3352 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3353 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3354 llvm_unreachable("Unexpected abbrev ordering!"); 3355 } 3356 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3357 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3358 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3362 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3363 FUNCTION_INST_BINOP_ABBREV) 3364 llvm_unreachable("Unexpected abbrev ordering!"); 3365 } 3366 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3367 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3368 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3373 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3374 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3375 llvm_unreachable("Unexpected abbrev ordering!"); 3376 } 3377 { // INST_CAST abbrev for FUNCTION_BLOCK. 3378 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3379 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3382 VE.computeBitsRequiredForTypeIndicies())); 3383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3384 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3385 FUNCTION_INST_CAST_ABBREV) 3386 llvm_unreachable("Unexpected abbrev ordering!"); 3387 } 3388 3389 { // INST_RET abbrev for FUNCTION_BLOCK. 3390 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3391 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3392 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3393 FUNCTION_INST_RET_VOID_ABBREV) 3394 llvm_unreachable("Unexpected abbrev ordering!"); 3395 } 3396 { // INST_RET abbrev for FUNCTION_BLOCK. 3397 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3398 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3400 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3401 FUNCTION_INST_RET_VAL_ABBREV) 3402 llvm_unreachable("Unexpected abbrev ordering!"); 3403 } 3404 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3405 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3406 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3407 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3408 FUNCTION_INST_UNREACHABLE_ABBREV) 3409 llvm_unreachable("Unexpected abbrev ordering!"); 3410 } 3411 { 3412 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3413 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3416 Log2_32_Ceil(VE.getTypes().size() + 1))); 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3419 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3420 FUNCTION_INST_GEP_ABBREV) 3421 llvm_unreachable("Unexpected abbrev ordering!"); 3422 } 3423 3424 Stream.ExitBlock(); 3425 } 3426 3427 /// Write the module path strings, currently only used when generating 3428 /// a combined index file. 3429 void IndexBitcodeWriter::writeModStrings() { 3430 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3431 3432 // TODO: See which abbrev sizes we actually need to emit 3433 3434 // 8-bit fixed-width MST_ENTRY strings. 3435 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3436 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3440 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3441 3442 // 7-bit fixed width MST_ENTRY strings. 3443 Abbv = std::make_shared<BitCodeAbbrev>(); 3444 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3448 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3449 3450 // 6-bit char6 MST_ENTRY strings. 3451 Abbv = std::make_shared<BitCodeAbbrev>(); 3452 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3456 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3457 3458 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3459 Abbv = std::make_shared<BitCodeAbbrev>(); 3460 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3466 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3467 3468 SmallVector<unsigned, 64> Vals; 3469 forEachModule( 3470 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3471 StringRef Key = MPSE.getKey(); 3472 const auto &Value = MPSE.getValue(); 3473 StringEncoding Bits = getStringEncoding(Key); 3474 unsigned AbbrevToUse = Abbrev8Bit; 3475 if (Bits == SE_Char6) 3476 AbbrevToUse = Abbrev6Bit; 3477 else if (Bits == SE_Fixed7) 3478 AbbrevToUse = Abbrev7Bit; 3479 3480 Vals.push_back(Value.first); 3481 Vals.append(Key.begin(), Key.end()); 3482 3483 // Emit the finished record. 3484 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3485 3486 // Emit an optional hash for the module now 3487 const auto &Hash = Value.second; 3488 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3489 Vals.assign(Hash.begin(), Hash.end()); 3490 // Emit the hash record. 3491 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3492 } 3493 3494 Vals.clear(); 3495 }); 3496 Stream.ExitBlock(); 3497 } 3498 3499 /// Write the function type metadata related records that need to appear before 3500 /// a function summary entry (whether per-module or combined). 