1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Bitcode/BitCodes.h" 29 #include "llvm/Bitcode/BitstreamWriter.h" 30 #include "llvm/Bitcode/LLVMBitCodes.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 90 cl::opt<bool> WriteRelBFToSummary( 91 "write-relbf-to-summary", cl::Hidden, cl::init(false), 92 cl::desc("Write relative block frequency to function summary ")); 93 94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 95 96 namespace { 97 98 /// These are manifest constants used by the bitcode writer. They do not need to 99 /// be kept in sync with the reader, but need to be consistent within this file. 100 enum { 101 // VALUE_SYMTAB_BLOCK abbrev id's. 102 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 103 VST_ENTRY_7_ABBREV, 104 VST_ENTRY_6_ABBREV, 105 VST_BBENTRY_6_ABBREV, 106 107 // CONSTANTS_BLOCK abbrev id's. 108 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 CONSTANTS_INTEGER_ABBREV, 110 CONSTANTS_CE_CAST_Abbrev, 111 CONSTANTS_NULL_Abbrev, 112 113 // FUNCTION_BLOCK abbrev id's. 114 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 FUNCTION_INST_BINOP_ABBREV, 116 FUNCTION_INST_BINOP_FLAGS_ABBREV, 117 FUNCTION_INST_CAST_ABBREV, 118 FUNCTION_INST_RET_VOID_ABBREV, 119 FUNCTION_INST_RET_VAL_ABBREV, 120 FUNCTION_INST_UNREACHABLE_ABBREV, 121 FUNCTION_INST_GEP_ABBREV, 122 }; 123 124 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 125 /// file type. 126 class BitcodeWriterBase { 127 protected: 128 /// The stream created and owned by the client. 129 BitstreamWriter &Stream; 130 131 StringTableBuilder &StrtabBuilder; 132 133 public: 134 /// Constructs a BitcodeWriterBase object that writes to the provided 135 /// \p Stream. 136 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 137 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 138 139 protected: 140 void writeBitcodeHeader(); 141 void writeModuleVersion(); 142 }; 143 144 void BitcodeWriterBase::writeModuleVersion() { 145 // VERSION: [version#] 146 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 147 } 148 149 /// Base class to manage the module bitcode writing, currently subclassed for 150 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 151 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 152 protected: 153 /// The Module to write to bitcode. 154 const Module &M; 155 156 /// Enumerates ids for all values in the module. 157 ValueEnumerator VE; 158 159 /// Optional per-module index to write for ThinLTO. 160 const ModuleSummaryIndex *Index; 161 162 /// Map that holds the correspondence between GUIDs in the summary index, 163 /// that came from indirect call profiles, and a value id generated by this 164 /// class to use in the VST and summary block records. 165 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 166 167 /// Tracks the last value id recorded in the GUIDToValueMap. 168 unsigned GlobalValueId; 169 170 /// Saves the offset of the VSTOffset record that must eventually be 171 /// backpatched with the offset of the actual VST. 172 uint64_t VSTOffsetPlaceholder = 0; 173 174 public: 175 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 176 /// writing to the provided \p Buffer. 177 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 178 BitstreamWriter &Stream, 179 bool ShouldPreserveUseListOrder, 180 const ModuleSummaryIndex *Index) 181 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 182 VE(M, ShouldPreserveUseListOrder), Index(Index) { 183 // Assign ValueIds to any callee values in the index that came from 184 // indirect call profiles and were recorded as a GUID not a Value* 185 // (which would have been assigned an ID by the ValueEnumerator). 186 // The starting ValueId is just after the number of values in the 187 // ValueEnumerator, so that they can be emitted in the VST. 188 GlobalValueId = VE.getValues().size(); 189 if (!Index) 190 return; 191 for (const auto &GUIDSummaryLists : *Index) 192 // Examine all summaries for this GUID. 193 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 194 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 195 // For each call in the function summary, see if the call 196 // is to a GUID (which means it is for an indirect call, 197 // otherwise we would have a Value for it). If so, synthesize 198 // a value id. 199 for (auto &CallEdge : FS->calls()) 200 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 201 assignValueId(CallEdge.first.getGUID()); 202 } 203 204 protected: 205 void writePerModuleGlobalValueSummary(); 206 207 private: 208 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 209 GlobalValueSummary *Summary, 210 unsigned ValueID, 211 unsigned FSCallsAbbrev, 212 unsigned FSCallsProfileAbbrev, 213 const Function &F); 214 void writeModuleLevelReferences(const GlobalVariable &V, 215 SmallVector<uint64_t, 64> &NameVals, 216 unsigned FSModRefsAbbrev); 217 218 void assignValueId(GlobalValue::GUID ValGUID) { 219 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 220 } 221 222 unsigned getValueId(GlobalValue::GUID ValGUID) { 223 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 224 // Expect that any GUID value had a value Id assigned by an 225 // earlier call to assignValueId. 226 assert(VMI != GUIDToValueIdMap.end() && 227 "GUID does not have assigned value Id"); 228 return VMI->second; 229 } 230 231 // Helper to get the valueId for the type of value recorded in VI. 232 unsigned getValueId(ValueInfo VI) { 233 if (!VI.haveGVs() || !VI.getValue()) 234 return getValueId(VI.getGUID()); 235 return VE.getValueID(VI.getValue()); 236 } 237 238 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 239 }; 240 241 /// Class to manage the bitcode writing for a module. 242 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 243 /// Pointer to the buffer allocated by caller for bitcode writing. 244 const SmallVectorImpl<char> &Buffer; 245 246 /// True if a module hash record should be written. 247 bool GenerateHash; 248 249 /// If non-null, when GenerateHash is true, the resulting hash is written 250 /// into ModHash. 251 ModuleHash *ModHash; 252 253 SHA1 Hasher; 254 255 /// The start bit of the identification block. 256 uint64_t BitcodeStartBit; 257 258 public: 259 /// Constructs a ModuleBitcodeWriter object for the given Module, 260 /// writing to the provided \p Buffer. 261 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 262 StringTableBuilder &StrtabBuilder, 263 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 264 const ModuleSummaryIndex *Index, bool GenerateHash, 265 ModuleHash *ModHash = nullptr) 266 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 267 ShouldPreserveUseListOrder, Index), 268 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 269 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 270 271 /// Emit the current module to the bitstream. 272 void write(); 273 274 private: 275 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 276 277 size_t addToStrtab(StringRef Str); 278 279 void writeAttributeGroupTable(); 280 void writeAttributeTable(); 281 void writeTypeTable(); 282 void writeComdats(); 283 void writeValueSymbolTableForwardDecl(); 284 void writeModuleInfo(); 285 void writeValueAsMetadata(const ValueAsMetadata *MD, 286 SmallVectorImpl<uint64_t> &Record); 287 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 288 unsigned Abbrev); 289 unsigned createDILocationAbbrev(); 290 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 291 unsigned &Abbrev); 292 unsigned createGenericDINodeAbbrev(); 293 void writeGenericDINode(const GenericDINode *N, 294 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 295 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned Abbrev); 297 void writeDIEnumerator(const DIEnumerator *N, 298 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 299 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 300 unsigned Abbrev); 301 void writeDIDerivedType(const DIDerivedType *N, 302 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 303 void writeDICompositeType(const DICompositeType *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDISubroutineType(const DISubroutineType *N, 306 SmallVectorImpl<uint64_t> &Record, 307 unsigned Abbrev); 308 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDICompileUnit(const DICompileUnit *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDISubprogram(const DISubprogram *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDILexicalBlock(const DILexicalBlock *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 322 unsigned Abbrev); 323 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 326 unsigned Abbrev); 327 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 331 SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIGlobalVariable(const DIGlobalVariable *N, 334 SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDILocalVariable(const DILocalVariable *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDILabel(const DILabel *N, 339 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 340 void writeDIExpression(const DIExpression *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDIObjCProperty(const DIObjCProperty *N, 346 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 347 void writeDIImportedEntity(const DIImportedEntity *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 unsigned createNamedMetadataAbbrev(); 351 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 352 unsigned createMetadataStringsAbbrev(); 353 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 354 SmallVectorImpl<uint64_t> &Record); 355 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 356 SmallVectorImpl<uint64_t> &Record, 357 std::vector<unsigned> *MDAbbrevs = nullptr, 358 std::vector<uint64_t> *IndexPos = nullptr); 359 void writeModuleMetadata(); 360 void writeFunctionMetadata(const Function &F); 361 void writeFunctionMetadataAttachment(const Function &F); 362 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 363 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 364 const GlobalObject &GO); 365 void writeModuleMetadataKinds(); 366 void writeOperandBundleTags(); 367 void writeSyncScopeNames(); 368 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 369 void writeModuleConstants(); 370 bool pushValueAndType(const Value *V, unsigned InstID, 371 SmallVectorImpl<unsigned> &Vals); 372 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 373 void pushValue(const Value *V, unsigned InstID, 374 SmallVectorImpl<unsigned> &Vals); 375 void pushValueSigned(const Value *V, unsigned InstID, 376 SmallVectorImpl<uint64_t> &Vals); 377 void writeInstruction(const Instruction &I, unsigned InstID, 378 SmallVectorImpl<unsigned> &Vals); 379 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 380 void writeGlobalValueSymbolTable( 381 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 382 void writeUseList(UseListOrder &&Order); 383 void writeUseListBlock(const Function *F); 384 void 385 writeFunction(const Function &F, 386 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 387 void writeBlockInfo(); 388 void writeModuleHash(size_t BlockStartPos); 389 390 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 391 return unsigned(SSID); 392 } 393 }; 394 395 /// Class to manage the bitcode writing for a combined index. 396 class IndexBitcodeWriter : public BitcodeWriterBase { 397 /// The combined index to write to bitcode. 398 const ModuleSummaryIndex &Index; 399 400 /// When writing a subset of the index for distributed backends, client 401 /// provides a map of modules to the corresponding GUIDs/summaries to write. 402 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 403 404 /// Map that holds the correspondence between the GUID used in the combined 405 /// index and a value id generated by this class to use in references. 406 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 407 408 /// Tracks the last value id recorded in the GUIDToValueMap. 409 unsigned GlobalValueId = 0; 410 411 public: 412 /// Constructs a IndexBitcodeWriter object for the given combined index, 413 /// writing to the provided \p Buffer. When writing a subset of the index 414 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 415 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 416 const ModuleSummaryIndex &Index, 417 const std::map<std::string, GVSummaryMapTy> 418 *ModuleToSummariesForIndex = nullptr) 419 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 420 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 421 // Assign unique value ids to all summaries to be written, for use 422 // in writing out the call graph edges. Save the mapping from GUID 423 // to the new global value id to use when writing those edges, which 424 // are currently saved in the index in terms of GUID. 425 forEachSummary([&](GVInfo I, bool) { 426 GUIDToValueIdMap[I.first] = ++GlobalValueId; 427 }); 428 } 429 430 /// The below iterator returns the GUID and associated summary. 431 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 432 433 /// Calls the callback for each value GUID and summary to be written to 434 /// bitcode. This hides the details of whether they are being pulled from the 435 /// entire index or just those in a provided ModuleToSummariesForIndex map. 436 template<typename Functor> 437 void forEachSummary(Functor Callback) { 438 if (ModuleToSummariesForIndex) { 439 for (auto &M : *ModuleToSummariesForIndex) 440 for (auto &Summary : M.second) { 441 Callback(Summary, false); 442 // Ensure aliasee is handled, e.g. for assigning a valueId, 443 // even if we are not importing the aliasee directly (the 444 // imported alias will contain a copy of aliasee). 445 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 446 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 447 } 448 } else { 449 for (auto &Summaries : Index) 450 for (auto &Summary : Summaries.second.SummaryList) 451 Callback({Summaries.first, Summary.get()}, false); 452 } 453 } 454 455 /// Calls the callback for each entry in the modulePaths StringMap that 456 /// should be written to the module path string table. This hides the details 457 /// of whether they are being pulled from the entire index or just those in a 458 /// provided ModuleToSummariesForIndex map. 459 template <typename Functor> void forEachModule(Functor Callback) { 460 if (ModuleToSummariesForIndex) { 461 for (const auto &M : *ModuleToSummariesForIndex) { 462 const auto &MPI = Index.modulePaths().find(M.first); 463 if (MPI == Index.modulePaths().end()) { 464 // This should only happen if the bitcode file was empty, in which 465 // case we shouldn't be importing (the ModuleToSummariesForIndex 466 // would only include the module we are writing and index for). 467 assert(ModuleToSummariesForIndex->size() == 1); 468 continue; 469 } 470 Callback(*MPI); 471 } 472 } else { 473 for (const auto &MPSE : Index.modulePaths()) 474 Callback(MPSE); 475 } 476 } 477 478 /// Main entry point for writing a combined index to bitcode. 479 void write(); 480 481 private: 482 void writeModStrings(); 483 void writeCombinedGlobalValueSummary(); 484 485 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 486 auto VMI = GUIDToValueIdMap.find(ValGUID); 487 if (VMI == GUIDToValueIdMap.end()) 488 return None; 489 return VMI->second; 490 } 491 492 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 493 }; 494 495 } // end anonymous namespace 496 497 static unsigned getEncodedCastOpcode(unsigned Opcode) { 498 switch (Opcode) { 499 default: llvm_unreachable("Unknown cast instruction!"); 500 case Instruction::Trunc : return bitc::CAST_TRUNC; 501 case Instruction::ZExt : return bitc::CAST_ZEXT; 502 case Instruction::SExt : return bitc::CAST_SEXT; 503 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 504 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 505 case Instruction::UIToFP : return bitc::CAST_UITOFP; 506 case Instruction::SIToFP : return bitc::CAST_SITOFP; 507 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 508 case Instruction::FPExt : return bitc::CAST_FPEXT; 509 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 510 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 511 case Instruction::BitCast : return bitc::CAST_BITCAST; 512 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 513 } 514 } 515 516 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 517 switch (Opcode) { 518 default: llvm_unreachable("Unknown binary instruction!"); 519 case Instruction::Add: 520 case Instruction::FAdd: return bitc::BINOP_ADD; 521 case Instruction::Sub: 522 case Instruction::FSub: return bitc::BINOP_SUB; 523 case Instruction::Mul: 524 case Instruction::FMul: return bitc::BINOP_MUL; 525 case Instruction::UDiv: return bitc::BINOP_UDIV; 526 case Instruction::FDiv: 527 case Instruction::SDiv: return bitc::BINOP_SDIV; 528 case Instruction::URem: return bitc::BINOP_UREM; 529 case Instruction::FRem: 530 case Instruction::SRem: return bitc::BINOP_SREM; 531 case Instruction::Shl: return bitc::BINOP_SHL; 532 case Instruction::LShr: return bitc::BINOP_LSHR; 533 case Instruction::AShr: return bitc::BINOP_ASHR; 534 case Instruction::And: return bitc::BINOP_AND; 535 case Instruction::Or: return bitc::BINOP_OR; 536 case Instruction::Xor: return bitc::BINOP_XOR; 537 } 538 } 539 540 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 541 switch (Op) { 542 default: llvm_unreachable("Unknown RMW operation!"); 543 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 544 case AtomicRMWInst::Add: return bitc::RMW_ADD; 545 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 546 case AtomicRMWInst::And: return bitc::RMW_AND; 547 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 548 case AtomicRMWInst::Or: return bitc::RMW_OR; 549 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 550 case AtomicRMWInst::Max: return bitc::RMW_MAX; 551 case AtomicRMWInst::Min: return bitc::RMW_MIN; 552 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 553 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 554 } 555 } 556 557 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 558 switch (Ordering) { 559 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 560 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 561 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 562 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 563 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 564 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 565 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 566 } 567 llvm_unreachable("Invalid ordering"); 568 } 569 570 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 571 StringRef Str, unsigned AbbrevToUse) { 572 SmallVector<unsigned, 64> Vals; 573 574 // Code: [strchar x N] 575 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 576 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 577 AbbrevToUse = 0; 578 Vals.push_back(Str[i]); 579 } 580 581 // Emit the finished record. 