1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRangeList.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/SHA1.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <memory> 80 #include <optional> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 namespace llvm { 100 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 101 } 102 103 extern bool WriteNewDbgInfoFormatToBitcode; 104 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 105 106 namespace { 107 108 /// These are manifest constants used by the bitcode writer. They do not need to 109 /// be kept in sync with the reader, but need to be consistent within this file. 110 enum { 111 // VALUE_SYMTAB_BLOCK abbrev id's. 112 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 113 VST_ENTRY_7_ABBREV, 114 VST_ENTRY_6_ABBREV, 115 VST_BBENTRY_6_ABBREV, 116 117 // CONSTANTS_BLOCK abbrev id's. 118 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 119 CONSTANTS_INTEGER_ABBREV, 120 CONSTANTS_CE_CAST_Abbrev, 121 CONSTANTS_NULL_Abbrev, 122 123 // FUNCTION_BLOCK abbrev id's. 124 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 125 FUNCTION_INST_UNOP_ABBREV, 126 FUNCTION_INST_UNOP_FLAGS_ABBREV, 127 FUNCTION_INST_BINOP_ABBREV, 128 FUNCTION_INST_BINOP_FLAGS_ABBREV, 129 FUNCTION_INST_CAST_ABBREV, 130 FUNCTION_INST_CAST_FLAGS_ABBREV, 131 FUNCTION_INST_RET_VOID_ABBREV, 132 FUNCTION_INST_RET_VAL_ABBREV, 133 FUNCTION_INST_UNREACHABLE_ABBREV, 134 FUNCTION_INST_GEP_ABBREV, 135 FUNCTION_DEBUG_RECORD_VALUE_ABBREV, 136 }; 137 138 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 139 /// file type. 140 class BitcodeWriterBase { 141 protected: 142 /// The stream created and owned by the client. 143 BitstreamWriter &Stream; 144 145 StringTableBuilder &StrtabBuilder; 146 147 public: 148 /// Constructs a BitcodeWriterBase object that writes to the provided 149 /// \p Stream. 150 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 151 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 152 153 protected: 154 void writeModuleVersion(); 155 }; 156 157 void BitcodeWriterBase::writeModuleVersion() { 158 // VERSION: [version#] 159 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 160 } 161 162 /// Base class to manage the module bitcode writing, currently subclassed for 163 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 164 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 165 protected: 166 /// The Module to write to bitcode. 167 const Module &M; 168 169 /// Enumerates ids for all values in the module. 170 ValueEnumerator VE; 171 172 /// Optional per-module index to write for ThinLTO. 173 const ModuleSummaryIndex *Index; 174 175 /// Map that holds the correspondence between GUIDs in the summary index, 176 /// that came from indirect call profiles, and a value id generated by this 177 /// class to use in the VST and summary block records. 178 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 179 180 /// Tracks the last value id recorded in the GUIDToValueMap. 181 unsigned GlobalValueId; 182 183 /// Saves the offset of the VSTOffset record that must eventually be 184 /// backpatched with the offset of the actual VST. 185 uint64_t VSTOffsetPlaceholder = 0; 186 187 public: 188 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 189 /// writing to the provided \p Buffer. 190 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 191 BitstreamWriter &Stream, 192 bool ShouldPreserveUseListOrder, 193 const ModuleSummaryIndex *Index) 194 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 195 VE(M, ShouldPreserveUseListOrder), Index(Index) { 196 // Assign ValueIds to any callee values in the index that came from 197 // indirect call profiles and were recorded as a GUID not a Value* 198 // (which would have been assigned an ID by the ValueEnumerator). 199 // The starting ValueId is just after the number of values in the 200 // ValueEnumerator, so that they can be emitted in the VST. 201 GlobalValueId = VE.getValues().size(); 202 if (!Index) 203 return; 204 for (const auto &GUIDSummaryLists : *Index) 205 // Examine all summaries for this GUID. 206 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 207 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) { 208 // For each call in the function summary, see if the call 209 // is to a GUID (which means it is for an indirect call, 210 // otherwise we would have a Value for it). If so, synthesize 211 // a value id. 212 for (auto &CallEdge : FS->calls()) 213 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 214 assignValueId(CallEdge.first.getGUID()); 215 216 // For each referenced variables in the function summary, see if the 217 // variable is represented by a GUID (as opposed to a symbol to 218 // declarations or definitions in the module). If so, synthesize a 219 // value id. 220 for (auto &RefEdge : FS->refs()) 221 if (!RefEdge.haveGVs() || !RefEdge.getValue()) 222 assignValueId(RefEdge.getGUID()); 223 } 224 } 225 226 protected: 227 void writePerModuleGlobalValueSummary(); 228 229 private: 230 void writePerModuleFunctionSummaryRecord( 231 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 232 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 233 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 234 void writeModuleLevelReferences(const GlobalVariable &V, 235 SmallVector<uint64_t, 64> &NameVals, 236 unsigned FSModRefsAbbrev, 237 unsigned FSModVTableRefsAbbrev); 238 239 void assignValueId(GlobalValue::GUID ValGUID) { 240 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 241 } 242 243 unsigned getValueId(GlobalValue::GUID ValGUID) { 244 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 245 // Expect that any GUID value had a value Id assigned by an 246 // earlier call to assignValueId. 247 assert(VMI != GUIDToValueIdMap.end() && 248 "GUID does not have assigned value Id"); 249 return VMI->second; 250 } 251 252 // Helper to get the valueId for the type of value recorded in VI. 253 unsigned getValueId(ValueInfo VI) { 254 if (!VI.haveGVs() || !VI.getValue()) 255 return getValueId(VI.getGUID()); 256 return VE.getValueID(VI.getValue()); 257 } 258 259 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 260 }; 261 262 /// Class to manage the bitcode writing for a module. 263 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 264 /// True if a module hash record should be written. 265 bool GenerateHash; 266 267 /// If non-null, when GenerateHash is true, the resulting hash is written 268 /// into ModHash. 269 ModuleHash *ModHash; 270 271 SHA1 Hasher; 272 273 /// The start bit of the identification block. 274 uint64_t BitcodeStartBit; 275 276 public: 277 /// Constructs a ModuleBitcodeWriter object for the given Module, 278 /// writing to the provided \p Buffer. 279 ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 280 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 281 const ModuleSummaryIndex *Index, bool GenerateHash, 282 ModuleHash *ModHash = nullptr) 283 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 284 ShouldPreserveUseListOrder, Index), 285 GenerateHash(GenerateHash), ModHash(ModHash), 286 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 287 288 /// Emit the current module to the bitstream. 289 void write(); 290 291 private: 292 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 293 294 size_t addToStrtab(StringRef Str); 295 296 void writeAttributeGroupTable(); 297 void writeAttributeTable(); 298 void writeTypeTable(); 299 void writeComdats(); 300 void writeValueSymbolTableForwardDecl(); 301 void writeModuleInfo(); 302 void writeValueAsMetadata(const ValueAsMetadata *MD, 303 SmallVectorImpl<uint64_t> &Record); 304 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 unsigned createDILocationAbbrev(); 307 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned &Abbrev); 309 unsigned createGenericDINodeAbbrev(); 310 void writeGenericDINode(const GenericDINode *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 312 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 313 unsigned Abbrev); 314 void writeDIGenericSubrange(const DIGenericSubrange *N, 315 SmallVectorImpl<uint64_t> &Record, 316 unsigned Abbrev); 317 void writeDIEnumerator(const DIEnumerator *N, 318 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 319 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIStringType(const DIStringType *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDIDerivedType(const DIDerivedType *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDICompositeType(const DICompositeType *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDISubroutineType(const DISubroutineType *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDICompileUnit(const DICompileUnit *N, 333 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 334 void writeDISubprogram(const DISubprogram *N, 335 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 336 void writeDILexicalBlock(const DILexicalBlock *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDICommonBlock(const DICommonBlock *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 350 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 355 SmallVectorImpl<uint64_t> &Record, 356 unsigned Abbrev); 357 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIGlobalVariable(const DIGlobalVariable *N, 361 SmallVectorImpl<uint64_t> &Record, 362 unsigned Abbrev); 363 void writeDILocalVariable(const DILocalVariable *N, 364 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 365 void writeDILabel(const DILabel *N, 366 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 367 void writeDIExpression(const DIExpression *N, 368 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 369 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 370 SmallVectorImpl<uint64_t> &Record, 371 unsigned Abbrev); 372 void writeDIObjCProperty(const DIObjCProperty *N, 373 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 374 void writeDIImportedEntity(const DIImportedEntity *N, 375 SmallVectorImpl<uint64_t> &Record, 376 unsigned Abbrev); 377 unsigned createNamedMetadataAbbrev(); 378 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 379 unsigned createMetadataStringsAbbrev(); 380 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 381 SmallVectorImpl<uint64_t> &Record); 382 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 383 SmallVectorImpl<uint64_t> &Record, 384 std::vector<unsigned> *MDAbbrevs = nullptr, 385 std::vector<uint64_t> *IndexPos = nullptr); 386 void writeModuleMetadata(); 387 void writeFunctionMetadata(const Function &F); 388 void writeFunctionMetadataAttachment(const Function &F); 389 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 390 const GlobalObject &GO); 391 void writeModuleMetadataKinds(); 392 void writeOperandBundleTags(); 393 void writeSyncScopeNames(); 394 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 395 void writeModuleConstants(); 396 bool pushValueAndType(const Value *V, unsigned InstID, 397 SmallVectorImpl<unsigned> &Vals); 398 bool pushValueOrMetadata(const Value *V, unsigned InstID, 399 SmallVectorImpl<unsigned> &Vals); 400 void writeOperandBundles(const CallBase &CB, unsigned InstID); 401 void pushValue(const Value *V, unsigned InstID, 402 SmallVectorImpl<unsigned> &Vals); 403 void pushValueSigned(const Value *V, unsigned InstID, 404 SmallVectorImpl<uint64_t> &Vals); 405 void writeInstruction(const Instruction &I, unsigned InstID, 406 SmallVectorImpl<unsigned> &Vals); 407 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 408 void writeGlobalValueSymbolTable( 409 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 410 void writeUseList(UseListOrder &&Order); 411 void writeUseListBlock(const Function *F); 412 void 413 writeFunction(const Function &F, 414 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 415 void writeBlockInfo(); 416 void writeModuleHash(StringRef View); 417 418 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 419 return unsigned(SSID); 420 } 421 422 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 423 }; 424 425 /// Class to manage the bitcode writing for a combined index. 426 class IndexBitcodeWriter : public BitcodeWriterBase { 427 /// The combined index to write to bitcode. 428 const ModuleSummaryIndex &Index; 429 430 /// When writing combined summaries, provides the set of global value 431 /// summaries for which the value (function, function alias, etc) should be 432 /// imported as a declaration. 433 const GVSummaryPtrSet *DecSummaries = nullptr; 434 435 /// When writing a subset of the index for distributed backends, client 436 /// provides a map of modules to the corresponding GUIDs/summaries to write. 437 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex; 438 439 /// Map that holds the correspondence between the GUID used in the combined 440 /// index and a value id generated by this class to use in references. 441 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 442 443 // The stack ids used by this index, which will be a subset of those in 444 // the full index in the case of distributed indexes. 445 std::vector<uint64_t> StackIds; 446 447 // Keep a map of the stack id indices used by records being written for this 448 // index to the index of the corresponding stack id in the above StackIds 449 // vector. Ensures we write each referenced stack id once. 450 DenseMap<unsigned, unsigned> StackIdIndicesToIndex; 451 452 /// Tracks the last value id recorded in the GUIDToValueMap. 453 unsigned GlobalValueId = 0; 454 455 /// Tracks the assignment of module paths in the module path string table to 456 /// an id assigned for use in summary references to the module path. 457 DenseMap<StringRef, uint64_t> ModuleIdMap; 458 459 public: 460 /// Constructs a IndexBitcodeWriter object for the given combined index, 461 /// writing to the provided \p Buffer. When writing a subset of the index 462 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 463 /// If provided, \p DecSummaries specifies the set of summaries for which 464 /// the corresponding functions or aliased functions should be imported as a 465 /// declaration (but not definition) for each module. 466 IndexBitcodeWriter( 467 BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 468 const ModuleSummaryIndex &Index, 469 const GVSummaryPtrSet *DecSummaries = nullptr, 470 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr) 471 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 472 DecSummaries(DecSummaries), 473 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 474 475 // See if the StackIdIndex was already added to the StackId map and 476 // vector. If not, record it. 477 auto RecordStackIdReference = [&](unsigned StackIdIndex) { 478 // If the StackIdIndex is not yet in the map, the below insert ensures 479 // that it will point to the new StackIds vector entry we push to just 480 // below. 481 auto Inserted = 482 StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()}); 483 if (Inserted.second) 484 StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex)); 485 }; 486 487 // Assign unique value ids to all summaries to be written, for use 488 // in writing out the call graph edges. Save the mapping from GUID 489 // to the new global value id to use when writing those edges, which 490 // are currently saved in the index in terms of GUID. 491 forEachSummary([&](GVInfo I, bool IsAliasee) { 492 GUIDToValueIdMap[I.first] = ++GlobalValueId; 493 if (IsAliasee) 494 return; 495 auto *FS = dyn_cast<FunctionSummary>(I.second); 496 if (!FS) 497 return; 498 // Record all stack id indices actually used in the summary entries being 499 // written, so that we can compact them in the case of distributed ThinLTO 500 // indexes. 501 for (auto &CI : FS->callsites()) { 502 // If the stack id list is empty, this callsite info was synthesized for 503 // a missing tail call frame. Ensure that the callee's GUID gets a value 504 // id. Normally we only generate these for defined summaries, which in 505 // the case of distributed ThinLTO is only the functions already defined 506 // in the module or that we want to import. We don't bother to include 507 // all the callee symbols as they aren't normally needed in the backend. 508 // However, for the synthesized callsite infos we do need the callee 509 // GUID in the backend so that we can correlate the identified callee 510 // with this callsite info (which for non-tail calls is done by the 511 // ordering of the callsite infos and verified via stack ids). 512 if (CI.StackIdIndices.empty()) { 513 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 514 continue; 515 } 516 for (auto Idx : CI.StackIdIndices) 517 RecordStackIdReference(Idx); 518 } 519 for (auto &AI : FS->allocs()) 520 for (auto &MIB : AI.MIBs) 521 for (auto Idx : MIB.StackIdIndices) 522 RecordStackIdReference(Idx); 523 }); 524 } 525 526 /// The below iterator returns the GUID and associated summary. 527 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 528 529 /// Calls the callback for each value GUID and summary to be written to 530 /// bitcode. This hides the details of whether they are being pulled from the 531 /// entire index or just those in a provided ModuleToSummariesForIndex map. 532 template<typename Functor> 533 void forEachSummary(Functor Callback) { 534 if (ModuleToSummariesForIndex) { 535 for (auto &M : *ModuleToSummariesForIndex) 536 for (auto &Summary : M.second) { 537 Callback(Summary, false); 538 // Ensure aliasee is handled, e.g. for assigning a valueId, 539 // even if we are not importing the aliasee directly (the 540 // imported alias will contain a copy of aliasee). 541 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 542 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 543 } 544 } else { 545 for (auto &Summaries : Index) 546 for (auto &Summary : Summaries.second.SummaryList) 547 Callback({Summaries.first, Summary.get()}, false); 548 } 549 } 550 551 /// Calls the callback for each entry in the modulePaths StringMap that 552 /// should be written to the module path string table. This hides the details 553 /// of whether they are being pulled from the entire index or just those in a 554 /// provided ModuleToSummariesForIndex map. 555 template <typename Functor> void forEachModule(Functor Callback) { 556 if (ModuleToSummariesForIndex) { 557 for (const auto &M : *ModuleToSummariesForIndex) { 558 const auto &MPI = Index.modulePaths().find(M.first); 559 if (MPI == Index.modulePaths().end()) { 560 // This should only happen if the bitcode file was empty, in which 561 // case we shouldn't be importing (the ModuleToSummariesForIndex 562 // would only include the module we are writing and index for). 563 assert(ModuleToSummariesForIndex->size() == 1); 564 continue; 565 } 566 Callback(*MPI); 567 } 568 } else { 569 // Since StringMap iteration order isn't guaranteed, order by path string 570 // first. 571 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 572 // map lookup. 573 std::vector<StringRef> ModulePaths; 574 for (auto &[ModPath, _] : Index.modulePaths()) 575 ModulePaths.push_back(ModPath); 576 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 577 for (auto &ModPath : ModulePaths) 578 Callback(*Index.modulePaths().find(ModPath)); 579 } 580 } 581 582 /// Main entry point for writing a combined index to bitcode. 583 void write(); 584 585 private: 586 void writeModStrings(); 587 void writeCombinedGlobalValueSummary(); 588 589 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 590 auto VMI = GUIDToValueIdMap.find(ValGUID); 591 if (VMI == GUIDToValueIdMap.end()) 592 return std::nullopt; 593 return VMI->second; 594 } 595 596 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 597 }; 598 599 } // end anonymous namespace 600 601 static unsigned getEncodedCastOpcode(unsigned Opcode) { 602 switch (Opcode) { 603 default: llvm_unreachable("Unknown cast instruction!"); 604 case Instruction::Trunc : return bitc::CAST_TRUNC; 605 case Instruction::ZExt : return bitc::CAST_ZEXT; 606 case Instruction::SExt : return bitc::CAST_SEXT; 607 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 608 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 609 case Instruction::UIToFP : return bitc::CAST_UITOFP; 610 case Instruction::SIToFP : return bitc::CAST_SITOFP; 611 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 612 case Instruction::FPExt : return bitc::CAST_FPEXT; 613 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 614 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 615 case Instruction::BitCast : return bitc::CAST_BITCAST; 616 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 617 } 618 } 619 620 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 621 switch (Opcode) { 622 default: llvm_unreachable("Unknown binary instruction!"); 623 case Instruction::FNeg: return bitc::UNOP_FNEG; 624 } 625 } 626 627 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 628 switch (Opcode) { 629 default: llvm_unreachable("Unknown binary instruction!"); 630 case Instruction::Add: 631 case Instruction::FAdd: return bitc::BINOP_ADD; 632 case Instruction::Sub: 633 case Instruction::FSub: return bitc::BINOP_SUB; 634 case Instruction::Mul: 635 case Instruction::FMul: return bitc::BINOP_MUL; 636 case Instruction::UDiv: return bitc::BINOP_UDIV; 637 case Instruction::FDiv: 638 case Instruction::SDiv: return bitc::BINOP_SDIV; 639 case Instruction::URem: return bitc::BINOP_UREM; 640 case Instruction::FRem: 641 case Instruction::SRem: return bitc::BINOP_SREM; 642 case Instruction::Shl: return bitc::BINOP_SHL; 643 case Instruction::LShr: return bitc::BINOP_LSHR; 644 case Instruction::AShr: return bitc::BINOP_ASHR; 645 case Instruction::And: return bitc::BINOP_AND; 646 case Instruction::Or: return bitc::BINOP_OR; 647 case Instruction::Xor: return bitc::BINOP_XOR; 648 } 649 } 650 651 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 652 switch (Op) { 653 default: llvm_unreachable("Unknown RMW operation!"); 654 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 655 case AtomicRMWInst::Add: return bitc::RMW_ADD; 656 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 657 case AtomicRMWInst::And: return bitc::RMW_AND; 658 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 659 case AtomicRMWInst::Or: return bitc::RMW_OR; 660 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 661 case AtomicRMWInst::Max: return bitc::RMW_MAX; 662 case AtomicRMWInst::Min: return bitc::RMW_MIN; 663 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 664 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 665 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 666 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 667 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 668 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 669 case AtomicRMWInst::UIncWrap: 670 return bitc::RMW_UINC_WRAP; 671 case AtomicRMWInst::UDecWrap: 672 return bitc::RMW_UDEC_WRAP; 673 case AtomicRMWInst::USubCond: 674 return bitc::RMW_USUB_COND; 675 case AtomicRMWInst::USubSat: 676 return bitc::RMW_USUB_SAT; 677 } 678 } 679 680 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 681 switch (Ordering) { 682 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 683 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 684 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 685 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 686 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 687 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 688 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 689 } 690 llvm_unreachable("Invalid ordering"); 691 } 692 693 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 694 StringRef Str, unsigned AbbrevToUse) { 695 SmallVector<unsigned, 64> Vals; 696 697 // Code: [strchar x N] 698 for (char C : Str) { 699 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 700 AbbrevToUse = 0; 701 Vals.push_back(C); 702 } 703 704 // Emit the finished record. 