1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/Bitcode/BitcodeCommon.h" 30 #include "llvm/Bitcode/BitcodeReader.h" 31 #include "llvm/Bitcode/LLVMBitCodes.h" 32 #include "llvm/Bitstream/BitCodes.h" 33 #include "llvm/Bitstream/BitstreamWriter.h" 34 #include "llvm/Config/llvm-config.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Comdat.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalIFunc.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/UseListOrder.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/MC/StringTableBuilder.h" 63 #include "llvm/MC/TargetRegistry.h" 64 #include "llvm/Object/IRSymtab.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Endian.h" 69 #include "llvm/Support/Error.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/SHA1.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <map> 80 #include <memory> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 101 namespace { 102 103 /// These are manifest constants used by the bitcode writer. They do not need to 104 /// be kept in sync with the reader, but need to be consistent within this file. 105 enum { 106 // VALUE_SYMTAB_BLOCK abbrev id's. 107 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 VST_ENTRY_7_ABBREV, 109 VST_ENTRY_6_ABBREV, 110 VST_BBENTRY_6_ABBREV, 111 112 // CONSTANTS_BLOCK abbrev id's. 113 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 CONSTANTS_INTEGER_ABBREV, 115 CONSTANTS_CE_CAST_Abbrev, 116 CONSTANTS_NULL_Abbrev, 117 118 // FUNCTION_BLOCK abbrev id's. 119 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 120 FUNCTION_INST_UNOP_ABBREV, 121 FUNCTION_INST_UNOP_FLAGS_ABBREV, 122 FUNCTION_INST_BINOP_ABBREV, 123 FUNCTION_INST_BINOP_FLAGS_ABBREV, 124 FUNCTION_INST_CAST_ABBREV, 125 FUNCTION_INST_RET_VOID_ABBREV, 126 FUNCTION_INST_RET_VAL_ABBREV, 127 FUNCTION_INST_UNREACHABLE_ABBREV, 128 FUNCTION_INST_GEP_ABBREV, 129 }; 130 131 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 132 /// file type. 133 class BitcodeWriterBase { 134 protected: 135 /// The stream created and owned by the client. 136 BitstreamWriter &Stream; 137 138 StringTableBuilder &StrtabBuilder; 139 140 public: 141 /// Constructs a BitcodeWriterBase object that writes to the provided 142 /// \p Stream. 143 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 144 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 145 146 protected: 147 void writeModuleVersion(); 148 }; 149 150 void BitcodeWriterBase::writeModuleVersion() { 151 // VERSION: [version#] 152 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 153 } 154 155 /// Base class to manage the module bitcode writing, currently subclassed for 156 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 157 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 158 protected: 159 /// The Module to write to bitcode. 160 const Module &M; 161 162 /// Enumerates ids for all values in the module. 163 ValueEnumerator VE; 164 165 /// Optional per-module index to write for ThinLTO. 166 const ModuleSummaryIndex *Index; 167 168 /// Map that holds the correspondence between GUIDs in the summary index, 169 /// that came from indirect call profiles, and a value id generated by this 170 /// class to use in the VST and summary block records. 171 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 172 173 /// Tracks the last value id recorded in the GUIDToValueMap. 174 unsigned GlobalValueId; 175 176 /// Saves the offset of the VSTOffset record that must eventually be 177 /// backpatched with the offset of the actual VST. 178 uint64_t VSTOffsetPlaceholder = 0; 179 180 public: 181 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 182 /// writing to the provided \p Buffer. 183 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 184 BitstreamWriter &Stream, 185 bool ShouldPreserveUseListOrder, 186 const ModuleSummaryIndex *Index) 187 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 188 VE(M, ShouldPreserveUseListOrder), Index(Index) { 189 // Assign ValueIds to any callee values in the index that came from 190 // indirect call profiles and were recorded as a GUID not a Value* 191 // (which would have been assigned an ID by the ValueEnumerator). 192 // The starting ValueId is just after the number of values in the 193 // ValueEnumerator, so that they can be emitted in the VST. 194 GlobalValueId = VE.getValues().size(); 195 if (!Index) 196 return; 197 for (const auto &GUIDSummaryLists : *Index) 198 // Examine all summaries for this GUID. 199 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 200 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 201 // For each call in the function summary, see if the call 202 // is to a GUID (which means it is for an indirect call, 203 // otherwise we would have a Value for it). If so, synthesize 204 // a value id. 205 for (auto &CallEdge : FS->calls()) 206 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 207 assignValueId(CallEdge.first.getGUID()); 208 } 209 210 protected: 211 void writePerModuleGlobalValueSummary(); 212 213 private: 214 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 215 GlobalValueSummary *Summary, 216 unsigned ValueID, 217 unsigned FSCallsAbbrev, 218 unsigned FSCallsProfileAbbrev, 219 const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 344 SmallVectorImpl<uint64_t> &Record, 345 unsigned Abbrev); 346 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIGlobalVariable(const DIGlobalVariable *N, 350 SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDILocalVariable(const DILocalVariable *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDILabel(const DILabel *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIExpression(const DIExpression *N, 357 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 358 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 359 SmallVectorImpl<uint64_t> &Record, 360 unsigned Abbrev); 361 void writeDIObjCProperty(const DIObjCProperty *N, 362 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 363 void writeDIImportedEntity(const DIImportedEntity *N, 364 SmallVectorImpl<uint64_t> &Record, 365 unsigned Abbrev); 366 unsigned createNamedMetadataAbbrev(); 367 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 368 unsigned createMetadataStringsAbbrev(); 369 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 370 SmallVectorImpl<uint64_t> &Record); 371 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 372 SmallVectorImpl<uint64_t> &Record, 373 std::vector<unsigned> *MDAbbrevs = nullptr, 374 std::vector<uint64_t> *IndexPos = nullptr); 375 void writeModuleMetadata(); 376 void writeFunctionMetadata(const Function &F); 377 void writeFunctionMetadataAttachment(const Function &F); 378 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 379 const GlobalObject &GO); 380 void writeModuleMetadataKinds(); 381 void writeOperandBundleTags(); 382 void writeSyncScopeNames(); 383 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 384 void writeModuleConstants(); 385 bool pushValueAndType(const Value *V, unsigned InstID, 386 SmallVectorImpl<unsigned> &Vals); 387 void writeOperandBundles(const CallBase &CB, unsigned InstID); 388 void pushValue(const Value *V, unsigned InstID, 389 SmallVectorImpl<unsigned> &Vals); 390 void pushValueSigned(const Value *V, unsigned InstID, 391 SmallVectorImpl<uint64_t> &Vals); 392 void writeInstruction(const Instruction &I, unsigned InstID, 393 SmallVectorImpl<unsigned> &Vals); 394 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 395 void writeGlobalValueSymbolTable( 396 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 397 void writeUseList(UseListOrder &&Order); 398 void writeUseListBlock(const Function *F); 399 void 400 writeFunction(const Function &F, 401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 402 void writeBlockInfo(); 403 void writeModuleHash(size_t BlockStartPos); 404 405 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 406 return unsigned(SSID); 407 } 408 409 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 410 }; 411 412 /// Class to manage the bitcode writing for a combined index. 413 class IndexBitcodeWriter : public BitcodeWriterBase { 414 /// The combined index to write to bitcode. 415 const ModuleSummaryIndex &Index; 416 417 /// When writing a subset of the index for distributed backends, client 418 /// provides a map of modules to the corresponding GUIDs/summaries to write. 419 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 420 421 /// Map that holds the correspondence between the GUID used in the combined 422 /// index and a value id generated by this class to use in references. 423 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 424 425 /// Tracks the last value id recorded in the GUIDToValueMap. 426 unsigned GlobalValueId = 0; 427 428 public: 429 /// Constructs a IndexBitcodeWriter object for the given combined index, 430 /// writing to the provided \p Buffer. When writing a subset of the index 431 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 432 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 433 const ModuleSummaryIndex &Index, 434 const std::map<std::string, GVSummaryMapTy> 435 *ModuleToSummariesForIndex = nullptr) 436 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 437 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 438 // Assign unique value ids to all summaries to be written, for use 439 // in writing out the call graph edges. Save the mapping from GUID 440 // to the new global value id to use when writing those edges, which 441 // are currently saved in the index in terms of GUID. 442 forEachSummary([&](GVInfo I, bool) { 443 GUIDToValueIdMap[I.first] = ++GlobalValueId; 444 }); 445 } 446 447 /// The below iterator returns the GUID and associated summary. 448 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 449 450 /// Calls the callback for each value GUID and summary to be written to 451 /// bitcode. This hides the details of whether they are being pulled from the 452 /// entire index or just those in a provided ModuleToSummariesForIndex map. 453 template<typename Functor> 454 void forEachSummary(Functor Callback) { 455 if (ModuleToSummariesForIndex) { 456 for (auto &M : *ModuleToSummariesForIndex) 457 for (auto &Summary : M.second) { 458 Callback(Summary, false); 459 // Ensure aliasee is handled, e.g. for assigning a valueId, 460 // even if we are not importing the aliasee directly (the 461 // imported alias will contain a copy of aliasee). 462 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 463 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 464 } 465 } else { 466 for (auto &Summaries : Index) 467 for (auto &Summary : Summaries.second.SummaryList) 468 Callback({Summaries.first, Summary.get()}, false); 469 } 470 } 471 472 /// Calls the callback for each entry in the modulePaths StringMap that 473 /// should be written to the module path string table. This hides the details 474 /// of whether they are being pulled from the entire index or just those in a 475 /// provided ModuleToSummariesForIndex map. 476 template <typename Functor> void forEachModule(Functor Callback) { 477 if (ModuleToSummariesForIndex) { 478 for (const auto &M : *ModuleToSummariesForIndex) { 479 const auto &MPI = Index.modulePaths().find(M.first); 480 if (MPI == Index.modulePaths().end()) { 481 // This should only happen if the bitcode file was empty, in which 482 // case we shouldn't be importing (the ModuleToSummariesForIndex 483 // would only include the module we are writing and index for). 484 assert(ModuleToSummariesForIndex->size() == 1); 485 continue; 486 } 487 Callback(*MPI); 488 } 489 } else { 490 for (const auto &MPSE : Index.modulePaths()) 491 Callback(MPSE); 492 } 493 } 494 495 /// Main entry point for writing a combined index to bitcode. 496 void write(); 497 498 private: 499 void writeModStrings(); 500 void writeCombinedGlobalValueSummary(); 501 502 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 503 auto VMI = GUIDToValueIdMap.find(ValGUID); 504 if (VMI == GUIDToValueIdMap.end()) 505 return None; 506 return VMI->second; 507 } 508 509 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 510 }; 511 512 } // end anonymous namespace 513 514 static unsigned getEncodedCastOpcode(unsigned Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Unknown cast instruction!"); 517 case Instruction::Trunc : return bitc::CAST_TRUNC; 518 case Instruction::ZExt : return bitc::CAST_ZEXT; 519 case Instruction::SExt : return bitc::CAST_SEXT; 520 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 521 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 522 case Instruction::UIToFP : return bitc::CAST_UITOFP; 523 case Instruction::SIToFP : return bitc::CAST_SITOFP; 524 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 525 case Instruction::FPExt : return bitc::CAST_FPEXT; 526 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 527 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 528 case Instruction::BitCast : return bitc::CAST_BITCAST; 529 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 530 } 531 } 532 533 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 534 switch (Opcode) { 535 default: llvm_unreachable("Unknown binary instruction!"); 536 case Instruction::FNeg: return bitc::UNOP_FNEG; 537 } 538 } 539 540 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 541 switch (Opcode) { 542 default: llvm_unreachable("Unknown binary instruction!"); 543 case Instruction::Add: 544 case Instruction::FAdd: return bitc::BINOP_ADD; 545 case Instruction::Sub: 546 case Instruction::FSub: return bitc::BINOP_SUB; 547 case Instruction::Mul: 548 case Instruction::FMul: return bitc::BINOP_MUL; 549 case Instruction::UDiv: return bitc::BINOP_UDIV; 550 case Instruction::FDiv: 551 case Instruction::SDiv: return bitc::BINOP_SDIV; 552 case Instruction::URem: return bitc::BINOP_UREM; 553 case Instruction::FRem: 554 case Instruction::SRem: return bitc::BINOP_SREM; 555 case Instruction::Shl: return bitc::BINOP_SHL; 556 case Instruction::LShr: return bitc::BINOP_LSHR; 557 case Instruction::AShr: return bitc::BINOP_ASHR; 558 case Instruction::And: return bitc::BINOP_AND; 559 case Instruction::Or: return bitc::BINOP_OR; 560 case Instruction::Xor: return bitc::BINOP_XOR; 561 } 562 } 563 564 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 565 switch (Op) { 566 default: llvm_unreachable("Unknown RMW operation!"); 567 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 568 case AtomicRMWInst::Add: return bitc::RMW_ADD; 569 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 570 case AtomicRMWInst::And: return bitc::RMW_AND; 571 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 572 case AtomicRMWInst::Or: return bitc::RMW_OR; 573 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 574 case AtomicRMWInst::Max: return bitc::RMW_MAX; 575 case AtomicRMWInst::Min: return bitc::RMW_MIN; 576 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 577 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 578 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 579 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 580 } 581 } 582 583 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 584 switch (Ordering) { 585 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 586 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 587 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 588 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 589 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 590 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 591 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 592 } 593 llvm_unreachable("Invalid ordering"); 594 } 595 596 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 597 StringRef Str, unsigned AbbrevToUse) { 598 SmallVector<unsigned, 64> Vals; 599 600 // Code: [strchar x N] 601 for (char C : Str) { 602 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 603 AbbrevToUse = 0; 604 Vals.push_back(C); 605 } 606 607 // Emit the finished record. 608 Stream.EmitRecord(Code, Vals, AbbrevToUse); 609 } 610 611 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 612 switch (Kind) { 613 case Attribute::Alignment: 614 return bitc::ATTR_KIND_ALIGNMENT; 615 case Attribute::AllocAlign: 616 return bitc::ATTR_KIND_ALLOC_ALIGN; 617 case Attribute::AllocSize: 618 return bitc::ATTR_KIND_ALLOC_SIZE; 619 case Attribute::AlwaysInline: 620 return bitc::ATTR_KIND_ALWAYS_INLINE; 621 case Attribute::ArgMemOnly: 622 return bitc::ATTR_KIND_ARGMEMONLY; 623 case Attribute::Builtin: 624 return bitc::ATTR_KIND_BUILTIN; 625 case Attribute::ByVal: 626 return bitc::ATTR_KIND_BY_VAL; 627 case Attribute::Convergent: 628 return bitc::ATTR_KIND_CONVERGENT; 629 case Attribute::InAlloca: 630 return bitc::ATTR_KIND_IN_ALLOCA; 631 case Attribute::Cold: 632 return bitc::ATTR_KIND_COLD; 633 case Attribute::DisableSanitizerInstrumentation: 634 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 635 case Attribute::Hot: 636 return bitc::ATTR_KIND_HOT; 637 case Attribute::ElementType: 638 return bitc::ATTR_KIND_ELEMENTTYPE; 639 case Attribute::InaccessibleMemOnly: 640 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 641 case Attribute::InaccessibleMemOrArgMemOnly: 642 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 643 case Attribute::InlineHint: 644 return bitc::ATTR_KIND_INLINE_HINT; 645 case Attribute::InReg: 646 return bitc::ATTR_KIND_IN_REG; 647 case Attribute::JumpTable: 648 return bitc::ATTR_KIND_JUMP_TABLE; 649 case Attribute::MinSize: 650 return bitc::ATTR_KIND_MIN_SIZE; 651 case Attribute::AllocatedPointer: 652 return bitc::ATTR_KIND_ALLOCATED_POINTER; 653 case Attribute::AllocKind: 654 return bitc::ATTR_KIND_ALLOC_KIND; 655 case Attribute::Naked: 656 return bitc::ATTR_KIND_NAKED; 657 case Attribute::Nest: 658 return bitc::ATTR_KIND_NEST; 659 case Attribute::NoAlias: 660 return bitc::ATTR_KIND_NO_ALIAS; 661 case Attribute::NoBuiltin: 662 return bitc::ATTR_KIND_NO_BUILTIN; 663 case Attribute::NoCallback: 664 return bitc::ATTR_KIND_NO_CALLBACK; 665 case Attribute::NoCapture: 666 return bitc::ATTR_KIND_NO_CAPTURE; 667 case Attribute::NoDuplicate: 668 return bitc::ATTR_KIND_NO_DUPLICATE; 669 case Attribute::NoFree: 670 return bitc::ATTR_KIND_NOFREE; 671 case Attribute::NoImplicitFloat: 672 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 673 case Attribute::NoInline: 674 return bitc::ATTR_KIND_NO_INLINE; 675 case Attribute::NoRecurse: 676 return bitc::ATTR_KIND_NO_RECURSE; 677 case Attribute::NoMerge: 678 return bitc::ATTR_KIND_NO_MERGE; 679 case Attribute::NonLazyBind: 680 return bitc::ATTR_KIND_NON_LAZY_BIND; 681 case Attribute::NonNull: 682 return bitc::ATTR_KIND_NON_NULL; 683 case Attribute::Dereferenceable: 684 return bitc::ATTR_KIND_DEREFERENCEABLE; 685 case Attribute::DereferenceableOrNull: 686 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 687 case Attribute::NoRedZone: 688 return bitc::ATTR_KIND_NO_RED_ZONE; 689 case Attribute::NoReturn: 690 return bitc::ATTR_KIND_NO_RETURN; 691 case Attribute::NoSync: 692 return bitc::ATTR_KIND_NOSYNC; 693 case Attribute::NoCfCheck: 694 return bitc::ATTR_KIND_NOCF_CHECK; 695 case Attribute::NoProfile: 696 return bitc::ATTR_KIND_NO_PROFILE; 697 case Attribute::NoUnwind: 698 return bitc::ATTR_KIND_NO_UNWIND; 699 case Attribute::NoSanitizeBounds: 700 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 701 case Attribute::NoSanitizeCoverage: 702 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 703 case Attribute::NullPointerIsValid: 704 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 705 case Attribute::OptForFuzzing: 706 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 707 case Attribute::OptimizeForSize: 708 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 709 case Attribute::OptimizeNone: 710 return bitc::ATTR_KIND_OPTIMIZE_NONE; 711 case Attribute::ReadNone: 712 return bitc::ATTR_KIND_READ_NONE; 713 case Attribute::ReadOnly: 714 return bitc::ATTR_KIND_READ_ONLY; 715 case Attribute::Returned: 716 return bitc::ATTR_KIND_RETURNED; 717 case Attribute::ReturnsTwice: 718 return bitc::ATTR_KIND_RETURNS_TWICE; 719 case Attribute::SExt: 720 return bitc::ATTR_KIND_S_EXT; 721 case Attribute::Speculatable: 722 return bitc::ATTR_KIND_SPECULATABLE; 723 case Attribute::StackAlignment: 724 return bitc::ATTR_KIND_STACK_ALIGNMENT; 725 case Attribute::StackProtect: 726 return bitc::ATTR_KIND_STACK_PROTECT; 727 case Attribute::StackProtectReq: 728 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 729 case Attribute::StackProtectStrong: 730 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 731 case Attribute::SafeStack: 732 return bitc::ATTR_KIND_SAFESTACK; 733 case Attribute::ShadowCallStack: 734 return bitc::ATTR_KIND_SHADOWCALLSTACK; 735 case Attribute::StrictFP: 736 return bitc::ATTR_KIND_STRICT_FP; 737 case Attribute::StructRet: 738 return bitc::ATTR_KIND_STRUCT_RET; 739 case Attribute::SanitizeAddress: 740 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 741 case Attribute::SanitizeHWAddress: 742 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 743 case Attribute::SanitizeThread: 744 return bitc::ATTR_KIND_SANITIZE_THREAD; 745 case Attribute::SanitizeMemory: 746 return bitc::ATTR_KIND_SANITIZE_MEMORY; 747 case Attribute::SpeculativeLoadHardening: 748 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 749 case Attribute::SwiftError: 750 return bitc::ATTR_KIND_SWIFT_ERROR; 751 case Attribute::SwiftSelf: 752 return bitc::ATTR_KIND_SWIFT_SELF; 753 case Attribute::SwiftAsync: 754 return bitc::ATTR_KIND_SWIFT_ASYNC; 755 case Attribute::UWTable: 756 return bitc::ATTR_KIND_UW_TABLE; 757 case Attribute::VScaleRange: 758 return bitc::ATTR_KIND_VSCALE_RANGE; 759 case Attribute::WillReturn: 760 return bitc::ATTR_KIND_WILLRETURN; 761 case Attribute::WriteOnly: 762 return bitc::ATTR_KIND_WRITEONLY; 763 case Attribute::ZExt: 764 return bitc::ATTR_KIND_Z_EXT; 765 case Attribute::ImmArg: 766 return bitc::ATTR_KIND_IMMARG; 767 case Attribute::SanitizeMemTag: 768 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 769 case Attribute::Preallocated: 770 return bitc::ATTR_KIND_PREALLOCATED; 771 case Attribute::NoUndef: 772 return bitc::ATTR_KIND_NOUNDEF; 773 case Attribute::ByRef: 774 return bitc::ATTR_KIND_BYREF; 775 case Attribute::MustProgress: 776 return bitc::ATTR_KIND_MUSTPROGRESS; 777 case Attribute::EndAttrKinds: 778 llvm_unreachable("Can not encode end-attribute kinds marker."); 779 case Attribute::None: 780 llvm_unreachable("Can not encode none-attribute."); 781 case Attribute::EmptyKey: 782 case Attribute::TombstoneKey: 783 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 784 } 785 786 llvm_unreachable("Trying to encode unknown attribute"); 787 } 788 789 void ModuleBitcodeWriter::writeAttributeGroupTable() { 790 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 791 VE.getAttributeGroups(); 792 if (AttrGrps.empty()) return; 793 794 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 795 796 SmallVector<uint64_t, 64> Record; 797 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 798 unsigned AttrListIndex = Pair.first; 799 AttributeSet AS = Pair.second; 800 Record.push_back(VE.getAttributeGroupID(Pair)); 801 Record.push_back(AttrListIndex); 802 803 for (Attribute Attr : AS) { 804 if (Attr.isEnumAttribute()) { 805 Record.push_back(0); 806 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 807 } else if (Attr.isIntAttribute()) { 808 Record.push_back(1); 809 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 810 Record.push_back(Attr.getValueAsInt()); 811 } else if (Attr.isStringAttribute()) { 812 StringRef Kind = Attr.getKindAsString(); 813 StringRef Val = Attr.getValueAsString(); 814 815 Record.push_back(Val.empty() ? 