582 Stream.EmitRecord(Code, Vals, AbbrevToUse); 583 } 584 585 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 586 switch (Kind) { 587 case Attribute::Alignment: 588 return bitc::ATTR_KIND_ALIGNMENT; 589 case Attribute::AllocSize: 590 return bitc::ATTR_KIND_ALLOC_SIZE; 591 case Attribute::AlwaysInline: 592 return bitc::ATTR_KIND_ALWAYS_INLINE; 593 case Attribute::ArgMemOnly: 594 return bitc::ATTR_KIND_ARGMEMONLY; 595 case Attribute::Builtin: 596 return bitc::ATTR_KIND_BUILTIN; 597 case Attribute::ByVal: 598 return bitc::ATTR_KIND_BY_VAL; 599 case Attribute::Convergent: 600 return bitc::ATTR_KIND_CONVERGENT; 601 case Attribute::InAlloca: 602 return bitc::ATTR_KIND_IN_ALLOCA; 603 case Attribute::Cold: 604 return bitc::ATTR_KIND_COLD; 605 case Attribute::InaccessibleMemOnly: 606 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 607 case Attribute::InaccessibleMemOrArgMemOnly: 608 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 609 case Attribute::InlineHint: 610 return bitc::ATTR_KIND_INLINE_HINT; 611 case Attribute::InReg: 612 return bitc::ATTR_KIND_IN_REG; 613 case Attribute::JumpTable: 614 return bitc::ATTR_KIND_JUMP_TABLE; 615 case Attribute::MinSize: 616 return bitc::ATTR_KIND_MIN_SIZE; 617 case Attribute::Naked: 618 return bitc::ATTR_KIND_NAKED; 619 case Attribute::Nest: 620 return bitc::ATTR_KIND_NEST; 621 case Attribute::NoAlias: 622 return bitc::ATTR_KIND_NO_ALIAS; 623 case Attribute::NoBuiltin: 624 return bitc::ATTR_KIND_NO_BUILTIN; 625 case Attribute::NoCapture: 626 return bitc::ATTR_KIND_NO_CAPTURE; 627 case Attribute::NoDuplicate: 628 return bitc::ATTR_KIND_NO_DUPLICATE; 629 case Attribute::NoImplicitFloat: 630 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 631 case Attribute::NoInline: 632 return bitc::ATTR_KIND_NO_INLINE; 633 case Attribute::NoRecurse: 634 return bitc::ATTR_KIND_NO_RECURSE; 635 case Attribute::NonLazyBind: 636 return bitc::ATTR_KIND_NON_LAZY_BIND; 637 case Attribute::NonNull: 638 return bitc::ATTR_KIND_NON_NULL; 639 case Attribute::Dereferenceable: 640 return bitc::ATTR_KIND_DEREFERENCEABLE; 641 case Attribute::DereferenceableOrNull: 642 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 643 case Attribute::NoRedZone: 644 return bitc::ATTR_KIND_NO_RED_ZONE; 645 case Attribute::NoReturn: 646 return bitc::ATTR_KIND_NO_RETURN; 647 case Attribute::NoCfCheck: 648 return bitc::ATTR_KIND_NOCF_CHECK; 649 case Attribute::NoUnwind: 650 return bitc::ATTR_KIND_NO_UNWIND; 651 case Attribute::OptForFuzzing: 652 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 653 case Attribute::OptimizeForSize: 654 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 655 case Attribute::OptimizeNone: 656 return bitc::ATTR_KIND_OPTIMIZE_NONE; 657 case Attribute::ReadNone: 658 return bitc::ATTR_KIND_READ_NONE; 659 case Attribute::ReadOnly: 660 return bitc::ATTR_KIND_READ_ONLY; 661 case Attribute::Returned: 662 return bitc::ATTR_KIND_RETURNED; 663 case Attribute::ReturnsTwice: 664 return bitc::ATTR_KIND_RETURNS_TWICE; 665 case Attribute::SExt: 666 return bitc::ATTR_KIND_S_EXT; 667 case Attribute::Speculatable: 668 return bitc::ATTR_KIND_SPECULATABLE; 669 case Attribute::StackAlignment: 670 return bitc::ATTR_KIND_STACK_ALIGNMENT; 671 case Attribute::StackProtect: 672 return bitc::ATTR_KIND_STACK_PROTECT; 673 case Attribute::StackProtectReq: 674 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 675 case Attribute::StackProtectStrong: 676 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 677 case Attribute::SafeStack: 678 return bitc::ATTR_KIND_SAFESTACK; 679 case Attribute::ShadowCallStack: 680 return bitc::ATTR_KIND_SHADOWCALLSTACK; 681 case Attribute::StrictFP: 682 return bitc::ATTR_KIND_STRICT_FP; 683 case Attribute::StructRet: 684 return bitc::ATTR_KIND_STRUCT_RET; 685 case Attribute::SanitizeAddress: 686 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 687 case Attribute::SanitizeHWAddress: 688 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 689 case Attribute::SanitizeThread: 690 return bitc::ATTR_KIND_SANITIZE_THREAD; 691 case Attribute::SanitizeMemory: 692 return bitc::ATTR_KIND_SANITIZE_MEMORY; 693 case Attribute::SpeculativeLoadHardening: 694 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 695 case Attribute::SwiftError: 696 return bitc::ATTR_KIND_SWIFT_ERROR; 697 case Attribute::SwiftSelf: 698 return bitc::ATTR_KIND_SWIFT_SELF; 699 case Attribute::UWTable: 700 return bitc::ATTR_KIND_UW_TABLE; 701 case Attribute::WriteOnly: 702 return bitc::ATTR_KIND_WRITEONLY; 703 case Attribute::ZExt: 704 return bitc::ATTR_KIND_Z_EXT; 705 case Attribute::EndAttrKinds: 706 llvm_unreachable("Can not encode end-attribute kinds marker."); 707 case Attribute::None: 708 llvm_unreachable("Can not encode none-attribute."); 709 } 710 711 llvm_unreachable("Trying to encode unknown attribute"); 712 } 713 714 void ModuleBitcodeWriter::writeAttributeGroupTable() { 715 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 716 VE.getAttributeGroups(); 717 if (AttrGrps.empty()) return; 718 719 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 720 721 SmallVector<uint64_t, 64> Record; 722 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 723 unsigned AttrListIndex = Pair.first; 724 AttributeSet AS = Pair.second; 725 Record.push_back(VE.getAttributeGroupID(Pair)); 726 Record.push_back(AttrListIndex); 727 728 for (Attribute Attr : AS) { 729 if (Attr.isEnumAttribute()) { 730 Record.push_back(0); 731 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 732 } else if (Attr.isIntAttribute()) { 733 Record.push_back(1); 734 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 735 Record.push_back(Attr.getValueAsInt()); 736 } else { 737 StringRef Kind = Attr.getKindAsString(); 738 StringRef Val = Attr.getValueAsString(); 739 740 Record.push_back(Val.empty() ? 3 : 4); 741 Record.append(Kind.begin(), Kind.end()); 742 Record.push_back(0); 743 if (!Val.empty()) { 744 Record.append(Val.begin(), Val.end()); 745 Record.push_back(0); 746 } 747 } 748 } 749 750 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 751 Record.clear(); 752 } 753 754 Stream.ExitBlock(); 755 } 756 757 void ModuleBitcodeWriter::writeAttributeTable() { 758 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 759 if (Attrs.empty()) return; 760 761 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 762 763 SmallVector<uint64_t, 64> Record; 764 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 765 AttributeList AL = Attrs[i]; 766 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 767 AttributeSet AS = AL.getAttributes(i); 768 if (AS.hasAttributes()) 769 Record.push_back(VE.getAttributeGroupID({i, AS})); 770 } 771 772 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 773 Record.clear(); 774 } 775 776 Stream.ExitBlock(); 777 } 778 779 /// WriteTypeTable - Write out the type table for a module. 780 void ModuleBitcodeWriter::writeTypeTable() { 781 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 782 783 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 784 SmallVector<uint64_t, 64> TypeVals; 785 786 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 787 788 // Abbrev for TYPE_CODE_POINTER. 789 auto Abbv = std::make_shared<BitCodeAbbrev>(); 790 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 792 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 793 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 794 795 // Abbrev for TYPE_CODE_FUNCTION. 796 Abbv = std::make_shared<BitCodeAbbrev>(); 797 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 801 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 802 803 // Abbrev for TYPE_CODE_STRUCT_ANON. 804 Abbv = std::make_shared<BitCodeAbbrev>(); 805 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 809 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 810 811 // Abbrev for TYPE_CODE_STRUCT_NAME. 812 Abbv = std::make_shared<BitCodeAbbrev>(); 813 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 816 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 817 818 // Abbrev for TYPE_CODE_STRUCT_NAMED. 819 Abbv = std::make_shared<BitCodeAbbrev>(); 820 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 824 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 825 826 // Abbrev for TYPE_CODE_ARRAY. 827 Abbv = std::make_shared<BitCodeAbbrev>(); 828 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 831 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 832 833 // Emit an entry count so the reader can reserve space. 834 TypeVals.push_back(TypeList.size()); 835 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 836 TypeVals.clear(); 837 838 // Loop over all of the types, emitting each in turn. 839 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 840 Type *T = TypeList[i]; 841 int AbbrevToUse = 0; 842 unsigned Code = 0; 843 844 switch (T->getTypeID()) { 845 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 846 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 847 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 848 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 849 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 850 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 851 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 852 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 853 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 854 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 855 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 856 case Type::IntegerTyID: 857 // INTEGER: [width] 858 Code = bitc::TYPE_CODE_INTEGER; 859 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 860 break; 861 case Type::PointerTyID: { 862 PointerType *PTy = cast<PointerType>(T); 863 // POINTER: [pointee type, address space] 864 Code = bitc::TYPE_CODE_POINTER; 865 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 866 unsigned AddressSpace = PTy->getAddressSpace(); 867 TypeVals.push_back(AddressSpace); 868 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 869 break; 870 } 871 case Type::FunctionTyID: { 872 FunctionType *FT = cast<FunctionType>(T); 873 // FUNCTION: [isvararg, retty, paramty x N] 874 Code = bitc::TYPE_CODE_FUNCTION; 875 TypeVals.push_back(FT->isVarArg()); 876 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 877 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 878 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 879 AbbrevToUse = FunctionAbbrev; 880 break; 881 } 882 case Type::StructTyID: { 883 StructType *ST = cast<StructType>(T); 884 // STRUCT: [ispacked, eltty x N] 885 TypeVals.push_back(ST->isPacked()); 886 // Output all of the element types. 887 for (StructType::element_iterator I = ST->element_begin(), 888 E = ST->element_end(); I != E; ++I) 889 TypeVals.push_back(VE.getTypeID(*I)); 890 891 if (ST->isLiteral()) { 892 Code = bitc::TYPE_CODE_STRUCT_ANON; 893 AbbrevToUse = StructAnonAbbrev; 894 } else { 895 if (ST->isOpaque()) { 896 Code = bitc::TYPE_CODE_OPAQUE; 897 } else { 898 Code = bitc::TYPE_CODE_STRUCT_NAMED; 899 AbbrevToUse = StructNamedAbbrev; 900 } 901 902 // Emit the name if it is present. 903 if (!ST->getName().empty()) 904 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 905 StructNameAbbrev); 906 } 907 break; 908 } 909 case Type::ArrayTyID: { 910 ArrayType *AT = cast<ArrayType>(T); 911 // ARRAY: [numelts, eltty] 912 Code = bitc::TYPE_CODE_ARRAY; 913 TypeVals.push_back(AT->getNumElements()); 914 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 915 AbbrevToUse = ArrayAbbrev; 916 break; 917 } 918 case Type::VectorTyID: { 919 VectorType *VT = cast<VectorType>(T); 920 // VECTOR [numelts, eltty] 921 Code = bitc::TYPE_CODE_VECTOR; 922 TypeVals.push_back(VT->getNumElements()); 923 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 924 break; 925 } 926 } 927 928 // Emit the finished record. 929 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 930 TypeVals.clear(); 931 } 932 933 Stream.ExitBlock(); 934 } 935 936 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 937 switch (Linkage) { 938 case GlobalValue::ExternalLinkage: 939 return 0; 940 case GlobalValue::WeakAnyLinkage: 941 return 16; 942 case GlobalValue::AppendingLinkage: 943 return 2; 944 case GlobalValue::InternalLinkage: 945 return 3; 946 case GlobalValue::LinkOnceAnyLinkage: 947 return 18; 948 case GlobalValue::ExternalWeakLinkage: 949 return 7; 950 case GlobalValue::CommonLinkage: 951 return 8; 952 case GlobalValue::PrivateLinkage: 953 return 9; 954 case GlobalValue::WeakODRLinkage: 955 return 17; 956 case GlobalValue::LinkOnceODRLinkage: 957 return 19; 958 case GlobalValue::AvailableExternallyLinkage: 959 return 12; 960 } 961 llvm_unreachable("Invalid linkage"); 962 } 963 964 static unsigned getEncodedLinkage(const GlobalValue &GV) { 965 return getEncodedLinkage(GV.getLinkage()); 966 } 967 968 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 969 uint64_t RawFlags = 0; 970 RawFlags |= Flags.ReadNone; 971 RawFlags |= (Flags.ReadOnly << 1); 972 RawFlags |= (Flags.NoRecurse << 2); 973 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 974 return RawFlags; 975 } 976 977 // Decode the flags for GlobalValue in the summary 978 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 979 uint64_t RawFlags = 0; 980 981 RawFlags |= Flags.NotEligibleToImport; // bool 982 RawFlags |= (Flags.Live << 1); 983 RawFlags |= (Flags.DSOLocal << 2); 984 985 // Linkage don't need to be remapped at that time for the summary. Any future 986 // change to the getEncodedLinkage() function will need to be taken into 987 // account here as well. 988 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 989 990 return RawFlags; 991 } 992 993 static unsigned getEncodedVisibility(const GlobalValue &GV) { 994 switch (GV.getVisibility()) { 995 case GlobalValue::DefaultVisibility: return 0; 996 case GlobalValue::HiddenVisibility: return 1; 997 case GlobalValue::ProtectedVisibility: return 2; 998 } 999 llvm_unreachable("Invalid visibility"); 1000 } 1001 1002 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1003 switch (GV.getDLLStorageClass()) { 1004 case GlobalValue::DefaultStorageClass: return 0; 1005 case GlobalValue::DLLImportStorageClass: return 1; 1006 case GlobalValue::DLLExportStorageClass: return 2; 1007 } 1008 llvm_unreachable("Invalid DLL storage class"); 1009 } 1010 1011 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1012 switch (GV.getThreadLocalMode()) { 1013 case GlobalVariable::NotThreadLocal: return 0; 1014 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1015 case GlobalVariable::LocalDynamicTLSModel: return 2; 1016 case GlobalVariable::InitialExecTLSModel: return 3; 1017 case GlobalVariable::LocalExecTLSModel: return 4; 1018 } 1019 llvm_unreachable("Invalid TLS model"); 1020 } 1021 1022 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1023 switch (C.getSelectionKind()) { 1024 case Comdat::Any: 1025 return bitc::COMDAT_SELECTION_KIND_ANY; 1026 case Comdat::ExactMatch: 1027 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1028 case Comdat::Largest: 1029 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1030 case Comdat::NoDuplicates: 1031 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1032 case Comdat::SameSize: 1033 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1034 } 1035 llvm_unreachable("Invalid selection kind"); 1036 } 1037 1038 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1039 switch (GV.getUnnamedAddr()) { 1040 case GlobalValue::UnnamedAddr::None: return 0; 1041 case GlobalValue::UnnamedAddr::Local: return 2; 1042 case GlobalValue::UnnamedAddr::Global: return 1; 1043 } 1044 llvm_unreachable("Invalid unnamed_addr"); 1045 } 1046 1047 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1048 if (GenerateHash) 1049 Hasher.update(Str); 1050 return StrtabBuilder.add(Str); 1051 } 1052 1053 void ModuleBitcodeWriter::writeComdats() { 1054 SmallVector<unsigned, 64> Vals; 1055 for (const Comdat *C : VE.getComdats()) { 1056 // COMDAT: [strtab offset, strtab size, selection_kind] 1057 Vals.push_back(addToStrtab(C->getName())); 1058 Vals.push_back(C->getName().size()); 1059 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1060 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1061 Vals.clear(); 1062 } 1063 } 1064 1065 /// Write a record that will eventually hold the word offset of the 1066 /// module-level VST. For now the offset is 0, which will be backpatched 1067 /// after the real VST is written. Saves the bit offset to backpatch. 1068 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1069 // Write a placeholder value in for the offset of the real VST, 1070 // which is written after the function blocks so that it can include 1071 // the offset of each function. The placeholder offset will be 1072 // updated when the real VST is written. 1073 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1074 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1075 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1076 // hold the real VST offset. Must use fixed instead of VBR as we don't 1077 // know how many VBR chunks to reserve ahead of time. 1078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1079 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1080 1081 // Emit the placeholder 1082 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1083 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1084 1085 // Compute and save the bit offset to the placeholder, which will be 1086 // patched when the real VST is written. We can simply subtract the 32-bit 1087 // fixed size from the current bit number to get the location to backpatch. 1088 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1089 } 1090 1091 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1092 1093 /// Determine the encoding to use for the given string name and length. 1094 static StringEncoding getStringEncoding(StringRef Str) { 1095 bool isChar6 = true; 1096 for (char C : Str) { 1097 if (isChar6) 1098 isChar6 = BitCodeAbbrevOp::isChar6(C); 1099 if ((unsigned char)C & 128) 1100 // don't bother scanning the rest. 1101 return SE_Fixed8; 1102 } 1103 if (isChar6) 1104 return SE_Char6; 1105 return SE_Fixed7; 1106 } 1107 1108 /// Emit top-level description of module, including target triple, inline asm, 1109 /// descriptors for global variables, and function prototype info. 1110 /// Returns the bit offset to backpatch with the location of the real VST. 1111 void ModuleBitcodeWriter::writeModuleInfo() { 1112 // Emit various pieces of data attached to a module. 1113 if (!M.getTargetTriple().empty()) 1114 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1115 0 /*TODO*/); 1116 const std::string &DL = M.getDataLayoutStr(); 1117 if (!DL.empty()) 1118 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1119 if (!M.getModuleInlineAsm().empty()) 1120 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1121 0 /*TODO*/); 1122 1123 // Emit information about sections and GC, computing how many there are. Also 1124 // compute the maximum alignment value. 