1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRangeList.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/ProfileData/MemProf.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Endian.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/SHA1.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/TargetParser/Triple.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <map> 80 #include <memory> 81 #include <optional> 82 #include <string> 83 #include <utility> 84 #include <vector> 85 86 using namespace llvm; 87 using namespace llvm::memprof; 88 89 static cl::opt<unsigned> 90 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 91 cl::desc("Number of metadatas above which we emit an index " 92 "to enable lazy-loading")); 93 static cl::opt<uint32_t> FlushThreshold( 94 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 95 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 96 97 static cl::opt<bool> WriteRelBFToSummary( 98 "write-relbf-to-summary", cl::Hidden, cl::init(false), 99 cl::desc("Write relative block frequency to function summary ")); 100 101 namespace llvm { 102 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 103 } 104 105 extern bool WriteNewDbgInfoFormatToBitcode; 106 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 107 108 namespace { 109 110 /// These are manifest constants used by the bitcode writer. They do not need to 111 /// be kept in sync with the reader, but need to be consistent within this file. 112 enum { 113 // VALUE_SYMTAB_BLOCK abbrev id's. 114 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 VST_ENTRY_7_ABBREV, 116 VST_ENTRY_6_ABBREV, 117 VST_BBENTRY_6_ABBREV, 118 119 // CONSTANTS_BLOCK abbrev id's. 120 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 CONSTANTS_INTEGER_ABBREV, 122 CONSTANTS_CE_CAST_Abbrev, 123 CONSTANTS_NULL_Abbrev, 124 125 // FUNCTION_BLOCK abbrev id's. 126 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 127 FUNCTION_INST_UNOP_ABBREV, 128 FUNCTION_INST_UNOP_FLAGS_ABBREV, 129 FUNCTION_INST_BINOP_ABBREV, 130 FUNCTION_INST_BINOP_FLAGS_ABBREV, 131 FUNCTION_INST_CAST_ABBREV, 132 FUNCTION_INST_CAST_FLAGS_ABBREV, 133 FUNCTION_INST_RET_VOID_ABBREV, 134 FUNCTION_INST_RET_VAL_ABBREV, 135 FUNCTION_INST_UNREACHABLE_ABBREV, 136 FUNCTION_INST_GEP_ABBREV, 137 FUNCTION_DEBUG_RECORD_VALUE_ABBREV, 138 }; 139 140 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 141 /// file type. 142 class BitcodeWriterBase { 143 protected: 144 /// The stream created and owned by the client. 145 BitstreamWriter &Stream; 146 147 StringTableBuilder &StrtabBuilder; 148 149 public: 150 /// Constructs a BitcodeWriterBase object that writes to the provided 151 /// \p Stream. 152 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 153 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 154 155 protected: 156 void writeModuleVersion(); 157 }; 158 159 void BitcodeWriterBase::writeModuleVersion() { 160 // VERSION: [version#] 161 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 162 } 163 164 /// Base class to manage the module bitcode writing, currently subclassed for 165 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 166 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 167 protected: 168 /// The Module to write to bitcode. 169 const Module &M; 170 171 /// Enumerates ids for all values in the module. 172 ValueEnumerator VE; 173 174 /// Optional per-module index to write for ThinLTO. 175 const ModuleSummaryIndex *Index; 176 177 /// Map that holds the correspondence between GUIDs in the summary index, 178 /// that came from indirect call profiles, and a value id generated by this 179 /// class to use in the VST and summary block records. 180 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 181 182 /// Tracks the last value id recorded in the GUIDToValueMap. 183 unsigned GlobalValueId; 184 185 /// Saves the offset of the VSTOffset record that must eventually be 186 /// backpatched with the offset of the actual VST. 187 uint64_t VSTOffsetPlaceholder = 0; 188 189 public: 190 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 191 /// writing to the provided \p Buffer. 192 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 193 BitstreamWriter &Stream, 194 bool ShouldPreserveUseListOrder, 195 const ModuleSummaryIndex *Index) 196 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 197 VE(M, ShouldPreserveUseListOrder), Index(Index) { 198 // Assign ValueIds to any callee values in the index that came from 199 // indirect call profiles and were recorded as a GUID not a Value* 200 // (which would have been assigned an ID by the ValueEnumerator). 201 // The starting ValueId is just after the number of values in the 202 // ValueEnumerator, so that they can be emitted in the VST. 203 GlobalValueId = VE.getValues().size(); 204 if (!Index) 205 return; 206 for (const auto &GUIDSummaryLists : *Index) 207 // Examine all summaries for this GUID. 208 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 209 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) { 210 // For each call in the function summary, see if the call 211 // is to a GUID (which means it is for an indirect call, 212 // otherwise we would have a Value for it). If so, synthesize 213 // a value id. 214 for (auto &CallEdge : FS->calls()) 215 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 216 assignValueId(CallEdge.first.getGUID()); 217 218 // For each referenced variables in the function summary, see if the 219 // variable is represented by a GUID (as opposed to a symbol to 220 // declarations or definitions in the module). If so, synthesize a 221 // value id. 222 for (auto &RefEdge : FS->refs()) 223 if (!RefEdge.haveGVs() || !RefEdge.getValue()) 224 assignValueId(RefEdge.getGUID()); 225 } 226 } 227 228 protected: 229 void writePerModuleGlobalValueSummary(); 230 231 private: 232 void writePerModuleFunctionSummaryRecord( 233 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 234 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 235 unsigned CallsiteAbbrev, unsigned AllocAbbrev, unsigned ContextIdAbbvId, 236 const Function &F, DenseMap<CallStackId, LinearCallStackId> &CallStackPos, 237 CallStackId &CallStackCount); 238 void writeModuleLevelReferences(const GlobalVariable &V, 239 SmallVector<uint64_t, 64> &NameVals, 240 unsigned FSModRefsAbbrev, 241 unsigned FSModVTableRefsAbbrev); 242 243 void assignValueId(GlobalValue::GUID ValGUID) { 244 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 245 } 246 247 unsigned getValueId(GlobalValue::GUID ValGUID) { 248 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 249 // Expect that any GUID value had a value Id assigned by an 250 // earlier call to assignValueId. 251 assert(VMI != GUIDToValueIdMap.end() && 252 "GUID does not have assigned value Id"); 253 return VMI->second; 254 } 255 256 // Helper to get the valueId for the type of value recorded in VI. 257 unsigned getValueId(ValueInfo VI) { 258 if (!VI.haveGVs() || !VI.getValue()) 259 return getValueId(VI.getGUID()); 260 return VE.getValueID(VI.getValue()); 261 } 262 263 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 264 }; 265 266 /// Class to manage the bitcode writing for a module. 267 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 268 /// True if a module hash record should be written. 269 bool GenerateHash; 270 271 /// If non-null, when GenerateHash is true, the resulting hash is written 272 /// into ModHash. 273 ModuleHash *ModHash; 274 275 SHA1 Hasher; 276 277 /// The start bit of the identification block. 278 uint64_t BitcodeStartBit; 279 280 public: 281 /// Constructs a ModuleBitcodeWriter object for the given Module, 282 /// writing to the provided \p Buffer. 283 ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 284 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 285 const ModuleSummaryIndex *Index, bool GenerateHash, 286 ModuleHash *ModHash = nullptr) 287 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 288 ShouldPreserveUseListOrder, Index), 289 GenerateHash(GenerateHash), ModHash(ModHash), 290 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 291 292 /// Emit the current module to the bitstream. 293 void write(); 294 295 private: 296 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 297 298 size_t addToStrtab(StringRef Str); 299 300 void writeAttributeGroupTable(); 301 void writeAttributeTable(); 302 void writeTypeTable(); 303 void writeComdats(); 304 void writeValueSymbolTableForwardDecl(); 305 void writeModuleInfo(); 306 void writeValueAsMetadata(const ValueAsMetadata *MD, 307 SmallVectorImpl<uint64_t> &Record); 308 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 unsigned createDILocationAbbrev(); 311 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 312 unsigned &Abbrev); 313 unsigned createGenericDINodeAbbrev(); 314 void writeGenericDINode(const GenericDINode *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 316 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIGenericSubrange(const DIGenericSubrange *N, 319 SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIEnumerator(const DIEnumerator *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIStringType(const DIStringType *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDIDerivedType(const DIDerivedType *N, 328 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 329 void writeDICompositeType(const DICompositeType *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDISubroutineType(const DISubroutineType *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDICompileUnit(const DICompileUnit *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDISubprogram(const DISubprogram *N, 339 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 340 void writeDILexicalBlock(const DILexicalBlock *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDICommonBlock(const DICommonBlock *N, 346 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 347 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 354 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 355 unsigned Abbrev); 356 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 357 unsigned Abbrev); 358 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 359 SmallVectorImpl<uint64_t> &Record, 360 unsigned Abbrev); 361 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 void writeDIGlobalVariable(const DIGlobalVariable *N, 365 SmallVectorImpl<uint64_t> &Record, 366 unsigned Abbrev); 367 void writeDILocalVariable(const DILocalVariable *N, 368 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 369 void writeDILabel(const DILabel *N, 370 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 371 void writeDIExpression(const DIExpression *N, 372 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 373 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 374 SmallVectorImpl<uint64_t> &Record, 375 unsigned Abbrev); 376 void writeDIObjCProperty(const DIObjCProperty *N, 377 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 378 void writeDIImportedEntity(const DIImportedEntity *N, 379 SmallVectorImpl<uint64_t> &Record, 380 unsigned Abbrev); 381 unsigned createNamedMetadataAbbrev(); 382 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 383 unsigned createMetadataStringsAbbrev(); 384 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 385 SmallVectorImpl<uint64_t> &Record); 386 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 387 SmallVectorImpl<uint64_t> &Record, 388 std::vector<unsigned> *MDAbbrevs = nullptr, 389 std::vector<uint64_t> *IndexPos = nullptr); 390 void writeModuleMetadata(); 391 void writeFunctionMetadata(const Function &F); 392 void writeFunctionMetadataAttachment(const Function &F); 393 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 394 const GlobalObject &GO); 395 void writeModuleMetadataKinds(); 396 void writeOperandBundleTags(); 397 void writeSyncScopeNames(); 398 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 399 void writeModuleConstants(); 400 bool pushValueAndType(const Value *V, unsigned InstID, 401 SmallVectorImpl<unsigned> &Vals); 402 bool pushValueOrMetadata(const Value *V, unsigned InstID, 403 SmallVectorImpl<unsigned> &Vals); 404 void writeOperandBundles(const CallBase &CB, unsigned InstID); 405 void pushValue(const Value *V, unsigned InstID, 406 SmallVectorImpl<unsigned> &Vals); 407 void pushValueSigned(const Value *V, unsigned InstID, 408 SmallVectorImpl<uint64_t> &Vals); 409 void writeInstruction(const Instruction &I, unsigned InstID, 410 SmallVectorImpl<unsigned> &Vals); 411 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 412 void writeGlobalValueSymbolTable( 413 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 414 void writeUseList(UseListOrder &&Order); 415 void writeUseListBlock(const Function *F); 416 void 417 writeFunction(const Function &F, 418 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 419 void writeBlockInfo(); 420 void writeModuleHash(StringRef View); 421 422 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 423 return unsigned(SSID); 424 } 425 426 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 427 }; 428 429 /// Class to manage the bitcode writing for a combined index. 430 class IndexBitcodeWriter : public BitcodeWriterBase { 431 /// The combined index to write to bitcode. 432 const ModuleSummaryIndex &Index; 433 434 /// When writing combined summaries, provides the set of global value 435 /// summaries for which the value (function, function alias, etc) should be 436 /// imported as a declaration. 437 const GVSummaryPtrSet *DecSummaries = nullptr; 438 439 /// When writing a subset of the index for distributed backends, client 440 /// provides a map of modules to the corresponding GUIDs/summaries to write. 441 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex; 442 443 /// Map that holds the correspondence between the GUID used in the combined 444 /// index and a value id generated by this class to use in references. 445 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 446 447 // The stack ids used by this index, which will be a subset of those in 448 // the full index in the case of distributed indexes. 449 std::vector<uint64_t> StackIds; 450 451 // Keep a map of the stack id indices used by records being written for this 452 // index to the index of the corresponding stack id in the above StackIds 453 // vector. Ensures we write each referenced stack id once. 454 DenseMap<unsigned, unsigned> StackIdIndicesToIndex; 455 456 /// Tracks the last value id recorded in the GUIDToValueMap. 457 unsigned GlobalValueId = 0; 458 459 /// Tracks the assignment of module paths in the module path string table to 460 /// an id assigned for use in summary references to the module path. 461 DenseMap<StringRef, uint64_t> ModuleIdMap; 462 463 public: 464 /// Constructs a IndexBitcodeWriter object for the given combined index, 465 /// writing to the provided \p Buffer. When writing a subset of the index 466 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 467 /// If provided, \p DecSummaries specifies the set of summaries for which 468 /// the corresponding functions or aliased functions should be imported as a 469 /// declaration (but not definition) for each module. 470 IndexBitcodeWriter( 471 BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 472 const ModuleSummaryIndex &Index, 473 const GVSummaryPtrSet *DecSummaries = nullptr, 474 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr) 475 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 476 DecSummaries(DecSummaries), 477 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 478 479 // See if the StackIdIndex was already added to the StackId map and 480 // vector. If not, record it. 481 auto RecordStackIdReference = [&](unsigned StackIdIndex) { 482 // If the StackIdIndex is not yet in the map, the below insert ensures 483 // that it will point to the new StackIds vector entry we push to just 484 // below. 485 auto Inserted = 486 StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()}); 487 if (Inserted.second) 488 StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex)); 489 }; 490 491 // Assign unique value ids to all summaries to be written, for use 492 // in writing out the call graph edges. Save the mapping from GUID 493 // to the new global value id to use when writing those edges, which 494 // are currently saved in the index in terms of GUID. 495 forEachSummary([&](GVInfo I, bool IsAliasee) { 496 GUIDToValueIdMap[I.first] = ++GlobalValueId; 497 // If this is invoked for an aliasee, we want to record the above mapping, 498 // but not the information needed for its summary entry (if the aliasee is 499 // to be imported, we will invoke this separately with IsAliasee=false). 500 if (IsAliasee) 501 return; 502 auto *FS = dyn_cast<FunctionSummary>(I.second); 503 if (!FS) 504 return; 505 // Record all stack id indices actually used in the summary entries being 506 // written, so that we can compact them in the case of distributed ThinLTO 507 // indexes. 508 for (auto &CI : FS->callsites()) { 509 // If the stack id list is empty, this callsite info was synthesized for 510 // a missing tail call frame. Ensure that the callee's GUID gets a value 511 // id. Normally we only generate these for defined summaries, which in 512 // the case of distributed ThinLTO is only the functions already defined 513 // in the module or that we want to import. We don't bother to include 514 // all the callee symbols as they aren't normally needed in the backend. 515 // However, for the synthesized callsite infos we do need the callee 516 // GUID in the backend so that we can correlate the identified callee 517 // with this callsite info (which for non-tail calls is done by the 518 // ordering of the callsite infos and verified via stack ids). 519 if (CI.StackIdIndices.empty()) { 520 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 521 continue; 522 } 523 for (auto Idx : CI.StackIdIndices) 524 RecordStackIdReference(Idx); 525 } 526 for (auto &AI : FS->allocs()) 527 for (auto &MIB : AI.MIBs) 528 for (auto Idx : MIB.StackIdIndices) 529 RecordStackIdReference(Idx); 530 }); 531 } 532 533 /// The below iterator returns the GUID and associated summary. 534 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 535 536 /// Calls the callback for each value GUID and summary to be written to 537 /// bitcode. This hides the details of whether they are being pulled from the 538 /// entire index or just those in a provided ModuleToSummariesForIndex map. 539 template<typename Functor> 540 void forEachSummary(Functor Callback) { 541 if (ModuleToSummariesForIndex) { 542 for (auto &M : *ModuleToSummariesForIndex) 543 for (auto &Summary : M.second) { 544 Callback(Summary, false); 545 // Ensure aliasee is handled, e.g. for assigning a valueId, 546 // even if we are not importing the aliasee directly (the 547 // imported alias will contain a copy of aliasee). 548 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 549 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 550 } 551 } else { 552 for (auto &Summaries : Index) 553 for (auto &Summary : Summaries.second.SummaryList) 554 Callback({Summaries.first, Summary.get()}, false); 555 } 556 } 557 558 /// Calls the callback for each entry in the modulePaths StringMap that 559 /// should be written to the module path string table. This hides the details 560 /// of whether they are being pulled from the entire index or just those in a 561 /// provided ModuleToSummariesForIndex map. 562 template <typename Functor> void forEachModule(Functor Callback) { 563 if (ModuleToSummariesForIndex) { 564 for (const auto &M : *ModuleToSummariesForIndex) { 565 const auto &MPI = Index.modulePaths().find(M.first); 566 if (MPI == Index.modulePaths().end()) { 567 // This should only happen if the bitcode file was empty, in which 568 // case we shouldn't be importing (the ModuleToSummariesForIndex 569 // would only include the module we are writing and index for). 570 assert(ModuleToSummariesForIndex->size() == 1); 571 continue; 572 } 573 Callback(*MPI); 574 } 575 } else { 576 // Since StringMap iteration order isn't guaranteed, order by path string 577 // first. 578 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 579 // map lookup. 580 std::vector<StringRef> ModulePaths; 581 for (auto &[ModPath, _] : Index.modulePaths()) 582 ModulePaths.push_back(ModPath); 583 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 584 for (auto &ModPath : ModulePaths) 585 Callback(*Index.modulePaths().find(ModPath)); 586 } 587 } 588 589 /// Main entry point for writing a combined index to bitcode. 590 void write(); 591 592 private: 593 void writeModStrings(); 594 void writeCombinedGlobalValueSummary(); 595 596 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 597 auto VMI = GUIDToValueIdMap.find(ValGUID); 598 if (VMI == GUIDToValueIdMap.end()) 599 return std::nullopt; 600 return VMI->second; 601 } 602 603 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 604 }; 605 606 } // end anonymous namespace 607 608 static unsigned getEncodedCastOpcode(unsigned Opcode) { 609 switch (Opcode) { 610 default: llvm_unreachable("Unknown cast instruction!"); 611 case Instruction::Trunc : return bitc::CAST_TRUNC; 612 case Instruction::ZExt : return bitc::CAST_ZEXT; 613 case Instruction::SExt : return bitc::CAST_SEXT; 614 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 615 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 616 case Instruction::UIToFP : return bitc::CAST_UITOFP; 617 case Instruction::SIToFP : return bitc::CAST_SITOFP; 618 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 619 case Instruction::FPExt : return bitc::CAST_FPEXT; 620 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 621 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 622 case Instruction::BitCast : return bitc::CAST_BITCAST; 623 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 624 } 625 } 626 627 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 628 switch (Opcode) { 629 default: llvm_unreachable("Unknown binary instruction!"); 630 case Instruction::FNeg: return bitc::UNOP_FNEG; 631 } 632 } 633 634 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 635 switch (Opcode) { 636 default: llvm_unreachable("Unknown binary instruction!"); 637 case Instruction::Add: 638 case Instruction::FAdd: return bitc::BINOP_ADD; 639 case Instruction::Sub: 640 case Instruction::FSub: return bitc::BINOP_SUB; 641 case Instruction::Mul: 642 case Instruction::FMul: return bitc::BINOP_MUL; 643 case Instruction::UDiv: return bitc::BINOP_UDIV; 644 case Instruction::FDiv: 645 case Instruction::SDiv: return bitc::BINOP_SDIV; 646 case Instruction::URem: return bitc::BINOP_UREM; 647 case Instruction::FRem: 648 case Instruction::SRem: return bitc::BINOP_SREM; 649 case Instruction::Shl: return bitc::BINOP_SHL; 650 case Instruction::LShr: return bitc::BINOP_LSHR; 651 case Instruction::AShr: return bitc::BINOP_ASHR; 652 case Instruction::And: return bitc::BINOP_AND; 653 case Instruction::Or: return bitc::BINOP_OR; 654 case Instruction::Xor: return bitc::BINOP_XOR; 655 } 656 } 657 658 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 659 switch (Op) { 660 default: llvm_unreachable("Unknown RMW operation!"); 661 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 662 case AtomicRMWInst::Add: return bitc::RMW_ADD; 663 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 664 case AtomicRMWInst::And: return bitc::RMW_AND; 665 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 666 case AtomicRMWInst::Or: return bitc::RMW_OR; 667 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 668 case AtomicRMWInst::Max: return bitc::RMW_MAX; 669 case AtomicRMWInst::Min: return bitc::RMW_MIN; 670 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 671 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 672 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 673 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 674 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 675 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 676 case AtomicRMWInst::UIncWrap: 677 return bitc::RMW_UINC_WRAP; 678 case AtomicRMWInst::UDecWrap: 679 return bitc::RMW_UDEC_WRAP; 680 case AtomicRMWInst::USubCond: 681 return bitc::RMW_USUB_COND; 682 case AtomicRMWInst::USubSat: 683 return bitc::RMW_USUB_SAT; 684 } 685 } 686 687 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 688 switch (Ordering) { 689 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 690 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 691 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 692 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 693 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 694 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 695 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 696 } 697 llvm_unreachable("Invalid ordering"); 698 } 699 700 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 701 StringRef Str, unsigned AbbrevToUse) { 702 SmallVector<unsigned, 64> Vals; 703 704 // Code: [strchar x N] 705 for (char C : Str) { 706 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 707 AbbrevToUse = 0; 708 Vals.push_back(C); 709 } 710 711 // Emit the finished record. 