3 : 4); 816 Record.append(Kind.begin(), Kind.end()); 817 Record.push_back(0); 818 if (!Val.empty()) { 819 Record.append(Val.begin(), Val.end()); 820 Record.push_back(0); 821 } 822 } else { 823 assert(Attr.isTypeAttribute()); 824 Type *Ty = Attr.getValueAsType(); 825 Record.push_back(Ty ? 6 : 5); 826 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 827 if (Ty) 828 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 829 } 830 } 831 832 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 833 Record.clear(); 834 } 835 836 Stream.ExitBlock(); 837 } 838 839 void ModuleBitcodeWriter::writeAttributeTable() { 840 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 841 if (Attrs.empty()) return; 842 843 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 844 845 SmallVector<uint64_t, 64> Record; 846 for (const AttributeList &AL : Attrs) { 847 for (unsigned i : AL.indexes()) { 848 AttributeSet AS = AL.getAttributes(i); 849 if (AS.hasAttributes()) 850 Record.push_back(VE.getAttributeGroupID({i, AS})); 851 } 852 853 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 854 Record.clear(); 855 } 856 857 Stream.ExitBlock(); 858 } 859 860 /// WriteTypeTable - Write out the type table for a module. 861 void ModuleBitcodeWriter::writeTypeTable() { 862 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 863 864 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 865 SmallVector<uint64_t, 64> TypeVals; 866 867 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 868 869 // Abbrev for TYPE_CODE_POINTER. 870 auto Abbv = std::make_shared<BitCodeAbbrev>(); 871 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 873 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 874 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 875 876 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 877 Abbv = std::make_shared<BitCodeAbbrev>(); 878 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 879 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 880 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 881 882 // Abbrev for TYPE_CODE_FUNCTION. 883 Abbv = std::make_shared<BitCodeAbbrev>(); 884 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 888 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 889 890 // Abbrev for TYPE_CODE_STRUCT_ANON. 891 Abbv = std::make_shared<BitCodeAbbrev>(); 892 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 896 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 897 898 // Abbrev for TYPE_CODE_STRUCT_NAME. 899 Abbv = std::make_shared<BitCodeAbbrev>(); 900 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 903 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 904 905 // Abbrev for TYPE_CODE_STRUCT_NAMED. 906 Abbv = std::make_shared<BitCodeAbbrev>(); 907 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 911 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 912 913 // Abbrev for TYPE_CODE_ARRAY. 914 Abbv = std::make_shared<BitCodeAbbrev>(); 915 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 918 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 919 920 // Emit an entry count so the reader can reserve space. 921 TypeVals.push_back(TypeList.size()); 922 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 923 TypeVals.clear(); 924 925 // Loop over all of the types, emitting each in turn. 926 for (Type *T : TypeList) { 927 int AbbrevToUse = 0; 928 unsigned Code = 0; 929 930 switch (T->getTypeID()) { 931 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 932 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 933 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 934 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 935 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 936 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 937 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 938 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 939 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 940 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 941 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 942 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 943 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 944 case Type::IntegerTyID: 945 // INTEGER: [width] 946 Code = bitc::TYPE_CODE_INTEGER; 947 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 948 break; 949 case Type::PointerTyID: { 950 PointerType *PTy = cast<PointerType>(T); 951 unsigned AddressSpace = PTy->getAddressSpace(); 952 if (PTy->isOpaque()) { 953 // OPAQUE_POINTER: [address space] 954 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 955 TypeVals.push_back(AddressSpace); 956 if (AddressSpace == 0) 957 AbbrevToUse = OpaquePtrAbbrev; 958 } else { 959 // POINTER: [pointee type, address space] 960 Code = bitc::TYPE_CODE_POINTER; 961 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 962 TypeVals.push_back(AddressSpace); 963 if (AddressSpace == 0) 964 AbbrevToUse = PtrAbbrev; 965 } 966 break; 967 } 968 case Type::FunctionTyID: { 969 FunctionType *FT = cast<FunctionType>(T); 970 // FUNCTION: [isvararg, retty, paramty x N] 971 Code = bitc::TYPE_CODE_FUNCTION; 972 TypeVals.push_back(FT->isVarArg()); 973 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 974 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 975 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 976 AbbrevToUse = FunctionAbbrev; 977 break; 978 } 979 case Type::StructTyID: { 980 StructType *ST = cast<StructType>(T); 981 // STRUCT: [ispacked, eltty x N] 982 TypeVals.push_back(ST->isPacked()); 983 // Output all of the element types. 984 for (Type *ET : ST->elements()) 985 TypeVals.push_back(VE.getTypeID(ET)); 986 987 if (ST->isLiteral()) { 988 Code = bitc::TYPE_CODE_STRUCT_ANON; 989 AbbrevToUse = StructAnonAbbrev; 990 } else { 991 if (ST->isOpaque()) { 992 Code = bitc::TYPE_CODE_OPAQUE; 993 } else { 994 Code = bitc::TYPE_CODE_STRUCT_NAMED; 995 AbbrevToUse = StructNamedAbbrev; 996 } 997 998 // Emit the name if it is present. 999 if (!ST->getName().empty()) 1000 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1001 StructNameAbbrev); 1002 } 1003 break; 1004 } 1005 case Type::ArrayTyID: { 1006 ArrayType *AT = cast<ArrayType>(T); 1007 // ARRAY: [numelts, eltty] 1008 Code = bitc::TYPE_CODE_ARRAY; 1009 TypeVals.push_back(AT->getNumElements()); 1010 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1011 AbbrevToUse = ArrayAbbrev; 1012 break; 1013 } 1014 case Type::FixedVectorTyID: 1015 case Type::ScalableVectorTyID: { 1016 VectorType *VT = cast<VectorType>(T); 1017 // VECTOR [numelts, eltty] or 1018 // [numelts, eltty, scalable] 1019 Code = bitc::TYPE_CODE_VECTOR; 1020 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1021 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1022 if (isa<ScalableVectorType>(VT)) 1023 TypeVals.push_back(true); 1024 break; 1025 } 1026 case Type::DXILPointerTyID: 1027 llvm_unreachable("DXIL pointers cannot be added to IR modules"); 1028 } 1029 1030 // Emit the finished record. 1031 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1032 TypeVals.clear(); 1033 } 1034 1035 Stream.ExitBlock(); 1036 } 1037 1038 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1039 switch (Linkage) { 1040 case GlobalValue::ExternalLinkage: 1041 return 0; 1042 case GlobalValue::WeakAnyLinkage: 1043 return 16; 1044 case GlobalValue::AppendingLinkage: 1045 return 2; 1046 case GlobalValue::InternalLinkage: 1047 return 3; 1048 case GlobalValue::LinkOnceAnyLinkage: 1049 return 18; 1050 case GlobalValue::ExternalWeakLinkage: 1051 return 7; 1052 case GlobalValue::CommonLinkage: 1053 return 8; 1054 case GlobalValue::PrivateLinkage: 1055 return 9; 1056 case GlobalValue::WeakODRLinkage: 1057 return 17; 1058 case GlobalValue::LinkOnceODRLinkage: 1059 return 19; 1060 case GlobalValue::AvailableExternallyLinkage: 1061 return 12; 1062 } 1063 llvm_unreachable("Invalid linkage"); 1064 } 1065 1066 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1067 return getEncodedLinkage(GV.getLinkage()); 1068 } 1069 1070 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1071 uint64_t RawFlags = 0; 1072 RawFlags |= Flags.ReadNone; 1073 RawFlags |= (Flags.ReadOnly << 1); 1074 RawFlags |= (Flags.NoRecurse << 2); 1075 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1076 RawFlags |= (Flags.NoInline << 4); 1077 RawFlags |= (Flags.AlwaysInline << 5); 1078 RawFlags |= (Flags.NoUnwind << 6); 1079 RawFlags |= (Flags.MayThrow << 7); 1080 RawFlags |= (Flags.HasUnknownCall << 8); 1081 RawFlags |= (Flags.MustBeUnreachable << 9); 1082 return RawFlags; 1083 } 1084 1085 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1086 // in BitcodeReader.cpp. 1087 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1088 uint64_t RawFlags = 0; 1089 1090 RawFlags |= Flags.NotEligibleToImport; // bool 1091 RawFlags |= (Flags.Live << 1); 1092 RawFlags |= (Flags.DSOLocal << 2); 1093 RawFlags |= (Flags.CanAutoHide << 3); 1094 1095 // Linkage don't need to be remapped at that time for the summary. Any future 1096 // change to the getEncodedLinkage() function will need to be taken into 1097 // account here as well. 1098 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1099 1100 RawFlags |= (Flags.Visibility << 8); // 2 bits 1101 1102 return RawFlags; 1103 } 1104 1105 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1106 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1107 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1108 return RawFlags; 1109 } 1110 1111 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1112 switch (GV.getVisibility()) { 1113 case GlobalValue::DefaultVisibility: return 0; 1114 case GlobalValue::HiddenVisibility: return 1; 1115 case GlobalValue::ProtectedVisibility: return 2; 1116 } 1117 llvm_unreachable("Invalid visibility"); 1118 } 1119 1120 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1121 switch (GV.getDLLStorageClass()) { 1122 case GlobalValue::DefaultStorageClass: return 0; 1123 case GlobalValue::DLLImportStorageClass: return 1; 1124 case GlobalValue::DLLExportStorageClass: return 2; 1125 } 1126 llvm_unreachable("Invalid DLL storage class"); 1127 } 1128 1129 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1130 switch (GV.getThreadLocalMode()) { 1131 case GlobalVariable::NotThreadLocal: return 0; 1132 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1133 case GlobalVariable::LocalDynamicTLSModel: return 2; 1134 case GlobalVariable::InitialExecTLSModel: return 3; 1135 case GlobalVariable::LocalExecTLSModel: return 4; 1136 } 1137 llvm_unreachable("Invalid TLS model"); 1138 } 1139 1140 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1141 switch (C.getSelectionKind()) { 1142 case Comdat::Any: 1143 return bitc::COMDAT_SELECTION_KIND_ANY; 1144 case Comdat::ExactMatch: 1145 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1146 case Comdat::Largest: 1147 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1148 case Comdat::NoDeduplicate: 1149 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1150 case Comdat::SameSize: 1151 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1152 } 1153 llvm_unreachable("Invalid selection kind"); 1154 } 1155 1156 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1157 switch (GV.getUnnamedAddr()) { 1158 case GlobalValue::UnnamedAddr::None: return 0; 1159 case GlobalValue::UnnamedAddr::Local: return 2; 1160 case GlobalValue::UnnamedAddr::Global: return 1; 1161 } 1162 llvm_unreachable("Invalid unnamed_addr"); 1163 } 1164 1165 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1166 if (GenerateHash) 1167 Hasher.update(Str); 1168 return StrtabBuilder.add(Str); 1169 } 1170 1171 void ModuleBitcodeWriter::writeComdats() { 1172 SmallVector<unsigned, 64> Vals; 1173 for (const Comdat *C : VE.getComdats()) { 1174 // COMDAT: [strtab offset, strtab size, selection_kind] 1175 Vals.push_back(addToStrtab(C->getName())); 1176 Vals.push_back(C->getName().size()); 1177 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1178 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1179 Vals.clear(); 1180 } 1181 } 1182 1183 /// Write a record that will eventually hold the word offset of the 1184 /// module-level VST. For now the offset is 0, which will be backpatched 1185 /// after the real VST is written. Saves the bit offset to backpatch. 1186 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1187 // Write a placeholder value in for the offset of the real VST, 1188 // which is written after the function blocks so that it can include 1189 // the offset of each function. The placeholder offset will be 1190 // updated when the real VST is written. 1191 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1192 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1193 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1194 // hold the real VST offset. Must use fixed instead of VBR as we don't 1195 // know how many VBR chunks to reserve ahead of time. 1196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1197 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1198 1199 // Emit the placeholder 1200 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1201 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1202 1203 // Compute and save the bit offset to the placeholder, which will be 1204 // patched when the real VST is written. We can simply subtract the 32-bit 1205 // fixed size from the current bit number to get the location to backpatch. 1206 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1207 } 1208 1209 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1210 1211 /// Determine the encoding to use for the given string name and length. 1212 static StringEncoding getStringEncoding(StringRef Str) { 1213 bool isChar6 = true; 1214 for (char C : Str) { 1215 if (isChar6) 1216 isChar6 = BitCodeAbbrevOp::isChar6(C); 1217 if ((unsigned char)C & 128) 1218 // don't bother scanning the rest. 1219 return SE_Fixed8; 1220 } 1221 if (isChar6) 1222 return SE_Char6; 1223 return SE_Fixed7; 1224 } 1225 1226 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1227 "Sanitizer Metadata is too large for naive serialization."); 1228 static unsigned 1229 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1230 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1231 (Meta.NoMemtag << 2) | (Meta.IsDynInit << 3); 1232 } 1233 1234 /// Emit top-level description of module, including target triple, inline asm, 1235 /// descriptors for global variables, and function prototype info. 1236 /// Returns the bit offset to backpatch with the location of the real VST. 1237 void ModuleBitcodeWriter::writeModuleInfo() { 1238 // Emit various pieces of data attached to a module. 1239 if (!M.getTargetTriple().empty()) 1240 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1241 0 /*TODO*/); 1242 const std::string &DL = M.getDataLayoutStr(); 1243 if (!DL.empty()) 1244 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1245 if (!M.getModuleInlineAsm().empty()) 1246 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1247 0 /*TODO*/); 1248 1249 // Emit information about sections and GC, computing how many there are. Also 1250 // compute the maximum alignment value. 1251 std::map<std::string, unsigned> SectionMap; 1252 std::map<std::string, unsigned> GCMap; 1253 MaybeAlign MaxAlignment; 1254 unsigned MaxGlobalType = 0; 1255 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1256 if (A) 1257 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1258 }; 1259 for (const GlobalVariable &GV : M.globals()) { 1260 UpdateMaxAlignment(GV.getAlign()); 1261 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1262 if (GV.hasSection()) { 1263 // Give section names unique ID's. 1264 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1265 if (!Entry) { 1266 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1267 0 /*TODO*/); 1268 Entry = SectionMap.size(); 1269 } 1270 } 1271 } 1272 for (const Function &F : M) { 1273 UpdateMaxAlignment(F.getAlign()); 1274 if (F.hasSection()) { 1275 // Give section names unique ID's. 1276 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1277 if (!Entry) { 1278 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1279 0 /*TODO*/); 1280 Entry = SectionMap.size(); 1281 } 1282 } 1283 if (F.hasGC()) { 1284 // Same for GC names. 1285 unsigned &Entry = GCMap[F.getGC()]; 1286 if (!Entry) { 1287 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1288 0 /*TODO*/); 1289 Entry = GCMap.size(); 1290 } 1291 } 1292 } 1293 1294 // Emit abbrev for globals, now that we know # sections and max alignment. 1295 unsigned SimpleGVarAbbrev = 0; 1296 if (!M.global_empty()) { 1297 // Add an abbrev for common globals with no visibility or thread localness. 1298 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1299 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1303 Log2_32_Ceil(MaxGlobalType+1))); 1304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1305 //| explicitType << 1 1306 //| constant 1307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1309 if (!MaxAlignment) // Alignment. 1310 Abbv->Add(BitCodeAbbrevOp(0)); 1311 else { 1312 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1314 Log2_32_Ceil(MaxEncAlignment+1))); 1315 } 1316 if (SectionMap.empty()) // Section. 1317 Abbv->Add(BitCodeAbbrevOp(0)); 1318 else 1319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1320 Log2_32_Ceil(SectionMap.size()+1))); 1321 // Don't bother emitting vis + thread local. 1322 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1323 } 1324 1325 SmallVector<unsigned, 64> Vals; 1326 // Emit the module's source file name. 1327 { 1328 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1329 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1330 if (Bits == SE_Char6) 1331 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1332 else if (Bits == SE_Fixed7) 1333 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1334 1335 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1336 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1337 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1339 Abbv->Add(AbbrevOpToUse); 1340 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1341 1342 for (const auto P : M.getSourceFileName()) 1343 Vals.push_back((unsigned char)P); 1344 1345 // Emit the finished record. 1346 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1347 Vals.clear(); 1348 } 1349 1350 // Emit the global variable information. 1351 for (const GlobalVariable &GV : M.globals()) { 1352 unsigned AbbrevToUse = 0; 1353 1354 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1355 // linkage, alignment, section, visibility, threadlocal, 1356 // unnamed_addr, externally_initialized, dllstorageclass, 1357 // comdat, attributes, DSO_Local, GlobalSanitizer] 1358 Vals.push_back(addToStrtab(GV.getName())); 1359 Vals.push_back(GV.getName().size()); 1360 Vals.push_back(VE.getTypeID(GV.getValueType())); 1361 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1362 Vals.push_back(GV.isDeclaration() ? 