1125 std::map<std::string, unsigned> SectionMap; 1126 std::map<std::string, unsigned> GCMap; 1127 unsigned MaxAlignment = 0; 1128 unsigned MaxGlobalType = 0; 1129 for (const GlobalValue &GV : M.globals()) { 1130 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1131 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1132 if (GV.hasSection()) { 1133 // Give section names unique ID's. 1134 unsigned &Entry = SectionMap[GV.getSection()]; 1135 if (!Entry) { 1136 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1137 0 /*TODO*/); 1138 Entry = SectionMap.size(); 1139 } 1140 } 1141 } 1142 for (const Function &F : M) { 1143 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1144 if (F.hasSection()) { 1145 // Give section names unique ID's. 1146 unsigned &Entry = SectionMap[F.getSection()]; 1147 if (!Entry) { 1148 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1149 0 /*TODO*/); 1150 Entry = SectionMap.size(); 1151 } 1152 } 1153 if (F.hasGC()) { 1154 // Same for GC names. 1155 unsigned &Entry = GCMap[F.getGC()]; 1156 if (!Entry) { 1157 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1158 0 /*TODO*/); 1159 Entry = GCMap.size(); 1160 } 1161 } 1162 } 1163 1164 // Emit abbrev for globals, now that we know # sections and max alignment. 1165 unsigned SimpleGVarAbbrev = 0; 1166 if (!M.global_empty()) { 1167 // Add an abbrev for common globals with no visibility or thread localness. 1168 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1169 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1173 Log2_32_Ceil(MaxGlobalType+1))); 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1175 //| explicitType << 1 1176 //| constant 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1179 if (MaxAlignment == 0) // Alignment. 1180 Abbv->Add(BitCodeAbbrevOp(0)); 1181 else { 1182 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1184 Log2_32_Ceil(MaxEncAlignment+1))); 1185 } 1186 if (SectionMap.empty()) // Section. 1187 Abbv->Add(BitCodeAbbrevOp(0)); 1188 else 1189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1190 Log2_32_Ceil(SectionMap.size()+1))); 1191 // Don't bother emitting vis + thread local. 1192 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1193 } 1194 1195 SmallVector<unsigned, 64> Vals; 1196 // Emit the module's source file name. 1197 { 1198 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1199 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1200 if (Bits == SE_Char6) 1201 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1202 else if (Bits == SE_Fixed7) 1203 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1204 1205 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1206 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1207 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1209 Abbv->Add(AbbrevOpToUse); 1210 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1211 1212 for (const auto P : M.getSourceFileName()) 1213 Vals.push_back((unsigned char)P); 1214 1215 // Emit the finished record. 1216 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1217 Vals.clear(); 1218 } 1219 1220 // Emit the global variable information. 1221 for (const GlobalVariable &GV : M.globals()) { 1222 unsigned AbbrevToUse = 0; 1223 1224 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1225 // linkage, alignment, section, visibility, threadlocal, 1226 // unnamed_addr, externally_initialized, dllstorageclass, 1227 // comdat, attributes, DSO_Local] 1228 Vals.push_back(addToStrtab(GV.getName())); 1229 Vals.push_back(GV.getName().size()); 1230 Vals.push_back(VE.getTypeID(GV.getValueType())); 1231 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1232 Vals.push_back(GV.isDeclaration() ? 0 : 1233 (VE.getValueID(GV.getInitializer()) + 1)); 1234 Vals.push_back(getEncodedLinkage(GV)); 1235 Vals.push_back(Log2_32(GV.getAlignment())+1); 1236 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1237 if (GV.isThreadLocal() || 1238 GV.getVisibility() != GlobalValue::DefaultVisibility || 1239 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1240 GV.isExternallyInitialized() || 1241 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1242 GV.hasComdat() || 1243 GV.hasAttributes() || 1244 GV.isDSOLocal()) { 1245 Vals.push_back(getEncodedVisibility(GV)); 1246 Vals.push_back(getEncodedThreadLocalMode(GV)); 1247 Vals.push_back(getEncodedUnnamedAddr(GV)); 1248 Vals.push_back(GV.isExternallyInitialized()); 1249 Vals.push_back(getEncodedDLLStorageClass(GV)); 1250 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1251 1252 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1253 Vals.push_back(VE.getAttributeListID(AL)); 1254 1255 Vals.push_back(GV.isDSOLocal()); 1256 } else { 1257 AbbrevToUse = SimpleGVarAbbrev; 1258 } 1259 1260 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1261 Vals.clear(); 1262 } 1263 1264 // Emit the function proto information. 1265 for (const Function &F : M) { 1266 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1267 // linkage, paramattrs, alignment, section, visibility, gc, 1268 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1269 // prefixdata, personalityfn, DSO_Local, addrspace] 1270 Vals.push_back(addToStrtab(F.getName())); 1271 Vals.push_back(F.getName().size()); 1272 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1273 Vals.push_back(F.getCallingConv()); 1274 Vals.push_back(F.isDeclaration()); 1275 Vals.push_back(getEncodedLinkage(F)); 1276 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1277 Vals.push_back(Log2_32(F.getAlignment())+1); 1278 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1279 Vals.push_back(getEncodedVisibility(F)); 1280 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1281 Vals.push_back(getEncodedUnnamedAddr(F)); 1282 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1283 : 0); 1284 Vals.push_back(getEncodedDLLStorageClass(F)); 1285 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1286 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1287 : 0); 1288 Vals.push_back( 1289 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1290 1291 Vals.push_back(F.isDSOLocal()); 1292 Vals.push_back(F.getAddressSpace()); 1293 1294 unsigned AbbrevToUse = 0; 1295 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1296 Vals.clear(); 1297 } 1298 1299 // Emit the alias information. 1300 for (const GlobalAlias &A : M.aliases()) { 1301 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1302 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1303 // DSO_Local] 1304 Vals.push_back(addToStrtab(A.getName())); 1305 Vals.push_back(A.getName().size()); 1306 Vals.push_back(VE.getTypeID(A.getValueType())); 1307 Vals.push_back(A.getType()->getAddressSpace()); 1308 Vals.push_back(VE.getValueID(A.getAliasee())); 1309 Vals.push_back(getEncodedLinkage(A)); 1310 Vals.push_back(getEncodedVisibility(A)); 1311 Vals.push_back(getEncodedDLLStorageClass(A)); 1312 Vals.push_back(getEncodedThreadLocalMode(A)); 1313 Vals.push_back(getEncodedUnnamedAddr(A)); 1314 Vals.push_back(A.isDSOLocal()); 1315 1316 unsigned AbbrevToUse = 0; 1317 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1318 Vals.clear(); 1319 } 1320 1321 // Emit the ifunc information. 1322 for (const GlobalIFunc &I : M.ifuncs()) { 1323 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1324 // val#, linkage, visibility, DSO_Local] 1325 Vals.push_back(addToStrtab(I.getName())); 1326 Vals.push_back(I.getName().size()); 1327 Vals.push_back(VE.getTypeID(I.getValueType())); 1328 Vals.push_back(I.getType()->getAddressSpace()); 1329 Vals.push_back(VE.getValueID(I.getResolver())); 1330 Vals.push_back(getEncodedLinkage(I)); 1331 Vals.push_back(getEncodedVisibility(I)); 1332 Vals.push_back(I.isDSOLocal()); 1333 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1334 Vals.clear(); 1335 } 1336 1337 writeValueSymbolTableForwardDecl(); 1338 } 1339 1340 static uint64_t getOptimizationFlags(const Value *V) { 1341 uint64_t Flags = 0; 1342 1343 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1344 if (OBO->hasNoSignedWrap()) 1345 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1346 if (OBO->hasNoUnsignedWrap()) 1347 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1348 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1349 if (PEO->isExact()) 1350 Flags |= 1 << bitc::PEO_EXACT; 1351 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1352 if (FPMO->hasAllowReassoc()) 1353 Flags |= bitc::AllowReassoc; 1354 if (FPMO->hasNoNaNs()) 1355 Flags |= bitc::NoNaNs; 1356 if (FPMO->hasNoInfs()) 1357 Flags |= bitc::NoInfs; 1358 if (FPMO->hasNoSignedZeros()) 1359 Flags |= bitc::NoSignedZeros; 1360 if (FPMO->hasAllowReciprocal()) 1361 Flags |= bitc::AllowReciprocal; 1362 if (FPMO->hasAllowContract()) 1363 Flags |= bitc::AllowContract; 1364 if (FPMO->hasApproxFunc()) 1365 Flags |= bitc::ApproxFunc; 1366 } 1367 1368 return Flags; 1369 } 1370 1371 void ModuleBitcodeWriter::writeValueAsMetadata( 1372 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1373 // Mimic an MDNode with a value as one operand. 1374 Value *V = MD->getValue(); 1375 Record.push_back(VE.getTypeID(V->getType())); 1376 Record.push_back(VE.getValueID(V)); 1377 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1378 Record.clear(); 1379 } 1380 1381 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1382 SmallVectorImpl<uint64_t> &Record, 1383 unsigned Abbrev) { 1384 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1385 Metadata *MD = N->getOperand(i); 1386 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1387 "Unexpected function-local metadata"); 1388 Record.push_back(VE.getMetadataOrNullID(MD)); 1389 } 1390 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1391 : bitc::METADATA_NODE, 1392 Record, Abbrev); 1393 Record.clear(); 1394 } 1395 1396 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1397 // Assume the column is usually under 128, and always output the inlined-at 1398 // location (it's never more expensive than building an array size 1). 1399 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1400 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1406 return Stream.EmitAbbrev(std::move(Abbv)); 1407 } 1408 1409 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1410 SmallVectorImpl<uint64_t> &Record, 1411 unsigned &Abbrev) { 1412 if (!Abbrev) 1413 Abbrev = createDILocationAbbrev(); 1414 1415 Record.push_back(N->isDistinct()); 1416 Record.push_back(N->getLine()); 1417 Record.push_back(N->getColumn()); 1418 Record.push_back(VE.getMetadataID(N->getScope())); 1419 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1420 1421 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1422 Record.clear(); 1423 } 1424 1425 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1426 // Assume the column is usually under 128, and always output the inlined-at 1427 // location (it's never more expensive than building an array size 1). 1428 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1429 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1436 return Stream.EmitAbbrev(std::move(Abbv)); 1437 } 1438 1439 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1440 SmallVectorImpl<uint64_t> &Record, 1441 unsigned &Abbrev) { 1442 if (!Abbrev) 1443 Abbrev = createGenericDINodeAbbrev(); 1444 1445 Record.push_back(N->isDistinct()); 1446 Record.push_back(N->getTag()); 1447 Record.push_back(0); // Per-tag version field; unused for now. 1448 1449 for (auto &I : N->operands()) 1450 Record.push_back(VE.getMetadataOrNullID(I)); 1451 1452 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1453 Record.clear(); 1454 } 1455 1456 static uint64_t rotateSign(int64_t I) { 1457 uint64_t U = I; 1458 return I < 0 ? ~(U << 1) : U << 1; 1459 } 1460 1461 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1462 SmallVectorImpl<uint64_t> &Record, 1463 unsigned Abbrev) { 1464 const uint64_t Version = 1 << 1; 1465 Record.push_back((uint64_t)N->isDistinct() | Version); 1466 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1467 Record.push_back(rotateSign(N->getLowerBound())); 1468 1469 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1470 Record.clear(); 1471 } 1472 1473 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1474 SmallVectorImpl<uint64_t> &Record, 1475 unsigned Abbrev) { 1476 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1477 Record.push_back(rotateSign(N->getValue())); 1478 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1479 1480 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1481 Record.clear(); 1482 } 1483 1484 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1485 SmallVectorImpl<uint64_t> &Record, 1486 unsigned Abbrev) { 1487 Record.push_back(N->isDistinct()); 1488 Record.push_back(N->getTag()); 1489 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1490 Record.push_back(N->getSizeInBits()); 1491 Record.push_back(N->getAlignInBits()); 1492 Record.push_back(N->getEncoding()); 1493 Record.push_back(N->getFlags()); 1494 1495 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1496 Record.clear(); 1497 } 1498 1499 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1500 SmallVectorImpl<uint64_t> &Record, 1501 unsigned Abbrev) { 1502 Record.push_back(N->isDistinct()); 1503 Record.push_back(N->getTag()); 1504 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1505 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1506 Record.push_back(N->getLine()); 1507 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1508 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1509 Record.push_back(N->getSizeInBits()); 1510 Record.push_back(N->getAlignInBits()); 1511 Record.push_back(N->getOffsetInBits()); 1512 Record.push_back(N->getFlags()); 1513 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1514 1515 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1516 // that there is no DWARF address space associated with DIDerivedType. 1517 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1518 Record.push_back(*DWARFAddressSpace + 1); 1519 else 1520 Record.push_back(0); 1521 1522 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1523 Record.clear(); 1524 } 1525 1526 void ModuleBitcodeWriter::writeDICompositeType( 1527 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1528 unsigned Abbrev) { 1529 const unsigned IsNotUsedInOldTypeRef = 0x2; 1530 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1531 Record.push_back(N->getTag()); 1532 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1533 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1534 Record.push_back(N->getLine()); 1535 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1536 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1537 Record.push_back(N->getSizeInBits()); 1538 Record.push_back(N->getAlignInBits()); 1539 Record.push_back(N->getOffsetInBits()); 1540 Record.push_back(N->getFlags()); 1541 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1542 Record.push_back(N->getRuntimeLang()); 1543 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1544 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1545 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1546 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1547 1548 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1549 Record.clear(); 1550 } 1551 1552 void ModuleBitcodeWriter::writeDISubroutineType( 1553 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1554 unsigned Abbrev) { 1555 const unsigned HasNoOldTypeRefs = 0x2; 1556 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1557 Record.push_back(N->getFlags()); 1558 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1559 Record.push_back(N->getCC()); 1560 1561 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1562 Record.clear(); 1563 } 1564 1565 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1566 SmallVectorImpl<uint64_t> &Record, 1567 unsigned Abbrev) { 1568 Record.push_back(N->isDistinct()); 1569 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1570 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1571 if (N->getRawChecksum()) { 1572 Record.push_back(N->getRawChecksum()->Kind); 1573 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1574 } else { 1575 // Maintain backwards compatibility with the old internal representation of 1576 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1577 Record.push_back(0); 1578 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1579 } 1580 auto Source = N->getRawSource(); 1581 if (Source) 1582 Record.push_back(VE.getMetadataOrNullID(*Source)); 1583 1584 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1585 Record.clear(); 1586 } 1587 1588 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1589 SmallVectorImpl<uint64_t> &Record, 1590 unsigned Abbrev) { 1591 assert(N->isDistinct() && "Expected distinct compile units"); 1592 Record.push_back(/* IsDistinct */ true); 1593 Record.push_back(N->getSourceLanguage()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1596 Record.push_back(N->isOptimized()); 1597 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1598 Record.push_back(N->getRuntimeVersion()); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1600 Record.push_back(N->getEmissionKind()); 1601 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1602 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1603 Record.push_back(/* subprograms */ 0); 1604 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1605 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1606 Record.push_back(N->getDWOId()); 1607 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1608 Record.push_back(N->getSplitDebugInlining()); 1609 Record.push_back(N->getDebugInfoForProfiling()); 1610 Record.push_back((unsigned)N->getNameTableKind()); 1611 1612 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1613 Record.clear(); 1614 } 1615 1616 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1617 SmallVectorImpl<uint64_t> &Record, 1618 unsigned Abbrev) { 1619 uint64_t HasUnitFlag = 1 << 1; 1620 Record.push_back(N->isDistinct() | HasUnitFlag); 1621 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1622 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1623 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1624 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1625 Record.push_back(N->getLine()); 1626 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1627 Record.push_back(N->isLocalToUnit()); 1628 Record.push_back(N->isDefinition()); 1629 Record.push_back(N->getScopeLine()); 1630 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1631 Record.push_back(N->getVirtuality()); 1632 Record.push_back(N->getVirtualIndex()); 1633 Record.push_back(N->getFlags()); 1634 Record.push_back(N->isOptimized()); 1635 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1636 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1637 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1638 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1639 Record.push_back(N->getThisAdjustment()); 1640 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1641 1642 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1643 Record.clear(); 1644 } 1645 1646 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1647 SmallVectorImpl<uint64_t> &Record, 1648 unsigned Abbrev) { 1649 Record.push_back(N->isDistinct()); 1650 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1651 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1652 Record.push_back(N->getLine()); 1653 Record.push_back(N->getColumn()); 1654 1655 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1656 Record.clear(); 1657 } 1658 1659 