1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Support/Program.h" 30 #include <cctype> 31 using namespace llvm; 32 33 /// These are manifest constants used by the bitcode writer. They do not need to 34 /// be kept in sync with the reader, but need to be consistent within this file. 35 enum { 36 CurVersion = 0, 37 38 // VALUE_SYMTAB_BLOCK abbrev id's. 39 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 40 VST_ENTRY_7_ABBREV, 41 VST_ENTRY_6_ABBREV, 42 VST_BBENTRY_6_ABBREV, 43 44 // CONSTANTS_BLOCK abbrev id's. 45 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 CONSTANTS_INTEGER_ABBREV, 47 CONSTANTS_CE_CAST_Abbrev, 48 CONSTANTS_NULL_Abbrev, 49 50 // FUNCTION_BLOCK abbrev id's. 51 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 FUNCTION_INST_BINOP_ABBREV, 53 FUNCTION_INST_BINOP_FLAGS_ABBREV, 54 FUNCTION_INST_CAST_ABBREV, 55 FUNCTION_INST_RET_VOID_ABBREV, 56 FUNCTION_INST_RET_VAL_ABBREV, 57 FUNCTION_INST_UNREACHABLE_ABBREV 58 }; 59 60 61 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 62 switch (Opcode) { 63 default: llvm_unreachable("Unknown cast instruction!"); 64 case Instruction::Trunc : return bitc::CAST_TRUNC; 65 case Instruction::ZExt : return bitc::CAST_ZEXT; 66 case Instruction::SExt : return bitc::CAST_SEXT; 67 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 68 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 69 case Instruction::UIToFP : return bitc::CAST_UITOFP; 70 case Instruction::SIToFP : return bitc::CAST_SITOFP; 71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 72 case Instruction::FPExt : return bitc::CAST_FPEXT; 73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 75 case Instruction::BitCast : return bitc::CAST_BITCAST; 76 } 77 } 78 79 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 80 switch (Opcode) { 81 default: llvm_unreachable("Unknown binary instruction!"); 82 case Instruction::Add: 83 case Instruction::FAdd: return bitc::BINOP_ADD; 84 case Instruction::Sub: 85 case Instruction::FSub: return bitc::BINOP_SUB; 86 case Instruction::Mul: 87 case Instruction::FMul: return bitc::BINOP_MUL; 88 case Instruction::UDiv: return bitc::BINOP_UDIV; 89 case Instruction::FDiv: 90 case Instruction::SDiv: return bitc::BINOP_SDIV; 91 case Instruction::URem: return bitc::BINOP_UREM; 92 case Instruction::FRem: 93 case Instruction::SRem: return bitc::BINOP_SREM; 94 case Instruction::Shl: return bitc::BINOP_SHL; 95 case Instruction::LShr: return bitc::BINOP_LSHR; 96 case Instruction::AShr: return bitc::BINOP_ASHR; 97 case Instruction::And: return bitc::BINOP_AND; 98 case Instruction::Or: return bitc::BINOP_OR; 99 case Instruction::Xor: return bitc::BINOP_XOR; 100 } 101 } 102 103 104 105 static void WriteStringRecord(unsigned Code, const std::string &Str, 106 unsigned AbbrevToUse, BitstreamWriter &Stream) { 107 SmallVector<unsigned, 64> Vals; 108 109 // Code: [strchar x N] 110 for (unsigned i = 0, e = Str.size(); i != e; ++i) 111 Vals.push_back(Str[i]); 112 113 // Emit the finished record. 114 Stream.EmitRecord(Code, Vals, AbbrevToUse); 115 } 116 117 // Emit information about parameter attributes. 118 static void WriteAttributeTable(const ValueEnumerator &VE, 119 BitstreamWriter &Stream) { 120 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 121 if (Attrs.empty()) return; 122 123 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 124 125 SmallVector<uint64_t, 64> Record; 126 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 127 const AttrListPtr &A = Attrs[i]; 128 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 129 const AttributeWithIndex &PAWI = A.getSlot(i); 130 Record.push_back(PAWI.Index); 131 132 // FIXME: remove in LLVM 3.0 133 // Store the alignment in the bitcode as a 16-bit raw value instead of a 134 // 5-bit log2 encoded value. Shift the bits above the alignment up by 135 // 11 bits. 136 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 137 if (PAWI.Attrs & Attribute::Alignment) 138 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 139 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 140 141 Record.push_back(FauxAttr); 142 } 143 144 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 145 Record.clear(); 146 } 147 148 Stream.ExitBlock(); 149 } 150 151 /// WriteTypeTable - Write out the type table for a module. 152 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 153 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 154 155 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 156 SmallVector<uint64_t, 64> TypeVals; 157 158 // Abbrev for TYPE_CODE_POINTER. 159 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 160 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 162 Log2_32_Ceil(VE.getTypes().size()+1))); 163 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 164 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 165 166 // Abbrev for TYPE_CODE_FUNCTION. 167 Abbv = new BitCodeAbbrev(); 168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 170 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 173 Log2_32_Ceil(VE.getTypes().size()+1))); 174 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 175 176 // Abbrev for TYPE_CODE_STRUCT. 177 Abbv = new BitCodeAbbrev(); 178 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 182 Log2_32_Ceil(VE.getTypes().size()+1))); 183 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 184 185 // Abbrev for TYPE_CODE_ARRAY. 186 Abbv = new BitCodeAbbrev(); 187 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 190 Log2_32_Ceil(VE.getTypes().size()+1))); 191 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 192 193 // Emit an entry count so the reader can reserve space. 194 TypeVals.push_back(TypeList.size()); 195 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 196 TypeVals.clear(); 197 198 // Loop over all of the types, emitting each in turn. 199 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 200 const Type *T = TypeList[i]; 201 int AbbrevToUse = 0; 202 unsigned Code = 0; 203 204 switch (T->getTypeID()) { 205 default: llvm_unreachable("Unknown type!"); 206 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 207 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 208 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 209 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 210 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 211 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 212 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 213 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 214 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 215 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 216 case Type::IntegerTyID: 217 // INTEGER: [width] 218 Code = bitc::TYPE_CODE_INTEGER; 219 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 220 break; 221 case Type::PointerTyID: { 222 const PointerType *PTy = cast<PointerType>(T); 223 // POINTER: [pointee type, address space] 224 Code = bitc::TYPE_CODE_POINTER; 225 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 226 unsigned AddressSpace = PTy->getAddressSpace(); 227 TypeVals.push_back(AddressSpace); 228 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 229 break; 230 } 231 case Type::FunctionTyID: { 232 const FunctionType *FT = cast<FunctionType>(T); 233 // FUNCTION: [isvararg, attrid, retty, paramty x N] 234 Code = bitc::TYPE_CODE_FUNCTION; 235 TypeVals.push_back(FT->isVarArg()); 236 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 237 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 238 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 239 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 240 AbbrevToUse = FunctionAbbrev; 241 break; 242 } 243 case Type::StructTyID: { 244 const StructType *ST = cast<StructType>(T); 245 // STRUCT: [ispacked, eltty x N] 246 Code = bitc::TYPE_CODE_STRUCT; 247 TypeVals.push_back(ST->isPacked()); 248 // Output all of the element types. 