0 : 1363 (VE.getValueID(GV.getInitializer()) + 1)); 1364 Vals.push_back(getEncodedLinkage(GV)); 1365 Vals.push_back(getEncodedAlign(GV.getAlign())); 1366 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1367 : 0); 1368 if (GV.isThreadLocal() || 1369 GV.getVisibility() != GlobalValue::DefaultVisibility || 1370 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1371 GV.isExternallyInitialized() || 1372 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1373 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1374 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1375 Vals.push_back(getEncodedVisibility(GV)); 1376 Vals.push_back(getEncodedThreadLocalMode(GV)); 1377 Vals.push_back(getEncodedUnnamedAddr(GV)); 1378 Vals.push_back(GV.isExternallyInitialized()); 1379 Vals.push_back(getEncodedDLLStorageClass(GV)); 1380 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1381 1382 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1383 Vals.push_back(VE.getAttributeListID(AL)); 1384 1385 Vals.push_back(GV.isDSOLocal()); 1386 Vals.push_back(addToStrtab(GV.getPartition())); 1387 Vals.push_back(GV.getPartition().size()); 1388 1389 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1390 GV.getSanitizerMetadata()) 1391 : 0)); 1392 } else { 1393 AbbrevToUse = SimpleGVarAbbrev; 1394 } 1395 1396 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1397 Vals.clear(); 1398 } 1399 1400 // Emit the function proto information. 1401 for (const Function &F : M) { 1402 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1403 // linkage, paramattrs, alignment, section, visibility, gc, 1404 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1405 // prefixdata, personalityfn, DSO_Local, addrspace] 1406 Vals.push_back(addToStrtab(F.getName())); 1407 Vals.push_back(F.getName().size()); 1408 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1409 Vals.push_back(F.getCallingConv()); 1410 Vals.push_back(F.isDeclaration()); 1411 Vals.push_back(getEncodedLinkage(F)); 1412 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1413 Vals.push_back(getEncodedAlign(F.getAlign())); 1414 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1415 : 0); 1416 Vals.push_back(getEncodedVisibility(F)); 1417 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1418 Vals.push_back(getEncodedUnnamedAddr(F)); 1419 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1420 : 0); 1421 Vals.push_back(getEncodedDLLStorageClass(F)); 1422 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1423 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1424 : 0); 1425 Vals.push_back( 1426 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1427 1428 Vals.push_back(F.isDSOLocal()); 1429 Vals.push_back(F.getAddressSpace()); 1430 Vals.push_back(addToStrtab(F.getPartition())); 1431 Vals.push_back(F.getPartition().size()); 1432 1433 unsigned AbbrevToUse = 0; 1434 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1435 Vals.clear(); 1436 } 1437 1438 // Emit the alias information. 1439 for (const GlobalAlias &A : M.aliases()) { 1440 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1441 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1442 // DSO_Local] 1443 Vals.push_back(addToStrtab(A.getName())); 1444 Vals.push_back(A.getName().size()); 1445 Vals.push_back(VE.getTypeID(A.getValueType())); 1446 Vals.push_back(A.getType()->getAddressSpace()); 1447 Vals.push_back(VE.getValueID(A.getAliasee())); 1448 Vals.push_back(getEncodedLinkage(A)); 1449 Vals.push_back(getEncodedVisibility(A)); 1450 Vals.push_back(getEncodedDLLStorageClass(A)); 1451 Vals.push_back(getEncodedThreadLocalMode(A)); 1452 Vals.push_back(getEncodedUnnamedAddr(A)); 1453 Vals.push_back(A.isDSOLocal()); 1454 Vals.push_back(addToStrtab(A.getPartition())); 1455 Vals.push_back(A.getPartition().size()); 1456 1457 unsigned AbbrevToUse = 0; 1458 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1459 Vals.clear(); 1460 } 1461 1462 // Emit the ifunc information. 1463 for (const GlobalIFunc &I : M.ifuncs()) { 1464 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1465 // val#, linkage, visibility, DSO_Local] 1466 Vals.push_back(addToStrtab(I.getName())); 1467 Vals.push_back(I.getName().size()); 1468 Vals.push_back(VE.getTypeID(I.getValueType())); 1469 Vals.push_back(I.getType()->getAddressSpace()); 1470 Vals.push_back(VE.getValueID(I.getResolver())); 1471 Vals.push_back(getEncodedLinkage(I)); 1472 Vals.push_back(getEncodedVisibility(I)); 1473 Vals.push_back(I.isDSOLocal()); 1474 Vals.push_back(addToStrtab(I.getPartition())); 1475 Vals.push_back(I.getPartition().size()); 1476 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1477 Vals.clear(); 1478 } 1479 1480 writeValueSymbolTableForwardDecl(); 1481 } 1482 1483 static uint64_t getOptimizationFlags(const Value *V) { 1484 uint64_t Flags = 0; 1485 1486 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1487 if (OBO->hasNoSignedWrap()) 1488 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1489 if (OBO->hasNoUnsignedWrap()) 1490 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1491 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1492 if (PEO->isExact()) 1493 Flags |= 1 << bitc::PEO_EXACT; 1494 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1495 if (FPMO->hasAllowReassoc()) 1496 Flags |= bitc::AllowReassoc; 1497 if (FPMO->hasNoNaNs()) 1498 Flags |= bitc::NoNaNs; 1499 if (FPMO->hasNoInfs()) 1500 Flags |= bitc::NoInfs; 1501 if (FPMO->hasNoSignedZeros()) 1502 Flags |= bitc::NoSignedZeros; 1503 if (FPMO->hasAllowReciprocal()) 1504 Flags |= bitc::AllowReciprocal; 1505 if (FPMO->hasAllowContract()) 1506 Flags |= bitc::AllowContract; 1507 if (FPMO->hasApproxFunc()) 1508 Flags |= bitc::ApproxFunc; 1509 } 1510 1511 return Flags; 1512 } 1513 1514 void ModuleBitcodeWriter::writeValueAsMetadata( 1515 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1516 // Mimic an MDNode with a value as one operand. 1517 Value *V = MD->getValue(); 1518 Record.push_back(VE.getTypeID(V->getType())); 1519 Record.push_back(VE.getValueID(V)); 1520 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1521 Record.clear(); 1522 } 1523 1524 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1525 SmallVectorImpl<uint64_t> &Record, 1526 unsigned Abbrev) { 1527 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1528 Metadata *MD = N->getOperand(i); 1529 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1530 "Unexpected function-local metadata"); 1531 Record.push_back(VE.getMetadataOrNullID(MD)); 1532 } 1533 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1534 : bitc::METADATA_NODE, 1535 Record, Abbrev); 1536 Record.clear(); 1537 } 1538 1539 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1540 // Assume the column is usually under 128, and always output the inlined-at 1541 // location (it's never more expensive than building an array size 1). 1542 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1543 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1550 return Stream.EmitAbbrev(std::move(Abbv)); 1551 } 1552 1553 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1554 SmallVectorImpl<uint64_t> &Record, 1555 unsigned &Abbrev) { 1556 if (!Abbrev) 1557 Abbrev = createDILocationAbbrev(); 1558 1559 Record.push_back(N->isDistinct()); 1560 Record.push_back(N->getLine()); 1561 Record.push_back(N->getColumn()); 1562 Record.push_back(VE.getMetadataID(N->getScope())); 1563 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1564 Record.push_back(N->isImplicitCode()); 1565 1566 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1567 Record.clear(); 1568 } 1569 1570 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1571 // Assume the column is usually under 128, and always output the inlined-at 1572 // location (it's never more expensive than building an array size 1). 1573 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1574 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1581 return Stream.EmitAbbrev(std::move(Abbv)); 1582 } 1583 1584 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1585 SmallVectorImpl<uint64_t> &Record, 1586 unsigned &Abbrev) { 1587 if (!Abbrev) 1588 Abbrev = createGenericDINodeAbbrev(); 1589 1590 Record.push_back(N->isDistinct()); 1591 Record.push_back(N->getTag()); 1592 Record.push_back(0); // Per-tag version field; unused for now. 1593 1594 for (auto &I : N->operands()) 1595 Record.push_back(VE.getMetadataOrNullID(I)); 1596 1597 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1598 Record.clear(); 1599 } 1600 1601 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1602 SmallVectorImpl<uint64_t> &Record, 1603 unsigned Abbrev) { 1604 const uint64_t Version = 2 << 1; 1605 Record.push_back((uint64_t)N->isDistinct() | Version); 1606 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1607 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1608 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1609 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1610 1611 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1612 Record.clear(); 1613 } 1614 1615 void ModuleBitcodeWriter::writeDIGenericSubrange( 1616 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1617 unsigned Abbrev) { 1618 Record.push_back((uint64_t)N->isDistinct()); 1619 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1620 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1621 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1622 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1623 1624 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1625 Record.clear(); 1626 } 1627 1628 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1629 if ((int64_t)V >= 0) 1630 Vals.push_back(V << 1); 1631 else 1632 Vals.push_back((-V << 1) | 1); 1633 } 1634 1635 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1636 // We have an arbitrary precision integer value to write whose 1637 // bit width is > 64. However, in canonical unsigned integer 1638 // format it is likely that the high bits are going to be zero. 1639 // So, we only write the number of active words. 1640 unsigned NumWords = A.getActiveWords(); 1641 const uint64_t *RawData = A.getRawData(); 1642 for (unsigned i = 0; i < NumWords; i++) 1643 emitSignedInt64(Vals, RawData[i]); 1644 } 1645 1646 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1647 SmallVectorImpl<uint64_t> &Record, 1648 unsigned Abbrev) { 1649 const uint64_t IsBigInt = 1 << 2; 1650 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1651 Record.push_back(N->getValue().getBitWidth()); 1652 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1653 emitWideAPInt(Record, N->getValue()); 1654 1655 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1656 Record.clear(); 1657 } 1658 1659 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1660 SmallVectorImpl<uint64_t> &Record, 1661 unsigned Abbrev) { 1662 Record.push_back(N->isDistinct()); 1663 Record.push_back(N->getTag()); 1664 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1665 Record.push_back(N->getSizeInBits()); 1666 Record.push_back(N->getAlignInBits()); 1667 Record.push_back(N->getEncoding()); 1668 Record.push_back(N->getFlags()); 1669 1670 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1671 Record.clear(); 1672 } 1673 1674 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1675 SmallVectorImpl<uint64_t> &Record, 1676 unsigned Abbrev) { 1677 Record.push_back(N->isDistinct()); 1678 Record.push_back(N->getTag()); 1679 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1680 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1681 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1682 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1683 Record.push_back(N->getSizeInBits()); 1684 Record.push_back(N->getAlignInBits()); 1685 Record.push_back(N->getEncoding()); 1686 1687 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1688 Record.clear(); 1689 } 1690 1691 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1692 SmallVectorImpl<uint64_t> &Record, 1693 unsigned Abbrev) { 1694 Record.push_back(N->isDistinct()); 1695 Record.push_back(N->getTag()); 1696 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1698 Record.push_back(N->getLine()); 1699 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1700 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1701 Record.push_back(N->getSizeInBits()); 1702 Record.push_back(N->getAlignInBits()); 1703 Record.push_back(N->getOffsetInBits()); 1704 Record.push_back(N->getFlags()); 1705 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1706 1707 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1708 // that there is no DWARF address space associated with DIDerivedType. 1709 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1710 Record.push_back(*DWARFAddressSpace + 1); 1711 else 1712 Record.push_back(0); 1713 1714 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1715 1716 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1717 Record.clear(); 1718 } 1719 1720 void ModuleBitcodeWriter::writeDICompositeType( 1721 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1722 unsigned Abbrev) { 1723 const unsigned IsNotUsedInOldTypeRef = 0x2; 1724 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1725 Record.push_back(N->getTag()); 1726 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1727 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1728 Record.push_back(N->getLine()); 1729 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1730 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1731 Record.push_back(N->getSizeInBits()); 1732 Record.push_back(N->getAlignInBits()); 1733 Record.push_back(N->getOffsetInBits()); 1734 Record.push_back(N->getFlags()); 1735 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1736 Record.push_back(N->getRuntimeLang()); 1737 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1738 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1739 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1740 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1741 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1742 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1743 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1744 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1745 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1746 1747 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1748 Record.clear(); 1749 } 1750 1751 void ModuleBitcodeWriter::writeDISubroutineType( 1752 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1753 unsigned Abbrev) { 1754 const unsigned HasNoOldTypeRefs = 0x2; 1755 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1756 Record.push_back(N->getFlags()); 1757 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1758 Record.push_back(N->getCC()); 1759 1760 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1761 Record.clear(); 1762 } 1763 1764 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1765 SmallVectorImpl<uint64_t> &Record, 1766 unsigned Abbrev) { 1767 Record.push_back(N->isDistinct()); 1768 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1769 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1770 if (N->getRawChecksum()) { 1771 Record.push_back(N->getRawChecksum()->Kind); 1772 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1773 } else { 1774 // Maintain backwards compatibility with the old internal representation of 1775 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1776 Record.push_back(0); 1777 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1778 } 1779 auto Source = N->getRawSource(); 1780 if (Source) 1781 Record.push_back(VE.getMetadataOrNullID(*Source)); 1782 1783 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1784 Record.clear(); 1785 } 1786 1787 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1788 SmallVectorImpl<uint64_t> &Record, 1789 unsigned Abbrev) { 1790 assert(N->isDistinct() && "Expected distinct compile units"); 1791 Record.push_back(/* IsDistinct */ true); 1792 Record.push_back(N->getSourceLanguage()); 1793 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1795 Record.push_back(N->isOptimized()); 1796 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1797 Record.push_back(N->getRuntimeVersion()); 1798 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1799 Record.push_back(N->getEmissionKind()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1802 Record.push_back(/* subprograms */ 0); 1803 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1804 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1805 Record.push_back(N->getDWOId()); 1806 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1807 Record.push_back(N->getSplitDebugInlining()); 1808 Record.push_back(N->getDebugInfoForProfiling()); 1809 Record.push_back((unsigned)N->getNameTableKind()); 1810 Record.push_back(N->getRangesBaseAddress()); 1811 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1812 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1813 1814 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1815 Record.clear(); 1816 } 1817 1818 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1819 SmallVectorImpl<uint64_t> &Record, 1820 unsigned Abbrev) { 1821 const uint64_t HasUnitFlag = 1 << 1; 1822 const uint64_t HasSPFlagsFlag = 1 << 2; 1823 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1824 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1825 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1826 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1827 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1828 Record.push_back(N->getLine()); 1829 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1830 Record.push_back(N->getScopeLine()); 1831 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1832 Record.push_back(N->getSPFlags()); 1833 Record.push_back(N->getVirtualIndex()); 1834 Record.push_back(N->getFlags()); 1835 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1836 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1837 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1838 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1839 Record.push_back(N->getThisAdjustment()); 1840 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1841 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1842 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1843 1844 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1845 Record.clear(); 1846 } 1847 1848 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1849 SmallVectorImpl<uint64_t> &Record, 1850 unsigned Abbrev) { 1851 Record.push_back(N->isDistinct()); 1852 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1854 Record.push_back(N->getLine()); 1855 Record.push_back(N->getColumn()); 1856 1857 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1858 Record.clear(); 1859 } 1860 1861 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1862 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1863 unsigned Abbrev) { 1864 Record.push_back(N->isDistinct()); 1865 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1866 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1867 Record.push_back(N->getDiscriminator()); 1868 1869 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1870 Record.clear(); 1871 } 1872 1873 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1874 SmallVectorImpl<uint64_t> &Record, 1875 unsigned Abbrev) { 1876 Record.push_back(N->isDistinct()); 1877 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1878 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1879 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1880 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1881 Record.push_back(N->getLineNo()); 1882 1883 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1884 Record.clear(); 1885 } 1886 1887 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1888 SmallVectorImpl<uint64_t> &Record, 1889 unsigned Abbrev) { 1890 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1891 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1892 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1893 1894 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1895 Record.clear(); 1896 } 1897 1898 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1899 SmallVectorImpl<uint64_t> &Record, 1900 unsigned Abbrev) { 1901 Record.push_back(N->isDistinct()); 1902 Record.push_back(N->getMacinfoType()); 1903 Record.push_back(N->getLine()); 1904 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1905 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1906 1907 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1908 Record.clear(); 1909 } 1910 1911 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1912 SmallVectorImpl<uint64_t> &Record, 1913 unsigned Abbrev) { 1914 Record.push_back(N->isDistinct()); 1915 Record.push_back(N->getMacinfoType()); 1916 Record.push_back(N->getLine()); 1917 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1918 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1919 1920 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1921 Record.clear(); 1922 } 1923 1924 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1925 SmallVectorImpl<uint64_t> &Record, 1926 unsigned Abbrev) { 1927 Record.reserve(N->getArgs().size()); 1928 for (ValueAsMetadata *MD : N->getArgs()) 1929 Record.push_back(VE.getMetadataID(MD)); 1930 1931 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1932 Record.clear(); 1933 } 1934 1935 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1936 SmallVectorImpl<uint64_t> &Record, 1937 unsigned Abbrev) { 1938 Record.push_back(N->isDistinct()); 1939 for (auto &I : N->operands()) 1940 Record.push_back(VE.getMetadataOrNullID(I)); 1941 Record.push_back(N->getLineNo()); 1942 Record.push_back(N->getIsDecl()); 1943 1944 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1945 Record.clear(); 1946 } 1947 1948 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1949 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1950 unsigned Abbrev) { 1951 Record.push_back(N->isDistinct()); 1952 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1953 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1954 Record.push_back(N->isDefault()); 1955 1956 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1957 Record.clear(); 1958 } 1959 1960 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1961 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1962 unsigned Abbrev) { 1963 Record.push_back(N->isDistinct()); 1964 Record.push_back(N->getTag()); 1965 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1966 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1967 Record.push_back(N->isDefault()); 1968 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1969 1970 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1971 Record.clear(); 1972 } 1973 1974 void ModuleBitcodeWriter::writeDIGlobalVariable( 1975 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1976 unsigned Abbrev) { 1977 const uint64_t Version = 2 << 1; 1978 Record.push_back((uint64_t)N->isDistinct() | Version); 1979 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1980 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1981 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1982 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1983 Record.push_back(N->getLine()); 1984 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1985 Record.push_back(N->isLocalToUnit()); 1986 Record.push_back(N->isDefinition()); 1987 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1988 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1989 Record.push_back(N->getAlignInBits()); 1990 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1991 1992 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1993 Record.clear(); 1994 } 1995 1996 void ModuleBitcodeWriter::writeDILocalVariable( 1997 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1998 unsigned Abbrev) { 1999 // In order to support all possible bitcode formats in BitcodeReader we need 2000 // to distinguish the following cases: 2001 // 1) Record has no artificial tag (Record[1]), 2002 // has no obsolete inlinedAt field (Record[9]). 