3501 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3502 FunctionSummary *FS) { 3503 if (!FS->type_tests().empty()) 3504 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3505 3506 SmallVector<uint64_t, 64> Record; 3507 3508 auto WriteVFuncIdVec = [&](uint64_t Ty, 3509 ArrayRef<FunctionSummary::VFuncId> VFs) { 3510 if (VFs.empty()) 3511 return; 3512 Record.clear(); 3513 for (auto &VF : VFs) { 3514 Record.push_back(VF.GUID); 3515 Record.push_back(VF.Offset); 3516 } 3517 Stream.EmitRecord(Ty, Record); 3518 }; 3519 3520 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3521 FS->type_test_assume_vcalls()); 3522 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3523 FS->type_checked_load_vcalls()); 3524 3525 auto WriteConstVCallVec = [&](uint64_t Ty, 3526 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3527 for (auto &VC : VCs) { 3528 Record.clear(); 3529 Record.push_back(VC.VFunc.GUID); 3530 Record.push_back(VC.VFunc.Offset); 3531 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3532 Stream.EmitRecord(Ty, Record); 3533 } 3534 }; 3535 3536 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3537 FS->type_test_assume_const_vcalls()); 3538 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3539 FS->type_checked_load_const_vcalls()); 3540 } 3541 3542 /// Collect type IDs from type tests used by function. 3543 static void 3544 getReferencedTypeIds(FunctionSummary *FS, 3545 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3546 if (!FS->type_tests().empty()) 3547 for (auto &TT : FS->type_tests()) 3548 ReferencedTypeIds.insert(TT); 3549 3550 auto GetReferencedTypesFromVFuncIdVec = 3551 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3552 for (auto &VF : VFs) 3553 ReferencedTypeIds.insert(VF.GUID); 3554 }; 3555 3556 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3557 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3558 3559 auto GetReferencedTypesFromConstVCallVec = 3560 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3561 for (auto &VC : VCs) 3562 ReferencedTypeIds.insert(VC.VFunc.GUID); 3563 }; 3564 3565 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3566 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3567 } 3568 3569 static void writeWholeProgramDevirtResolutionByArg( 3570 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3571 const WholeProgramDevirtResolution::ByArg &ByArg) { 3572 NameVals.push_back(args.size()); 3573 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3574 3575 NameVals.push_back(ByArg.TheKind); 3576 NameVals.push_back(ByArg.Info); 3577 NameVals.push_back(ByArg.Byte); 3578 NameVals.push_back(ByArg.Bit); 3579 } 3580 3581 static void writeWholeProgramDevirtResolution( 3582 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3583 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3584 NameVals.push_back(Id); 3585 3586 NameVals.push_back(Wpd.TheKind); 3587 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3588 NameVals.push_back(Wpd.SingleImplName.size()); 3589 3590 NameVals.push_back(Wpd.ResByArg.size()); 3591 for (auto &A : Wpd.ResByArg) 3592 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3593 } 3594 3595 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3596 StringTableBuilder &StrtabBuilder, 3597 const std::string &Id, 3598 const TypeIdSummary &Summary) { 3599 NameVals.push_back(StrtabBuilder.add(Id)); 3600 NameVals.push_back(Id.size()); 3601 3602 NameVals.push_back(Summary.TTRes.TheKind); 3603 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3604 NameVals.push_back(Summary.TTRes.AlignLog2); 3605 NameVals.push_back(Summary.TTRes.SizeM1); 3606 NameVals.push_back(Summary.TTRes.BitMask); 3607 NameVals.push_back(Summary.TTRes.InlineBits); 3608 3609 for (auto &W : Summary.WPDRes) 3610 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3611 W.second); 3612 } 3613 3614 static void writeTypeIdCompatibleVtableSummaryRecord( 3615 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3616 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3617 ValueEnumerator &VE) { 3618 NameVals.push_back(StrtabBuilder.add(Id)); 3619 NameVals.push_back(Id.size()); 3620 3621 for (auto &P : Summary) { 3622 NameVals.push_back(P.AddressPointOffset); 3623 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3624 } 3625 } 3626 3627 // Helper to emit a single function summary record. 3628 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3629 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3630 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3631 const Function &F) { 3632 NameVals.push_back(ValueID); 3633 3634 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3635 writeFunctionTypeMetadataRecords(Stream, FS); 3636 3637 auto SpecialRefCnts = FS->specialRefCounts(); 3638 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3639 NameVals.push_back(FS->instCount()); 3640 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3641 NameVals.push_back(FS->refs().size()); 3642 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3643 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3644 3645 for (auto &RI : FS->refs()) 3646 NameVals.push_back(VE.getValueID(RI.getValue())); 3647 3648 bool HasProfileData = 3649 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3650 for (auto &ECI : FS->calls()) { 3651 NameVals.push_back(getValueId(ECI.first)); 3652 if (HasProfileData) 3653 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3654 else if (WriteRelBFToSummary) 3655 NameVals.push_back(ECI.second.RelBlockFreq); 3656 } 3657 3658 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3659 unsigned Code = 3660 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3661 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3662 : bitc::FS_PERMODULE)); 3663 3664 // Emit the finished record. 3665 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3666 NameVals.clear(); 3667 } 3668 3669 // Collect the global value references in the given variable's initializer, 3670 // and emit them in a summary record. 