712 Stream.EmitRecord(Code, Vals, AbbrevToUse); 713 } 714 715 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 716 switch (Kind) { 717 case Attribute::Alignment: 718 return bitc::ATTR_KIND_ALIGNMENT; 719 case Attribute::AllocAlign: 720 return bitc::ATTR_KIND_ALLOC_ALIGN; 721 case Attribute::AllocSize: 722 return bitc::ATTR_KIND_ALLOC_SIZE; 723 case Attribute::AlwaysInline: 724 return bitc::ATTR_KIND_ALWAYS_INLINE; 725 case Attribute::Builtin: 726 return bitc::ATTR_KIND_BUILTIN; 727 case Attribute::ByVal: 728 return bitc::ATTR_KIND_BY_VAL; 729 case Attribute::Convergent: 730 return bitc::ATTR_KIND_CONVERGENT; 731 case Attribute::InAlloca: 732 return bitc::ATTR_KIND_IN_ALLOCA; 733 case Attribute::Cold: 734 return bitc::ATTR_KIND_COLD; 735 case Attribute::DisableSanitizerInstrumentation: 736 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 737 case Attribute::FnRetThunkExtern: 738 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 739 case Attribute::Hot: 740 return bitc::ATTR_KIND_HOT; 741 case Attribute::ElementType: 742 return bitc::ATTR_KIND_ELEMENTTYPE; 743 case Attribute::HybridPatchable: 744 return bitc::ATTR_KIND_HYBRID_PATCHABLE; 745 case Attribute::InlineHint: 746 return bitc::ATTR_KIND_INLINE_HINT; 747 case Attribute::InReg: 748 return bitc::ATTR_KIND_IN_REG; 749 case Attribute::JumpTable: 750 return bitc::ATTR_KIND_JUMP_TABLE; 751 case Attribute::MinSize: 752 return bitc::ATTR_KIND_MIN_SIZE; 753 case Attribute::AllocatedPointer: 754 return bitc::ATTR_KIND_ALLOCATED_POINTER; 755 case Attribute::AllocKind: 756 return bitc::ATTR_KIND_ALLOC_KIND; 757 case Attribute::Memory: 758 return bitc::ATTR_KIND_MEMORY; 759 case Attribute::NoFPClass: 760 return bitc::ATTR_KIND_NOFPCLASS; 761 case Attribute::Naked: 762 return bitc::ATTR_KIND_NAKED; 763 case Attribute::Nest: 764 return bitc::ATTR_KIND_NEST; 765 case Attribute::NoAlias: 766 return bitc::ATTR_KIND_NO_ALIAS; 767 case Attribute::NoBuiltin: 768 return bitc::ATTR_KIND_NO_BUILTIN; 769 case Attribute::NoCallback: 770 return bitc::ATTR_KIND_NO_CALLBACK; 771 case Attribute::NoCapture: 772 return bitc::ATTR_KIND_NO_CAPTURE; 773 case Attribute::NoDivergenceSource: 774 return bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE; 775 case Attribute::NoDuplicate: 776 return bitc::ATTR_KIND_NO_DUPLICATE; 777 case Attribute::NoFree: 778 return bitc::ATTR_KIND_NOFREE; 779 case Attribute::NoImplicitFloat: 780 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 781 case Attribute::NoInline: 782 return bitc::ATTR_KIND_NO_INLINE; 783 case Attribute::NoRecurse: 784 return bitc::ATTR_KIND_NO_RECURSE; 785 case Attribute::NoMerge: 786 return bitc::ATTR_KIND_NO_MERGE; 787 case Attribute::NonLazyBind: 788 return bitc::ATTR_KIND_NON_LAZY_BIND; 789 case Attribute::NonNull: 790 return bitc::ATTR_KIND_NON_NULL; 791 case Attribute::Dereferenceable: 792 return bitc::ATTR_KIND_DEREFERENCEABLE; 793 case Attribute::DereferenceableOrNull: 794 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 795 case Attribute::NoRedZone: 796 return bitc::ATTR_KIND_NO_RED_ZONE; 797 case Attribute::NoReturn: 798 return bitc::ATTR_KIND_NO_RETURN; 799 case Attribute::NoSync: 800 return bitc::ATTR_KIND_NOSYNC; 801 case Attribute::NoCfCheck: 802 return bitc::ATTR_KIND_NOCF_CHECK; 803 case Attribute::NoProfile: 804 return bitc::ATTR_KIND_NO_PROFILE; 805 case Attribute::SkipProfile: 806 return bitc::ATTR_KIND_SKIP_PROFILE; 807 case Attribute::NoUnwind: 808 return bitc::ATTR_KIND_NO_UNWIND; 809 case Attribute::NoSanitizeBounds: 810 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 811 case Attribute::NoSanitizeCoverage: 812 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 813 case Attribute::NullPointerIsValid: 814 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 815 case Attribute::OptimizeForDebugging: 816 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 817 case Attribute::OptForFuzzing: 818 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 819 case Attribute::OptimizeForSize: 820 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 821 case Attribute::OptimizeNone: 822 return bitc::ATTR_KIND_OPTIMIZE_NONE; 823 case Attribute::ReadNone: 824 return bitc::ATTR_KIND_READ_NONE; 825 case Attribute::ReadOnly: 826 return bitc::ATTR_KIND_READ_ONLY; 827 case Attribute::Returned: 828 return bitc::ATTR_KIND_RETURNED; 829 case Attribute::ReturnsTwice: 830 return bitc::ATTR_KIND_RETURNS_TWICE; 831 case Attribute::SExt: 832 return bitc::ATTR_KIND_S_EXT; 833 case Attribute::Speculatable: 834 return bitc::ATTR_KIND_SPECULATABLE; 835 case Attribute::StackAlignment: 836 return bitc::ATTR_KIND_STACK_ALIGNMENT; 837 case Attribute::StackProtect: 838 return bitc::ATTR_KIND_STACK_PROTECT; 839 case Attribute::StackProtectReq: 840 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 841 case Attribute::StackProtectStrong: 842 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 843 case Attribute::SafeStack: 844 return bitc::ATTR_KIND_SAFESTACK; 845 case Attribute::ShadowCallStack: 846 return bitc::ATTR_KIND_SHADOWCALLSTACK; 847 case Attribute::StrictFP: 848 return bitc::ATTR_KIND_STRICT_FP; 849 case Attribute::StructRet: 850 return bitc::ATTR_KIND_STRUCT_RET; 851 case Attribute::SanitizeAddress: 852 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 853 case Attribute::SanitizeHWAddress: 854 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 855 case Attribute::SanitizeThread: 856 return bitc::ATTR_KIND_SANITIZE_THREAD; 857 case Attribute::SanitizeType: 858 return bitc::ATTR_KIND_SANITIZE_TYPE; 859 case Attribute::SanitizeMemory: 860 return bitc::ATTR_KIND_SANITIZE_MEMORY; 861 case Attribute::SanitizeNumericalStability: 862 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY; 863 case Attribute::SanitizeRealtime: 864 return bitc::ATTR_KIND_SANITIZE_REALTIME; 865 case Attribute::SanitizeRealtimeBlocking: 866 return bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING; 867 case Attribute::SpeculativeLoadHardening: 868 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 869 case Attribute::SwiftError: 870 return bitc::ATTR_KIND_SWIFT_ERROR; 871 case Attribute::SwiftSelf: 872 return bitc::ATTR_KIND_SWIFT_SELF; 873 case Attribute::SwiftAsync: 874 return bitc::ATTR_KIND_SWIFT_ASYNC; 875 case Attribute::UWTable: 876 return bitc::ATTR_KIND_UW_TABLE; 877 case Attribute::VScaleRange: 878 return bitc::ATTR_KIND_VSCALE_RANGE; 879 case Attribute::WillReturn: 880 return bitc::ATTR_KIND_WILLRETURN; 881 case Attribute::WriteOnly: 882 return bitc::ATTR_KIND_WRITEONLY; 883 case Attribute::ZExt: 884 return bitc::ATTR_KIND_Z_EXT; 885 case Attribute::ImmArg: 886 return bitc::ATTR_KIND_IMMARG; 887 case Attribute::SanitizeMemTag: 888 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 889 case Attribute::Preallocated: 890 return bitc::ATTR_KIND_PREALLOCATED; 891 case Attribute::NoUndef: 892 return bitc::ATTR_KIND_NOUNDEF; 893 case Attribute::ByRef: 894 return bitc::ATTR_KIND_BYREF; 895 case Attribute::MustProgress: 896 return bitc::ATTR_KIND_MUSTPROGRESS; 897 case Attribute::PresplitCoroutine: 898 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 899 case Attribute::Writable: 900 return bitc::ATTR_KIND_WRITABLE; 901 case Attribute::CoroDestroyOnlyWhenComplete: 902 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 903 case Attribute::CoroElideSafe: 904 return bitc::ATTR_KIND_CORO_ELIDE_SAFE; 905 case Attribute::DeadOnUnwind: 906 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 907 case Attribute::Range: 908 return bitc::ATTR_KIND_RANGE; 909 case Attribute::Initializes: 910 return bitc::ATTR_KIND_INITIALIZES; 911 case Attribute::NoExt: 912 return bitc::ATTR_KIND_NO_EXT; 913 case Attribute::Captures: 914 return bitc::ATTR_KIND_CAPTURES; 915 case Attribute::EndAttrKinds: 916 llvm_unreachable("Can not encode end-attribute kinds marker."); 917 case Attribute::None: 918 llvm_unreachable("Can not encode none-attribute."); 919 case Attribute::EmptyKey: 920 case Attribute::TombstoneKey: 921 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 922 } 923 924 llvm_unreachable("Trying to encode unknown attribute"); 925 } 926 927 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 928 if ((int64_t)V >= 0) 929 Vals.push_back(V << 1); 930 else 931 Vals.push_back((-V << 1) | 1); 932 } 933 934 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 935 // We have an arbitrary precision integer value to write whose 936 // bit width is > 64. However, in canonical unsigned integer 937 // format it is likely that the high bits are going to be zero. 938 // So, we only write the number of active words. 939 unsigned NumWords = A.getActiveWords(); 940 const uint64_t *RawData = A.getRawData(); 941 for (unsigned i = 0; i < NumWords; i++) 942 emitSignedInt64(Vals, RawData[i]); 943 } 944 945 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 946 const ConstantRange &CR, bool EmitBitWidth) { 947 unsigned BitWidth = CR.getBitWidth(); 948 if (EmitBitWidth) 949 Record.push_back(BitWidth); 950 if (BitWidth > 64) { 951 Record.push_back(CR.getLower().getActiveWords() | 952 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 953 emitWideAPInt(Record, CR.getLower()); 954 emitWideAPInt(Record, CR.getUpper()); 955 } else { 956 emitSignedInt64(Record, CR.getLower().getSExtValue()); 957 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 958 } 959 } 960 961 void ModuleBitcodeWriter::writeAttributeGroupTable() { 962 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 963 VE.getAttributeGroups(); 964 if (AttrGrps.empty()) return; 965 966 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 967 968 SmallVector<uint64_t, 64> Record; 969 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 970 unsigned AttrListIndex = Pair.first; 971 AttributeSet AS = Pair.second; 972 Record.push_back(VE.getAttributeGroupID(Pair)); 973 Record.push_back(AttrListIndex); 974 975 for (Attribute Attr : AS) { 976 if (Attr.isEnumAttribute()) { 977 Record.push_back(0); 978 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 979 } else if (Attr.isIntAttribute()) { 980 Record.push_back(1); 981 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 982 Record.push_back(Attr.getValueAsInt()); 983 } else if (Attr.isStringAttribute()) { 984 StringRef Kind = Attr.getKindAsString(); 985 StringRef Val = Attr.getValueAsString(); 986 987 Record.push_back(Val.empty() ? 3 : 4); 988 Record.append(Kind.begin(), Kind.end()); 989 Record.push_back(0); 990 if (!Val.empty()) { 991 Record.append(Val.begin(), Val.end()); 992 Record.push_back(0); 993 } 994 } else if (Attr.isTypeAttribute()) { 995 Type *Ty = Attr.getValueAsType(); 996 Record.push_back(Ty ? 6 : 5); 997 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 998 if (Ty) 999 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 1000 } else if (Attr.isConstantRangeAttribute()) { 1001 Record.push_back(7); 1002 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 1003 emitConstantRange(Record, Attr.getValueAsConstantRange(), 1004 /*EmitBitWidth=*/true); 1005 } else { 1006 assert(Attr.isConstantRangeListAttribute()); 1007 Record.push_back(8); 1008 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 1009 ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList(); 1010 Record.push_back(Val.size()); 1011 Record.push_back(Val[0].getBitWidth()); 1012 for (auto &CR : Val) 1013 emitConstantRange(Record, CR, /*EmitBitWidth=*/false); 1014 } 1015 } 1016 1017 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 1018 Record.clear(); 1019 } 1020 1021 Stream.ExitBlock(); 1022 } 1023 1024 void ModuleBitcodeWriter::writeAttributeTable() { 1025 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 1026 if (Attrs.empty()) return; 1027 1028 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 1029 1030 SmallVector<uint64_t, 64> Record; 1031 for (const AttributeList &AL : Attrs) { 1032 for (unsigned i : AL.indexes()) { 1033 AttributeSet AS = AL.getAttributes(i); 1034 if (AS.hasAttributes()) 1035 Record.push_back(VE.getAttributeGroupID({i, AS})); 1036 } 1037 1038 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 1039 Record.clear(); 1040 } 1041 1042 Stream.ExitBlock(); 1043 } 1044 1045 /// WriteTypeTable - Write out the type table for a module. 1046 void ModuleBitcodeWriter::writeTypeTable() { 1047 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 1048 1049 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 1050 SmallVector<uint64_t, 64> TypeVals; 1051 1052 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); 1053 1054 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 1055 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1056 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 1057 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 1058 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1059 1060 // Abbrev for TYPE_CODE_FUNCTION. 1061 Abbv = std::make_shared<BitCodeAbbrev>(); 1062 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 1063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 1064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1066 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1067 1068 // Abbrev for TYPE_CODE_STRUCT_ANON. 1069 Abbv = std::make_shared<BitCodeAbbrev>(); 1070 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 1071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1074 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1075 1076 // Abbrev for TYPE_CODE_STRUCT_NAME. 1077 Abbv = std::make_shared<BitCodeAbbrev>(); 1078 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1081 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1082 1083 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1084 Abbv = std::make_shared<BitCodeAbbrev>(); 1085 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1089 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1090 1091 // Abbrev for TYPE_CODE_ARRAY. 1092 Abbv = std::make_shared<BitCodeAbbrev>(); 1093 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1096 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1097 1098 // Emit an entry count so the reader can reserve space. 1099 TypeVals.push_back(TypeList.size()); 1100 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1101 TypeVals.clear(); 1102 1103 // Loop over all of the types, emitting each in turn. 1104 for (Type *T : TypeList) { 1105 int AbbrevToUse = 0; 1106 unsigned Code = 0; 1107 1108 switch (T->getTypeID()) { 1109 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1110 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1111 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1112 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1113 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1114 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1115 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1116 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1117 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1118 case Type::MetadataTyID: 1119 Code = bitc::TYPE_CODE_METADATA; 1120 break; 1121 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1122 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1123 case Type::IntegerTyID: 1124 // INTEGER: [width] 1125 Code = bitc::TYPE_CODE_INTEGER; 1126 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1127 break; 1128 case Type::PointerTyID: { 1129 PointerType *PTy = cast<PointerType>(T); 1130 unsigned AddressSpace = PTy->getAddressSpace(); 1131 // OPAQUE_POINTER: [address space] 1132 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1133 TypeVals.push_back(AddressSpace); 1134 if (AddressSpace == 0) 1135 AbbrevToUse = OpaquePtrAbbrev; 1136 break; 1137 } 1138 case Type::FunctionTyID: { 1139 FunctionType *FT = cast<FunctionType>(T); 1140 // FUNCTION: [isvararg, retty, paramty x N] 1141 Code = bitc::TYPE_CODE_FUNCTION; 1142 TypeVals.push_back(FT->isVarArg()); 1143 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1144 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1145 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1146 AbbrevToUse = FunctionAbbrev; 1147 break; 1148 } 1149 case Type::StructTyID: { 1150 StructType *ST = cast<StructType>(T); 1151 // STRUCT: [ispacked, eltty x N] 1152 TypeVals.push_back(ST->isPacked()); 1153 // Output all of the element types. 1154 for (Type *ET : ST->elements()) 1155 TypeVals.push_back(VE.getTypeID(ET)); 1156 1157 if (ST->isLiteral()) { 1158 Code = bitc::TYPE_CODE_STRUCT_ANON; 1159 AbbrevToUse = StructAnonAbbrev; 1160 } else { 1161 if (ST->isOpaque()) { 1162 Code = bitc::TYPE_CODE_OPAQUE; 1163 } else { 1164 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1165 AbbrevToUse = StructNamedAbbrev; 1166 } 1167 1168 // Emit the name if it is present. 1169 if (!ST->getName().empty()) 1170 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1171 StructNameAbbrev); 1172 } 1173 break; 1174 } 1175 case Type::ArrayTyID: { 1176 ArrayType *AT = cast<ArrayType>(T); 1177 // ARRAY: [numelts, eltty] 1178 Code = bitc::TYPE_CODE_ARRAY; 1179 TypeVals.push_back(AT->getNumElements()); 1180 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1181 AbbrevToUse = ArrayAbbrev; 1182 break; 1183 } 1184 case Type::FixedVectorTyID: 1185 case Type::ScalableVectorTyID: { 1186 VectorType *VT = cast<VectorType>(T); 1187 // VECTOR [numelts, eltty] or 1188 // [numelts, eltty, scalable] 1189 Code = bitc::TYPE_CODE_VECTOR; 1190 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1191 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1192 if (isa<ScalableVectorType>(VT)) 1193 TypeVals.push_back(true); 1194 break; 1195 } 1196 case Type::TargetExtTyID: { 1197 TargetExtType *TET = cast<TargetExtType>(T); 1198 Code = bitc::TYPE_CODE_TARGET_TYPE; 1199 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1200 StructNameAbbrev); 1201 TypeVals.push_back(TET->getNumTypeParameters()); 1202 for (Type *InnerTy : TET->type_params()) 1203 TypeVals.push_back(VE.getTypeID(InnerTy)); 1204 for (unsigned IntParam : TET->int_params()) 1205 TypeVals.push_back(IntParam); 1206 break; 1207 } 1208 case Type::TypedPointerTyID: 1209 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1210 } 1211 1212 // Emit the finished record. 1213 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1214 TypeVals.clear(); 1215 } 1216 1217 Stream.ExitBlock(); 1218 } 1219 1220 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1221 switch (Linkage) { 1222 case GlobalValue::ExternalLinkage: 1223 return 0; 1224 case GlobalValue::WeakAnyLinkage: 1225 return 16; 1226 case GlobalValue::AppendingLinkage: 1227 return 2; 1228 case GlobalValue::InternalLinkage: 1229 return 3; 1230 case GlobalValue::LinkOnceAnyLinkage: 1231 return 18; 1232 case GlobalValue::ExternalWeakLinkage: 1233 return 7; 1234 case GlobalValue::CommonLinkage: 1235 return 8; 1236 case GlobalValue::PrivateLinkage: 1237 return 9; 1238 case GlobalValue::WeakODRLinkage: 1239 return 17; 1240 case GlobalValue::LinkOnceODRLinkage: 1241 return 19; 1242 case GlobalValue::AvailableExternallyLinkage: 1243 return 12; 1244 } 1245 llvm_unreachable("Invalid linkage"); 1246 } 1247 1248 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1249 return getEncodedLinkage(GV.getLinkage()); 1250 } 1251 1252 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1253 uint64_t RawFlags = 0; 1254 RawFlags |= Flags.ReadNone; 1255 RawFlags |= (Flags.ReadOnly << 1); 1256 RawFlags |= (Flags.NoRecurse << 2); 1257 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1258 RawFlags |= (Flags.NoInline << 4); 1259 RawFlags |= (Flags.AlwaysInline << 5); 1260 RawFlags |= (Flags.NoUnwind << 6); 1261 RawFlags |= (Flags.MayThrow << 7); 1262 RawFlags |= (Flags.HasUnknownCall << 8); 1263 RawFlags |= (Flags.MustBeUnreachable << 9); 1264 return RawFlags; 1265 } 1266 1267 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1268 // in BitcodeReader.cpp. 1269 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags, 1270 bool ImportAsDecl = false) { 1271 uint64_t RawFlags = 0; 1272 1273 RawFlags |= Flags.NotEligibleToImport; // bool 1274 RawFlags |= (Flags.Live << 1); 1275 RawFlags |= (Flags.DSOLocal << 2); 1276 RawFlags |= (Flags.CanAutoHide << 3); 1277 1278 // Linkage don't need to be remapped at that time for the summary. Any future 1279 // change to the getEncodedLinkage() function will need to be taken into 1280 // account here as well. 1281 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1282 1283 RawFlags |= (Flags.Visibility << 8); // 2 bits 1284 1285 unsigned ImportType = Flags.ImportType | ImportAsDecl; 1286 RawFlags |= (ImportType << 10); // 1 bit 1287 1288 return RawFlags; 1289 } 1290 1291 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1292 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1293 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1294 return RawFlags; 1295 } 1296 1297 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1298 uint64_t RawFlags = 0; 1299 1300 RawFlags |= CI.Hotness; // 3 bits 1301 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1302 1303 return RawFlags; 1304 } 1305 1306 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1307 uint64_t RawFlags = 0; 1308 1309 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1310 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1311 1312 return RawFlags; 1313 } 1314 1315 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1316 switch (GV.getVisibility()) { 1317 case GlobalValue::DefaultVisibility: return 0; 1318 case GlobalValue::HiddenVisibility: return 1; 1319 case GlobalValue::ProtectedVisibility: return 2; 1320 } 1321 llvm_unreachable("Invalid visibility"); 1322 } 1323 1324 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1325 switch (GV.getDLLStorageClass()) { 1326 case GlobalValue::DefaultStorageClass: return 0; 1327 case GlobalValue::DLLImportStorageClass: return 1; 1328 case GlobalValue::DLLExportStorageClass: return 2; 1329 } 1330 llvm_unreachable("Invalid DLL storage class"); 1331 } 1332 1333 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1334 switch (GV.getThreadLocalMode()) { 1335 case GlobalVariable::NotThreadLocal: return 0; 1336 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1337 case GlobalVariable::LocalDynamicTLSModel: return 2; 1338 case GlobalVariable::InitialExecTLSModel: return 3; 1339 case GlobalVariable::LocalExecTLSModel: return 4; 1340 } 1341 llvm_unreachable("Invalid TLS model"); 1342 } 1343 1344 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1345 switch (C.getSelectionKind()) { 1346 case Comdat::Any: 1347 return bitc::COMDAT_SELECTION_KIND_ANY; 1348 case Comdat::ExactMatch: 1349 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1350 case Comdat::Largest: 1351 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1352 case Comdat::NoDeduplicate: 1353 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1354 case Comdat::SameSize: 1355 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1356 } 1357 llvm_unreachable("Invalid selection kind"); 1358 } 1359 1360 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1361 switch (GV.getUnnamedAddr()) { 1362 case GlobalValue::UnnamedAddr::None: return 0; 1363 case GlobalValue::UnnamedAddr::Local: return 2; 1364 case GlobalValue::UnnamedAddr::Global: return 1; 1365 } 1366 llvm_unreachable("Invalid unnamed_addr"); 1367 } 1368 1369 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1370 if (GenerateHash) 1371 Hasher.update(Str); 1372 return StrtabBuilder.add(Str); 1373 } 1374 1375 void ModuleBitcodeWriter::writeComdats() { 1376 SmallVector<unsigned, 64> Vals; 1377 for (const Comdat *C : VE.getComdats()) { 1378 // COMDAT: [strtab offset, strtab size, selection_kind] 1379 Vals.push_back(addToStrtab(C->getName())); 1380 Vals.push_back(C->getName().size()); 1381 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1382 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1383 Vals.clear(); 1384 } 1385 } 1386 1387 /// Write a record that will eventually hold the word offset of the 1388 /// module-level VST. For now the offset is 0, which will be backpatched 1389 /// after the real VST is written. Saves the bit offset to backpatch. 1390 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1391 // Write a placeholder value in for the offset of the real VST, 1392 // which is written after the function blocks so that it can include 1393 // the offset of each function. The placeholder offset will be 1394 // updated when the real VST is written. 1395 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1396 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1397 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1398 // hold the real VST offset. Must use fixed instead of VBR as we don't 1399 // know how many VBR chunks to reserve ahead of time. 1400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1401 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1402 1403 // Emit the placeholder 1404 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1405 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1406 1407 // Compute and save the bit offset to the placeholder, which will be 1408 // patched when the real VST is written. We can simply subtract the 32-bit 1409 // fixed size from the current bit number to get the location to backpatch. 1410 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1411 } 1412 1413 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1414 1415 /// Determine the encoding to use for the given string name and length. 1416 static StringEncoding getStringEncoding(StringRef Str) { 1417 bool isChar6 = true; 1418 for (char C : Str) { 1419 if (isChar6) 1420 isChar6 = BitCodeAbbrevOp::isChar6(C); 1421 if ((unsigned char)C & 128) 1422 // don't bother scanning the rest. 1423 return SE_Fixed8; 1424 } 1425 if (isChar6) 1426 return SE_Char6; 1427 return SE_Fixed7; 1428 } 1429 1430 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1431 "Sanitizer Metadata is too large for naive serialization."); 1432 static unsigned 1433 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1434 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1435 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1436 } 1437 1438 /// Emit top-level description of module, including target triple, inline asm, 1439 /// descriptors for global variables, and function prototype info. 1440 /// Returns the bit offset to backpatch with the location of the real VST. 1441 void ModuleBitcodeWriter::writeModuleInfo() { 1442 // Emit various pieces of data attached to a module. 1443 if (!M.getTargetTriple().empty()) 1444 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1445 0 /*TODO*/); 1446 const std::string &DL = M.getDataLayoutStr(); 1447 if (!DL.empty()) 1448 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1449 if (!M.getModuleInlineAsm().empty()) 1450 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1451 0 /*TODO*/); 1452 1453 // Emit information about sections and GC, computing how many there are. Also 1454 // compute the maximum alignment value. 