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1660 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1661 unsigned Abbrev) { 1662 Record.push_back(N->isDistinct()); 1663 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1664 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1665 Record.push_back(N->getDiscriminator()); 1666 1667 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1668 Record.clear(); 1669 } 1670 1671 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1672 SmallVectorImpl<uint64_t> &Record, 1673 unsigned Abbrev) { 1674 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1675 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1677 1678 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1679 Record.clear(); 1680 } 1681 1682 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1683 SmallVectorImpl<uint64_t> &Record, 1684 unsigned Abbrev) { 1685 Record.push_back(N->isDistinct()); 1686 Record.push_back(N->getMacinfoType()); 1687 Record.push_back(N->getLine()); 1688 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1689 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1690 1691 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1692 Record.clear(); 1693 } 1694 1695 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1696 SmallVectorImpl<uint64_t> &Record, 1697 unsigned Abbrev) { 1698 Record.push_back(N->isDistinct()); 1699 Record.push_back(N->getMacinfoType()); 1700 Record.push_back(N->getLine()); 1701 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1702 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1703 1704 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1705 Record.clear(); 1706 } 1707 1708 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1709 SmallVectorImpl<uint64_t> &Record, 1710 unsigned Abbrev) { 1711 Record.push_back(N->isDistinct()); 1712 for (auto &I : N->operands()) 1713 Record.push_back(VE.getMetadataOrNullID(I)); 1714 1715 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1716 Record.clear(); 1717 } 1718 1719 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1720 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1721 unsigned Abbrev) { 1722 Record.push_back(N->isDistinct()); 1723 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1725 1726 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1727 Record.clear(); 1728 } 1729 1730 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1731 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1732 unsigned Abbrev) { 1733 Record.push_back(N->isDistinct()); 1734 Record.push_back(N->getTag()); 1735 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1736 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1737 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1738 1739 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1740 Record.clear(); 1741 } 1742 1743 void ModuleBitcodeWriter::writeDIGlobalVariable( 1744 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1745 unsigned Abbrev) { 1746 const uint64_t Version = 1 << 1; 1747 Record.push_back((uint64_t)N->isDistinct() | Version); 1748 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1749 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1750 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1751 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1752 Record.push_back(N->getLine()); 1753 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1754 Record.push_back(N->isLocalToUnit()); 1755 Record.push_back(N->isDefinition()); 1756 Record.push_back(/* expr */ 0); 1757 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1758 Record.push_back(N->getAlignInBits()); 1759 1760 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1761 Record.clear(); 1762 } 1763 1764 void ModuleBitcodeWriter::writeDILocalVariable( 1765 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1766 unsigned Abbrev) { 1767 // In order to support all possible bitcode formats in BitcodeReader we need 1768 // to distinguish the following cases: 1769 // 1) Record has no artificial tag (Record[1]), 1770 // has no obsolete inlinedAt field (Record[9]). 1771 // In this case Record size will be 8, HasAlignment flag is false. 1772 // 2) Record has artificial tag (Record[1]), 1773 // has no obsolete inlignedAt field (Record[9]). 1774 // In this case Record size will be 9, HasAlignment flag is false. 1775 // 3) Record has both artificial tag (Record[1]) and 1776 // obsolete inlignedAt field (Record[9]). 1777 // In this case Record size will be 10, HasAlignment flag is false. 1778 // 4) Record has neither artificial tag, nor inlignedAt field, but 1779 // HasAlignment flag is true and Record[8] contains alignment value. 1780 const uint64_t HasAlignmentFlag = 1 << 1; 1781 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1782 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1783 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1784 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1785 Record.push_back(N->getLine()); 1786 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1787 Record.push_back(N->getArg()); 1788 Record.push_back(N->getFlags()); 1789 Record.push_back(N->getAlignInBits()); 1790 1791 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1792 Record.clear(); 1793 } 1794 1795 void ModuleBitcodeWriter::writeDILabel( 1796 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1797 unsigned Abbrev) { 1798 Record.push_back((uint64_t)N->isDistinct()); 1799 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1800 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1802 Record.push_back(N->getLine()); 1803 1804 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1805 Record.clear(); 1806 } 1807 1808 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1809 SmallVectorImpl<uint64_t> &Record, 1810 unsigned Abbrev) { 1811 Record.reserve(N->getElements().size() + 1); 1812 const uint64_t Version = 3 << 1; 1813 Record.push_back((uint64_t)N->isDistinct() | Version); 1814 Record.append(N->elements_begin(), N->elements_end()); 1815 1816 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1817 Record.clear(); 1818 } 1819 1820 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1821 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1822 unsigned Abbrev) { 1823 Record.push_back(N->isDistinct()); 1824 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1825 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1826 1827 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1828 Record.clear(); 1829 } 1830 1831 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1832 SmallVectorImpl<uint64_t> &Record, 1833 unsigned Abbrev) { 1834 Record.push_back(N->isDistinct()); 1835 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1836 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1837 Record.push_back(N->getLine()); 1838 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1839 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1840 Record.push_back(N->getAttributes()); 1841 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1842 1843 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1844 Record.clear(); 1845 } 1846 1847 void ModuleBitcodeWriter::writeDIImportedEntity( 1848 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1849 unsigned Abbrev) { 1850 Record.push_back(N->isDistinct()); 1851 Record.push_back(N->getTag()); 1852 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1854 Record.push_back(N->getLine()); 1855 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1857 1858 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1859 Record.clear(); 1860 } 1861 1862 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1863 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1864 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1867 return Stream.EmitAbbrev(std::move(Abbv)); 1868 } 1869 1870 void ModuleBitcodeWriter::writeNamedMetadata( 1871 SmallVectorImpl<uint64_t> &Record) { 1872 if (M.named_metadata_empty()) 1873 return; 1874 1875 unsigned Abbrev = createNamedMetadataAbbrev(); 1876 for (const NamedMDNode &NMD : M.named_metadata()) { 1877 // Write name. 1878 StringRef Str = NMD.getName(); 1879 Record.append(Str.bytes_begin(), Str.bytes_end()); 1880 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1881 Record.clear(); 1882 1883 // Write named metadata operands. 1884 for (const MDNode *N : NMD.operands()) 1885 Record.push_back(VE.getMetadataID(N)); 1886 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1887 Record.clear(); 1888 } 1889 } 1890 1891 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1892 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1893 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1897 return Stream.EmitAbbrev(std::move(Abbv)); 1898 } 1899 1900 /// Write out a record for MDString. 1901 /// 1902 /// All the metadata strings in a metadata block are emitted in a single 1903 /// record. The sizes and strings themselves are shoved into a blob. 1904 void ModuleBitcodeWriter::writeMetadataStrings( 1905 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1906 if (Strings.empty()) 1907 return; 1908 1909 // Start the record with the number of strings. 1910 Record.push_back(bitc::METADATA_STRINGS); 1911 Record.push_back(Strings.size()); 1912 1913 // Emit the sizes of the strings in the blob. 1914 SmallString<256> Blob; 1915 { 1916 BitstreamWriter W(Blob); 1917 for (const Metadata *MD : Strings) 1918 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1919 W.FlushToWord(); 1920 } 1921 1922 // Add the offset to the strings to the record. 1923 Record.push_back(Blob.size()); 1924 1925 // Add the strings to the blob. 1926 for (const Metadata *MD : Strings) 1927 Blob.append(cast<MDString>(MD)->getString()); 1928 1929 // Emit the final record. 1930 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1931 Record.clear(); 1932 } 1933 1934 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1935 enum MetadataAbbrev : unsigned { 1936 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1937 #include "llvm/IR/Metadata.def" 1938 LastPlusOne 1939 }; 1940 1941 void ModuleBitcodeWriter::writeMetadataRecords( 1942 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1943 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1944 if (MDs.empty()) 1945 return; 1946 1947 // Initialize MDNode abbreviations. 1948 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1949 #include "llvm/IR/Metadata.def" 1950 1951 for (const Metadata *MD : MDs) { 1952 if (IndexPos) 1953 IndexPos->push_back(Stream.GetCurrentBitNo()); 1954 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1955 assert(N->isResolved() && "Expected forward references to be resolved"); 1956 1957 switch (N->getMetadataID()) { 1958 default: 1959 llvm_unreachable("Invalid MDNode subclass"); 1960 #define HANDLE_MDNODE_LEAF(CLASS) \ 1961 case Metadata::CLASS##Kind: \ 1962 if (MDAbbrevs) \ 1963 write##CLASS(cast<CLASS>(N), Record, \ 1964 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1965 else \ 1966 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1967 continue; 1968 #include "llvm/IR/Metadata.def" 1969 } 1970 } 1971 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1972 } 1973 } 1974 1975 void ModuleBitcodeWriter::writeModuleMetadata() { 1976 if (!VE.hasMDs() && M.named_metadata_empty()) 1977 return; 1978 1979 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1980 SmallVector<uint64_t, 64> Record; 1981 1982 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1983 // block and load any metadata. 1984 std::vector<unsigned> MDAbbrevs; 1985 1986 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1987 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1988 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1989 createGenericDINodeAbbrev(); 1990 1991 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1992 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1995 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1996 1997 Abbv = std::make_shared<BitCodeAbbrev>(); 1998 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2001 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2002 2003 // Emit MDStrings together upfront. 2004 writeMetadataStrings(VE.getMDStrings(), Record); 2005 2006 // We only emit an index for the metadata record if we have more than a given 2007 // (naive) threshold of metadatas, otherwise it is not worth it. 2008 if (VE.getNonMDStrings().size() > IndexThreshold) { 2009 // Write a placeholder value in for the offset of the metadata index, 2010 // which is written after the records, so that it can include 2011 // the offset of each entry. The placeholder offset will be 2012 // updated after all records are emitted. 2013 uint64_t Vals[] = {0, 0}; 2014 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2015 } 2016 2017 // Compute and save the bit offset to the current position, which will be 2018 // patched when we emit the index later. We can simply subtract the 64-bit 2019 // fixed size from the current bit number to get the location to backpatch. 2020 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2021 2022 // This index will contain the bitpos for each individual record. 2023 std::vector<uint64_t> IndexPos; 2024 IndexPos.reserve(VE.getNonMDStrings().size()); 2025 2026 // Write all the records 2027 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2028 2029 if (VE.getNonMDStrings().size() > IndexThreshold) { 2030 // Now that we have emitted all the records we will emit the index. But 2031 // first 2032 // backpatch the forward reference so that the reader can skip the records 2033 // efficiently. 2034 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2035 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2036 2037 // Delta encode the index. 2038 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2039 for (auto &Elt : IndexPos) { 2040 auto EltDelta = Elt - PreviousValue; 2041 PreviousValue = Elt; 2042 Elt = EltDelta; 2043 } 2044 // Emit the index record. 2045 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2046 IndexPos.clear(); 2047 } 2048 2049 // Write the named metadata now. 2050 writeNamedMetadata(Record); 2051 2052 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2053 SmallVector<uint64_t, 4> Record; 2054 Record.push_back(VE.getValueID(&GO)); 2055 pushGlobalMetadataAttachment(Record, GO); 2056 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2057 }; 2058 for (const Function &F : M) 2059 if (F.isDeclaration() && F.hasMetadata()) 2060 AddDeclAttachedMetadata(F); 2061 // FIXME: Only store metadata for declarations here, and move data for global 2062 // variable definitions to a separate block (PR28134). 2063 for (const GlobalVariable &GV : M.globals()) 2064 if (GV.hasMetadata()) 2065 AddDeclAttachedMetadata(GV); 2066 2067 Stream.ExitBlock(); 2068 } 2069 2070 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2071 if (!VE.hasMDs()) 2072 return; 2073 2074 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2075 SmallVector<uint64_t, 64> Record; 2076 writeMetadataStrings(VE.getMDStrings(), Record); 2077 writeMetadataRecords(VE.getNonMDStrings(), Record); 2078 Stream.ExitBlock(); 2079 } 2080 2081 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2082 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2083 // [n x [id, mdnode]] 2084 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2085 GO.getAllMetadata(MDs); 2086 for (const auto &I : MDs) { 2087 Record.push_back(I.first); 2088 Record.push_back(VE.getMetadataID(I.second)); 2089 } 2090 } 2091 2092 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2093 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2094 2095 SmallVector<uint64_t, 64> Record; 2096 2097 if (F.hasMetadata()) { 2098 pushGlobalMetadataAttachment(Record, F); 2099 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2100 Record.clear(); 2101 } 2102 2103 // Write metadata attachments 2104 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2105 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2106 for (const BasicBlock &BB : F) 2107 for (const Instruction &I : BB) { 2108 MDs.clear(); 2109 I.getAllMetadataOtherThanDebugLoc(MDs); 2110 2111 // If no metadata, ignore instruction. 2112 if (MDs.empty()) continue; 2113 2114 Record.push_back(VE.getInstructionID(&I)); 2115 2116 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2117 Record.push_back(MDs[i].first); 2118 Record.push_back(VE.getMetadataID(MDs[i].second)); 2119 } 2120 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2121 Record.clear(); 2122 } 2123 2124 Stream.ExitBlock(); 2125 } 2126 2127 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2128 SmallVector<uint64_t, 64> Record; 2129 2130 // Write metadata kinds 2131 // METADATA_KIND - [n x [id, name]] 2132 SmallVector<StringRef, 8> Names; 2133 M.getMDKindNames(Names); 2134 2135 if (Names.empty()) return; 2136 2137 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2138 2139 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2140 Record.push_back(MDKindID); 2141 StringRef KName = Names[MDKindID]; 2142 Record.append(KName.begin(), KName.end()); 2143 2144 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2145 Record.clear(); 2146 } 2147 2148 Stream.ExitBlock(); 2149 } 2150 2151 void ModuleBitcodeWriter::writeOperandBundleTags() { 2152 // Write metadata kinds 2153 // 2154 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2155 // 2156 // OPERAND_BUNDLE_TAG - [strchr x N] 2157 2158 SmallVector<StringRef, 8> Tags; 2159 M.getOperandBundleTags(Tags); 2160 2161 if (Tags.empty()) 2162 return; 2163 2164 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2165 2166 SmallVector<uint64_t, 64> Record; 2167 2168 for (auto Tag : Tags) { 2169 Record.append(Tag.begin(), Tag.end()); 2170 2171 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2172 Record.clear(); 2173 } 2174 2175 Stream.ExitBlock(); 2176 } 2177 2178 void ModuleBitcodeWriter::writeSyncScopeNames() { 2179 SmallVector<StringRef, 8> SSNs; 2180 M.getContext().getSyncScopeNames(SSNs); 2181 if (SSNs.empty()) 2182 return; 2183 2184 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2185 2186 SmallVector<uint64_t, 64> Record; 2187 for (auto SSN : SSNs) { 2188 Record.append(SSN.begin(), SSN.end()); 2189 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2190 Record.clear(); 2191 } 2192 2193 Stream.ExitBlock(); 2194 } 2195 2196 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2197 if ((int64_t)V >= 0) 2198 Vals.push_back(V << 1); 2199 else 2200 Vals.push_back((-V << 1) | 1); 2201 } 2202 2203 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2204 bool isGlobal) { 2205 if (FirstVal == LastVal) return; 2206 2207 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2208 2209 unsigned AggregateAbbrev = 0; 2210 unsigned String8Abbrev = 0; 2211 unsigned CString7Abbrev = 0; 2212 unsigned CString6Abbrev = 0; 2213 // If this is a constant pool for the module, emit module-specific abbrevs. 2214 if (isGlobal) { 2215 // Abbrev for CST_CODE_AGGREGATE. 2216 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2217 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2220 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2221 2222 // Abbrev for CST_CODE_STRING. 