2003 // In this case Record size will be 8, HasAlignment flag is false. 2004 // 2) Record has artificial tag (Record[1]), 2005 // has no obsolete inlignedAt field (Record[9]). 2006 // In this case Record size will be 9, HasAlignment flag is false. 2007 // 3) Record has both artificial tag (Record[1]) and 2008 // obsolete inlignedAt field (Record[9]). 2009 // In this case Record size will be 10, HasAlignment flag is false. 2010 // 4) Record has neither artificial tag, nor inlignedAt field, but 2011 // HasAlignment flag is true and Record[8] contains alignment value. 2012 const uint64_t HasAlignmentFlag = 1 << 1; 2013 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2014 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2015 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2016 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2017 Record.push_back(N->getLine()); 2018 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2019 Record.push_back(N->getArg()); 2020 Record.push_back(N->getFlags()); 2021 Record.push_back(N->getAlignInBits()); 2022 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2023 2024 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2025 Record.clear(); 2026 } 2027 2028 void ModuleBitcodeWriter::writeDILabel( 2029 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2030 unsigned Abbrev) { 2031 Record.push_back((uint64_t)N->isDistinct()); 2032 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2033 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2034 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2035 Record.push_back(N->getLine()); 2036 2037 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2038 Record.clear(); 2039 } 2040 2041 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2042 SmallVectorImpl<uint64_t> &Record, 2043 unsigned Abbrev) { 2044 Record.reserve(N->getElements().size() + 1); 2045 const uint64_t Version = 3 << 1; 2046 Record.push_back((uint64_t)N->isDistinct() | Version); 2047 Record.append(N->elements_begin(), N->elements_end()); 2048 2049 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2050 Record.clear(); 2051 } 2052 2053 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2054 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2055 unsigned Abbrev) { 2056 Record.push_back(N->isDistinct()); 2057 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2058 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2059 2060 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2061 Record.clear(); 2062 } 2063 2064 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2065 SmallVectorImpl<uint64_t> &Record, 2066 unsigned Abbrev) { 2067 Record.push_back(N->isDistinct()); 2068 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2069 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2070 Record.push_back(N->getLine()); 2071 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2072 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2073 Record.push_back(N->getAttributes()); 2074 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2075 2076 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2077 Record.clear(); 2078 } 2079 2080 void ModuleBitcodeWriter::writeDIImportedEntity( 2081 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2082 unsigned Abbrev) { 2083 Record.push_back(N->isDistinct()); 2084 Record.push_back(N->getTag()); 2085 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2086 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2087 Record.push_back(N->getLine()); 2088 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2089 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2090 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2091 2092 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2093 Record.clear(); 2094 } 2095 2096 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2097 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2098 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2101 return Stream.EmitAbbrev(std::move(Abbv)); 2102 } 2103 2104 void ModuleBitcodeWriter::writeNamedMetadata( 2105 SmallVectorImpl<uint64_t> &Record) { 2106 if (M.named_metadata_empty()) 2107 return; 2108 2109 unsigned Abbrev = createNamedMetadataAbbrev(); 2110 for (const NamedMDNode &NMD : M.named_metadata()) { 2111 // Write name. 2112 StringRef Str = NMD.getName(); 2113 Record.append(Str.bytes_begin(), Str.bytes_end()); 2114 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2115 Record.clear(); 2116 2117 // Write named metadata operands. 2118 for (const MDNode *N : NMD.operands()) 2119 Record.push_back(VE.getMetadataID(N)); 2120 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2121 Record.clear(); 2122 } 2123 } 2124 2125 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2126 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2127 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2131 return Stream.EmitAbbrev(std::move(Abbv)); 2132 } 2133 2134 /// Write out a record for MDString. 2135 /// 2136 /// All the metadata strings in a metadata block are emitted in a single 2137 /// record. The sizes and strings themselves are shoved into a blob. 2138 void ModuleBitcodeWriter::writeMetadataStrings( 2139 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2140 if (Strings.empty()) 2141 return; 2142 2143 // Start the record with the number of strings. 2144 Record.push_back(bitc::METADATA_STRINGS); 2145 Record.push_back(Strings.size()); 2146 2147 // Emit the sizes of the strings in the blob. 2148 SmallString<256> Blob; 2149 { 2150 BitstreamWriter W(Blob); 2151 for (const Metadata *MD : Strings) 2152 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2153 W.FlushToWord(); 2154 } 2155 2156 // Add the offset to the strings to the record. 2157 Record.push_back(Blob.size()); 2158 2159 // Add the strings to the blob. 2160 for (const Metadata *MD : Strings) 2161 Blob.append(cast<MDString>(MD)->getString()); 2162 2163 // Emit the final record. 2164 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2165 Record.clear(); 2166 } 2167 2168 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2169 enum MetadataAbbrev : unsigned { 2170 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2171 #include "llvm/IR/Metadata.def" 2172 LastPlusOne 2173 }; 2174 2175 void ModuleBitcodeWriter::writeMetadataRecords( 2176 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2177 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2178 if (MDs.empty()) 2179 return; 2180 2181 // Initialize MDNode abbreviations. 2182 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2183 #include "llvm/IR/Metadata.def" 2184 2185 for (const Metadata *MD : MDs) { 2186 if (IndexPos) 2187 IndexPos->push_back(Stream.GetCurrentBitNo()); 2188 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2189 assert(N->isResolved() && "Expected forward references to be resolved"); 2190 2191 switch (N->getMetadataID()) { 2192 default: 2193 llvm_unreachable("Invalid MDNode subclass"); 2194 #define HANDLE_MDNODE_LEAF(CLASS) \ 2195 case Metadata::CLASS##Kind: \ 2196 if (MDAbbrevs) \ 2197 write##CLASS(cast<CLASS>(N), Record, \ 2198 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2199 else \ 2200 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2201 continue; 2202 #include "llvm/IR/Metadata.def" 2203 } 2204 } 2205 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2206 } 2207 } 2208 2209 void ModuleBitcodeWriter::writeModuleMetadata() { 2210 if (!VE.hasMDs() && M.named_metadata_empty()) 2211 return; 2212 2213 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2214 SmallVector<uint64_t, 64> Record; 2215 2216 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2217 // block and load any metadata. 2218 std::vector<unsigned> MDAbbrevs; 2219 2220 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2221 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2222 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2223 createGenericDINodeAbbrev(); 2224 2225 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2226 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2229 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2230 2231 Abbv = std::make_shared<BitCodeAbbrev>(); 2232 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2235 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2236 2237 // Emit MDStrings together upfront. 2238 writeMetadataStrings(VE.getMDStrings(), Record); 2239 2240 // We only emit an index for the metadata record if we have more than a given 2241 // (naive) threshold of metadatas, otherwise it is not worth it. 2242 if (VE.getNonMDStrings().size() > IndexThreshold) { 2243 // Write a placeholder value in for the offset of the metadata index, 2244 // which is written after the records, so that it can include 2245 // the offset of each entry. The placeholder offset will be 2246 // updated after all records are emitted. 2247 uint64_t Vals[] = {0, 0}; 2248 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2249 } 2250 2251 // Compute and save the bit offset to the current position, which will be 2252 // patched when we emit the index later. We can simply subtract the 64-bit 2253 // fixed size from the current bit number to get the location to backpatch. 2254 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2255 2256 // This index will contain the bitpos for each individual record. 2257 std::vector<uint64_t> IndexPos; 2258 IndexPos.reserve(VE.getNonMDStrings().size()); 2259 2260 // Write all the records 2261 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2262 2263 if (VE.getNonMDStrings().size() > IndexThreshold) { 2264 // Now that we have emitted all the records we will emit the index. But 2265 // first 2266 // backpatch the forward reference so that the reader can skip the records 2267 // efficiently. 2268 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2269 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2270 2271 // Delta encode the index. 2272 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2273 for (auto &Elt : IndexPos) { 2274 auto EltDelta = Elt - PreviousValue; 2275 PreviousValue = Elt; 2276 Elt = EltDelta; 2277 } 2278 // Emit the index record. 2279 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2280 IndexPos.clear(); 2281 } 2282 2283 // Write the named metadata now. 2284 writeNamedMetadata(Record); 2285 2286 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2287 SmallVector<uint64_t, 4> Record; 2288 Record.push_back(VE.getValueID(&GO)); 2289 pushGlobalMetadataAttachment(Record, GO); 2290 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2291 }; 2292 for (const Function &F : M) 2293 if (F.isDeclaration() && F.hasMetadata()) 2294 AddDeclAttachedMetadata(F); 2295 // FIXME: Only store metadata for declarations here, and move data for global 2296 // variable definitions to a separate block (PR28134). 2297 for (const GlobalVariable &GV : M.globals()) 2298 if (GV.hasMetadata()) 2299 AddDeclAttachedMetadata(GV); 2300 2301 Stream.ExitBlock(); 2302 } 2303 2304 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2305 if (!VE.hasMDs()) 2306 return; 2307 2308 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2309 SmallVector<uint64_t, 64> Record; 2310 writeMetadataStrings(VE.getMDStrings(), Record); 2311 writeMetadataRecords(VE.getNonMDStrings(), Record); 2312 Stream.ExitBlock(); 2313 } 2314 2315 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2316 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2317 // [n x [id, mdnode]] 2318 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2319 GO.getAllMetadata(MDs); 2320 for (const auto &I : MDs) { 2321 Record.push_back(I.first); 2322 Record.push_back(VE.getMetadataID(I.second)); 2323 } 2324 } 2325 2326 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2327 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2328 2329 SmallVector<uint64_t, 64> Record; 2330 2331 if (F.hasMetadata()) { 2332 pushGlobalMetadataAttachment(Record, F); 2333 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2334 Record.clear(); 2335 } 2336 2337 // Write metadata attachments 2338 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2339 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2340 for (const BasicBlock &BB : F) 2341 for (const Instruction &I : BB) { 2342 MDs.clear(); 2343 I.getAllMetadataOtherThanDebugLoc(MDs); 2344 2345 // If no metadata, ignore instruction. 2346 if (MDs.empty()) continue; 2347 2348 Record.push_back(VE.getInstructionID(&I)); 2349 2350 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2351 Record.push_back(MDs[i].first); 2352 Record.push_back(VE.getMetadataID(MDs[i].second)); 2353 } 2354 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2355 Record.clear(); 2356 } 2357 2358 Stream.ExitBlock(); 2359 } 2360 2361 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2362 SmallVector<uint64_t, 64> Record; 2363 2364 // Write metadata kinds 2365 // METADATA_KIND - [n x [id, name]] 2366 SmallVector<StringRef, 8> Names; 2367 M.getMDKindNames(Names); 2368 2369 if (Names.empty()) return; 2370 2371 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2372 2373 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2374 Record.push_back(MDKindID); 2375 StringRef KName = Names[MDKindID]; 2376 Record.append(KName.begin(), KName.end()); 2377 2378 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2379 Record.clear(); 2380 } 2381 2382 Stream.ExitBlock(); 2383 } 2384 2385 void ModuleBitcodeWriter::writeOperandBundleTags() { 2386 // Write metadata kinds 2387 // 2388 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2389 // 2390 // OPERAND_BUNDLE_TAG - [strchr x N] 2391 2392 SmallVector<StringRef, 8> Tags; 2393 M.getOperandBundleTags(Tags); 2394 2395 if (Tags.empty()) 2396 return; 2397 2398 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2399 2400 SmallVector<uint64_t, 64> Record; 2401 2402 for (auto Tag : Tags) { 2403 Record.append(Tag.begin(), Tag.end()); 2404 2405 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2406 Record.clear(); 2407 } 2408 2409 Stream.ExitBlock(); 2410 } 2411 2412 void ModuleBitcodeWriter::writeSyncScopeNames() { 2413 SmallVector<StringRef, 8> SSNs; 2414 M.getContext().getSyncScopeNames(SSNs); 2415 if (SSNs.empty()) 2416 return; 2417 2418 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2419 2420 SmallVector<uint64_t, 64> Record; 2421 for (auto SSN : SSNs) { 2422 Record.append(SSN.begin(), SSN.end()); 2423 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2424 Record.clear(); 2425 } 2426 2427 Stream.ExitBlock(); 2428 } 2429 2430 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2431 bool isGlobal) { 2432 if (FirstVal == LastVal) return; 2433 2434 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2435 2436 unsigned AggregateAbbrev = 0; 2437 unsigned String8Abbrev = 0; 2438 unsigned CString7Abbrev = 0; 2439 unsigned CString6Abbrev = 0; 2440 // If this is a constant pool for the module, emit module-specific abbrevs. 2441 if (isGlobal) { 2442 // Abbrev for CST_CODE_AGGREGATE. 2443 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2444 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2447 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2448 2449 // Abbrev for CST_CODE_STRING. 2450 Abbv = std::make_shared<BitCodeAbbrev>(); 2451 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2454 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2455 // Abbrev for CST_CODE_CSTRING. 2456 Abbv = std::make_shared<BitCodeAbbrev>(); 2457 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2460 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2461 // Abbrev for CST_CODE_CSTRING. 2462 Abbv = std::make_shared<BitCodeAbbrev>(); 2463 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2466 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2467 } 2468 2469 SmallVector<uint64_t, 64> Record; 2470 2471 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2472 Type *LastTy = nullptr; 2473 for (unsigned i = FirstVal; i != LastVal; ++i) { 2474 const Value *V = Vals[i].first; 2475 // If we need to switch types, do so now. 2476 if (V->getType() != LastTy) { 2477 LastTy = V->getType(); 2478 Record.push_back(VE.getTypeID(LastTy)); 2479 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2480 CONSTANTS_SETTYPE_ABBREV); 2481 Record.clear(); 2482 } 2483 2484 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2485 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2486 Record.push_back( 2487 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2488 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2489 2490 // Add the asm string. 2491 const std::string &AsmStr = IA->getAsmString(); 2492 Record.push_back(AsmStr.size()); 2493 Record.append(AsmStr.begin(), AsmStr.end()); 2494 2495 // Add the constraint string. 2496 const std::string &ConstraintStr = IA->getConstraintString(); 2497 Record.push_back(ConstraintStr.size()); 2498 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2499 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2500 Record.clear(); 2501 continue; 2502 } 2503 const Constant *C = cast<Constant>(V); 2504 unsigned Code = -1U; 2505 unsigned AbbrevToUse = 0; 2506 if (C->isNullValue()) { 2507 Code = bitc::CST_CODE_NULL; 2508 } else if (isa<PoisonValue>(C)) { 2509 Code = bitc::CST_CODE_POISON; 2510 } else if (isa<UndefValue>(C)) { 2511 Code = bitc::CST_CODE_UNDEF; 2512 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2513 if (IV->getBitWidth() <= 64) { 2514 uint64_t V = IV->getSExtValue(); 2515 emitSignedInt64(Record, V); 2516 Code = bitc::CST_CODE_INTEGER; 2517 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2518 } else { // Wide integers, > 64 bits in size. 2519 emitWideAPInt(Record, IV->getValue()); 2520 Code = bitc::CST_CODE_WIDE_INTEGER; 2521 } 2522 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2523 Code = bitc::CST_CODE_FLOAT; 2524 Type *Ty = CFP->getType(); 2525 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2526 Ty->isDoubleTy()) { 2527 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2528 } else if (Ty->isX86_FP80Ty()) { 2529 // api needed to prevent premature destruction 2530 // bits are not in the same order as a normal i80 APInt, compensate. 2531 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2532 const uint64_t *p = api.getRawData(); 2533 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2534 Record.push_back(p[0] & 0xffffLL); 2535 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2536 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2537 const uint64_t *p = api.getRawData(); 2538 Record.push_back(p[0]); 2539 Record.push_back(p[1]); 2540 } else { 2541 assert(0 && "Unknown FP type!"); 2542 } 2543 } else if (isa<ConstantDataSequential>(C) && 2544 cast<ConstantDataSequential>(C)->isString()) { 2545 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2546 // Emit constant strings specially. 2547 unsigned NumElts = Str->getNumElements(); 2548 // If this is a null-terminated string, use the denser CSTRING encoding. 2549 if (Str->isCString()) { 2550 Code = bitc::CST_CODE_CSTRING; 2551 --NumElts; // Don't encode the null, which isn't allowed by char6. 