3671 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3672 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3673 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3674 auto VI = Index->getValueInfo(V.getGUID()); 3675 if (!VI || VI.getSummaryList().empty()) { 3676 // Only declarations should not have a summary (a declaration might however 3677 // have a summary if the def was in module level asm). 3678 assert(V.isDeclaration()); 3679 return; 3680 } 3681 auto *Summary = VI.getSummaryList()[0].get(); 3682 NameVals.push_back(VE.getValueID(&V)); 3683 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3684 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3685 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3686 3687 auto VTableFuncs = VS->vTableFuncs(); 3688 if (!VTableFuncs.empty()) 3689 NameVals.push_back(VS->refs().size()); 3690 3691 unsigned SizeBeforeRefs = NameVals.size(); 3692 for (auto &RI : VS->refs()) 3693 NameVals.push_back(VE.getValueID(RI.getValue())); 3694 // Sort the refs for determinism output, the vector returned by FS->refs() has 3695 // been initialized from a DenseSet. 3696 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3697 3698 if (VTableFuncs.empty()) 3699 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3700 FSModRefsAbbrev); 3701 else { 3702 // VTableFuncs pairs should already be sorted by offset. 3703 for (auto &P : VTableFuncs) { 3704 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3705 NameVals.push_back(P.VTableOffset); 3706 } 3707 3708 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3709 FSModVTableRefsAbbrev); 3710 } 3711 NameVals.clear(); 3712 } 3713 3714 // Current version for the summary. 3715 // This is bumped whenever we introduce changes in the way some record are 3716 // interpreted, like flags for instance. 3717 static const uint64_t INDEX_VERSION = 7; 3718 3719 /// Emit the per-module summary section alongside the rest of 3720 /// the module's bitcode. 3721 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3722 // By default we compile with ThinLTO if the module has a summary, but the 3723 // client can request full LTO with a module flag. 3724 bool IsThinLTO = true; 3725 if (auto *MD = 3726 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3727 IsThinLTO = MD->getZExtValue(); 3728 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3729 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3730 4); 3731 3732 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3733 3734 // Write the index flags. 3735 uint64_t Flags = 0; 3736 // Bits 1-3 are set only in the combined index, skip them. 3737 if (Index->enableSplitLTOUnit()) 3738 Flags |= 0x8; 3739 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3740 3741 if (Index->begin() == Index->end()) { 3742 Stream.ExitBlock(); 3743 return; 3744 } 3745 3746 for (const auto &GVI : valueIds()) { 3747 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3748 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3749 } 3750 3751 // Abbrev for FS_PERMODULE_PROFILE. 3752 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3753 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3761 // numrefs x valueid, n x (valueid, hotness) 3762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3764 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3765 3766 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3767 Abbv = std::make_shared<BitCodeAbbrev>(); 3768 if (WriteRelBFToSummary) 3769 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3770 else 3771 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3779 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3782 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3783 3784 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3785 Abbv = std::make_shared<BitCodeAbbrev>(); 3786 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3791 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3792 3793 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3794 Abbv = std::make_shared<BitCodeAbbrev>(); 3795 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3799 // numrefs x valueid, n x (valueid , offset) 3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3802 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3803 3804 // Abbrev for FS_ALIAS. 3805 Abbv = std::make_shared<BitCodeAbbrev>(); 3806 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3810 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3811 3812 // Abbrev for FS_TYPE_ID_METADATA 3813 Abbv = std::make_shared<BitCodeAbbrev>(); 3814 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3817 // n x (valueid , offset) 3818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3820 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3821 3822 SmallVector<uint64_t, 64> NameVals; 3823 // Iterate over the list of functions instead of the Index to 3824 // ensure the ordering is stable. 3825 for (const Function &F : M) { 3826 // Summary emission does not support anonymous functions, they have to 3827 // renamed using the anonymous function renaming pass. 3828 if (!F.hasName()) 3829 report_fatal_error("Unexpected anonymous function when writing summary"); 3830 3831 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3832 if (!VI || VI.getSummaryList().empty()) { 3833 // Only declarations should not have a summary (a declaration might 3834 // however have a summary if the def was in module level asm). 