1455 std::map<std::string, unsigned> SectionMap; 1456 std::map<std::string, unsigned> GCMap; 1457 MaybeAlign MaxAlignment; 1458 unsigned MaxGlobalType = 0; 1459 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1460 if (A) 1461 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1462 }; 1463 for (const GlobalVariable &GV : M.globals()) { 1464 UpdateMaxAlignment(GV.getAlign()); 1465 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1466 if (GV.hasSection()) { 1467 // Give section names unique ID's. 1468 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1469 if (!Entry) { 1470 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1471 0 /*TODO*/); 1472 Entry = SectionMap.size(); 1473 } 1474 } 1475 } 1476 for (const Function &F : M) { 1477 UpdateMaxAlignment(F.getAlign()); 1478 if (F.hasSection()) { 1479 // Give section names unique ID's. 1480 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1481 if (!Entry) { 1482 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1483 0 /*TODO*/); 1484 Entry = SectionMap.size(); 1485 } 1486 } 1487 if (F.hasGC()) { 1488 // Same for GC names. 1489 unsigned &Entry = GCMap[F.getGC()]; 1490 if (!Entry) { 1491 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1492 0 /*TODO*/); 1493 Entry = GCMap.size(); 1494 } 1495 } 1496 } 1497 1498 // Emit abbrev for globals, now that we know # sections and max alignment. 1499 unsigned SimpleGVarAbbrev = 0; 1500 if (!M.global_empty()) { 1501 // Add an abbrev for common globals with no visibility or thread localness. 1502 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1503 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1507 Log2_32_Ceil(MaxGlobalType+1))); 1508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1509 //| explicitType << 1 1510 //| constant 1511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1513 if (!MaxAlignment) // Alignment. 1514 Abbv->Add(BitCodeAbbrevOp(0)); 1515 else { 1516 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1518 Log2_32_Ceil(MaxEncAlignment+1))); 1519 } 1520 if (SectionMap.empty()) // Section. 1521 Abbv->Add(BitCodeAbbrevOp(0)); 1522 else 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1524 Log2_32_Ceil(SectionMap.size()+1))); 1525 // Don't bother emitting vis + thread local. 1526 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1527 } 1528 1529 SmallVector<unsigned, 64> Vals; 1530 // Emit the module's source file name. 1531 { 1532 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1533 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1534 if (Bits == SE_Char6) 1535 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1536 else if (Bits == SE_Fixed7) 1537 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1538 1539 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1540 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1541 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1543 Abbv->Add(AbbrevOpToUse); 1544 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1545 1546 for (const auto P : M.getSourceFileName()) 1547 Vals.push_back((unsigned char)P); 1548 1549 // Emit the finished record. 1550 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1551 Vals.clear(); 1552 } 1553 1554 // Emit the global variable information. 1555 for (const GlobalVariable &GV : M.globals()) { 1556 unsigned AbbrevToUse = 0; 1557 1558 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1559 // linkage, alignment, section, visibility, threadlocal, 1560 // unnamed_addr, externally_initialized, dllstorageclass, 1561 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1562 Vals.push_back(addToStrtab(GV.getName())); 1563 Vals.push_back(GV.getName().size()); 1564 Vals.push_back(VE.getTypeID(GV.getValueType())); 1565 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1566 Vals.push_back(GV.isDeclaration() ? 0 : 1567 (VE.getValueID(GV.getInitializer()) + 1)); 1568 Vals.push_back(getEncodedLinkage(GV)); 1569 Vals.push_back(getEncodedAlign(GV.getAlign())); 1570 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1571 : 0); 1572 if (GV.isThreadLocal() || 1573 GV.getVisibility() != GlobalValue::DefaultVisibility || 1574 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1575 GV.isExternallyInitialized() || 1576 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1577 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1578 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1579 Vals.push_back(getEncodedVisibility(GV)); 1580 Vals.push_back(getEncodedThreadLocalMode(GV)); 1581 Vals.push_back(getEncodedUnnamedAddr(GV)); 1582 Vals.push_back(GV.isExternallyInitialized()); 1583 Vals.push_back(getEncodedDLLStorageClass(GV)); 1584 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1585 1586 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1587 Vals.push_back(VE.getAttributeListID(AL)); 1588 1589 Vals.push_back(GV.isDSOLocal()); 1590 Vals.push_back(addToStrtab(GV.getPartition())); 1591 Vals.push_back(GV.getPartition().size()); 1592 1593 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1594 GV.getSanitizerMetadata()) 1595 : 0)); 1596 Vals.push_back(GV.getCodeModelRaw()); 1597 } else { 1598 AbbrevToUse = SimpleGVarAbbrev; 1599 } 1600 1601 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1602 Vals.clear(); 1603 } 1604 1605 // Emit the function proto information. 1606 for (const Function &F : M) { 1607 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1608 // linkage, paramattrs, alignment, section, visibility, gc, 1609 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1610 // prefixdata, personalityfn, DSO_Local, addrspace] 1611 Vals.push_back(addToStrtab(F.getName())); 1612 Vals.push_back(F.getName().size()); 1613 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1614 Vals.push_back(F.getCallingConv()); 1615 Vals.push_back(F.isDeclaration()); 1616 Vals.push_back(getEncodedLinkage(F)); 1617 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1618 Vals.push_back(getEncodedAlign(F.getAlign())); 1619 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1620 : 0); 1621 Vals.push_back(getEncodedVisibility(F)); 1622 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1623 Vals.push_back(getEncodedUnnamedAddr(F)); 1624 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1625 : 0); 1626 Vals.push_back(getEncodedDLLStorageClass(F)); 1627 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1628 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1629 : 0); 1630 Vals.push_back( 1631 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1632 1633 Vals.push_back(F.isDSOLocal()); 1634 Vals.push_back(F.getAddressSpace()); 1635 Vals.push_back(addToStrtab(F.getPartition())); 1636 Vals.push_back(F.getPartition().size()); 1637 1638 unsigned AbbrevToUse = 0; 1639 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1640 Vals.clear(); 1641 } 1642 1643 // Emit the alias information. 1644 for (const GlobalAlias &A : M.aliases()) { 1645 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1646 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1647 // DSO_Local] 1648 Vals.push_back(addToStrtab(A.getName())); 1649 Vals.push_back(A.getName().size()); 1650 Vals.push_back(VE.getTypeID(A.getValueType())); 1651 Vals.push_back(A.getType()->getAddressSpace()); 1652 Vals.push_back(VE.getValueID(A.getAliasee())); 1653 Vals.push_back(getEncodedLinkage(A)); 1654 Vals.push_back(getEncodedVisibility(A)); 1655 Vals.push_back(getEncodedDLLStorageClass(A)); 1656 Vals.push_back(getEncodedThreadLocalMode(A)); 1657 Vals.push_back(getEncodedUnnamedAddr(A)); 1658 Vals.push_back(A.isDSOLocal()); 1659 Vals.push_back(addToStrtab(A.getPartition())); 1660 Vals.push_back(A.getPartition().size()); 1661 1662 unsigned AbbrevToUse = 0; 1663 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1664 Vals.clear(); 1665 } 1666 1667 // Emit the ifunc information. 1668 for (const GlobalIFunc &I : M.ifuncs()) { 1669 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1670 // val#, linkage, visibility, DSO_Local] 1671 Vals.push_back(addToStrtab(I.getName())); 1672 Vals.push_back(I.getName().size()); 1673 Vals.push_back(VE.getTypeID(I.getValueType())); 1674 Vals.push_back(I.getType()->getAddressSpace()); 1675 Vals.push_back(VE.getValueID(I.getResolver())); 1676 Vals.push_back(getEncodedLinkage(I)); 1677 Vals.push_back(getEncodedVisibility(I)); 1678 Vals.push_back(I.isDSOLocal()); 1679 Vals.push_back(addToStrtab(I.getPartition())); 1680 Vals.push_back(I.getPartition().size()); 1681 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1682 Vals.clear(); 1683 } 1684 1685 writeValueSymbolTableForwardDecl(); 1686 } 1687 1688 static uint64_t getOptimizationFlags(const Value *V) { 1689 uint64_t Flags = 0; 1690 1691 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1692 if (OBO->hasNoSignedWrap()) 1693 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1694 if (OBO->hasNoUnsignedWrap()) 1695 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1696 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1697 if (PEO->isExact()) 1698 Flags |= 1 << bitc::PEO_EXACT; 1699 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1700 if (PDI->isDisjoint()) 1701 Flags |= 1 << bitc::PDI_DISJOINT; 1702 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1703 if (FPMO->hasAllowReassoc()) 1704 Flags |= bitc::AllowReassoc; 1705 if (FPMO->hasNoNaNs()) 1706 Flags |= bitc::NoNaNs; 1707 if (FPMO->hasNoInfs()) 1708 Flags |= bitc::NoInfs; 1709 if (FPMO->hasNoSignedZeros()) 1710 Flags |= bitc::NoSignedZeros; 1711 if (FPMO->hasAllowReciprocal()) 1712 Flags |= bitc::AllowReciprocal; 1713 if (FPMO->hasAllowContract()) 1714 Flags |= bitc::AllowContract; 1715 if (FPMO->hasApproxFunc()) 1716 Flags |= bitc::ApproxFunc; 1717 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1718 if (NNI->hasNonNeg()) 1719 Flags |= 1 << bitc::PNNI_NON_NEG; 1720 } else if (const auto *TI = dyn_cast<TruncInst>(V)) { 1721 if (TI->hasNoSignedWrap()) 1722 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; 1723 if (TI->hasNoUnsignedWrap()) 1724 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; 1725 } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) { 1726 if (GEP->isInBounds()) 1727 Flags |= 1 << bitc::GEP_INBOUNDS; 1728 if (GEP->hasNoUnsignedSignedWrap()) 1729 Flags |= 1 << bitc::GEP_NUSW; 1730 if (GEP->hasNoUnsignedWrap()) 1731 Flags |= 1 << bitc::GEP_NUW; 1732 } else if (const auto *ICmp = dyn_cast<ICmpInst>(V)) { 1733 if (ICmp->hasSameSign()) 1734 Flags |= 1 << bitc::ICMP_SAME_SIGN; 1735 } 1736 1737 return Flags; 1738 } 1739 1740 void ModuleBitcodeWriter::writeValueAsMetadata( 1741 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1742 // Mimic an MDNode with a value as one operand. 1743 Value *V = MD->getValue(); 1744 Record.push_back(VE.getTypeID(V->getType())); 1745 Record.push_back(VE.getValueID(V)); 1746 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1747 Record.clear(); 1748 } 1749 1750 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1751 SmallVectorImpl<uint64_t> &Record, 1752 unsigned Abbrev) { 1753 for (const MDOperand &MDO : N->operands()) { 1754 Metadata *MD = MDO; 1755 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1756 "Unexpected function-local metadata"); 1757 Record.push_back(VE.getMetadataOrNullID(MD)); 1758 } 1759 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1760 : bitc::METADATA_NODE, 1761 Record, Abbrev); 1762 Record.clear(); 1763 } 1764 1765 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1766 // Assume the column is usually under 128, and always output the inlined-at 1767 // location (it's never more expensive than building an array size 1). 1768 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1769 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1776 return Stream.EmitAbbrev(std::move(Abbv)); 1777 } 1778 1779 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1780 SmallVectorImpl<uint64_t> &Record, 1781 unsigned &Abbrev) { 1782 if (!Abbrev) 1783 Abbrev = createDILocationAbbrev(); 1784 1785 Record.push_back(N->isDistinct()); 1786 Record.push_back(N->getLine()); 1787 Record.push_back(N->getColumn()); 1788 Record.push_back(VE.getMetadataID(N->getScope())); 1789 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1790 Record.push_back(N->isImplicitCode()); 1791 1792 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1793 Record.clear(); 1794 } 1795 1796 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1797 // Assume the column is usually under 128, and always output the inlined-at 1798 // location (it's never more expensive than building an array size 1). 1799 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1800 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1807 return Stream.EmitAbbrev(std::move(Abbv)); 1808 } 1809 1810 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1811 SmallVectorImpl<uint64_t> &Record, 1812 unsigned &Abbrev) { 1813 if (!Abbrev) 1814 Abbrev = createGenericDINodeAbbrev(); 1815 1816 Record.push_back(N->isDistinct()); 1817 Record.push_back(N->getTag()); 1818 Record.push_back(0); // Per-tag version field; unused for now. 1819 1820 for (auto &I : N->operands()) 1821 Record.push_back(VE.getMetadataOrNullID(I)); 1822 1823 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1824 Record.clear(); 1825 } 1826 1827 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1828 SmallVectorImpl<uint64_t> &Record, 1829 unsigned Abbrev) { 1830 const uint64_t Version = 2 << 1; 1831 Record.push_back((uint64_t)N->isDistinct() | Version); 1832 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1833 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1834 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1835 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1836 1837 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1838 Record.clear(); 1839 } 1840 1841 void ModuleBitcodeWriter::writeDIGenericSubrange( 1842 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1843 unsigned Abbrev) { 1844 Record.push_back((uint64_t)N->isDistinct()); 1845 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1846 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1847 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1848 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1849 1850 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1851 Record.clear(); 1852 } 1853 1854 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1855 SmallVectorImpl<uint64_t> &Record, 1856 unsigned Abbrev) { 1857 const uint64_t IsBigInt = 1 << 2; 1858 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1859 Record.push_back(N->getValue().getBitWidth()); 1860 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1861 emitWideAPInt(Record, N->getValue()); 1862 1863 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1864 Record.clear(); 1865 } 1866 1867 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1868 SmallVectorImpl<uint64_t> &Record, 1869 unsigned Abbrev) { 1870 Record.push_back(N->isDistinct()); 1871 Record.push_back(N->getTag()); 1872 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1873 Record.push_back(N->getSizeInBits()); 1874 Record.push_back(N->getAlignInBits()); 1875 Record.push_back(N->getEncoding()); 1876 Record.push_back(N->getFlags()); 1877 Record.push_back(N->getNumExtraInhabitants()); 1878 1879 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1880 Record.clear(); 1881 } 1882 1883 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1884 SmallVectorImpl<uint64_t> &Record, 1885 unsigned Abbrev) { 1886 Record.push_back(N->isDistinct()); 1887 Record.push_back(N->getTag()); 1888 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1889 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1890 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1891 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1892 Record.push_back(N->getSizeInBits()); 1893 Record.push_back(N->getAlignInBits()); 1894 Record.push_back(N->getEncoding()); 1895 1896 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1897 Record.clear(); 1898 } 1899 1900 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1901 SmallVectorImpl<uint64_t> &Record, 1902 unsigned Abbrev) { 1903 Record.push_back(N->isDistinct()); 1904 Record.push_back(N->getTag()); 1905 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1906 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1907 Record.push_back(N->getLine()); 1908 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1909 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1910 Record.push_back(N->getSizeInBits()); 1911 Record.push_back(N->getAlignInBits()); 1912 Record.push_back(N->getOffsetInBits()); 1913 Record.push_back(N->getFlags()); 1914 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1915 1916 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1917 // that there is no DWARF address space associated with DIDerivedType. 1918 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1919 Record.push_back(*DWARFAddressSpace + 1); 1920 else 1921 Record.push_back(0); 1922 1923 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1924 1925 if (auto PtrAuthData = N->getPtrAuthData()) 1926 Record.push_back(PtrAuthData->RawData); 1927 else 1928 Record.push_back(0); 1929 1930 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1931 Record.clear(); 1932 } 1933 1934 void ModuleBitcodeWriter::writeDICompositeType( 1935 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1936 unsigned Abbrev) { 1937 const unsigned IsNotUsedInOldTypeRef = 0x2; 1938 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1939 Record.push_back(N->getTag()); 1940 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1941 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1942 Record.push_back(N->getLine()); 1943 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1944 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1945 Record.push_back(N->getSizeInBits()); 1946 Record.push_back(N->getAlignInBits()); 1947 Record.push_back(N->getOffsetInBits()); 1948 Record.push_back(N->getFlags()); 1949 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1950 Record.push_back(N->getRuntimeLang()); 1951 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1952 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1953 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1954 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1955 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1956 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1957 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1958 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1959 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1960 Record.push_back(N->getNumExtraInhabitants()); 1961 Record.push_back(VE.getMetadataOrNullID(N->getRawSpecification())); 1962 1963 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1964 Record.clear(); 1965 } 1966 1967 void ModuleBitcodeWriter::writeDISubroutineType( 1968 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1969 unsigned Abbrev) { 1970 const unsigned HasNoOldTypeRefs = 0x2; 1971 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1972 Record.push_back(N->getFlags()); 1973 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1974 Record.push_back(N->getCC()); 1975 1976 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1977 Record.clear(); 1978 } 1979 1980 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1981 SmallVectorImpl<uint64_t> &Record, 1982 unsigned Abbrev) { 1983 Record.push_back(N->isDistinct()); 1984 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1985 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1986 if (N->getRawChecksum()) { 1987 Record.push_back(N->getRawChecksum()->Kind); 1988 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1989 } else { 1990 // Maintain backwards compatibility with the old internal representation of 1991 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1992 Record.push_back(0); 1993 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1994 } 1995 auto Source = N->getRawSource(); 1996 if (Source) 1997 Record.push_back(VE.getMetadataOrNullID(Source)); 1998 1999 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 2000 Record.clear(); 2001 } 2002 2003 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 2004 SmallVectorImpl<uint64_t> &Record, 2005 unsigned Abbrev) { 2006 assert(N->isDistinct() && "Expected distinct compile units"); 2007 Record.push_back(/* IsDistinct */ true); 2008 Record.push_back(N->getSourceLanguage()); 2009 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2010 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 2011 Record.push_back(N->isOptimized()); 2012 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 2013 Record.push_back(N->getRuntimeVersion()); 2014 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 2015 Record.push_back(N->getEmissionKind()); 2016 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 2017 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 2018 Record.push_back(/* subprograms */ 0); 2019 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 2020 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 2021 Record.push_back(N->getDWOId()); 2022 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 2023 Record.push_back(N->getSplitDebugInlining()); 2024 Record.push_back(N->getDebugInfoForProfiling()); 2025 Record.push_back((unsigned)N->getNameTableKind()); 2026 Record.push_back(N->getRangesBaseAddress()); 2027 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 2028 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 2029 2030 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 2031 Record.clear(); 2032 } 2033 2034 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 2035 SmallVectorImpl<uint64_t> &Record, 2036 unsigned Abbrev) { 2037 const uint64_t HasUnitFlag = 1 << 1; 2038 const uint64_t HasSPFlagsFlag = 1 << 2; 2039 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 2040 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2041 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2042 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2043 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2044 Record.push_back(N->getLine()); 2045 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2046 Record.push_back(N->getScopeLine()); 2047 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 2048 Record.push_back(N->getSPFlags()); 2049 Record.push_back(N->getVirtualIndex()); 2050 Record.push_back(N->getFlags()); 2051 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 2052 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 2053 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 2054 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 2055 Record.push_back(N->getThisAdjustment()); 2056 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 2057 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2058 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 2059 2060 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 2061 Record.clear(); 2062 } 2063 2064 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 2065 SmallVectorImpl<uint64_t> &Record, 2066 unsigned Abbrev) { 2067 Record.push_back(N->isDistinct()); 2068 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2069 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2070 Record.push_back(N->getLine()); 2071 Record.push_back(N->getColumn()); 2072 2073 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 2074 Record.clear(); 2075 } 2076 2077 void ModuleBitcodeWriter::writeDILexicalBlockFile( 2078 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 2079 unsigned Abbrev) { 2080 Record.push_back(N->isDistinct()); 2081 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2082 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2083 Record.push_back(N->getDiscriminator()); 2084 2085 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 2086 Record.clear(); 2087 } 2088 2089 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 2090 SmallVectorImpl<uint64_t> &Record, 2091 unsigned Abbrev) { 2092 Record.push_back(N->isDistinct()); 2093 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2094 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 2095 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2096 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2097 Record.push_back(N->getLineNo()); 2098 2099 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 2100 Record.clear(); 2101 } 2102 2103 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2104 SmallVectorImpl<uint64_t> &Record, 2105 unsigned Abbrev) { 2106 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2107 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2108 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2109 2110 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2111 Record.clear(); 2112 } 2113 2114 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2115 SmallVectorImpl<uint64_t> &Record, 2116 unsigned Abbrev) { 2117 Record.push_back(N->isDistinct()); 2118 Record.push_back(N->getMacinfoType()); 2119 Record.push_back(N->getLine()); 2120 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2121 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2122 2123 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2124 Record.clear(); 2125 } 2126 2127 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2128 SmallVectorImpl<uint64_t> &Record, 2129 unsigned Abbrev) { 2130 Record.push_back(N->isDistinct()); 2131 Record.push_back(N->getMacinfoType()); 2132 Record.push_back(N->getLine()); 2133 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2134 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2135 2136 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2137 Record.clear(); 2138 } 2139 2140 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2141 SmallVectorImpl<uint64_t> &Record) { 2142 Record.reserve(N->getArgs().size()); 2143 for (ValueAsMetadata *MD : N->getArgs()) 2144 Record.push_back(VE.getMetadataID(MD)); 2145 2146 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2147 Record.clear(); 2148 } 2149 2150 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2151 SmallVectorImpl<uint64_t> &Record, 2152 unsigned Abbrev) { 2153 Record.push_back(N->isDistinct()); 2154 for (auto &I : N->operands()) 2155 Record.push_back(VE.getMetadataOrNullID(I)); 2156 Record.push_back(N->getLineNo()); 2157 Record.push_back(N->getIsDecl()); 2158 2159 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2160 Record.clear(); 2161 } 2162 2163 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2164 SmallVectorImpl<uint64_t> &Record, 2165 unsigned Abbrev) { 2166 // There are no arguments for this metadata type. 2167 Record.push_back(N->isDistinct()); 2168 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2169 Record.clear(); 2170 } 2171 2172 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2173 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2174 unsigned Abbrev) { 2175 Record.push_back(N->isDistinct()); 2176 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2177 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2178 Record.push_back(N->isDefault()); 2179 2180 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2181 Record.clear(); 2182 } 2183 2184 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2185 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2186 unsigned Abbrev) { 2187 Record.push_back(N->isDistinct()); 2188 Record.push_back(N->getTag()); 2189 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2190 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2191 Record.push_back(N->isDefault()); 2192 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2193 2194 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2195 Record.clear(); 2196 } 2197 2198 void ModuleBitcodeWriter::writeDIGlobalVariable( 2199 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2200 unsigned Abbrev) { 2201 const uint64_t Version = 2 << 1; 2202 Record.push_back((uint64_t)N->isDistinct() | Version); 2203 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2204 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2205 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2206 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2207 Record.push_back(N->getLine()); 2208 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2209 Record.push_back(N->isLocalToUnit()); 2210 Record.push_back(N->isDefinition()); 2211 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2212 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2213 Record.push_back(N->getAlignInBits()); 2214 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2215 2216 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2217 Record.clear(); 2218 } 2219 2220 void ModuleBitcodeWriter::writeDILocalVariable( 2221 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2222 unsigned Abbrev) { 2223 // In order to support all possible bitcode formats in BitcodeReader we need 2224 // to distinguish the following cases: 2225 // 1) Record has no artificial tag (Record[1]), 2226 // has no obsolete inlinedAt field (Record[9]). 