2223 Abbv = std::make_shared<BitCodeAbbrev>(); 2224 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2227 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2228 // Abbrev for CST_CODE_CSTRING. 2229 Abbv = std::make_shared<BitCodeAbbrev>(); 2230 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2233 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2234 // Abbrev for CST_CODE_CSTRING. 2235 Abbv = std::make_shared<BitCodeAbbrev>(); 2236 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2239 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2240 } 2241 2242 SmallVector<uint64_t, 64> Record; 2243 2244 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2245 Type *LastTy = nullptr; 2246 for (unsigned i = FirstVal; i != LastVal; ++i) { 2247 const Value *V = Vals[i].first; 2248 // If we need to switch types, do so now. 2249 if (V->getType() != LastTy) { 2250 LastTy = V->getType(); 2251 Record.push_back(VE.getTypeID(LastTy)); 2252 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2253 CONSTANTS_SETTYPE_ABBREV); 2254 Record.clear(); 2255 } 2256 2257 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2258 Record.push_back(unsigned(IA->hasSideEffects()) | 2259 unsigned(IA->isAlignStack()) << 1 | 2260 unsigned(IA->getDialect()&1) << 2); 2261 2262 // Add the asm string. 2263 const std::string &AsmStr = IA->getAsmString(); 2264 Record.push_back(AsmStr.size()); 2265 Record.append(AsmStr.begin(), AsmStr.end()); 2266 2267 // Add the constraint string. 2268 const std::string &ConstraintStr = IA->getConstraintString(); 2269 Record.push_back(ConstraintStr.size()); 2270 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2271 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2272 Record.clear(); 2273 continue; 2274 } 2275 const Constant *C = cast<Constant>(V); 2276 unsigned Code = -1U; 2277 unsigned AbbrevToUse = 0; 2278 if (C->isNullValue()) { 2279 Code = bitc::CST_CODE_NULL; 2280 } else if (isa<UndefValue>(C)) { 2281 Code = bitc::CST_CODE_UNDEF; 2282 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2283 if (IV->getBitWidth() <= 64) { 2284 uint64_t V = IV->getSExtValue(); 2285 emitSignedInt64(Record, V); 2286 Code = bitc::CST_CODE_INTEGER; 2287 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2288 } else { // Wide integers, > 64 bits in size. 2289 // We have an arbitrary precision integer value to write whose 2290 // bit width is > 64. However, in canonical unsigned integer 2291 // format it is likely that the high bits are going to be zero. 2292 // So, we only write the number of active words. 2293 unsigned NWords = IV->getValue().getActiveWords(); 2294 const uint64_t *RawWords = IV->getValue().getRawData(); 2295 for (unsigned i = 0; i != NWords; ++i) { 2296 emitSignedInt64(Record, RawWords[i]); 2297 } 2298 Code = bitc::CST_CODE_WIDE_INTEGER; 2299 } 2300 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2301 Code = bitc::CST_CODE_FLOAT; 2302 Type *Ty = CFP->getType(); 2303 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2304 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2305 } else if (Ty->isX86_FP80Ty()) { 2306 // api needed to prevent premature destruction 2307 // bits are not in the same order as a normal i80 APInt, compensate. 2308 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2309 const uint64_t *p = api.getRawData(); 2310 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2311 Record.push_back(p[0] & 0xffffLL); 2312 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2313 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2314 const uint64_t *p = api.getRawData(); 2315 Record.push_back(p[0]); 2316 Record.push_back(p[1]); 2317 } else { 2318 assert(0 && "Unknown FP type!"); 2319 } 2320 } else if (isa<ConstantDataSequential>(C) && 2321 cast<ConstantDataSequential>(C)->isString()) { 2322 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2323 // Emit constant strings specially. 2324 unsigned NumElts = Str->getNumElements(); 2325 // If this is a null-terminated string, use the denser CSTRING encoding. 2326 if (Str->isCString()) { 2327 Code = bitc::CST_CODE_CSTRING; 2328 --NumElts; // Don't encode the null, which isn't allowed by char6. 2329 } else { 2330 Code = bitc::CST_CODE_STRING; 2331 AbbrevToUse = String8Abbrev; 2332 } 2333 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2334 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2335 for (unsigned i = 0; i != NumElts; ++i) { 2336 unsigned char V = Str->getElementAsInteger(i); 2337 Record.push_back(V); 2338 isCStr7 &= (V & 128) == 0; 2339 if (isCStrChar6) 2340 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2341 } 2342 2343 if (isCStrChar6) 2344 AbbrevToUse = CString6Abbrev; 2345 else if (isCStr7) 2346 AbbrevToUse = CString7Abbrev; 2347 } else if (const ConstantDataSequential *CDS = 2348 dyn_cast<ConstantDataSequential>(C)) { 2349 Code = bitc::CST_CODE_DATA; 2350 Type *EltTy = CDS->getType()->getElementType(); 2351 if (isa<IntegerType>(EltTy)) { 2352 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2353 Record.push_back(CDS->getElementAsInteger(i)); 2354 } else { 2355 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2356 Record.push_back( 2357 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2358 } 2359 } else if (isa<ConstantAggregate>(C)) { 2360 Code = bitc::CST_CODE_AGGREGATE; 2361 for (const Value *Op : C->operands()) 2362 Record.push_back(VE.getValueID(Op)); 2363 AbbrevToUse = AggregateAbbrev; 2364 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2365 switch (CE->getOpcode()) { 2366 default: 2367 if (Instruction::isCast(CE->getOpcode())) { 2368 Code = bitc::CST_CODE_CE_CAST; 2369 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2370 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2371 Record.push_back(VE.getValueID(C->getOperand(0))); 2372 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2373 } else { 2374 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2375 Code = bitc::CST_CODE_CE_BINOP; 2376 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2377 Record.push_back(VE.getValueID(C->getOperand(0))); 2378 Record.push_back(VE.getValueID(C->getOperand(1))); 2379 uint64_t Flags = getOptimizationFlags(CE); 2380 if (Flags != 0) 2381 Record.push_back(Flags); 2382 } 2383 break; 2384 case Instruction::GetElementPtr: { 2385 Code = bitc::CST_CODE_CE_GEP; 2386 const auto *GO = cast<GEPOperator>(C); 2387 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2388 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2389 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2390 Record.push_back((*Idx << 1) | GO->isInBounds()); 2391 } else if (GO->isInBounds()) 2392 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2393 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2394 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2395 Record.push_back(VE.getValueID(C->getOperand(i))); 2396 } 2397 break; 2398 } 2399 case Instruction::Select: 2400 Code = bitc::CST_CODE_CE_SELECT; 2401 Record.push_back(VE.getValueID(C->getOperand(0))); 2402 Record.push_back(VE.getValueID(C->getOperand(1))); 2403 Record.push_back(VE.getValueID(C->getOperand(2))); 2404 break; 2405 case Instruction::ExtractElement: 2406 Code = bitc::CST_CODE_CE_EXTRACTELT; 2407 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2408 Record.push_back(VE.getValueID(C->getOperand(0))); 2409 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2410 Record.push_back(VE.getValueID(C->getOperand(1))); 2411 break; 2412 case Instruction::InsertElement: 2413 Code = bitc::CST_CODE_CE_INSERTELT; 2414 Record.push_back(VE.getValueID(C->getOperand(0))); 2415 Record.push_back(VE.getValueID(C->getOperand(1))); 2416 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2417 Record.push_back(VE.getValueID(C->getOperand(2))); 2418 break; 2419 case Instruction::ShuffleVector: 2420 // If the return type and argument types are the same, this is a 2421 // standard shufflevector instruction. If the types are different, 2422 // then the shuffle is widening or truncating the input vectors, and 2423 // the argument type must also be encoded. 2424 if (C->getType() == C->getOperand(0)->getType()) { 2425 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2426 } else { 2427 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2428 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2429 } 2430 Record.push_back(VE.getValueID(C->getOperand(0))); 2431 Record.push_back(VE.getValueID(C->getOperand(1))); 2432 Record.push_back(VE.getValueID(C->getOperand(2))); 2433 break; 2434 case Instruction::ICmp: 2435 case Instruction::FCmp: 2436 Code = bitc::CST_CODE_CE_CMP; 2437 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2438 Record.push_back(VE.getValueID(C->getOperand(0))); 2439 Record.push_back(VE.getValueID(C->getOperand(1))); 2440 Record.push_back(CE->getPredicate()); 2441 break; 2442 } 2443 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2444 Code = bitc::CST_CODE_BLOCKADDRESS; 2445 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2446 Record.push_back(VE.getValueID(BA->getFunction())); 2447 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2448 } else { 2449 #ifndef NDEBUG 2450 C->dump(); 2451 #endif 2452 llvm_unreachable("Unknown constant!"); 2453 } 2454 Stream.EmitRecord(Code, Record, AbbrevToUse); 2455 Record.clear(); 2456 } 2457 2458 Stream.ExitBlock(); 2459 } 2460 2461 void ModuleBitcodeWriter::writeModuleConstants() { 2462 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2463 2464 // Find the first constant to emit, which is the first non-globalvalue value. 2465 // We know globalvalues have been emitted by WriteModuleInfo. 2466 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2467 if (!isa<GlobalValue>(Vals[i].first)) { 2468 writeConstants(i, Vals.size(), true); 2469 return; 2470 } 2471 } 2472 } 2473 2474 /// pushValueAndType - The file has to encode both the value and type id for 2475 /// many values, because we need to know what type to create for forward 2476 /// references. However, most operands are not forward references, so this type 2477 /// field is not needed. 2478 /// 2479 /// This function adds V's value ID to Vals. If the value ID is higher than the 2480 /// instruction ID, then it is a forward reference, and it also includes the 2481 /// type ID. The value ID that is written is encoded relative to the InstID. 2482 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2483 SmallVectorImpl<unsigned> &Vals) { 2484 unsigned ValID = VE.getValueID(V); 2485 // Make encoding relative to the InstID. 2486 Vals.push_back(InstID - ValID); 2487 if (ValID >= InstID) { 2488 Vals.push_back(VE.getTypeID(V->getType())); 2489 return true; 2490 } 2491 return false; 2492 } 2493 2494 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2495 unsigned InstID) { 2496 SmallVector<unsigned, 64> Record; 2497 LLVMContext &C = CS.getInstruction()->getContext(); 2498 2499 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2500 const auto &Bundle = CS.getOperandBundleAt(i); 2501 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2502 2503 for (auto &Input : Bundle.Inputs) 2504 pushValueAndType(Input, InstID, Record); 2505 2506 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2507 Record.clear(); 2508 } 2509 } 2510 2511 /// pushValue - Like pushValueAndType, but where the type of the value is 2512 /// omitted (perhaps it was already encoded in an earlier operand). 2513 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2514 SmallVectorImpl<unsigned> &Vals) { 2515 unsigned ValID = VE.getValueID(V); 2516 Vals.push_back(InstID - ValID); 2517 } 2518 2519 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2520 SmallVectorImpl<uint64_t> &Vals) { 2521 unsigned ValID = VE.getValueID(V); 2522 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2523 emitSignedInt64(Vals, diff); 2524 } 2525 2526 /// WriteInstruction - Emit an instruction to the specified stream. 2527 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2528 unsigned InstID, 2529 SmallVectorImpl<unsigned> &Vals) { 2530 unsigned Code = 0; 2531 unsigned AbbrevToUse = 0; 2532 VE.setInstructionID(&I); 2533 switch (I.getOpcode()) { 2534 default: 2535 if (Instruction::isCast(I.getOpcode())) { 2536 Code = bitc::FUNC_CODE_INST_CAST; 2537 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2538 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2539 Vals.push_back(VE.getTypeID(I.getType())); 2540 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2541 } else { 2542 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2543 Code = bitc::FUNC_CODE_INST_BINOP; 2544 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2545 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2546 pushValue(I.getOperand(1), InstID, Vals); 2547 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2548 uint64_t Flags = getOptimizationFlags(&I); 2549 if (Flags != 0) { 2550 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2551 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2552 Vals.push_back(Flags); 2553 } 2554 } 2555 break; 2556 2557 case Instruction::GetElementPtr: { 2558 Code = bitc::FUNC_CODE_INST_GEP; 2559 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2560 auto &GEPInst = cast<GetElementPtrInst>(I); 2561 Vals.push_back(GEPInst.isInBounds()); 2562 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2563 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2564 pushValueAndType(I.getOperand(i), InstID, Vals); 2565 break; 2566 } 2567 case Instruction::ExtractValue: { 2568 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2569 pushValueAndType(I.getOperand(0), InstID, Vals); 2570 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2571 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2572 break; 2573 } 2574 case Instruction::InsertValue: { 2575 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2576 pushValueAndType(I.getOperand(0), InstID, Vals); 2577 pushValueAndType(I.getOperand(1), InstID, Vals); 2578 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2579 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2580 break; 2581 } 2582 case Instruction::Select: 2583 Code = bitc::FUNC_CODE_INST_VSELECT; 2584 pushValueAndType(I.getOperand(1), InstID, Vals); 2585 pushValue(I.getOperand(2), InstID, Vals); 2586 pushValueAndType(I.getOperand(0), InstID, Vals); 2587 break; 2588 case Instruction::ExtractElement: 2589 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2590 pushValueAndType(I.getOperand(0), InstID, Vals); 2591 pushValueAndType(I.getOperand(1), InstID, Vals); 2592 break; 2593 case Instruction::InsertElement: 2594 Code = bitc::FUNC_CODE_INST_INSERTELT; 2595 pushValueAndType(I.getOperand(0), InstID, Vals); 2596 pushValue(I.getOperand(1), InstID, Vals); 2597 pushValueAndType(I.getOperand(2), InstID, Vals); 2598 break; 2599 case Instruction::ShuffleVector: 2600 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2601 pushValueAndType(I.getOperand(0), InstID, Vals); 2602 pushValue(I.getOperand(1), InstID, Vals); 2603 pushValue(I.getOperand(2), InstID, Vals); 2604 break; 2605 case Instruction::ICmp: 2606 case Instruction::FCmp: { 2607 // compare returning Int1Ty or vector of Int1Ty 2608 Code = bitc::FUNC_CODE_INST_CMP2; 2609 pushValueAndType(I.getOperand(0), InstID, Vals); 2610 pushValue(I.getOperand(1), InstID, Vals); 2611 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2612 uint64_t Flags = getOptimizationFlags(&I); 2613 if (Flags != 0) 2614 Vals.push_back(Flags); 2615 break; 2616 } 2617 2618 case Instruction::Ret: 2619 { 2620 Code = bitc::FUNC_CODE_INST_RET; 2621 unsigned NumOperands = I.getNumOperands(); 2622 if (NumOperands == 0) 2623 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2624 else if (NumOperands == 1) { 2625 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2626 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2627 } else { 2628 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2629 pushValueAndType(I.getOperand(i), InstID, Vals); 2630 } 2631 } 2632 break; 2633 case Instruction::Br: 2634 { 2635 Code = bitc::FUNC_CODE_INST_BR; 2636 const BranchInst &II = cast<BranchInst>(I); 2637 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2638 if (II.isConditional()) { 2639 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2640 pushValue(II.getCondition(), InstID, Vals); 2641 } 2642 } 2643 break; 2644 case Instruction::Switch: 2645 { 2646 Code = bitc::FUNC_CODE_INST_SWITCH; 2647 const SwitchInst &SI = cast<SwitchInst>(I); 2648 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2649 pushValue(SI.getCondition(), InstID, Vals); 2650 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2651 for (auto Case : SI.cases()) { 2652 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2653 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2654 } 2655 } 2656 break; 2657 case Instruction::IndirectBr: 2658 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2659 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2660 // Encode the address operand as relative, but not the basic blocks. 2661 pushValue(I.getOperand(0), InstID, Vals); 2662 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2663 Vals.push_back(VE.getValueID(I.getOperand(i))); 2664 break; 2665 2666 case Instruction::Invoke: { 2667 const InvokeInst *II = cast<InvokeInst>(&I); 2668 const Value *Callee = II->getCalledValue(); 2669 FunctionType *FTy = II->getFunctionType(); 2670 2671 if (II->hasOperandBundles()) 2672 writeOperandBundles(II, InstID); 2673 2674 Code = bitc::FUNC_CODE_INST_INVOKE; 2675 2676 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2677 Vals.push_back(II->getCallingConv() | 1 << 13); 2678 Vals.push_back(VE.getValueID(II->getNormalDest())); 2679 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2680 Vals.push_back(VE.getTypeID(FTy)); 2681 pushValueAndType(Callee, InstID, Vals); 2682 2683 // Emit value #'s for the fixed parameters. 2684 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2685 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2686 2687 // Emit type/value pairs for varargs params. 