249 for (StructType::element_iterator I = ST->element_begin(), 250 E = ST->element_end(); I != E; ++I) 251 TypeVals.push_back(VE.getTypeID(*I)); 252 AbbrevToUse = StructAbbrev; 253 break; 254 } 255 case Type::ArrayTyID: { 256 const ArrayType *AT = cast<ArrayType>(T); 257 // ARRAY: [numelts, eltty] 258 Code = bitc::TYPE_CODE_ARRAY; 259 TypeVals.push_back(AT->getNumElements()); 260 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 261 AbbrevToUse = ArrayAbbrev; 262 break; 263 } 264 case Type::VectorTyID: { 265 const VectorType *VT = cast<VectorType>(T); 266 // VECTOR [numelts, eltty] 267 Code = bitc::TYPE_CODE_VECTOR; 268 TypeVals.push_back(VT->getNumElements()); 269 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 270 break; 271 } 272 } 273 274 // Emit the finished record. 275 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 276 TypeVals.clear(); 277 } 278 279 Stream.ExitBlock(); 280 } 281 282 static unsigned getEncodedLinkage(const GlobalValue *GV) { 283 switch (GV->getLinkage()) { 284 default: llvm_unreachable("Invalid linkage!"); 285 case GlobalValue::ExternalLinkage: return 0; 286 case GlobalValue::WeakAnyLinkage: return 1; 287 case GlobalValue::AppendingLinkage: return 2; 288 case GlobalValue::InternalLinkage: return 3; 289 case GlobalValue::LinkOnceAnyLinkage: return 4; 290 case GlobalValue::DLLImportLinkage: return 5; 291 case GlobalValue::DLLExportLinkage: return 6; 292 case GlobalValue::ExternalWeakLinkage: return 7; 293 case GlobalValue::CommonLinkage: return 8; 294 case GlobalValue::PrivateLinkage: return 9; 295 case GlobalValue::WeakODRLinkage: return 10; 296 case GlobalValue::LinkOnceODRLinkage: return 11; 297 case GlobalValue::AvailableExternallyLinkage: return 12; 298 case GlobalValue::LinkerPrivateLinkage: return 13; 299 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 300 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15; 301 } 302 } 303 304 static unsigned getEncodedVisibility(const GlobalValue *GV) { 305 switch (GV->getVisibility()) { 306 default: llvm_unreachable("Invalid visibility!"); 307 case GlobalValue::DefaultVisibility: return 0; 308 case GlobalValue::HiddenVisibility: return 1; 309 case GlobalValue::ProtectedVisibility: return 2; 310 } 311 } 312 313 // Emit top-level description of module, including target triple, inline asm, 314 // descriptors for global variables, and function prototype info. 315 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 316 BitstreamWriter &Stream) { 317 // Emit the list of dependent libraries for the Module. 318 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 319 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 320 321 // Emit various pieces of data attached to a module. 322 if (!M->getTargetTriple().empty()) 323 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 324 0/*TODO*/, Stream); 325 if (!M->getDataLayout().empty()) 326 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 327 0/*TODO*/, Stream); 328 if (!M->getModuleInlineAsm().empty()) 329 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 330 0/*TODO*/, Stream); 331 332 // Emit information about sections and GC, computing how many there are. Also 333 // compute the maximum alignment value. 334 std::map<std::string, unsigned> SectionMap; 335 std::map<std::string, unsigned> GCMap; 336 unsigned MaxAlignment = 0; 337 unsigned MaxGlobalType = 0; 338 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 339 GV != E; ++GV) { 340 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 341 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 342 343 if (!GV->hasSection()) continue; 344 // Give section names unique ID's. 345 unsigned &Entry = SectionMap[GV->getSection()]; 346 if (Entry != 0) continue; 347 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 348 0/*TODO*/, Stream); 349 Entry = SectionMap.size(); 350 } 351 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 352 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 353 if (F->hasSection()) { 354 // Give section names unique ID's. 355 unsigned &Entry = SectionMap[F->getSection()]; 356 if (!Entry) { 357 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 358 0/*TODO*/, Stream); 359 Entry = SectionMap.size(); 360 } 361 } 362 if (F->hasGC()) { 363 // Same for GC names. 364 unsigned &Entry = GCMap[F->getGC()]; 365 if (!Entry) { 366 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 367 0/*TODO*/, Stream); 368 Entry = GCMap.size(); 369 } 370 } 371 } 372 373 // Emit abbrev for globals, now that we know # sections and max alignment. 374 unsigned SimpleGVarAbbrev = 0; 375 if (!M->global_empty()) { 376 // Add an abbrev for common globals with no visibility or thread localness. 377 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 378 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 380 Log2_32_Ceil(MaxGlobalType+1))); 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 384 if (MaxAlignment == 0) // Alignment. 385 Abbv->Add(BitCodeAbbrevOp(0)); 386 else { 387 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 389 Log2_32_Ceil(MaxEncAlignment+1))); 390 } 391 if (SectionMap.empty()) // Section. 392 Abbv->Add(BitCodeAbbrevOp(0)); 393 else 394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 395 Log2_32_Ceil(SectionMap.size()+1))); 396 // Don't bother emitting vis + thread local. 397 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 398 } 399 400 // Emit the global variable information. 401 SmallVector<unsigned, 64> Vals; 402 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 403 GV != E; ++GV) { 404 unsigned AbbrevToUse = 0; 405 406 // GLOBALVAR: [type, isconst, initid, 407 // linkage, alignment, section, visibility, threadlocal, 408 // unnamed_addr] 409 Vals.push_back(VE.getTypeID(GV->getType())); 410 Vals.push_back(GV->isConstant()); 411 Vals.push_back(GV->isDeclaration() ? 0 : 412 (VE.getValueID(GV->getInitializer()) + 1)); 413 Vals.push_back(getEncodedLinkage(GV)); 414 Vals.push_back(Log2_32(GV->getAlignment())+1); 415 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 416 if (GV->isThreadLocal() || 417 GV->getVisibility() != GlobalValue::DefaultVisibility || 418 GV->hasUnnamedAddr()) { 419 Vals.push_back(getEncodedVisibility(GV)); 420 Vals.push_back(GV->isThreadLocal()); 421 Vals.push_back(GV->hasUnnamedAddr()); 422 } else { 423 AbbrevToUse = SimpleGVarAbbrev; 424 } 425 426 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 427 Vals.clear(); 428 } 429 430 // Emit the function proto information. 