2227 // In this case Record size will be 8, HasAlignment flag is false. 2228 // 2) Record has artificial tag (Record[1]), 2229 // has no obsolete inlignedAt field (Record[9]). 2230 // In this case Record size will be 9, HasAlignment flag is false. 2231 // 3) Record has both artificial tag (Record[1]) and 2232 // obsolete inlignedAt field (Record[9]). 2233 // In this case Record size will be 10, HasAlignment flag is false. 2234 // 4) Record has neither artificial tag, nor inlignedAt field, but 2235 // HasAlignment flag is true and Record[8] contains alignment value. 2236 const uint64_t HasAlignmentFlag = 1 << 1; 2237 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2238 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2239 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2240 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2241 Record.push_back(N->getLine()); 2242 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2243 Record.push_back(N->getArg()); 2244 Record.push_back(N->getFlags()); 2245 Record.push_back(N->getAlignInBits()); 2246 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2247 2248 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2249 Record.clear(); 2250 } 2251 2252 void ModuleBitcodeWriter::writeDILabel( 2253 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2254 unsigned Abbrev) { 2255 Record.push_back((uint64_t)N->isDistinct()); 2256 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2257 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2258 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2259 Record.push_back(N->getLine()); 2260 2261 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2262 Record.clear(); 2263 } 2264 2265 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2266 SmallVectorImpl<uint64_t> &Record, 2267 unsigned Abbrev) { 2268 Record.reserve(N->getElements().size() + 1); 2269 const uint64_t Version = 3 << 1; 2270 Record.push_back((uint64_t)N->isDistinct() | Version); 2271 Record.append(N->elements_begin(), N->elements_end()); 2272 2273 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2274 Record.clear(); 2275 } 2276 2277 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2278 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2279 unsigned Abbrev) { 2280 Record.push_back(N->isDistinct()); 2281 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2282 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2283 2284 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2285 Record.clear(); 2286 } 2287 2288 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2289 SmallVectorImpl<uint64_t> &Record, 2290 unsigned Abbrev) { 2291 Record.push_back(N->isDistinct()); 2292 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2293 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2294 Record.push_back(N->getLine()); 2295 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2296 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2297 Record.push_back(N->getAttributes()); 2298 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2299 2300 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2301 Record.clear(); 2302 } 2303 2304 void ModuleBitcodeWriter::writeDIImportedEntity( 2305 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2306 unsigned Abbrev) { 2307 Record.push_back(N->isDistinct()); 2308 Record.push_back(N->getTag()); 2309 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2310 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2311 Record.push_back(N->getLine()); 2312 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2313 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2314 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2315 2316 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2317 Record.clear(); 2318 } 2319 2320 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2321 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2322 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2325 return Stream.EmitAbbrev(std::move(Abbv)); 2326 } 2327 2328 void ModuleBitcodeWriter::writeNamedMetadata( 2329 SmallVectorImpl<uint64_t> &Record) { 2330 if (M.named_metadata_empty()) 2331 return; 2332 2333 unsigned Abbrev = createNamedMetadataAbbrev(); 2334 for (const NamedMDNode &NMD : M.named_metadata()) { 2335 // Write name. 2336 StringRef Str = NMD.getName(); 2337 Record.append(Str.bytes_begin(), Str.bytes_end()); 2338 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2339 Record.clear(); 2340 2341 // Write named metadata operands. 2342 for (const MDNode *N : NMD.operands()) 2343 Record.push_back(VE.getMetadataID(N)); 2344 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2345 Record.clear(); 2346 } 2347 } 2348 2349 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2350 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2351 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2355 return Stream.EmitAbbrev(std::move(Abbv)); 2356 } 2357 2358 /// Write out a record for MDString. 2359 /// 2360 /// All the metadata strings in a metadata block are emitted in a single 2361 /// record. The sizes and strings themselves are shoved into a blob. 2362 void ModuleBitcodeWriter::writeMetadataStrings( 2363 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2364 if (Strings.empty()) 2365 return; 2366 2367 // Start the record with the number of strings. 2368 Record.push_back(bitc::METADATA_STRINGS); 2369 Record.push_back(Strings.size()); 2370 2371 // Emit the sizes of the strings in the blob. 2372 SmallString<256> Blob; 2373 { 2374 BitstreamWriter W(Blob); 2375 for (const Metadata *MD : Strings) 2376 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2377 W.FlushToWord(); 2378 } 2379 2380 // Add the offset to the strings to the record. 2381 Record.push_back(Blob.size()); 2382 2383 // Add the strings to the blob. 2384 for (const Metadata *MD : Strings) 2385 Blob.append(cast<MDString>(MD)->getString()); 2386 2387 // Emit the final record. 2388 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2389 Record.clear(); 2390 } 2391 2392 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2393 enum MetadataAbbrev : unsigned { 2394 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2395 #include "llvm/IR/Metadata.def" 2396 LastPlusOne 2397 }; 2398 2399 void ModuleBitcodeWriter::writeMetadataRecords( 2400 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2401 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2402 if (MDs.empty()) 2403 return; 2404 2405 // Initialize MDNode abbreviations. 2406 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2407 #include "llvm/IR/Metadata.def" 2408 2409 for (const Metadata *MD : MDs) { 2410 if (IndexPos) 2411 IndexPos->push_back(Stream.GetCurrentBitNo()); 2412 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2413 assert(N->isResolved() && "Expected forward references to be resolved"); 2414 2415 switch (N->getMetadataID()) { 2416 default: 2417 llvm_unreachable("Invalid MDNode subclass"); 2418 #define HANDLE_MDNODE_LEAF(CLASS) \ 2419 case Metadata::CLASS##Kind: \ 2420 if (MDAbbrevs) \ 2421 write##CLASS(cast<CLASS>(N), Record, \ 2422 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2423 else \ 2424 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2425 continue; 2426 #include "llvm/IR/Metadata.def" 2427 } 2428 } 2429 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2430 writeDIArgList(AL, Record); 2431 continue; 2432 } 2433 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2434 } 2435 } 2436 2437 void ModuleBitcodeWriter::writeModuleMetadata() { 2438 if (!VE.hasMDs() && M.named_metadata_empty()) 2439 return; 2440 2441 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2442 SmallVector<uint64_t, 64> Record; 2443 2444 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2445 // block and load any metadata. 2446 std::vector<unsigned> MDAbbrevs; 2447 2448 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2449 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2450 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2451 createGenericDINodeAbbrev(); 2452 2453 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2454 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2457 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2458 2459 Abbv = std::make_shared<BitCodeAbbrev>(); 2460 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2463 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2464 2465 // Emit MDStrings together upfront. 2466 writeMetadataStrings(VE.getMDStrings(), Record); 2467 2468 // We only emit an index for the metadata record if we have more than a given 2469 // (naive) threshold of metadatas, otherwise it is not worth it. 2470 if (VE.getNonMDStrings().size() > IndexThreshold) { 2471 // Write a placeholder value in for the offset of the metadata index, 2472 // which is written after the records, so that it can include 2473 // the offset of each entry. The placeholder offset will be 2474 // updated after all records are emitted. 2475 uint64_t Vals[] = {0, 0}; 2476 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2477 } 2478 2479 // Compute and save the bit offset to the current position, which will be 2480 // patched when we emit the index later. We can simply subtract the 64-bit 2481 // fixed size from the current bit number to get the location to backpatch. 2482 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2483 2484 // This index will contain the bitpos for each individual record. 2485 std::vector<uint64_t> IndexPos; 2486 IndexPos.reserve(VE.getNonMDStrings().size()); 2487 2488 // Write all the records 2489 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2490 2491 if (VE.getNonMDStrings().size() > IndexThreshold) { 2492 // Now that we have emitted all the records we will emit the index. But 2493 // first 2494 // backpatch the forward reference so that the reader can skip the records 2495 // efficiently. 2496 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2497 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2498 2499 // Delta encode the index. 2500 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2501 for (auto &Elt : IndexPos) { 2502 auto EltDelta = Elt - PreviousValue; 2503 PreviousValue = Elt; 2504 Elt = EltDelta; 2505 } 2506 // Emit the index record. 2507 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2508 IndexPos.clear(); 2509 } 2510 2511 // Write the named metadata now. 2512 writeNamedMetadata(Record); 2513 2514 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2515 SmallVector<uint64_t, 4> Record; 2516 Record.push_back(VE.getValueID(&GO)); 2517 pushGlobalMetadataAttachment(Record, GO); 2518 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2519 }; 2520 for (const Function &F : M) 2521 if (F.isDeclaration() && F.hasMetadata()) 2522 AddDeclAttachedMetadata(F); 2523 // FIXME: Only store metadata for declarations here, and move data for global 2524 // variable definitions to a separate block (PR28134). 2525 for (const GlobalVariable &GV : M.globals()) 2526 if (GV.hasMetadata()) 2527 AddDeclAttachedMetadata(GV); 2528 2529 Stream.ExitBlock(); 2530 } 2531 2532 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2533 if (!VE.hasMDs()) 2534 return; 2535 2536 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2537 SmallVector<uint64_t, 64> Record; 2538 writeMetadataStrings(VE.getMDStrings(), Record); 2539 writeMetadataRecords(VE.getNonMDStrings(), Record); 2540 Stream.ExitBlock(); 2541 } 2542 2543 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2544 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2545 // [n x [id, mdnode]] 2546 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2547 GO.getAllMetadata(MDs); 2548 for (const auto &I : MDs) { 2549 Record.push_back(I.first); 2550 Record.push_back(VE.getMetadataID(I.second)); 2551 } 2552 } 2553 2554 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2555 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2556 2557 SmallVector<uint64_t, 64> Record; 2558 2559 if (F.hasMetadata()) { 2560 pushGlobalMetadataAttachment(Record, F); 2561 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2562 Record.clear(); 2563 } 2564 2565 // Write metadata attachments 2566 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2567 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2568 for (const BasicBlock &BB : F) 2569 for (const Instruction &I : BB) { 2570 MDs.clear(); 2571 I.getAllMetadataOtherThanDebugLoc(MDs); 2572 2573 // If no metadata, ignore instruction. 2574 if (MDs.empty()) continue; 2575 2576 Record.push_back(VE.getInstructionID(&I)); 2577 2578 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2579 Record.push_back(MDs[i].first); 2580 Record.push_back(VE.getMetadataID(MDs[i].second)); 2581 } 2582 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2583 Record.clear(); 2584 } 2585 2586 Stream.ExitBlock(); 2587 } 2588 2589 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2590 SmallVector<uint64_t, 64> Record; 2591 2592 // Write metadata kinds 2593 // METADATA_KIND - [n x [id, name]] 2594 SmallVector<StringRef, 8> Names; 2595 M.getMDKindNames(Names); 2596 2597 if (Names.empty()) return; 2598 2599 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2600 2601 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2602 Record.push_back(MDKindID); 2603 StringRef KName = Names[MDKindID]; 2604 Record.append(KName.begin(), KName.end()); 2605 2606 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2607 Record.clear(); 2608 } 2609 2610 Stream.ExitBlock(); 2611 } 2612 2613 void ModuleBitcodeWriter::writeOperandBundleTags() { 2614 // Write metadata kinds 2615 // 2616 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2617 // 2618 // OPERAND_BUNDLE_TAG - [strchr x N] 2619 2620 SmallVector<StringRef, 8> Tags; 2621 M.getOperandBundleTags(Tags); 2622 2623 if (Tags.empty()) 2624 return; 2625 2626 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2627 2628 SmallVector<uint64_t, 64> Record; 2629 2630 for (auto Tag : Tags) { 2631 Record.append(Tag.begin(), Tag.end()); 2632 2633 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2634 Record.clear(); 2635 } 2636 2637 Stream.ExitBlock(); 2638 } 2639 2640 void ModuleBitcodeWriter::writeSyncScopeNames() { 2641 SmallVector<StringRef, 8> SSNs; 2642 M.getContext().getSyncScopeNames(SSNs); 2643 if (SSNs.empty()) 2644 return; 2645 2646 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2647 2648 SmallVector<uint64_t, 64> Record; 2649 for (auto SSN : SSNs) { 2650 Record.append(SSN.begin(), SSN.end()); 2651 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2652 Record.clear(); 2653 } 2654 2655 Stream.ExitBlock(); 2656 } 2657 2658 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2659 bool isGlobal) { 2660 if (FirstVal == LastVal) return; 2661 2662 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2663 2664 unsigned AggregateAbbrev = 0; 2665 unsigned String8Abbrev = 0; 2666 unsigned CString7Abbrev = 0; 2667 unsigned CString6Abbrev = 0; 2668 // If this is a constant pool for the module, emit module-specific abbrevs. 2669 if (isGlobal) { 2670 // Abbrev for CST_CODE_AGGREGATE. 2671 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2672 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2675 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2676 2677 // Abbrev for CST_CODE_STRING. 2678 Abbv = std::make_shared<BitCodeAbbrev>(); 2679 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2682 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2683 // Abbrev for CST_CODE_CSTRING. 2684 Abbv = std::make_shared<BitCodeAbbrev>(); 2685 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2688 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2689 // Abbrev for CST_CODE_CSTRING. 2690 Abbv = std::make_shared<BitCodeAbbrev>(); 2691 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2694 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2695 } 2696 2697 SmallVector<uint64_t, 64> Record; 2698 2699 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2700 Type *LastTy = nullptr; 2701 for (unsigned i = FirstVal; i != LastVal; ++i) { 2702 const Value *V = Vals[i].first; 2703 // If we need to switch types, do so now. 2704 if (V->getType() != LastTy) { 2705 LastTy = V->getType(); 2706 Record.push_back(VE.getTypeID(LastTy)); 2707 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2708 CONSTANTS_SETTYPE_ABBREV); 2709 Record.clear(); 2710 } 2711 2712 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2713 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2714 Record.push_back( 2715 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2716 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2717 2718 // Add the asm string. 2719 const std::string &AsmStr = IA->getAsmString(); 2720 Record.push_back(AsmStr.size()); 2721 Record.append(AsmStr.begin(), AsmStr.end()); 2722 2723 // Add the constraint string. 2724 const std::string &ConstraintStr = IA->getConstraintString(); 2725 Record.push_back(ConstraintStr.size()); 2726 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2727 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2728 Record.clear(); 2729 continue; 2730 } 2731 const Constant *C = cast<Constant>(V); 2732 unsigned Code = -1U; 2733 unsigned AbbrevToUse = 0; 2734 if (C->isNullValue()) { 2735 Code = bitc::CST_CODE_NULL; 2736 } else if (isa<PoisonValue>(C)) { 2737 Code = bitc::CST_CODE_POISON; 2738 } else if (isa<UndefValue>(C)) { 2739 Code = bitc::CST_CODE_UNDEF; 2740 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2741 if (IV->getBitWidth() <= 64) { 2742 uint64_t V = IV->getSExtValue(); 2743 emitSignedInt64(Record, V); 2744 Code = bitc::CST_CODE_INTEGER; 2745 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2746 } else { // Wide integers, > 64 bits in size. 2747 emitWideAPInt(Record, IV->getValue()); 2748 Code = bitc::CST_CODE_WIDE_INTEGER; 2749 } 2750 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2751 Code = bitc::CST_CODE_FLOAT; 2752 Type *Ty = CFP->getType()->getScalarType(); 2753 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2754 Ty->isDoubleTy()) { 2755 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2756 } else if (Ty->isX86_FP80Ty()) { 2757 // api needed to prevent premature destruction 2758 // bits are not in the same order as a normal i80 APInt, compensate. 2759 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2760 const uint64_t *p = api.getRawData(); 2761 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2762 Record.push_back(p[0] & 0xffffLL); 2763 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2764 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2765 const uint64_t *p = api.getRawData(); 2766 Record.push_back(p[0]); 2767 Record.push_back(p[1]); 2768 } else { 2769 assert(0 && "Unknown FP type!"); 2770 } 2771 } else if (isa<ConstantDataSequential>(C) && 2772 cast<ConstantDataSequential>(C)->isString()) { 2773 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2774 // Emit constant strings specially. 2775 unsigned NumElts = Str->getNumElements(); 2776 // If this is a null-terminated string, use the denser CSTRING encoding. 2777 if (Str->isCString()) { 2778 Code = bitc::CST_CODE_CSTRING; 2779 --NumElts; // Don't encode the null, which isn't allowed by char6. 2780 } else { 2781 Code = bitc::CST_CODE_STRING; 2782 AbbrevToUse = String8Abbrev; 2783 } 2784 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2785 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2786 for (unsigned i = 0; i != NumElts; ++i) { 2787 unsigned char V = Str->getElementAsInteger(i); 2788 Record.push_back(V); 2789 isCStr7 &= (V & 128) == 0; 2790 if (isCStrChar6) 2791 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2792 } 2793 2794 if (isCStrChar6) 2795 AbbrevToUse = CString6Abbrev; 2796 else if (isCStr7) 2797 AbbrevToUse = CString7Abbrev; 2798 } else if (const ConstantDataSequential *CDS = 2799 dyn_cast<ConstantDataSequential>(C)) { 2800 Code = bitc::CST_CODE_DATA; 2801 Type *EltTy = CDS->getElementType(); 2802 if (isa<IntegerType>(EltTy)) { 2803 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2804 Record.push_back(CDS->getElementAsInteger(i)); 2805 } else { 2806 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2807 Record.push_back( 2808 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2809 } 2810 } else if (isa<ConstantAggregate>(C)) { 2811 Code = bitc::CST_CODE_AGGREGATE; 2812 for (const Value *Op : C->operands()) 2813 Record.push_back(VE.getValueID(Op)); 2814 AbbrevToUse = AggregateAbbrev; 2815 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2816 switch (CE->getOpcode()) { 2817 default: 2818 if (Instruction::isCast(CE->getOpcode())) { 2819 Code = bitc::CST_CODE_CE_CAST; 2820 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2821 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2822 Record.push_back(VE.getValueID(C->getOperand(0))); 2823 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2824 } else { 2825 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2826 Code = bitc::CST_CODE_CE_BINOP; 2827 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2828 Record.push_back(VE.getValueID(C->getOperand(0))); 2829 Record.push_back(VE.getValueID(C->getOperand(1))); 2830 uint64_t Flags = getOptimizationFlags(CE); 2831 if (Flags != 0) 2832 Record.push_back(Flags); 2833 } 2834 break; 2835 case Instruction::FNeg: { 2836 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2837 Code = bitc::CST_CODE_CE_UNOP; 2838 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2839 Record.push_back(VE.getValueID(C->getOperand(0))); 2840 uint64_t Flags = getOptimizationFlags(CE); 2841 if (Flags != 0) 2842 Record.push_back(Flags); 2843 break; 2844 } 2845 case Instruction::GetElementPtr: { 2846 Code = bitc::CST_CODE_CE_GEP; 2847 const auto *GO = cast<GEPOperator>(C); 2848 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2849 Record.push_back(getOptimizationFlags(GO)); 2850 if (std::optional<ConstantRange> Range = GO->getInRange()) { 2851 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; 2852 emitConstantRange(Record, *Range, /*EmitBitWidth=*/true); 2853 } 2854 for (const Value *Op : CE->operands()) { 2855 Record.push_back(VE.getTypeID(Op->getType())); 2856 Record.push_back(VE.getValueID(Op)); 2857 } 2858 break; 2859 } 2860 case Instruction::ExtractElement: 2861 Code = bitc::CST_CODE_CE_EXTRACTELT; 2862 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2863 Record.push_back(VE.getValueID(C->getOperand(0))); 2864 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2865 Record.push_back(VE.getValueID(C->getOperand(1))); 2866 break; 2867 case Instruction::InsertElement: 2868 Code = bitc::CST_CODE_CE_INSERTELT; 2869 Record.push_back(VE.getValueID(C->getOperand(0))); 2870 Record.push_back(VE.getValueID(C->getOperand(1))); 2871 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2872 Record.push_back(VE.getValueID(C->getOperand(2))); 2873 break; 2874 case Instruction::ShuffleVector: 2875 // If the return type and argument types are the same, this is a 2876 // standard shufflevector instruction. If the types are different, 2877 // then the shuffle is widening or truncating the input vectors, and 2878 // the argument type must also be encoded. 