705 Stream.EmitRecord(Code, Vals, AbbrevToUse); 706 } 707 708 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 709 switch (Kind) { 710 case Attribute::Alignment: 711 return bitc::ATTR_KIND_ALIGNMENT; 712 case Attribute::AllocAlign: 713 return bitc::ATTR_KIND_ALLOC_ALIGN; 714 case Attribute::AllocSize: 715 return bitc::ATTR_KIND_ALLOC_SIZE; 716 case Attribute::AlwaysInline: 717 return bitc::ATTR_KIND_ALWAYS_INLINE; 718 case Attribute::Builtin: 719 return bitc::ATTR_KIND_BUILTIN; 720 case Attribute::ByVal: 721 return bitc::ATTR_KIND_BY_VAL; 722 case Attribute::Convergent: 723 return bitc::ATTR_KIND_CONVERGENT; 724 case Attribute::InAlloca: 725 return bitc::ATTR_KIND_IN_ALLOCA; 726 case Attribute::Cold: 727 return bitc::ATTR_KIND_COLD; 728 case Attribute::DisableSanitizerInstrumentation: 729 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 730 case Attribute::FnRetThunkExtern: 731 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 732 case Attribute::Hot: 733 return bitc::ATTR_KIND_HOT; 734 case Attribute::ElementType: 735 return bitc::ATTR_KIND_ELEMENTTYPE; 736 case Attribute::HybridPatchable: 737 return bitc::ATTR_KIND_HYBRID_PATCHABLE; 738 case Attribute::InlineHint: 739 return bitc::ATTR_KIND_INLINE_HINT; 740 case Attribute::InReg: 741 return bitc::ATTR_KIND_IN_REG; 742 case Attribute::JumpTable: 743 return bitc::ATTR_KIND_JUMP_TABLE; 744 case Attribute::MinSize: 745 return bitc::ATTR_KIND_MIN_SIZE; 746 case Attribute::AllocatedPointer: 747 return bitc::ATTR_KIND_ALLOCATED_POINTER; 748 case Attribute::AllocKind: 749 return bitc::ATTR_KIND_ALLOC_KIND; 750 case Attribute::Memory: 751 return bitc::ATTR_KIND_MEMORY; 752 case Attribute::NoFPClass: 753 return bitc::ATTR_KIND_NOFPCLASS; 754 case Attribute::Naked: 755 return bitc::ATTR_KIND_NAKED; 756 case Attribute::Nest: 757 return bitc::ATTR_KIND_NEST; 758 case Attribute::NoAlias: 759 return bitc::ATTR_KIND_NO_ALIAS; 760 case Attribute::NoBuiltin: 761 return bitc::ATTR_KIND_NO_BUILTIN; 762 case Attribute::NoCallback: 763 return bitc::ATTR_KIND_NO_CALLBACK; 764 case Attribute::NoCapture: 765 return bitc::ATTR_KIND_NO_CAPTURE; 766 case Attribute::NoDivergenceSource: 767 return bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE; 768 case Attribute::NoDuplicate: 769 return bitc::ATTR_KIND_NO_DUPLICATE; 770 case Attribute::NoFree: 771 return bitc::ATTR_KIND_NOFREE; 772 case Attribute::NoImplicitFloat: 773 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 774 case Attribute::NoInline: 775 return bitc::ATTR_KIND_NO_INLINE; 776 case Attribute::NoRecurse: 777 return bitc::ATTR_KIND_NO_RECURSE; 778 case Attribute::NoMerge: 779 return bitc::ATTR_KIND_NO_MERGE; 780 case Attribute::NonLazyBind: 781 return bitc::ATTR_KIND_NON_LAZY_BIND; 782 case Attribute::NonNull: 783 return bitc::ATTR_KIND_NON_NULL; 784 case Attribute::Dereferenceable: 785 return bitc::ATTR_KIND_DEREFERENCEABLE; 786 case Attribute::DereferenceableOrNull: 787 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 788 case Attribute::NoRedZone: 789 return bitc::ATTR_KIND_NO_RED_ZONE; 790 case Attribute::NoReturn: 791 return bitc::ATTR_KIND_NO_RETURN; 792 case Attribute::NoSync: 793 return bitc::ATTR_KIND_NOSYNC; 794 case Attribute::NoCfCheck: 795 return bitc::ATTR_KIND_NOCF_CHECK; 796 case Attribute::NoProfile: 797 return bitc::ATTR_KIND_NO_PROFILE; 798 case Attribute::SkipProfile: 799 return bitc::ATTR_KIND_SKIP_PROFILE; 800 case Attribute::NoUnwind: 801 return bitc::ATTR_KIND_NO_UNWIND; 802 case Attribute::NoSanitizeBounds: 803 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 804 case Attribute::NoSanitizeCoverage: 805 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 806 case Attribute::NullPointerIsValid: 807 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 808 case Attribute::OptimizeForDebugging: 809 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 810 case Attribute::OptForFuzzing: 811 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 812 case Attribute::OptimizeForSize: 813 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 814 case Attribute::OptimizeNone: 815 return bitc::ATTR_KIND_OPTIMIZE_NONE; 816 case Attribute::ReadNone: 817 return bitc::ATTR_KIND_READ_NONE; 818 case Attribute::ReadOnly: 819 return bitc::ATTR_KIND_READ_ONLY; 820 case Attribute::Returned: 821 return bitc::ATTR_KIND_RETURNED; 822 case Attribute::ReturnsTwice: 823 return bitc::ATTR_KIND_RETURNS_TWICE; 824 case Attribute::SExt: 825 return bitc::ATTR_KIND_S_EXT; 826 case Attribute::Speculatable: 827 return bitc::ATTR_KIND_SPECULATABLE; 828 case Attribute::StackAlignment: 829 return bitc::ATTR_KIND_STACK_ALIGNMENT; 830 case Attribute::StackProtect: 831 return bitc::ATTR_KIND_STACK_PROTECT; 832 case Attribute::StackProtectReq: 833 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 834 case Attribute::StackProtectStrong: 835 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 836 case Attribute::SafeStack: 837 return bitc::ATTR_KIND_SAFESTACK; 838 case Attribute::ShadowCallStack: 839 return bitc::ATTR_KIND_SHADOWCALLSTACK; 840 case Attribute::StrictFP: 841 return bitc::ATTR_KIND_STRICT_FP; 842 case Attribute::StructRet: 843 return bitc::ATTR_KIND_STRUCT_RET; 844 case Attribute::SanitizeAddress: 845 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 846 case Attribute::SanitizeHWAddress: 847 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 848 case Attribute::SanitizeThread: 849 return bitc::ATTR_KIND_SANITIZE_THREAD; 850 case Attribute::SanitizeMemory: 851 return bitc::ATTR_KIND_SANITIZE_MEMORY; 852 case Attribute::SanitizeNumericalStability: 853 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY; 854 case Attribute::SanitizeRealtime: 855 return bitc::ATTR_KIND_SANITIZE_REALTIME; 856 case Attribute::SanitizeRealtimeBlocking: 857 return bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING; 858 case Attribute::SpeculativeLoadHardening: 859 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 860 case Attribute::SwiftError: 861 return bitc::ATTR_KIND_SWIFT_ERROR; 862 case Attribute::SwiftSelf: 863 return bitc::ATTR_KIND_SWIFT_SELF; 864 case Attribute::SwiftAsync: 865 return bitc::ATTR_KIND_SWIFT_ASYNC; 866 case Attribute::UWTable: 867 return bitc::ATTR_KIND_UW_TABLE; 868 case Attribute::VScaleRange: 869 return bitc::ATTR_KIND_VSCALE_RANGE; 870 case Attribute::WillReturn: 871 return bitc::ATTR_KIND_WILLRETURN; 872 case Attribute::WriteOnly: 873 return bitc::ATTR_KIND_WRITEONLY; 874 case Attribute::ZExt: 875 return bitc::ATTR_KIND_Z_EXT; 876 case Attribute::ImmArg: 877 return bitc::ATTR_KIND_IMMARG; 878 case Attribute::SanitizeMemTag: 879 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 880 case Attribute::Preallocated: 881 return bitc::ATTR_KIND_PREALLOCATED; 882 case Attribute::NoUndef: 883 return bitc::ATTR_KIND_NOUNDEF; 884 case Attribute::ByRef: 885 return bitc::ATTR_KIND_BYREF; 886 case Attribute::MustProgress: 887 return bitc::ATTR_KIND_MUSTPROGRESS; 888 case Attribute::PresplitCoroutine: 889 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 890 case Attribute::Writable: 891 return bitc::ATTR_KIND_WRITABLE; 892 case Attribute::CoroDestroyOnlyWhenComplete: 893 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 894 case Attribute::CoroElideSafe: 895 return bitc::ATTR_KIND_CORO_ELIDE_SAFE; 896 case Attribute::DeadOnUnwind: 897 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 898 case Attribute::Range: 899 return bitc::ATTR_KIND_RANGE; 900 case Attribute::Initializes: 901 return bitc::ATTR_KIND_INITIALIZES; 902 case Attribute::NoExt: 903 return bitc::ATTR_KIND_NO_EXT; 904 case Attribute::EndAttrKinds: 905 llvm_unreachable("Can not encode end-attribute kinds marker."); 906 case Attribute::None: 907 llvm_unreachable("Can not encode none-attribute."); 908 case Attribute::EmptyKey: 909 case Attribute::TombstoneKey: 910 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 911 } 912 913 llvm_unreachable("Trying to encode unknown attribute"); 914 } 915 916 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 917 if ((int64_t)V >= 0) 918 Vals.push_back(V << 1); 919 else 920 Vals.push_back((-V << 1) | 1); 921 } 922 923 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 924 // We have an arbitrary precision integer value to write whose 925 // bit width is > 64. However, in canonical unsigned integer 926 // format it is likely that the high bits are going to be zero. 927 // So, we only write the number of active words. 928 unsigned NumWords = A.getActiveWords(); 929 const uint64_t *RawData = A.getRawData(); 930 for (unsigned i = 0; i < NumWords; i++) 931 emitSignedInt64(Vals, RawData[i]); 932 } 933 934 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 935 const ConstantRange &CR, bool EmitBitWidth) { 936 unsigned BitWidth = CR.getBitWidth(); 937 if (EmitBitWidth) 938 Record.push_back(BitWidth); 939 if (BitWidth > 64) { 940 Record.push_back(CR.getLower().getActiveWords() | 941 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 942 emitWideAPInt(Record, CR.getLower()); 943 emitWideAPInt(Record, CR.getUpper()); 944 } else { 945 emitSignedInt64(Record, CR.getLower().getSExtValue()); 946 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 947 } 948 } 949 950 void ModuleBitcodeWriter::writeAttributeGroupTable() { 951 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 952 VE.getAttributeGroups(); 953 if (AttrGrps.empty()) return; 954 955 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 956 957 SmallVector<uint64_t, 64> Record; 958 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 959 unsigned AttrListIndex = Pair.first; 960 AttributeSet AS = Pair.second; 961 Record.push_back(VE.getAttributeGroupID(Pair)); 962 Record.push_back(AttrListIndex); 963 964 for (Attribute Attr : AS) { 965 if (Attr.isEnumAttribute()) { 966 Record.push_back(0); 967 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 968 } else if (Attr.isIntAttribute()) { 969 Record.push_back(1); 970 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 971 Record.push_back(Attr.getValueAsInt()); 972 } else if (Attr.isStringAttribute()) { 973 StringRef Kind = Attr.getKindAsString(); 974 StringRef Val = Attr.getValueAsString(); 975 976 Record.push_back(Val.empty() ? 3 : 4); 977 Record.append(Kind.begin(), Kind.end()); 978 Record.push_back(0); 979 if (!Val.empty()) { 980 Record.append(Val.begin(), Val.end()); 981 Record.push_back(0); 982 } 983 } else if (Attr.isTypeAttribute()) { 984 Type *Ty = Attr.getValueAsType(); 985 Record.push_back(Ty ? 6 : 5); 986 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 987 if (Ty) 988 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 989 } else if (Attr.isConstantRangeAttribute()) { 990 Record.push_back(7); 991 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 992 emitConstantRange(Record, Attr.getValueAsConstantRange(), 993 /*EmitBitWidth=*/true); 994 } else { 995 assert(Attr.isConstantRangeListAttribute()); 996 Record.push_back(8); 997 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 998 ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList(); 999 Record.push_back(Val.size()); 1000 Record.push_back(Val[0].getBitWidth()); 1001 for (auto &CR : Val) 1002 emitConstantRange(Record, CR, /*EmitBitWidth=*/false); 1003 } 1004 } 1005 1006 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 1007 Record.clear(); 1008 } 1009 1010 Stream.ExitBlock(); 1011 } 1012 1013 void ModuleBitcodeWriter::writeAttributeTable() { 1014 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 1015 if (Attrs.empty()) return; 1016 1017 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 1018 1019 SmallVector<uint64_t, 64> Record; 1020 for (const AttributeList &AL : Attrs) { 1021 for (unsigned i : AL.indexes()) { 1022 AttributeSet AS = AL.getAttributes(i); 1023 if (AS.hasAttributes()) 1024 Record.push_back(VE.getAttributeGroupID({i, AS})); 1025 } 1026 1027 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 1028 Record.clear(); 1029 } 1030 1031 Stream.ExitBlock(); 1032 } 1033 1034 /// WriteTypeTable - Write out the type table for a module. 1035 void ModuleBitcodeWriter::writeTypeTable() { 1036 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 1037 1038 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 1039 SmallVector<uint64_t, 64> TypeVals; 1040 1041 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); 1042 1043 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 1044 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1045 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 1046 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 1047 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1048 1049 // Abbrev for TYPE_CODE_FUNCTION. 1050 Abbv = std::make_shared<BitCodeAbbrev>(); 1051 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 1052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 1053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1055 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1056 1057 // Abbrev for TYPE_CODE_STRUCT_ANON. 1058 Abbv = std::make_shared<BitCodeAbbrev>(); 1059 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 1060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1063 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1064 1065 // Abbrev for TYPE_CODE_STRUCT_NAME. 1066 Abbv = std::make_shared<BitCodeAbbrev>(); 1067 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1070 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1071 1072 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1073 Abbv = std::make_shared<BitCodeAbbrev>(); 1074 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1078 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1079 1080 // Abbrev for TYPE_CODE_ARRAY. 1081 Abbv = std::make_shared<BitCodeAbbrev>(); 1082 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1085 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1086 1087 // Emit an entry count so the reader can reserve space. 1088 TypeVals.push_back(TypeList.size()); 1089 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1090 TypeVals.clear(); 1091 1092 // Loop over all of the types, emitting each in turn. 1093 for (Type *T : TypeList) { 1094 int AbbrevToUse = 0; 1095 unsigned Code = 0; 1096 1097 switch (T->getTypeID()) { 1098 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1099 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1100 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1101 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1102 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1103 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1104 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1105 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1106 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1107 case Type::MetadataTyID: 1108 Code = bitc::TYPE_CODE_METADATA; 1109 break; 1110 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1111 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1112 case Type::IntegerTyID: 1113 // INTEGER: [width] 1114 Code = bitc::TYPE_CODE_INTEGER; 1115 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1116 break; 1117 case Type::PointerTyID: { 1118 PointerType *PTy = cast<PointerType>(T); 1119 unsigned AddressSpace = PTy->getAddressSpace(); 1120 // OPAQUE_POINTER: [address space] 1121 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1122 TypeVals.push_back(AddressSpace); 1123 if (AddressSpace == 0) 1124 AbbrevToUse = OpaquePtrAbbrev; 1125 break; 1126 } 1127 case Type::FunctionTyID: { 1128 FunctionType *FT = cast<FunctionType>(T); 1129 // FUNCTION: [isvararg, retty, paramty x N] 1130 Code = bitc::TYPE_CODE_FUNCTION; 1131 TypeVals.push_back(FT->isVarArg()); 1132 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1133 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1134 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1135 AbbrevToUse = FunctionAbbrev; 1136 break; 1137 } 1138 case Type::StructTyID: { 1139 StructType *ST = cast<StructType>(T); 1140 // STRUCT: [ispacked, eltty x N] 1141 TypeVals.push_back(ST->isPacked()); 1142 // Output all of the element types. 1143 for (Type *ET : ST->elements()) 1144 TypeVals.push_back(VE.getTypeID(ET)); 1145 1146 if (ST->isLiteral()) { 1147 Code = bitc::TYPE_CODE_STRUCT_ANON; 1148 AbbrevToUse = StructAnonAbbrev; 1149 } else { 1150 if (ST->isOpaque()) { 1151 Code = bitc::TYPE_CODE_OPAQUE; 1152 } else { 1153 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1154 AbbrevToUse = StructNamedAbbrev; 1155 } 1156 1157 // Emit the name if it is present. 1158 if (!ST->getName().empty()) 1159 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1160 StructNameAbbrev); 1161 } 1162 break; 1163 } 1164 case Type::ArrayTyID: { 1165 ArrayType *AT = cast<ArrayType>(T); 1166 // ARRAY: [numelts, eltty] 1167 Code = bitc::TYPE_CODE_ARRAY; 1168 TypeVals.push_back(AT->getNumElements()); 1169 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1170 AbbrevToUse = ArrayAbbrev; 1171 break; 1172 } 1173 case Type::FixedVectorTyID: 1174 case Type::ScalableVectorTyID: { 1175 VectorType *VT = cast<VectorType>(T); 1176 // VECTOR [numelts, eltty] or 1177 // [numelts, eltty, scalable] 1178 Code = bitc::TYPE_CODE_VECTOR; 1179 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1180 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1181 if (isa<ScalableVectorType>(VT)) 1182 TypeVals.push_back(true); 1183 break; 1184 } 1185 case Type::TargetExtTyID: { 1186 TargetExtType *TET = cast<TargetExtType>(T); 1187 Code = bitc::TYPE_CODE_TARGET_TYPE; 1188 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1189 StructNameAbbrev); 1190 TypeVals.push_back(TET->getNumTypeParameters()); 1191 for (Type *InnerTy : TET->type_params()) 1192 TypeVals.push_back(VE.getTypeID(InnerTy)); 1193 for (unsigned IntParam : TET->int_params()) 1194 TypeVals.push_back(IntParam); 1195 break; 1196 } 1197 case Type::TypedPointerTyID: 1198 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1199 } 1200 1201 // Emit the finished record. 1202 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1203 TypeVals.clear(); 1204 } 1205 1206 Stream.ExitBlock(); 1207 } 1208 1209 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1210 switch (Linkage) { 1211 case GlobalValue::ExternalLinkage: 1212 return 0; 1213 case GlobalValue::WeakAnyLinkage: 1214 return 16; 1215 case GlobalValue::AppendingLinkage: 1216 return 2; 1217 case GlobalValue::InternalLinkage: 1218 return 3; 1219 case GlobalValue::LinkOnceAnyLinkage: 1220 return 18; 1221 case GlobalValue::ExternalWeakLinkage: 1222 return 7; 1223 case GlobalValue::CommonLinkage: 1224 return 8; 1225 case GlobalValue::PrivateLinkage: 1226 return 9; 1227 case GlobalValue::WeakODRLinkage: 1228 return 17; 1229 case GlobalValue::LinkOnceODRLinkage: 1230 return 19; 1231 case GlobalValue::AvailableExternallyLinkage: 1232 return 12; 1233 } 1234 llvm_unreachable("Invalid linkage"); 1235 } 1236 1237 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1238 return getEncodedLinkage(GV.getLinkage()); 1239 } 1240 1241 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1242 uint64_t RawFlags = 0; 1243 RawFlags |= Flags.ReadNone; 1244 RawFlags |= (Flags.ReadOnly << 1); 1245 RawFlags |= (Flags.NoRecurse << 2); 1246 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1247 RawFlags |= (Flags.NoInline << 4); 1248 RawFlags |= (Flags.AlwaysInline << 5); 1249 RawFlags |= (Flags.NoUnwind << 6); 1250 RawFlags |= (Flags.MayThrow << 7); 1251 RawFlags |= (Flags.HasUnknownCall << 8); 1252 RawFlags |= (Flags.MustBeUnreachable << 9); 1253 return RawFlags; 1254 } 1255 1256 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1257 // in BitcodeReader.cpp. 1258 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags, 1259 bool ImportAsDecl = false) { 1260 uint64_t RawFlags = 0; 1261 1262 RawFlags |= Flags.NotEligibleToImport; // bool 1263 RawFlags |= (Flags.Live << 1); 1264 RawFlags |= (Flags.DSOLocal << 2); 1265 RawFlags |= (Flags.CanAutoHide << 3); 1266 1267 // Linkage don't need to be remapped at that time for the summary. Any future 1268 // change to the getEncodedLinkage() function will need to be taken into 1269 // account here as well. 1270 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1271 1272 RawFlags |= (Flags.Visibility << 8); // 2 bits 1273 1274 unsigned ImportType = Flags.ImportType | ImportAsDecl; 1275 RawFlags |= (ImportType << 10); // 1 bit 1276 1277 return RawFlags; 1278 } 1279 1280 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1281 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1282 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1283 return RawFlags; 1284 } 1285 1286 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1287 uint64_t RawFlags = 0; 1288 1289 RawFlags |= CI.Hotness; // 3 bits 1290 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1291 1292 return RawFlags; 1293 } 1294 1295 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1296 uint64_t RawFlags = 0; 1297 1298 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1299 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1300 1301 return RawFlags; 1302 } 1303 1304 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1305 switch (GV.getVisibility()) { 1306 case GlobalValue::DefaultVisibility: return 0; 1307 case GlobalValue::HiddenVisibility: return 1; 1308 case GlobalValue::ProtectedVisibility: return 2; 1309 } 1310 llvm_unreachable("Invalid visibility"); 1311 } 1312 1313 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1314 switch (GV.getDLLStorageClass()) { 1315 case GlobalValue::DefaultStorageClass: return 0; 1316 case GlobalValue::DLLImportStorageClass: return 1; 1317 case GlobalValue::DLLExportStorageClass: return 2; 1318 } 1319 llvm_unreachable("Invalid DLL storage class"); 1320 } 1321 1322 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1323 switch (GV.getThreadLocalMode()) { 1324 case GlobalVariable::NotThreadLocal: return 0; 1325 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1326 case GlobalVariable::LocalDynamicTLSModel: return 2; 1327 case GlobalVariable::InitialExecTLSModel: return 3; 1328 case GlobalVariable::LocalExecTLSModel: return 4; 1329 } 1330 llvm_unreachable("Invalid TLS model"); 1331 } 1332 1333 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1334 switch (C.getSelectionKind()) { 1335 case Comdat::Any: 1336 return bitc::COMDAT_SELECTION_KIND_ANY; 1337 case Comdat::ExactMatch: 1338 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1339 case Comdat::Largest: 1340 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1341 case Comdat::NoDeduplicate: 1342 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1343 case Comdat::SameSize: 1344 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1345 } 1346 llvm_unreachable("Invalid selection kind"); 1347 } 1348 1349 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1350 switch (GV.getUnnamedAddr()) { 1351 case GlobalValue::UnnamedAddr::None: return 0; 1352 case GlobalValue::UnnamedAddr::Local: return 2; 1353 case GlobalValue::UnnamedAddr::Global: return 1; 1354 } 1355 llvm_unreachable("Invalid unnamed_addr"); 1356 } 1357 1358 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1359 if (GenerateHash) 1360 Hasher.update(Str); 1361 return StrtabBuilder.add(Str); 1362 } 1363 1364 void ModuleBitcodeWriter::writeComdats() { 1365 SmallVector<unsigned, 64> Vals; 1366 for (const Comdat *C : VE.getComdats()) { 1367 // COMDAT: [strtab offset, strtab size, selection_kind] 1368 Vals.push_back(addToStrtab(C->getName())); 1369 Vals.push_back(C->getName().size()); 1370 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1371 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1372 Vals.clear(); 1373 } 1374 } 1375 1376 /// Write a record that will eventually hold the word offset of the 1377 /// module-level VST. For now the offset is 0, which will be backpatched 1378 /// after the real VST is written. Saves the bit offset to backpatch. 1379 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1380 // Write a placeholder value in for the offset of the real VST, 1381 // which is written after the function blocks so that it can include 1382 // the offset of each function. The placeholder offset will be 1383 // updated when the real VST is written. 1384 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1385 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1386 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1387 // hold the real VST offset. Must use fixed instead of VBR as we don't 1388 // know how many VBR chunks to reserve ahead of time. 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1390 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1391 1392 // Emit the placeholder 1393 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1394 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1395 1396 // Compute and save the bit offset to the placeholder, which will be 1397 // patched when the real VST is written. We can simply subtract the 32-bit 1398 // fixed size from the current bit number to get the location to backpatch. 1399 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1400 } 1401 1402 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1403 1404 /// Determine the encoding to use for the given string name and length. 