2688 if (FTy->isVarArg()) { 2689 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2690 i != e; ++i) 2691 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2692 } 2693 break; 2694 } 2695 case Instruction::Resume: 2696 Code = bitc::FUNC_CODE_INST_RESUME; 2697 pushValueAndType(I.getOperand(0), InstID, Vals); 2698 break; 2699 case Instruction::CleanupRet: { 2700 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2701 const auto &CRI = cast<CleanupReturnInst>(I); 2702 pushValue(CRI.getCleanupPad(), InstID, Vals); 2703 if (CRI.hasUnwindDest()) 2704 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2705 break; 2706 } 2707 case Instruction::CatchRet: { 2708 Code = bitc::FUNC_CODE_INST_CATCHRET; 2709 const auto &CRI = cast<CatchReturnInst>(I); 2710 pushValue(CRI.getCatchPad(), InstID, Vals); 2711 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2712 break; 2713 } 2714 case Instruction::CleanupPad: 2715 case Instruction::CatchPad: { 2716 const auto &FuncletPad = cast<FuncletPadInst>(I); 2717 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2718 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2719 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2720 2721 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2722 Vals.push_back(NumArgOperands); 2723 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2724 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2725 break; 2726 } 2727 case Instruction::CatchSwitch: { 2728 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2729 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2730 2731 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2732 2733 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2734 Vals.push_back(NumHandlers); 2735 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2736 Vals.push_back(VE.getValueID(CatchPadBB)); 2737 2738 if (CatchSwitch.hasUnwindDest()) 2739 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2740 break; 2741 } 2742 case Instruction::Unreachable: 2743 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2744 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2745 break; 2746 2747 case Instruction::PHI: { 2748 const PHINode &PN = cast<PHINode>(I); 2749 Code = bitc::FUNC_CODE_INST_PHI; 2750 // With the newer instruction encoding, forward references could give 2751 // negative valued IDs. This is most common for PHIs, so we use 2752 // signed VBRs. 2753 SmallVector<uint64_t, 128> Vals64; 2754 Vals64.push_back(VE.getTypeID(PN.getType())); 2755 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2756 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2757 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2758 } 2759 // Emit a Vals64 vector and exit. 2760 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2761 Vals64.clear(); 2762 return; 2763 } 2764 2765 case Instruction::LandingPad: { 2766 const LandingPadInst &LP = cast<LandingPadInst>(I); 2767 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2768 Vals.push_back(VE.getTypeID(LP.getType())); 2769 Vals.push_back(LP.isCleanup()); 2770 Vals.push_back(LP.getNumClauses()); 2771 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2772 if (LP.isCatch(I)) 2773 Vals.push_back(LandingPadInst::Catch); 2774 else 2775 Vals.push_back(LandingPadInst::Filter); 2776 pushValueAndType(LP.getClause(I), InstID, Vals); 2777 } 2778 break; 2779 } 2780 2781 case Instruction::Alloca: { 2782 Code = bitc::FUNC_CODE_INST_ALLOCA; 2783 const AllocaInst &AI = cast<AllocaInst>(I); 2784 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2785 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2786 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2787 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2788 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2789 "not enough bits for maximum alignment"); 2790 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2791 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2792 AlignRecord |= 1 << 6; 2793 AlignRecord |= AI.isSwiftError() << 7; 2794 Vals.push_back(AlignRecord); 2795 break; 2796 } 2797 2798 case Instruction::Load: 2799 if (cast<LoadInst>(I).isAtomic()) { 2800 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2801 pushValueAndType(I.getOperand(0), InstID, Vals); 2802 } else { 2803 Code = bitc::FUNC_CODE_INST_LOAD; 2804 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2805 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2806 } 2807 Vals.push_back(VE.getTypeID(I.getType())); 2808 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2809 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2810 if (cast<LoadInst>(I).isAtomic()) { 2811 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2812 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2813 } 2814 break; 2815 case Instruction::Store: 2816 if (cast<StoreInst>(I).isAtomic()) 2817 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2818 else 2819 Code = bitc::FUNC_CODE_INST_STORE; 2820 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2821 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2822 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2823 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2824 if (cast<StoreInst>(I).isAtomic()) { 2825 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2826 Vals.push_back( 2827 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2828 } 2829 break; 2830 case Instruction::AtomicCmpXchg: 2831 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2832 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2833 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2834 pushValue(I.getOperand(2), InstID, Vals); // newval. 2835 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2836 Vals.push_back( 2837 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2838 Vals.push_back( 2839 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2840 Vals.push_back( 2841 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2842 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2843 break; 2844 case Instruction::AtomicRMW: 2845 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2846 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2847 pushValue(I.getOperand(1), InstID, Vals); // val. 2848 Vals.push_back( 2849 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2850 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2851 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2852 Vals.push_back( 2853 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2854 break; 2855 case Instruction::Fence: 2856 Code = bitc::FUNC_CODE_INST_FENCE; 2857 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2858 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2859 break; 2860 case Instruction::Call: { 2861 const CallInst &CI = cast<CallInst>(I); 2862 FunctionType *FTy = CI.getFunctionType(); 2863 2864 if (CI.hasOperandBundles()) 2865 writeOperandBundles(&CI, InstID); 2866 2867 Code = bitc::FUNC_CODE_INST_CALL; 2868 2869 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2870 2871 unsigned Flags = getOptimizationFlags(&I); 2872 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2873 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2874 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2875 1 << bitc::CALL_EXPLICIT_TYPE | 2876 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2877 unsigned(Flags != 0) << bitc::CALL_FMF); 2878 if (Flags != 0) 2879 Vals.push_back(Flags); 2880 2881 Vals.push_back(VE.getTypeID(FTy)); 2882 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2883 2884 // Emit value #'s for the fixed parameters. 2885 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2886 // Check for labels (can happen with asm labels). 2887 if (FTy->getParamType(i)->isLabelTy()) 2888 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2889 else 2890 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2891 } 2892 2893 // Emit type/value pairs for varargs params. 2894 if (FTy->isVarArg()) { 2895 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2896 i != e; ++i) 2897 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2898 } 2899 break; 2900 } 2901 case Instruction::VAArg: 2902 Code = bitc::FUNC_CODE_INST_VAARG; 2903 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2904 pushValue(I.getOperand(0), InstID, Vals); // valist. 2905 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2906 break; 2907 } 2908 2909 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2910 Vals.clear(); 2911 } 2912 2913 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2914 /// to allow clients to efficiently find the function body. 2915 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2916 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2917 // Get the offset of the VST we are writing, and backpatch it into 2918 // the VST forward declaration record. 2919 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2920 // The BitcodeStartBit was the stream offset of the identification block. 2921 VSTOffset -= bitcodeStartBit(); 2922 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2923 // Note that we add 1 here because the offset is relative to one word 2924 // before the start of the identification block, which was historically 2925 // always the start of the regular bitcode header. 2926 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2927 2928 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2929 2930 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2931 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2934 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2935 2936 for (const Function &F : M) { 2937 uint64_t Record[2]; 2938 2939 if (F.isDeclaration()) 2940 continue; 2941 2942 Record[0] = VE.getValueID(&F); 2943 2944 // Save the word offset of the function (from the start of the 2945 // actual bitcode written to the stream). 2946 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2947 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2948 // Note that we add 1 here because the offset is relative to one word 2949 // before the start of the identification block, which was historically 2950 // always the start of the regular bitcode header. 2951 Record[1] = BitcodeIndex / 32 + 1; 2952 2953 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2954 } 2955 2956 Stream.ExitBlock(); 2957 } 2958 2959 /// Emit names for arguments, instructions and basic blocks in a function. 2960 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2961 const ValueSymbolTable &VST) { 2962 if (VST.empty()) 2963 return; 2964 2965 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2966 2967 // FIXME: Set up the abbrev, we know how many values there are! 2968 // FIXME: We know if the type names can use 7-bit ascii. 2969 SmallVector<uint64_t, 64> NameVals; 2970 2971 for (const ValueName &Name : VST) { 2972 // Figure out the encoding to use for the name. 2973 StringEncoding Bits = getStringEncoding(Name.getKey()); 2974 2975 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2976 NameVals.push_back(VE.getValueID(Name.getValue())); 2977 2978 // VST_CODE_ENTRY: [valueid, namechar x N] 2979 // VST_CODE_BBENTRY: [bbid, namechar x N] 2980 unsigned Code; 2981 if (isa<BasicBlock>(Name.getValue())) { 2982 Code = bitc::VST_CODE_BBENTRY; 2983 if (Bits == SE_Char6) 2984 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2985 } else { 2986 Code = bitc::VST_CODE_ENTRY; 2987 if (Bits == SE_Char6) 2988 AbbrevToUse = VST_ENTRY_6_ABBREV; 2989 else if (Bits == SE_Fixed7) 2990 AbbrevToUse = VST_ENTRY_7_ABBREV; 2991 } 2992 2993 for (const auto P : Name.getKey()) 2994 NameVals.push_back((unsigned char)P); 2995 2996 // Emit the finished record. 2997 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2998 NameVals.clear(); 2999 } 3000 3001 Stream.ExitBlock(); 3002 } 3003 3004 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3005 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3006 unsigned Code; 3007 if (isa<BasicBlock>(Order.V)) 3008 Code = bitc::USELIST_CODE_BB; 3009 else 3010 Code = bitc::USELIST_CODE_DEFAULT; 3011 3012 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3013 Record.push_back(VE.getValueID(Order.V)); 3014 Stream.EmitRecord(Code, Record); 3015 } 3016 3017 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3018 assert(VE.shouldPreserveUseListOrder() && 3019 "Expected to be preserving use-list order"); 3020 3021 auto hasMore = [&]() { 3022 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3023 }; 3024 if (!hasMore()) 3025 // Nothing to do. 3026 return; 3027 3028 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3029 while (hasMore()) { 3030 writeUseList(std::move(VE.UseListOrders.back())); 3031 VE.UseListOrders.pop_back(); 3032 } 3033 Stream.ExitBlock(); 3034 } 3035 3036 /// Emit a function body to the module stream. 3037 void ModuleBitcodeWriter::writeFunction( 3038 const Function &F, 3039 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3040 // Save the bitcode index of the start of this function block for recording 3041 // in the VST. 3042 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3043 3044 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3045 VE.incorporateFunction(F); 3046 3047 SmallVector<unsigned, 64> Vals; 3048 3049 // Emit the number of basic blocks, so the reader can create them ahead of 3050 // time. 3051 Vals.push_back(VE.getBasicBlocks().size()); 3052 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3053 Vals.clear(); 3054 3055 // If there are function-local constants, emit them now. 3056 unsigned CstStart, CstEnd; 3057 VE.getFunctionConstantRange(CstStart, CstEnd); 3058 writeConstants(CstStart, CstEnd, false); 3059 3060 // If there is function-local metadata, emit it now. 3061 writeFunctionMetadata(F); 3062 3063 // Keep a running idea of what the instruction ID is. 3064 unsigned InstID = CstEnd; 3065 3066 bool NeedsMetadataAttachment = F.hasMetadata(); 3067 3068 DILocation *LastDL = nullptr; 3069 // Finally, emit all the instructions, in order. 3070 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3071 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3072 I != E; ++I) { 3073 writeInstruction(*I, InstID, Vals); 3074 3075 if (!I->getType()->isVoidTy()) 3076 ++InstID; 3077 3078 // If the instruction has metadata, write a metadata attachment later. 3079 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3080 3081 // If the instruction has a debug location, emit it. 3082 DILocation *DL = I->getDebugLoc(); 3083 if (!DL) 3084 continue; 3085 3086 if (DL == LastDL) { 3087 // Just repeat the same debug loc as last time. 3088 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3089 continue; 3090 } 3091 3092 Vals.push_back(DL->getLine()); 3093 Vals.push_back(DL->getColumn()); 3094 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3095 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3096 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3097 Vals.clear(); 3098 3099 LastDL = DL; 3100 } 3101 3102 // Emit names for all the instructions etc. 3103 if (auto *Symtab = F.getValueSymbolTable()) 3104 writeFunctionLevelValueSymbolTable(*Symtab); 3105 3106 if (NeedsMetadataAttachment) 3107 writeFunctionMetadataAttachment(F); 3108 if (VE.shouldPreserveUseListOrder()) 3109 writeUseListBlock(&F); 3110 VE.purgeFunction(); 3111 Stream.ExitBlock(); 3112 } 3113 3114 // Emit blockinfo, which defines the standard abbreviations etc. 3115 void ModuleBitcodeWriter::writeBlockInfo() { 3116 // We only want to emit block info records for blocks that have multiple 3117 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3118 // Other blocks can define their abbrevs inline. 3119 Stream.EnterBlockInfoBlock(); 3120 3121 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3122 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3127 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3128 VST_ENTRY_8_ABBREV) 3129 llvm_unreachable("Unexpected abbrev ordering!"); 3130 } 3131 3132 { // 7-bit fixed width VST_CODE_ENTRY strings. 3133 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3134 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3138 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3139 VST_ENTRY_7_ABBREV) 3140 llvm_unreachable("Unexpected abbrev ordering!"); 3141 } 3142 { // 6-bit char6 VST_CODE_ENTRY strings. 3143 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3144 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3148 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3149 VST_ENTRY_6_ABBREV) 3150 llvm_unreachable("Unexpected abbrev ordering!"); 3151 } 3152 { // 6-bit char6 VST_CODE_BBENTRY strings. 3153 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3154 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3158 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3159 VST_BBENTRY_6_ABBREV) 3160 llvm_unreachable("Unexpected abbrev ordering!"); 3161 } 3162 3163 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3164 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3165 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3167 VE.computeBitsRequiredForTypeIndicies())); 3168 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3169 CONSTANTS_SETTYPE_ABBREV) 3170 llvm_unreachable("Unexpected abbrev ordering!"); 3171 } 3172 3173 { // INTEGER abbrev for CONSTANTS_BLOCK. 3174 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3175 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3177 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3178 CONSTANTS_INTEGER_ABBREV) 3179 llvm_unreachable("Unexpected abbrev ordering!"); 3180 } 3181 3182 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3183 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3184 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3187 VE.computeBitsRequiredForTypeIndicies())); 3188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3189 3190 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3191 CONSTANTS_CE_CAST_Abbrev) 3192 llvm_unreachable("Unexpected abbrev ordering!"); 3193 } 3194 { // NULL abbrev for CONSTANTS_BLOCK. 3195 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3196 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3197 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3198 CONSTANTS_NULL_Abbrev) 3199 llvm_unreachable("Unexpected abbrev ordering!"); 3200 } 3201 3202 // FIXME: This should only use space for first class types! 3203 3204 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3205 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3206 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3209 VE.computeBitsRequiredForTypeIndicies())); 3210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3212 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3213 FUNCTION_INST_LOAD_ABBREV) 3214 llvm_unreachable("Unexpected abbrev ordering!"); 3215 } 3216 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3217 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3218 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3222 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3223 FUNCTION_INST_BINOP_ABBREV) 3224 llvm_unreachable("Unexpected abbrev ordering!"); 3225 } 3226 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3227 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3228 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3233 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3234 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3235 llvm_unreachable("Unexpected abbrev ordering!"); 3236 } 3237 { // INST_CAST abbrev for FUNCTION_BLOCK. 3238 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3239 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3242 VE.computeBitsRequiredForTypeIndicies())); 3243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3244 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3245 FUNCTION_INST_CAST_ABBREV) 3246 llvm_unreachable("Unexpected abbrev ordering!"); 3247 } 3248 3249 { // INST_RET abbrev for FUNCTION_BLOCK. 3250 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3251 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3252 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3253 FUNCTION_INST_RET_VOID_ABBREV) 3254 llvm_unreachable("Unexpected abbrev ordering!"); 3255 } 3256 { // INST_RET abbrev for FUNCTION_BLOCK. 