2879 if (C->getType() == C->getOperand(0)->getType()) { 2880 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2881 } else { 2882 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2883 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2884 } 2885 Record.push_back(VE.getValueID(C->getOperand(0))); 2886 Record.push_back(VE.getValueID(C->getOperand(1))); 2887 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2888 break; 2889 } 2890 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2891 Code = bitc::CST_CODE_BLOCKADDRESS; 2892 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2893 Record.push_back(VE.getValueID(BA->getFunction())); 2894 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2895 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2896 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2897 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2898 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2899 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2900 Code = bitc::CST_CODE_NO_CFI_VALUE; 2901 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2902 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2903 } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) { 2904 Code = bitc::CST_CODE_PTRAUTH; 2905 Record.push_back(VE.getValueID(CPA->getPointer())); 2906 Record.push_back(VE.getValueID(CPA->getKey())); 2907 Record.push_back(VE.getValueID(CPA->getDiscriminator())); 2908 Record.push_back(VE.getValueID(CPA->getAddrDiscriminator())); 2909 } else { 2910 #ifndef NDEBUG 2911 C->dump(); 2912 #endif 2913 llvm_unreachable("Unknown constant!"); 2914 } 2915 Stream.EmitRecord(Code, Record, AbbrevToUse); 2916 Record.clear(); 2917 } 2918 2919 Stream.ExitBlock(); 2920 } 2921 2922 void ModuleBitcodeWriter::writeModuleConstants() { 2923 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2924 2925 // Find the first constant to emit, which is the first non-globalvalue value. 2926 // We know globalvalues have been emitted by WriteModuleInfo. 2927 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2928 if (!isa<GlobalValue>(Vals[i].first)) { 2929 writeConstants(i, Vals.size(), true); 2930 return; 2931 } 2932 } 2933 } 2934 2935 /// pushValueAndType - The file has to encode both the value and type id for 2936 /// many values, because we need to know what type to create for forward 2937 /// references. However, most operands are not forward references, so this type 2938 /// field is not needed. 2939 /// 2940 /// This function adds V's value ID to Vals. If the value ID is higher than the 2941 /// instruction ID, then it is a forward reference, and it also includes the 2942 /// type ID. The value ID that is written is encoded relative to the InstID. 2943 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2944 SmallVectorImpl<unsigned> &Vals) { 2945 unsigned ValID = VE.getValueID(V); 2946 // Make encoding relative to the InstID. 2947 Vals.push_back(InstID - ValID); 2948 if (ValID >= InstID) { 2949 Vals.push_back(VE.getTypeID(V->getType())); 2950 return true; 2951 } 2952 return false; 2953 } 2954 2955 bool ModuleBitcodeWriter::pushValueOrMetadata(const Value *V, unsigned InstID, 2956 SmallVectorImpl<unsigned> &Vals) { 2957 bool IsMetadata = V->getType()->isMetadataTy(); 2958 if (IsMetadata) { 2959 Vals.push_back(bitc::OB_METADATA); 2960 Metadata *MD = cast<MetadataAsValue>(V)->getMetadata(); 2961 unsigned ValID = VE.getMetadataID(MD); 2962 Vals.push_back(InstID - ValID); 2963 return false; 2964 } 2965 return pushValueAndType(V, InstID, Vals); 2966 } 2967 2968 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2969 unsigned InstID) { 2970 SmallVector<unsigned, 64> Record; 2971 LLVMContext &C = CS.getContext(); 2972 2973 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2974 const auto &Bundle = CS.getOperandBundleAt(i); 2975 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2976 2977 for (auto &Input : Bundle.Inputs) 2978 pushValueOrMetadata(Input, InstID, Record); 2979 2980 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2981 Record.clear(); 2982 } 2983 } 2984 2985 /// pushValue - Like pushValueAndType, but where the type of the value is 2986 /// omitted (perhaps it was already encoded in an earlier operand). 2987 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2988 SmallVectorImpl<unsigned> &Vals) { 2989 unsigned ValID = VE.getValueID(V); 2990 Vals.push_back(InstID - ValID); 2991 } 2992 2993 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2994 SmallVectorImpl<uint64_t> &Vals) { 2995 unsigned ValID = VE.getValueID(V); 2996 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2997 emitSignedInt64(Vals, diff); 2998 } 2999 3000 /// WriteInstruction - Emit an instruction to the specified stream. 3001 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 3002 unsigned InstID, 3003 SmallVectorImpl<unsigned> &Vals) { 3004 unsigned Code = 0; 3005 unsigned AbbrevToUse = 0; 3006 VE.setInstructionID(&I); 3007 switch (I.getOpcode()) { 3008 default: 3009 if (Instruction::isCast(I.getOpcode())) { 3010 Code = bitc::FUNC_CODE_INST_CAST; 3011 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3012 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 3013 Vals.push_back(VE.getTypeID(I.getType())); 3014 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 3015 uint64_t Flags = getOptimizationFlags(&I); 3016 if (Flags != 0) { 3017 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 3018 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 3019 Vals.push_back(Flags); 3020 } 3021 } else { 3022 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 3023 Code = bitc::FUNC_CODE_INST_BINOP; 3024 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3025 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 3026 pushValue(I.getOperand(1), InstID, Vals); 3027 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 3028 uint64_t Flags = getOptimizationFlags(&I); 3029 if (Flags != 0) { 3030 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 3031 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 3032 Vals.push_back(Flags); 3033 } 3034 } 3035 break; 3036 case Instruction::FNeg: { 3037 Code = bitc::FUNC_CODE_INST_UNOP; 3038 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3039 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 3040 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 3041 uint64_t Flags = getOptimizationFlags(&I); 3042 if (Flags != 0) { 3043 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 3044 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 3045 Vals.push_back(Flags); 3046 } 3047 break; 3048 } 3049 case Instruction::GetElementPtr: { 3050 Code = bitc::FUNC_CODE_INST_GEP; 3051 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 3052 auto &GEPInst = cast<GetElementPtrInst>(I); 3053 Vals.push_back(getOptimizationFlags(&I)); 3054 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 3055 for (const Value *Op : I.operands()) 3056 pushValueAndType(Op, InstID, Vals); 3057 break; 3058 } 3059 case Instruction::ExtractValue: { 3060 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 3061 pushValueAndType(I.getOperand(0), InstID, Vals); 3062 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 3063 Vals.append(EVI->idx_begin(), EVI->idx_end()); 3064 break; 3065 } 3066 case Instruction::InsertValue: { 3067 Code = bitc::FUNC_CODE_INST_INSERTVAL; 3068 pushValueAndType(I.getOperand(0), InstID, Vals); 3069 pushValueAndType(I.getOperand(1), InstID, Vals); 3070 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 3071 Vals.append(IVI->idx_begin(), IVI->idx_end()); 3072 break; 3073 } 3074 case Instruction::Select: { 3075 Code = bitc::FUNC_CODE_INST_VSELECT; 3076 pushValueAndType(I.getOperand(1), InstID, Vals); 3077 pushValue(I.getOperand(2), InstID, Vals); 3078 pushValueAndType(I.getOperand(0), InstID, Vals); 3079 uint64_t Flags = getOptimizationFlags(&I); 3080 if (Flags != 0) 3081 Vals.push_back(Flags); 3082 break; 3083 } 3084 case Instruction::ExtractElement: 3085 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 3086 pushValueAndType(I.getOperand(0), InstID, Vals); 3087 pushValueAndType(I.getOperand(1), InstID, Vals); 3088 break; 3089 case Instruction::InsertElement: 3090 Code = bitc::FUNC_CODE_INST_INSERTELT; 3091 pushValueAndType(I.getOperand(0), InstID, Vals); 3092 pushValue(I.getOperand(1), InstID, Vals); 3093 pushValueAndType(I.getOperand(2), InstID, Vals); 3094 break; 3095 case Instruction::ShuffleVector: 3096 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 3097 pushValueAndType(I.getOperand(0), InstID, Vals); 3098 pushValue(I.getOperand(1), InstID, Vals); 3099 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 3100 Vals); 3101 break; 3102 case Instruction::ICmp: 3103 case Instruction::FCmp: { 3104 // compare returning Int1Ty or vector of Int1Ty 3105 Code = bitc::FUNC_CODE_INST_CMP2; 3106 pushValueAndType(I.getOperand(0), InstID, Vals); 3107 pushValue(I.getOperand(1), InstID, Vals); 3108 Vals.push_back(cast<CmpInst>(I).getPredicate()); 3109 uint64_t Flags = getOptimizationFlags(&I); 3110 if (Flags != 0) 3111 Vals.push_back(Flags); 3112 break; 3113 } 3114 3115 case Instruction::Ret: 3116 { 3117 Code = bitc::FUNC_CODE_INST_RET; 3118 unsigned NumOperands = I.getNumOperands(); 3119 if (NumOperands == 0) 3120 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3121 else if (NumOperands == 1) { 3122 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3123 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3124 } else { 3125 for (const Value *Op : I.operands()) 3126 pushValueAndType(Op, InstID, Vals); 3127 } 3128 } 3129 break; 3130 case Instruction::Br: 3131 { 3132 Code = bitc::FUNC_CODE_INST_BR; 3133 const BranchInst &II = cast<BranchInst>(I); 3134 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3135 if (II.isConditional()) { 3136 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3137 pushValue(II.getCondition(), InstID, Vals); 3138 } 3139 } 3140 break; 3141 case Instruction::Switch: 3142 { 3143 Code = bitc::FUNC_CODE_INST_SWITCH; 3144 const SwitchInst &SI = cast<SwitchInst>(I); 3145 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3146 pushValue(SI.getCondition(), InstID, Vals); 3147 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3148 for (auto Case : SI.cases()) { 3149 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3150 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3151 } 3152 } 3153 break; 3154 case Instruction::IndirectBr: 3155 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3156 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3157 // Encode the address operand as relative, but not the basic blocks. 3158 pushValue(I.getOperand(0), InstID, Vals); 3159 for (const Value *Op : drop_begin(I.operands())) 3160 Vals.push_back(VE.getValueID(Op)); 3161 break; 3162 3163 case Instruction::Invoke: { 3164 const InvokeInst *II = cast<InvokeInst>(&I); 3165 const Value *Callee = II->getCalledOperand(); 3166 FunctionType *FTy = II->getFunctionType(); 3167 3168 if (II->hasOperandBundles()) 3169 writeOperandBundles(*II, InstID); 3170 3171 Code = bitc::FUNC_CODE_INST_INVOKE; 3172 3173 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3174 Vals.push_back(II->getCallingConv() | 1 << 13); 3175 Vals.push_back(VE.getValueID(II->getNormalDest())); 3176 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3177 Vals.push_back(VE.getTypeID(FTy)); 3178 pushValueAndType(Callee, InstID, Vals); 3179 3180 // Emit value #'s for the fixed parameters. 3181 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3182 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3183 3184 // Emit type/value pairs for varargs params. 3185 if (FTy->isVarArg()) { 3186 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3187 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3188 } 3189 break; 3190 } 3191 case Instruction::Resume: 3192 Code = bitc::FUNC_CODE_INST_RESUME; 3193 pushValueAndType(I.getOperand(0), InstID, Vals); 3194 break; 3195 case Instruction::CleanupRet: { 3196 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3197 const auto &CRI = cast<CleanupReturnInst>(I); 3198 pushValue(CRI.getCleanupPad(), InstID, Vals); 3199 if (CRI.hasUnwindDest()) 3200 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3201 break; 3202 } 3203 case Instruction::CatchRet: { 3204 Code = bitc::FUNC_CODE_INST_CATCHRET; 3205 const auto &CRI = cast<CatchReturnInst>(I); 3206 pushValue(CRI.getCatchPad(), InstID, Vals); 3207 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3208 break; 3209 } 3210 case Instruction::CleanupPad: 3211 case Instruction::CatchPad: { 3212 const auto &FuncletPad = cast<FuncletPadInst>(I); 3213 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3214 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3215 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3216 3217 unsigned NumArgOperands = FuncletPad.arg_size(); 3218 Vals.push_back(NumArgOperands); 3219 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3220 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3221 break; 3222 } 3223 case Instruction::CatchSwitch: { 3224 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3225 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3226 3227 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3228 3229 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3230 Vals.push_back(NumHandlers); 3231 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3232 Vals.push_back(VE.getValueID(CatchPadBB)); 3233 3234 if (CatchSwitch.hasUnwindDest()) 3235 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3236 break; 3237 } 3238 case Instruction::CallBr: { 3239 const CallBrInst *CBI = cast<CallBrInst>(&I); 3240 const Value *Callee = CBI->getCalledOperand(); 3241 FunctionType *FTy = CBI->getFunctionType(); 3242 3243 if (CBI->hasOperandBundles()) 3244 writeOperandBundles(*CBI, InstID); 3245 3246 Code = bitc::FUNC_CODE_INST_CALLBR; 3247 3248 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3249 3250 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3251 1 << bitc::CALL_EXPLICIT_TYPE); 3252 3253 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3254 Vals.push_back(CBI->getNumIndirectDests()); 3255 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3256 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3257 3258 Vals.push_back(VE.getTypeID(FTy)); 3259 pushValueAndType(Callee, InstID, Vals); 3260 3261 // Emit value #'s for the fixed parameters. 3262 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3263 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3264 3265 // Emit type/value pairs for varargs params. 3266 if (FTy->isVarArg()) { 3267 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3268 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3269 } 3270 break; 3271 } 3272 case Instruction::Unreachable: 3273 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3274 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3275 break; 3276 3277 case Instruction::PHI: { 3278 const PHINode &PN = cast<PHINode>(I); 3279 Code = bitc::FUNC_CODE_INST_PHI; 3280 // With the newer instruction encoding, forward references could give 3281 // negative valued IDs. This is most common for PHIs, so we use 3282 // signed VBRs. 3283 SmallVector<uint64_t, 128> Vals64; 3284 Vals64.push_back(VE.getTypeID(PN.getType())); 3285 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3286 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3287 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3288 } 3289 3290 uint64_t Flags = getOptimizationFlags(&I); 3291 if (Flags != 0) 3292 Vals64.push_back(Flags); 3293 3294 // Emit a Vals64 vector and exit. 3295 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3296 Vals64.clear(); 3297 return; 3298 } 3299 3300 case Instruction::LandingPad: { 3301 const LandingPadInst &LP = cast<LandingPadInst>(I); 3302 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3303 Vals.push_back(VE.getTypeID(LP.getType())); 3304 Vals.push_back(LP.isCleanup()); 3305 Vals.push_back(LP.getNumClauses()); 3306 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3307 if (LP.isCatch(I)) 3308 Vals.push_back(LandingPadInst::Catch); 3309 else 3310 Vals.push_back(LandingPadInst::Filter); 3311 pushValueAndType(LP.getClause(I), InstID, Vals); 3312 } 3313 break; 3314 } 3315 3316 case Instruction::Alloca: { 3317 Code = bitc::FUNC_CODE_INST_ALLOCA; 3318 const AllocaInst &AI = cast<AllocaInst>(I); 3319 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3320 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3321 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3322 using APV = AllocaPackedValues; 3323 unsigned Record = 0; 3324 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3325 Bitfield::set<APV::AlignLower>( 3326 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3327 Bitfield::set<APV::AlignUpper>(Record, 3328 EncodedAlign >> APV::AlignLower::Bits); 3329 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3330 Bitfield::set<APV::ExplicitType>(Record, true); 3331 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3332 Vals.push_back(Record); 3333 3334 unsigned AS = AI.getAddressSpace(); 3335 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3336 Vals.push_back(AS); 3337 break; 3338 } 3339 3340 case Instruction::Load: 3341 if (cast<LoadInst>(I).isAtomic()) { 3342 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3343 pushValueAndType(I.getOperand(0), InstID, Vals); 3344 } else { 3345 Code = bitc::FUNC_CODE_INST_LOAD; 3346 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3347 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3348 } 3349 Vals.push_back(VE.getTypeID(I.getType())); 3350 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3351 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3352 if (cast<LoadInst>(I).isAtomic()) { 3353 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3354 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3355 } 3356 break; 3357 case Instruction::Store: 3358 if (cast<StoreInst>(I).isAtomic()) 3359 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3360 else 3361 Code = bitc::FUNC_CODE_INST_STORE; 3362 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3363 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3364 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3365 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3366 if (cast<StoreInst>(I).isAtomic()) { 3367 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3368 Vals.push_back( 3369 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3370 } 3371 break; 3372 case Instruction::AtomicCmpXchg: 3373 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3374 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3375 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3376 pushValue(I.getOperand(2), InstID, Vals); // newval. 3377 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3378 Vals.push_back( 3379 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3380 Vals.push_back( 3381 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3382 Vals.push_back( 3383 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3384 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3385 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3386 break; 3387 case Instruction::AtomicRMW: 3388 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3389 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3390 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3391 Vals.push_back( 3392 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3393 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3394 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3395 Vals.push_back( 3396 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3397 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3398 break; 3399 case Instruction::Fence: 3400 Code = bitc::FUNC_CODE_INST_FENCE; 3401 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3402 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3403 break; 3404 case Instruction::Call: { 3405 const CallInst &CI = cast<CallInst>(I); 3406 FunctionType *FTy = CI.getFunctionType(); 3407 3408 if (CI.hasOperandBundles()) 3409 writeOperandBundles(CI, InstID); 3410 3411 Code = bitc::FUNC_CODE_INST_CALL; 3412 3413 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3414 3415 unsigned Flags = getOptimizationFlags(&I); 3416 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3417 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3418 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3419 1 << bitc::CALL_EXPLICIT_TYPE | 3420 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3421 unsigned(Flags != 0) << bitc::CALL_FMF); 3422 if (Flags != 0) 3423 Vals.push_back(Flags); 3424 3425 Vals.push_back(VE.getTypeID(FTy)); 3426 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3427 3428 // Emit value #'s for the fixed parameters. 3429 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3430 // Check for labels (can happen with asm labels). 3431 if (FTy->getParamType(i)->isLabelTy()) 3432 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3433 else 3434 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3435 } 3436 3437 // Emit type/value pairs for varargs params. 3438 if (FTy->isVarArg()) { 3439 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3440 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3441 } 3442 break; 3443 } 3444 case Instruction::VAArg: 3445 Code = bitc::FUNC_CODE_INST_VAARG; 3446 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3447 pushValue(I.getOperand(0), InstID, Vals); // valist. 3448 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3449 break; 3450 case Instruction::Freeze: 3451 Code = bitc::FUNC_CODE_INST_FREEZE; 3452 pushValueAndType(I.getOperand(0), InstID, Vals); 3453 break; 3454 } 3455 3456 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3457 Vals.clear(); 3458 } 3459 3460 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3461 /// to allow clients to efficiently find the function body. 3462 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3463 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3464 // Get the offset of the VST we are writing, and backpatch it into 3465 // the VST forward declaration record. 3466 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3467 // The BitcodeStartBit was the stream offset of the identification block. 3468 VSTOffset -= bitcodeStartBit(); 3469 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3470 // Note that we add 1 here because the offset is relative to one word 3471 // before the start of the identification block, which was historically 3472 // always the start of the regular bitcode header. 3473 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3474 3475 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3476 3477 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3478 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3481 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3482 3483 for (const Function &F : M) { 3484 uint64_t Record[2]; 3485 3486 if (F.isDeclaration()) 3487 continue; 3488 3489 Record[0] = VE.getValueID(&F); 3490 3491 // Save the word offset of the function (from the start of the 3492 // actual bitcode written to the stream). 3493 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3494 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3495 // Note that we add 1 here because the offset is relative to one word 3496 // before the start of the identification block, which was historically 3497 // always the start of the regular bitcode header. 3498 Record[1] = BitcodeIndex / 32 + 1; 3499 3500 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3501 } 3502 3503 Stream.ExitBlock(); 3504 } 3505 3506 /// Emit names for arguments, instructions and basic blocks in a function. 3507 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3508 const ValueSymbolTable &VST) { 3509 if (VST.empty()) 3510 return; 3511 3512 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3513 3514 // FIXME: Set up the abbrev, we know how many values there are! 3515 // FIXME: We know if the type names can use 7-bit ascii. 3516 SmallVector<uint64_t, 64> NameVals; 3517 3518 for (const ValueName &Name : VST) { 3519 // Figure out the encoding to use for the name. 3520 StringEncoding Bits = getStringEncoding(Name.getKey()); 3521 3522 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3523 NameVals.push_back(VE.getValueID(Name.getValue())); 3524 3525 // VST_CODE_ENTRY: [valueid, namechar x N] 3526 // VST_CODE_BBENTRY: [bbid, namechar x N] 3527 unsigned Code; 3528 if (isa<BasicBlock>(Name.getValue())) { 3529 Code = bitc::VST_CODE_BBENTRY; 3530 if (Bits == SE_Char6) 3531 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3532 } else { 3533 Code = bitc::VST_CODE_ENTRY; 3534 if (Bits == SE_Char6) 3535 AbbrevToUse = VST_ENTRY_6_ABBREV; 3536 else if (Bits == SE_Fixed7) 3537 AbbrevToUse = VST_ENTRY_7_ABBREV; 3538 } 3539 3540 for (const auto P : Name.getKey()) 3541 NameVals.push_back((unsigned char)P); 3542 3543 // Emit the finished record. 3544 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3545 NameVals.clear(); 3546 } 3547 3548 Stream.ExitBlock(); 3549 } 3550 3551 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3552 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3553 unsigned Code; 3554 if (isa<BasicBlock>(Order.V)) 3555 Code = bitc::USELIST_CODE_BB; 3556 else 3557 Code = bitc::USELIST_CODE_DEFAULT; 3558 3559 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3560 Record.push_back(VE.getValueID(Order.V)); 3561 Stream.EmitRecord(Code, Record); 3562 } 3563 3564 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3565 assert(VE.shouldPreserveUseListOrder() && 3566 "Expected to be preserving use-list order"); 3567 3568 auto hasMore = [&]() { 3569 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3570 }; 3571 if (!hasMore()) 3572 // Nothing to do. 3573 return; 3574 3575 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3576 while (hasMore()) { 3577 writeUseList(std::move(VE.UseListOrders.back())); 3578 VE.UseListOrders.pop_back(); 3579 } 3580 Stream.ExitBlock(); 3581 } 3582 3583 /// Emit a function body to the module stream. 