1405 static StringEncoding getStringEncoding(StringRef Str) { 1406 bool isChar6 = true; 1407 for (char C : Str) { 1408 if (isChar6) 1409 isChar6 = BitCodeAbbrevOp::isChar6(C); 1410 if ((unsigned char)C & 128) 1411 // don't bother scanning the rest. 1412 return SE_Fixed8; 1413 } 1414 if (isChar6) 1415 return SE_Char6; 1416 return SE_Fixed7; 1417 } 1418 1419 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1420 "Sanitizer Metadata is too large for naive serialization."); 1421 static unsigned 1422 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1423 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1424 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1425 } 1426 1427 /// Emit top-level description of module, including target triple, inline asm, 1428 /// descriptors for global variables, and function prototype info. 1429 /// Returns the bit offset to backpatch with the location of the real VST. 1430 void ModuleBitcodeWriter::writeModuleInfo() { 1431 // Emit various pieces of data attached to a module. 1432 if (!M.getTargetTriple().empty()) 1433 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1434 0 /*TODO*/); 1435 const std::string &DL = M.getDataLayoutStr(); 1436 if (!DL.empty()) 1437 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1438 if (!M.getModuleInlineAsm().empty()) 1439 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1440 0 /*TODO*/); 1441 1442 // Emit information about sections and GC, computing how many there are. Also 1443 // compute the maximum alignment value. 1444 std::map<std::string, unsigned> SectionMap; 1445 std::map<std::string, unsigned> GCMap; 1446 MaybeAlign MaxAlignment; 1447 unsigned MaxGlobalType = 0; 1448 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1449 if (A) 1450 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1451 }; 1452 for (const GlobalVariable &GV : M.globals()) { 1453 UpdateMaxAlignment(GV.getAlign()); 1454 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1455 if (GV.hasSection()) { 1456 // Give section names unique ID's. 1457 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1458 if (!Entry) { 1459 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1460 0 /*TODO*/); 1461 Entry = SectionMap.size(); 1462 } 1463 } 1464 } 1465 for (const Function &F : M) { 1466 UpdateMaxAlignment(F.getAlign()); 1467 if (F.hasSection()) { 1468 // Give section names unique ID's. 1469 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1470 if (!Entry) { 1471 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1472 0 /*TODO*/); 1473 Entry = SectionMap.size(); 1474 } 1475 } 1476 if (F.hasGC()) { 1477 // Same for GC names. 1478 unsigned &Entry = GCMap[F.getGC()]; 1479 if (!Entry) { 1480 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1481 0 /*TODO*/); 1482 Entry = GCMap.size(); 1483 } 1484 } 1485 } 1486 1487 // Emit abbrev for globals, now that we know # sections and max alignment. 1488 unsigned SimpleGVarAbbrev = 0; 1489 if (!M.global_empty()) { 1490 // Add an abbrev for common globals with no visibility or thread localness. 1491 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1492 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1496 Log2_32_Ceil(MaxGlobalType+1))); 1497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1498 //| explicitType << 1 1499 //| constant 1500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1502 if (!MaxAlignment) // Alignment. 1503 Abbv->Add(BitCodeAbbrevOp(0)); 1504 else { 1505 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1507 Log2_32_Ceil(MaxEncAlignment+1))); 1508 } 1509 if (SectionMap.empty()) // Section. 1510 Abbv->Add(BitCodeAbbrevOp(0)); 1511 else 1512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1513 Log2_32_Ceil(SectionMap.size()+1))); 1514 // Don't bother emitting vis + thread local. 1515 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1516 } 1517 1518 SmallVector<unsigned, 64> Vals; 1519 // Emit the module's source file name. 1520 { 1521 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1522 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1523 if (Bits == SE_Char6) 1524 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1525 else if (Bits == SE_Fixed7) 1526 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1527 1528 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1529 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1530 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1532 Abbv->Add(AbbrevOpToUse); 1533 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1534 1535 for (const auto P : M.getSourceFileName()) 1536 Vals.push_back((unsigned char)P); 1537 1538 // Emit the finished record. 1539 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1540 Vals.clear(); 1541 } 1542 1543 // Emit the global variable information. 1544 for (const GlobalVariable &GV : M.globals()) { 1545 unsigned AbbrevToUse = 0; 1546 1547 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1548 // linkage, alignment, section, visibility, threadlocal, 1549 // unnamed_addr, externally_initialized, dllstorageclass, 1550 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1551 Vals.push_back(addToStrtab(GV.getName())); 1552 Vals.push_back(GV.getName().size()); 1553 Vals.push_back(VE.getTypeID(GV.getValueType())); 1554 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1555 Vals.push_back(GV.isDeclaration() ? 0 : 1556 (VE.getValueID(GV.getInitializer()) + 1)); 1557 Vals.push_back(getEncodedLinkage(GV)); 1558 Vals.push_back(getEncodedAlign(GV.getAlign())); 1559 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1560 : 0); 1561 if (GV.isThreadLocal() || 1562 GV.getVisibility() != GlobalValue::DefaultVisibility || 1563 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1564 GV.isExternallyInitialized() || 1565 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1566 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1567 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1568 Vals.push_back(getEncodedVisibility(GV)); 1569 Vals.push_back(getEncodedThreadLocalMode(GV)); 1570 Vals.push_back(getEncodedUnnamedAddr(GV)); 1571 Vals.push_back(GV.isExternallyInitialized()); 1572 Vals.push_back(getEncodedDLLStorageClass(GV)); 1573 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1574 1575 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1576 Vals.push_back(VE.getAttributeListID(AL)); 1577 1578 Vals.push_back(GV.isDSOLocal()); 1579 Vals.push_back(addToStrtab(GV.getPartition())); 1580 Vals.push_back(GV.getPartition().size()); 1581 1582 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1583 GV.getSanitizerMetadata()) 1584 : 0)); 1585 Vals.push_back(GV.getCodeModelRaw()); 1586 } else { 1587 AbbrevToUse = SimpleGVarAbbrev; 1588 } 1589 1590 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1591 Vals.clear(); 1592 } 1593 1594 // Emit the function proto information. 1595 for (const Function &F : M) { 1596 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1597 // linkage, paramattrs, alignment, section, visibility, gc, 1598 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1599 // prefixdata, personalityfn, DSO_Local, addrspace] 1600 Vals.push_back(addToStrtab(F.getName())); 1601 Vals.push_back(F.getName().size()); 1602 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1603 Vals.push_back(F.getCallingConv()); 1604 Vals.push_back(F.isDeclaration()); 1605 Vals.push_back(getEncodedLinkage(F)); 1606 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1607 Vals.push_back(getEncodedAlign(F.getAlign())); 1608 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1609 : 0); 1610 Vals.push_back(getEncodedVisibility(F)); 1611 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1612 Vals.push_back(getEncodedUnnamedAddr(F)); 1613 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1614 : 0); 1615 Vals.push_back(getEncodedDLLStorageClass(F)); 1616 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1617 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1618 : 0); 1619 Vals.push_back( 1620 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1621 1622 Vals.push_back(F.isDSOLocal()); 1623 Vals.push_back(F.getAddressSpace()); 1624 Vals.push_back(addToStrtab(F.getPartition())); 1625 Vals.push_back(F.getPartition().size()); 1626 1627 unsigned AbbrevToUse = 0; 1628 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1629 Vals.clear(); 1630 } 1631 1632 // Emit the alias information. 1633 for (const GlobalAlias &A : M.aliases()) { 1634 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1635 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1636 // DSO_Local] 1637 Vals.push_back(addToStrtab(A.getName())); 1638 Vals.push_back(A.getName().size()); 1639 Vals.push_back(VE.getTypeID(A.getValueType())); 1640 Vals.push_back(A.getType()->getAddressSpace()); 1641 Vals.push_back(VE.getValueID(A.getAliasee())); 1642 Vals.push_back(getEncodedLinkage(A)); 1643 Vals.push_back(getEncodedVisibility(A)); 1644 Vals.push_back(getEncodedDLLStorageClass(A)); 1645 Vals.push_back(getEncodedThreadLocalMode(A)); 1646 Vals.push_back(getEncodedUnnamedAddr(A)); 1647 Vals.push_back(A.isDSOLocal()); 1648 Vals.push_back(addToStrtab(A.getPartition())); 1649 Vals.push_back(A.getPartition().size()); 1650 1651 unsigned AbbrevToUse = 0; 1652 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1653 Vals.clear(); 1654 } 1655 1656 // Emit the ifunc information. 1657 for (const GlobalIFunc &I : M.ifuncs()) { 1658 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1659 // val#, linkage, visibility, DSO_Local] 1660 Vals.push_back(addToStrtab(I.getName())); 1661 Vals.push_back(I.getName().size()); 1662 Vals.push_back(VE.getTypeID(I.getValueType())); 1663 Vals.push_back(I.getType()->getAddressSpace()); 1664 Vals.push_back(VE.getValueID(I.getResolver())); 1665 Vals.push_back(getEncodedLinkage(I)); 1666 Vals.push_back(getEncodedVisibility(I)); 1667 Vals.push_back(I.isDSOLocal()); 1668 Vals.push_back(addToStrtab(I.getPartition())); 1669 Vals.push_back(I.getPartition().size()); 1670 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1671 Vals.clear(); 1672 } 1673 1674 writeValueSymbolTableForwardDecl(); 1675 } 1676 1677 static uint64_t getOptimizationFlags(const Value *V) { 1678 uint64_t Flags = 0; 1679 1680 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1681 if (OBO->hasNoSignedWrap()) 1682 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1683 if (OBO->hasNoUnsignedWrap()) 1684 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1685 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1686 if (PEO->isExact()) 1687 Flags |= 1 << bitc::PEO_EXACT; 1688 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1689 if (PDI->isDisjoint()) 1690 Flags |= 1 << bitc::PDI_DISJOINT; 1691 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1692 if (FPMO->hasAllowReassoc()) 1693 Flags |= bitc::AllowReassoc; 1694 if (FPMO->hasNoNaNs()) 1695 Flags |= bitc::NoNaNs; 1696 if (FPMO->hasNoInfs()) 1697 Flags |= bitc::NoInfs; 1698 if (FPMO->hasNoSignedZeros()) 1699 Flags |= bitc::NoSignedZeros; 1700 if (FPMO->hasAllowReciprocal()) 1701 Flags |= bitc::AllowReciprocal; 1702 if (FPMO->hasAllowContract()) 1703 Flags |= bitc::AllowContract; 1704 if (FPMO->hasApproxFunc()) 1705 Flags |= bitc::ApproxFunc; 1706 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1707 if (NNI->hasNonNeg()) 1708 Flags |= 1 << bitc::PNNI_NON_NEG; 1709 } else if (const auto *TI = dyn_cast<TruncInst>(V)) { 1710 if (TI->hasNoSignedWrap()) 1711 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; 1712 if (TI->hasNoUnsignedWrap()) 1713 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; 1714 } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) { 1715 if (GEP->isInBounds()) 1716 Flags |= 1 << bitc::GEP_INBOUNDS; 1717 if (GEP->hasNoUnsignedSignedWrap()) 1718 Flags |= 1 << bitc::GEP_NUSW; 1719 if (GEP->hasNoUnsignedWrap()) 1720 Flags |= 1 << bitc::GEP_NUW; 1721 } else if (const auto *ICmp = dyn_cast<ICmpInst>(V)) { 1722 if (ICmp->hasSameSign()) 1723 Flags |= 1 << bitc::ICMP_SAME_SIGN; 1724 } 1725 1726 return Flags; 1727 } 1728 1729 void ModuleBitcodeWriter::writeValueAsMetadata( 1730 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1731 // Mimic an MDNode with a value as one operand. 1732 Value *V = MD->getValue(); 1733 Record.push_back(VE.getTypeID(V->getType())); 1734 Record.push_back(VE.getValueID(V)); 1735 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1736 Record.clear(); 1737 } 1738 1739 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1740 SmallVectorImpl<uint64_t> &Record, 1741 unsigned Abbrev) { 1742 for (const MDOperand &MDO : N->operands()) { 1743 Metadata *MD = MDO; 1744 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1745 "Unexpected function-local metadata"); 1746 Record.push_back(VE.getMetadataOrNullID(MD)); 1747 } 1748 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1749 : bitc::METADATA_NODE, 1750 Record, Abbrev); 1751 Record.clear(); 1752 } 1753 1754 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1755 // Assume the column is usually under 128, and always output the inlined-at 1756 // location (it's never more expensive than building an array size 1). 1757 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1758 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1765 return Stream.EmitAbbrev(std::move(Abbv)); 1766 } 1767 1768 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1769 SmallVectorImpl<uint64_t> &Record, 1770 unsigned &Abbrev) { 1771 if (!Abbrev) 1772 Abbrev = createDILocationAbbrev(); 1773 1774 Record.push_back(N->isDistinct()); 1775 Record.push_back(N->getLine()); 1776 Record.push_back(N->getColumn()); 1777 Record.push_back(VE.getMetadataID(N->getScope())); 1778 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1779 Record.push_back(N->isImplicitCode()); 1780 1781 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1782 Record.clear(); 1783 } 1784 1785 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1786 // Assume the column is usually under 128, and always output the inlined-at 1787 // location (it's never more expensive than building an array size 1). 1788 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1789 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1796 return Stream.EmitAbbrev(std::move(Abbv)); 1797 } 1798 1799 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1800 SmallVectorImpl<uint64_t> &Record, 1801 unsigned &Abbrev) { 1802 if (!Abbrev) 1803 Abbrev = createGenericDINodeAbbrev(); 1804 1805 Record.push_back(N->isDistinct()); 1806 Record.push_back(N->getTag()); 1807 Record.push_back(0); // Per-tag version field; unused for now. 1808 1809 for (auto &I : N->operands()) 1810 Record.push_back(VE.getMetadataOrNullID(I)); 1811 1812 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1813 Record.clear(); 1814 } 1815 1816 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1817 SmallVectorImpl<uint64_t> &Record, 1818 unsigned Abbrev) { 1819 const uint64_t Version = 2 << 1; 1820 Record.push_back((uint64_t)N->isDistinct() | Version); 1821 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1822 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1823 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1824 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1825 1826 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1827 Record.clear(); 1828 } 1829 1830 void ModuleBitcodeWriter::writeDIGenericSubrange( 1831 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1832 unsigned Abbrev) { 1833 Record.push_back((uint64_t)N->isDistinct()); 1834 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1835 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1836 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1837 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1838 1839 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1840 Record.clear(); 1841 } 1842 1843 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1844 SmallVectorImpl<uint64_t> &Record, 1845 unsigned Abbrev) { 1846 const uint64_t IsBigInt = 1 << 2; 1847 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1848 Record.push_back(N->getValue().getBitWidth()); 1849 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1850 emitWideAPInt(Record, N->getValue()); 1851 1852 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1853 Record.clear(); 1854 } 1855 1856 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1857 SmallVectorImpl<uint64_t> &Record, 1858 unsigned Abbrev) { 1859 Record.push_back(N->isDistinct()); 1860 Record.push_back(N->getTag()); 1861 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1862 Record.push_back(N->getSizeInBits()); 1863 Record.push_back(N->getAlignInBits()); 1864 Record.push_back(N->getEncoding()); 1865 Record.push_back(N->getFlags()); 1866 Record.push_back(N->getNumExtraInhabitants()); 1867 1868 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1869 Record.clear(); 1870 } 1871 1872 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1873 SmallVectorImpl<uint64_t> &Record, 1874 unsigned Abbrev) { 1875 Record.push_back(N->isDistinct()); 1876 Record.push_back(N->getTag()); 1877 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1878 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1879 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1880 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1881 Record.push_back(N->getSizeInBits()); 1882 Record.push_back(N->getAlignInBits()); 1883 Record.push_back(N->getEncoding()); 1884 1885 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1886 Record.clear(); 1887 } 1888 1889 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1890 SmallVectorImpl<uint64_t> &Record, 1891 unsigned Abbrev) { 1892 Record.push_back(N->isDistinct()); 1893 Record.push_back(N->getTag()); 1894 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1895 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1896 Record.push_back(N->getLine()); 1897 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1898 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1899 Record.push_back(N->getSizeInBits()); 1900 Record.push_back(N->getAlignInBits()); 1901 Record.push_back(N->getOffsetInBits()); 1902 Record.push_back(N->getFlags()); 1903 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1904 1905 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1906 // that there is no DWARF address space associated with DIDerivedType. 1907 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1908 Record.push_back(*DWARFAddressSpace + 1); 1909 else 1910 Record.push_back(0); 1911 1912 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1913 1914 if (auto PtrAuthData = N->getPtrAuthData()) 1915 Record.push_back(PtrAuthData->RawData); 1916 else 1917 Record.push_back(0); 1918 1919 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1920 Record.clear(); 1921 } 1922 1923 void ModuleBitcodeWriter::writeDICompositeType( 1924 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1925 unsigned Abbrev) { 1926 const unsigned IsNotUsedInOldTypeRef = 0x2; 1927 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1928 Record.push_back(N->getTag()); 1929 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1930 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1931 Record.push_back(N->getLine()); 1932 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1933 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1934 Record.push_back(N->getSizeInBits()); 1935 Record.push_back(N->getAlignInBits()); 1936 Record.push_back(N->getOffsetInBits()); 1937 Record.push_back(N->getFlags()); 1938 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1939 Record.push_back(N->getRuntimeLang()); 1940 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1941 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1942 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1943 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1944 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1945 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1946 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1947 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1948 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1949 Record.push_back(N->getNumExtraInhabitants()); 1950 Record.push_back(VE.getMetadataOrNullID(N->getRawSpecification())); 1951 1952 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1953 Record.clear(); 1954 } 1955 1956 void ModuleBitcodeWriter::writeDISubroutineType( 1957 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1958 unsigned Abbrev) { 1959 const unsigned HasNoOldTypeRefs = 0x2; 1960 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1961 Record.push_back(N->getFlags()); 1962 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1963 Record.push_back(N->getCC()); 1964 1965 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1966 Record.clear(); 1967 } 1968 1969 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1970 SmallVectorImpl<uint64_t> &Record, 1971 unsigned Abbrev) { 1972 Record.push_back(N->isDistinct()); 1973 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1974 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1975 if (N->getRawChecksum()) { 1976 Record.push_back(N->getRawChecksum()->Kind); 1977 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1978 } else { 1979 // Maintain backwards compatibility with the old internal representation of 1980 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1981 Record.push_back(0); 1982 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1983 } 1984 auto Source = N->getRawSource(); 1985 if (Source) 1986 Record.push_back(VE.getMetadataOrNullID(Source)); 1987 1988 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1989 Record.clear(); 1990 } 1991 1992 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1993 SmallVectorImpl<uint64_t> &Record, 1994 unsigned Abbrev) { 1995 assert(N->isDistinct() && "Expected distinct compile units"); 1996 Record.push_back(/* IsDistinct */ true); 1997 Record.push_back(N->getSourceLanguage()); 1998 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1999 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 2000 Record.push_back(N->isOptimized()); 2001 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 2002 Record.push_back(N->getRuntimeVersion()); 2003 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 2004 Record.push_back(N->getEmissionKind()); 2005 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 2006 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 2007 Record.push_back(/* subprograms */ 0); 2008 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 2009 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 2010 Record.push_back(N->getDWOId()); 2011 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 2012 Record.push_back(N->getSplitDebugInlining()); 2013 Record.push_back(N->getDebugInfoForProfiling()); 2014 Record.push_back((unsigned)N->getNameTableKind()); 2015 Record.push_back(N->getRangesBaseAddress()); 2016 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 2017 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 2018 2019 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 2020 Record.clear(); 2021 } 2022 2023 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 2024 SmallVectorImpl<uint64_t> &Record, 2025 unsigned Abbrev) { 2026 const uint64_t HasUnitFlag = 1 << 1; 2027 const uint64_t HasSPFlagsFlag = 1 << 2; 2028 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 2029 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2030 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2031 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2032 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2033 Record.push_back(N->getLine()); 2034 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2035 Record.push_back(N->getScopeLine()); 2036 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 2037 Record.push_back(N->getSPFlags()); 2038 Record.push_back(N->getVirtualIndex()); 2039 Record.push_back(N->getFlags()); 2040 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 2041 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 2042 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 2043 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 2044 Record.push_back(N->getThisAdjustment()); 2045 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 2046 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2047 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 2048 2049 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 2050 Record.clear(); 2051 } 2052 2053 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 2054 SmallVectorImpl<uint64_t> &Record, 2055 unsigned Abbrev) { 