3835 assert(F.isDeclaration()); 3836 continue; 3837 } 3838 auto *Summary = VI.getSummaryList()[0].get(); 3839 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3840 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3841 } 3842 3843 // Capture references from GlobalVariable initializers, which are outside 3844 // of a function scope. 3845 for (const GlobalVariable &G : M.globals()) 3846 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3847 FSModVTableRefsAbbrev); 3848 3849 for (const GlobalAlias &A : M.aliases()) { 3850 auto *Aliasee = A.getBaseObject(); 3851 if (!Aliasee->hasName()) 3852 // Nameless function don't have an entry in the summary, skip it. 3853 continue; 3854 auto AliasId = VE.getValueID(&A); 3855 auto AliaseeId = VE.getValueID(Aliasee); 3856 NameVals.push_back(AliasId); 3857 auto *Summary = Index->getGlobalValueSummary(A); 3858 AliasSummary *AS = cast<AliasSummary>(Summary); 3859 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3860 NameVals.push_back(AliaseeId); 3861 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3862 NameVals.clear(); 3863 } 3864 3865 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3866 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3867 S.second, VE); 3868 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3869 TypeIdCompatibleVtableAbbrev); 3870 NameVals.clear(); 3871 } 3872 3873 Stream.ExitBlock(); 3874 } 3875 3876 /// Emit the combined summary section into the combined index file. 3877 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3878 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3879 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3880 3881 // Write the index flags. 3882 uint64_t Flags = 0; 3883 if (Index.withGlobalValueDeadStripping()) 3884 Flags |= 0x1; 3885 if (Index.skipModuleByDistributedBackend()) 3886 Flags |= 0x2; 3887 if (Index.hasSyntheticEntryCounts()) 3888 Flags |= 0x4; 3889 if (Index.enableSplitLTOUnit()) 3890 Flags |= 0x8; 3891 if (Index.partiallySplitLTOUnits()) 3892 Flags |= 0x10; 3893 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3894 3895 for (const auto &GVI : valueIds()) { 3896 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3897 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3898 } 3899 3900 // Abbrev for FS_COMBINED. 3901 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3902 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3912 // numrefs x valueid, n x (valueid) 3913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3915 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3916 3917 // Abbrev for FS_COMBINED_PROFILE. 3918 Abbv = std::make_shared<BitCodeAbbrev>(); 3919 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3929 // numrefs x valueid, n x (valueid, hotness) 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3932 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3933 3934 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3935 Abbv = std::make_shared<BitCodeAbbrev>(); 3936 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3942 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3943 3944 // Abbrev for FS_COMBINED_ALIAS. 3945 Abbv = std::make_shared<BitCodeAbbrev>(); 3946 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3951 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3952 3953 // The aliases are emitted as a post-pass, and will point to the value 3954 // id of the aliasee. Save them in a vector for post-processing. 3955 SmallVector<AliasSummary *, 64> Aliases; 3956 3957 // Save the value id for each summary for alias emission. 3958 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3959 3960 SmallVector<uint64_t, 64> NameVals; 3961 3962 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3963 // with the type ids referenced by this index file. 3964 std::set<GlobalValue::GUID> ReferencedTypeIds; 3965 3966 // For local linkage, we also emit the original name separately 3967 // immediately after the record. 3968 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3969 if (!GlobalValue::isLocalLinkage(S.linkage())) 3970 return; 3971 NameVals.push_back(S.getOriginalName()); 3972 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3973 NameVals.clear(); 3974 }; 3975 3976 std::set<GlobalValue::GUID> DefOrUseGUIDs; 3977 forEachSummary([&](GVInfo I, bool IsAliasee) { 3978 GlobalValueSummary *S = I.second; 3979 assert(S); 3980 DefOrUseGUIDs.insert(I.first); 3981 for (const ValueInfo &VI : S->refs()) 3982 DefOrUseGUIDs.insert(VI.getGUID()); 3983 3984 auto ValueId = getValueId(I.first); 3985 assert(ValueId); 3986 SummaryToValueIdMap[S] = *ValueId; 3987 3988 // If this is invoked for an aliasee, we want to record the above 3989 // mapping, but then not emit a summary entry (if the aliasee is 3990 // to be imported, we will invoke this separately with IsAliasee=false). 3991 if (IsAliasee) 3992 return; 3993 3994 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3995 // Will process aliases as a post-pass because the reader wants all 3996 // global to be loaded first. 3997 Aliases.push_back(AS); 3998 return; 3999 } 4000 4001 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4002 NameVals.push_back(*ValueId); 4003 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4004 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4005 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4006 for (auto &RI : VS->refs()) { 4007 auto RefValueId = getValueId(RI.getGUID()); 4008 if (!RefValueId) 4009 continue; 4010 NameVals.push_back(*RefValueId); 4011 } 4012 4013 // Emit the finished record. 