431 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 432 // FUNCTION: [type, callingconv, isproto, paramattr, 433 // linkage, alignment, section, visibility, gc, unnamed_addr] 434 Vals.push_back(VE.getTypeID(F->getType())); 435 Vals.push_back(F->getCallingConv()); 436 Vals.push_back(F->isDeclaration()); 437 Vals.push_back(getEncodedLinkage(F)); 438 Vals.push_back(VE.getAttributeID(F->getAttributes())); 439 Vals.push_back(Log2_32(F->getAlignment())+1); 440 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 441 Vals.push_back(getEncodedVisibility(F)); 442 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 443 Vals.push_back(F->hasUnnamedAddr()); 444 445 unsigned AbbrevToUse = 0; 446 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 447 Vals.clear(); 448 } 449 450 451 // Emit the alias information. 452 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 453 AI != E; ++AI) { 454 Vals.push_back(VE.getTypeID(AI->getType())); 455 Vals.push_back(VE.getValueID(AI->getAliasee())); 456 Vals.push_back(getEncodedLinkage(AI)); 457 Vals.push_back(getEncodedVisibility(AI)); 458 unsigned AbbrevToUse = 0; 459 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 460 Vals.clear(); 461 } 462 } 463 464 static uint64_t GetOptimizationFlags(const Value *V) { 465 uint64_t Flags = 0; 466 467 if (const OverflowingBinaryOperator *OBO = 468 dyn_cast<OverflowingBinaryOperator>(V)) { 469 if (OBO->hasNoSignedWrap()) 470 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 471 if (OBO->hasNoUnsignedWrap()) 472 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 473 } else if (const PossiblyExactOperator *PEO = 474 dyn_cast<PossiblyExactOperator>(V)) { 475 if (PEO->isExact()) 476 Flags |= 1 << bitc::PEO_EXACT; 477 } 478 479 return Flags; 480 } 481 482 static void WriteMDNode(const MDNode *N, 483 const ValueEnumerator &VE, 484 BitstreamWriter &Stream, 485 SmallVector<uint64_t, 64> &Record) { 486 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 487 if (N->getOperand(i)) { 488 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 489 Record.push_back(VE.getValueID(N->getOperand(i))); 490 } else { 491 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 492 Record.push_back(0); 493 } 494 } 495 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE2 : 496 bitc::METADATA_NODE2; 497 Stream.EmitRecord(MDCode, Record, 0); 498 Record.clear(); 499 } 500 501 static void WriteModuleMetadata(const Module *M, 502 const ValueEnumerator &VE, 503 BitstreamWriter &Stream) { 504 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 505 bool StartedMetadataBlock = false; 506 unsigned MDSAbbrev = 0; 507 SmallVector<uint64_t, 64> Record; 508 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 509 510 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 511 if (!N->isFunctionLocal() || !N->getFunction()) { 512 if (!StartedMetadataBlock) { 513 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 514 StartedMetadataBlock = true; 515 } 516 WriteMDNode(N, VE, Stream, Record); 517 } 518 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 519 if (!StartedMetadataBlock) { 520 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 521 522 // Abbrev for METADATA_STRING. 523 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 524 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 527 MDSAbbrev = Stream.EmitAbbrev(Abbv); 528 StartedMetadataBlock = true; 529 } 530 531 // Code: [strchar x N] 532 Record.append(MDS->begin(), MDS->end()); 533 534 // Emit the finished record. 535 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 536 Record.clear(); 537 } 538 } 539 540 // Write named metadata. 541 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 542 E = M->named_metadata_end(); I != E; ++I) { 543 const NamedMDNode *NMD = I; 544 if (!StartedMetadataBlock) { 545 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 546 StartedMetadataBlock = true; 547 } 548 549 // Write name. 550 StringRef Str = NMD->getName(); 551 for (unsigned i = 0, e = Str.size(); i != e; ++i) 552 Record.push_back(Str[i]); 553 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 554 Record.clear(); 555 556 // Write named metadata operands. 557 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 558 Record.push_back(VE.getValueID(NMD->getOperand(i))); 559 Stream.EmitRecord(bitc::METADATA_NAMED_NODE2, Record, 0); 560 Record.clear(); 561 } 562 563 if (StartedMetadataBlock) 564 Stream.ExitBlock(); 565 } 566 567 static void WriteFunctionLocalMetadata(const Function &F, 568 const ValueEnumerator &VE, 569 BitstreamWriter &Stream) { 570 bool StartedMetadataBlock = false; 571 SmallVector<uint64_t, 64> Record; 572 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 573 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 574 if (const MDNode *N = Vals[i]) 575 if (N->isFunctionLocal() && N->getFunction() == &F) { 576 if (!StartedMetadataBlock) { 577 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 578 StartedMetadataBlock = true; 579 } 580 WriteMDNode(N, VE, Stream, Record); 581 } 582 583 if (StartedMetadataBlock) 584 Stream.ExitBlock(); 585 } 586 587 static void WriteMetadataAttachment(const Function &F, 588 const ValueEnumerator &VE, 589 BitstreamWriter &Stream) { 590 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 591 592 SmallVector<uint64_t, 64> Record; 593 594 // Write metadata attachments 595 // METADATA_ATTACHMENT2 - [m x [value, [n x [id, mdnode]]] 596 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 597 598 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 599 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 600 I != E; ++I) { 601 MDs.clear(); 602 I->getAllMetadataOtherThanDebugLoc(MDs); 603 604 // If no metadata, ignore instruction. 605 if (MDs.empty()) continue; 606 607 Record.push_back(VE.getInstructionID(I)); 608 609 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 610 Record.push_back(MDs[i].first); 611 Record.push_back(VE.getValueID(MDs[i].second)); 612 } 613 Stream.EmitRecord(bitc::METADATA_ATTACHMENT2, Record, 0); 614 Record.clear(); 615 } 616 617 Stream.ExitBlock(); 618 } 619 620 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 621 SmallVector<uint64_t, 64> Record; 622 623 // Write metadata kinds 624 // METADATA_KIND - [n x [id, name]] 625 SmallVector<StringRef, 4> Names; 626 M->getMDKindNames(Names); 627 628 if (Names.empty()) return; 629 630 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 631 632 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 633 Record.push_back(MDKindID); 634 StringRef KName = Names[MDKindID]; 635 Record.append(KName.begin(), KName.end()); 636 637 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 638 Record.clear(); 639 } 640 641 Stream.ExitBlock(); 642 } 643 644 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 645 const ValueEnumerator &VE, 646 BitstreamWriter &Stream, bool isGlobal) { 647 if (FirstVal == LastVal) return; 648 649 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 650 651 unsigned AggregateAbbrev = 0; 652 unsigned String8Abbrev = 0; 653 unsigned CString7Abbrev = 0; 654 unsigned CString6Abbrev = 0; 655 // If this is a constant pool for the module, emit module-specific abbrevs. 