2056 Record.push_back(N->isDistinct()); 2057 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2058 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2059 Record.push_back(N->getLine()); 2060 Record.push_back(N->getColumn()); 2061 2062 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 2063 Record.clear(); 2064 } 2065 2066 void ModuleBitcodeWriter::writeDILexicalBlockFile( 2067 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 2068 unsigned Abbrev) { 2069 Record.push_back(N->isDistinct()); 2070 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2071 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2072 Record.push_back(N->getDiscriminator()); 2073 2074 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 2075 Record.clear(); 2076 } 2077 2078 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 2079 SmallVectorImpl<uint64_t> &Record, 2080 unsigned Abbrev) { 2081 Record.push_back(N->isDistinct()); 2082 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2083 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 2084 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2085 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2086 Record.push_back(N->getLineNo()); 2087 2088 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 2089 Record.clear(); 2090 } 2091 2092 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2093 SmallVectorImpl<uint64_t> &Record, 2094 unsigned Abbrev) { 2095 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2096 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2097 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2098 2099 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2100 Record.clear(); 2101 } 2102 2103 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2104 SmallVectorImpl<uint64_t> &Record, 2105 unsigned Abbrev) { 2106 Record.push_back(N->isDistinct()); 2107 Record.push_back(N->getMacinfoType()); 2108 Record.push_back(N->getLine()); 2109 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2110 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2111 2112 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2113 Record.clear(); 2114 } 2115 2116 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2117 SmallVectorImpl<uint64_t> &Record, 2118 unsigned Abbrev) { 2119 Record.push_back(N->isDistinct()); 2120 Record.push_back(N->getMacinfoType()); 2121 Record.push_back(N->getLine()); 2122 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2123 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2124 2125 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2126 Record.clear(); 2127 } 2128 2129 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2130 SmallVectorImpl<uint64_t> &Record) { 2131 Record.reserve(N->getArgs().size()); 2132 for (ValueAsMetadata *MD : N->getArgs()) 2133 Record.push_back(VE.getMetadataID(MD)); 2134 2135 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2136 Record.clear(); 2137 } 2138 2139 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2140 SmallVectorImpl<uint64_t> &Record, 2141 unsigned Abbrev) { 2142 Record.push_back(N->isDistinct()); 2143 for (auto &I : N->operands()) 2144 Record.push_back(VE.getMetadataOrNullID(I)); 2145 Record.push_back(N->getLineNo()); 2146 Record.push_back(N->getIsDecl()); 2147 2148 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2149 Record.clear(); 2150 } 2151 2152 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2153 SmallVectorImpl<uint64_t> &Record, 2154 unsigned Abbrev) { 2155 // There are no arguments for this metadata type. 2156 Record.push_back(N->isDistinct()); 2157 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2158 Record.clear(); 2159 } 2160 2161 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2162 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2163 unsigned Abbrev) { 2164 Record.push_back(N->isDistinct()); 2165 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2166 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2167 Record.push_back(N->isDefault()); 2168 2169 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2170 Record.clear(); 2171 } 2172 2173 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2174 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2175 unsigned Abbrev) { 2176 Record.push_back(N->isDistinct()); 2177 Record.push_back(N->getTag()); 2178 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2179 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2180 Record.push_back(N->isDefault()); 2181 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2182 2183 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2184 Record.clear(); 2185 } 2186 2187 void ModuleBitcodeWriter::writeDIGlobalVariable( 2188 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2189 unsigned Abbrev) { 2190 const uint64_t Version = 2 << 1; 2191 Record.push_back((uint64_t)N->isDistinct() | Version); 2192 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2193 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2194 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2195 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2196 Record.push_back(N->getLine()); 2197 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2198 Record.push_back(N->isLocalToUnit()); 2199 Record.push_back(N->isDefinition()); 2200 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2201 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2202 Record.push_back(N->getAlignInBits()); 2203 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2204 2205 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2206 Record.clear(); 2207 } 2208 2209 void ModuleBitcodeWriter::writeDILocalVariable( 2210 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2211 unsigned Abbrev) { 2212 // In order to support all possible bitcode formats in BitcodeReader we need 2213 // to distinguish the following cases: 2214 // 1) Record has no artificial tag (Record[1]), 2215 // has no obsolete inlinedAt field (Record[9]). 2216 // In this case Record size will be 8, HasAlignment flag is false. 2217 // 2) Record has artificial tag (Record[1]), 2218 // has no obsolete inlignedAt field (Record[9]). 2219 // In this case Record size will be 9, HasAlignment flag is false. 2220 // 3) Record has both artificial tag (Record[1]) and 2221 // obsolete inlignedAt field (Record[9]). 2222 // In this case Record size will be 10, HasAlignment flag is false. 2223 // 4) Record has neither artificial tag, nor inlignedAt field, but 2224 // HasAlignment flag is true and Record[8] contains alignment value. 2225 const uint64_t HasAlignmentFlag = 1 << 1; 2226 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2227 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2228 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2229 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2230 Record.push_back(N->getLine()); 2231 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2232 Record.push_back(N->getArg()); 2233 Record.push_back(N->getFlags()); 2234 Record.push_back(N->getAlignInBits()); 2235 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2236 2237 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2238 Record.clear(); 2239 } 2240 2241 void ModuleBitcodeWriter::writeDILabel( 2242 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2243 unsigned Abbrev) { 2244 Record.push_back((uint64_t)N->isDistinct()); 2245 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2246 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2247 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2248 Record.push_back(N->getLine()); 2249 2250 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2251 Record.clear(); 2252 } 2253 2254 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2255 SmallVectorImpl<uint64_t> &Record, 2256 unsigned Abbrev) { 2257 Record.reserve(N->getElements().size() + 1); 2258 const uint64_t Version = 3 << 1; 2259 Record.push_back((uint64_t)N->isDistinct() | Version); 2260 Record.append(N->elements_begin(), N->elements_end()); 2261 2262 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2263 Record.clear(); 2264 } 2265 2266 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2267 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2268 unsigned Abbrev) { 2269 Record.push_back(N->isDistinct()); 2270 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2271 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2272 2273 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2274 Record.clear(); 2275 } 2276 2277 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2278 SmallVectorImpl<uint64_t> &Record, 2279 unsigned Abbrev) { 2280 Record.push_back(N->isDistinct()); 2281 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2282 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2283 Record.push_back(N->getLine()); 2284 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2285 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2286 Record.push_back(N->getAttributes()); 2287 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2288 2289 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2290 Record.clear(); 2291 } 2292 2293 void ModuleBitcodeWriter::writeDIImportedEntity( 2294 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2295 unsigned Abbrev) { 2296 Record.push_back(N->isDistinct()); 2297 Record.push_back(N->getTag()); 2298 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2299 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2300 Record.push_back(N->getLine()); 2301 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2302 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2303 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2304 2305 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2306 Record.clear(); 2307 } 2308 2309 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2310 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2311 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2314 return Stream.EmitAbbrev(std::move(Abbv)); 2315 } 2316 2317 void ModuleBitcodeWriter::writeNamedMetadata( 2318 SmallVectorImpl<uint64_t> &Record) { 2319 if (M.named_metadata_empty()) 2320 return; 2321 2322 unsigned Abbrev = createNamedMetadataAbbrev(); 2323 for (const NamedMDNode &NMD : M.named_metadata()) { 2324 // Write name. 2325 StringRef Str = NMD.getName(); 2326 Record.append(Str.bytes_begin(), Str.bytes_end()); 2327 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2328 Record.clear(); 2329 2330 // Write named metadata operands. 2331 for (const MDNode *N : NMD.operands()) 2332 Record.push_back(VE.getMetadataID(N)); 2333 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2334 Record.clear(); 2335 } 2336 } 2337 2338 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2339 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2340 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2344 return Stream.EmitAbbrev(std::move(Abbv)); 2345 } 2346 2347 /// Write out a record for MDString. 2348 /// 2349 /// All the metadata strings in a metadata block are emitted in a single 2350 /// record. The sizes and strings themselves are shoved into a blob. 2351 void ModuleBitcodeWriter::writeMetadataStrings( 2352 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2353 if (Strings.empty()) 2354 return; 2355 2356 // Start the record with the number of strings. 2357 Record.push_back(bitc::METADATA_STRINGS); 2358 Record.push_back(Strings.size()); 2359 2360 // Emit the sizes of the strings in the blob. 2361 SmallString<256> Blob; 2362 { 2363 BitstreamWriter W(Blob); 2364 for (const Metadata *MD : Strings) 2365 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2366 W.FlushToWord(); 2367 } 2368 2369 // Add the offset to the strings to the record. 2370 Record.push_back(Blob.size()); 2371 2372 // Add the strings to the blob. 2373 for (const Metadata *MD : Strings) 2374 Blob.append(cast<MDString>(MD)->getString()); 2375 2376 // Emit the final record. 2377 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2378 Record.clear(); 2379 } 2380 2381 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2382 enum MetadataAbbrev : unsigned { 2383 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2384 #include "llvm/IR/Metadata.def" 2385 LastPlusOne 2386 }; 2387 2388 void ModuleBitcodeWriter::writeMetadataRecords( 2389 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2390 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2391 if (MDs.empty()) 2392 return; 2393 2394 // Initialize MDNode abbreviations. 2395 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2396 #include "llvm/IR/Metadata.def" 2397 2398 for (const Metadata *MD : MDs) { 2399 if (IndexPos) 2400 IndexPos->push_back(Stream.GetCurrentBitNo()); 2401 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2402 assert(N->isResolved() && "Expected forward references to be resolved"); 2403 2404 switch (N->getMetadataID()) { 2405 default: 2406 llvm_unreachable("Invalid MDNode subclass"); 2407 #define HANDLE_MDNODE_LEAF(CLASS) \ 2408 case Metadata::CLASS##Kind: \ 2409 if (MDAbbrevs) \ 2410 write##CLASS(cast<CLASS>(N), Record, \ 2411 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2412 else \ 2413 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2414 continue; 2415 #include "llvm/IR/Metadata.def" 2416 } 2417 } 2418 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2419 writeDIArgList(AL, Record); 2420 continue; 2421 } 2422 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2423 } 2424 } 2425 2426 void ModuleBitcodeWriter::writeModuleMetadata() { 2427 if (!VE.hasMDs() && M.named_metadata_empty()) 2428 return; 2429 2430 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2431 SmallVector<uint64_t, 64> Record; 2432 2433 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2434 // block and load any metadata. 2435 std::vector<unsigned> MDAbbrevs; 2436 2437 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2438 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2439 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2440 createGenericDINodeAbbrev(); 2441 2442 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2443 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2446 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2447 2448 Abbv = std::make_shared<BitCodeAbbrev>(); 2449 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2452 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2453 2454 // Emit MDStrings together upfront. 2455 writeMetadataStrings(VE.getMDStrings(), Record); 2456 2457 // We only emit an index for the metadata record if we have more than a given 2458 // (naive) threshold of metadatas, otherwise it is not worth it. 2459 if (VE.getNonMDStrings().size() > IndexThreshold) { 2460 // Write a placeholder value in for the offset of the metadata index, 2461 // which is written after the records, so that it can include 2462 // the offset of each entry. The placeholder offset will be 2463 // updated after all records are emitted. 2464 uint64_t Vals[] = {0, 0}; 2465 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2466 } 2467 2468 // Compute and save the bit offset to the current position, which will be 2469 // patched when we emit the index later. We can simply subtract the 64-bit 2470 // fixed size from the current bit number to get the location to backpatch. 2471 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2472 2473 // This index will contain the bitpos for each individual record. 2474 std::vector<uint64_t> IndexPos; 2475 IndexPos.reserve(VE.getNonMDStrings().size()); 2476 2477 // Write all the records 2478 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2479 2480 if (VE.getNonMDStrings().size() > IndexThreshold) { 2481 // Now that we have emitted all the records we will emit the index. But 2482 // first 2483 // backpatch the forward reference so that the reader can skip the records 2484 // efficiently. 2485 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2486 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2487 2488 // Delta encode the index. 2489 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2490 for (auto &Elt : IndexPos) { 2491 auto EltDelta = Elt - PreviousValue; 2492 PreviousValue = Elt; 2493 Elt = EltDelta; 2494 } 2495 // Emit the index record. 2496 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2497 IndexPos.clear(); 2498 } 2499 2500 // Write the named metadata now. 2501 writeNamedMetadata(Record); 2502 2503 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2504 SmallVector<uint64_t, 4> Record; 2505 Record.push_back(VE.getValueID(&GO)); 2506 pushGlobalMetadataAttachment(Record, GO); 2507 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2508 }; 2509 for (const Function &F : M) 2510 if (F.isDeclaration() && F.hasMetadata()) 2511 AddDeclAttachedMetadata(F); 2512 // FIXME: Only store metadata for declarations here, and move data for global 2513 // variable definitions to a separate block (PR28134). 2514 for (const GlobalVariable &GV : M.globals()) 2515 if (GV.hasMetadata()) 2516 AddDeclAttachedMetadata(GV); 2517 2518 Stream.ExitBlock(); 2519 } 2520 2521 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2522 if (!VE.hasMDs()) 2523 return; 2524 2525 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2526 SmallVector<uint64_t, 64> Record; 2527 writeMetadataStrings(VE.getMDStrings(), Record); 2528 writeMetadataRecords(VE.getNonMDStrings(), Record); 2529 Stream.ExitBlock(); 2530 } 2531 2532 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2533 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2534 // [n x [id, mdnode]] 2535 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2536 GO.getAllMetadata(MDs); 2537 for (const auto &I : MDs) { 2538 Record.push_back(I.first); 2539 Record.push_back(VE.getMetadataID(I.second)); 2540 } 2541 } 2542 2543 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2544 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2545 2546 SmallVector<uint64_t, 64> Record; 2547 2548 if (F.hasMetadata()) { 2549 pushGlobalMetadataAttachment(Record, F); 2550 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2551 Record.clear(); 2552 } 2553 2554 // Write metadata attachments 2555 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2556 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2557 for (const BasicBlock &BB : F) 2558 for (const Instruction &I : BB) { 2559 MDs.clear(); 2560 I.getAllMetadataOtherThanDebugLoc(MDs); 2561 2562 // If no metadata, ignore instruction. 2563 if (MDs.empty()) continue; 2564 2565 Record.push_back(VE.getInstructionID(&I)); 2566 2567 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2568 Record.push_back(MDs[i].first); 2569 Record.push_back(VE.getMetadataID(MDs[i].second)); 2570 } 2571 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2572 Record.clear(); 2573 } 2574 2575 Stream.ExitBlock(); 2576 } 2577 2578 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2579 SmallVector<uint64_t, 64> Record; 2580 2581 // Write metadata kinds 2582 // METADATA_KIND - [n x [id, name]] 2583 SmallVector<StringRef, 8> Names; 2584 M.getMDKindNames(Names); 2585 2586 if (Names.empty()) return; 2587 2588 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2589 2590 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2591 Record.push_back(MDKindID); 2592 StringRef KName = Names[MDKindID]; 2593 Record.append(KName.begin(), KName.end()); 2594 2595 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2596 Record.clear(); 2597 } 2598 2599 Stream.ExitBlock(); 2600 } 2601 2602 void ModuleBitcodeWriter::writeOperandBundleTags() { 2603 // Write metadata kinds 2604 // 2605 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2606 // 2607 // OPERAND_BUNDLE_TAG - [strchr x N] 2608 2609 SmallVector<StringRef, 8> Tags; 2610 M.getOperandBundleTags(Tags); 2611 2612 if (Tags.empty()) 2613 return; 2614 2615 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2616 2617 SmallVector<uint64_t, 64> Record; 2618 2619 for (auto Tag : Tags) { 2620 Record.append(Tag.begin(), Tag.end()); 2621 2622 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2623 Record.clear(); 2624 } 2625 2626 Stream.ExitBlock(); 2627 } 2628 2629 void ModuleBitcodeWriter::writeSyncScopeNames() { 2630 SmallVector<StringRef, 8> SSNs; 2631 M.getContext().getSyncScopeNames(SSNs); 2632 if (SSNs.empty()) 2633 return; 2634 2635 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2636 2637 SmallVector<uint64_t, 64> Record; 2638 for (auto SSN : SSNs) { 2639 Record.append(SSN.begin(), SSN.end()); 2640 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2641 Record.clear(); 2642 } 2643 2644 Stream.ExitBlock(); 2645 } 2646 2647 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2648 bool isGlobal) { 2649 if (FirstVal == LastVal) return; 2650 2651 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2652 2653 unsigned AggregateAbbrev = 0; 2654 unsigned String8Abbrev = 0; 2655 unsigned CString7Abbrev = 0; 2656 unsigned CString6Abbrev = 0; 2657 // If this is a constant pool for the module, emit module-specific abbrevs. 2658 if (isGlobal) { 2659 // Abbrev for CST_CODE_AGGREGATE. 2660 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2661 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2664 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2665 2666 // Abbrev for CST_CODE_STRING. 2667 Abbv = std::make_shared<BitCodeAbbrev>(); 2668 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2671 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2672 // Abbrev for CST_CODE_CSTRING. 2673 Abbv = std::make_shared<BitCodeAbbrev>(); 2674 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2677 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2678 // Abbrev for CST_CODE_CSTRING. 2679 Abbv = std::make_shared<BitCodeAbbrev>(); 2680 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2683 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2684 } 2685 2686 SmallVector<uint64_t, 64> Record; 2687 2688 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2689 Type *LastTy = nullptr; 2690 for (unsigned i = FirstVal; i != LastVal; ++i) { 2691 const Value *V = Vals[i].first; 2692 // If we need to switch types, do so now. 2693 if (V->getType() != LastTy) { 2694 LastTy = V->getType(); 2695 Record.push_back(VE.getTypeID(LastTy)); 2696 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2697 CONSTANTS_SETTYPE_ABBREV); 2698 Record.clear(); 2699 } 2700 2701 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2702 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2703 Record.push_back( 2704 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2705 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2706 2707 // Add the asm string. 2708 const std::string &AsmStr = IA->getAsmString(); 2709 Record.push_back(AsmStr.size()); 2710 Record.append(AsmStr.begin(), AsmStr.end()); 2711 2712 // Add the constraint string. 2713 const std::string &ConstraintStr = IA->getConstraintString(); 2714 Record.push_back(ConstraintStr.size()); 2715 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2716 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2717 Record.clear(); 2718 continue; 2719 } 2720 const Constant *C = cast<Constant>(V); 2721 unsigned Code = -1U; 2722 unsigned AbbrevToUse = 0; 2723 if (C->isNullValue()) { 2724 Code = bitc::CST_CODE_NULL; 2725 } else if (isa<PoisonValue>(C)) { 2726 Code = bitc::CST_CODE_POISON; 2727 } else if (isa<UndefValue>(C)) { 2728 Code = bitc::CST_CODE_UNDEF; 2729 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2730 if (IV->getBitWidth() <= 64) { 2731 uint64_t V = IV->getSExtValue(); 2732 emitSignedInt64(Record, V); 2733 Code = bitc::CST_CODE_INTEGER; 2734 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2735 } else { // Wide integers, > 64 bits in size. 2736 emitWideAPInt(Record, IV->getValue()); 2737 Code = bitc::CST_CODE_WIDE_INTEGER; 2738 } 2739 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2740 Code = bitc::CST_CODE_FLOAT; 2741 Type *Ty = CFP->getType()->getScalarType(); 2742 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2743 Ty->isDoubleTy()) { 2744 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2745 } else if (Ty->isX86_FP80Ty()) { 2746 // api needed to prevent premature destruction 2747 // bits are not in the same order as a normal i80 APInt, compensate. 2748 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2749 const uint64_t *p = api.getRawData(); 2750 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2751 Record.push_back(p[0] & 0xffffLL); 2752 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2753 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2754 const uint64_t *p = api.getRawData(); 2755 Record.push_back(p[0]); 2756 Record.push_back(p[1]); 2757 } else { 2758 assert(0 && "Unknown FP type!"); 2759 } 2760 } else if (isa<ConstantDataSequential>(C) && 2761 cast<ConstantDataSequential>(C)->isString()) { 2762 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2763 // Emit constant strings specially. 