4014 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4015 FSModRefsAbbrev); 4016 NameVals.clear(); 4017 MaybeEmitOriginalName(*S); 4018 return; 4019 } 4020 4021 auto *FS = cast<FunctionSummary>(S); 4022 writeFunctionTypeMetadataRecords(Stream, FS); 4023 getReferencedTypeIds(FS, ReferencedTypeIds); 4024 4025 NameVals.push_back(*ValueId); 4026 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4027 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4028 NameVals.push_back(FS->instCount()); 4029 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4030 NameVals.push_back(FS->entryCount()); 4031 4032 // Fill in below 4033 NameVals.push_back(0); // numrefs 4034 NameVals.push_back(0); // rorefcnt 4035 NameVals.push_back(0); // worefcnt 4036 4037 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4038 for (auto &RI : FS->refs()) { 4039 auto RefValueId = getValueId(RI.getGUID()); 4040 if (!RefValueId) 4041 continue; 4042 NameVals.push_back(*RefValueId); 4043 if (RI.isReadOnly()) 4044 RORefCnt++; 4045 else if (RI.isWriteOnly()) 4046 WORefCnt++; 4047 Count++; 4048 } 4049 NameVals[6] = Count; 4050 NameVals[7] = RORefCnt; 4051 NameVals[8] = WORefCnt; 4052 4053 bool HasProfileData = false; 4054 for (auto &EI : FS->calls()) { 4055 HasProfileData |= 4056 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4057 if (HasProfileData) 4058 break; 4059 } 4060 4061 for (auto &EI : FS->calls()) { 4062 // If this GUID doesn't have a value id, it doesn't have a function 4063 // summary and we don't need to record any calls to it. 4064 GlobalValue::GUID GUID = EI.first.getGUID(); 4065 auto CallValueId = getValueId(GUID); 4066 if (!CallValueId) { 4067 // For SamplePGO, the indirect call targets for local functions will 4068 // have its original name annotated in profile. We try to find the 4069 // corresponding PGOFuncName as the GUID. 4070 GUID = Index.getGUIDFromOriginalID(GUID); 4071 if (GUID == 0) 4072 continue; 4073 CallValueId = getValueId(GUID); 4074 if (!CallValueId) 4075 continue; 4076 // The mapping from OriginalId to GUID may return a GUID 4077 // that corresponds to a static variable. Filter it out here. 4078 // This can happen when 4079 // 1) There is a call to a library function which does not have 4080 // a CallValidId; 4081 // 2) There is a static variable with the OriginalGUID identical 4082 // to the GUID of the library function in 1); 4083 // When this happens, the logic for SamplePGO kicks in and 4084 // the static variable in 2) will be found, which needs to be 4085 // filtered out. 4086 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4087 if (GVSum && 4088 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4089 continue; 4090 } 4091 NameVals.push_back(*CallValueId); 4092 if (HasProfileData) 4093 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4094 } 4095 4096 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4097 unsigned Code = 4098 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4099 4100 // Emit the finished record. 4101 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4102 NameVals.clear(); 4103 MaybeEmitOriginalName(*S); 4104 }); 4105 4106 for (auto *AS : Aliases) { 4107 auto AliasValueId = SummaryToValueIdMap[AS]; 4108 assert(AliasValueId); 4109 NameVals.push_back(AliasValueId); 4110 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4111 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4112 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4113 assert(AliaseeValueId); 4114 NameVals.push_back(AliaseeValueId); 4115 4116 // Emit the finished record. 4117 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4118 NameVals.clear(); 4119 MaybeEmitOriginalName(*AS); 4120 4121 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4122 getReferencedTypeIds(FS, ReferencedTypeIds); 4123 } 4124 4125 if (!Index.cfiFunctionDefs().empty()) { 4126 for (auto &S : Index.cfiFunctionDefs()) { 4127 if (DefOrUseGUIDs.count( 4128 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4129 NameVals.push_back(StrtabBuilder.add(S)); 4130 NameVals.push_back(S.size()); 4131 } 4132 } 4133 if (!NameVals.empty()) { 4134 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4135 NameVals.clear(); 4136 } 4137 } 4138 4139 if (!Index.cfiFunctionDecls().empty()) { 4140 for (auto &S : Index.cfiFunctionDecls()) { 4141 if (DefOrUseGUIDs.count( 4142 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4143 NameVals.push_back(StrtabBuilder.add(S)); 4144 NameVals.push_back(S.size()); 4145 } 4146 } 4147 if (!NameVals.empty()) { 4148 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4149 NameVals.clear(); 4150 } 4151 } 4152 4153 // Walk the GUIDs that were referenced, and write the 4154 // corresponding type id records. 4155 for (auto &T : ReferencedTypeIds) { 4156 auto TidIter = Index.typeIds().equal_range(T); 4157 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4158 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4159 It->second.second); 4160 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4161 NameVals.clear(); 4162 } 4163 } 4164 4165 Stream.ExitBlock(); 4166 } 4167 4168 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4169 /// current llvm version, and a record for the epoch number. 