656 if (isGlobal) { 657 // Abbrev for CST_CODE_AGGREGATE. 658 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 659 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 661 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 662 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 663 664 // Abbrev for CST_CODE_STRING. 665 Abbv = new BitCodeAbbrev(); 666 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 669 String8Abbrev = Stream.EmitAbbrev(Abbv); 670 // Abbrev for CST_CODE_CSTRING. 671 Abbv = new BitCodeAbbrev(); 672 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 675 CString7Abbrev = Stream.EmitAbbrev(Abbv); 676 // Abbrev for CST_CODE_CSTRING. 677 Abbv = new BitCodeAbbrev(); 678 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 681 CString6Abbrev = Stream.EmitAbbrev(Abbv); 682 } 683 684 SmallVector<uint64_t, 64> Record; 685 686 const ValueEnumerator::ValueList &Vals = VE.getValues(); 687 const Type *LastTy = 0; 688 for (unsigned i = FirstVal; i != LastVal; ++i) { 689 const Value *V = Vals[i].first; 690 // If we need to switch types, do so now. 691 if (V->getType() != LastTy) { 692 LastTy = V->getType(); 693 Record.push_back(VE.getTypeID(LastTy)); 694 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 695 CONSTANTS_SETTYPE_ABBREV); 696 Record.clear(); 697 } 698 699 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 700 Record.push_back(unsigned(IA->hasSideEffects()) | 701 unsigned(IA->isAlignStack()) << 1); 702 703 // Add the asm string. 704 const std::string &AsmStr = IA->getAsmString(); 705 Record.push_back(AsmStr.size()); 706 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 707 Record.push_back(AsmStr[i]); 708 709 // Add the constraint string. 710 const std::string &ConstraintStr = IA->getConstraintString(); 711 Record.push_back(ConstraintStr.size()); 712 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 713 Record.push_back(ConstraintStr[i]); 714 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 715 Record.clear(); 716 continue; 717 } 718 const Constant *C = cast<Constant>(V); 719 unsigned Code = -1U; 720 unsigned AbbrevToUse = 0; 721 if (C->isNullValue()) { 722 Code = bitc::CST_CODE_NULL; 723 } else if (isa<UndefValue>(C)) { 724 Code = bitc::CST_CODE_UNDEF; 725 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 726 if (IV->getBitWidth() <= 64) { 727 uint64_t V = IV->getSExtValue(); 728 if ((int64_t)V >= 0) 729 Record.push_back(V << 1); 730 else 731 Record.push_back((-V << 1) | 1); 732 Code = bitc::CST_CODE_INTEGER; 733 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 734 } else { // Wide integers, > 64 bits in size. 735 // We have an arbitrary precision integer value to write whose 736 // bit width is > 64. However, in canonical unsigned integer 737 // format it is likely that the high bits are going to be zero. 738 // So, we only write the number of active words. 739 unsigned NWords = IV->getValue().getActiveWords(); 740 const uint64_t *RawWords = IV->getValue().getRawData(); 741 for (unsigned i = 0; i != NWords; ++i) { 742 int64_t V = RawWords[i]; 743 if (V >= 0) 744 Record.push_back(V << 1); 745 else 746 Record.push_back((-V << 1) | 1); 747 } 748 Code = bitc::CST_CODE_WIDE_INTEGER; 749 } 750 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 751 Code = bitc::CST_CODE_FLOAT; 752 const Type *Ty = CFP->getType(); 753 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 754 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 755 } else if (Ty->isX86_FP80Ty()) { 756 // api needed to prevent premature destruction 757 // bits are not in the same order as a normal i80 APInt, compensate. 758 APInt api = CFP->getValueAPF().bitcastToAPInt(); 759 const uint64_t *p = api.getRawData(); 760 Record.push_back((p[1] << 48) | (p[0] >> 16)); 761 Record.push_back(p[0] & 0xffffLL); 762 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 763 APInt api = CFP->getValueAPF().bitcastToAPInt(); 764 const uint64_t *p = api.getRawData(); 765 Record.push_back(p[0]); 766 Record.push_back(p[1]); 767 } else { 768 assert (0 && "Unknown FP type!"); 769 } 770 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 771 const ConstantArray *CA = cast<ConstantArray>(C); 772 // Emit constant strings specially. 773 unsigned NumOps = CA->getNumOperands(); 774 // If this is a null-terminated string, use the denser CSTRING encoding. 775 if (CA->getOperand(NumOps-1)->isNullValue()) { 776 Code = bitc::CST_CODE_CSTRING; 777 --NumOps; // Don't encode the null, which isn't allowed by char6. 778 } else { 779 Code = bitc::CST_CODE_STRING; 780 AbbrevToUse = String8Abbrev; 781 } 782 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 783 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 784 for (unsigned i = 0; i != NumOps; ++i) { 785 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); 786 Record.push_back(V); 787 isCStr7 &= (V & 128) == 0; 788 if (isCStrChar6) 789 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 790 } 791 792 if (isCStrChar6) 793 AbbrevToUse = CString6Abbrev; 794 else if (isCStr7) 795 AbbrevToUse = CString7Abbrev; 796 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 797 isa<ConstantVector>(V)) { 798 Code = bitc::CST_CODE_AGGREGATE; 799 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 800 Record.push_back(VE.getValueID(C->getOperand(i))); 801 AbbrevToUse = AggregateAbbrev; 802 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 803 switch (CE->getOpcode()) { 804 default: 805 if (Instruction::isCast(CE->getOpcode())) { 806 Code = bitc::CST_CODE_CE_CAST; 807 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 808 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 809 Record.push_back(VE.getValueID(C->getOperand(0))); 810 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 811 } else { 812 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 813 Code = bitc::CST_CODE_CE_BINOP; 814 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 815 Record.push_back(VE.getValueID(C->getOperand(0))); 816 Record.push_back(VE.getValueID(C->getOperand(1))); 817 uint64_t Flags = GetOptimizationFlags(CE); 818 if (Flags != 0) 819 Record.push_back(Flags); 820 } 821 break; 822 case Instruction::GetElementPtr: 823 Code = bitc::CST_CODE_CE_GEP; 824 if (cast<GEPOperator>(C)->isInBounds()) 825 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 826 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 827 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 828 Record.push_back(VE.getValueID(C->getOperand(i))); 829 } 830 break; 831 case Instruction::Select: 832 Code = bitc::CST_CODE_CE_SELECT; 833 Record.push_back(VE.getValueID(C->getOperand(0))); 834 Record.push_back(VE.getValueID(C->getOperand(1))); 835 Record.push_back(VE.getValueID(C->getOperand(2))); 836 break; 837 case Instruction::ExtractElement: 838 Code = bitc::CST_CODE_CE_EXTRACTELT; 839 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 840 Record.push_back(VE.getValueID(C->getOperand(0))); 841 Record.push_back(VE.getValueID(C->getOperand(1))); 842 break; 843 case Instruction::InsertElement: 844 Code = bitc::CST_CODE_CE_INSERTELT; 845 Record.push_back(VE.getValueID(C->getOperand(0))); 846 Record.push_back(VE.getValueID(C->getOperand(1))); 847 Record.push_back(VE.getValueID(C->getOperand(2))); 848 break; 849 case Instruction::ShuffleVector: 850 // If the return type and argument types are the same, this is a 851 // standard shufflevector instruction. If the types are different, 852 // then the shuffle is widening or truncating the input vectors, and 853 // the argument type must also be encoded. 