2764 unsigned NumElts = Str->getNumElements(); 2765 // If this is a null-terminated string, use the denser CSTRING encoding. 2766 if (Str->isCString()) { 2767 Code = bitc::CST_CODE_CSTRING; 2768 --NumElts; // Don't encode the null, which isn't allowed by char6. 2769 } else { 2770 Code = bitc::CST_CODE_STRING; 2771 AbbrevToUse = String8Abbrev; 2772 } 2773 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2774 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2775 for (unsigned i = 0; i != NumElts; ++i) { 2776 unsigned char V = Str->getElementAsInteger(i); 2777 Record.push_back(V); 2778 isCStr7 &= (V & 128) == 0; 2779 if (isCStrChar6) 2780 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2781 } 2782 2783 if (isCStrChar6) 2784 AbbrevToUse = CString6Abbrev; 2785 else if (isCStr7) 2786 AbbrevToUse = CString7Abbrev; 2787 } else if (const ConstantDataSequential *CDS = 2788 dyn_cast<ConstantDataSequential>(C)) { 2789 Code = bitc::CST_CODE_DATA; 2790 Type *EltTy = CDS->getElementType(); 2791 if (isa<IntegerType>(EltTy)) { 2792 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2793 Record.push_back(CDS->getElementAsInteger(i)); 2794 } else { 2795 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2796 Record.push_back( 2797 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2798 } 2799 } else if (isa<ConstantAggregate>(C)) { 2800 Code = bitc::CST_CODE_AGGREGATE; 2801 for (const Value *Op : C->operands()) 2802 Record.push_back(VE.getValueID(Op)); 2803 AbbrevToUse = AggregateAbbrev; 2804 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2805 switch (CE->getOpcode()) { 2806 default: 2807 if (Instruction::isCast(CE->getOpcode())) { 2808 Code = bitc::CST_CODE_CE_CAST; 2809 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2810 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2811 Record.push_back(VE.getValueID(C->getOperand(0))); 2812 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2813 } else { 2814 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2815 Code = bitc::CST_CODE_CE_BINOP; 2816 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2817 Record.push_back(VE.getValueID(C->getOperand(0))); 2818 Record.push_back(VE.getValueID(C->getOperand(1))); 2819 uint64_t Flags = getOptimizationFlags(CE); 2820 if (Flags != 0) 2821 Record.push_back(Flags); 2822 } 2823 break; 2824 case Instruction::FNeg: { 2825 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2826 Code = bitc::CST_CODE_CE_UNOP; 2827 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2828 Record.push_back(VE.getValueID(C->getOperand(0))); 2829 uint64_t Flags = getOptimizationFlags(CE); 2830 if (Flags != 0) 2831 Record.push_back(Flags); 2832 break; 2833 } 2834 case Instruction::GetElementPtr: { 2835 Code = bitc::CST_CODE_CE_GEP; 2836 const auto *GO = cast<GEPOperator>(C); 2837 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2838 Record.push_back(getOptimizationFlags(GO)); 2839 if (std::optional<ConstantRange> Range = GO->getInRange()) { 2840 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; 2841 emitConstantRange(Record, *Range, /*EmitBitWidth=*/true); 2842 } 2843 for (const Value *Op : CE->operands()) { 2844 Record.push_back(VE.getTypeID(Op->getType())); 2845 Record.push_back(VE.getValueID(Op)); 2846 } 2847 break; 2848 } 2849 case Instruction::ExtractElement: 2850 Code = bitc::CST_CODE_CE_EXTRACTELT; 2851 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2852 Record.push_back(VE.getValueID(C->getOperand(0))); 2853 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2854 Record.push_back(VE.getValueID(C->getOperand(1))); 2855 break; 2856 case Instruction::InsertElement: 2857 Code = bitc::CST_CODE_CE_INSERTELT; 2858 Record.push_back(VE.getValueID(C->getOperand(0))); 2859 Record.push_back(VE.getValueID(C->getOperand(1))); 2860 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2861 Record.push_back(VE.getValueID(C->getOperand(2))); 2862 break; 2863 case Instruction::ShuffleVector: 2864 // If the return type and argument types are the same, this is a 2865 // standard shufflevector instruction. If the types are different, 2866 // then the shuffle is widening or truncating the input vectors, and 2867 // the argument type must also be encoded. 2868 if (C->getType() == C->getOperand(0)->getType()) { 2869 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2870 } else { 2871 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2872 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2873 } 2874 Record.push_back(VE.getValueID(C->getOperand(0))); 2875 Record.push_back(VE.getValueID(C->getOperand(1))); 2876 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2877 break; 2878 } 2879 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2880 Code = bitc::CST_CODE_BLOCKADDRESS; 2881 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2882 Record.push_back(VE.getValueID(BA->getFunction())); 2883 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2884 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2885 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2886 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2887 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2888 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2889 Code = bitc::CST_CODE_NO_CFI_VALUE; 2890 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2891 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2892 } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) { 2893 Code = bitc::CST_CODE_PTRAUTH; 2894 Record.push_back(VE.getValueID(CPA->getPointer())); 2895 Record.push_back(VE.getValueID(CPA->getKey())); 2896 Record.push_back(VE.getValueID(CPA->getDiscriminator())); 2897 Record.push_back(VE.getValueID(CPA->getAddrDiscriminator())); 2898 } else { 2899 #ifndef NDEBUG 2900 C->dump(); 2901 #endif 2902 llvm_unreachable("Unknown constant!"); 2903 } 2904 Stream.EmitRecord(Code, Record, AbbrevToUse); 2905 Record.clear(); 2906 } 2907 2908 Stream.ExitBlock(); 2909 } 2910 2911 void ModuleBitcodeWriter::writeModuleConstants() { 2912 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2913 2914 // Find the first constant to emit, which is the first non-globalvalue value. 2915 // We know globalvalues have been emitted by WriteModuleInfo. 2916 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2917 if (!isa<GlobalValue>(Vals[i].first)) { 2918 writeConstants(i, Vals.size(), true); 2919 return; 2920 } 2921 } 2922 } 2923 2924 /// pushValueAndType - The file has to encode both the value and type id for 2925 /// many values, because we need to know what type to create for forward 2926 /// references. However, most operands are not forward references, so this type 2927 /// field is not needed. 2928 /// 2929 /// This function adds V's value ID to Vals. If the value ID is higher than the 2930 /// instruction ID, then it is a forward reference, and it also includes the 2931 /// type ID. The value ID that is written is encoded relative to the InstID. 2932 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2933 SmallVectorImpl<unsigned> &Vals) { 2934 unsigned ValID = VE.getValueID(V); 2935 // Make encoding relative to the InstID. 2936 Vals.push_back(InstID - ValID); 2937 if (ValID >= InstID) { 2938 Vals.push_back(VE.getTypeID(V->getType())); 2939 return true; 2940 } 2941 return false; 2942 } 2943 2944 bool ModuleBitcodeWriter::pushValueOrMetadata(const Value *V, unsigned InstID, 2945 SmallVectorImpl<unsigned> &Vals) { 2946 bool IsMetadata = V->getType()->isMetadataTy(); 2947 if (IsMetadata) { 2948 Vals.push_back(bitc::OB_METADATA); 2949 Metadata *MD = cast<MetadataAsValue>(V)->getMetadata(); 2950 unsigned ValID = VE.getMetadataID(MD); 2951 Vals.push_back(InstID - ValID); 2952 return false; 2953 } 2954 return pushValueAndType(V, InstID, Vals); 2955 } 2956 2957 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2958 unsigned InstID) { 2959 SmallVector<unsigned, 64> Record; 2960 LLVMContext &C = CS.getContext(); 2961 2962 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2963 const auto &Bundle = CS.getOperandBundleAt(i); 2964 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2965 2966 for (auto &Input : Bundle.Inputs) 2967 pushValueOrMetadata(Input, InstID, Record); 2968 2969 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2970 Record.clear(); 2971 } 2972 } 2973 2974 /// pushValue - Like pushValueAndType, but where the type of the value is 2975 /// omitted (perhaps it was already encoded in an earlier operand). 2976 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2977 SmallVectorImpl<unsigned> &Vals) { 2978 unsigned ValID = VE.getValueID(V); 2979 Vals.push_back(InstID - ValID); 2980 } 2981 2982 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2983 SmallVectorImpl<uint64_t> &Vals) { 2984 unsigned ValID = VE.getValueID(V); 2985 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2986 emitSignedInt64(Vals, diff); 2987 } 2988 2989 /// WriteInstruction - Emit an instruction to the specified stream. 2990 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2991 unsigned InstID, 2992 SmallVectorImpl<unsigned> &Vals) { 2993 unsigned Code = 0; 2994 unsigned AbbrevToUse = 0; 2995 VE.setInstructionID(&I); 2996 switch (I.getOpcode()) { 2997 default: 2998 if (Instruction::isCast(I.getOpcode())) { 2999 Code = bitc::FUNC_CODE_INST_CAST; 3000 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3001 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 3002 Vals.push_back(VE.getTypeID(I.getType())); 3003 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 3004 uint64_t Flags = getOptimizationFlags(&I); 3005 if (Flags != 0) { 3006 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 3007 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 3008 Vals.push_back(Flags); 3009 } 3010 } else { 3011 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 3012 Code = bitc::FUNC_CODE_INST_BINOP; 3013 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3014 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 3015 pushValue(I.getOperand(1), InstID, Vals); 3016 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 3017 uint64_t Flags = getOptimizationFlags(&I); 3018 if (Flags != 0) { 3019 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 3020 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 3021 Vals.push_back(Flags); 3022 } 3023 } 3024 break; 3025 case Instruction::FNeg: { 3026 Code = bitc::FUNC_CODE_INST_UNOP; 3027 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3028 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 3029 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 3030 uint64_t Flags = getOptimizationFlags(&I); 3031 if (Flags != 0) { 3032 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 3033 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 3034 Vals.push_back(Flags); 3035 } 3036 break; 3037 } 3038 case Instruction::GetElementPtr: { 3039 Code = bitc::FUNC_CODE_INST_GEP; 3040 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 3041 auto &GEPInst = cast<GetElementPtrInst>(I); 3042 Vals.push_back(getOptimizationFlags(&I)); 3043 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 3044 for (const Value *Op : I.operands()) 3045 pushValueAndType(Op, InstID, Vals); 3046 break; 3047 } 3048 case Instruction::ExtractValue: { 3049 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 3050 pushValueAndType(I.getOperand(0), InstID, Vals); 3051 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 3052 Vals.append(EVI->idx_begin(), EVI->idx_end()); 3053 break; 3054 } 3055 case Instruction::InsertValue: { 3056 Code = bitc::FUNC_CODE_INST_INSERTVAL; 3057 pushValueAndType(I.getOperand(0), InstID, Vals); 3058 pushValueAndType(I.getOperand(1), InstID, Vals); 3059 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 3060 Vals.append(IVI->idx_begin(), IVI->idx_end()); 3061 break; 3062 } 3063 case Instruction::Select: { 3064 Code = bitc::FUNC_CODE_INST_VSELECT; 3065 pushValueAndType(I.getOperand(1), InstID, Vals); 3066 pushValue(I.getOperand(2), InstID, Vals); 3067 pushValueAndType(I.getOperand(0), InstID, Vals); 3068 uint64_t Flags = getOptimizationFlags(&I); 3069 if (Flags != 0) 3070 Vals.push_back(Flags); 3071 break; 3072 } 3073 case Instruction::ExtractElement: 3074 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 3075 pushValueAndType(I.getOperand(0), InstID, Vals); 3076 pushValueAndType(I.getOperand(1), InstID, Vals); 3077 break; 3078 case Instruction::InsertElement: 3079 Code = bitc::FUNC_CODE_INST_INSERTELT; 3080 pushValueAndType(I.getOperand(0), InstID, Vals); 3081 pushValue(I.getOperand(1), InstID, Vals); 3082 pushValueAndType(I.getOperand(2), InstID, Vals); 3083 break; 3084 case Instruction::ShuffleVector: 3085 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 3086 pushValueAndType(I.getOperand(0), InstID, Vals); 3087 pushValue(I.getOperand(1), InstID, Vals); 3088 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 3089 Vals); 3090 break; 3091 case Instruction::ICmp: 3092 case Instruction::FCmp: { 3093 // compare returning Int1Ty or vector of Int1Ty 3094 Code = bitc::FUNC_CODE_INST_CMP2; 3095 pushValueAndType(I.getOperand(0), InstID, Vals); 3096 pushValue(I.getOperand(1), InstID, Vals); 3097 Vals.push_back(cast<CmpInst>(I).getPredicate()); 3098 uint64_t Flags = getOptimizationFlags(&I); 3099 if (Flags != 0) 3100 Vals.push_back(Flags); 3101 break; 3102 } 3103 3104 case Instruction::Ret: 3105 { 3106 Code = bitc::FUNC_CODE_INST_RET; 3107 unsigned NumOperands = I.getNumOperands(); 3108 if (NumOperands == 0) 3109 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3110 else if (NumOperands == 1) { 3111 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3112 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3113 } else { 3114 for (const Value *Op : I.operands()) 3115 pushValueAndType(Op, InstID, Vals); 3116 } 3117 } 3118 break; 3119 case Instruction::Br: 3120 { 3121 Code = bitc::FUNC_CODE_INST_BR; 3122 const BranchInst &II = cast<BranchInst>(I); 3123 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3124 if (II.isConditional()) { 3125 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3126 pushValue(II.getCondition(), InstID, Vals); 3127 } 3128 } 3129 break; 3130 case Instruction::Switch: 3131 { 3132 Code = bitc::FUNC_CODE_INST_SWITCH; 3133 const SwitchInst &SI = cast<SwitchInst>(I); 3134 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3135 pushValue(SI.getCondition(), InstID, Vals); 3136 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3137 for (auto Case : SI.cases()) { 3138 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3139 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3140 } 3141 } 3142 break; 3143 case Instruction::IndirectBr: 3144 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3145 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3146 // Encode the address operand as relative, but not the basic blocks. 3147 pushValue(I.getOperand(0), InstID, Vals); 3148 for (const Value *Op : drop_begin(I.operands())) 3149 Vals.push_back(VE.getValueID(Op)); 3150 break; 3151 3152 case Instruction::Invoke: { 3153 const InvokeInst *II = cast<InvokeInst>(&I); 3154 const Value *Callee = II->getCalledOperand(); 3155 FunctionType *FTy = II->getFunctionType(); 3156 3157 if (II->hasOperandBundles()) 3158 writeOperandBundles(*II, InstID); 3159 3160 Code = bitc::FUNC_CODE_INST_INVOKE; 3161 3162 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3163 Vals.push_back(II->getCallingConv() | 1 << 13); 3164 Vals.push_back(VE.getValueID(II->getNormalDest())); 3165 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3166 Vals.push_back(VE.getTypeID(FTy)); 3167 pushValueAndType(Callee, InstID, Vals); 3168 3169 // Emit value #'s for the fixed parameters. 3170 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3171 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3172 3173 // Emit type/value pairs for varargs params. 3174 if (FTy->isVarArg()) { 3175 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3176 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3177 } 3178 break; 3179 } 3180 case Instruction::Resume: 3181 Code = bitc::FUNC_CODE_INST_RESUME; 3182 pushValueAndType(I.getOperand(0), InstID, Vals); 3183 break; 3184 case Instruction::CleanupRet: { 3185 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3186 const auto &CRI = cast<CleanupReturnInst>(I); 3187 pushValue(CRI.getCleanupPad(), InstID, Vals); 3188 if (CRI.hasUnwindDest()) 3189 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3190 break; 3191 } 3192 case Instruction::CatchRet: { 3193 Code = bitc::FUNC_CODE_INST_CATCHRET; 3194 const auto &CRI = cast<CatchReturnInst>(I); 3195 pushValue(CRI.getCatchPad(), InstID, Vals); 3196 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3197 break; 3198 } 3199 case Instruction::CleanupPad: 3200 case Instruction::CatchPad: { 3201 const auto &FuncletPad = cast<FuncletPadInst>(I); 3202 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3203 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3204 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3205 3206 unsigned NumArgOperands = FuncletPad.arg_size(); 3207 Vals.push_back(NumArgOperands); 3208 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3209 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3210 break; 3211 } 3212 case Instruction::CatchSwitch: { 3213 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3214 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3215 3216 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3217 3218 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3219 Vals.push_back(NumHandlers); 3220 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3221 Vals.push_back(VE.getValueID(CatchPadBB)); 3222 3223 if (CatchSwitch.hasUnwindDest()) 3224 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3225 break; 3226 } 3227 case Instruction::CallBr: { 3228 const CallBrInst *CBI = cast<CallBrInst>(&I); 3229 const Value *Callee = CBI->getCalledOperand(); 3230 FunctionType *FTy = CBI->getFunctionType(); 3231 3232 if (CBI->hasOperandBundles()) 3233 writeOperandBundles(*CBI, InstID); 3234 3235 Code = bitc::FUNC_CODE_INST_CALLBR; 3236 3237 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3238 3239 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3240 1 << bitc::CALL_EXPLICIT_TYPE); 3241 3242 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3243 Vals.push_back(CBI->getNumIndirectDests()); 3244 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3245 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3246 3247 Vals.push_back(VE.getTypeID(FTy)); 3248 pushValueAndType(Callee, InstID, Vals); 3249 3250 // Emit value #'s for the fixed parameters. 3251 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3252 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3253 3254 // Emit type/value pairs for varargs params. 3255 if (FTy->isVarArg()) { 3256 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3257 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3258 } 3259 break; 3260 } 3261 case Instruction::Unreachable: 3262 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3263 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3264 break; 3265 3266 case Instruction::PHI: { 3267 const PHINode &PN = cast<PHINode>(I); 3268 Code = bitc::FUNC_CODE_INST_PHI; 3269 // With the newer instruction encoding, forward references could give 3270 // negative valued IDs. This is most common for PHIs, so we use 3271 // signed VBRs. 3272 SmallVector<uint64_t, 128> Vals64; 3273 Vals64.push_back(VE.getTypeID(PN.getType())); 3274 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3275 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3276 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3277 } 3278 3279 uint64_t Flags = getOptimizationFlags(&I); 3280 if (Flags != 0) 3281 Vals64.push_back(Flags); 3282 3283 // Emit a Vals64 vector and exit. 3284 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3285 Vals64.clear(); 3286 return; 3287 } 3288 3289 case Instruction::LandingPad: { 3290 const LandingPadInst &LP = cast<LandingPadInst>(I); 3291 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3292 Vals.push_back(VE.getTypeID(LP.getType())); 3293 Vals.push_back(LP.isCleanup()); 3294 Vals.push_back(LP.getNumClauses()); 3295 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3296 if (LP.isCatch(I)) 3297 Vals.push_back(LandingPadInst::Catch); 3298 else 3299 Vals.push_back(LandingPadInst::Filter); 3300 pushValueAndType(LP.getClause(I), InstID, Vals); 3301 } 3302 break; 3303 } 3304 3305 case Instruction::Alloca: { 3306 Code = bitc::FUNC_CODE_INST_ALLOCA; 3307 const AllocaInst &AI = cast<AllocaInst>(I); 3308 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3309 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3310 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3311 using APV = AllocaPackedValues; 3312 unsigned Record = 0; 3313 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3314 Bitfield::set<APV::AlignLower>( 3315 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3316 Bitfield::set<APV::AlignUpper>(Record, 3317 EncodedAlign >> APV::AlignLower::Bits); 3318 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3319 Bitfield::set<APV::ExplicitType>(Record, true); 3320 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3321 Vals.push_back(Record); 3322 3323 unsigned AS = AI.getAddressSpace(); 3324 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3325 Vals.push_back(AS); 3326 break; 3327 } 3328 3329 case Instruction::Load: 3330 if (cast<LoadInst>(I).isAtomic()) { 3331 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3332 pushValueAndType(I.getOperand(0), InstID, Vals); 3333 } else { 3334 Code = bitc::FUNC_CODE_INST_LOAD; 3335 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3336 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3337 } 3338 Vals.push_back(VE.getTypeID(I.getType())); 3339 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3340 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3341 if (cast<LoadInst>(I).isAtomic()) { 3342 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3343 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3344 } 3345 break; 3346 case Instruction::Store: 3347 if (cast<StoreInst>(I).isAtomic()) 3348 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3349 else 3350 Code = bitc::FUNC_CODE_INST_STORE; 3351 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3352 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3353 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3354 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3355 if (cast<StoreInst>(I).isAtomic()) { 3356 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3357 Vals.push_back( 3358 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3359 } 3360 break; 3361 case Instruction::AtomicCmpXchg: 3362 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3363 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3364 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3365 pushValue(I.getOperand(2), InstID, Vals); // newval. 3366 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3367 Vals.push_back( 3368 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3369 Vals.push_back( 3370 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3371 Vals.push_back( 3372 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3373 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3374 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3375 break; 3376 case Instruction::AtomicRMW: 3377 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3378 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3379 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3380 Vals.push_back( 3381 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3382 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3383 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3384 Vals.push_back( 3385 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3386 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3387 break; 3388 case Instruction::Fence: 3389 Code = bitc::FUNC_CODE_INST_FENCE; 3390 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3391 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3392 break; 3393 case Instruction::Call: { 3394 const CallInst &CI = cast<CallInst>(I); 3395 FunctionType *FTy = CI.getFunctionType(); 3396 3397 if (CI.hasOperandBundles()) 3398 writeOperandBundles(CI, InstID); 3399 3400 Code = bitc::FUNC_CODE_INST_CALL; 3401 3402 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3403 3404 unsigned Flags = getOptimizationFlags(&I); 3405 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3406 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3407 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3408 1 << bitc::CALL_EXPLICIT_TYPE | 3409 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3410 unsigned(Flags != 0) << bitc::CALL_FMF); 3411 if (Flags != 0) 3412 Vals.push_back(Flags); 3413 3414 Vals.push_back(VE.getTypeID(FTy)); 3415 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3416 3417 // Emit value #'s for the fixed parameters. 