4170 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4171 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4172 4173 // Write the "user readable" string identifying the bitcode producer 4174 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4175 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4178 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4179 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4180 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4181 4182 // Write the epoch version 4183 Abbv = std::make_shared<BitCodeAbbrev>(); 4184 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4186 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4187 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 4188 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4189 Stream.ExitBlock(); 4190 } 4191 4192 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4193 // Emit the module's hash. 4194 // MODULE_CODE_HASH: [5*i32] 4195 if (GenerateHash) { 4196 uint32_t Vals[5]; 4197 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4198 Buffer.size() - BlockStartPos)); 4199 StringRef Hash = Hasher.result(); 4200 for (int Pos = 0; Pos < 20; Pos += 4) { 4201 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4202 } 4203 4204 // Emit the finished record. 4205 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4206 4207 if (ModHash) 4208 // Save the written hash value. 4209 llvm::copy(Vals, std::begin(*ModHash)); 4210 } 4211 } 4212 4213 void ModuleBitcodeWriter::write() { 4214 writeIdentificationBlock(Stream); 4215 4216 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4217 size_t BlockStartPos = Buffer.size(); 4218 4219 writeModuleVersion(); 4220 4221 // Emit blockinfo, which defines the standard abbreviations etc. 4222 writeBlockInfo(); 4223 4224 // Emit information describing all of the types in the module. 4225 writeTypeTable(); 4226 4227 // Emit information about attribute groups. 4228 writeAttributeGroupTable(); 4229 4230 // Emit information about parameter attributes. 4231 writeAttributeTable(); 4232 4233 writeComdats(); 4234 4235 // Emit top-level description of module, including target triple, inline asm, 4236 // descriptors for global variables, and function prototype info. 4237 writeModuleInfo(); 4238 4239 // Emit constants. 4240 writeModuleConstants(); 4241 4242 // Emit metadata kind names. 4243 writeModuleMetadataKinds(); 4244 4245 // Emit metadata. 4246 writeModuleMetadata(); 4247 4248 // Emit module-level use-lists. 4249 if (VE.shouldPreserveUseListOrder()) 4250 writeUseListBlock(nullptr); 4251 4252 writeOperandBundleTags(); 4253 writeSyncScopeNames(); 4254 4255 // Emit function bodies. 4256 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4257 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4258 if (!F->isDeclaration()) 4259 writeFunction(*F, FunctionToBitcodeIndex); 4260 4261 // Need to write after the above call to WriteFunction which populates 4262 // the summary information in the index. 4263 if (Index) 4264 writePerModuleGlobalValueSummary(); 4265 4266 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4267 4268 writeModuleHash(BlockStartPos); 4269 4270 Stream.ExitBlock(); 4271 } 4272 4273 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4274 uint32_t &Position) { 4275 support::endian::write32le(&Buffer[Position], Value); 4276 Position += 4; 4277 } 4278 4279 /// If generating a bc file on darwin, we have to emit a 4280 /// header and trailer to make it compatible with the system archiver. To do 4281 /// this we emit the following header, and then emit a trailer that pads the 4282 /// file out to be a multiple of 16 bytes. 4283 /// 4284 /// struct bc_header { 4285 /// uint32_t Magic; // 0x0B17C0DE 4286 /// uint32_t Version; // Version, currently always 0. 4287 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4288 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4289 /// uint32_t CPUType; // CPU specifier. 4290 /// ... potentially more later ... 4291 /// }; 4292 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4293 const Triple &TT) { 4294 unsigned CPUType = ~0U; 4295 4296 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4297 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4298 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4299 // specific constants here because they are implicitly part of the Darwin ABI. 4300 enum { 4301 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4302 DARWIN_CPU_TYPE_X86 = 7, 4303 DARWIN_CPU_TYPE_ARM = 12, 4304 DARWIN_CPU_TYPE_POWERPC = 18 4305 }; 4306 4307 Triple::ArchType Arch = TT.getArch(); 4308 if (Arch == Triple::x86_64) 4309 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4310 else if (Arch == Triple::x86) 4311 CPUType = DARWIN_CPU_TYPE_X86; 4312 else if (Arch == Triple::ppc) 4313 CPUType = DARWIN_CPU_TYPE_POWERPC; 4314 else if (Arch == Triple::ppc64) 4315 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4316 else if (Arch == Triple::arm || Arch == Triple::thumb) 4317 CPUType = DARWIN_CPU_TYPE_ARM; 4318 4319 // Traditional Bitcode starts after header. 4320 assert(Buffer.size() >= BWH_HeaderSize && 4321 "Expected header size to be reserved"); 4322 unsigned BCOffset = BWH_HeaderSize; 4323 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4324 4325 // Write the magic and version. 4326 unsigned Position = 0; 4327 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4328 writeInt32ToBuffer(0, Buffer, Position); // Version. 4329 writeInt32ToBuffer(BCOffset, Buffer, Position); 4330 writeInt32ToBuffer(BCSize, Buffer, Position); 4331 writeInt32ToBuffer(CPUType, Buffer, Position); 4332 4333 // If the file is not a multiple of 16 bytes, insert dummy padding. 4334 while (Buffer.size() & 15) 4335 Buffer.push_back(0); 4336 } 4337 4338 /// Helper to write the header common to all bitcode files. 4339 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4340 // Emit the file header. 