3584 void ModuleBitcodeWriter::writeFunction( 3585 const Function &F, 3586 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3587 // Save the bitcode index of the start of this function block for recording 3588 // in the VST. 3589 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3590 3591 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3592 VE.incorporateFunction(F); 3593 3594 SmallVector<unsigned, 64> Vals; 3595 3596 // Emit the number of basic blocks, so the reader can create them ahead of 3597 // time. 3598 Vals.push_back(VE.getBasicBlocks().size()); 3599 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3600 Vals.clear(); 3601 3602 // If there are function-local constants, emit them now. 3603 unsigned CstStart, CstEnd; 3604 VE.getFunctionConstantRange(CstStart, CstEnd); 3605 writeConstants(CstStart, CstEnd, false); 3606 3607 // If there is function-local metadata, emit it now. 3608 writeFunctionMetadata(F); 3609 3610 // Keep a running idea of what the instruction ID is. 3611 unsigned InstID = CstEnd; 3612 3613 bool NeedsMetadataAttachment = F.hasMetadata(); 3614 3615 DILocation *LastDL = nullptr; 3616 SmallSetVector<Function *, 4> BlockAddressUsers; 3617 3618 // Finally, emit all the instructions, in order. 3619 for (const BasicBlock &BB : F) { 3620 for (const Instruction &I : BB) { 3621 writeInstruction(I, InstID, Vals); 3622 3623 if (!I.getType()->isVoidTy()) 3624 ++InstID; 3625 3626 // If the instruction has metadata, write a metadata attachment later. 3627 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3628 3629 // If the instruction has a debug location, emit it. 3630 if (DILocation *DL = I.getDebugLoc()) { 3631 if (DL == LastDL) { 3632 // Just repeat the same debug loc as last time. 3633 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3634 } else { 3635 Vals.push_back(DL->getLine()); 3636 Vals.push_back(DL->getColumn()); 3637 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3638 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3639 Vals.push_back(DL->isImplicitCode()); 3640 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3641 Vals.clear(); 3642 LastDL = DL; 3643 } 3644 } 3645 3646 // If the instruction has DbgRecords attached to it, emit them. Note that 3647 // they come after the instruction so that it's easy to attach them again 3648 // when reading the bitcode, even though conceptually the debug locations 3649 // start "before" the instruction. 3650 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { 3651 /// Try to push the value only (unwrapped), otherwise push the 3652 /// metadata wrapped value. Returns true if the value was pushed 3653 /// without the ValueAsMetadata wrapper. 3654 auto PushValueOrMetadata = [&Vals, InstID, 3655 this](Metadata *RawLocation) { 3656 assert(RawLocation && 3657 "RawLocation unexpectedly null in DbgVariableRecord"); 3658 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) { 3659 SmallVector<unsigned, 2> ValAndType; 3660 // If the value is a fwd-ref the type is also pushed. We don't 3661 // want the type, so fwd-refs are kept wrapped (pushValueAndType 3662 // returns false if the value is pushed without type). 3663 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { 3664 Vals.push_back(ValAndType[0]); 3665 return true; 3666 } 3667 } 3668 // The metadata is a DIArgList, or ValueAsMetadata wrapping a 3669 // fwd-ref. Push the metadata ID. 3670 Vals.push_back(VE.getMetadataID(RawLocation)); 3671 return false; 3672 }; 3673 3674 // Write out non-instruction debug information attached to this 3675 // instruction. Write it after the instruction so that it's easy to 3676 // re-attach to the instruction reading the records in. 3677 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { 3678 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3679 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc())); 3680 Vals.push_back(VE.getMetadataID(DLR->getLabel())); 3681 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); 3682 Vals.clear(); 3683 continue; 3684 } 3685 3686 // First 3 fields are common to all kinds: 3687 // DILocation, DILocalVariable, DIExpression 3688 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 3689 // ..., LocationMetadata 3690 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 3691 // ..., Value 3692 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 3693 // ..., LocationMetadata 3694 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 3695 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 3696 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3697 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); 3698 Vals.push_back(VE.getMetadataID(DVR.getVariable())); 3699 Vals.push_back(VE.getMetadataID(DVR.getExpression())); 3700 if (DVR.isDbgValue()) { 3701 if (PushValueOrMetadata(DVR.getRawLocation())) 3702 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, 3703 FUNCTION_DEBUG_RECORD_VALUE_ABBREV); 3704 else 3705 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); 3706 } else if (DVR.isDbgDeclare()) { 3707 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3708 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); 3709 } else { 3710 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); 3711 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3712 Vals.push_back(VE.getMetadataID(DVR.getAssignID())); 3713 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); 3714 Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); 3715 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); 3716 } 3717 Vals.clear(); 3718 } 3719 } 3720 } 3721 3722 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3723 SmallVector<Value *> Worklist{BA}; 3724 SmallPtrSet<Value *, 8> Visited{BA}; 3725 while (!Worklist.empty()) { 3726 Value *V = Worklist.pop_back_val(); 3727 for (User *U : V->users()) { 3728 if (auto *I = dyn_cast<Instruction>(U)) { 3729 Function *P = I->getFunction(); 3730 if (P != &F) 3731 BlockAddressUsers.insert(P); 3732 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3733 Visited.insert(U).second) 3734 Worklist.push_back(U); 3735 } 3736 } 3737 } 3738 } 3739 3740 if (!BlockAddressUsers.empty()) { 3741 Vals.resize(BlockAddressUsers.size()); 3742 for (auto I : llvm::enumerate(BlockAddressUsers)) 3743 Vals[I.index()] = VE.getValueID(I.value()); 3744 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3745 Vals.clear(); 3746 } 3747 3748 // Emit names for all the instructions etc. 3749 if (auto *Symtab = F.getValueSymbolTable()) 3750 writeFunctionLevelValueSymbolTable(*Symtab); 3751 3752 if (NeedsMetadataAttachment) 3753 writeFunctionMetadataAttachment(F); 3754 if (VE.shouldPreserveUseListOrder()) 3755 writeUseListBlock(&F); 3756 VE.purgeFunction(); 3757 Stream.ExitBlock(); 3758 } 3759 3760 // Emit blockinfo, which defines the standard abbreviations etc. 3761 void ModuleBitcodeWriter::writeBlockInfo() { 3762 // We only want to emit block info records for blocks that have multiple 3763 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3764 // Other blocks can define their abbrevs inline. 3765 Stream.EnterBlockInfoBlock(); 3766 3767 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3768 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3773 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3774 VST_ENTRY_8_ABBREV) 3775 llvm_unreachable("Unexpected abbrev ordering!"); 3776 } 3777 3778 { // 7-bit fixed width VST_CODE_ENTRY strings. 3779 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3780 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3784 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3785 VST_ENTRY_7_ABBREV) 3786 llvm_unreachable("Unexpected abbrev ordering!"); 3787 } 3788 { // 6-bit char6 VST_CODE_ENTRY strings. 3789 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3790 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3794 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3795 VST_ENTRY_6_ABBREV) 3796 llvm_unreachable("Unexpected abbrev ordering!"); 3797 } 3798 { // 6-bit char6 VST_CODE_BBENTRY strings. 3799 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3800 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3804 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3805 VST_BBENTRY_6_ABBREV) 3806 llvm_unreachable("Unexpected abbrev ordering!"); 3807 } 3808 3809 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3810 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3811 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3813 VE.computeBitsRequiredForTypeIndices())); 3814 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3815 CONSTANTS_SETTYPE_ABBREV) 3816 llvm_unreachable("Unexpected abbrev ordering!"); 3817 } 3818 3819 { // INTEGER abbrev for CONSTANTS_BLOCK. 3820 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3821 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3823 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3824 CONSTANTS_INTEGER_ABBREV) 3825 llvm_unreachable("Unexpected abbrev ordering!"); 3826 } 3827 3828 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3829 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3830 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3833 VE.computeBitsRequiredForTypeIndices())); 3834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3835 3836 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3837 CONSTANTS_CE_CAST_Abbrev) 3838 llvm_unreachable("Unexpected abbrev ordering!"); 3839 } 3840 { // NULL abbrev for CONSTANTS_BLOCK. 3841 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3842 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3843 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3844 CONSTANTS_NULL_Abbrev) 3845 llvm_unreachable("Unexpected abbrev ordering!"); 3846 } 3847 3848 // FIXME: This should only use space for first class types! 3849 3850 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3851 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3852 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3855 VE.computeBitsRequiredForTypeIndices())); 3856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3858 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3859 FUNCTION_INST_LOAD_ABBREV) 3860 llvm_unreachable("Unexpected abbrev ordering!"); 3861 } 3862 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3863 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3864 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3867 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3868 FUNCTION_INST_UNOP_ABBREV) 3869 llvm_unreachable("Unexpected abbrev ordering!"); 3870 } 3871 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3872 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3873 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3877 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3878 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3879 llvm_unreachable("Unexpected abbrev ordering!"); 3880 } 3881 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3882 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3883 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3887 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3888 FUNCTION_INST_BINOP_ABBREV) 3889 llvm_unreachable("Unexpected abbrev ordering!"); 3890 } 3891 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3892 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3893 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3898 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3899 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3900 llvm_unreachable("Unexpected abbrev ordering!"); 3901 } 3902 { // INST_CAST abbrev for FUNCTION_BLOCK. 3903 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3904 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3907 VE.computeBitsRequiredForTypeIndices())); 3908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3909 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3910 FUNCTION_INST_CAST_ABBREV) 3911 llvm_unreachable("Unexpected abbrev ordering!"); 3912 } 3913 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3914 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3915 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3918 VE.computeBitsRequiredForTypeIndices())); 3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3921 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3922 FUNCTION_INST_CAST_FLAGS_ABBREV) 3923 llvm_unreachable("Unexpected abbrev ordering!"); 3924 } 3925 3926 { // INST_RET abbrev for FUNCTION_BLOCK. 3927 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3928 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3929 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3930 FUNCTION_INST_RET_VOID_ABBREV) 3931 llvm_unreachable("Unexpected abbrev ordering!"); 3932 } 3933 { // INST_RET abbrev for FUNCTION_BLOCK. 3934 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3935 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3937 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3938 FUNCTION_INST_RET_VAL_ABBREV) 3939 llvm_unreachable("Unexpected abbrev ordering!"); 3940 } 3941 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3942 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3943 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3944 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3945 FUNCTION_INST_UNREACHABLE_ABBREV) 3946 llvm_unreachable("Unexpected abbrev ordering!"); 3947 } 3948 { 3949 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3950 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3953 Log2_32_Ceil(VE.getTypes().size() + 1))); 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3956 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3957 FUNCTION_INST_GEP_ABBREV) 3958 llvm_unreachable("Unexpected abbrev ordering!"); 3959 } 3960 { 3961 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3962 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val 3967 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3968 FUNCTION_DEBUG_RECORD_VALUE_ABBREV) 3969 llvm_unreachable("Unexpected abbrev ordering! 1"); 3970 } 3971 Stream.ExitBlock(); 3972 } 3973 3974 /// Write the module path strings, currently only used when generating 3975 /// a combined index file. 3976 void IndexBitcodeWriter::writeModStrings() { 3977 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3978 3979 // TODO: See which abbrev sizes we actually need to emit 3980 3981 // 8-bit fixed-width MST_ENTRY strings. 3982 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3983 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3987 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3988 3989 // 7-bit fixed width MST_ENTRY strings. 3990 Abbv = std::make_shared<BitCodeAbbrev>(); 3991 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3995 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3996 3997 // 6-bit char6 MST_ENTRY strings. 3998 Abbv = std::make_shared<BitCodeAbbrev>(); 3999 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 4000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4003 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 4004 4005 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 4006 Abbv = std::make_shared<BitCodeAbbrev>(); 4007 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 4008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4013 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 4014 4015 SmallVector<unsigned, 64> Vals; 4016 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 4017 StringRef Key = MPSE.getKey(); 4018 const auto &Hash = MPSE.getValue(); 4019 StringEncoding Bits = getStringEncoding(Key); 4020 unsigned AbbrevToUse = Abbrev8Bit; 4021 if (Bits == SE_Char6) 4022 AbbrevToUse = Abbrev6Bit; 4023 else if (Bits == SE_Fixed7) 4024 AbbrevToUse = Abbrev7Bit; 4025 4026 auto ModuleId = ModuleIdMap.size(); 4027 ModuleIdMap[Key] = ModuleId; 4028 Vals.push_back(ModuleId); 4029 Vals.append(Key.begin(), Key.end()); 4030 4031 // Emit the finished record. 4032 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 4033 4034 // Emit an optional hash for the module now 4035 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 4036 Vals.assign(Hash.begin(), Hash.end()); 4037 // Emit the hash record. 4038 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 4039 } 4040 4041 Vals.clear(); 4042 }); 4043 Stream.ExitBlock(); 4044 } 4045 4046 /// Write the function type metadata related records that need to appear before 4047 /// a function summary entry (whether per-module or combined). 4048 template <typename Fn> 4049 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 4050 FunctionSummary *FS, 4051 Fn GetValueID) { 4052 if (!FS->type_tests().empty()) 4053 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 4054 4055 SmallVector<uint64_t, 64> Record; 4056 4057 auto WriteVFuncIdVec = [&](uint64_t Ty, 4058 ArrayRef<FunctionSummary::VFuncId> VFs) { 4059 if (VFs.empty()) 4060 return; 4061 Record.clear(); 4062 for (auto &VF : VFs) { 4063 Record.push_back(VF.GUID); 4064 Record.push_back(VF.Offset); 4065 } 4066 Stream.EmitRecord(Ty, Record); 4067 }; 4068 4069 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 4070 FS->type_test_assume_vcalls()); 4071 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 4072 FS->type_checked_load_vcalls()); 4073 4074 auto WriteConstVCallVec = [&](uint64_t Ty, 4075 ArrayRef<FunctionSummary::ConstVCall> VCs) { 4076 for (auto &VC : VCs) { 4077 Record.clear(); 4078 Record.push_back(VC.VFunc.GUID); 4079 Record.push_back(VC.VFunc.Offset); 4080 llvm::append_range(Record, VC.Args); 4081 Stream.EmitRecord(Ty, Record); 4082 } 4083 }; 4084 4085 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 4086 FS->type_test_assume_const_vcalls()); 4087 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 4088 FS->type_checked_load_const_vcalls()); 4089 4090 auto WriteRange = [&](ConstantRange Range) { 4091 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 4092 assert(Range.getLower().getNumWords() == 1); 4093 assert(Range.getUpper().getNumWords() == 1); 4094 emitSignedInt64(Record, *Range.getLower().getRawData()); 4095 emitSignedInt64(Record, *Range.getUpper().getRawData()); 4096 }; 4097 4098 if (!FS->paramAccesses().empty()) { 4099 Record.clear(); 4100 for (auto &Arg : FS->paramAccesses()) { 4101 size_t UndoSize = Record.size(); 4102 Record.push_back(Arg.ParamNo); 4103 WriteRange(Arg.Use); 4104 Record.push_back(Arg.Calls.size()); 4105 for (auto &Call : Arg.Calls) { 4106 Record.push_back(Call.ParamNo); 4107 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 4108 if (!ValueID) { 4109 // If ValueID is unknown we can't drop just this call, we must drop 4110 // entire parameter. 4111 Record.resize(UndoSize); 4112 break; 4113 } 4114 Record.push_back(*ValueID); 4115 WriteRange(Call.Offsets); 4116 } 4117 } 4118 if (!Record.empty()) 4119 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 4120 } 4121 } 4122 4123 /// Collect type IDs from type tests used by function. 4124 static void 4125 getReferencedTypeIds(FunctionSummary *FS, 4126 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 4127 if (!FS->type_tests().empty()) 4128 for (auto &TT : FS->type_tests()) 4129 ReferencedTypeIds.insert(TT); 4130 4131 auto GetReferencedTypesFromVFuncIdVec = 4132 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 4133 for (auto &VF : VFs) 4134 ReferencedTypeIds.insert(VF.GUID); 4135 }; 4136 4137 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 4138 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 4139 4140 auto GetReferencedTypesFromConstVCallVec = 4141 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 4142 for (auto &VC : VCs) 4143 ReferencedTypeIds.insert(VC.VFunc.GUID); 4144 }; 4145 4146 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 4147 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 4148 } 4149 4150 static void writeWholeProgramDevirtResolutionByArg( 4151 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 4152 const WholeProgramDevirtResolution::ByArg &ByArg) { 4153 NameVals.push_back(args.size()); 4154 llvm::append_range(NameVals, args); 4155 4156 NameVals.push_back(ByArg.TheKind); 4157 NameVals.push_back(ByArg.Info); 4158 NameVals.push_back(ByArg.Byte); 4159 NameVals.push_back(ByArg.Bit); 4160 } 4161 4162 static void writeWholeProgramDevirtResolution( 4163 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4164 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 4165 NameVals.push_back(Id); 4166 4167 NameVals.push_back(Wpd.TheKind); 4168 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 4169 NameVals.push_back(Wpd.SingleImplName.size()); 4170 4171 NameVals.push_back(Wpd.ResByArg.size()); 4172 for (auto &A : Wpd.ResByArg) 4173 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 4174 } 4175 4176 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 4177 StringTableBuilder &StrtabBuilder, 4178 StringRef Id, 4179 const TypeIdSummary &Summary) { 4180 NameVals.push_back(StrtabBuilder.add(Id)); 4181 NameVals.push_back(Id.size()); 4182 4183 NameVals.push_back(Summary.TTRes.TheKind); 4184 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 4185 NameVals.push_back(Summary.TTRes.AlignLog2); 4186 NameVals.push_back(Summary.TTRes.SizeM1); 4187 NameVals.push_back(Summary.TTRes.BitMask); 4188 NameVals.push_back(Summary.TTRes.InlineBits); 4189 4190 for (auto &W : Summary.WPDRes) 4191 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 4192 W.second); 4193 } 4194 4195 static void writeTypeIdCompatibleVtableSummaryRecord( 4196 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4197 StringRef Id, const TypeIdCompatibleVtableInfo &Summary, 4198 ValueEnumerator &VE) { 4199 NameVals.push_back(StrtabBuilder.add(Id)); 4200 NameVals.push_back(Id.size()); 4201 4202 for (auto &P : Summary) { 4203 NameVals.push_back(P.AddressPointOffset); 4204 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4205 } 4206 } 4207 4208 // Adds the allocation contexts to the CallStacks map. We simply use the 4209 // size at the time the context was added as the CallStackId. This works because 4210 // when we look up the call stacks later on we process the function summaries 4211 // and their allocation records in the same exact order. 4212 static void collectMemProfCallStacks( 4213 FunctionSummary *FS, std::function<LinearFrameId(unsigned)> GetStackIndex, 4214 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> &CallStacks) { 4215 // The interfaces in ProfileData/MemProf.h use a type alias for a stack frame 4216 // id offset into the index of the full stack frames. The ModuleSummaryIndex 4217 // currently uses unsigned. Make sure these stay in sync. 4218 static_assert(std::is_same_v<LinearFrameId, unsigned>); 4219 for (auto &AI : FS->allocs()) { 4220 for (auto &MIB : AI.MIBs) { 4221 SmallVector<unsigned> StackIdIndices; 4222 StackIdIndices.reserve(MIB.StackIdIndices.size()); 4223 for (auto Id : MIB.StackIdIndices) 4224 StackIdIndices.push_back(GetStackIndex(Id)); 4225 // The CallStackId is the size at the time this context was inserted. 4226 CallStacks.insert({CallStacks.size(), StackIdIndices}); 4227 } 4228 } 4229 } 4230 4231 // Build the radix tree from the accumulated CallStacks, write out the resulting 4232 // linearized radix tree array, and return the map of call stack positions into 4233 // this array for use when writing the allocation records. The returned map is 4234 // indexed by a CallStackId which in this case is implicitly determined by the 4235 // order of function summaries and their allocation infos being written. 4236 static DenseMap<CallStackId, LinearCallStackId> writeMemoryProfileRadixTree( 4237 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> &&CallStacks, 4238 BitstreamWriter &Stream, unsigned RadixAbbrev) { 4239 assert(!CallStacks.empty()); 4240 DenseMap<unsigned, FrameStat> FrameHistogram = 4241 computeFrameHistogram<LinearFrameId>(CallStacks); 4242 CallStackRadixTreeBuilder<LinearFrameId> Builder; 4243 // We don't need a MemProfFrameIndexes map as we have already converted the 4244 // full stack id hash to a linear offset into the StackIds array. 4245 Builder.build(std::move(CallStacks), /*MemProfFrameIndexes=*/nullptr, 4246 FrameHistogram); 4247 Stream.EmitRecord(bitc::FS_CONTEXT_RADIX_TREE_ARRAY, Builder.getRadixArray(), 4248 RadixAbbrev); 4249 return Builder.takeCallStackPos(); 4250 } 4251 4252 static void writeFunctionHeapProfileRecords( 4253 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4254 unsigned AllocAbbrev, unsigned ContextIdAbbvId, bool PerModule, 4255 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4256 std::function<unsigned(unsigned)> GetStackIndex, 4257 bool WriteContextSizeInfoIndex, 4258 DenseMap<CallStackId, LinearCallStackId> &CallStackPos, 4259 CallStackId &CallStackCount) { 4260 SmallVector<uint64_t> Record; 4261 4262 for (auto &CI : FS->callsites()) { 4263 Record.clear(); 4264 // Per module callsite clones should always have a single entry of 4265 // value 0. 4266 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4267 Record.push_back(GetValueID(CI.Callee)); 4268 if (!PerModule) { 4269 Record.push_back(CI.StackIdIndices.size()); 4270 Record.push_back(CI.Clones.size()); 4271 } 4272 for (auto Id : CI.StackIdIndices) 4273 Record.push_back(GetStackIndex(Id)); 4274 if (!PerModule) { 4275 for (auto V : CI.Clones) 4276 Record.push_back(V); 4277 } 4278 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4279 : bitc::FS_COMBINED_CALLSITE_INFO, 4280 Record, CallsiteAbbrev); 4281 } 4282 4283 for (auto &AI : FS->allocs()) { 4284 Record.clear(); 4285 // Per module alloc versions should always have a single entry of 4286 // value 0. 