3418 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3419 // Check for labels (can happen with asm labels). 3420 if (FTy->getParamType(i)->isLabelTy()) 3421 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3422 else 3423 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3424 } 3425 3426 // Emit type/value pairs for varargs params. 3427 if (FTy->isVarArg()) { 3428 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3429 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3430 } 3431 break; 3432 } 3433 case Instruction::VAArg: 3434 Code = bitc::FUNC_CODE_INST_VAARG; 3435 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3436 pushValue(I.getOperand(0), InstID, Vals); // valist. 3437 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3438 break; 3439 case Instruction::Freeze: 3440 Code = bitc::FUNC_CODE_INST_FREEZE; 3441 pushValueAndType(I.getOperand(0), InstID, Vals); 3442 break; 3443 } 3444 3445 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3446 Vals.clear(); 3447 } 3448 3449 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3450 /// to allow clients to efficiently find the function body. 3451 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3452 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3453 // Get the offset of the VST we are writing, and backpatch it into 3454 // the VST forward declaration record. 3455 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3456 // The BitcodeStartBit was the stream offset of the identification block. 3457 VSTOffset -= bitcodeStartBit(); 3458 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3459 // Note that we add 1 here because the offset is relative to one word 3460 // before the start of the identification block, which was historically 3461 // always the start of the regular bitcode header. 3462 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3463 3464 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3465 3466 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3467 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3470 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3471 3472 for (const Function &F : M) { 3473 uint64_t Record[2]; 3474 3475 if (F.isDeclaration()) 3476 continue; 3477 3478 Record[0] = VE.getValueID(&F); 3479 3480 // Save the word offset of the function (from the start of the 3481 // actual bitcode written to the stream). 3482 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3483 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3484 // Note that we add 1 here because the offset is relative to one word 3485 // before the start of the identification block, which was historically 3486 // always the start of the regular bitcode header. 3487 Record[1] = BitcodeIndex / 32 + 1; 3488 3489 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3490 } 3491 3492 Stream.ExitBlock(); 3493 } 3494 3495 /// Emit names for arguments, instructions and basic blocks in a function. 3496 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3497 const ValueSymbolTable &VST) { 3498 if (VST.empty()) 3499 return; 3500 3501 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3502 3503 // FIXME: Set up the abbrev, we know how many values there are! 3504 // FIXME: We know if the type names can use 7-bit ascii. 3505 SmallVector<uint64_t, 64> NameVals; 3506 3507 for (const ValueName &Name : VST) { 3508 // Figure out the encoding to use for the name. 3509 StringEncoding Bits = getStringEncoding(Name.getKey()); 3510 3511 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3512 NameVals.push_back(VE.getValueID(Name.getValue())); 3513 3514 // VST_CODE_ENTRY: [valueid, namechar x N] 3515 // VST_CODE_BBENTRY: [bbid, namechar x N] 3516 unsigned Code; 3517 if (isa<BasicBlock>(Name.getValue())) { 3518 Code = bitc::VST_CODE_BBENTRY; 3519 if (Bits == SE_Char6) 3520 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3521 } else { 3522 Code = bitc::VST_CODE_ENTRY; 3523 if (Bits == SE_Char6) 3524 AbbrevToUse = VST_ENTRY_6_ABBREV; 3525 else if (Bits == SE_Fixed7) 3526 AbbrevToUse = VST_ENTRY_7_ABBREV; 3527 } 3528 3529 for (const auto P : Name.getKey()) 3530 NameVals.push_back((unsigned char)P); 3531 3532 // Emit the finished record. 3533 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3534 NameVals.clear(); 3535 } 3536 3537 Stream.ExitBlock(); 3538 } 3539 3540 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3541 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3542 unsigned Code; 3543 if (isa<BasicBlock>(Order.V)) 3544 Code = bitc::USELIST_CODE_BB; 3545 else 3546 Code = bitc::USELIST_CODE_DEFAULT; 3547 3548 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3549 Record.push_back(VE.getValueID(Order.V)); 3550 Stream.EmitRecord(Code, Record); 3551 } 3552 3553 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3554 assert(VE.shouldPreserveUseListOrder() && 3555 "Expected to be preserving use-list order"); 3556 3557 auto hasMore = [&]() { 3558 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3559 }; 3560 if (!hasMore()) 3561 // Nothing to do. 3562 return; 3563 3564 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3565 while (hasMore()) { 3566 writeUseList(std::move(VE.UseListOrders.back())); 3567 VE.UseListOrders.pop_back(); 3568 } 3569 Stream.ExitBlock(); 3570 } 3571 3572 /// Emit a function body to the module stream. 3573 void ModuleBitcodeWriter::writeFunction( 3574 const Function &F, 3575 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3576 // Save the bitcode index of the start of this function block for recording 3577 // in the VST. 3578 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3579 3580 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3581 VE.incorporateFunction(F); 3582 3583 SmallVector<unsigned, 64> Vals; 3584 3585 // Emit the number of basic blocks, so the reader can create them ahead of 3586 // time. 3587 Vals.push_back(VE.getBasicBlocks().size()); 3588 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3589 Vals.clear(); 3590 3591 // If there are function-local constants, emit them now. 3592 unsigned CstStart, CstEnd; 3593 VE.getFunctionConstantRange(CstStart, CstEnd); 3594 writeConstants(CstStart, CstEnd, false); 3595 3596 // If there is function-local metadata, emit it now. 3597 writeFunctionMetadata(F); 3598 3599 // Keep a running idea of what the instruction ID is. 3600 unsigned InstID = CstEnd; 3601 3602 bool NeedsMetadataAttachment = F.hasMetadata(); 3603 3604 DILocation *LastDL = nullptr; 3605 SmallSetVector<Function *, 4> BlockAddressUsers; 3606 3607 // Finally, emit all the instructions, in order. 3608 for (const BasicBlock &BB : F) { 3609 for (const Instruction &I : BB) { 3610 writeInstruction(I, InstID, Vals); 3611 3612 if (!I.getType()->isVoidTy()) 3613 ++InstID; 3614 3615 // If the instruction has metadata, write a metadata attachment later. 3616 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3617 3618 // If the instruction has a debug location, emit it. 3619 if (DILocation *DL = I.getDebugLoc()) { 3620 if (DL == LastDL) { 3621 // Just repeat the same debug loc as last time. 3622 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3623 } else { 3624 Vals.push_back(DL->getLine()); 3625 Vals.push_back(DL->getColumn()); 3626 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3627 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3628 Vals.push_back(DL->isImplicitCode()); 3629 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3630 Vals.clear(); 3631 LastDL = DL; 3632 } 3633 } 3634 3635 // If the instruction has DbgRecords attached to it, emit them. Note that 3636 // they come after the instruction so that it's easy to attach them again 3637 // when reading the bitcode, even though conceptually the debug locations 3638 // start "before" the instruction. 3639 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { 3640 /// Try to push the value only (unwrapped), otherwise push the 3641 /// metadata wrapped value. Returns true if the value was pushed 3642 /// without the ValueAsMetadata wrapper. 3643 auto PushValueOrMetadata = [&Vals, InstID, 3644 this](Metadata *RawLocation) { 3645 assert(RawLocation && 3646 "RawLocation unexpectedly null in DbgVariableRecord"); 3647 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) { 3648 SmallVector<unsigned, 2> ValAndType; 3649 // If the value is a fwd-ref the type is also pushed. We don't 3650 // want the type, so fwd-refs are kept wrapped (pushValueAndType 3651 // returns false if the value is pushed without type). 3652 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { 3653 Vals.push_back(ValAndType[0]); 3654 return true; 3655 } 3656 } 3657 // The metadata is a DIArgList, or ValueAsMetadata wrapping a 3658 // fwd-ref. Push the metadata ID. 3659 Vals.push_back(VE.getMetadataID(RawLocation)); 3660 return false; 3661 }; 3662 3663 // Write out non-instruction debug information attached to this 3664 // instruction. Write it after the instruction so that it's easy to 3665 // re-attach to the instruction reading the records in. 3666 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { 3667 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3668 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc())); 3669 Vals.push_back(VE.getMetadataID(DLR->getLabel())); 3670 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); 3671 Vals.clear(); 3672 continue; 3673 } 3674 3675 // First 3 fields are common to all kinds: 3676 // DILocation, DILocalVariable, DIExpression 3677 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 3678 // ..., LocationMetadata 3679 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 3680 // ..., Value 3681 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 3682 // ..., LocationMetadata 3683 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 3684 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 3685 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3686 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); 3687 Vals.push_back(VE.getMetadataID(DVR.getVariable())); 3688 Vals.push_back(VE.getMetadataID(DVR.getExpression())); 3689 if (DVR.isDbgValue()) { 3690 if (PushValueOrMetadata(DVR.getRawLocation())) 3691 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, 3692 FUNCTION_DEBUG_RECORD_VALUE_ABBREV); 3693 else 3694 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); 3695 } else if (DVR.isDbgDeclare()) { 3696 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3697 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); 3698 } else { 3699 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); 3700 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3701 Vals.push_back(VE.getMetadataID(DVR.getAssignID())); 3702 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); 3703 Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); 3704 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); 3705 } 3706 Vals.clear(); 3707 } 3708 } 3709 } 3710 3711 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3712 SmallVector<Value *> Worklist{BA}; 3713 SmallPtrSet<Value *, 8> Visited{BA}; 3714 while (!Worklist.empty()) { 3715 Value *V = Worklist.pop_back_val(); 3716 for (User *U : V->users()) { 3717 if (auto *I = dyn_cast<Instruction>(U)) { 3718 Function *P = I->getFunction(); 3719 if (P != &F) 3720 BlockAddressUsers.insert(P); 3721 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3722 Visited.insert(U).second) 3723 Worklist.push_back(U); 3724 } 3725 } 3726 } 3727 } 3728 3729 if (!BlockAddressUsers.empty()) { 3730 Vals.resize(BlockAddressUsers.size()); 3731 for (auto I : llvm::enumerate(BlockAddressUsers)) 3732 Vals[I.index()] = VE.getValueID(I.value()); 3733 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3734 Vals.clear(); 3735 } 3736 3737 // Emit names for all the instructions etc. 3738 if (auto *Symtab = F.getValueSymbolTable()) 3739 writeFunctionLevelValueSymbolTable(*Symtab); 3740 3741 if (NeedsMetadataAttachment) 3742 writeFunctionMetadataAttachment(F); 3743 if (VE.shouldPreserveUseListOrder()) 3744 writeUseListBlock(&F); 3745 VE.purgeFunction(); 3746 Stream.ExitBlock(); 3747 } 3748 3749 // Emit blockinfo, which defines the standard abbreviations etc. 3750 void ModuleBitcodeWriter::writeBlockInfo() { 3751 // We only want to emit block info records for blocks that have multiple 3752 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3753 // Other blocks can define their abbrevs inline. 3754 Stream.EnterBlockInfoBlock(); 3755 3756 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3757 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3762 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3763 VST_ENTRY_8_ABBREV) 3764 llvm_unreachable("Unexpected abbrev ordering!"); 3765 } 3766 3767 { // 7-bit fixed width VST_CODE_ENTRY strings. 3768 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3769 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3773 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3774 VST_ENTRY_7_ABBREV) 3775 llvm_unreachable("Unexpected abbrev ordering!"); 3776 } 3777 { // 6-bit char6 VST_CODE_ENTRY strings. 3778 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3779 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3783 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3784 VST_ENTRY_6_ABBREV) 3785 llvm_unreachable("Unexpected abbrev ordering!"); 3786 } 3787 { // 6-bit char6 VST_CODE_BBENTRY strings. 3788 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3789 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3793 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3794 VST_BBENTRY_6_ABBREV) 3795 llvm_unreachable("Unexpected abbrev ordering!"); 3796 } 3797 3798 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3799 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3800 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3802 VE.computeBitsRequiredForTypeIndices())); 3803 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3804 CONSTANTS_SETTYPE_ABBREV) 3805 llvm_unreachable("Unexpected abbrev ordering!"); 3806 } 3807 3808 { // INTEGER abbrev for CONSTANTS_BLOCK. 3809 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3810 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3812 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3813 CONSTANTS_INTEGER_ABBREV) 3814 llvm_unreachable("Unexpected abbrev ordering!"); 3815 } 3816 3817 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3818 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3819 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3822 VE.computeBitsRequiredForTypeIndices())); 3823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3824 3825 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3826 CONSTANTS_CE_CAST_Abbrev) 3827 llvm_unreachable("Unexpected abbrev ordering!"); 3828 } 3829 { // NULL abbrev for CONSTANTS_BLOCK. 3830 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3831 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3832 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3833 CONSTANTS_NULL_Abbrev) 3834 llvm_unreachable("Unexpected abbrev ordering!"); 3835 } 3836 3837 // FIXME: This should only use space for first class types! 3838 3839 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3840 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3841 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3844 VE.computeBitsRequiredForTypeIndices())); 3845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3847 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3848 FUNCTION_INST_LOAD_ABBREV) 3849 llvm_unreachable("Unexpected abbrev ordering!"); 3850 } 3851 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3852 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3853 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3856 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3857 FUNCTION_INST_UNOP_ABBREV) 3858 llvm_unreachable("Unexpected abbrev ordering!"); 3859 } 3860 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3861 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3862 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3866 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3867 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3868 llvm_unreachable("Unexpected abbrev ordering!"); 3869 } 3870 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3871 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3872 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3876 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3877 FUNCTION_INST_BINOP_ABBREV) 3878 llvm_unreachable("Unexpected abbrev ordering!"); 3879 } 3880 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3881 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3882 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3887 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3888 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3889 llvm_unreachable("Unexpected abbrev ordering!"); 3890 } 3891 { // INST_CAST abbrev for FUNCTION_BLOCK. 3892 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3893 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3896 VE.computeBitsRequiredForTypeIndices())); 3897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3898 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3899 FUNCTION_INST_CAST_ABBREV) 3900 llvm_unreachable("Unexpected abbrev ordering!"); 3901 } 3902 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3903 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3904 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3907 VE.computeBitsRequiredForTypeIndices())); 3908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3910 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3911 FUNCTION_INST_CAST_FLAGS_ABBREV) 3912 llvm_unreachable("Unexpected abbrev ordering!"); 3913 } 3914 3915 { // INST_RET abbrev for FUNCTION_BLOCK. 3916 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3917 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3918 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3919 FUNCTION_INST_RET_VOID_ABBREV) 3920 llvm_unreachable("Unexpected abbrev ordering!"); 3921 } 3922 { // INST_RET abbrev for FUNCTION_BLOCK. 3923 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3924 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3926 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3927 FUNCTION_INST_RET_VAL_ABBREV) 3928 llvm_unreachable("Unexpected abbrev ordering!"); 3929 } 3930 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3931 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3932 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3933 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3934 FUNCTION_INST_UNREACHABLE_ABBREV) 3935 llvm_unreachable("Unexpected abbrev ordering!"); 3936 } 3937 { 3938 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3939 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3942 Log2_32_Ceil(VE.getTypes().size() + 1))); 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3945 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3946 FUNCTION_INST_GEP_ABBREV) 3947 llvm_unreachable("Unexpected abbrev ordering!"); 3948 } 3949 { 3950 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3951 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val 3956 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3957 FUNCTION_DEBUG_RECORD_VALUE_ABBREV) 3958 llvm_unreachable("Unexpected abbrev ordering! 1"); 3959 } 3960 Stream.ExitBlock(); 3961 } 3962 3963 /// Write the module path strings, currently only used when generating 3964 /// a combined index file. 3965 void IndexBitcodeWriter::writeModStrings() { 3966 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3967 3968 // TODO: See which abbrev sizes we actually need to emit 3969 3970 // 8-bit fixed-width MST_ENTRY strings. 3971 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3972 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3976 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3977 3978 // 7-bit fixed width MST_ENTRY strings. 3979 Abbv = std::make_shared<BitCodeAbbrev>(); 3980 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3984 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3985 3986 // 6-bit char6 MST_ENTRY strings. 3987 Abbv = std::make_shared<BitCodeAbbrev>(); 3988 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3992 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3993 3994 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3995 Abbv = std::make_shared<BitCodeAbbrev>(); 3996 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4002 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 4003 4004 SmallVector<unsigned, 64> Vals; 4005 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 4006 StringRef Key = MPSE.getKey(); 4007 const auto &Hash = MPSE.getValue(); 4008 StringEncoding Bits = getStringEncoding(Key); 4009 unsigned AbbrevToUse = Abbrev8Bit; 4010 if (Bits == SE_Char6) 4011 AbbrevToUse = Abbrev6Bit; 4012 else if (Bits == SE_Fixed7) 4013 AbbrevToUse = Abbrev7Bit; 4014 4015 auto ModuleId = ModuleIdMap.size(); 4016 ModuleIdMap[Key] = ModuleId; 4017 Vals.push_back(ModuleId); 4018 Vals.append(Key.begin(), Key.end()); 4019 4020 // Emit the finished record. 4021 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 4022 4023 // Emit an optional hash for the module now 4024 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 4025 Vals.assign(Hash.begin(), Hash.end()); 4026 // Emit the hash record. 4027 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 4028 } 4029 4030 Vals.clear(); 4031 }); 4032 Stream.ExitBlock(); 4033 } 4034 4035 /// Write the function type metadata related records that need to appear before 4036 /// a function summary entry (whether per-module or combined). 4037 template <typename Fn> 4038 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 4039 FunctionSummary *FS, 4040 Fn GetValueID) { 4041 if (!FS->type_tests().empty()) 4042 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 4043 4044 SmallVector<uint64_t, 64> Record; 4045 4046 auto WriteVFuncIdVec = [&](uint64_t Ty, 4047 ArrayRef<FunctionSummary::VFuncId> VFs) { 4048 if (VFs.empty()) 4049 return; 4050 Record.clear(); 4051 for (auto &VF : VFs) { 4052 Record.push_back(VF.GUID); 4053 Record.push_back(VF.Offset); 4054 } 4055 Stream.EmitRecord(Ty, Record); 4056 }; 4057 4058 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 4059 FS->type_test_assume_vcalls()); 4060 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 4061 FS->type_checked_load_vcalls()); 4062 4063 auto WriteConstVCallVec = [&](uint64_t Ty, 4064 ArrayRef<FunctionSummary::ConstVCall> VCs) { 4065 for (auto &VC : VCs) { 4066 Record.clear(); 4067 Record.push_back(VC.VFunc.GUID); 4068 Record.push_back(VC.VFunc.Offset); 4069 llvm::append_range(Record, VC.Args); 4070 Stream.EmitRecord(Ty, Record); 4071 } 4072 }; 4073 4074 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 4075 FS->type_test_assume_const_vcalls()); 4076 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 4077 FS->type_checked_load_const_vcalls()); 4078 4079 auto WriteRange = [&](ConstantRange Range) { 4080 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 4081 assert(Range.getLower().getNumWords() == 1); 4082 assert(Range.getUpper().getNumWords() == 1); 4083 emitSignedInt64(Record, *Range.getLower().getRawData()); 4084 emitSignedInt64(Record, *Range.getUpper().getRawData()); 4085 }; 4086 4087 if (!FS->paramAccesses().empty()) { 4088 Record.clear(); 4089 for (auto &Arg : FS->paramAccesses()) { 4090 size_t UndoSize = Record.size(); 4091 Record.push_back(Arg.ParamNo); 4092 WriteRange(Arg.Use); 4093 Record.push_back(Arg.Calls.size()); 4094 for (auto &Call : Arg.Calls) { 4095 Record.push_back(Call.ParamNo); 4096 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 4097 if (!ValueID) { 4098 // If ValueID is unknown we can't drop just this call, we must drop 4099 // entire parameter. 