854 if (C->getType() == C->getOperand(0)->getType()) { 855 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 856 } else { 857 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 858 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 859 } 860 Record.push_back(VE.getValueID(C->getOperand(0))); 861 Record.push_back(VE.getValueID(C->getOperand(1))); 862 Record.push_back(VE.getValueID(C->getOperand(2))); 863 break; 864 case Instruction::ICmp: 865 case Instruction::FCmp: 866 Code = bitc::CST_CODE_CE_CMP; 867 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 868 Record.push_back(VE.getValueID(C->getOperand(0))); 869 Record.push_back(VE.getValueID(C->getOperand(1))); 870 Record.push_back(CE->getPredicate()); 871 break; 872 } 873 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 874 Code = bitc::CST_CODE_BLOCKADDRESS; 875 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 876 Record.push_back(VE.getValueID(BA->getFunction())); 877 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 878 } else { 879 #ifndef NDEBUG 880 C->dump(); 881 #endif 882 llvm_unreachable("Unknown constant!"); 883 } 884 Stream.EmitRecord(Code, Record, AbbrevToUse); 885 Record.clear(); 886 } 887 888 Stream.ExitBlock(); 889 } 890 891 static void WriteModuleConstants(const ValueEnumerator &VE, 892 BitstreamWriter &Stream) { 893 const ValueEnumerator::ValueList &Vals = VE.getValues(); 894 895 // Find the first constant to emit, which is the first non-globalvalue value. 896 // We know globalvalues have been emitted by WriteModuleInfo. 897 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 898 if (!isa<GlobalValue>(Vals[i].first)) { 899 WriteConstants(i, Vals.size(), VE, Stream, true); 900 return; 901 } 902 } 903 } 904 905 /// PushValueAndType - The file has to encode both the value and type id for 906 /// many values, because we need to know what type to create for forward 907 /// references. However, most operands are not forward references, so this type 908 /// field is not needed. 909 /// 910 /// This function adds V's value ID to Vals. If the value ID is higher than the 911 /// instruction ID, then it is a forward reference, and it also includes the 912 /// type ID. 913 static bool PushValueAndType(const Value *V, unsigned InstID, 914 SmallVector<unsigned, 64> &Vals, 915 ValueEnumerator &VE) { 916 unsigned ValID = VE.getValueID(V); 917 Vals.push_back(ValID); 918 if (ValID >= InstID) { 919 Vals.push_back(VE.getTypeID(V->getType())); 920 return true; 921 } 922 return false; 923 } 924 925 /// WriteInstruction - Emit an instruction to the specified stream. 926 static void WriteInstruction(const Instruction &I, unsigned InstID, 927 ValueEnumerator &VE, BitstreamWriter &Stream, 928 SmallVector<unsigned, 64> &Vals) { 929 unsigned Code = 0; 930 unsigned AbbrevToUse = 0; 931 VE.setInstructionID(&I); 932 switch (I.getOpcode()) { 933 default: 934 if (Instruction::isCast(I.getOpcode())) { 935 Code = bitc::FUNC_CODE_INST_CAST; 936 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 937 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 938 Vals.push_back(VE.getTypeID(I.getType())); 939 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 940 } else { 941 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 942 Code = bitc::FUNC_CODE_INST_BINOP; 943 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 944 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 945 Vals.push_back(VE.getValueID(I.getOperand(1))); 946 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 947 uint64_t Flags = GetOptimizationFlags(&I); 948 if (Flags != 0) { 949 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 950 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 951 Vals.push_back(Flags); 952 } 953 } 954 break; 955 956 case Instruction::GetElementPtr: 957 Code = bitc::FUNC_CODE_INST_GEP; 958 if (cast<GEPOperator>(&I)->isInBounds()) 959 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 960 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 961 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 962 break; 963 case Instruction::ExtractValue: { 964 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 965 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 966 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 967 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 968 Vals.push_back(*i); 969 break; 970 } 971 case Instruction::InsertValue: { 972 Code = bitc::FUNC_CODE_INST_INSERTVAL; 973 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 974 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 975 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 976 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 977 Vals.push_back(*i); 978 break; 979 } 980 case Instruction::Select: 981 Code = bitc::FUNC_CODE_INST_VSELECT; 982 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 983 Vals.push_back(VE.getValueID(I.getOperand(2))); 984 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 985 break; 986 case Instruction::ExtractElement: 987 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 988 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 989 Vals.push_back(VE.getValueID(I.getOperand(1))); 990 break; 991 case Instruction::InsertElement: 992 Code = bitc::FUNC_CODE_INST_INSERTELT; 993 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 994 Vals.push_back(VE.getValueID(I.getOperand(1))); 995 Vals.push_back(VE.getValueID(I.getOperand(2))); 996 break; 997 case Instruction::ShuffleVector: 998 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 999 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1000 Vals.push_back(VE.getValueID(I.getOperand(1))); 1001 Vals.push_back(VE.getValueID(I.getOperand(2))); 1002 break; 1003 case Instruction::ICmp: 1004 case Instruction::FCmp: 1005 // compare returning Int1Ty or vector of Int1Ty 1006 Code = bitc::FUNC_CODE_INST_CMP2; 1007 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1008 Vals.push_back(VE.getValueID(I.getOperand(1))); 1009 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1010 break; 1011 1012 case Instruction::Ret: 1013 { 1014 Code = bitc::FUNC_CODE_INST_RET; 