4341 Stream.Emit((unsigned)'B', 8); 4342 Stream.Emit((unsigned)'C', 8); 4343 Stream.Emit(0x0, 4); 4344 Stream.Emit(0xC, 4); 4345 Stream.Emit(0xE, 4); 4346 Stream.Emit(0xD, 4); 4347 } 4348 4349 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4350 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4351 writeBitcodeHeader(*Stream); 4352 } 4353 4354 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4355 4356 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4357 Stream->EnterSubblock(Block, 3); 4358 4359 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4360 Abbv->Add(BitCodeAbbrevOp(Record)); 4361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4362 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4363 4364 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4365 4366 Stream->ExitBlock(); 4367 } 4368 4369 void BitcodeWriter::writeSymtab() { 4370 assert(!WroteStrtab && !WroteSymtab); 4371 4372 // If any module has module-level inline asm, we will require a registered asm 4373 // parser for the target so that we can create an accurate symbol table for 4374 // the module. 4375 for (Module *M : Mods) { 4376 if (M->getModuleInlineAsm().empty()) 4377 continue; 4378 4379 std::string Err; 4380 const Triple TT(M->getTargetTriple()); 4381 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4382 if (!T || !T->hasMCAsmParser()) 4383 return; 4384 } 4385 4386 WroteSymtab = true; 4387 SmallVector<char, 0> Symtab; 4388 // The irsymtab::build function may be unable to create a symbol table if the 4389 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4390 // table is not required for correctness, but we still want to be able to 4391 // write malformed modules to bitcode files, so swallow the error. 4392 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4393 consumeError(std::move(E)); 4394 return; 4395 } 4396 4397 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4398 {Symtab.data(), Symtab.size()}); 4399 } 4400 4401 void BitcodeWriter::writeStrtab() { 4402 assert(!WroteStrtab); 4403 4404 std::vector<char> Strtab; 4405 StrtabBuilder.finalizeInOrder(); 4406 Strtab.resize(StrtabBuilder.getSize()); 4407 StrtabBuilder.write((uint8_t *)Strtab.data()); 4408 4409 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4410 {Strtab.data(), Strtab.size()}); 4411 4412 WroteStrtab = true; 4413 } 4414 4415 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4416 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4417 WroteStrtab = true; 4418 } 4419 4420 void BitcodeWriter::writeModule(const Module &M, 4421 bool ShouldPreserveUseListOrder, 4422 const ModuleSummaryIndex *Index, 4423 bool GenerateHash, ModuleHash *ModHash) { 4424 assert(!WroteStrtab); 4425 4426 // The Mods vector is used by irsymtab::build, which requires non-const 4427 // Modules in case it needs to materialize metadata. But the bitcode writer 4428 // requires that the module is materialized, so we can cast to non-const here, 4429 // after checking that it is in fact materialized. 4430 assert(M.isMaterialized()); 4431 Mods.push_back(const_cast<Module *>(&M)); 4432 4433 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4434 ShouldPreserveUseListOrder, Index, 4435 GenerateHash, ModHash); 4436 ModuleWriter.write(); 4437 } 4438 4439 void BitcodeWriter::writeIndex( 4440 const ModuleSummaryIndex *Index, 4441 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4442 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4443 ModuleToSummariesForIndex); 4444 IndexWriter.write(); 4445 } 4446 4447 /// Write the specified module to the specified output stream. 4448 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4449 bool ShouldPreserveUseListOrder, 4450 const ModuleSummaryIndex *Index, 4451 bool GenerateHash, ModuleHash *ModHash) { 4452 SmallVector<char, 0> Buffer; 4453 Buffer.reserve(256*1024); 4454 4455 // If this is darwin or another generic macho target, reserve space for the 4456 // header. 4457 Triple TT(M.getTargetTriple()); 4458 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4459 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4460 4461 BitcodeWriter Writer(Buffer); 4462 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4463 ModHash); 4464 Writer.writeSymtab(); 4465 Writer.writeStrtab(); 4466 4467 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4468 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4469 4470 // Write the generated bitstream to "Out". 4471 Out.write((char*)&Buffer.front(), Buffer.size()); 4472 } 4473 4474 void IndexBitcodeWriter::write() { 4475 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4476 4477 writeModuleVersion(); 4478 4479 // Write the module paths in the combined index. 4480 writeModStrings(); 4481 4482 // Write the summary combined index records. 