4100 Record.resize(UndoSize); 4101 break; 4102 } 4103 Record.push_back(*ValueID); 4104 WriteRange(Call.Offsets); 4105 } 4106 } 4107 if (!Record.empty()) 4108 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 4109 } 4110 } 4111 4112 /// Collect type IDs from type tests used by function. 4113 static void 4114 getReferencedTypeIds(FunctionSummary *FS, 4115 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 4116 if (!FS->type_tests().empty()) 4117 for (auto &TT : FS->type_tests()) 4118 ReferencedTypeIds.insert(TT); 4119 4120 auto GetReferencedTypesFromVFuncIdVec = 4121 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 4122 for (auto &VF : VFs) 4123 ReferencedTypeIds.insert(VF.GUID); 4124 }; 4125 4126 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 4127 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 4128 4129 auto GetReferencedTypesFromConstVCallVec = 4130 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 4131 for (auto &VC : VCs) 4132 ReferencedTypeIds.insert(VC.VFunc.GUID); 4133 }; 4134 4135 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 4136 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 4137 } 4138 4139 static void writeWholeProgramDevirtResolutionByArg( 4140 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 4141 const WholeProgramDevirtResolution::ByArg &ByArg) { 4142 NameVals.push_back(args.size()); 4143 llvm::append_range(NameVals, args); 4144 4145 NameVals.push_back(ByArg.TheKind); 4146 NameVals.push_back(ByArg.Info); 4147 NameVals.push_back(ByArg.Byte); 4148 NameVals.push_back(ByArg.Bit); 4149 } 4150 4151 static void writeWholeProgramDevirtResolution( 4152 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4153 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 4154 NameVals.push_back(Id); 4155 4156 NameVals.push_back(Wpd.TheKind); 4157 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 4158 NameVals.push_back(Wpd.SingleImplName.size()); 4159 4160 NameVals.push_back(Wpd.ResByArg.size()); 4161 for (auto &A : Wpd.ResByArg) 4162 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 4163 } 4164 4165 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 4166 StringTableBuilder &StrtabBuilder, 4167 const std::string &Id, 4168 const TypeIdSummary &Summary) { 4169 NameVals.push_back(StrtabBuilder.add(Id)); 4170 NameVals.push_back(Id.size()); 4171 4172 NameVals.push_back(Summary.TTRes.TheKind); 4173 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 4174 NameVals.push_back(Summary.TTRes.AlignLog2); 4175 NameVals.push_back(Summary.TTRes.SizeM1); 4176 NameVals.push_back(Summary.TTRes.BitMask); 4177 NameVals.push_back(Summary.TTRes.InlineBits); 4178 4179 for (auto &W : Summary.WPDRes) 4180 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 4181 W.second); 4182 } 4183 4184 static void writeTypeIdCompatibleVtableSummaryRecord( 4185 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4186 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 4187 ValueEnumerator &VE) { 4188 NameVals.push_back(StrtabBuilder.add(Id)); 4189 NameVals.push_back(Id.size()); 4190 4191 for (auto &P : Summary) { 4192 NameVals.push_back(P.AddressPointOffset); 4193 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4194 } 4195 } 4196 4197 static void writeFunctionHeapProfileRecords( 4198 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4199 unsigned AllocAbbrev, bool PerModule, 4200 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4201 std::function<unsigned(unsigned)> GetStackIndex) { 4202 SmallVector<uint64_t> Record; 4203 4204 for (auto &CI : FS->callsites()) { 4205 Record.clear(); 4206 // Per module callsite clones should always have a single entry of 4207 // value 0. 4208 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4209 Record.push_back(GetValueID(CI.Callee)); 4210 if (!PerModule) { 4211 Record.push_back(CI.StackIdIndices.size()); 4212 Record.push_back(CI.Clones.size()); 4213 } 4214 for (auto Id : CI.StackIdIndices) 4215 Record.push_back(GetStackIndex(Id)); 4216 if (!PerModule) { 4217 for (auto V : CI.Clones) 4218 Record.push_back(V); 4219 } 4220 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4221 : bitc::FS_COMBINED_CALLSITE_INFO, 4222 Record, CallsiteAbbrev); 4223 } 4224 4225 for (auto &AI : FS->allocs()) { 4226 Record.clear(); 4227 // Per module alloc versions should always have a single entry of 4228 // value 0. 4229 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4230 Record.push_back(AI.MIBs.size()); 4231 if (!PerModule) 4232 Record.push_back(AI.Versions.size()); 4233 for (auto &MIB : AI.MIBs) { 4234 Record.push_back((uint8_t)MIB.AllocType); 4235 Record.push_back(MIB.StackIdIndices.size()); 4236 for (auto Id : MIB.StackIdIndices) 4237 Record.push_back(GetStackIndex(Id)); 4238 } 4239 if (!PerModule) { 4240 for (auto V : AI.Versions) 4241 Record.push_back(V); 4242 } 4243 assert(AI.TotalSizes.empty() || AI.TotalSizes.size() == AI.MIBs.size()); 4244 if (!AI.TotalSizes.empty()) { 4245 for (auto Size : AI.TotalSizes) 4246 Record.push_back(Size); 4247 } 4248 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4249 : bitc::FS_COMBINED_ALLOC_INFO, 4250 Record, AllocAbbrev); 4251 } 4252 } 4253 4254 // Helper to emit a single function summary record. 4255 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4256 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4257 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4258 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4259 unsigned AllocAbbrev, const Function &F) { 4260 NameVals.push_back(ValueID); 4261 4262 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4263 4264 writeFunctionTypeMetadataRecords( 4265 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4266 return {VE.getValueID(VI.getValue())}; 4267 }); 4268 4269 writeFunctionHeapProfileRecords( 4270 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4271 /*PerModule*/ true, 4272 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4273 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4274 4275 auto SpecialRefCnts = FS->specialRefCounts(); 4276 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4277 NameVals.push_back(FS->instCount()); 4278 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4279 NameVals.push_back(FS->refs().size()); 4280 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4281 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4282 4283 for (auto &RI : FS->refs()) 4284 NameVals.push_back(getValueId(RI)); 4285 4286 const bool UseRelBFRecord = 4287 WriteRelBFToSummary && !F.hasProfileData() && 4288 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4289 for (auto &ECI : FS->calls()) { 4290 NameVals.push_back(getValueId(ECI.first)); 4291 if (UseRelBFRecord) 4292 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4293 else 4294 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4295 } 4296 4297 unsigned FSAbbrev = 4298 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4299 unsigned Code = 4300 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4301 4302 // Emit the finished record. 4303 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4304 NameVals.clear(); 4305 } 4306 4307 // Collect the global value references in the given variable's initializer, 4308 // and emit them in a summary record. 4309 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4310 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4311 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4312 auto VI = Index->getValueInfo(V.getGUID()); 4313 if (!VI || VI.getSummaryList().empty()) { 4314 // Only declarations should not have a summary (a declaration might however 4315 // have a summary if the def was in module level asm). 4316 assert(V.isDeclaration()); 4317 return; 4318 } 4319 auto *Summary = VI.getSummaryList()[0].get(); 4320 NameVals.push_back(VE.getValueID(&V)); 4321 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4322 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4323 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4324 4325 auto VTableFuncs = VS->vTableFuncs(); 4326 if (!VTableFuncs.empty()) 4327 NameVals.push_back(VS->refs().size()); 4328 4329 unsigned SizeBeforeRefs = NameVals.size(); 4330 for (auto &RI : VS->refs()) 4331 NameVals.push_back(VE.getValueID(RI.getValue())); 4332 // Sort the refs for determinism output, the vector returned by FS->refs() has 4333 // been initialized from a DenseSet. 4334 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4335 4336 if (VTableFuncs.empty()) 4337 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4338 FSModRefsAbbrev); 4339 else { 4340 // VTableFuncs pairs should already be sorted by offset. 4341 for (auto &P : VTableFuncs) { 4342 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4343 NameVals.push_back(P.VTableOffset); 4344 } 4345 4346 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4347 FSModVTableRefsAbbrev); 4348 } 4349 NameVals.clear(); 4350 } 4351 4352 /// Emit the per-module summary section alongside the rest of 4353 /// the module's bitcode. 4354 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4355 // By default we compile with ThinLTO if the module has a summary, but the 4356 // client can request full LTO with a module flag. 4357 bool IsThinLTO = true; 4358 if (auto *MD = 4359 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4360 IsThinLTO = MD->getZExtValue(); 4361 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4362 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4363 4); 4364 4365 Stream.EmitRecord( 4366 bitc::FS_VERSION, 4367 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4368 4369 // Write the index flags. 4370 uint64_t Flags = 0; 4371 // Bits 1-3 are set only in the combined index, skip them. 4372 if (Index->enableSplitLTOUnit()) 4373 Flags |= 0x8; 4374 if (Index->hasUnifiedLTO()) 4375 Flags |= 0x200; 4376 4377 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4378 4379 if (Index->begin() == Index->end()) { 4380 Stream.ExitBlock(); 4381 return; 4382 } 4383 4384 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4385 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4387 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4390 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4391 4392 for (const auto &GVI : valueIds()) { 4393 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4394 ArrayRef<uint32_t>{GVI.second, 4395 static_cast<uint32_t>(GVI.first >> 32), 4396 static_cast<uint32_t>(GVI.first)}, 4397 ValueGuidAbbrev); 4398 } 4399 4400 if (!Index->stackIds().empty()) { 4401 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4402 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4403 // numids x stackid 4404 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4405 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4406 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4407 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4408 } 4409 4410 // Abbrev for FS_PERMODULE_PROFILE. 4411 Abbv = std::make_shared<BitCodeAbbrev>(); 4412 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4420 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4423 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4424 4425 // Abbrev for FS_PERMODULE_RELBF. 4426 Abbv = std::make_shared<BitCodeAbbrev>(); 4427 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4435 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4438 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4439 4440 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4441 Abbv = std::make_shared<BitCodeAbbrev>(); 4442 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4447 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4448 4449 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4450 Abbv = std::make_shared<BitCodeAbbrev>(); 4451 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4455 // numrefs x valueid, n x (valueid , offset) 4456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4458 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4459 4460 // Abbrev for FS_ALIAS. 4461 Abbv = std::make_shared<BitCodeAbbrev>(); 4462 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4466 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4467 4468 // Abbrev for FS_TYPE_ID_METADATA 4469 Abbv = std::make_shared<BitCodeAbbrev>(); 4470 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4473 // n x (valueid , offset) 4474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4476 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4477 4478 Abbv = std::make_shared<BitCodeAbbrev>(); 4479 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4481 // n x stackidindex 4482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4484 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4485 4486 Abbv = std::make_shared<BitCodeAbbrev>(); 4487 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4489 // n x (alloc type, numstackids, numstackids x stackidindex) 4490 // optional: nummib x total size 4491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4493 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4494 4495 SmallVector<uint64_t, 64> NameVals; 4496 // Iterate over the list of functions instead of the Index to 4497 // ensure the ordering is stable. 4498 for (const Function &F : M) { 4499 // Summary emission does not support anonymous functions, they have to 4500 // renamed using the anonymous function renaming pass. 4501 if (!F.hasName()) 4502 report_fatal_error("Unexpected anonymous function when writing summary"); 4503 4504 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4505 if (!VI || VI.getSummaryList().empty()) { 4506 // Only declarations should not have a summary (a declaration might 4507 // however have a summary if the def was in module level asm). 4508 assert(F.isDeclaration()); 4509 continue; 4510 } 4511 auto *Summary = VI.getSummaryList()[0].get(); 4512 writePerModuleFunctionSummaryRecord( 4513 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4514 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F); 4515 } 4516 4517 // Capture references from GlobalVariable initializers, which are outside 4518 // of a function scope. 4519 for (const GlobalVariable &G : M.globals()) 4520 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4521 FSModVTableRefsAbbrev); 4522 4523 for (const GlobalAlias &A : M.aliases()) { 4524 auto *Aliasee = A.getAliaseeObject(); 4525 // Skip ifunc and nameless functions which don't have an entry in the 4526 // summary. 4527 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4528 continue; 4529 auto AliasId = VE.getValueID(&A); 4530 auto AliaseeId = VE.getValueID(Aliasee); 4531 NameVals.push_back(AliasId); 4532 auto *Summary = Index->getGlobalValueSummary(A); 4533 AliasSummary *AS = cast<AliasSummary>(Summary); 4534 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4535 NameVals.push_back(AliaseeId); 4536 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4537 NameVals.clear(); 4538 } 4539 4540 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4541 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4542 S.second, VE); 4543 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4544 TypeIdCompatibleVtableAbbrev); 4545 NameVals.clear(); 4546 } 4547 4548 if (Index->getBlockCount()) 4549 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4550 ArrayRef<uint64_t>{Index->getBlockCount()}); 4551 4552 Stream.ExitBlock(); 4553 } 4554 4555 /// Emit the combined summary section into the combined index file. 4556 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4557 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4558 Stream.EmitRecord( 4559 bitc::FS_VERSION, 4560 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4561 4562 // Write the index flags. 4563 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4564 4565 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4566 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4568 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4571 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4572 4573 for (const auto &GVI : valueIds()) { 4574 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4575 ArrayRef<uint32_t>{GVI.second, 4576 static_cast<uint32_t>(GVI.first >> 32), 4577 static_cast<uint32_t>(GVI.first)}, 4578 ValueGuidAbbrev); 4579 } 4580 4581 // Write the stack ids used by this index, which will be a subset of those in 4582 // the full index in the case of distributed indexes. 4583 if (!StackIds.empty()) { 4584 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4585 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4586 // numids x stackid 4587 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4588 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4589 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4590 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4591 } 4592 4593 // Abbrev for FS_COMBINED_PROFILE. 4594 Abbv = std::make_shared<BitCodeAbbrev>(); 4595 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4605 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4608 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4609 4610 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4611 Abbv = std::make_shared<BitCodeAbbrev>(); 4612 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4618 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4619 4620 // Abbrev for FS_COMBINED_ALIAS. 4621 Abbv = std::make_shared<BitCodeAbbrev>(); 4622 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4627 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4628 4629 Abbv = std::make_shared<BitCodeAbbrev>(); 4630 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4634 // numstackindices x stackidindex, numver x version 4635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4637 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4638 4639 Abbv = std::make_shared<BitCodeAbbrev>(); 4640 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4643 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4644 // numver x version 4645 // optional: nummib x total size 4646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4648 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4649 4650 auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool { 4651 if (DecSummaries == nullptr) 4652 return false; 4653 return DecSummaries->count(GVS); 4654 }; 4655 4656 // The aliases are emitted as a post-pass, and will point to the value 4657 // id of the aliasee. Save them in a vector for post-processing. 4658 SmallVector<AliasSummary *, 64> Aliases; 4659 4660 // Save the value id for each summary for alias emission. 4661 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4662 4663 SmallVector<uint64_t, 64> NameVals; 4664 4665 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4666 // with the type ids referenced by this index file. 4667 std::set<GlobalValue::GUID> ReferencedTypeIds; 4668 4669 // For local linkage, we also emit the original name separately 4670 // immediately after the record. 4671 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4672 // We don't need to emit the original name if we are writing the index for 4673 // distributed backends (in which case ModuleToSummariesForIndex is 4674 // non-null). The original name is only needed during the thin link, since 4675 // for SamplePGO the indirect call targets for local functions have 4676 // have the original name annotated in profile. 4677 // Continue to emit it when writing out the entire combined index, which is 4678 // used in testing the thin link via llvm-lto. 4679 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4680 return; 4681 NameVals.push_back(S.getOriginalName()); 4682 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4683 NameVals.clear(); 4684 }; 4685 4686 DenseSet<GlobalValue::GUID> DefOrUseGUIDs; 4687 forEachSummary([&](GVInfo I, bool IsAliasee) { 4688 GlobalValueSummary *S = I.second; 4689 assert(S); 4690 DefOrUseGUIDs.insert(I.first); 4691 for (const ValueInfo &VI : S->refs()) 4692 DefOrUseGUIDs.insert(VI.getGUID()); 4693 4694 auto ValueId = getValueId(I.first); 4695 assert(ValueId); 4696 SummaryToValueIdMap[S] = *ValueId; 4697 4698 // If this is invoked for an aliasee, we want to record the above 4699 // mapping, but then not emit a summary entry (if the aliasee is 4700 // to be imported, we will invoke this separately with IsAliasee=false). 4701 if (IsAliasee) 4702 return; 4703 4704 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4705 // Will process aliases as a post-pass because the reader wants all 4706 // global to be loaded first. 4707 Aliases.push_back(AS); 4708 return; 4709 } 4710 4711 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4712 NameVals.push_back(*ValueId); 4713 assert(ModuleIdMap.count(VS->modulePath())); 4714 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4715 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4716 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4717 for (auto &RI : VS->refs()) { 4718 auto RefValueId = getValueId(RI.getGUID()); 4719 if (!RefValueId) 4720 continue; 4721 NameVals.push_back(*RefValueId); 4722 } 4723 4724 // Emit the finished record. 4725 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4726 FSModRefsAbbrev); 4727 NameVals.clear(); 4728 MaybeEmitOriginalName(*S); 4729 return; 4730 } 4731 4732 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4733 if (!VI) 4734 return std::nullopt; 4735 return getValueId(VI.getGUID()); 4736 }; 4737 4738 auto *FS = cast<FunctionSummary>(S); 4739 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4740 getReferencedTypeIds(FS, ReferencedTypeIds); 4741 4742 writeFunctionHeapProfileRecords( 4743 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4744 /*PerModule*/ false, 4745 /*GetValueId*/ 4746 [&](const ValueInfo &VI) -> unsigned { 4747 std::optional<unsigned> ValueID = GetValueId(VI); 4748 // This can happen in shared index files for distributed ThinLTO if 4749 // the callee function summary is not included. Record 0 which we 4750 // will have to deal with conservatively when doing any kind of 4751 // validation in the ThinLTO backends. 4752 if (!ValueID) 4753 return 0; 4754 return *ValueID; 4755 }, 4756 /*GetStackIndex*/ 4757 [&](unsigned I) { 4758 // Get the corresponding index into the list of StackIds actually 4759 // being written for this combined index (which may be a subset in 4760 // the case of distributed indexes). 4761 assert(StackIdIndicesToIndex.contains(I)); 4762 return StackIdIndicesToIndex[I]; 4763 }); 4764 4765 NameVals.push_back(*ValueId); 4766 assert(ModuleIdMap.count(FS->modulePath())); 4767 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4768 NameVals.push_back( 4769 getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS))); 4770 NameVals.push_back(FS->instCount()); 4771 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4772 // TODO: Stop writing entry count and bump bitcode version. 4773 NameVals.push_back(0 /* EntryCount */); 4774 4775 // Fill in below 4776 NameVals.push_back(0); // numrefs 4777 NameVals.push_back(0); // rorefcnt 4778 NameVals.push_back(0); // worefcnt 4779 4780 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4781 for (auto &RI : FS->refs()) { 4782 auto RefValueId = getValueId(RI.getGUID()); 4783 if (!RefValueId) 4784 continue; 4785 NameVals.push_back(*RefValueId); 4786 if (RI.isReadOnly()) 4787 RORefCnt++; 4788 else if (RI.isWriteOnly()) 4789 WORefCnt++; 4790 Count++; 4791 } 4792 NameVals[6] = Count; 4793 NameVals[7] = RORefCnt; 4794 NameVals[8] = WORefCnt; 4795 4796 for (auto &EI : FS->calls()) { 4797 // If this GUID doesn't have a value id, it doesn't have a function 4798 // summary and we don't need to record any calls to it. 4799 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4800 if (!CallValueId) 4801 continue; 4802 NameVals.push_back(*CallValueId); 4803 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4804 } 4805 4806 // Emit the finished record. 4807 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 4808 FSCallsProfileAbbrev); 4809 NameVals.clear(); 4810 MaybeEmitOriginalName(*S); 4811 }); 4812 4813 for (auto *AS : Aliases) { 4814 auto AliasValueId = SummaryToValueIdMap[AS]; 4815 assert(AliasValueId); 4816 NameVals.push_back(AliasValueId); 4817 assert(ModuleIdMap.count(AS->modulePath())); 4818 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4819 NameVals.push_back( 4820 getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS))); 4821 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4822 assert(AliaseeValueId); 4823 NameVals.push_back(AliaseeValueId); 4824 4825 // Emit the finished record. 