4287 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4288 Record.push_back(AI.MIBs.size()); 4289 if (!PerModule) 4290 Record.push_back(AI.Versions.size()); 4291 for (auto &MIB : AI.MIBs) { 4292 Record.push_back((uint8_t)MIB.AllocType); 4293 // Record the index into the radix tree array for this context. 4294 assert(CallStackCount <= CallStackPos.size()); 4295 Record.push_back(CallStackPos[CallStackCount++]); 4296 } 4297 if (!PerModule) { 4298 for (auto V : AI.Versions) 4299 Record.push_back(V); 4300 } 4301 assert(AI.ContextSizeInfos.empty() || 4302 AI.ContextSizeInfos.size() == AI.MIBs.size()); 4303 // Optionally emit the context size information if it exists. 4304 if (WriteContextSizeInfoIndex && !AI.ContextSizeInfos.empty()) { 4305 // The abbreviation id for the context ids record should have been created 4306 // if we are emitting the per-module index, which is where we write this 4307 // info. 4308 assert(ContextIdAbbvId); 4309 SmallVector<uint32_t> ContextIds; 4310 // At least one context id per ContextSizeInfos entry (MIB), broken into 2 4311 // halves. 4312 ContextIds.reserve(AI.ContextSizeInfos.size() * 2); 4313 for (auto &Infos : AI.ContextSizeInfos) { 4314 Record.push_back(Infos.size()); 4315 for (auto [FullStackId, TotalSize] : Infos) { 4316 // The context ids are emitted separately as a fixed width array, 4317 // which is more efficient than a VBR given that these hashes are 4318 // typically close to 64-bits. The max fixed width entry is 32 bits so 4319 // it is split into 2. 4320 ContextIds.push_back(static_cast<uint32_t>(FullStackId >> 32)); 4321 ContextIds.push_back(static_cast<uint32_t>(FullStackId)); 4322 Record.push_back(TotalSize); 4323 } 4324 } 4325 // The context ids are expected by the reader to immediately precede the 4326 // associated alloc info record. 4327 Stream.EmitRecord(bitc::FS_ALLOC_CONTEXT_IDS, ContextIds, 4328 ContextIdAbbvId); 4329 } 4330 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4331 : bitc::FS_COMBINED_ALLOC_INFO, 4332 Record, AllocAbbrev); 4333 } 4334 } 4335 4336 // Helper to emit a single function summary record. 4337 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4338 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4339 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4340 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4341 unsigned AllocAbbrev, unsigned ContextIdAbbvId, const Function &F, 4342 DenseMap<CallStackId, LinearCallStackId> &CallStackPos, 4343 CallStackId &CallStackCount) { 4344 NameVals.push_back(ValueID); 4345 4346 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4347 4348 writeFunctionTypeMetadataRecords( 4349 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4350 return {VE.getValueID(VI.getValue())}; 4351 }); 4352 4353 writeFunctionHeapProfileRecords( 4354 Stream, FS, CallsiteAbbrev, AllocAbbrev, ContextIdAbbvId, 4355 /*PerModule*/ true, 4356 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4357 /*GetStackIndex*/ [&](unsigned I) { return I; }, 4358 /*WriteContextSizeInfoIndex*/ true, CallStackPos, CallStackCount); 4359 4360 auto SpecialRefCnts = FS->specialRefCounts(); 4361 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4362 NameVals.push_back(FS->instCount()); 4363 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4364 NameVals.push_back(FS->refs().size()); 4365 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4366 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4367 4368 for (auto &RI : FS->refs()) 4369 NameVals.push_back(getValueId(RI)); 4370 4371 const bool UseRelBFRecord = 4372 WriteRelBFToSummary && !F.hasProfileData() && 4373 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4374 for (auto &ECI : FS->calls()) { 4375 NameVals.push_back(getValueId(ECI.first)); 4376 if (UseRelBFRecord) 4377 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4378 else 4379 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4380 } 4381 4382 unsigned FSAbbrev = 4383 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4384 unsigned Code = 4385 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4386 4387 // Emit the finished record. 4388 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4389 NameVals.clear(); 4390 } 4391 4392 // Collect the global value references in the given variable's initializer, 4393 // and emit them in a summary record. 4394 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4395 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4396 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4397 auto VI = Index->getValueInfo(V.getGUID()); 4398 if (!VI || VI.getSummaryList().empty()) { 4399 // Only declarations should not have a summary (a declaration might however 4400 // have a summary if the def was in module level asm). 4401 assert(V.isDeclaration()); 4402 return; 4403 } 4404 auto *Summary = VI.getSummaryList()[0].get(); 4405 NameVals.push_back(VE.getValueID(&V)); 4406 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4407 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4408 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4409 4410 auto VTableFuncs = VS->vTableFuncs(); 4411 if (!VTableFuncs.empty()) 4412 NameVals.push_back(VS->refs().size()); 4413 4414 unsigned SizeBeforeRefs = NameVals.size(); 4415 for (auto &RI : VS->refs()) 4416 NameVals.push_back(VE.getValueID(RI.getValue())); 4417 // Sort the refs for determinism output, the vector returned by FS->refs() has 4418 // been initialized from a DenseSet. 4419 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4420 4421 if (VTableFuncs.empty()) 4422 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4423 FSModRefsAbbrev); 4424 else { 4425 // VTableFuncs pairs should already be sorted by offset. 4426 for (auto &P : VTableFuncs) { 4427 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4428 NameVals.push_back(P.VTableOffset); 4429 } 4430 4431 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4432 FSModVTableRefsAbbrev); 4433 } 4434 NameVals.clear(); 4435 } 4436 4437 /// Emit the per-module summary section alongside the rest of 4438 /// the module's bitcode. 4439 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4440 // By default we compile with ThinLTO if the module has a summary, but the 4441 // client can request full LTO with a module flag. 4442 bool IsThinLTO = true; 4443 if (auto *MD = 4444 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4445 IsThinLTO = MD->getZExtValue(); 4446 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4447 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4448 4); 4449 4450 Stream.EmitRecord( 4451 bitc::FS_VERSION, 4452 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4453 4454 // Write the index flags. 4455 uint64_t Flags = 0; 4456 // Bits 1-3 are set only in the combined index, skip them. 4457 if (Index->enableSplitLTOUnit()) 4458 Flags |= 0x8; 4459 if (Index->hasUnifiedLTO()) 4460 Flags |= 0x200; 4461 4462 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4463 4464 if (Index->begin() == Index->end()) { 4465 Stream.ExitBlock(); 4466 return; 4467 } 4468 4469 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4470 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4472 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4475 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4476 4477 for (const auto &GVI : valueIds()) { 4478 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4479 ArrayRef<uint32_t>{GVI.second, 4480 static_cast<uint32_t>(GVI.first >> 32), 4481 static_cast<uint32_t>(GVI.first)}, 4482 ValueGuidAbbrev); 4483 } 4484 4485 if (!Index->stackIds().empty()) { 4486 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4487 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4488 // numids x stackid 4489 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4490 // The stack ids are hashes that are close to 64 bits in size, so emitting 4491 // as a pair of 32-bit fixed-width values is more efficient than a VBR. 4492 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4493 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4494 SmallVector<uint32_t> Vals; 4495 Vals.reserve(Index->stackIds().size() * 2); 4496 for (auto Id : Index->stackIds()) { 4497 Vals.push_back(static_cast<uint32_t>(Id >> 32)); 4498 Vals.push_back(static_cast<uint32_t>(Id)); 4499 } 4500 Stream.EmitRecord(bitc::FS_STACK_IDS, Vals, StackIdAbbvId); 4501 } 4502 4503 // n x context id 4504 auto ContextIdAbbv = std::make_shared<BitCodeAbbrev>(); 4505 ContextIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_ALLOC_CONTEXT_IDS)); 4506 ContextIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4507 // The context ids are hashes that are close to 64 bits in size, so emitting 4508 // as a pair of 32-bit fixed-width values is more efficient than a VBR. 4509 ContextIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4510 unsigned ContextIdAbbvId = Stream.EmitAbbrev(std::move(ContextIdAbbv)); 4511 4512 // Abbrev for FS_PERMODULE_PROFILE. 4513 Abbv = std::make_shared<BitCodeAbbrev>(); 4514 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4522 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4525 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4526 4527 // Abbrev for FS_PERMODULE_RELBF. 4528 Abbv = std::make_shared<BitCodeAbbrev>(); 4529 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4537 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4540 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4541 4542 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4543 Abbv = std::make_shared<BitCodeAbbrev>(); 4544 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4549 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4550 4551 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4552 Abbv = std::make_shared<BitCodeAbbrev>(); 4553 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4557 // numrefs x valueid, n x (valueid , offset) 4558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4560 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4561 4562 // Abbrev for FS_ALIAS. 4563 Abbv = std::make_shared<BitCodeAbbrev>(); 4564 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4568 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4569 4570 // Abbrev for FS_TYPE_ID_METADATA 4571 Abbv = std::make_shared<BitCodeAbbrev>(); 4572 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4575 // n x (valueid , offset) 4576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4578 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4579 4580 Abbv = std::make_shared<BitCodeAbbrev>(); 4581 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4583 // n x stackidindex 4584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4586 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4587 4588 Abbv = std::make_shared<BitCodeAbbrev>(); 4589 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4591 // n x (alloc type, context radix tree index) 4592 // optional: nummib x (numcontext x total size) 4593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4595 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4596 4597 Abbv = std::make_shared<BitCodeAbbrev>(); 4598 Abbv->Add(BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY)); 4599 // n x entry 4600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4602 unsigned RadixAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4603 4604 // First walk through all the functions and collect the allocation contexts in 4605 // their associated summaries, for use in constructing a radix tree of 4606 // contexts. Note that we need to do this in the same order as the functions 4607 // are processed further below since the call stack positions in the resulting 4608 // radix tree array are identified based on this order. 4609 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> CallStacks; 4610 for (const Function &F : M) { 4611 // Summary emission does not support anonymous functions, they have to be 4612 // renamed using the anonymous function renaming pass. 4613 if (!F.hasName()) 4614 report_fatal_error("Unexpected anonymous function when writing summary"); 4615 4616 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4617 if (!VI || VI.getSummaryList().empty()) { 4618 // Only declarations should not have a summary (a declaration might 4619 // however have a summary if the def was in module level asm). 4620 assert(F.isDeclaration()); 4621 continue; 4622 } 4623 auto *Summary = VI.getSummaryList()[0].get(); 4624 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4625 collectMemProfCallStacks( 4626 FS, /*GetStackIndex*/ [](unsigned I) { return I; }, CallStacks); 4627 } 4628 // Finalize the radix tree, write it out, and get the map of positions in the 4629 // linearized tree array. 4630 DenseMap<CallStackId, LinearCallStackId> CallStackPos; 4631 if (!CallStacks.empty()) { 4632 CallStackPos = 4633 writeMemoryProfileRadixTree(std::move(CallStacks), Stream, RadixAbbrev); 4634 } 4635 4636 // Keep track of the current index into the CallStackPos map. 4637 CallStackId CallStackCount = 0; 4638 4639 SmallVector<uint64_t, 64> NameVals; 4640 // Iterate over the list of functions instead of the Index to 4641 // ensure the ordering is stable. 4642 for (const Function &F : M) { 4643 // Summary emission does not support anonymous functions, they have to 4644 // renamed using the anonymous function renaming pass. 4645 if (!F.hasName()) 4646 report_fatal_error("Unexpected anonymous function when writing summary"); 4647 4648 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4649 if (!VI || VI.getSummaryList().empty()) { 4650 // Only declarations should not have a summary (a declaration might 4651 // however have a summary if the def was in module level asm). 4652 assert(F.isDeclaration()); 4653 continue; 4654 } 4655 auto *Summary = VI.getSummaryList()[0].get(); 4656 writePerModuleFunctionSummaryRecord( 4657 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4658 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, ContextIdAbbvId, F, 4659 CallStackPos, CallStackCount); 4660 } 4661 4662 // Capture references from GlobalVariable initializers, which are outside 4663 // of a function scope. 4664 for (const GlobalVariable &G : M.globals()) 4665 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4666 FSModVTableRefsAbbrev); 4667 4668 for (const GlobalAlias &A : M.aliases()) { 4669 auto *Aliasee = A.getAliaseeObject(); 4670 // Skip ifunc and nameless functions which don't have an entry in the 4671 // summary. 4672 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4673 continue; 4674 auto AliasId = VE.getValueID(&A); 4675 auto AliaseeId = VE.getValueID(Aliasee); 4676 NameVals.push_back(AliasId); 4677 auto *Summary = Index->getGlobalValueSummary(A); 4678 AliasSummary *AS = cast<AliasSummary>(Summary); 4679 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4680 NameVals.push_back(AliaseeId); 4681 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4682 NameVals.clear(); 4683 } 4684 4685 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4686 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4687 S.second, VE); 4688 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4689 TypeIdCompatibleVtableAbbrev); 4690 NameVals.clear(); 4691 } 4692 4693 if (Index->getBlockCount()) 4694 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4695 ArrayRef<uint64_t>{Index->getBlockCount()}); 4696 4697 Stream.ExitBlock(); 4698 } 4699 4700 /// Emit the combined summary section into the combined index file. 4701 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4702 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4703 Stream.EmitRecord( 4704 bitc::FS_VERSION, 4705 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4706 4707 // Write the index flags. 4708 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4709 4710 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4711 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4713 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4716 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4717 4718 for (const auto &GVI : valueIds()) { 4719 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4720 ArrayRef<uint32_t>{GVI.second, 4721 static_cast<uint32_t>(GVI.first >> 32), 4722 static_cast<uint32_t>(GVI.first)}, 4723 ValueGuidAbbrev); 4724 } 4725 4726 // Write the stack ids used by this index, which will be a subset of those in 4727 // the full index in the case of distributed indexes. 4728 if (!StackIds.empty()) { 4729 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4730 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4731 // numids x stackid 4732 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4733 // The stack ids are hashes that are close to 64 bits in size, so emitting 4734 // as a pair of 32-bit fixed-width values is more efficient than a VBR. 4735 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4736 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4737 SmallVector<uint32_t> Vals; 4738 Vals.reserve(StackIds.size() * 2); 4739 for (auto Id : StackIds) { 4740 Vals.push_back(static_cast<uint32_t>(Id >> 32)); 4741 Vals.push_back(static_cast<uint32_t>(Id)); 4742 } 4743 Stream.EmitRecord(bitc::FS_STACK_IDS, Vals, StackIdAbbvId); 4744 } 4745 4746 // Abbrev for FS_COMBINED_PROFILE. 4747 Abbv = std::make_shared<BitCodeAbbrev>(); 4748 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4758 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4761 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4762 4763 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4764 Abbv = std::make_shared<BitCodeAbbrev>(); 4765 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4771 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4772 4773 // Abbrev for FS_COMBINED_ALIAS. 4774 Abbv = std::make_shared<BitCodeAbbrev>(); 4775 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4780 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4781 4782 Abbv = std::make_shared<BitCodeAbbrev>(); 4783 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4787 // numstackindices x stackidindex, numver x version 4788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4790 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4791 4792 Abbv = std::make_shared<BitCodeAbbrev>(); 4793 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4796 // nummib x (alloc type, context radix tree index), 4797 // numver x version 4798 // optional: nummib x total size 4799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4801 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4802 4803 Abbv = std::make_shared<BitCodeAbbrev>(); 4804 Abbv->Add(BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY)); 4805 // n x entry 4806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4808 unsigned RadixAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4809 4810 auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool { 4811 if (DecSummaries == nullptr) 4812 return false; 4813 return DecSummaries->count(GVS); 4814 }; 4815 4816 // The aliases are emitted as a post-pass, and will point to the value 4817 // id of the aliasee. Save them in a vector for post-processing. 4818 SmallVector<AliasSummary *, 64> Aliases; 4819 4820 // Save the value id for each summary for alias emission. 4821 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4822 4823 SmallVector<uint64_t, 64> NameVals; 4824 4825 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4826 // with the type ids referenced by this index file. 4827 std::set<GlobalValue::GUID> ReferencedTypeIds; 4828 4829 // For local linkage, we also emit the original name separately 4830 // immediately after the record. 4831 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4832 // We don't need to emit the original name if we are writing the index for 4833 // distributed backends (in which case ModuleToSummariesForIndex is 4834 // non-null). The original name is only needed during the thin link, since 4835 // for SamplePGO the indirect call targets for local functions have 4836 // have the original name annotated in profile. 4837 // Continue to emit it when writing out the entire combined index, which is 4838 // used in testing the thin link via llvm-lto. 4839 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4840 return; 4841 NameVals.push_back(S.getOriginalName()); 4842 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4843 NameVals.clear(); 4844 }; 4845 4846 // First walk through all the functions and collect the allocation contexts in 4847 // their associated summaries, for use in constructing a radix tree of 4848 // contexts. Note that we need to do this in the same order as the functions 4849 // are processed further below since the call stack positions in the resulting 4850 // radix tree array are identified based on this order. 4851 MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> CallStacks; 4852 forEachSummary([&](GVInfo I, bool IsAliasee) { 4853 // Don't collect this when invoked for an aliasee, as it is not needed for 4854 // the alias summary. If the aliasee is to be imported, we will invoke this 4855 // separately with IsAliasee=false. 4856 if (IsAliasee) 4857 return; 4858 GlobalValueSummary *S = I.second; 4859 assert(S); 4860 auto *FS = dyn_cast<FunctionSummary>(S); 4861 if (!FS) 4862 return; 4863 collectMemProfCallStacks( 4864 FS, 4865 /*GetStackIndex*/ 4866 [&](unsigned I) { 4867 // Get the corresponding index into the list of StackIds actually 4868 // being written for this combined index (which may be a subset in 4869 // the case of distributed indexes). 4870 assert(StackIdIndicesToIndex.contains(I)); 4871 return StackIdIndicesToIndex[I]; 4872 }, 4873 CallStacks); 4874 }); 4875 // Finalize the radix tree, write it out, and get the map of positions in the 4876 // linearized tree array. 4877 DenseMap<CallStackId, LinearCallStackId> CallStackPos; 4878 if (!CallStacks.empty()) { 4879 CallStackPos = 4880 writeMemoryProfileRadixTree(std::move(CallStacks), Stream, RadixAbbrev); 4881 } 4882 4883 // Keep track of the current index into the CallStackPos map. 4884 CallStackId CallStackCount = 0; 4885 4886 DenseSet<GlobalValue::GUID> DefOrUseGUIDs; 4887 forEachSummary([&](GVInfo I, bool IsAliasee) { 4888 GlobalValueSummary *S = I.second; 4889 assert(S); 4890 DefOrUseGUIDs.insert(I.first); 4891 for (const ValueInfo &VI : S->refs()) 4892 DefOrUseGUIDs.insert(VI.getGUID()); 4893 4894 auto ValueId = getValueId(I.first); 4895 assert(ValueId); 4896 SummaryToValueIdMap[S] = *ValueId; 4897 4898 // If this is invoked for an aliasee, we want to record the above 4899 // mapping, but then not emit a summary entry (if the aliasee is 4900 // to be imported, we will invoke this separately with IsAliasee=false). 4901 if (IsAliasee) 4902 return; 4903 4904 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4905 // Will process aliases as a post-pass because the reader wants all 4906 // global to be loaded first. 4907 Aliases.push_back(AS); 4908 return; 4909 } 4910 4911 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4912 NameVals.push_back(*ValueId); 4913 assert(ModuleIdMap.count(VS->modulePath())); 4914 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4915 NameVals.push_back( 4916 getEncodedGVSummaryFlags(VS->flags(), shouldImportValueAsDecl(VS))); 4917 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4918 for (auto &RI : VS->refs()) { 4919 auto RefValueId = getValueId(RI.getGUID()); 4920 if (!RefValueId) 4921 continue; 4922 NameVals.push_back(*RefValueId); 4923 } 4924 4925 // Emit the finished record. 4926 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4927 FSModRefsAbbrev); 4928 NameVals.clear(); 4929 MaybeEmitOriginalName(*S); 4930 return; 4931 } 4932 4933 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4934 if (!VI) 4935 return std::nullopt; 4936 return getValueId(VI.getGUID()); 4937 }; 4938 4939 auto *FS = cast<FunctionSummary>(S); 4940 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4941 getReferencedTypeIds(FS, ReferencedTypeIds); 4942 4943 writeFunctionHeapProfileRecords( 4944 Stream, FS, CallsiteAbbrev, AllocAbbrev, /*ContextIdAbbvId*/ 0, 4945 /*PerModule*/ false, 4946 /*GetValueId*/ 4947 [&](const ValueInfo &VI) -> unsigned { 4948 std::optional<unsigned> ValueID = GetValueId(VI); 4949 // This can happen in shared index files for distributed ThinLTO if 4950 // the callee function summary is not included. Record 0 which we 4951 // will have to deal with conservatively when doing any kind of 4952 // validation in the ThinLTO backends. 4953 if (!ValueID) 4954 return 0; 4955 return *ValueID; 4956 }, 4957 /*GetStackIndex*/ 4958 [&](unsigned I) { 4959 // Get the corresponding index into the list of StackIds actually 4960 // being written for this combined index (which may be a subset in 4961 // the case of distributed indexes). 4962 assert(StackIdIndicesToIndex.contains(I)); 4963 return StackIdIndicesToIndex[I]; 4964 }, 4965 /*WriteContextSizeInfoIndex*/ false, CallStackPos, CallStackCount); 4966 4967 NameVals.push_back(*ValueId); 4968 assert(ModuleIdMap.count(FS->modulePath())); 4969 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4970 NameVals.push_back( 4971 getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS))); 4972 NameVals.push_back(FS->instCount()); 4973 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4974 // TODO: Stop writing entry count and bump bitcode version. 