2552 } else { 2553 Code = bitc::CST_CODE_STRING; 2554 AbbrevToUse = String8Abbrev; 2555 } 2556 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2557 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2558 for (unsigned i = 0; i != NumElts; ++i) { 2559 unsigned char V = Str->getElementAsInteger(i); 2560 Record.push_back(V); 2561 isCStr7 &= (V & 128) == 0; 2562 if (isCStrChar6) 2563 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2564 } 2565 2566 if (isCStrChar6) 2567 AbbrevToUse = CString6Abbrev; 2568 else if (isCStr7) 2569 AbbrevToUse = CString7Abbrev; 2570 } else if (const ConstantDataSequential *CDS = 2571 dyn_cast<ConstantDataSequential>(C)) { 2572 Code = bitc::CST_CODE_DATA; 2573 Type *EltTy = CDS->getElementType(); 2574 if (isa<IntegerType>(EltTy)) { 2575 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2576 Record.push_back(CDS->getElementAsInteger(i)); 2577 } else { 2578 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2579 Record.push_back( 2580 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2581 } 2582 } else if (isa<ConstantAggregate>(C)) { 2583 Code = bitc::CST_CODE_AGGREGATE; 2584 for (const Value *Op : C->operands()) 2585 Record.push_back(VE.getValueID(Op)); 2586 AbbrevToUse = AggregateAbbrev; 2587 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2588 switch (CE->getOpcode()) { 2589 default: 2590 if (Instruction::isCast(CE->getOpcode())) { 2591 Code = bitc::CST_CODE_CE_CAST; 2592 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2593 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2594 Record.push_back(VE.getValueID(C->getOperand(0))); 2595 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2596 } else { 2597 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2598 Code = bitc::CST_CODE_CE_BINOP; 2599 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2600 Record.push_back(VE.getValueID(C->getOperand(0))); 2601 Record.push_back(VE.getValueID(C->getOperand(1))); 2602 uint64_t Flags = getOptimizationFlags(CE); 2603 if (Flags != 0) 2604 Record.push_back(Flags); 2605 } 2606 break; 2607 case Instruction::FNeg: { 2608 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2609 Code = bitc::CST_CODE_CE_UNOP; 2610 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2611 Record.push_back(VE.getValueID(C->getOperand(0))); 2612 uint64_t Flags = getOptimizationFlags(CE); 2613 if (Flags != 0) 2614 Record.push_back(Flags); 2615 break; 2616 } 2617 case Instruction::GetElementPtr: { 2618 Code = bitc::CST_CODE_CE_GEP; 2619 const auto *GO = cast<GEPOperator>(C); 2620 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2621 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2622 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2623 Record.push_back((*Idx << 1) | GO->isInBounds()); 2624 } else if (GO->isInBounds()) 2625 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2626 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2627 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2628 Record.push_back(VE.getValueID(C->getOperand(i))); 2629 } 2630 break; 2631 } 2632 case Instruction::Select: 2633 Code = bitc::CST_CODE_CE_SELECT; 2634 Record.push_back(VE.getValueID(C->getOperand(0))); 2635 Record.push_back(VE.getValueID(C->getOperand(1))); 2636 Record.push_back(VE.getValueID(C->getOperand(2))); 2637 break; 2638 case Instruction::ExtractElement: 2639 Code = bitc::CST_CODE_CE_EXTRACTELT; 2640 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2641 Record.push_back(VE.getValueID(C->getOperand(0))); 2642 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2643 Record.push_back(VE.getValueID(C->getOperand(1))); 2644 break; 2645 case Instruction::InsertElement: 2646 Code = bitc::CST_CODE_CE_INSERTELT; 2647 Record.push_back(VE.getValueID(C->getOperand(0))); 2648 Record.push_back(VE.getValueID(C->getOperand(1))); 2649 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2650 Record.push_back(VE.getValueID(C->getOperand(2))); 2651 break; 2652 case Instruction::ShuffleVector: 2653 // If the return type and argument types are the same, this is a 2654 // standard shufflevector instruction. If the types are different, 2655 // then the shuffle is widening or truncating the input vectors, and 2656 // the argument type must also be encoded. 2657 if (C->getType() == C->getOperand(0)->getType()) { 2658 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2659 } else { 2660 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2661 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2662 } 2663 Record.push_back(VE.getValueID(C->getOperand(0))); 2664 Record.push_back(VE.getValueID(C->getOperand(1))); 2665 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2666 break; 2667 case Instruction::ICmp: 2668 case Instruction::FCmp: 2669 Code = bitc::CST_CODE_CE_CMP; 2670 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2671 Record.push_back(VE.getValueID(C->getOperand(0))); 2672 Record.push_back(VE.getValueID(C->getOperand(1))); 2673 Record.push_back(CE->getPredicate()); 2674 break; 2675 case Instruction::ExtractValue: 2676 case Instruction::InsertValue: 2677 report_fatal_error("extractvalue/insertvalue constexprs not supported"); 2678 break; 2679 } 2680 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2681 Code = bitc::CST_CODE_BLOCKADDRESS; 2682 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2683 Record.push_back(VE.getValueID(BA->getFunction())); 2684 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2685 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2686 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2687 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2688 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2689 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2690 Code = bitc::CST_CODE_NO_CFI_VALUE; 2691 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2692 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2693 } else { 2694 #ifndef NDEBUG 2695 C->dump(); 2696 #endif 2697 llvm_unreachable("Unknown constant!"); 2698 } 2699 Stream.EmitRecord(Code, Record, AbbrevToUse); 2700 Record.clear(); 2701 } 2702 2703 Stream.ExitBlock(); 2704 } 2705 2706 void ModuleBitcodeWriter::writeModuleConstants() { 2707 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2708 2709 // Find the first constant to emit, which is the first non-globalvalue value. 2710 // We know globalvalues have been emitted by WriteModuleInfo. 2711 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2712 if (!isa<GlobalValue>(Vals[i].first)) { 2713 writeConstants(i, Vals.size(), true); 2714 return; 2715 } 2716 } 2717 } 2718 2719 /// pushValueAndType - The file has to encode both the value and type id for 2720 /// many values, because we need to know what type to create for forward 2721 /// references. However, most operands are not forward references, so this type 2722 /// field is not needed. 2723 /// 2724 /// This function adds V's value ID to Vals. If the value ID is higher than the 2725 /// instruction ID, then it is a forward reference, and it also includes the 2726 /// type ID. The value ID that is written is encoded relative to the InstID. 2727 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2728 SmallVectorImpl<unsigned> &Vals) { 2729 unsigned ValID = VE.getValueID(V); 2730 // Make encoding relative to the InstID. 2731 Vals.push_back(InstID - ValID); 2732 if (ValID >= InstID) { 2733 Vals.push_back(VE.getTypeID(V->getType())); 2734 return true; 2735 } 2736 return false; 2737 } 2738 2739 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2740 unsigned InstID) { 2741 SmallVector<unsigned, 64> Record; 2742 LLVMContext &C = CS.getContext(); 2743 2744 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2745 const auto &Bundle = CS.getOperandBundleAt(i); 2746 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2747 2748 for (auto &Input : Bundle.Inputs) 2749 pushValueAndType(Input, InstID, Record); 2750 2751 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2752 Record.clear(); 2753 } 2754 } 2755 2756 /// pushValue - Like pushValueAndType, but where the type of the value is 2757 /// omitted (perhaps it was already encoded in an earlier operand). 2758 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2759 SmallVectorImpl<unsigned> &Vals) { 2760 unsigned ValID = VE.getValueID(V); 2761 Vals.push_back(InstID - ValID); 2762 } 2763 2764 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2765 SmallVectorImpl<uint64_t> &Vals) { 2766 unsigned ValID = VE.getValueID(V); 2767 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2768 emitSignedInt64(Vals, diff); 2769 } 2770 2771 /// WriteInstruction - Emit an instruction to the specified stream. 2772 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2773 unsigned InstID, 2774 SmallVectorImpl<unsigned> &Vals) { 2775 unsigned Code = 0; 2776 unsigned AbbrevToUse = 0; 2777 VE.setInstructionID(&I); 2778 switch (I.getOpcode()) { 2779 default: 2780 if (Instruction::isCast(I.getOpcode())) { 2781 Code = bitc::FUNC_CODE_INST_CAST; 2782 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2783 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2784 Vals.push_back(VE.getTypeID(I.getType())); 2785 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2786 } else { 2787 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2788 Code = bitc::FUNC_CODE_INST_BINOP; 2789 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2790 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2791 pushValue(I.getOperand(1), InstID, Vals); 2792 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2793 uint64_t Flags = getOptimizationFlags(&I); 2794 if (Flags != 0) { 2795 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2796 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2797 Vals.push_back(Flags); 2798 } 2799 } 2800 break; 2801 case Instruction::FNeg: { 2802 Code = bitc::FUNC_CODE_INST_UNOP; 2803 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2804 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2805 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2806 uint64_t Flags = getOptimizationFlags(&I); 2807 if (Flags != 0) { 2808 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2809 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2810 Vals.push_back(Flags); 2811 } 2812 break; 2813 } 2814 case Instruction::GetElementPtr: { 2815 Code = bitc::FUNC_CODE_INST_GEP; 2816 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2817 auto &GEPInst = cast<GetElementPtrInst>(I); 2818 Vals.push_back(GEPInst.isInBounds()); 2819 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2820 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2821 pushValueAndType(I.getOperand(i), InstID, Vals); 2822 break; 2823 } 2824 case Instruction::ExtractValue: { 2825 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2826 pushValueAndType(I.getOperand(0), InstID, Vals); 2827 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2828 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2829 break; 2830 } 2831 case Instruction::InsertValue: { 2832 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2833 pushValueAndType(I.getOperand(0), InstID, Vals); 2834 pushValueAndType(I.getOperand(1), InstID, Vals); 2835 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2836 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2837 break; 2838 } 2839 case Instruction::Select: { 2840 Code = bitc::FUNC_CODE_INST_VSELECT; 2841 pushValueAndType(I.getOperand(1), InstID, Vals); 2842 pushValue(I.getOperand(2), InstID, Vals); 2843 pushValueAndType(I.getOperand(0), InstID, Vals); 2844 uint64_t Flags = getOptimizationFlags(&I); 2845 if (Flags != 0) 2846 Vals.push_back(Flags); 2847 break; 2848 } 2849 case Instruction::ExtractElement: 2850 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2851 pushValueAndType(I.getOperand(0), InstID, Vals); 2852 pushValueAndType(I.getOperand(1), InstID, Vals); 2853 break; 2854 case Instruction::InsertElement: 2855 Code = bitc::FUNC_CODE_INST_INSERTELT; 2856 pushValueAndType(I.getOperand(0), InstID, Vals); 2857 pushValue(I.getOperand(1), InstID, Vals); 2858 pushValueAndType(I.getOperand(2), InstID, Vals); 2859 break; 2860 case Instruction::ShuffleVector: 2861 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2862 pushValueAndType(I.getOperand(0), InstID, Vals); 2863 pushValue(I.getOperand(1), InstID, Vals); 2864 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2865 Vals); 2866 break; 2867 case Instruction::ICmp: 2868 case Instruction::FCmp: { 2869 // compare returning Int1Ty or vector of Int1Ty 2870 Code = bitc::FUNC_CODE_INST_CMP2; 2871 pushValueAndType(I.getOperand(0), InstID, Vals); 2872 pushValue(I.getOperand(1), InstID, Vals); 2873 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2874 uint64_t Flags = getOptimizationFlags(&I); 2875 if (Flags != 0) 2876 Vals.push_back(Flags); 2877 break; 2878 } 2879 2880 case Instruction::Ret: 2881 { 2882 Code = bitc::FUNC_CODE_INST_RET; 2883 unsigned NumOperands = I.getNumOperands(); 2884 if (NumOperands == 0) 2885 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2886 else if (NumOperands == 1) { 2887 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2888 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2889 } else { 2890 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2891 pushValueAndType(I.getOperand(i), InstID, Vals); 2892 } 2893 } 2894 break; 2895 case Instruction::Br: 2896 { 2897 Code = bitc::FUNC_CODE_INST_BR; 2898 const BranchInst &II = cast<BranchInst>(I); 2899 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2900 if (II.isConditional()) { 2901 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2902 pushValue(II.getCondition(), InstID, Vals); 2903 } 2904 } 2905 break; 2906 case Instruction::Switch: 2907 { 2908 Code = bitc::FUNC_CODE_INST_SWITCH; 2909 const SwitchInst &SI = cast<SwitchInst>(I); 2910 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2911 pushValue(SI.getCondition(), InstID, Vals); 2912 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2913 for (auto Case : SI.cases()) { 2914 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2915 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2916 } 2917 } 2918 break; 2919 case Instruction::IndirectBr: 2920 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2921 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2922 // Encode the address operand as relative, but not the basic blocks. 2923 pushValue(I.getOperand(0), InstID, Vals); 2924 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2925 Vals.push_back(VE.getValueID(I.getOperand(i))); 2926 break; 2927 2928 case Instruction::Invoke: { 2929 const InvokeInst *II = cast<InvokeInst>(&I); 2930 const Value *Callee = II->getCalledOperand(); 2931 FunctionType *FTy = II->getFunctionType(); 2932 2933 if (II->hasOperandBundles()) 2934 writeOperandBundles(*II, InstID); 2935 2936 Code = bitc::FUNC_CODE_INST_INVOKE; 2937 2938 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2939 Vals.push_back(II->getCallingConv() | 1 << 13); 2940 Vals.push_back(VE.getValueID(II->getNormalDest())); 2941 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2942 Vals.push_back(VE.getTypeID(FTy)); 2943 pushValueAndType(Callee, InstID, Vals); 2944 2945 // Emit value #'s for the fixed parameters. 2946 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2947 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2948 2949 // Emit type/value pairs for varargs params. 2950 if (FTy->isVarArg()) { 2951 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2952 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2953 } 2954 break; 2955 } 2956 case Instruction::Resume: 2957 Code = bitc::FUNC_CODE_INST_RESUME; 2958 pushValueAndType(I.getOperand(0), InstID, Vals); 2959 break; 2960 case Instruction::CleanupRet: { 2961 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2962 const auto &CRI = cast<CleanupReturnInst>(I); 2963 pushValue(CRI.getCleanupPad(), InstID, Vals); 2964 if (CRI.hasUnwindDest()) 2965 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2966 break; 2967 } 2968 case Instruction::CatchRet: { 2969 Code = bitc::FUNC_CODE_INST_CATCHRET; 2970 const auto &CRI = cast<CatchReturnInst>(I); 2971 pushValue(CRI.getCatchPad(), InstID, Vals); 2972 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2973 break; 2974 } 2975 case Instruction::CleanupPad: 2976 case Instruction::CatchPad: { 2977 const auto &FuncletPad = cast<FuncletPadInst>(I); 2978 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2979 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2980 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2981 2982 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2983 Vals.push_back(NumArgOperands); 2984 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2985 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2986 break; 2987 } 2988 case Instruction::CatchSwitch: { 2989 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2990 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2991 2992 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2993 2994 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2995 Vals.push_back(NumHandlers); 2996 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2997 Vals.push_back(VE.getValueID(CatchPadBB)); 2998 2999 if (CatchSwitch.hasUnwindDest()) 3000 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3001 break; 3002 } 3003 case Instruction::CallBr: { 3004 const CallBrInst *CBI = cast<CallBrInst>(&I); 3005 const Value *Callee = CBI->getCalledOperand(); 3006 FunctionType *FTy = CBI->getFunctionType(); 3007 3008 if (CBI->hasOperandBundles()) 3009 writeOperandBundles(*CBI, InstID); 3010 3011 Code = bitc::FUNC_CODE_INST_CALLBR; 3012 3013 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3014 3015 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3016 1 << bitc::CALL_EXPLICIT_TYPE); 3017 3018 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3019 Vals.push_back(CBI->getNumIndirectDests()); 3020 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3021 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3022 3023 Vals.push_back(VE.getTypeID(FTy)); 3024 pushValueAndType(Callee, InstID, Vals); 3025 3026 // Emit value #'s for the fixed parameters. 3027 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3028 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3029 3030 // Emit type/value pairs for varargs params. 3031 if (FTy->isVarArg()) { 3032 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3033 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3034 } 3035 break; 3036 } 3037 case Instruction::Unreachable: 3038 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3039 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3040 break; 3041 3042 case Instruction::PHI: { 3043 const PHINode &PN = cast<PHINode>(I); 3044 Code = bitc::FUNC_CODE_INST_PHI; 3045 // With the newer instruction encoding, forward references could give 3046 // negative valued IDs. This is most common for PHIs, so we use 3047 // signed VBRs. 3048 SmallVector<uint64_t, 128> Vals64; 3049 Vals64.push_back(VE.getTypeID(PN.getType())); 3050 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3051 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3052 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3053 } 3054 3055 uint64_t Flags = getOptimizationFlags(&I); 3056 if (Flags != 0) 3057 Vals64.push_back(Flags); 3058 3059 // Emit a Vals64 vector and exit. 3060 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3061 Vals64.clear(); 3062 return; 3063 } 3064 3065 case Instruction::LandingPad: { 3066 const LandingPadInst &LP = cast<LandingPadInst>(I); 3067 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3068 Vals.push_back(VE.getTypeID(LP.getType())); 3069 Vals.push_back(LP.isCleanup()); 3070 Vals.push_back(LP.getNumClauses()); 3071 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3072 if (LP.isCatch(I)) 3073 Vals.push_back(LandingPadInst::Catch); 3074 else 3075 Vals.push_back(LandingPadInst::Filter); 3076 pushValueAndType(LP.getClause(I), InstID, Vals); 3077 } 3078 break; 3079 } 3080 3081 case Instruction::Alloca: { 3082 Code = bitc::FUNC_CODE_INST_ALLOCA; 3083 const AllocaInst &AI = cast<AllocaInst>(I); 3084 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3085 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3086 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3087 using APV = AllocaPackedValues; 3088 unsigned Record = 0; 3089 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3090 Bitfield::set<APV::AlignLower>( 3091 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3092 Bitfield::set<APV::AlignUpper>(Record, 3093 EncodedAlign >> APV::AlignLower::Bits); 3094 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3095 Bitfield::set<APV::ExplicitType>(Record, true); 3096 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3097 Vals.push_back(Record); 3098 3099 unsigned AS = AI.getAddressSpace(); 3100 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3101 Vals.push_back(AS); 3102 break; 3103 } 3104 3105 case Instruction::Load: 3106 if (cast<LoadInst>(I).isAtomic()) { 3107 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3108 pushValueAndType(I.getOperand(0), InstID, Vals); 3109 } else { 3110 Code = bitc::FUNC_CODE_INST_LOAD; 3111 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3112 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3113 } 3114 Vals.push_back(VE.getTypeID(I.getType())); 3115 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3116 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3117 if (cast<LoadInst>(I).isAtomic()) { 3118 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3119 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3120 } 3121 break; 3122 case Instruction::Store: 3123 if (cast<StoreInst>(I).isAtomic()) 3124 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3125 else 3126 Code = bitc::FUNC_CODE_INST_STORE; 3127 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3128 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3129 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3130 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3131 if (cast<StoreInst>(I).isAtomic()) { 3132 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3133 Vals.push_back( 3134 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3135 } 3136 break; 3137 case Instruction::AtomicCmpXchg: 3138 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3139 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3140 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3141 pushValue(I.getOperand(2), InstID, Vals); // newval. 