4826 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4827 NameVals.clear(); 4828 MaybeEmitOriginalName(*AS); 4829 4830 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4831 getReferencedTypeIds(FS, ReferencedTypeIds); 4832 } 4833 4834 if (!Index.cfiFunctionDefs().empty()) { 4835 for (auto &S : Index.cfiFunctionDefs()) { 4836 if (DefOrUseGUIDs.contains( 4837 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4838 NameVals.push_back(StrtabBuilder.add(S)); 4839 NameVals.push_back(S.size()); 4840 } 4841 } 4842 if (!NameVals.empty()) { 4843 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4844 NameVals.clear(); 4845 } 4846 } 4847 4848 if (!Index.cfiFunctionDecls().empty()) { 4849 for (auto &S : Index.cfiFunctionDecls()) { 4850 if (DefOrUseGUIDs.contains( 4851 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4852 NameVals.push_back(StrtabBuilder.add(S)); 4853 NameVals.push_back(S.size()); 4854 } 4855 } 4856 if (!NameVals.empty()) { 4857 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4858 NameVals.clear(); 4859 } 4860 } 4861 4862 // Walk the GUIDs that were referenced, and write the 4863 // corresponding type id records. 4864 for (auto &T : ReferencedTypeIds) { 4865 auto TidIter = Index.typeIds().equal_range(T); 4866 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) { 4867 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, TypeIdPair.first, 4868 TypeIdPair.second); 4869 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4870 NameVals.clear(); 4871 } 4872 } 4873 4874 if (Index.getBlockCount()) 4875 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4876 ArrayRef<uint64_t>{Index.getBlockCount()}); 4877 4878 Stream.ExitBlock(); 4879 } 4880 4881 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4882 /// current llvm version, and a record for the epoch number. 4883 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4884 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4885 4886 // Write the "user readable" string identifying the bitcode producer 4887 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4888 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4891 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4892 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4893 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4894 4895 // Write the epoch version 4896 Abbv = std::make_shared<BitCodeAbbrev>(); 4897 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4899 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4900 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4901 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4902 Stream.ExitBlock(); 4903 } 4904 4905 void ModuleBitcodeWriter::writeModuleHash(StringRef View) { 4906 // Emit the module's hash. 4907 // MODULE_CODE_HASH: [5*i32] 4908 if (GenerateHash) { 4909 uint32_t Vals[5]; 4910 Hasher.update(ArrayRef<uint8_t>( 4911 reinterpret_cast<const uint8_t *>(View.data()), View.size())); 4912 std::array<uint8_t, 20> Hash = Hasher.result(); 4913 for (int Pos = 0; Pos < 20; Pos += 4) { 4914 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4915 } 4916 4917 // Emit the finished record. 4918 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4919 4920 if (ModHash) 4921 // Save the written hash value. 4922 llvm::copy(Vals, std::begin(*ModHash)); 4923 } 4924 } 4925 4926 void ModuleBitcodeWriter::write() { 4927 writeIdentificationBlock(Stream); 4928 4929 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4930 // We will want to write the module hash at this point. Block any flushing so 4931 // we can have access to the whole underlying data later. 4932 Stream.markAndBlockFlushing(); 4933 4934 writeModuleVersion(); 4935 4936 // Emit blockinfo, which defines the standard abbreviations etc. 4937 writeBlockInfo(); 4938 4939 // Emit information describing all of the types in the module. 4940 writeTypeTable(); 4941 4942 // Emit information about attribute groups. 4943 writeAttributeGroupTable(); 4944 4945 // Emit information about parameter attributes. 4946 writeAttributeTable(); 4947 4948 writeComdats(); 4949 4950 // Emit top-level description of module, including target triple, inline asm, 4951 // descriptors for global variables, and function prototype info. 4952 writeModuleInfo(); 4953 4954 // Emit constants. 4955 writeModuleConstants(); 4956 4957 // Emit metadata kind names. 4958 writeModuleMetadataKinds(); 4959 4960 // Emit metadata. 4961 writeModuleMetadata(); 4962 4963 // Emit module-level use-lists. 4964 if (VE.shouldPreserveUseListOrder()) 4965 writeUseListBlock(nullptr); 4966 4967 writeOperandBundleTags(); 4968 writeSyncScopeNames(); 4969 4970 // Emit function bodies. 4971 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4972 for (const Function &F : M) 4973 if (!F.isDeclaration()) 4974 writeFunction(F, FunctionToBitcodeIndex); 4975 4976 // Need to write after the above call to WriteFunction which populates 4977 // the summary information in the index. 4978 if (Index) 4979 writePerModuleGlobalValueSummary(); 4980 4981 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4982 4983 writeModuleHash(Stream.getMarkedBufferAndResumeFlushing()); 4984 4985 Stream.ExitBlock(); 4986 } 4987 4988 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4989 uint32_t &Position) { 4990 support::endian::write32le(&Buffer[Position], Value); 4991 Position += 4; 4992 } 4993 4994 /// If generating a bc file on darwin, we have to emit a 4995 /// header and trailer to make it compatible with the system archiver. To do 4996 /// this we emit the following header, and then emit a trailer that pads the 4997 /// file out to be a multiple of 16 bytes. 4998 /// 4999 /// struct bc_header { 5000 /// uint32_t Magic; // 0x0B17C0DE 5001 /// uint32_t Version; // Version, currently always 0. 5002 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 5003 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 5004 /// uint32_t CPUType; // CPU specifier. 5005 /// ... potentially more later ... 5006 /// }; 5007 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 5008 const Triple &TT) { 5009 unsigned CPUType = ~0U; 5010 5011 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 5012 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 5013 // number from /usr/include/mach/machine.h. It is ok to reproduce the 5014 // specific constants here because they are implicitly part of the Darwin ABI. 5015 enum { 5016 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 5017 DARWIN_CPU_TYPE_X86 = 7, 5018 DARWIN_CPU_TYPE_ARM = 12, 5019 DARWIN_CPU_TYPE_POWERPC = 18 5020 }; 5021 5022 Triple::ArchType Arch = TT.getArch(); 5023 if (Arch == Triple::x86_64) 5024 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 5025 else if (Arch == Triple::x86) 5026 CPUType = DARWIN_CPU_TYPE_X86; 5027 else if (Arch == Triple::ppc) 5028 CPUType = DARWIN_CPU_TYPE_POWERPC; 5029 else if (Arch == Triple::ppc64) 5030 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 5031 else if (Arch == Triple::arm || Arch == Triple::thumb) 5032 CPUType = DARWIN_CPU_TYPE_ARM; 5033 5034 // Traditional Bitcode starts after header. 5035 assert(Buffer.size() >= BWH_HeaderSize && 5036 "Expected header size to be reserved"); 5037 unsigned BCOffset = BWH_HeaderSize; 5038 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 5039 5040 // Write the magic and version. 5041 unsigned Position = 0; 5042 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 5043 writeInt32ToBuffer(0, Buffer, Position); // Version. 5044 writeInt32ToBuffer(BCOffset, Buffer, Position); 5045 writeInt32ToBuffer(BCSize, Buffer, Position); 5046 writeInt32ToBuffer(CPUType, Buffer, Position); 5047 5048 // If the file is not a multiple of 16 bytes, insert dummy padding. 5049 while (Buffer.size() & 15) 5050 Buffer.push_back(0); 5051 } 5052 5053 /// Helper to write the header common to all bitcode files. 5054 static void writeBitcodeHeader(BitstreamWriter &Stream) { 5055 // Emit the file header. 5056 Stream.Emit((unsigned)'B', 8); 5057 Stream.Emit((unsigned)'C', 8); 5058 Stream.Emit(0x0, 4); 5059 Stream.Emit(0xC, 4); 5060 Stream.Emit(0xE, 4); 5061 Stream.Emit(0xD, 4); 5062 } 5063 5064 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 5065 : Stream(new BitstreamWriter(Buffer)) { 5066 writeBitcodeHeader(*Stream); 5067 } 5068 5069 BitcodeWriter::BitcodeWriter(raw_ostream &FS) 5070 : Stream(new BitstreamWriter(FS, FlushThreshold)) { 5071 writeBitcodeHeader(*Stream); 5072 } 5073 5074 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 5075 5076 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 5077 Stream->EnterSubblock(Block, 3); 5078 5079 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5080 Abbv->Add(BitCodeAbbrevOp(Record)); 5081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 5082 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 5083 5084 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 5085 5086 Stream->ExitBlock(); 5087 } 5088 5089 void BitcodeWriter::writeSymtab() { 5090 assert(!WroteStrtab && !WroteSymtab); 5091 5092 // If any module has module-level inline asm, we will require a registered asm 5093 // parser for the target so that we can create an accurate symbol table for 5094 // the module. 5095 for (Module *M : Mods) { 5096 if (M->getModuleInlineAsm().empty()) 5097 continue; 5098 5099 std::string Err; 5100 const Triple TT(M->getTargetTriple()); 5101 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 5102 if (!T || !T->hasMCAsmParser()) 5103 return; 5104 } 5105 5106 WroteSymtab = true; 5107 SmallVector<char, 0> Symtab; 5108 // The irsymtab::build function may be unable to create a symbol table if the 5109 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 5110 // table is not required for correctness, but we still want to be able to 5111 // write malformed modules to bitcode files, so swallow the error. 5112 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 5113 consumeError(std::move(E)); 5114 return; 5115 } 5116 5117 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 5118 {Symtab.data(), Symtab.size()}); 5119 } 5120 5121 void BitcodeWriter::writeStrtab() { 5122 assert(!WroteStrtab); 5123 5124 std::vector<char> Strtab; 5125 StrtabBuilder.finalizeInOrder(); 5126 Strtab.resize(StrtabBuilder.getSize()); 5127 StrtabBuilder.write((uint8_t *)Strtab.data()); 5128 5129 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 5130 {Strtab.data(), Strtab.size()}); 5131 5132 WroteStrtab = true; 5133 } 5134 5135 void BitcodeWriter::copyStrtab(StringRef Strtab) { 5136 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 5137 WroteStrtab = true; 5138 } 5139 5140 void BitcodeWriter::writeModule(const Module &M, 5141 bool ShouldPreserveUseListOrder, 5142 const ModuleSummaryIndex *Index, 5143 bool GenerateHash, ModuleHash *ModHash) { 5144 assert(!WroteStrtab); 5145 5146 // The Mods vector is used by irsymtab::build, which requires non-const 5147 // Modules in case it needs to materialize metadata. But the bitcode writer 5148 // requires that the module is materialized, so we can cast to non-const here, 5149 // after checking that it is in fact materialized. 5150 assert(M.isMaterialized()); 5151 Mods.push_back(const_cast<Module *>(&M)); 5152 5153 ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream, 5154 ShouldPreserveUseListOrder, Index, 5155 GenerateHash, ModHash); 5156 ModuleWriter.write(); 5157 } 5158 5159 void BitcodeWriter::writeIndex( 5160 const ModuleSummaryIndex *Index, 5161 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5162 const GVSummaryPtrSet *DecSummaries) { 5163 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries, 5164 ModuleToSummariesForIndex); 5165 IndexWriter.write(); 5166 } 5167 5168 /// Write the specified module to the specified output stream. 5169 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 5170 bool ShouldPreserveUseListOrder, 5171 const ModuleSummaryIndex *Index, 5172 bool GenerateHash, ModuleHash *ModHash) { 5173 auto Write = [&](BitcodeWriter &Writer) { 5174 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 5175 ModHash); 5176 Writer.writeSymtab(); 5177 Writer.writeStrtab(); 5178 }; 5179 Triple TT(M.getTargetTriple()); 5180 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) { 5181 // If this is darwin or another generic macho target, reserve space for the 5182 // header. Note that the header is computed *after* the output is known, so 5183 // we currently explicitly use a buffer, write to it, and then subsequently 5184 // flush to Out. 5185 SmallVector<char, 0> Buffer; 5186 Buffer.reserve(256 * 1024); 5187 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 5188 BitcodeWriter Writer(Buffer); 5189 Write(Writer); 5190 emitDarwinBCHeaderAndTrailer(Buffer, TT); 5191 Out.write(Buffer.data(), Buffer.size()); 5192 } else { 5193 BitcodeWriter Writer(Out); 5194 Write(Writer); 5195 } 5196 } 5197 5198 void IndexBitcodeWriter::write() { 5199 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5200 5201 writeModuleVersion(); 5202 5203 // Write the module paths in the combined index. 5204 writeModStrings(); 5205 5206 // Write the summary combined index records. 5207 writeCombinedGlobalValueSummary(); 5208 5209 Stream.ExitBlock(); 5210 } 5211 5212 // Write the specified module summary index to the given raw output stream, 5213 // where it will be written in a new bitcode block. This is used when 5214 // writing the combined index file for ThinLTO. When writing a subset of the 5215 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 5216 void llvm::writeIndexToFile( 5217 const ModuleSummaryIndex &Index, raw_ostream &Out, 5218 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5219 const GVSummaryPtrSet *DecSummaries) { 5220 SmallVector<char, 0> Buffer; 5221 Buffer.reserve(256 * 1024); 5222 5223 BitcodeWriter Writer(Buffer); 5224 Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries); 5225 Writer.writeStrtab(); 5226 5227 Out.write((char *)&Buffer.front(), Buffer.size()); 5228 } 5229 5230 namespace { 5231 5232 /// Class to manage the bitcode writing for a thin link bitcode file. 5233 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5234 /// ModHash is for use in ThinLTO incremental build, generated while writing 5235 /// the module bitcode file. 5236 const ModuleHash *ModHash; 5237 5238 public: 5239 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5240 BitstreamWriter &Stream, 5241 const ModuleSummaryIndex &Index, 5242 const ModuleHash &ModHash) 5243 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5244 /*ShouldPreserveUseListOrder=*/false, &Index), 5245 ModHash(&ModHash) {} 5246 5247 void write(); 5248 5249 private: 5250 void writeSimplifiedModuleInfo(); 5251 }; 5252 5253 } // end anonymous namespace 5254 5255 // This function writes a simpilified module info for thin link bitcode file. 5256 // It only contains the source file name along with the name(the offset and 5257 // size in strtab) and linkage for global values. For the global value info 5258 // entry, in order to keep linkage at offset 5, there are three zeros used 5259 // as padding. 5260 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5261 SmallVector<unsigned, 64> Vals; 5262 // Emit the module's source file name. 5263 { 5264 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5265 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5266 if (Bits == SE_Char6) 5267 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5268 else if (Bits == SE_Fixed7) 5269 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5270 5271 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5272 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5273 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5275 Abbv->Add(AbbrevOpToUse); 5276 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5277 5278 for (const auto P : M.getSourceFileName()) 5279 Vals.push_back((unsigned char)P); 5280 5281 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5282 Vals.clear(); 5283 } 5284 5285 // Emit the global variable information. 5286 for (const GlobalVariable &GV : M.globals()) { 5287 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5288 Vals.push_back(StrtabBuilder.add(GV.getName())); 5289 Vals.push_back(GV.getName().size()); 5290 Vals.push_back(0); 5291 Vals.push_back(0); 5292 Vals.push_back(0); 5293 Vals.push_back(getEncodedLinkage(GV)); 5294 5295 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5296 Vals.clear(); 5297 } 5298 5299 // Emit the function proto information. 5300 for (const Function &F : M) { 5301 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5302 Vals.push_back(StrtabBuilder.add(F.getName())); 5303 Vals.push_back(F.getName().size()); 5304 Vals.push_back(0); 5305 Vals.push_back(0); 5306 Vals.push_back(0); 5307 Vals.push_back(getEncodedLinkage(F)); 5308 5309 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5310 Vals.clear(); 5311 } 5312 5313 // Emit the alias information. 5314 for (const GlobalAlias &A : M.aliases()) { 5315 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5316 Vals.push_back(StrtabBuilder.add(A.getName())); 5317 Vals.push_back(A.getName().size()); 5318 Vals.push_back(0); 5319 Vals.push_back(0); 5320 Vals.push_back(0); 5321 Vals.push_back(getEncodedLinkage(A)); 5322 5323 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5324 Vals.clear(); 5325 } 5326 5327 // Emit the ifunc information. 5328 for (const GlobalIFunc &I : M.ifuncs()) { 5329 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5330 Vals.push_back(StrtabBuilder.add(I.getName())); 5331 Vals.push_back(I.getName().size()); 5332 Vals.push_back(0); 5333 Vals.push_back(0); 5334 Vals.push_back(0); 5335 Vals.push_back(getEncodedLinkage(I)); 5336 5337 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5338 Vals.clear(); 5339 } 5340 } 5341 5342 void ThinLinkBitcodeWriter::write() { 5343 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5344 5345 writeModuleVersion(); 5346 5347 writeSimplifiedModuleInfo(); 5348 5349 writePerModuleGlobalValueSummary(); 5350 5351 // Write module hash. 5352 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5353 5354 Stream.ExitBlock(); 5355 } 5356 5357 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5358 const ModuleSummaryIndex &Index, 5359 const ModuleHash &ModHash) { 5360 assert(!WroteStrtab); 5361 5362 // The Mods vector is used by irsymtab::build, which requires non-const 5363 // Modules in case it needs to materialize metadata. But the bitcode writer 5364 // requires that the module is materialized, so we can cast to non-const here, 5365 // after checking that it is in fact materialized. 5366 assert(M.isMaterialized()); 5367 Mods.push_back(const_cast<Module *>(&M)); 5368 5369 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5370 ModHash); 5371 ThinLinkWriter.write(); 5372 } 5373 5374 // Write the specified thin link bitcode file to the given raw output stream, 5375 // where it will be written in a new bitcode block. This is used when 5376 // writing the per-module index file for ThinLTO. 5377 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5378 const ModuleSummaryIndex &Index, 5379 const ModuleHash &ModHash) { 5380 SmallVector<char, 0> Buffer; 5381 Buffer.reserve(256 * 1024); 5382 5383 BitcodeWriter Writer(Buffer); 5384 Writer.writeThinLinkBitcode(M, Index, ModHash); 5385 Writer.writeSymtab(); 5386 Writer.writeStrtab(); 5387 5388 Out.write((char *)&Buffer.front(), Buffer.size()); 5389 } 5390 5391 static const char *getSectionNameForBitcode(const Triple &T) { 5392 switch (T.getObjectFormat()) { 5393 case Triple::MachO: 5394 return "__LLVM,__bitcode"; 5395 case Triple::COFF: 5396 case Triple::ELF: 5397 case Triple::Wasm: 5398 case Triple::UnknownObjectFormat: 5399 return ".llvmbc"; 5400 case Triple::GOFF: 5401 llvm_unreachable("GOFF is not yet implemented"); 5402 break; 5403 case Triple::SPIRV: 5404 if (T.getVendor() == Triple::AMD) 5405 return ".llvmbc"; 5406 llvm_unreachable("SPIRV is not yet implemented"); 5407 break; 5408 case Triple::XCOFF: 5409 llvm_unreachable("XCOFF is not yet implemented"); 5410 break; 5411 case Triple::DXContainer: 5412 llvm_unreachable("DXContainer is not yet implemented"); 5413 break; 5414 } 5415 llvm_unreachable("Unimplemented ObjectFormatType"); 5416 } 5417 5418 static const char *getSectionNameForCommandline(const Triple &T) { 5419 switch (T.getObjectFormat()) { 5420 case Triple::MachO: 5421 return "__LLVM,__cmdline"; 5422 case Triple::COFF: 5423 case Triple::ELF: 5424 case Triple::Wasm: 5425 case Triple::UnknownObjectFormat: 5426 return ".llvmcmd"; 5427 case Triple::GOFF: 5428 llvm_unreachable("GOFF is not yet implemented"); 5429 break; 5430 case Triple::SPIRV: 5431 if (T.getVendor() == Triple::AMD) 5432 return ".llvmcmd"; 5433 llvm_unreachable("SPIRV is not yet implemented"); 5434 break; 5435 case Triple::XCOFF: 5436 llvm_unreachable("XCOFF is not yet implemented"); 5437 break; 5438 case Triple::DXContainer: 5439 llvm_unreachable("DXC is not yet implemented"); 5440 break; 5441 } 5442 llvm_unreachable("Unimplemented ObjectFormatType"); 5443 } 5444 5445 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5446 bool EmbedBitcode, bool EmbedCmdline, 5447 const std::vector<uint8_t> &CmdArgs) { 5448 // Save llvm.compiler.used and remove it. 5449 SmallVector<Constant *, 2> UsedArray; 5450 SmallVector<GlobalValue *, 4> UsedGlobals; 5451 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5452 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5453 for (auto *GV : UsedGlobals) { 5454 if (GV->getName() != "llvm.embedded.module" && 5455 GV->getName() != "llvm.cmdline") 5456 UsedArray.push_back( 5457 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5458 } 5459 if (Used) 5460 Used->eraseFromParent(); 5461 5462 // Embed the bitcode for the llvm module. 5463 std::string Data; 5464 ArrayRef<uint8_t> ModuleData; 5465 Triple T(M.getTargetTriple()); 5466 5467 if (EmbedBitcode) { 5468 if (Buf.getBufferSize() == 0 || 5469 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5470 (const unsigned char *)Buf.getBufferEnd())) { 5471 // If the input is LLVM Assembly, bitcode is produced by serializing 5472 // the module. Use-lists order need to be preserved in this case. 5473 llvm::raw_string_ostream OS(Data); 5474 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5475 ModuleData = 5476 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5477 } else 5478 // If the input is LLVM bitcode, write the input byte stream directly. 5479 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5480 Buf.getBufferSize()); 5481 } 5482 llvm::Constant *ModuleConstant = 5483 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5484 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5485 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5486 ModuleConstant); 5487 GV->setSection(getSectionNameForBitcode(T)); 5488 // Set alignment to 1 to prevent padding between two contributions from input 5489 // sections after linking. 5490 GV->setAlignment(Align(1)); 5491 UsedArray.push_back( 5492 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5493 if (llvm::GlobalVariable *Old = 5494 M.getGlobalVariable("llvm.embedded.module", true)) { 5495 assert(Old->hasZeroLiveUses() && 5496 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5497 GV->takeName(Old); 5498 Old->eraseFromParent(); 5499 } else { 5500 GV->setName("llvm.embedded.module"); 5501 } 5502 5503 // Skip if only bitcode needs to be embedded. 5504 if (EmbedCmdline) { 5505 // Embed command-line options. 5506 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5507 CmdArgs.size()); 5508 llvm::Constant *CmdConstant = 5509 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5510 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5511 llvm::GlobalValue::PrivateLinkage, 5512 CmdConstant); 5513 GV->setSection(getSectionNameForCommandline(T)); 5514 GV->setAlignment(Align(1)); 5515 UsedArray.push_back( 5516 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5517 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5518 assert(Old->hasZeroLiveUses() && 5519 "llvm.cmdline can only be used once in llvm.compiler.used"); 5520 GV->takeName(Old); 5521 Old->eraseFromParent(); 5522 } else { 5523 GV->setName("llvm.cmdline"); 5524 } 5525 } 5526 5527 if (UsedArray.empty()) 5528 return; 5529 5530 // Recreate llvm.compiler.used. 5531 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5532 auto *NewUsed = new GlobalVariable( 5533 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5534 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5535 NewUsed->setSection("llvm.metadata"); 5536 } 5537