4975 NameVals.push_back(0 /* EntryCount */); 4976 4977 // Fill in below 4978 NameVals.push_back(0); // numrefs 4979 NameVals.push_back(0); // rorefcnt 4980 NameVals.push_back(0); // worefcnt 4981 4982 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4983 for (auto &RI : FS->refs()) { 4984 auto RefValueId = getValueId(RI.getGUID()); 4985 if (!RefValueId) 4986 continue; 4987 NameVals.push_back(*RefValueId); 4988 if (RI.isReadOnly()) 4989 RORefCnt++; 4990 else if (RI.isWriteOnly()) 4991 WORefCnt++; 4992 Count++; 4993 } 4994 NameVals[6] = Count; 4995 NameVals[7] = RORefCnt; 4996 NameVals[8] = WORefCnt; 4997 4998 for (auto &EI : FS->calls()) { 4999 // If this GUID doesn't have a value id, it doesn't have a function 5000 // summary and we don't need to record any calls to it. 5001 std::optional<unsigned> CallValueId = GetValueId(EI.first); 5002 if (!CallValueId) 5003 continue; 5004 NameVals.push_back(*CallValueId); 5005 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 5006 } 5007 5008 // Emit the finished record. 5009 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 5010 FSCallsProfileAbbrev); 5011 NameVals.clear(); 5012 MaybeEmitOriginalName(*S); 5013 }); 5014 5015 for (auto *AS : Aliases) { 5016 auto AliasValueId = SummaryToValueIdMap[AS]; 5017 assert(AliasValueId); 5018 NameVals.push_back(AliasValueId); 5019 assert(ModuleIdMap.count(AS->modulePath())); 5020 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 5021 NameVals.push_back( 5022 getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS))); 5023 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 5024 assert(AliaseeValueId); 5025 NameVals.push_back(AliaseeValueId); 5026 5027 // Emit the finished record. 5028 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 5029 NameVals.clear(); 5030 MaybeEmitOriginalName(*AS); 5031 5032 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 5033 getReferencedTypeIds(FS, ReferencedTypeIds); 5034 } 5035 5036 if (!Index.cfiFunctionDefs().empty()) { 5037 for (auto &S : Index.cfiFunctionDefs()) { 5038 if (DefOrUseGUIDs.contains( 5039 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 5040 NameVals.push_back(StrtabBuilder.add(S)); 5041 NameVals.push_back(S.size()); 5042 } 5043 } 5044 if (!NameVals.empty()) { 5045 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 5046 NameVals.clear(); 5047 } 5048 } 5049 5050 if (!Index.cfiFunctionDecls().empty()) { 5051 for (auto &S : Index.cfiFunctionDecls()) { 5052 if (DefOrUseGUIDs.contains( 5053 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 5054 NameVals.push_back(StrtabBuilder.add(S)); 5055 NameVals.push_back(S.size()); 5056 } 5057 } 5058 if (!NameVals.empty()) { 5059 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 5060 NameVals.clear(); 5061 } 5062 } 5063 5064 // Walk the GUIDs that were referenced, and write the 5065 // corresponding type id records. 5066 for (auto &T : ReferencedTypeIds) { 5067 auto TidIter = Index.typeIds().equal_range(T); 5068 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) { 5069 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, TypeIdPair.first, 5070 TypeIdPair.second); 5071 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 5072 NameVals.clear(); 5073 } 5074 } 5075 5076 if (Index.getBlockCount()) 5077 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 5078 ArrayRef<uint64_t>{Index.getBlockCount()}); 5079 5080 Stream.ExitBlock(); 5081 } 5082 5083 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 5084 /// current llvm version, and a record for the epoch number. 5085 static void writeIdentificationBlock(BitstreamWriter &Stream) { 5086 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 5087 5088 // Write the "user readable" string identifying the bitcode producer 5089 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5090 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 5091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 5093 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5094 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 5095 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 5096 5097 // Write the epoch version 5098 Abbv = std::make_shared<BitCodeAbbrev>(); 5099 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 5100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 5101 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5102 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 5103 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 5104 Stream.ExitBlock(); 5105 } 5106 5107 void ModuleBitcodeWriter::writeModuleHash(StringRef View) { 5108 // Emit the module's hash. 5109 // MODULE_CODE_HASH: [5*i32] 5110 if (GenerateHash) { 5111 uint32_t Vals[5]; 5112 Hasher.update(ArrayRef<uint8_t>( 5113 reinterpret_cast<const uint8_t *>(View.data()), View.size())); 5114 std::array<uint8_t, 20> Hash = Hasher.result(); 5115 for (int Pos = 0; Pos < 20; Pos += 4) { 5116 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 5117 } 5118 5119 // Emit the finished record. 5120 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 5121 5122 if (ModHash) 5123 // Save the written hash value. 5124 llvm::copy(Vals, std::begin(*ModHash)); 5125 } 5126 } 5127 5128 void ModuleBitcodeWriter::write() { 5129 writeIdentificationBlock(Stream); 5130 5131 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5132 // We will want to write the module hash at this point. Block any flushing so 5133 // we can have access to the whole underlying data later. 5134 Stream.markAndBlockFlushing(); 5135 5136 writeModuleVersion(); 5137 5138 // Emit blockinfo, which defines the standard abbreviations etc. 5139 writeBlockInfo(); 5140 5141 // Emit information describing all of the types in the module. 5142 writeTypeTable(); 5143 5144 // Emit information about attribute groups. 5145 writeAttributeGroupTable(); 5146 5147 // Emit information about parameter attributes. 5148 writeAttributeTable(); 5149 5150 writeComdats(); 5151 5152 // Emit top-level description of module, including target triple, inline asm, 5153 // descriptors for global variables, and function prototype info. 5154 writeModuleInfo(); 5155 5156 // Emit constants. 5157 writeModuleConstants(); 5158 5159 // Emit metadata kind names. 5160 writeModuleMetadataKinds(); 5161 5162 // Emit metadata. 5163 writeModuleMetadata(); 5164 5165 // Emit module-level use-lists. 5166 if (VE.shouldPreserveUseListOrder()) 5167 writeUseListBlock(nullptr); 5168 5169 writeOperandBundleTags(); 5170 writeSyncScopeNames(); 5171 5172 // Emit function bodies. 5173 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 5174 for (const Function &F : M) 5175 if (!F.isDeclaration()) 5176 writeFunction(F, FunctionToBitcodeIndex); 5177 5178 // Need to write after the above call to WriteFunction which populates 5179 // the summary information in the index. 5180 if (Index) 5181 writePerModuleGlobalValueSummary(); 5182 5183 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 5184 5185 writeModuleHash(Stream.getMarkedBufferAndResumeFlushing()); 5186 5187 Stream.ExitBlock(); 5188 } 5189 5190 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 5191 uint32_t &Position) { 5192 support::endian::write32le(&Buffer[Position], Value); 5193 Position += 4; 5194 } 5195 5196 /// If generating a bc file on darwin, we have to emit a 5197 /// header and trailer to make it compatible with the system archiver. To do 5198 /// this we emit the following header, and then emit a trailer that pads the 5199 /// file out to be a multiple of 16 bytes. 5200 /// 5201 /// struct bc_header { 5202 /// uint32_t Magic; // 0x0B17C0DE 5203 /// uint32_t Version; // Version, currently always 0. 5204 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 5205 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 5206 /// uint32_t CPUType; // CPU specifier. 5207 /// ... potentially more later ... 5208 /// }; 5209 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 5210 const Triple &TT) { 5211 unsigned CPUType = ~0U; 5212 5213 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 5214 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 5215 // number from /usr/include/mach/machine.h. It is ok to reproduce the 5216 // specific constants here because they are implicitly part of the Darwin ABI. 5217 enum { 5218 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 5219 DARWIN_CPU_TYPE_X86 = 7, 5220 DARWIN_CPU_TYPE_ARM = 12, 5221 DARWIN_CPU_TYPE_POWERPC = 18 5222 }; 5223 5224 Triple::ArchType Arch = TT.getArch(); 5225 if (Arch == Triple::x86_64) 5226 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 5227 else if (Arch == Triple::x86) 5228 CPUType = DARWIN_CPU_TYPE_X86; 5229 else if (Arch == Triple::ppc) 5230 CPUType = DARWIN_CPU_TYPE_POWERPC; 5231 else if (Arch == Triple::ppc64) 5232 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 5233 else if (Arch == Triple::arm || Arch == Triple::thumb) 5234 CPUType = DARWIN_CPU_TYPE_ARM; 5235 5236 // Traditional Bitcode starts after header. 5237 assert(Buffer.size() >= BWH_HeaderSize && 5238 "Expected header size to be reserved"); 5239 unsigned BCOffset = BWH_HeaderSize; 5240 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 5241 5242 // Write the magic and version. 5243 unsigned Position = 0; 5244 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 5245 writeInt32ToBuffer(0, Buffer, Position); // Version. 5246 writeInt32ToBuffer(BCOffset, Buffer, Position); 5247 writeInt32ToBuffer(BCSize, Buffer, Position); 5248 writeInt32ToBuffer(CPUType, Buffer, Position); 5249 5250 // If the file is not a multiple of 16 bytes, insert dummy padding. 5251 while (Buffer.size() & 15) 5252 Buffer.push_back(0); 5253 } 5254 5255 /// Helper to write the header common to all bitcode files. 5256 static void writeBitcodeHeader(BitstreamWriter &Stream) { 5257 // Emit the file header. 5258 Stream.Emit((unsigned)'B', 8); 5259 Stream.Emit((unsigned)'C', 8); 5260 Stream.Emit(0x0, 4); 5261 Stream.Emit(0xC, 4); 5262 Stream.Emit(0xE, 4); 5263 Stream.Emit(0xD, 4); 5264 } 5265 5266 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 5267 : Stream(new BitstreamWriter(Buffer)) { 5268 writeBitcodeHeader(*Stream); 5269 } 5270 5271 BitcodeWriter::BitcodeWriter(raw_ostream &FS) 5272 : Stream(new BitstreamWriter(FS, FlushThreshold)) { 5273 writeBitcodeHeader(*Stream); 5274 } 5275 5276 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 5277 5278 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 5279 Stream->EnterSubblock(Block, 3); 5280 5281 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5282 Abbv->Add(BitCodeAbbrevOp(Record)); 5283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 5284 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 5285 5286 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 5287 5288 Stream->ExitBlock(); 5289 } 5290 5291 void BitcodeWriter::writeSymtab() { 5292 assert(!WroteStrtab && !WroteSymtab); 5293 5294 // If any module has module-level inline asm, we will require a registered asm 5295 // parser for the target so that we can create an accurate symbol table for 5296 // the module. 5297 for (Module *M : Mods) { 5298 if (M->getModuleInlineAsm().empty()) 5299 continue; 5300 5301 std::string Err; 5302 const Triple TT(M->getTargetTriple()); 5303 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 5304 if (!T || !T->hasMCAsmParser()) 5305 return; 5306 } 5307 5308 WroteSymtab = true; 5309 SmallVector<char, 0> Symtab; 5310 // The irsymtab::build function may be unable to create a symbol table if the 5311 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 5312 // table is not required for correctness, but we still want to be able to 5313 // write malformed modules to bitcode files, so swallow the error. 5314 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 5315 consumeError(std::move(E)); 5316 return; 5317 } 5318 5319 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 5320 {Symtab.data(), Symtab.size()}); 5321 } 5322 5323 void BitcodeWriter::writeStrtab() { 5324 assert(!WroteStrtab); 5325 5326 std::vector<char> Strtab; 5327 StrtabBuilder.finalizeInOrder(); 5328 Strtab.resize(StrtabBuilder.getSize()); 5329 StrtabBuilder.write((uint8_t *)Strtab.data()); 5330 5331 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 5332 {Strtab.data(), Strtab.size()}); 5333 5334 WroteStrtab = true; 5335 } 5336 5337 void BitcodeWriter::copyStrtab(StringRef Strtab) { 5338 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 5339 WroteStrtab = true; 5340 } 5341 5342 void BitcodeWriter::writeModule(const Module &M, 5343 bool ShouldPreserveUseListOrder, 5344 const ModuleSummaryIndex *Index, 5345 bool GenerateHash, ModuleHash *ModHash) { 5346 assert(!WroteStrtab); 5347 5348 // The Mods vector is used by irsymtab::build, which requires non-const 5349 // Modules in case it needs to materialize metadata. But the bitcode writer 5350 // requires that the module is materialized, so we can cast to non-const here, 5351 // after checking that it is in fact materialized. 5352 assert(M.isMaterialized()); 5353 Mods.push_back(const_cast<Module *>(&M)); 5354 5355 ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream, 5356 ShouldPreserveUseListOrder, Index, 5357 GenerateHash, ModHash); 5358 ModuleWriter.write(); 5359 } 5360 5361 void BitcodeWriter::writeIndex( 5362 const ModuleSummaryIndex *Index, 5363 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5364 const GVSummaryPtrSet *DecSummaries) { 5365 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries, 5366 ModuleToSummariesForIndex); 5367 IndexWriter.write(); 5368 } 5369 5370 /// Write the specified module to the specified output stream. 5371 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 5372 bool ShouldPreserveUseListOrder, 5373 const ModuleSummaryIndex *Index, 5374 bool GenerateHash, ModuleHash *ModHash) { 5375 auto Write = [&](BitcodeWriter &Writer) { 5376 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 5377 ModHash); 5378 Writer.writeSymtab(); 5379 Writer.writeStrtab(); 5380 }; 5381 Triple TT(M.getTargetTriple()); 5382 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) { 5383 // If this is darwin or another generic macho target, reserve space for the 5384 // header. Note that the header is computed *after* the output is known, so 5385 // we currently explicitly use a buffer, write to it, and then subsequently 5386 // flush to Out. 5387 SmallVector<char, 0> Buffer; 5388 Buffer.reserve(256 * 1024); 5389 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 5390 BitcodeWriter Writer(Buffer); 5391 Write(Writer); 5392 emitDarwinBCHeaderAndTrailer(Buffer, TT); 5393 Out.write(Buffer.data(), Buffer.size()); 5394 } else { 5395 BitcodeWriter Writer(Out); 5396 Write(Writer); 5397 } 5398 } 5399 5400 void IndexBitcodeWriter::write() { 5401 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5402 5403 writeModuleVersion(); 5404 5405 // Write the module paths in the combined index. 5406 writeModStrings(); 5407 5408 // Write the summary combined index records. 5409 writeCombinedGlobalValueSummary(); 5410 5411 Stream.ExitBlock(); 5412 } 5413 5414 // Write the specified module summary index to the given raw output stream, 5415 // where it will be written in a new bitcode block. This is used when 5416 // writing the combined index file for ThinLTO. When writing a subset of the 5417 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 5418 void llvm::writeIndexToFile( 5419 const ModuleSummaryIndex &Index, raw_ostream &Out, 5420 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5421 const GVSummaryPtrSet *DecSummaries) { 5422 SmallVector<char, 0> Buffer; 5423 Buffer.reserve(256 * 1024); 5424 5425 BitcodeWriter Writer(Buffer); 5426 Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries); 5427 Writer.writeStrtab(); 5428 5429 Out.write((char *)&Buffer.front(), Buffer.size()); 5430 } 5431 5432 namespace { 5433 5434 /// Class to manage the bitcode writing for a thin link bitcode file. 5435 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5436 /// ModHash is for use in ThinLTO incremental build, generated while writing 5437 /// the module bitcode file. 5438 const ModuleHash *ModHash; 5439 5440 public: 5441 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5442 BitstreamWriter &Stream, 5443 const ModuleSummaryIndex &Index, 5444 const ModuleHash &ModHash) 5445 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5446 /*ShouldPreserveUseListOrder=*/false, &Index), 5447 ModHash(&ModHash) {} 5448 5449 void write(); 5450 5451 private: 5452 void writeSimplifiedModuleInfo(); 5453 }; 5454 5455 } // end anonymous namespace 5456 5457 // This function writes a simpilified module info for thin link bitcode file. 5458 // It only contains the source file name along with the name(the offset and 5459 // size in strtab) and linkage for global values. For the global value info 5460 // entry, in order to keep linkage at offset 5, there are three zeros used 5461 // as padding. 5462 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5463 SmallVector<unsigned, 64> Vals; 5464 // Emit the module's source file name. 5465 { 5466 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5467 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5468 if (Bits == SE_Char6) 5469 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5470 else if (Bits == SE_Fixed7) 5471 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5472 5473 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5474 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5475 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5477 Abbv->Add(AbbrevOpToUse); 5478 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5479 5480 for (const auto P : M.getSourceFileName()) 5481 Vals.push_back((unsigned char)P); 5482 5483 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5484 Vals.clear(); 5485 } 5486 5487 // Emit the global variable information. 5488 for (const GlobalVariable &GV : M.globals()) { 5489 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5490 Vals.push_back(StrtabBuilder.add(GV.getName())); 5491 Vals.push_back(GV.getName().size()); 5492 Vals.push_back(0); 5493 Vals.push_back(0); 5494 Vals.push_back(0); 5495 Vals.push_back(getEncodedLinkage(GV)); 5496 5497 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5498 Vals.clear(); 5499 } 5500 5501 // Emit the function proto information. 5502 for (const Function &F : M) { 5503 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5504 Vals.push_back(StrtabBuilder.add(F.getName())); 5505 Vals.push_back(F.getName().size()); 5506 Vals.push_back(0); 5507 Vals.push_back(0); 5508 Vals.push_back(0); 5509 Vals.push_back(getEncodedLinkage(F)); 5510 5511 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5512 Vals.clear(); 5513 } 5514 5515 // Emit the alias information. 5516 for (const GlobalAlias &A : M.aliases()) { 5517 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5518 Vals.push_back(StrtabBuilder.add(A.getName())); 5519 Vals.push_back(A.getName().size()); 5520 Vals.push_back(0); 5521 Vals.push_back(0); 5522 Vals.push_back(0); 5523 Vals.push_back(getEncodedLinkage(A)); 5524 5525 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5526 Vals.clear(); 5527 } 5528 5529 // Emit the ifunc information. 5530 for (const GlobalIFunc &I : M.ifuncs()) { 5531 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5532 Vals.push_back(StrtabBuilder.add(I.getName())); 5533 Vals.push_back(I.getName().size()); 5534 Vals.push_back(0); 5535 Vals.push_back(0); 5536 Vals.push_back(0); 5537 Vals.push_back(getEncodedLinkage(I)); 5538 5539 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5540 Vals.clear(); 5541 } 5542 } 5543 5544 void ThinLinkBitcodeWriter::write() { 5545 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5546 5547 writeModuleVersion(); 5548 5549 writeSimplifiedModuleInfo(); 5550 5551 writePerModuleGlobalValueSummary(); 5552 5553 // Write module hash. 5554 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5555 5556 Stream.ExitBlock(); 5557 } 5558 5559 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5560 const ModuleSummaryIndex &Index, 5561 const ModuleHash &ModHash) { 5562 assert(!WroteStrtab); 5563 5564 // The Mods vector is used by irsymtab::build, which requires non-const 5565 // Modules in case it needs to materialize metadata. But the bitcode writer 5566 // requires that the module is materialized, so we can cast to non-const here, 5567 // after checking that it is in fact materialized. 5568 assert(M.isMaterialized()); 5569 Mods.push_back(const_cast<Module *>(&M)); 5570 5571 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5572 ModHash); 5573 ThinLinkWriter.write(); 5574 } 5575 5576 // Write the specified thin link bitcode file to the given raw output stream, 5577 // where it will be written in a new bitcode block. This is used when 5578 // writing the per-module index file for ThinLTO. 5579 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5580 const ModuleSummaryIndex &Index, 5581 const ModuleHash &ModHash) { 5582 SmallVector<char, 0> Buffer; 5583 Buffer.reserve(256 * 1024); 5584 5585 BitcodeWriter Writer(Buffer); 5586 Writer.writeThinLinkBitcode(M, Index, ModHash); 5587 Writer.writeSymtab(); 5588 Writer.writeStrtab(); 5589 5590 Out.write((char *)&Buffer.front(), Buffer.size()); 5591 } 5592 5593 static const char *getSectionNameForBitcode(const Triple &T) { 5594 switch (T.getObjectFormat()) { 5595 case Triple::MachO: 5596 return "__LLVM,__bitcode"; 5597 case Triple::COFF: 5598 case Triple::ELF: 5599 case Triple::Wasm: 5600 case Triple::UnknownObjectFormat: 5601 return ".llvmbc"; 5602 case Triple::GOFF: 5603 llvm_unreachable("GOFF is not yet implemented"); 5604 break; 5605 case Triple::SPIRV: 5606 if (T.getVendor() == Triple::AMD) 5607 return ".llvmbc"; 5608 llvm_unreachable("SPIRV is not yet implemented"); 5609 break; 5610 case Triple::XCOFF: 5611 llvm_unreachable("XCOFF is not yet implemented"); 5612 break; 5613 case Triple::DXContainer: 5614 llvm_unreachable("DXContainer is not yet implemented"); 5615 break; 5616 } 5617 llvm_unreachable("Unimplemented ObjectFormatType"); 5618 } 5619 5620 static const char *getSectionNameForCommandline(const Triple &T) { 5621 switch (T.getObjectFormat()) { 5622 case Triple::MachO: 5623 return "__LLVM,__cmdline"; 5624 case Triple::COFF: 5625 case Triple::ELF: 5626 case Triple::Wasm: 5627 case Triple::UnknownObjectFormat: 5628 return ".llvmcmd"; 5629 case Triple::GOFF: 5630 llvm_unreachable("GOFF is not yet implemented"); 5631 break; 5632 case Triple::SPIRV: 5633 if (T.getVendor() == Triple::AMD) 5634 return ".llvmcmd"; 5635 llvm_unreachable("SPIRV is not yet implemented"); 5636 break; 5637 case Triple::XCOFF: 5638 llvm_unreachable("XCOFF is not yet implemented"); 5639 break; 5640 case Triple::DXContainer: 5641 llvm_unreachable("DXC is not yet implemented"); 5642 break; 5643 } 5644 llvm_unreachable("Unimplemented ObjectFormatType"); 5645 } 5646 5647 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5648 bool EmbedBitcode, bool EmbedCmdline, 5649 const std::vector<uint8_t> &CmdArgs) { 5650 // Save llvm.compiler.used and remove it. 5651 SmallVector<Constant *, 2> UsedArray; 5652 SmallVector<GlobalValue *, 4> UsedGlobals; 5653 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5654 Type *UsedElementType = Used ? Used->getValueType()->getArrayElementType() 5655 : PointerType::getUnqual(M.getContext()); 5656 for (auto *GV : UsedGlobals) { 5657 if (GV->getName() != "llvm.embedded.module" && 5658 GV->getName() != "llvm.cmdline") 5659 UsedArray.push_back( 5660 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5661 } 5662 if (Used) 5663 Used->eraseFromParent(); 5664 5665 // Embed the bitcode for the llvm module. 5666 std::string Data; 5667 ArrayRef<uint8_t> ModuleData; 5668 Triple T(M.getTargetTriple()); 5669 5670 if (EmbedBitcode) { 5671 if (Buf.getBufferSize() == 0 || 5672 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5673 (const unsigned char *)Buf.getBufferEnd())) { 5674 // If the input is LLVM Assembly, bitcode is produced by serializing 5675 // the module. Use-lists order need to be preserved in this case. 5676 llvm::raw_string_ostream OS(Data); 5677 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5678 ModuleData = 5679 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5680 } else 5681 // If the input is LLVM bitcode, write the input byte stream directly. 5682 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5683 Buf.getBufferSize()); 5684 } 5685 llvm::Constant *ModuleConstant = 5686 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5687 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5688 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5689 ModuleConstant); 5690 GV->setSection(getSectionNameForBitcode(T)); 5691 // Set alignment to 1 to prevent padding between two contributions from input 5692 // sections after linking. 5693 GV->setAlignment(Align(1)); 5694 UsedArray.push_back( 5695 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5696 if (llvm::GlobalVariable *Old = 5697 M.getGlobalVariable("llvm.embedded.module", true)) { 5698 assert(Old->hasZeroLiveUses() && 5699 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5700 GV->takeName(Old); 5701 Old->eraseFromParent(); 5702 } else { 5703 GV->setName("llvm.embedded.module"); 5704 } 5705 5706 // Skip if only bitcode needs to be embedded. 5707 if (EmbedCmdline) { 5708 // Embed command-line options. 5709 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5710 CmdArgs.size()); 5711 llvm::Constant *CmdConstant = 5712 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5713 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5714 llvm::GlobalValue::PrivateLinkage, 5715 CmdConstant); 5716 GV->setSection(getSectionNameForCommandline(T)); 5717 GV->setAlignment(Align(1)); 5718 UsedArray.push_back( 5719 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5720 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5721 assert(Old->hasZeroLiveUses() && 5722 "llvm.cmdline can only be used once in llvm.compiler.used"); 5723 GV->takeName(Old); 5724 Old->eraseFromParent(); 5725 } else { 5726 GV->setName("llvm.cmdline"); 5727 } 5728 } 5729 5730 if (UsedArray.empty()) 5731 return; 5732 5733 // Recreate llvm.compiler.used. 5734 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5735 auto *NewUsed = new GlobalVariable( 5736 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5737 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5738 NewUsed->setSection("llvm.metadata"); 5739 } 5740