1015 unsigned NumOperands = I.getNumOperands(); 1016 if (NumOperands == 0) 1017 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1018 else if (NumOperands == 1) { 1019 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1020 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1021 } else { 1022 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1023 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1024 } 1025 } 1026 break; 1027 case Instruction::Br: 1028 { 1029 Code = bitc::FUNC_CODE_INST_BR; 1030 BranchInst &II = cast<BranchInst>(I); 1031 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1032 if (II.isConditional()) { 1033 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1034 Vals.push_back(VE.getValueID(II.getCondition())); 1035 } 1036 } 1037 break; 1038 case Instruction::Switch: 1039 Code = bitc::FUNC_CODE_INST_SWITCH; 1040 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1041 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1042 Vals.push_back(VE.getValueID(I.getOperand(i))); 1043 break; 1044 case Instruction::IndirectBr: 1045 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1046 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1047 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1048 Vals.push_back(VE.getValueID(I.getOperand(i))); 1049 break; 1050 1051 case Instruction::Invoke: { 1052 const InvokeInst *II = cast<InvokeInst>(&I); 1053 const Value *Callee(II->getCalledValue()); 1054 const PointerType *PTy = cast<PointerType>(Callee->getType()); 1055 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1056 Code = bitc::FUNC_CODE_INST_INVOKE; 1057 1058 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1059 Vals.push_back(II->getCallingConv()); 1060 Vals.push_back(VE.getValueID(II->getNormalDest())); 1061 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1062 PushValueAndType(Callee, InstID, Vals, VE); 1063 1064 // Emit value #'s for the fixed parameters. 1065 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1066 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1067 1068 // Emit type/value pairs for varargs params. 1069 if (FTy->isVarArg()) { 1070 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1071 i != e; ++i) 1072 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1073 } 1074 break; 1075 } 1076 case Instruction::Unwind: 1077 Code = bitc::FUNC_CODE_INST_UNWIND; 1078 break; 1079 case Instruction::Unreachable: 1080 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1081 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1082 break; 1083 1084 case Instruction::PHI: 1085 Code = bitc::FUNC_CODE_INST_PHI; 1086 Vals.push_back(VE.getTypeID(I.getType())); 1087 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1088 Vals.push_back(VE.getValueID(I.getOperand(i))); 1089 break; 1090 1091 case Instruction::Alloca: 1092 Code = bitc::FUNC_CODE_INST_ALLOCA; 1093 Vals.push_back(VE.getTypeID(I.getType())); 1094 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1095 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1096 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1097 break; 1098 1099 case Instruction::Load: 1100 Code = bitc::FUNC_CODE_INST_LOAD; 1101 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1102 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1103 1104 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1105 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1106 break; 1107 case Instruction::Store: 1108 Code = bitc::FUNC_CODE_INST_STORE2; 1109 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1110 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1111 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1112 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1113 break; 1114 case Instruction::Call: { 1115 const CallInst &CI = cast<CallInst>(I); 1116 const PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1117 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1118 1119 Code = bitc::FUNC_CODE_INST_CALL2; 1120 1121 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1122 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1123 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1124 1125 // Emit value #'s for the fixed parameters. 1126 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1127 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1128 1129 // Emit type/value pairs for varargs params. 1130 if (FTy->isVarArg()) { 1131 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1132 i != e; ++i) 1133 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1134 } 1135 break; 1136 } 1137 case Instruction::VAArg: 1138 Code = bitc::FUNC_CODE_INST_VAARG; 1139 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1140 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1141 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1142 break; 1143 } 1144 1145 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1146 Vals.clear(); 1147 } 1148 1149 // Emit names for globals/functions etc. 1150 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1151 const ValueEnumerator &VE, 1152 BitstreamWriter &Stream) { 1153 if (VST.empty()) return; 1154 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1155 1156 // FIXME: Set up the abbrev, we know how many values there are! 1157 // FIXME: We know if the type names can use 7-bit ascii. 1158 SmallVector<unsigned, 64> NameVals; 1159 1160 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1161 SI != SE; ++SI) { 1162 1163 const ValueName &Name = *SI; 1164 1165 // Figure out the encoding to use for the name. 1166 bool is7Bit = true; 1167 bool isChar6 = true; 1168 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1169 C != E; ++C) { 1170 if (isChar6) 1171 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1172 if ((unsigned char)*C & 128) { 1173 is7Bit = false; 1174 break; // don't bother scanning the rest. 1175 } 1176 } 1177 1178 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1179 1180 // VST_ENTRY: [valueid, namechar x N] 1181 // VST_BBENTRY: [bbid, namechar x N] 1182 unsigned Code; 1183 if (isa<BasicBlock>(SI->getValue())) { 1184 Code = bitc::VST_CODE_BBENTRY; 1185 if (isChar6) 1186 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1187 } else { 1188 Code = bitc::VST_CODE_ENTRY; 1189 if (isChar6) 1190 AbbrevToUse = VST_ENTRY_6_ABBREV; 1191 else if (is7Bit) 1192 AbbrevToUse = VST_ENTRY_7_ABBREV; 1193 } 1194 1195 NameVals.push_back(VE.getValueID(SI->getValue())); 1196 for (const char *P = Name.getKeyData(), 1197 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1198 NameVals.push_back((unsigned char)*P); 1199 1200 // Emit the finished record. 1201 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1202 NameVals.clear(); 1203 } 1204 Stream.ExitBlock(); 1205 } 1206 1207 /// WriteFunction - Emit a function body to the module stream. 