3142 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3143 Vals.push_back( 3144 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3145 Vals.push_back( 3146 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3147 Vals.push_back( 3148 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3149 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3150 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3151 break; 3152 case Instruction::AtomicRMW: 3153 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3154 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3155 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3156 Vals.push_back( 3157 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3158 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3159 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3160 Vals.push_back( 3161 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3162 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3163 break; 3164 case Instruction::Fence: 3165 Code = bitc::FUNC_CODE_INST_FENCE; 3166 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3167 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3168 break; 3169 case Instruction::Call: { 3170 const CallInst &CI = cast<CallInst>(I); 3171 FunctionType *FTy = CI.getFunctionType(); 3172 3173 if (CI.hasOperandBundles()) 3174 writeOperandBundles(CI, InstID); 3175 3176 Code = bitc::FUNC_CODE_INST_CALL; 3177 3178 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3179 3180 unsigned Flags = getOptimizationFlags(&I); 3181 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3182 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3183 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3184 1 << bitc::CALL_EXPLICIT_TYPE | 3185 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3186 unsigned(Flags != 0) << bitc::CALL_FMF); 3187 if (Flags != 0) 3188 Vals.push_back(Flags); 3189 3190 Vals.push_back(VE.getTypeID(FTy)); 3191 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3192 3193 // Emit value #'s for the fixed parameters. 3194 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3195 // Check for labels (can happen with asm labels). 3196 if (FTy->getParamType(i)->isLabelTy()) 3197 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3198 else 3199 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3200 } 3201 3202 // Emit type/value pairs for varargs params. 3203 if (FTy->isVarArg()) { 3204 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3205 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3206 } 3207 break; 3208 } 3209 case Instruction::VAArg: 3210 Code = bitc::FUNC_CODE_INST_VAARG; 3211 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3212 pushValue(I.getOperand(0), InstID, Vals); // valist. 3213 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3214 break; 3215 case Instruction::Freeze: 3216 Code = bitc::FUNC_CODE_INST_FREEZE; 3217 pushValueAndType(I.getOperand(0), InstID, Vals); 3218 break; 3219 } 3220 3221 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3222 Vals.clear(); 3223 } 3224 3225 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3226 /// to allow clients to efficiently find the function body. 3227 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3228 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3229 // Get the offset of the VST we are writing, and backpatch it into 3230 // the VST forward declaration record. 3231 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3232 // The BitcodeStartBit was the stream offset of the identification block. 3233 VSTOffset -= bitcodeStartBit(); 3234 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3235 // Note that we add 1 here because the offset is relative to one word 3236 // before the start of the identification block, which was historically 3237 // always the start of the regular bitcode header. 3238 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3239 3240 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3241 3242 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3243 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3246 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3247 3248 for (const Function &F : M) { 3249 uint64_t Record[2]; 3250 3251 if (F.isDeclaration()) 3252 continue; 3253 3254 Record[0] = VE.getValueID(&F); 3255 3256 // Save the word offset of the function (from the start of the 3257 // actual bitcode written to the stream). 3258 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3259 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3260 // Note that we add 1 here because the offset is relative to one word 3261 // before the start of the identification block, which was historically 3262 // always the start of the regular bitcode header. 3263 Record[1] = BitcodeIndex / 32 + 1; 3264 3265 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3266 } 3267 3268 Stream.ExitBlock(); 3269 } 3270 3271 /// Emit names for arguments, instructions and basic blocks in a function. 3272 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3273 const ValueSymbolTable &VST) { 3274 if (VST.empty()) 3275 return; 3276 3277 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3278 3279 // FIXME: Set up the abbrev, we know how many values there are! 3280 // FIXME: We know if the type names can use 7-bit ascii. 3281 SmallVector<uint64_t, 64> NameVals; 3282 3283 for (const ValueName &Name : VST) { 3284 // Figure out the encoding to use for the name. 3285 StringEncoding Bits = getStringEncoding(Name.getKey()); 3286 3287 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3288 NameVals.push_back(VE.getValueID(Name.getValue())); 3289 3290 // VST_CODE_ENTRY: [valueid, namechar x N] 3291 // VST_CODE_BBENTRY: [bbid, namechar x N] 3292 unsigned Code; 3293 if (isa<BasicBlock>(Name.getValue())) { 3294 Code = bitc::VST_CODE_BBENTRY; 3295 if (Bits == SE_Char6) 3296 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3297 } else { 3298 Code = bitc::VST_CODE_ENTRY; 3299 if (Bits == SE_Char6) 3300 AbbrevToUse = VST_ENTRY_6_ABBREV; 3301 else if (Bits == SE_Fixed7) 3302 AbbrevToUse = VST_ENTRY_7_ABBREV; 3303 } 3304 3305 for (const auto P : Name.getKey()) 3306 NameVals.push_back((unsigned char)P); 3307 3308 // Emit the finished record. 3309 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3310 NameVals.clear(); 3311 } 3312 3313 Stream.ExitBlock(); 3314 } 3315 3316 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3317 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3318 unsigned Code; 3319 if (isa<BasicBlock>(Order.V)) 3320 Code = bitc::USELIST_CODE_BB; 3321 else 3322 Code = bitc::USELIST_CODE_DEFAULT; 3323 3324 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3325 Record.push_back(VE.getValueID(Order.V)); 3326 Stream.EmitRecord(Code, Record); 3327 } 3328 3329 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3330 assert(VE.shouldPreserveUseListOrder() && 3331 "Expected to be preserving use-list order"); 3332 3333 auto hasMore = [&]() { 3334 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3335 }; 3336 if (!hasMore()) 3337 // Nothing to do. 3338 return; 3339 3340 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3341 while (hasMore()) { 3342 writeUseList(std::move(VE.UseListOrders.back())); 3343 VE.UseListOrders.pop_back(); 3344 } 3345 Stream.ExitBlock(); 3346 } 3347 3348 /// Emit a function body to the module stream. 3349 void ModuleBitcodeWriter::writeFunction( 3350 const Function &F, 3351 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3352 // Save the bitcode index of the start of this function block for recording 3353 // in the VST. 3354 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3355 3356 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3357 VE.incorporateFunction(F); 3358 3359 SmallVector<unsigned, 64> Vals; 3360 3361 // Emit the number of basic blocks, so the reader can create them ahead of 3362 // time. 3363 Vals.push_back(VE.getBasicBlocks().size()); 3364 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3365 Vals.clear(); 3366 3367 // If there are function-local constants, emit them now. 3368 unsigned CstStart, CstEnd; 3369 VE.getFunctionConstantRange(CstStart, CstEnd); 3370 writeConstants(CstStart, CstEnd, false); 3371 3372 // If there is function-local metadata, emit it now. 3373 writeFunctionMetadata(F); 3374 3375 // Keep a running idea of what the instruction ID is. 3376 unsigned InstID = CstEnd; 3377 3378 bool NeedsMetadataAttachment = F.hasMetadata(); 3379 3380 DILocation *LastDL = nullptr; 3381 SmallSetVector<Function *, 4> BlockAddressUsers; 3382 3383 // Finally, emit all the instructions, in order. 3384 for (const BasicBlock &BB : F) { 3385 for (const Instruction &I : BB) { 3386 writeInstruction(I, InstID, Vals); 3387 3388 if (!I.getType()->isVoidTy()) 3389 ++InstID; 3390 3391 // If the instruction has metadata, write a metadata attachment later. 3392 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3393 3394 // If the instruction has a debug location, emit it. 3395 DILocation *DL = I.getDebugLoc(); 3396 if (!DL) 3397 continue; 3398 3399 if (DL == LastDL) { 3400 // Just repeat the same debug loc as last time. 3401 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3402 continue; 3403 } 3404 3405 Vals.push_back(DL->getLine()); 3406 Vals.push_back(DL->getColumn()); 3407 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3408 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3409 Vals.push_back(DL->isImplicitCode()); 3410 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3411 Vals.clear(); 3412 3413 LastDL = DL; 3414 } 3415 3416 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3417 SmallVector<Value *> Worklist{BA}; 3418 SmallPtrSet<Value *, 8> Visited{BA}; 3419 while (!Worklist.empty()) { 3420 Value *V = Worklist.pop_back_val(); 3421 for (User *U : V->users()) { 3422 if (auto *I = dyn_cast<Instruction>(U)) { 3423 Function *P = I->getFunction(); 3424 if (P != &F) 3425 BlockAddressUsers.insert(P); 3426 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3427 Visited.insert(U).second) 3428 Worklist.push_back(U); 3429 } 3430 } 3431 } 3432 } 3433 3434 if (!BlockAddressUsers.empty()) { 3435 Vals.resize(BlockAddressUsers.size()); 3436 for (auto I : llvm::enumerate(BlockAddressUsers)) 3437 Vals[I.index()] = VE.getValueID(I.value()); 3438 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3439 Vals.clear(); 3440 } 3441 3442 // Emit names for all the instructions etc. 3443 if (auto *Symtab = F.getValueSymbolTable()) 3444 writeFunctionLevelValueSymbolTable(*Symtab); 3445 3446 if (NeedsMetadataAttachment) 3447 writeFunctionMetadataAttachment(F); 3448 if (VE.shouldPreserveUseListOrder()) 3449 writeUseListBlock(&F); 3450 VE.purgeFunction(); 3451 Stream.ExitBlock(); 3452 } 3453 3454 // Emit blockinfo, which defines the standard abbreviations etc. 3455 void ModuleBitcodeWriter::writeBlockInfo() { 3456 // We only want to emit block info records for blocks that have multiple 3457 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3458 // Other blocks can define their abbrevs inline. 3459 Stream.EnterBlockInfoBlock(); 3460 3461 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3462 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3467 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3468 VST_ENTRY_8_ABBREV) 3469 llvm_unreachable("Unexpected abbrev ordering!"); 3470 } 3471 3472 { // 7-bit fixed width VST_CODE_ENTRY strings. 3473 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3474 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3478 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3479 VST_ENTRY_7_ABBREV) 3480 llvm_unreachable("Unexpected abbrev ordering!"); 3481 } 3482 { // 6-bit char6 VST_CODE_ENTRY strings. 3483 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3484 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3488 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3489 VST_ENTRY_6_ABBREV) 3490 llvm_unreachable("Unexpected abbrev ordering!"); 3491 } 3492 { // 6-bit char6 VST_CODE_BBENTRY strings. 3493 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3494 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3498 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3499 VST_BBENTRY_6_ABBREV) 3500 llvm_unreachable("Unexpected abbrev ordering!"); 3501 } 3502 3503 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3504 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3505 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3507 VE.computeBitsRequiredForTypeIndicies())); 3508 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3509 CONSTANTS_SETTYPE_ABBREV) 3510 llvm_unreachable("Unexpected abbrev ordering!"); 3511 } 3512 3513 { // INTEGER abbrev for CONSTANTS_BLOCK. 3514 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3515 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3517 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3518 CONSTANTS_INTEGER_ABBREV) 3519 llvm_unreachable("Unexpected abbrev ordering!"); 3520 } 3521 3522 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3523 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3524 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3527 VE.computeBitsRequiredForTypeIndicies())); 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3529 3530 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3531 CONSTANTS_CE_CAST_Abbrev) 3532 llvm_unreachable("Unexpected abbrev ordering!"); 3533 } 3534 { // NULL abbrev for CONSTANTS_BLOCK. 3535 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3536 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3537 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3538 CONSTANTS_NULL_Abbrev) 3539 llvm_unreachable("Unexpected abbrev ordering!"); 3540 } 3541 3542 // FIXME: This should only use space for first class types! 3543 3544 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3545 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3546 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3549 VE.computeBitsRequiredForTypeIndicies())); 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3552 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3553 FUNCTION_INST_LOAD_ABBREV) 3554 llvm_unreachable("Unexpected abbrev ordering!"); 3555 } 3556 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3557 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3558 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3561 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3562 FUNCTION_INST_UNOP_ABBREV) 3563 llvm_unreachable("Unexpected abbrev ordering!"); 3564 } 3565 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3566 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3567 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3571 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3572 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3573 llvm_unreachable("Unexpected abbrev ordering!"); 3574 } 3575 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3576 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3577 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3581 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3582 FUNCTION_INST_BINOP_ABBREV) 3583 llvm_unreachable("Unexpected abbrev ordering!"); 3584 } 3585 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3586 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3587 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3592 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3593 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3594 llvm_unreachable("Unexpected abbrev ordering!"); 3595 } 3596 { // INST_CAST abbrev for FUNCTION_BLOCK. 3597 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3598 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3601 VE.computeBitsRequiredForTypeIndicies())); 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3603 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3604 FUNCTION_INST_CAST_ABBREV) 3605 llvm_unreachable("Unexpected abbrev ordering!"); 3606 } 3607 3608 { // INST_RET abbrev for FUNCTION_BLOCK. 3609 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3610 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3611 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3612 FUNCTION_INST_RET_VOID_ABBREV) 3613 llvm_unreachable("Unexpected abbrev ordering!"); 3614 } 3615 { // INST_RET abbrev for FUNCTION_BLOCK. 3616 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3617 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3619 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3620 FUNCTION_INST_RET_VAL_ABBREV) 3621 llvm_unreachable("Unexpected abbrev ordering!"); 3622 } 3623 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3624 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3625 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3626 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3627 FUNCTION_INST_UNREACHABLE_ABBREV) 3628 llvm_unreachable("Unexpected abbrev ordering!"); 3629 } 3630 { 3631 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3632 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3635 Log2_32_Ceil(VE.getTypes().size() + 1))); 3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3638 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3639 FUNCTION_INST_GEP_ABBREV) 3640 llvm_unreachable("Unexpected abbrev ordering!"); 3641 } 3642 3643 Stream.ExitBlock(); 3644 } 3645 3646 /// Write the module path strings, currently only used when generating 3647 /// a combined index file. 3648 void IndexBitcodeWriter::writeModStrings() { 3649 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3650 3651 // TODO: See which abbrev sizes we actually need to emit 3652 3653 // 8-bit fixed-width MST_ENTRY strings. 3654 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3655 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3659 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3660 3661 // 7-bit fixed width MST_ENTRY strings. 3662 Abbv = std::make_shared<BitCodeAbbrev>(); 3663 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3667 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3668 3669 // 6-bit char6 MST_ENTRY strings. 3670 Abbv = std::make_shared<BitCodeAbbrev>(); 3671 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3675 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3676 3677 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3678 Abbv = std::make_shared<BitCodeAbbrev>(); 3679 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3685 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3686 3687 SmallVector<unsigned, 64> Vals; 3688 forEachModule( 3689 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3690 StringRef Key = MPSE.getKey(); 3691 const auto &Value = MPSE.getValue(); 3692 StringEncoding Bits = getStringEncoding(Key); 3693 unsigned AbbrevToUse = Abbrev8Bit; 3694 if (Bits == SE_Char6) 3695 AbbrevToUse = Abbrev6Bit; 3696 else if (Bits == SE_Fixed7) 3697 AbbrevToUse = Abbrev7Bit; 3698 3699 Vals.push_back(Value.first); 3700 Vals.append(Key.begin(), Key.end()); 3701 3702 // Emit the finished record. 3703 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3704 3705 // Emit an optional hash for the module now 3706 const auto &Hash = Value.second; 3707 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3708 Vals.assign(Hash.begin(), Hash.end()); 3709 // Emit the hash record. 3710 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3711 } 3712 3713 Vals.clear(); 3714 }); 3715 Stream.ExitBlock(); 3716 } 3717 3718 /// Write the function type metadata related records that need to appear before 3719 /// a function summary entry (whether per-module or combined). 3720 template <typename Fn> 3721 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3722 FunctionSummary *FS, 3723 Fn GetValueID) { 3724 if (!FS->type_tests().empty()) 3725 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3726 3727 SmallVector<uint64_t, 64> Record; 3728 3729 auto WriteVFuncIdVec = [&](uint64_t Ty, 3730 ArrayRef<FunctionSummary::VFuncId> VFs) { 3731 if (VFs.empty()) 3732 return; 3733 Record.clear(); 3734 for (auto &VF : VFs) { 3735 Record.push_back(VF.GUID); 3736 Record.push_back(VF.Offset); 3737 } 3738 Stream.EmitRecord(Ty, Record); 3739 }; 3740 3741 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3742 FS->type_test_assume_vcalls()); 3743 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3744 FS->type_checked_load_vcalls()); 3745 3746 auto WriteConstVCallVec = [&](uint64_t Ty, 3747 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3748 for (auto &VC : VCs) { 3749 Record.clear(); 3750 Record.push_back(VC.VFunc.GUID); 3751 Record.push_back(VC.VFunc.Offset); 3752 llvm::append_range(Record, VC.Args); 3753 Stream.EmitRecord(Ty, Record); 3754 } 3755 }; 3756 3757 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3758 FS->type_test_assume_const_vcalls()); 3759 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3760 FS->type_checked_load_const_vcalls()); 3761 3762 auto WriteRange = [&](ConstantRange Range) { 3763 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3764 assert(Range.getLower().getNumWords() == 1); 3765 assert(Range.getUpper().getNumWords() == 1); 3766 emitSignedInt64(Record, *Range.getLower().getRawData()); 3767 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3768 }; 3769 3770 if (!FS->paramAccesses().empty()) { 3771 Record.clear(); 3772 for (auto &Arg : FS->paramAccesses()) { 3773 size_t UndoSize = Record.size(); 3774 Record.push_back(Arg.ParamNo); 3775 WriteRange(Arg.Use); 3776 Record.push_back(Arg.Calls.size()); 3777 for (auto &Call : Arg.Calls) { 3778 Record.push_back(Call.ParamNo); 3779 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3780 if (!ValueID) { 3781 // If ValueID is unknown we can't drop just this call, we must drop 3782 // entire parameter. 