4483 writeCombinedGlobalValueSummary(); 4484 4485 Stream.ExitBlock(); 4486 } 4487 4488 // Write the specified module summary index to the given raw output stream, 4489 // where it will be written in a new bitcode block. This is used when 4490 // writing the combined index file for ThinLTO. When writing a subset of the 4491 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4492 void llvm::WriteIndexToFile( 4493 const ModuleSummaryIndex &Index, raw_ostream &Out, 4494 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4495 SmallVector<char, 0> Buffer; 4496 Buffer.reserve(256 * 1024); 4497 4498 BitcodeWriter Writer(Buffer); 4499 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4500 Writer.writeStrtab(); 4501 4502 Out.write((char *)&Buffer.front(), Buffer.size()); 4503 } 4504 4505 namespace { 4506 4507 /// Class to manage the bitcode writing for a thin link bitcode file. 4508 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4509 /// ModHash is for use in ThinLTO incremental build, generated while writing 4510 /// the module bitcode file. 4511 const ModuleHash *ModHash; 4512 4513 public: 4514 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4515 BitstreamWriter &Stream, 4516 const ModuleSummaryIndex &Index, 4517 const ModuleHash &ModHash) 4518 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4519 /*ShouldPreserveUseListOrder=*/false, &Index), 4520 ModHash(&ModHash) {} 4521 4522 void write(); 4523 4524 private: 4525 void writeSimplifiedModuleInfo(); 4526 }; 4527 4528 } // end anonymous namespace 4529 4530 // This function writes a simpilified module info for thin link bitcode file. 4531 // It only contains the source file name along with the name(the offset and 4532 // size in strtab) and linkage for global values. For the global value info 4533 // entry, in order to keep linkage at offset 5, there are three zeros used 4534 // as padding. 4535 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4536 SmallVector<unsigned, 64> Vals; 4537 // Emit the module's source file name. 4538 { 4539 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4540 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4541 if (Bits == SE_Char6) 4542 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4543 else if (Bits == SE_Fixed7) 4544 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4545 4546 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4547 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4548 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4550 Abbv->Add(AbbrevOpToUse); 4551 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4552 4553 for (const auto P : M.getSourceFileName()) 4554 Vals.push_back((unsigned char)P); 4555 4556 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4557 Vals.clear(); 4558 } 4559 4560 // Emit the global variable information. 4561 for (const GlobalVariable &GV : M.globals()) { 4562 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4563 Vals.push_back(StrtabBuilder.add(GV.getName())); 4564 Vals.push_back(GV.getName().size()); 4565 Vals.push_back(0); 4566 Vals.push_back(0); 4567 Vals.push_back(0); 4568 Vals.push_back(getEncodedLinkage(GV)); 4569 4570 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4571 Vals.clear(); 4572 } 4573 4574 // Emit the function proto information. 4575 for (const Function &F : M) { 4576 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4577 Vals.push_back(StrtabBuilder.add(F.getName())); 4578 Vals.push_back(F.getName().size()); 4579 Vals.push_back(0); 4580 Vals.push_back(0); 4581 Vals.push_back(0); 4582 Vals.push_back(getEncodedLinkage(F)); 4583 4584 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4585 Vals.clear(); 4586 } 4587 4588 // Emit the alias information. 4589 for (const GlobalAlias &A : M.aliases()) { 4590 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4591 Vals.push_back(StrtabBuilder.add(A.getName())); 4592 Vals.push_back(A.getName().size()); 4593 Vals.push_back(0); 4594 Vals.push_back(0); 4595 Vals.push_back(0); 4596 Vals.push_back(getEncodedLinkage(A)); 4597 4598 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4599 Vals.clear(); 4600 } 4601 4602 // Emit the ifunc information. 4603 for (const GlobalIFunc &I : M.ifuncs()) { 4604 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4605 Vals.push_back(StrtabBuilder.add(I.getName())); 4606 Vals.push_back(I.getName().size()); 4607 Vals.push_back(0); 4608 Vals.push_back(0); 4609 Vals.push_back(0); 4610 Vals.push_back(getEncodedLinkage(I)); 4611 4612 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4613 Vals.clear(); 4614 } 4615 } 4616 4617 void ThinLinkBitcodeWriter::write() { 4618 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4619 4620 writeModuleVersion(); 4621 4622 writeSimplifiedModuleInfo(); 4623 4624 writePerModuleGlobalValueSummary(); 4625 4626 // Write module hash. 4627 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4628 4629 Stream.ExitBlock(); 4630 } 4631 4632 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4633 const ModuleSummaryIndex &Index, 4634 const ModuleHash &ModHash) { 4635 assert(!WroteStrtab); 4636 4637 // The Mods vector is used by irsymtab::build, which requires non-const 4638 // Modules in case it needs to materialize metadata. But the bitcode writer 4639 // requires that the module is materialized, so we can cast to non-const here, 4640 // after checking that it is in fact materialized. 4641 assert(M.isMaterialized()); 4642 Mods.push_back(const_cast<Module *>(&M)); 4643 4644 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4645 ModHash); 4646 ThinLinkWriter.write(); 4647 } 4648 4649 // Write the specified thin link bitcode file to the given raw output stream, 4650 // where it will be written in a new bitcode block. This is used when 4651 // writing the per-module index file for ThinLTO. 4652 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4653 const ModuleSummaryIndex &Index, 4654 const ModuleHash &ModHash) { 4655 SmallVector<char, 0> Buffer; 4656 Buffer.reserve(256 * 1024); 4657 4658 BitcodeWriter Writer(Buffer); 4659 Writer.writeThinLinkBitcode(M, Index, ModHash); 4660 Writer.writeSymtab(); 4661 Writer.writeStrtab(); 4662 4663 Out.write((char *)&Buffer.front(), Buffer.size()); 4664 } 4665