1208 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1209 BitstreamWriter &Stream) { 1210 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1211 VE.incorporateFunction(F); 1212 1213 SmallVector<unsigned, 64> Vals; 1214 1215 // Emit the number of basic blocks, so the reader can create them ahead of 1216 // time. 1217 Vals.push_back(VE.getBasicBlocks().size()); 1218 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1219 Vals.clear(); 1220 1221 // If there are function-local constants, emit them now. 1222 unsigned CstStart, CstEnd; 1223 VE.getFunctionConstantRange(CstStart, CstEnd); 1224 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1225 1226 // If there is function-local metadata, emit it now. 1227 WriteFunctionLocalMetadata(F, VE, Stream); 1228 1229 // Keep a running idea of what the instruction ID is. 1230 unsigned InstID = CstEnd; 1231 1232 bool NeedsMetadataAttachment = false; 1233 1234 DebugLoc LastDL; 1235 1236 // Finally, emit all the instructions, in order. 1237 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1238 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1239 I != E; ++I) { 1240 WriteInstruction(*I, InstID, VE, Stream, Vals); 1241 1242 if (!I->getType()->isVoidTy()) 1243 ++InstID; 1244 1245 // If the instruction has metadata, write a metadata attachment later. 1246 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1247 1248 // If the instruction has a debug location, emit it. 1249 DebugLoc DL = I->getDebugLoc(); 1250 if (DL.isUnknown()) { 1251 // nothing todo. 1252 } else if (DL == LastDL) { 1253 // Just repeat the same debug loc as last time. 1254 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1255 } else { 1256 MDNode *Scope, *IA; 1257 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1258 1259 Vals.push_back(DL.getLine()); 1260 Vals.push_back(DL.getCol()); 1261 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1262 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1263 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC2, Vals); 1264 Vals.clear(); 1265 1266 LastDL = DL; 1267 } 1268 } 1269 1270 // Emit names for all the instructions etc. 1271 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1272 1273 if (NeedsMetadataAttachment) 1274 WriteMetadataAttachment(F, VE, Stream); 1275 VE.purgeFunction(); 1276 Stream.ExitBlock(); 1277 } 1278 1279 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1280 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1281 const ValueEnumerator &VE, 1282 BitstreamWriter &Stream) { 1283 if (TST.empty()) return; 1284 1285 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1286 1287 // 7-bit fixed width VST_CODE_ENTRY strings. 1288 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1289 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1291 Log2_32_Ceil(VE.getTypes().size()+1))); 1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1294 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1295 1296 SmallVector<unsigned, 64> NameVals; 1297 1298 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1299 TI != TE; ++TI) { 1300 // TST_ENTRY: [typeid, namechar x N] 1301 NameVals.push_back(VE.getTypeID(TI->second)); 1302 1303 const std::string &Str = TI->first; 1304 bool is7Bit = true; 1305 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1306 NameVals.push_back((unsigned char)Str[i]); 1307 if (Str[i] & 128) 1308 is7Bit = false; 1309 } 1310 1311 // Emit the finished record. 1312 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1313 NameVals.clear(); 1314 } 1315 1316 Stream.ExitBlock(); 1317 } 1318 1319 // Emit blockinfo, which defines the standard abbreviations etc. 1320 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1321 // We only want to emit block info records for blocks that have multiple 1322 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1323 // blocks can defined their abbrevs inline. 1324 Stream.EnterBlockInfoBlock(2); 1325 1326 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1327 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1332 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1333 Abbv) != VST_ENTRY_8_ABBREV) 1334 llvm_unreachable("Unexpected abbrev ordering!"); 1335 } 1336 1337 { // 7-bit fixed width VST_ENTRY strings. 1338 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1339 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1343 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1344 Abbv) != VST_ENTRY_7_ABBREV) 1345 llvm_unreachable("Unexpected abbrev ordering!"); 1346 } 1347 { // 6-bit char6 VST_ENTRY strings. 1348 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1349 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1353 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1354 Abbv) != VST_ENTRY_6_ABBREV) 1355 llvm_unreachable("Unexpected abbrev ordering!"); 1356 } 1357 { // 6-bit char6 VST_BBENTRY strings. 1358 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1359 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1363 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1364 Abbv) != VST_BBENTRY_6_ABBREV) 1365 llvm_unreachable("Unexpected abbrev ordering!"); 1366 } 1367 1368 1369 1370 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1371 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1372 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1374 Log2_32_Ceil(VE.getTypes().size()+1))); 1375 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1376 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1377 llvm_unreachable("Unexpected abbrev ordering!"); 1378 } 1379 1380 { // INTEGER abbrev for CONSTANTS_BLOCK. 1381 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1382 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1384 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1385 Abbv) != CONSTANTS_INTEGER_ABBREV) 1386 llvm_unreachable("Unexpected abbrev ordering!"); 1387 } 1388 1389 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1390 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1391 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1394 Log2_32_Ceil(VE.getTypes().size()+1))); 1395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1396 1397 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1398 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1399 llvm_unreachable("Unexpected abbrev ordering!"); 1400 } 1401 { // NULL abbrev for CONSTANTS_BLOCK. 1402 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1403 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1404 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1405 Abbv) != CONSTANTS_NULL_Abbrev) 1406 llvm_unreachable("Unexpected abbrev ordering!"); 1407 } 1408 1409 // FIXME: This should only use space for first class types! 