3783 Record.resize(UndoSize); 3784 break; 3785 } 3786 Record.push_back(*ValueID); 3787 WriteRange(Call.Offsets); 3788 } 3789 } 3790 if (!Record.empty()) 3791 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3792 } 3793 } 3794 3795 /// Collect type IDs from type tests used by function. 3796 static void 3797 getReferencedTypeIds(FunctionSummary *FS, 3798 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3799 if (!FS->type_tests().empty()) 3800 for (auto &TT : FS->type_tests()) 3801 ReferencedTypeIds.insert(TT); 3802 3803 auto GetReferencedTypesFromVFuncIdVec = 3804 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3805 for (auto &VF : VFs) 3806 ReferencedTypeIds.insert(VF.GUID); 3807 }; 3808 3809 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3810 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3811 3812 auto GetReferencedTypesFromConstVCallVec = 3813 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3814 for (auto &VC : VCs) 3815 ReferencedTypeIds.insert(VC.VFunc.GUID); 3816 }; 3817 3818 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3819 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3820 } 3821 3822 static void writeWholeProgramDevirtResolutionByArg( 3823 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3824 const WholeProgramDevirtResolution::ByArg &ByArg) { 3825 NameVals.push_back(args.size()); 3826 llvm::append_range(NameVals, args); 3827 3828 NameVals.push_back(ByArg.TheKind); 3829 NameVals.push_back(ByArg.Info); 3830 NameVals.push_back(ByArg.Byte); 3831 NameVals.push_back(ByArg.Bit); 3832 } 3833 3834 static void writeWholeProgramDevirtResolution( 3835 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3836 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3837 NameVals.push_back(Id); 3838 3839 NameVals.push_back(Wpd.TheKind); 3840 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3841 NameVals.push_back(Wpd.SingleImplName.size()); 3842 3843 NameVals.push_back(Wpd.ResByArg.size()); 3844 for (auto &A : Wpd.ResByArg) 3845 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3846 } 3847 3848 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3849 StringTableBuilder &StrtabBuilder, 3850 const std::string &Id, 3851 const TypeIdSummary &Summary) { 3852 NameVals.push_back(StrtabBuilder.add(Id)); 3853 NameVals.push_back(Id.size()); 3854 3855 NameVals.push_back(Summary.TTRes.TheKind); 3856 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3857 NameVals.push_back(Summary.TTRes.AlignLog2); 3858 NameVals.push_back(Summary.TTRes.SizeM1); 3859 NameVals.push_back(Summary.TTRes.BitMask); 3860 NameVals.push_back(Summary.TTRes.InlineBits); 3861 3862 for (auto &W : Summary.WPDRes) 3863 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3864 W.second); 3865 } 3866 3867 static void writeTypeIdCompatibleVtableSummaryRecord( 3868 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3869 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3870 ValueEnumerator &VE) { 3871 NameVals.push_back(StrtabBuilder.add(Id)); 3872 NameVals.push_back(Id.size()); 3873 3874 for (auto &P : Summary) { 3875 NameVals.push_back(P.AddressPointOffset); 3876 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3877 } 3878 } 3879 3880 // Helper to emit a single function summary record. 3881 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3882 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3883 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3884 const Function &F) { 3885 NameVals.push_back(ValueID); 3886 3887 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3888 3889 writeFunctionTypeMetadataRecords( 3890 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3891 return {VE.getValueID(VI.getValue())}; 3892 }); 3893 3894 auto SpecialRefCnts = FS->specialRefCounts(); 3895 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3896 NameVals.push_back(FS->instCount()); 3897 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3898 NameVals.push_back(FS->refs().size()); 3899 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3900 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3901 3902 for (auto &RI : FS->refs()) 3903 NameVals.push_back(VE.getValueID(RI.getValue())); 3904 3905 bool HasProfileData = 3906 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3907 for (auto &ECI : FS->calls()) { 3908 NameVals.push_back(getValueId(ECI.first)); 3909 if (HasProfileData) 3910 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3911 else if (WriteRelBFToSummary) 3912 NameVals.push_back(ECI.second.RelBlockFreq); 3913 } 3914 3915 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3916 unsigned Code = 3917 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3918 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3919 : bitc::FS_PERMODULE)); 3920 3921 // Emit the finished record. 3922 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3923 NameVals.clear(); 3924 } 3925 3926 // Collect the global value references in the given variable's initializer, 3927 // and emit them in a summary record. 3928 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3929 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3930 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3931 auto VI = Index->getValueInfo(V.getGUID()); 3932 if (!VI || VI.getSummaryList().empty()) { 3933 // Only declarations should not have a summary (a declaration might however 3934 // have a summary if the def was in module level asm). 3935 assert(V.isDeclaration()); 3936 return; 3937 } 3938 auto *Summary = VI.getSummaryList()[0].get(); 3939 NameVals.push_back(VE.getValueID(&V)); 3940 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3941 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3942 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3943 3944 auto VTableFuncs = VS->vTableFuncs(); 3945 if (!VTableFuncs.empty()) 3946 NameVals.push_back(VS->refs().size()); 3947 3948 unsigned SizeBeforeRefs = NameVals.size(); 3949 for (auto &RI : VS->refs()) 3950 NameVals.push_back(VE.getValueID(RI.getValue())); 3951 // Sort the refs for determinism output, the vector returned by FS->refs() has 3952 // been initialized from a DenseSet. 3953 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3954 3955 if (VTableFuncs.empty()) 3956 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3957 FSModRefsAbbrev); 3958 else { 3959 // VTableFuncs pairs should already be sorted by offset. 3960 for (auto &P : VTableFuncs) { 3961 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3962 NameVals.push_back(P.VTableOffset); 3963 } 3964 3965 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3966 FSModVTableRefsAbbrev); 3967 } 3968 NameVals.clear(); 3969 } 3970 3971 /// Emit the per-module summary section alongside the rest of 3972 /// the module's bitcode. 3973 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3974 // By default we compile with ThinLTO if the module has a summary, but the 3975 // client can request full LTO with a module flag. 3976 bool IsThinLTO = true; 3977 if (auto *MD = 3978 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3979 IsThinLTO = MD->getZExtValue(); 3980 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3981 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3982 4); 3983 3984 Stream.EmitRecord( 3985 bitc::FS_VERSION, 3986 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3987 3988 // Write the index flags. 3989 uint64_t Flags = 0; 3990 // Bits 1-3 are set only in the combined index, skip them. 3991 if (Index->enableSplitLTOUnit()) 3992 Flags |= 0x8; 3993 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3994 3995 if (Index->begin() == Index->end()) { 3996 Stream.ExitBlock(); 3997 return; 3998 } 3999 4000 for (const auto &GVI : valueIds()) { 4001 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4002 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4003 } 4004 4005 // Abbrev for FS_PERMODULE_PROFILE. 4006 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4007 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4015 // numrefs x valueid, n x (valueid, hotness) 4016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4018 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4019 4020 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4021 Abbv = std::make_shared<BitCodeAbbrev>(); 4022 if (WriteRelBFToSummary) 4023 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4024 else 4025 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4033 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4036 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4037 4038 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4039 Abbv = std::make_shared<BitCodeAbbrev>(); 4040 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4045 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4046 4047 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4048 Abbv = std::make_shared<BitCodeAbbrev>(); 4049 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4053 // numrefs x valueid, n x (valueid , offset) 4054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4056 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4057 4058 // Abbrev for FS_ALIAS. 4059 Abbv = std::make_shared<BitCodeAbbrev>(); 4060 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4064 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4065 4066 // Abbrev for FS_TYPE_ID_METADATA 4067 Abbv = std::make_shared<BitCodeAbbrev>(); 4068 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4071 // n x (valueid , offset) 4072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4074 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4075 4076 SmallVector<uint64_t, 64> NameVals; 4077 // Iterate over the list of functions instead of the Index to 4078 // ensure the ordering is stable. 4079 for (const Function &F : M) { 4080 // Summary emission does not support anonymous functions, they have to 4081 // renamed using the anonymous function renaming pass. 4082 if (!F.hasName()) 4083 report_fatal_error("Unexpected anonymous function when writing summary"); 4084 4085 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4086 if (!VI || VI.getSummaryList().empty()) { 4087 // Only declarations should not have a summary (a declaration might 4088 // however have a summary if the def was in module level asm). 4089 assert(F.isDeclaration()); 4090 continue; 4091 } 4092 auto *Summary = VI.getSummaryList()[0].get(); 4093 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4094 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4095 } 4096 4097 // Capture references from GlobalVariable initializers, which are outside 4098 // of a function scope. 4099 for (const GlobalVariable &G : M.globals()) 4100 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4101 FSModVTableRefsAbbrev); 4102 4103 for (const GlobalAlias &A : M.aliases()) { 4104 auto *Aliasee = A.getAliaseeObject(); 4105 if (!Aliasee->hasName()) 4106 // Nameless function don't have an entry in the summary, skip it. 4107 continue; 4108 auto AliasId = VE.getValueID(&A); 4109 auto AliaseeId = VE.getValueID(Aliasee); 4110 NameVals.push_back(AliasId); 4111 auto *Summary = Index->getGlobalValueSummary(A); 4112 AliasSummary *AS = cast<AliasSummary>(Summary); 4113 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4114 NameVals.push_back(AliaseeId); 4115 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4116 NameVals.clear(); 4117 } 4118 4119 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4120 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4121 S.second, VE); 4122 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4123 TypeIdCompatibleVtableAbbrev); 4124 NameVals.clear(); 4125 } 4126 4127 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4128 ArrayRef<uint64_t>{Index->getBlockCount()}); 4129 4130 Stream.ExitBlock(); 4131 } 4132 4133 /// Emit the combined summary section into the combined index file. 4134 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4135 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4136 Stream.EmitRecord( 4137 bitc::FS_VERSION, 4138 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4139 4140 // Write the index flags. 4141 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4142 4143 for (const auto &GVI : valueIds()) { 4144 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4145 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4146 } 4147 4148 // Abbrev for FS_COMBINED. 4149 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4150 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4160 // numrefs x valueid, n x (valueid) 4161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4163 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4164 4165 // Abbrev for FS_COMBINED_PROFILE. 4166 Abbv = std::make_shared<BitCodeAbbrev>(); 4167 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4177 // numrefs x valueid, n x (valueid, hotness) 4178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4180 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4181 4182 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4183 Abbv = std::make_shared<BitCodeAbbrev>(); 4184 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4190 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4191 4192 // Abbrev for FS_COMBINED_ALIAS. 4193 Abbv = std::make_shared<BitCodeAbbrev>(); 4194 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4199 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4200 4201 // The aliases are emitted as a post-pass, and will point to the value 4202 // id of the aliasee. Save them in a vector for post-processing. 4203 SmallVector<AliasSummary *, 64> Aliases; 4204 4205 // Save the value id for each summary for alias emission. 4206 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4207 4208 SmallVector<uint64_t, 64> NameVals; 4209 4210 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4211 // with the type ids referenced by this index file. 4212 std::set<GlobalValue::GUID> ReferencedTypeIds; 4213 4214 // For local linkage, we also emit the original name separately 4215 // immediately after the record. 4216 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4217 // We don't need to emit the original name if we are writing the index for 4218 // distributed backends (in which case ModuleToSummariesForIndex is 4219 // non-null). The original name is only needed during the thin link, since 4220 // for SamplePGO the indirect call targets for local functions have 4221 // have the original name annotated in profile. 4222 // Continue to emit it when writing out the entire combined index, which is 4223 // used in testing the thin link via llvm-lto. 4224 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4225 return; 4226 NameVals.push_back(S.getOriginalName()); 4227 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4228 NameVals.clear(); 4229 }; 4230 4231 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4232 forEachSummary([&](GVInfo I, bool IsAliasee) { 4233 GlobalValueSummary *S = I.second; 4234 assert(S); 4235 DefOrUseGUIDs.insert(I.first); 4236 for (const ValueInfo &VI : S->refs()) 4237 DefOrUseGUIDs.insert(VI.getGUID()); 4238 4239 auto ValueId = getValueId(I.first); 4240 assert(ValueId); 4241 SummaryToValueIdMap[S] = *ValueId; 4242 4243 // If this is invoked for an aliasee, we want to record the above 4244 // mapping, but then not emit a summary entry (if the aliasee is 4245 // to be imported, we will invoke this separately with IsAliasee=false). 4246 if (IsAliasee) 4247 return; 4248 4249 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4250 // Will process aliases as a post-pass because the reader wants all 4251 // global to be loaded first. 4252 Aliases.push_back(AS); 4253 return; 4254 } 4255 4256 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4257 NameVals.push_back(*ValueId); 4258 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4259 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4260 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4261 for (auto &RI : VS->refs()) { 4262 auto RefValueId = getValueId(RI.getGUID()); 4263 if (!RefValueId) 4264 continue; 4265 NameVals.push_back(*RefValueId); 4266 } 4267 4268 // Emit the finished record. 4269 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4270 FSModRefsAbbrev); 4271 NameVals.clear(); 4272 MaybeEmitOriginalName(*S); 4273 return; 4274 } 4275 4276 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4277 return getValueId(VI.getGUID()); 4278 }; 4279 4280 auto *FS = cast<FunctionSummary>(S); 4281 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4282 getReferencedTypeIds(FS, ReferencedTypeIds); 4283 4284 NameVals.push_back(*ValueId); 4285 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4286 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4287 NameVals.push_back(FS->instCount()); 4288 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4289 NameVals.push_back(FS->entryCount()); 4290 4291 // Fill in below 4292 NameVals.push_back(0); // numrefs 4293 NameVals.push_back(0); // rorefcnt 4294 NameVals.push_back(0); // worefcnt 4295 4296 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4297 for (auto &RI : FS->refs()) { 4298 auto RefValueId = getValueId(RI.getGUID()); 4299 if (!RefValueId) 4300 continue; 4301 NameVals.push_back(*RefValueId); 4302 if (RI.isReadOnly()) 4303 RORefCnt++; 4304 else if (RI.isWriteOnly()) 4305 WORefCnt++; 4306 Count++; 4307 } 4308 NameVals[6] = Count; 4309 NameVals[7] = RORefCnt; 4310 NameVals[8] = WORefCnt; 4311 4312 bool HasProfileData = false; 4313 for (auto &EI : FS->calls()) { 4314 HasProfileData |= 4315 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4316 if (HasProfileData) 4317 break; 4318 } 4319 4320 for (auto &EI : FS->calls()) { 4321 // If this GUID doesn't have a value id, it doesn't have a function 4322 // summary and we don't need to record any calls to it. 4323 Optional<unsigned> CallValueId = GetValueId(EI.first); 4324 if (!CallValueId) 4325 continue; 4326 NameVals.push_back(*CallValueId); 4327 if (HasProfileData) 4328 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4329 } 4330 4331 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4332 unsigned Code = 4333 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4334 4335 // Emit the finished record. 4336 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4337 NameVals.clear(); 4338 MaybeEmitOriginalName(*S); 4339 }); 4340 4341 for (auto *AS : Aliases) { 4342 auto AliasValueId = SummaryToValueIdMap[AS]; 4343 assert(AliasValueId); 4344 NameVals.push_back(AliasValueId); 4345 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4346 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4347 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4348 assert(AliaseeValueId); 4349 NameVals.push_back(AliaseeValueId); 4350 4351 // Emit the finished record. 4352 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4353 NameVals.clear(); 4354 MaybeEmitOriginalName(*AS); 4355 4356 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4357 getReferencedTypeIds(FS, ReferencedTypeIds); 4358 } 4359 4360 if (!Index.cfiFunctionDefs().empty()) { 4361 for (auto &S : Index.cfiFunctionDefs()) { 4362 if (DefOrUseGUIDs.count( 4363 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4364 NameVals.push_back(StrtabBuilder.add(S)); 4365 NameVals.push_back(S.size()); 4366 } 4367 } 4368 if (!NameVals.empty()) { 4369 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4370 NameVals.clear(); 4371 } 4372 } 4373 4374 if (!Index.cfiFunctionDecls().empty()) { 4375 for (auto &S : Index.cfiFunctionDecls()) { 4376 if (DefOrUseGUIDs.count( 4377 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4378 NameVals.push_back(StrtabBuilder.add(S)); 4379 NameVals.push_back(S.size()); 4380 } 4381 } 4382 if (!NameVals.empty()) { 4383 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4384 NameVals.clear(); 4385 } 4386 } 4387 4388 // Walk the GUIDs that were referenced, and write the 4389 // corresponding type id records. 4390 for (auto &T : ReferencedTypeIds) { 4391 auto TidIter = Index.typeIds().equal_range(T); 4392 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4393 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4394 It->second.second); 4395 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4396 NameVals.clear(); 4397 } 4398 } 4399 4400 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4401 ArrayRef<uint64_t>{Index.getBlockCount()}); 4402 4403 Stream.ExitBlock(); 4404 } 4405 4406 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4407 /// current llvm version, and a record for the epoch number. 