3257 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3258 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3260 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3261 FUNCTION_INST_RET_VAL_ABBREV) 3262 llvm_unreachable("Unexpected abbrev ordering!"); 3263 } 3264 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3265 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3266 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3267 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3268 FUNCTION_INST_UNREACHABLE_ABBREV) 3269 llvm_unreachable("Unexpected abbrev ordering!"); 3270 } 3271 { 3272 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3273 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3276 Log2_32_Ceil(VE.getTypes().size() + 1))); 3277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3279 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3280 FUNCTION_INST_GEP_ABBREV) 3281 llvm_unreachable("Unexpected abbrev ordering!"); 3282 } 3283 3284 Stream.ExitBlock(); 3285 } 3286 3287 /// Write the module path strings, currently only used when generating 3288 /// a combined index file. 3289 void IndexBitcodeWriter::writeModStrings() { 3290 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3291 3292 // TODO: See which abbrev sizes we actually need to emit 3293 3294 // 8-bit fixed-width MST_ENTRY strings. 3295 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3296 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3300 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3301 3302 // 7-bit fixed width MST_ENTRY strings. 3303 Abbv = std::make_shared<BitCodeAbbrev>(); 3304 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3308 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3309 3310 // 6-bit char6 MST_ENTRY strings. 3311 Abbv = std::make_shared<BitCodeAbbrev>(); 3312 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3316 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3317 3318 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3319 Abbv = std::make_shared<BitCodeAbbrev>(); 3320 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3326 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3327 3328 SmallVector<unsigned, 64> Vals; 3329 forEachModule( 3330 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3331 StringRef Key = MPSE.getKey(); 3332 const auto &Value = MPSE.getValue(); 3333 StringEncoding Bits = getStringEncoding(Key); 3334 unsigned AbbrevToUse = Abbrev8Bit; 3335 if (Bits == SE_Char6) 3336 AbbrevToUse = Abbrev6Bit; 3337 else if (Bits == SE_Fixed7) 3338 AbbrevToUse = Abbrev7Bit; 3339 3340 Vals.push_back(Value.first); 3341 Vals.append(Key.begin(), Key.end()); 3342 3343 // Emit the finished record. 3344 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3345 3346 // Emit an optional hash for the module now 3347 const auto &Hash = Value.second; 3348 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3349 Vals.assign(Hash.begin(), Hash.end()); 3350 // Emit the hash record. 3351 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3352 } 3353 3354 Vals.clear(); 3355 }); 3356 Stream.ExitBlock(); 3357 } 3358 3359 /// Write the function type metadata related records that need to appear before 3360 /// a function summary entry (whether per-module or combined). 3361 static void writeFunctionTypeMetadataRecords( 3362 BitstreamWriter &Stream, FunctionSummary *FS, 3363 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3364 if (!FS->type_tests().empty()) { 3365 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3366 for (auto &TT : FS->type_tests()) 3367 ReferencedTypeIds.insert(TT); 3368 } 3369 3370 SmallVector<uint64_t, 64> Record; 3371 3372 auto WriteVFuncIdVec = [&](uint64_t Ty, 3373 ArrayRef<FunctionSummary::VFuncId> VFs) { 3374 if (VFs.empty()) 3375 return; 3376 Record.clear(); 3377 for (auto &VF : VFs) { 3378 Record.push_back(VF.GUID); 3379 Record.push_back(VF.Offset); 3380 ReferencedTypeIds.insert(VF.GUID); 3381 } 3382 Stream.EmitRecord(Ty, Record); 3383 }; 3384 3385 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3386 FS->type_test_assume_vcalls()); 3387 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3388 FS->type_checked_load_vcalls()); 3389 3390 auto WriteConstVCallVec = [&](uint64_t Ty, 3391 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3392 for (auto &VC : VCs) { 3393 Record.clear(); 3394 Record.push_back(VC.VFunc.GUID); 3395 ReferencedTypeIds.insert(VC.VFunc.GUID); 3396 Record.push_back(VC.VFunc.Offset); 3397 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3398 Stream.EmitRecord(Ty, Record); 3399 } 3400 }; 3401 3402 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3403 FS->type_test_assume_const_vcalls()); 3404 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3405 FS->type_checked_load_const_vcalls()); 3406 } 3407 3408 static void writeWholeProgramDevirtResolutionByArg( 3409 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3410 const WholeProgramDevirtResolution::ByArg &ByArg) { 3411 NameVals.push_back(args.size()); 3412 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3413 3414 NameVals.push_back(ByArg.TheKind); 3415 NameVals.push_back(ByArg.Info); 3416 NameVals.push_back(ByArg.Byte); 3417 NameVals.push_back(ByArg.Bit); 3418 } 3419 3420 static void writeWholeProgramDevirtResolution( 3421 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3422 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3423 NameVals.push_back(Id); 3424 3425 NameVals.push_back(Wpd.TheKind); 3426 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3427 NameVals.push_back(Wpd.SingleImplName.size()); 3428 3429 NameVals.push_back(Wpd.ResByArg.size()); 3430 for (auto &A : Wpd.ResByArg) 3431 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3432 } 3433 3434 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3435 StringTableBuilder &StrtabBuilder, 3436 const std::string &Id, 3437 const TypeIdSummary &Summary) { 3438 NameVals.push_back(StrtabBuilder.add(Id)); 3439 NameVals.push_back(Id.size()); 3440 3441 NameVals.push_back(Summary.TTRes.TheKind); 3442 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3443 NameVals.push_back(Summary.TTRes.AlignLog2); 3444 NameVals.push_back(Summary.TTRes.SizeM1); 3445 NameVals.push_back(Summary.TTRes.BitMask); 3446 NameVals.push_back(Summary.TTRes.InlineBits); 3447 3448 for (auto &W : Summary.WPDRes) 3449 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3450 W.second); 3451 } 3452 3453 // Helper to emit a single function summary record. 3454 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3455 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3456 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3457 const Function &F) { 3458 NameVals.push_back(ValueID); 3459 3460 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3461 std::set<GlobalValue::GUID> ReferencedTypeIds; 3462 writeFunctionTypeMetadataRecords(Stream, FS, ReferencedTypeIds); 3463 3464 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3465 NameVals.push_back(FS->instCount()); 3466 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3467 NameVals.push_back(FS->refs().size()); 3468 3469 for (auto &RI : FS->refs()) 3470 NameVals.push_back(VE.getValueID(RI.getValue())); 3471 3472 bool HasProfileData = 3473 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3474 for (auto &ECI : FS->calls()) { 3475 NameVals.push_back(getValueId(ECI.first)); 3476 if (HasProfileData) 3477 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3478 else if (WriteRelBFToSummary) 3479 NameVals.push_back(ECI.second.RelBlockFreq); 3480 } 3481 3482 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3483 unsigned Code = 3484 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3485 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3486 : bitc::FS_PERMODULE)); 3487 3488 // Emit the finished record. 3489 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3490 NameVals.clear(); 3491 } 3492 3493 // Collect the global value references in the given variable's initializer, 3494 // and emit them in a summary record. 3495 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3496 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3497 unsigned FSModRefsAbbrev) { 3498 auto VI = Index->getValueInfo(V.getGUID()); 3499 if (!VI || VI.getSummaryList().empty()) { 3500 // Only declarations should not have a summary (a declaration might however 3501 // have a summary if the def was in module level asm). 3502 assert(V.isDeclaration()); 3503 return; 3504 } 3505 auto *Summary = VI.getSummaryList()[0].get(); 3506 NameVals.push_back(VE.getValueID(&V)); 3507 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3508 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3509 3510 unsigned SizeBeforeRefs = NameVals.size(); 3511 for (auto &RI : VS->refs()) 3512 NameVals.push_back(VE.getValueID(RI.getValue())); 3513 // Sort the refs for determinism output, the vector returned by FS->refs() has 3514 // been initialized from a DenseSet. 3515 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3516 3517 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3518 FSModRefsAbbrev); 3519 NameVals.clear(); 3520 } 3521 3522 // Current version for the summary. 3523 // This is bumped whenever we introduce changes in the way some record are 3524 // interpreted, like flags for instance. 3525 static const uint64_t INDEX_VERSION = 4; 3526 3527 /// Emit the per-module summary section alongside the rest of 3528 /// the module's bitcode. 3529 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3530 // By default we compile with ThinLTO if the module has a summary, but the 3531 // client can request full LTO with a module flag. 3532 bool IsThinLTO = true; 3533 if (auto *MD = 3534 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3535 IsThinLTO = MD->getZExtValue(); 3536 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3537 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3538 4); 3539 3540 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3541 3542 if (Index->begin() == Index->end()) { 3543 Stream.ExitBlock(); 3544 return; 3545 } 3546 3547 for (const auto &GVI : valueIds()) { 3548 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3549 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3550 } 3551 3552 // Abbrev for FS_PERMODULE_PROFILE. 3553 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3554 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3560 // numrefs x valueid, n x (valueid, hotness) 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3563 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3564 3565 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3566 Abbv = std::make_shared<BitCodeAbbrev>(); 3567 if (WriteRelBFToSummary) 3568 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3569 else 3570 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3576 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3579 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3580 3581 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3582 Abbv = std::make_shared<BitCodeAbbrev>(); 3583 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3588 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3589 3590 // Abbrev for FS_ALIAS. 3591 Abbv = std::make_shared<BitCodeAbbrev>(); 3592 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3596 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3597 3598 SmallVector<uint64_t, 64> NameVals; 3599 // Iterate over the list of functions instead of the Index to 3600 // ensure the ordering is stable. 3601 for (const Function &F : M) { 3602 // Summary emission does not support anonymous functions, they have to 3603 // renamed using the anonymous function renaming pass. 3604 if (!F.hasName()) 3605 report_fatal_error("Unexpected anonymous function when writing summary"); 3606 3607 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3608 if (!VI || VI.getSummaryList().empty()) { 3609 // Only declarations should not have a summary (a declaration might 3610 // however have a summary if the def was in module level asm). 3611 assert(F.isDeclaration()); 3612 continue; 3613 } 3614 auto *Summary = VI.getSummaryList()[0].get(); 3615 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3616 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3617 } 3618 3619 // Capture references from GlobalVariable initializers, which are outside 3620 // of a function scope. 3621 for (const GlobalVariable &G : M.globals()) 3622 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3623 3624 for (const GlobalAlias &A : M.aliases()) { 3625 auto *Aliasee = A.getBaseObject(); 3626 if (!Aliasee->hasName()) 3627 // Nameless function don't have an entry in the summary, skip it. 3628 continue; 3629 auto AliasId = VE.getValueID(&A); 3630 auto AliaseeId = VE.getValueID(Aliasee); 3631 NameVals.push_back(AliasId); 3632 auto *Summary = Index->getGlobalValueSummary(A); 3633 AliasSummary *AS = cast<AliasSummary>(Summary); 3634 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3635 NameVals.push_back(AliaseeId); 3636 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3637 NameVals.clear(); 3638 } 3639 3640 Stream.ExitBlock(); 3641 } 3642 3643 /// Emit the combined summary section into the combined index file. 3644 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3645 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3646 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3647 3648 // Write the index flags. 3649 uint64_t Flags = 0; 3650 if (Index.withGlobalValueDeadStripping()) 3651 Flags |= 0x1; 3652 if (Index.skipModuleByDistributedBackend()) 3653 Flags |= 0x2; 3654 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3655 3656 for (const auto &GVI : valueIds()) { 3657 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3658 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3659 } 3660 3661 // Abbrev for FS_COMBINED. 3662 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3663 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3670 // numrefs x valueid, n x (valueid) 3671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3673 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3674 3675 // Abbrev for FS_COMBINED_PROFILE. 3676 Abbv = std::make_shared<BitCodeAbbrev>(); 3677 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3684 // numrefs x valueid, n x (valueid, hotness) 3685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3687 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3688 3689 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3690 Abbv = std::make_shared<BitCodeAbbrev>(); 3691 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3697 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3698 3699 // Abbrev for FS_COMBINED_ALIAS. 3700 Abbv = std::make_shared<BitCodeAbbrev>(); 3701 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3706 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3707 3708 // The aliases are emitted as a post-pass, and will point to the value 3709 // id of the aliasee. Save them in a vector for post-processing. 3710 SmallVector<AliasSummary *, 64> Aliases; 3711 3712 // Save the value id for each summary for alias emission. 3713 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3714 3715 SmallVector<uint64_t, 64> NameVals; 3716 3717 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3718 // with the type ids referenced by this index file. 3719 std::set<GlobalValue::GUID> ReferencedTypeIds; 3720 3721 // For local linkage, we also emit the original name separately 3722 // immediately after the record. 3723 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3724 if (!GlobalValue::isLocalLinkage(S.linkage())) 3725 return; 3726 NameVals.push_back(S.getOriginalName()); 3727 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3728 NameVals.clear(); 3729 }; 3730 3731 forEachSummary([&](GVInfo I, bool IsAliasee) { 3732 GlobalValueSummary *S = I.second; 3733 assert(S); 3734 3735 auto ValueId = getValueId(I.first); 3736 assert(ValueId); 3737 SummaryToValueIdMap[S] = *ValueId; 3738 3739 // If this is invoked for an aliasee, we want to record the above 3740 // mapping, but then not emit a summary entry (if the aliasee is 3741 // to be imported, we will invoke this separately with IsAliasee=false). 3742 if (IsAliasee) 3743 return; 3744 3745 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3746 // Will process aliases as a post-pass because the reader wants all 3747 // global to be loaded first. 3748 Aliases.push_back(AS); 3749 return; 3750 } 3751 3752 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3753 NameVals.push_back(*ValueId); 3754 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3755 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3756 for (auto &RI : VS->refs()) { 3757 auto RefValueId = getValueId(RI.getGUID()); 3758 if (!RefValueId) 3759 continue; 3760 NameVals.push_back(*RefValueId); 3761 } 3762 3763 // Emit the finished record. 3764 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3765 FSModRefsAbbrev); 3766 NameVals.clear(); 3767 MaybeEmitOriginalName(*S); 3768 return; 3769 } 3770 3771 auto *FS = cast<FunctionSummary>(S); 3772 writeFunctionTypeMetadataRecords(Stream, FS, ReferencedTypeIds); 3773 3774 NameVals.push_back(*ValueId); 3775 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3776 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3777 NameVals.push_back(FS->instCount()); 3778 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3779 // Fill in below 3780 NameVals.push_back(0); 3781 3782 unsigned Count = 0; 3783 for (auto &RI : FS->refs()) { 3784 auto RefValueId = getValueId(RI.getGUID()); 3785 if (!RefValueId) 3786 continue; 3787 NameVals.push_back(*RefValueId); 3788 Count++; 3789 } 3790 NameVals[5] = Count; 3791 3792 bool HasProfileData = false; 3793 for (auto &EI : FS->calls()) { 3794 HasProfileData |= 3795 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 3796 if (HasProfileData) 3797 break; 3798 } 3799 3800 for (auto &EI : FS->calls()) { 3801 // If this GUID doesn't have a value id, it doesn't have a function 3802 // summary and we don't need to record any calls to it. 3803 GlobalValue::GUID GUID = EI.first.getGUID(); 3804 auto CallValueId = getValueId(GUID); 3805 if (!CallValueId) { 3806 // For SamplePGO, the indirect call targets for local functions will 3807 // have its original name annotated in profile. We try to find the 3808 // corresponding PGOFuncName as the GUID. 3809 GUID = Index.getGUIDFromOriginalID(GUID); 3810 if (GUID == 0) 3811 continue; 3812 CallValueId = getValueId(GUID); 3813 if (!CallValueId) 3814 continue; 3815 // The mapping from OriginalId to GUID may return a GUID 3816 // that corresponds to a static variable. Filter it out here. 3817 // This can happen when 3818 // 1) There is a call to a library function which does not have 3819 // a CallValidId; 3820 // 2) There is a static variable with the OriginalGUID identical 3821 // to the GUID of the library function in 1); 3822 // When this happens, the logic for SamplePGO kicks in and 3823 // the static variable in 2) will be found, which needs to be 3824 // filtered out. 3825 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 3826 if (GVSum && 3827 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 3828 continue; 3829 } 3830 NameVals.push_back(*CallValueId); 3831 if (HasProfileData) 3832 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3833 } 3834 3835 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3836 unsigned Code = 3837 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3838 3839 // Emit the finished record. 