4408 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4409 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4410 4411 // Write the "user readable" string identifying the bitcode producer 4412 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4413 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4416 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4417 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4418 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4419 4420 // Write the epoch version 4421 Abbv = std::make_shared<BitCodeAbbrev>(); 4422 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4424 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4425 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4426 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4427 Stream.ExitBlock(); 4428 } 4429 4430 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4431 // Emit the module's hash. 4432 // MODULE_CODE_HASH: [5*i32] 4433 if (GenerateHash) { 4434 uint32_t Vals[5]; 4435 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4436 Buffer.size() - BlockStartPos)); 4437 std::array<uint8_t, 20> Hash = Hasher.result(); 4438 for (int Pos = 0; Pos < 20; Pos += 4) { 4439 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4440 } 4441 4442 // Emit the finished record. 4443 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4444 4445 if (ModHash) 4446 // Save the written hash value. 4447 llvm::copy(Vals, std::begin(*ModHash)); 4448 } 4449 } 4450 4451 void ModuleBitcodeWriter::write() { 4452 writeIdentificationBlock(Stream); 4453 4454 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4455 size_t BlockStartPos = Buffer.size(); 4456 4457 writeModuleVersion(); 4458 4459 // Emit blockinfo, which defines the standard abbreviations etc. 4460 writeBlockInfo(); 4461 4462 // Emit information describing all of the types in the module. 4463 writeTypeTable(); 4464 4465 // Emit information about attribute groups. 4466 writeAttributeGroupTable(); 4467 4468 // Emit information about parameter attributes. 4469 writeAttributeTable(); 4470 4471 writeComdats(); 4472 4473 // Emit top-level description of module, including target triple, inline asm, 4474 // descriptors for global variables, and function prototype info. 4475 writeModuleInfo(); 4476 4477 // Emit constants. 4478 writeModuleConstants(); 4479 4480 // Emit metadata kind names. 4481 writeModuleMetadataKinds(); 4482 4483 // Emit metadata. 4484 writeModuleMetadata(); 4485 4486 // Emit module-level use-lists. 4487 if (VE.shouldPreserveUseListOrder()) 4488 writeUseListBlock(nullptr); 4489 4490 writeOperandBundleTags(); 4491 writeSyncScopeNames(); 4492 4493 // Emit function bodies. 4494 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4495 for (const Function &F : M) 4496 if (!F.isDeclaration()) 4497 writeFunction(F, FunctionToBitcodeIndex); 4498 4499 // Need to write after the above call to WriteFunction which populates 4500 // the summary information in the index. 4501 if (Index) 4502 writePerModuleGlobalValueSummary(); 4503 4504 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4505 4506 writeModuleHash(BlockStartPos); 4507 4508 Stream.ExitBlock(); 4509 } 4510 4511 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4512 uint32_t &Position) { 4513 support::endian::write32le(&Buffer[Position], Value); 4514 Position += 4; 4515 } 4516 4517 /// If generating a bc file on darwin, we have to emit a 4518 /// header and trailer to make it compatible with the system archiver. To do 4519 /// this we emit the following header, and then emit a trailer that pads the 4520 /// file out to be a multiple of 16 bytes. 4521 /// 4522 /// struct bc_header { 4523 /// uint32_t Magic; // 0x0B17C0DE 4524 /// uint32_t Version; // Version, currently always 0. 4525 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4526 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4527 /// uint32_t CPUType; // CPU specifier. 4528 /// ... potentially more later ... 4529 /// }; 4530 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4531 const Triple &TT) { 4532 unsigned CPUType = ~0U; 4533 4534 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4535 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4536 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4537 // specific constants here because they are implicitly part of the Darwin ABI. 4538 enum { 4539 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4540 DARWIN_CPU_TYPE_X86 = 7, 4541 DARWIN_CPU_TYPE_ARM = 12, 4542 DARWIN_CPU_TYPE_POWERPC = 18 4543 }; 4544 4545 Triple::ArchType Arch = TT.getArch(); 4546 if (Arch == Triple::x86_64) 4547 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4548 else if (Arch == Triple::x86) 4549 CPUType = DARWIN_CPU_TYPE_X86; 4550 else if (Arch == Triple::ppc) 4551 CPUType = DARWIN_CPU_TYPE_POWERPC; 4552 else if (Arch == Triple::ppc64) 4553 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4554 else if (Arch == Triple::arm || Arch == Triple::thumb) 4555 CPUType = DARWIN_CPU_TYPE_ARM; 4556 4557 // Traditional Bitcode starts after header. 4558 assert(Buffer.size() >= BWH_HeaderSize && 4559 "Expected header size to be reserved"); 4560 unsigned BCOffset = BWH_HeaderSize; 4561 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4562 4563 // Write the magic and version. 4564 unsigned Position = 0; 4565 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4566 writeInt32ToBuffer(0, Buffer, Position); // Version. 4567 writeInt32ToBuffer(BCOffset, Buffer, Position); 4568 writeInt32ToBuffer(BCSize, Buffer, Position); 4569 writeInt32ToBuffer(CPUType, Buffer, Position); 4570 4571 // If the file is not a multiple of 16 bytes, insert dummy padding. 4572 while (Buffer.size() & 15) 4573 Buffer.push_back(0); 4574 } 4575 4576 /// Helper to write the header common to all bitcode files. 4577 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4578 // Emit the file header. 4579 Stream.Emit((unsigned)'B', 8); 4580 Stream.Emit((unsigned)'C', 8); 4581 Stream.Emit(0x0, 4); 4582 Stream.Emit(0xC, 4); 4583 Stream.Emit(0xE, 4); 4584 Stream.Emit(0xD, 4); 4585 } 4586 4587 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4588 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4589 writeBitcodeHeader(*Stream); 4590 } 4591 4592 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4593 4594 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4595 Stream->EnterSubblock(Block, 3); 4596 4597 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4598 Abbv->Add(BitCodeAbbrevOp(Record)); 4599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4600 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4601 4602 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4603 4604 Stream->ExitBlock(); 4605 } 4606 4607 void BitcodeWriter::writeSymtab() { 4608 assert(!WroteStrtab && !WroteSymtab); 4609 4610 // If any module has module-level inline asm, we will require a registered asm 4611 // parser for the target so that we can create an accurate symbol table for 4612 // the module. 4613 for (Module *M : Mods) { 4614 if (M->getModuleInlineAsm().empty()) 4615 continue; 4616 4617 std::string Err; 4618 const Triple TT(M->getTargetTriple()); 4619 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4620 if (!T || !T->hasMCAsmParser()) 4621 return; 4622 } 4623 4624 WroteSymtab = true; 4625 SmallVector<char, 0> Symtab; 4626 // The irsymtab::build function may be unable to create a symbol table if the 4627 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4628 // table is not required for correctness, but we still want to be able to 4629 // write malformed modules to bitcode files, so swallow the error. 4630 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4631 consumeError(std::move(E)); 4632 return; 4633 } 4634 4635 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4636 {Symtab.data(), Symtab.size()}); 4637 } 4638 4639 void BitcodeWriter::writeStrtab() { 4640 assert(!WroteStrtab); 4641 4642 std::vector<char> Strtab; 4643 StrtabBuilder.finalizeInOrder(); 4644 Strtab.resize(StrtabBuilder.getSize()); 4645 StrtabBuilder.write((uint8_t *)Strtab.data()); 4646 4647 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4648 {Strtab.data(), Strtab.size()}); 4649 4650 WroteStrtab = true; 4651 } 4652 4653 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4654 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4655 WroteStrtab = true; 4656 } 4657 4658 void BitcodeWriter::writeModule(const Module &M, 4659 bool ShouldPreserveUseListOrder, 4660 const ModuleSummaryIndex *Index, 4661 bool GenerateHash, ModuleHash *ModHash) { 4662 assert(!WroteStrtab); 4663 4664 // The Mods vector is used by irsymtab::build, which requires non-const 4665 // Modules in case it needs to materialize metadata. But the bitcode writer 4666 // requires that the module is materialized, so we can cast to non-const here, 4667 // after checking that it is in fact materialized. 4668 assert(M.isMaterialized()); 4669 Mods.push_back(const_cast<Module *>(&M)); 4670 4671 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4672 ShouldPreserveUseListOrder, Index, 4673 GenerateHash, ModHash); 4674 ModuleWriter.write(); 4675 } 4676 4677 void BitcodeWriter::writeIndex( 4678 const ModuleSummaryIndex *Index, 4679 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4680 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4681 ModuleToSummariesForIndex); 4682 IndexWriter.write(); 4683 } 4684 4685 /// Write the specified module to the specified output stream. 4686 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4687 bool ShouldPreserveUseListOrder, 4688 const ModuleSummaryIndex *Index, 4689 bool GenerateHash, ModuleHash *ModHash) { 4690 SmallVector<char, 0> Buffer; 4691 Buffer.reserve(256*1024); 4692 4693 // If this is darwin or another generic macho target, reserve space for the 4694 // header. 4695 Triple TT(M.getTargetTriple()); 4696 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4697 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4698 4699 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4700 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4701 ModHash); 4702 Writer.writeSymtab(); 4703 Writer.writeStrtab(); 4704 4705 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4706 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4707 4708 // Write the generated bitstream to "Out". 4709 if (!Buffer.empty()) 4710 Out.write((char *)&Buffer.front(), Buffer.size()); 4711 } 4712 4713 void IndexBitcodeWriter::write() { 4714 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4715 4716 writeModuleVersion(); 4717 4718 // Write the module paths in the combined index. 4719 writeModStrings(); 4720 4721 // Write the summary combined index records. 4722 writeCombinedGlobalValueSummary(); 4723 4724 Stream.ExitBlock(); 4725 } 4726 4727 // Write the specified module summary index to the given raw output stream, 4728 // where it will be written in a new bitcode block. This is used when 4729 // writing the combined index file for ThinLTO. When writing a subset of the 4730 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4731 void llvm::writeIndexToFile( 4732 const ModuleSummaryIndex &Index, raw_ostream &Out, 4733 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4734 SmallVector<char, 0> Buffer; 4735 Buffer.reserve(256 * 1024); 4736 4737 BitcodeWriter Writer(Buffer); 4738 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4739 Writer.writeStrtab(); 4740 4741 Out.write((char *)&Buffer.front(), Buffer.size()); 4742 } 4743 4744 namespace { 4745 4746 /// Class to manage the bitcode writing for a thin link bitcode file. 4747 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4748 /// ModHash is for use in ThinLTO incremental build, generated while writing 4749 /// the module bitcode file. 4750 const ModuleHash *ModHash; 4751 4752 public: 4753 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4754 BitstreamWriter &Stream, 4755 const ModuleSummaryIndex &Index, 4756 const ModuleHash &ModHash) 4757 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4758 /*ShouldPreserveUseListOrder=*/false, &Index), 4759 ModHash(&ModHash) {} 4760 4761 void write(); 4762 4763 private: 4764 void writeSimplifiedModuleInfo(); 4765 }; 4766 4767 } // end anonymous namespace 4768 4769 // This function writes a simpilified module info for thin link bitcode file. 4770 // It only contains the source file name along with the name(the offset and 4771 // size in strtab) and linkage for global values. For the global value info 4772 // entry, in order to keep linkage at offset 5, there are three zeros used 4773 // as padding. 4774 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4775 SmallVector<unsigned, 64> Vals; 4776 // Emit the module's source file name. 4777 { 4778 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4779 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4780 if (Bits == SE_Char6) 4781 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4782 else if (Bits == SE_Fixed7) 4783 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4784 4785 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4786 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4787 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4789 Abbv->Add(AbbrevOpToUse); 4790 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4791 4792 for (const auto P : M.getSourceFileName()) 4793 Vals.push_back((unsigned char)P); 4794 4795 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4796 Vals.clear(); 4797 } 4798 4799 // Emit the global variable information. 4800 for (const GlobalVariable &GV : M.globals()) { 4801 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4802 Vals.push_back(StrtabBuilder.add(GV.getName())); 4803 Vals.push_back(GV.getName().size()); 4804 Vals.push_back(0); 4805 Vals.push_back(0); 4806 Vals.push_back(0); 4807 Vals.push_back(getEncodedLinkage(GV)); 4808 4809 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4810 Vals.clear(); 4811 } 4812 4813 // Emit the function proto information. 4814 for (const Function &F : M) { 4815 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4816 Vals.push_back(StrtabBuilder.add(F.getName())); 4817 Vals.push_back(F.getName().size()); 4818 Vals.push_back(0); 4819 Vals.push_back(0); 4820 Vals.push_back(0); 4821 Vals.push_back(getEncodedLinkage(F)); 4822 4823 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4824 Vals.clear(); 4825 } 4826 4827 // Emit the alias information. 4828 for (const GlobalAlias &A : M.aliases()) { 4829 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4830 Vals.push_back(StrtabBuilder.add(A.getName())); 4831 Vals.push_back(A.getName().size()); 4832 Vals.push_back(0); 4833 Vals.push_back(0); 4834 Vals.push_back(0); 4835 Vals.push_back(getEncodedLinkage(A)); 4836 4837 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4838 Vals.clear(); 4839 } 4840 4841 // Emit the ifunc information. 4842 for (const GlobalIFunc &I : M.ifuncs()) { 4843 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4844 Vals.push_back(StrtabBuilder.add(I.getName())); 4845 Vals.push_back(I.getName().size()); 4846 Vals.push_back(0); 4847 Vals.push_back(0); 4848 Vals.push_back(0); 4849 Vals.push_back(getEncodedLinkage(I)); 4850 4851 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4852 Vals.clear(); 4853 } 4854 } 4855 4856 void ThinLinkBitcodeWriter::write() { 4857 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4858 4859 writeModuleVersion(); 4860 4861 writeSimplifiedModuleInfo(); 4862 4863 writePerModuleGlobalValueSummary(); 4864 4865 // Write module hash. 4866 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4867 4868 Stream.ExitBlock(); 4869 } 4870 4871 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4872 const ModuleSummaryIndex &Index, 4873 const ModuleHash &ModHash) { 4874 assert(!WroteStrtab); 4875 4876 // The Mods vector is used by irsymtab::build, which requires non-const 4877 // Modules in case it needs to materialize metadata. But the bitcode writer 4878 // requires that the module is materialized, so we can cast to non-const here, 4879 // after checking that it is in fact materialized. 4880 assert(M.isMaterialized()); 4881 Mods.push_back(const_cast<Module *>(&M)); 4882 4883 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4884 ModHash); 4885 ThinLinkWriter.write(); 4886 } 4887 4888 // Write the specified thin link bitcode file to the given raw output stream, 4889 // where it will be written in a new bitcode block. This is used when 4890 // writing the per-module index file for ThinLTO. 4891 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4892 const ModuleSummaryIndex &Index, 4893 const ModuleHash &ModHash) { 4894 SmallVector<char, 0> Buffer; 4895 Buffer.reserve(256 * 1024); 4896 4897 BitcodeWriter Writer(Buffer); 4898 Writer.writeThinLinkBitcode(M, Index, ModHash); 4899 Writer.writeSymtab(); 4900 Writer.writeStrtab(); 4901 4902 Out.write((char *)&Buffer.front(), Buffer.size()); 4903 } 4904 4905 static const char *getSectionNameForBitcode(const Triple &T) { 4906 switch (T.getObjectFormat()) { 4907 case Triple::MachO: 4908 return "__LLVM,__bitcode"; 4909 case Triple::COFF: 4910 case Triple::ELF: 4911 case Triple::Wasm: 4912 case Triple::UnknownObjectFormat: 4913 return ".llvmbc"; 4914 case Triple::GOFF: 4915 llvm_unreachable("GOFF is not yet implemented"); 4916 break; 4917 case Triple::SPIRV: 4918 llvm_unreachable("SPIRV is not yet implemented"); 4919 break; 4920 case Triple::XCOFF: 4921 llvm_unreachable("XCOFF is not yet implemented"); 4922 break; 4923 case Triple::DXContainer: 4924 llvm_unreachable("DXContainer is not yet implemented"); 4925 break; 4926 } 4927 llvm_unreachable("Unimplemented ObjectFormatType"); 4928 } 4929 4930 static const char *getSectionNameForCommandline(const Triple &T) { 4931 switch (T.getObjectFormat()) { 4932 case Triple::MachO: 4933 return "__LLVM,__cmdline"; 4934 case Triple::COFF: 4935 case Triple::ELF: 4936 case Triple::Wasm: 4937 case Triple::UnknownObjectFormat: 4938 return ".llvmcmd"; 4939 case Triple::GOFF: 4940 llvm_unreachable("GOFF is not yet implemented"); 4941 break; 4942 case Triple::SPIRV: 4943 llvm_unreachable("SPIRV is not yet implemented"); 4944 break; 4945 case Triple::XCOFF: 4946 llvm_unreachable("XCOFF is not yet implemented"); 4947 break; 4948 case Triple::DXContainer: 4949 llvm_unreachable("DXC is not yet implemented"); 4950 break; 4951 } 4952 llvm_unreachable("Unimplemented ObjectFormatType"); 4953 } 4954 4955 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4956 bool EmbedBitcode, bool EmbedCmdline, 4957 const std::vector<uint8_t> &CmdArgs) { 4958 // Save llvm.compiler.used and remove it. 4959 SmallVector<Constant *, 2> UsedArray; 4960 SmallVector<GlobalValue *, 4> UsedGlobals; 4961 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4962 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4963 for (auto *GV : UsedGlobals) { 4964 if (GV->getName() != "llvm.embedded.module" && 4965 GV->getName() != "llvm.cmdline") 4966 UsedArray.push_back( 4967 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4968 } 4969 if (Used) 4970 Used->eraseFromParent(); 4971 4972 // Embed the bitcode for the llvm module. 4973 std::string Data; 4974 ArrayRef<uint8_t> ModuleData; 4975 Triple T(M.getTargetTriple()); 4976 4977 if (EmbedBitcode) { 4978 if (Buf.getBufferSize() == 0 || 4979 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4980 (const unsigned char *)Buf.getBufferEnd())) { 4981 // If the input is LLVM Assembly, bitcode is produced by serializing 4982 // the module. Use-lists order need to be preserved in this case. 4983 llvm::raw_string_ostream OS(Data); 4984 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4985 ModuleData = 4986 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4987 } else 4988 // If the input is LLVM bitcode, write the input byte stream directly. 4989 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4990 Buf.getBufferSize()); 4991 } 4992 llvm::Constant *ModuleConstant = 4993 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4994 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4995 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4996 ModuleConstant); 4997 GV->setSection(getSectionNameForBitcode(T)); 4998 // Set alignment to 1 to prevent padding between two contributions from input 4999 // sections after linking. 5000 GV->setAlignment(Align(1)); 5001 UsedArray.push_back( 5002 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5003 if (llvm::GlobalVariable *Old = 5004 M.getGlobalVariable("llvm.embedded.module", true)) { 5005 assert(Old->hasZeroLiveUses() && 5006 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5007 GV->takeName(Old); 5008 Old->eraseFromParent(); 5009 } else { 5010 GV->setName("llvm.embedded.module"); 5011 } 5012 5013 // Skip if only bitcode needs to be embedded. 5014 if (EmbedCmdline) { 5015 // Embed command-line options. 5016 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5017 CmdArgs.size()); 5018 llvm::Constant *CmdConstant = 5019 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5020 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5021 llvm::GlobalValue::PrivateLinkage, 5022 CmdConstant); 5023 GV->setSection(getSectionNameForCommandline(T)); 5024 GV->setAlignment(Align(1)); 5025 UsedArray.push_back( 5026 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5027 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5028 assert(Old->hasZeroLiveUses() && 5029 "llvm.cmdline can only be used once in llvm.compiler.used"); 5030 GV->takeName(Old); 5031 Old->eraseFromParent(); 5032 } else { 5033 GV->setName("llvm.cmdline"); 5034 } 5035 } 5036 5037 if (UsedArray.empty()) 5038 return; 5039 5040 // Recreate llvm.compiler.used. 5041 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5042 auto *NewUsed = new GlobalVariable( 5043 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5044 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5045 NewUsed->setSection("llvm.metadata"); 5046 } 5047