3840 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3841 NameVals.clear(); 3842 MaybeEmitOriginalName(*S); 3843 }); 3844 3845 for (auto *AS : Aliases) { 3846 auto AliasValueId = SummaryToValueIdMap[AS]; 3847 assert(AliasValueId); 3848 NameVals.push_back(AliasValueId); 3849 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3850 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3851 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3852 assert(AliaseeValueId); 3853 NameVals.push_back(AliaseeValueId); 3854 3855 // Emit the finished record. 3856 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3857 NameVals.clear(); 3858 MaybeEmitOriginalName(*AS); 3859 } 3860 3861 if (!Index.cfiFunctionDefs().empty()) { 3862 for (auto &S : Index.cfiFunctionDefs()) { 3863 NameVals.push_back(StrtabBuilder.add(S)); 3864 NameVals.push_back(S.size()); 3865 } 3866 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3867 NameVals.clear(); 3868 } 3869 3870 if (!Index.cfiFunctionDecls().empty()) { 3871 for (auto &S : Index.cfiFunctionDecls()) { 3872 NameVals.push_back(StrtabBuilder.add(S)); 3873 NameVals.push_back(S.size()); 3874 } 3875 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3876 NameVals.clear(); 3877 } 3878 3879 if (!Index.typeIds().empty()) { 3880 for (auto &S : Index.typeIds()) { 3881 // Skip if not referenced in any GV summary within this index file. 3882 if (!ReferencedTypeIds.count(GlobalValue::getGUID(S.first))) 3883 continue; 3884 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, S.first, S.second); 3885 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 3886 NameVals.clear(); 3887 } 3888 } 3889 3890 Stream.ExitBlock(); 3891 } 3892 3893 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3894 /// current llvm version, and a record for the epoch number. 3895 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3896 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3897 3898 // Write the "user readable" string identifying the bitcode producer 3899 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3900 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3903 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3904 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3905 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3906 3907 // Write the epoch version 3908 Abbv = std::make_shared<BitCodeAbbrev>(); 3909 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3911 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3912 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3913 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3914 Stream.ExitBlock(); 3915 } 3916 3917 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3918 // Emit the module's hash. 3919 // MODULE_CODE_HASH: [5*i32] 3920 if (GenerateHash) { 3921 uint32_t Vals[5]; 3922 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3923 Buffer.size() - BlockStartPos)); 3924 StringRef Hash = Hasher.result(); 3925 for (int Pos = 0; Pos < 20; Pos += 4) { 3926 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3927 } 3928 3929 // Emit the finished record. 3930 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3931 3932 if (ModHash) 3933 // Save the written hash value. 3934 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3935 } 3936 } 3937 3938 void ModuleBitcodeWriter::write() { 3939 writeIdentificationBlock(Stream); 3940 3941 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3942 size_t BlockStartPos = Buffer.size(); 3943 3944 writeModuleVersion(); 3945 3946 // Emit blockinfo, which defines the standard abbreviations etc. 3947 writeBlockInfo(); 3948 3949 // Emit information about attribute groups. 3950 writeAttributeGroupTable(); 3951 3952 // Emit information about parameter attributes. 3953 writeAttributeTable(); 3954 3955 // Emit information describing all of the types in the module. 3956 writeTypeTable(); 3957 3958 writeComdats(); 3959 3960 // Emit top-level description of module, including target triple, inline asm, 3961 // descriptors for global variables, and function prototype info. 3962 writeModuleInfo(); 3963 3964 // Emit constants. 3965 writeModuleConstants(); 3966 3967 // Emit metadata kind names. 3968 writeModuleMetadataKinds(); 3969 3970 // Emit metadata. 3971 writeModuleMetadata(); 3972 3973 // Emit module-level use-lists. 3974 if (VE.shouldPreserveUseListOrder()) 3975 writeUseListBlock(nullptr); 3976 3977 writeOperandBundleTags(); 3978 writeSyncScopeNames(); 3979 3980 // Emit function bodies. 3981 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3982 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3983 if (!F->isDeclaration()) 3984 writeFunction(*F, FunctionToBitcodeIndex); 3985 3986 // Need to write after the above call to WriteFunction which populates 3987 // the summary information in the index. 3988 if (Index) 3989 writePerModuleGlobalValueSummary(); 3990 3991 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3992 3993 writeModuleHash(BlockStartPos); 3994 3995 Stream.ExitBlock(); 3996 } 3997 3998 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3999 uint32_t &Position) { 4000 support::endian::write32le(&Buffer[Position], Value); 4001 Position += 4; 4002 } 4003 4004 /// If generating a bc file on darwin, we have to emit a 4005 /// header and trailer to make it compatible with the system archiver. To do 4006 /// this we emit the following header, and then emit a trailer that pads the 4007 /// file out to be a multiple of 16 bytes. 4008 /// 4009 /// struct bc_header { 4010 /// uint32_t Magic; // 0x0B17C0DE 4011 /// uint32_t Version; // Version, currently always 0. 4012 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4013 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4014 /// uint32_t CPUType; // CPU specifier. 4015 /// ... potentially more later ... 4016 /// }; 4017 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4018 const Triple &TT) { 4019 unsigned CPUType = ~0U; 4020 4021 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4022 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4023 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4024 // specific constants here because they are implicitly part of the Darwin ABI. 4025 enum { 4026 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4027 DARWIN_CPU_TYPE_X86 = 7, 4028 DARWIN_CPU_TYPE_ARM = 12, 4029 DARWIN_CPU_TYPE_POWERPC = 18 4030 }; 4031 4032 Triple::ArchType Arch = TT.getArch(); 4033 if (Arch == Triple::x86_64) 4034 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4035 else if (Arch == Triple::x86) 4036 CPUType = DARWIN_CPU_TYPE_X86; 4037 else if (Arch == Triple::ppc) 4038 CPUType = DARWIN_CPU_TYPE_POWERPC; 4039 else if (Arch == Triple::ppc64) 4040 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4041 else if (Arch == Triple::arm || Arch == Triple::thumb) 4042 CPUType = DARWIN_CPU_TYPE_ARM; 4043 4044 // Traditional Bitcode starts after header. 4045 assert(Buffer.size() >= BWH_HeaderSize && 4046 "Expected header size to be reserved"); 4047 unsigned BCOffset = BWH_HeaderSize; 4048 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4049 4050 // Write the magic and version. 4051 unsigned Position = 0; 4052 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4053 writeInt32ToBuffer(0, Buffer, Position); // Version. 4054 writeInt32ToBuffer(BCOffset, Buffer, Position); 4055 writeInt32ToBuffer(BCSize, Buffer, Position); 4056 writeInt32ToBuffer(CPUType, Buffer, Position); 4057 4058 // If the file is not a multiple of 16 bytes, insert dummy padding. 4059 while (Buffer.size() & 15) 4060 Buffer.push_back(0); 4061 } 4062 4063 /// Helper to write the header common to all bitcode files. 4064 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4065 // Emit the file header. 4066 Stream.Emit((unsigned)'B', 8); 4067 Stream.Emit((unsigned)'C', 8); 4068 Stream.Emit(0x0, 4); 4069 Stream.Emit(0xC, 4); 4070 Stream.Emit(0xE, 4); 4071 Stream.Emit(0xD, 4); 4072 } 4073 4074 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4075 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4076 writeBitcodeHeader(*Stream); 4077 } 4078 4079 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4080 4081 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4082 Stream->EnterSubblock(Block, 3); 4083 4084 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4085 Abbv->Add(BitCodeAbbrevOp(Record)); 4086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4087 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4088 4089 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4090 4091 Stream->ExitBlock(); 4092 } 4093 4094 void BitcodeWriter::writeSymtab() { 4095 assert(!WroteStrtab && !WroteSymtab); 4096 4097 // If any module has module-level inline asm, we will require a registered asm 4098 // parser for the target so that we can create an accurate symbol table for 4099 // the module. 4100 for (Module *M : Mods) { 4101 if (M->getModuleInlineAsm().empty()) 4102 continue; 4103 4104 std::string Err; 4105 const Triple TT(M->getTargetTriple()); 4106 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4107 if (!T || !T->hasMCAsmParser()) 4108 return; 4109 } 4110 4111 WroteSymtab = true; 4112 SmallVector<char, 0> Symtab; 4113 // The irsymtab::build function may be unable to create a symbol table if the 4114 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4115 // table is not required for correctness, but we still want to be able to 4116 // write malformed modules to bitcode files, so swallow the error. 4117 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4118 consumeError(std::move(E)); 4119 return; 4120 } 4121 4122 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4123 {Symtab.data(), Symtab.size()}); 4124 } 4125 4126 void BitcodeWriter::writeStrtab() { 4127 assert(!WroteStrtab); 4128 4129 std::vector<char> Strtab; 4130 StrtabBuilder.finalizeInOrder(); 4131 Strtab.resize(StrtabBuilder.getSize()); 4132 StrtabBuilder.write((uint8_t *)Strtab.data()); 4133 4134 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4135 {Strtab.data(), Strtab.size()}); 4136 4137 WroteStrtab = true; 4138 } 4139 4140 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4141 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4142 WroteStrtab = true; 4143 } 4144 4145 void BitcodeWriter::writeModule(const Module &M, 4146 bool ShouldPreserveUseListOrder, 4147 const ModuleSummaryIndex *Index, 4148 bool GenerateHash, ModuleHash *ModHash) { 4149 assert(!WroteStrtab); 4150 4151 // The Mods vector is used by irsymtab::build, which requires non-const 4152 // Modules in case it needs to materialize metadata. But the bitcode writer 4153 // requires that the module is materialized, so we can cast to non-const here, 4154 // after checking that it is in fact materialized. 4155 assert(M.isMaterialized()); 4156 Mods.push_back(const_cast<Module *>(&M)); 4157 4158 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4159 ShouldPreserveUseListOrder, Index, 4160 GenerateHash, ModHash); 4161 ModuleWriter.write(); 4162 } 4163 4164 void BitcodeWriter::writeIndex( 4165 const ModuleSummaryIndex *Index, 4166 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4167 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4168 ModuleToSummariesForIndex); 4169 IndexWriter.write(); 4170 } 4171 4172 /// Write the specified module to the specified output stream. 4173 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4174 bool ShouldPreserveUseListOrder, 4175 const ModuleSummaryIndex *Index, 4176 bool GenerateHash, ModuleHash *ModHash) { 4177 SmallVector<char, 0> Buffer; 4178 Buffer.reserve(256*1024); 4179 4180 // If this is darwin or another generic macho target, reserve space for the 4181 // header. 4182 Triple TT(M.getTargetTriple()); 4183 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4184 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4185 4186 BitcodeWriter Writer(Buffer); 4187 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4188 ModHash); 4189 Writer.writeSymtab(); 4190 Writer.writeStrtab(); 4191 4192 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4193 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4194 4195 // Write the generated bitstream to "Out". 4196 Out.write((char*)&Buffer.front(), Buffer.size()); 4197 } 4198 4199 void IndexBitcodeWriter::write() { 4200 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4201 4202 writeModuleVersion(); 4203 4204 // Write the module paths in the combined index. 4205 writeModStrings(); 4206 4207 // Write the summary combined index records. 4208 writeCombinedGlobalValueSummary(); 4209 4210 Stream.ExitBlock(); 4211 } 4212 4213 // Write the specified module summary index to the given raw output stream, 4214 // where it will be written in a new bitcode block. This is used when 4215 // writing the combined index file for ThinLTO. When writing a subset of the 4216 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4217 void llvm::WriteIndexToFile( 4218 const ModuleSummaryIndex &Index, raw_ostream &Out, 4219 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4220 SmallVector<char, 0> Buffer; 4221 Buffer.reserve(256 * 1024); 4222 4223 BitcodeWriter Writer(Buffer); 4224 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4225 Writer.writeStrtab(); 4226 4227 Out.write((char *)&Buffer.front(), Buffer.size()); 4228 } 4229 4230 namespace { 4231 4232 /// Class to manage the bitcode writing for a thin link bitcode file. 4233 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4234 /// ModHash is for use in ThinLTO incremental build, generated while writing 4235 /// the module bitcode file. 4236 const ModuleHash *ModHash; 4237 4238 public: 4239 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4240 BitstreamWriter &Stream, 4241 const ModuleSummaryIndex &Index, 4242 const ModuleHash &ModHash) 4243 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4244 /*ShouldPreserveUseListOrder=*/false, &Index), 4245 ModHash(&ModHash) {} 4246 4247 void write(); 4248 4249 private: 4250 void writeSimplifiedModuleInfo(); 4251 }; 4252 4253 } // end anonymous namespace 4254 4255 // This function writes a simpilified module info for thin link bitcode file. 4256 // It only contains the source file name along with the name(the offset and 4257 // size in strtab) and linkage for global values. For the global value info 4258 // entry, in order to keep linkage at offset 5, there are three zeros used 4259 // as padding. 4260 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4261 SmallVector<unsigned, 64> Vals; 4262 // Emit the module's source file name. 4263 { 4264 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4265 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4266 if (Bits == SE_Char6) 4267 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4268 else if (Bits == SE_Fixed7) 4269 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4270 4271 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4272 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4273 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4275 Abbv->Add(AbbrevOpToUse); 4276 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4277 4278 for (const auto P : M.getSourceFileName()) 4279 Vals.push_back((unsigned char)P); 4280 4281 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4282 Vals.clear(); 4283 } 4284 4285 // Emit the global variable information. 4286 for (const GlobalVariable &GV : M.globals()) { 4287 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4288 Vals.push_back(StrtabBuilder.add(GV.getName())); 4289 Vals.push_back(GV.getName().size()); 4290 Vals.push_back(0); 4291 Vals.push_back(0); 4292 Vals.push_back(0); 4293 Vals.push_back(getEncodedLinkage(GV)); 4294 4295 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4296 Vals.clear(); 4297 } 4298 4299 // Emit the function proto information. 4300 for (const Function &F : M) { 4301 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4302 Vals.push_back(StrtabBuilder.add(F.getName())); 4303 Vals.push_back(F.getName().size()); 4304 Vals.push_back(0); 4305 Vals.push_back(0); 4306 Vals.push_back(0); 4307 Vals.push_back(getEncodedLinkage(F)); 4308 4309 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4310 Vals.clear(); 4311 } 4312 4313 // Emit the alias information. 4314 for (const GlobalAlias &A : M.aliases()) { 4315 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4316 Vals.push_back(StrtabBuilder.add(A.getName())); 4317 Vals.push_back(A.getName().size()); 4318 Vals.push_back(0); 4319 Vals.push_back(0); 4320 Vals.push_back(0); 4321 Vals.push_back(getEncodedLinkage(A)); 4322 4323 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4324 Vals.clear(); 4325 } 4326 4327 // Emit the ifunc information. 4328 for (const GlobalIFunc &I : M.ifuncs()) { 4329 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4330 Vals.push_back(StrtabBuilder.add(I.getName())); 4331 Vals.push_back(I.getName().size()); 4332 Vals.push_back(0); 4333 Vals.push_back(0); 4334 Vals.push_back(0); 4335 Vals.push_back(getEncodedLinkage(I)); 4336 4337 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4338 Vals.clear(); 4339 } 4340 } 4341 4342 void ThinLinkBitcodeWriter::write() { 4343 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4344 4345 writeModuleVersion(); 4346 4347 writeSimplifiedModuleInfo(); 4348 4349 writePerModuleGlobalValueSummary(); 4350 4351 // Write module hash. 4352 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4353 4354 Stream.ExitBlock(); 4355 } 4356 4357 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4358 const ModuleSummaryIndex &Index, 4359 const ModuleHash &ModHash) { 4360 assert(!WroteStrtab); 4361 4362 // The Mods vector is used by irsymtab::build, which requires non-const 4363 // Modules in case it needs to materialize metadata. But the bitcode writer 4364 // requires that the module is materialized, so we can cast to non-const here, 4365 // after checking that it is in fact materialized. 4366 assert(M.isMaterialized()); 4367 Mods.push_back(const_cast<Module *>(&M)); 4368 4369 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4370 ModHash); 4371 ThinLinkWriter.write(); 4372 } 4373 4374 // Write the specified thin link bitcode file to the given raw output stream, 4375 // where it will be written in a new bitcode block. This is used when 4376 // writing the per-module index file for ThinLTO. 4377 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4378 const ModuleSummaryIndex &Index, 4379 const ModuleHash &ModHash) { 4380 SmallVector<char, 0> Buffer; 4381 Buffer.reserve(256 * 1024); 4382 4383 BitcodeWriter Writer(Buffer); 4384 Writer.writeThinLinkBitcode(M, Index, ModHash); 4385 Writer.writeSymtab(); 4386 Writer.writeStrtab(); 4387 4388 Out.write((char *)&Buffer.front(), Buffer.size()); 4389 } 4390