1410 1411 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1412 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1413 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1417 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1418 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1419 llvm_unreachable("Unexpected abbrev ordering!"); 1420 } 1421 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1422 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1423 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1427 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1428 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1429 llvm_unreachable("Unexpected abbrev ordering!"); 1430 } 1431 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1432 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1433 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1438 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1439 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1440 llvm_unreachable("Unexpected abbrev ordering!"); 1441 } 1442 { // INST_CAST abbrev for FUNCTION_BLOCK. 1443 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1444 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1447 Log2_32_Ceil(VE.getTypes().size()+1))); 1448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1449 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1450 Abbv) != FUNCTION_INST_CAST_ABBREV) 1451 llvm_unreachable("Unexpected abbrev ordering!"); 1452 } 1453 1454 { // INST_RET abbrev for FUNCTION_BLOCK. 1455 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1456 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1457 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1458 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1459 llvm_unreachable("Unexpected abbrev ordering!"); 1460 } 1461 { // INST_RET abbrev for FUNCTION_BLOCK. 1462 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1463 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1465 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1466 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1467 llvm_unreachable("Unexpected abbrev ordering!"); 1468 } 1469 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1470 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1471 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1472 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1473 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1474 llvm_unreachable("Unexpected abbrev ordering!"); 1475 } 1476 1477 Stream.ExitBlock(); 1478 } 1479 1480 1481 /// WriteModule - Emit the specified module to the bitstream. 1482 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1483 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1484 1485 // Emit the version number if it is non-zero. 1486 if (CurVersion) { 1487 SmallVector<unsigned, 1> Vals; 1488 Vals.push_back(CurVersion); 1489 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1490 } 1491 1492 // Analyze the module, enumerating globals, functions, etc. 1493 ValueEnumerator VE(M); 1494 1495 // Emit blockinfo, which defines the standard abbreviations etc. 1496 WriteBlockInfo(VE, Stream); 1497 1498 // Emit information about parameter attributes. 1499 WriteAttributeTable(VE, Stream); 1500 1501 // Emit information describing all of the types in the module. 1502 WriteTypeTable(VE, Stream); 1503 1504 // Emit top-level description of module, including target triple, inline asm, 1505 // descriptors for global variables, and function prototype info. 1506 WriteModuleInfo(M, VE, Stream); 1507 1508 // Emit constants. 1509 WriteModuleConstants(VE, Stream); 1510 1511 // Emit metadata. 1512 WriteModuleMetadata(M, VE, Stream); 1513 1514 // Emit function bodies. 1515 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1516 if (!I->isDeclaration()) 1517 WriteFunction(*I, VE, Stream); 1518 1519 // Emit metadata. 1520 WriteModuleMetadataStore(M, Stream); 1521 1522 // Emit the type symbol table information. 1523 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1524 1525 // Emit names for globals/functions etc. 1526 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1527 1528 Stream.ExitBlock(); 1529 } 1530 1531 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1532 /// header and trailer to make it compatible with the system archiver. To do 1533 /// this we emit the following header, and then emit a trailer that pads the 1534 /// file out to be a multiple of 16 bytes. 1535 /// 1536 /// struct bc_header { 1537 /// uint32_t Magic; // 0x0B17C0DE 1538 /// uint32_t Version; // Version, currently always 0. 1539 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1540 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1541 /// uint32_t CPUType; // CPU specifier. 1542 /// ... potentially more later ... 1543 /// }; 1544 enum { 1545 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1546 DarwinBCHeaderSize = 5*4 1547 }; 1548 1549 /// isARMTriplet - Return true if the triplet looks like: 1550 /// arm-*, thumb-*, armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. 1551 static bool isARMTriplet(const std::string &TT) { 1552 size_t Pos = 0; 1553 size_t Size = TT.size(); 1554 if (Size >= 6 && 1555 TT[0] == 't' && TT[1] == 'h' && TT[2] == 'u' && 1556 TT[3] == 'm' && TT[4] == 'b') 1557 Pos = 5; 1558 else if (Size >= 4 && TT[0] == 'a' && TT[1] == 'r' && TT[2] == 'm') 1559 Pos = 3; 1560 else 1561 return false; 1562 1563 if (TT[Pos] == '-') 1564 return true; 1565 else if (TT[Pos] == 'v') { 1566 if (Size >= Pos+4 && 1567 TT[Pos+1] == '6' && TT[Pos+2] == 't' && TT[Pos+3] == '2') 1568 return true; 1569 else if (Size >= Pos+4 && 1570 TT[Pos+1] == '5' && TT[Pos+2] == 't' && TT[Pos+3] == 'e') 1571 return true; 1572 } else 1573 return false; 1574 while (++Pos < Size && TT[Pos] != '-') { 1575 if (!isdigit(TT[Pos])) 1576 return false; 1577 } 1578 return true; 1579 } 1580 1581 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1582 const std::string &TT) { 1583 unsigned CPUType = ~0U; 1584 1585 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1586 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1587 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1588 // specific constants here because they are implicitly part of the Darwin ABI. 1589 enum { 1590 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1591 DARWIN_CPU_TYPE_X86 = 7, 1592 DARWIN_CPU_TYPE_ARM = 12, 1593 DARWIN_CPU_TYPE_POWERPC = 18 1594 }; 1595 1596 if (TT.find("x86_64-") == 0) 1597 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1598 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1599 TT[4] == '-' && TT[1] - '3' < 6) 1600 CPUType = DARWIN_CPU_TYPE_X86; 1601 else if (TT.find("powerpc-") == 0) 1602 CPUType = DARWIN_CPU_TYPE_POWERPC; 1603 else if (TT.find("powerpc64-") == 0) 1604 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1605 else if (isARMTriplet(TT)) 1606 CPUType = DARWIN_CPU_TYPE_ARM; 1607 1608 // Traditional Bitcode starts after header. 1609 unsigned BCOffset = DarwinBCHeaderSize; 1610 1611 Stream.Emit(0x0B17C0DE, 32); 1612 Stream.Emit(0 , 32); // Version. 1613 Stream.Emit(BCOffset , 32); 1614 Stream.Emit(0 , 32); // Filled in later. 1615 Stream.Emit(CPUType , 32); 1616 } 1617 1618 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1619 /// finalize the header. 1620 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1621 // Update the size field in the header. 1622 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1623 1624 // If the file is not a multiple of 16 bytes, insert dummy padding. 1625 while (BufferSize & 15) { 1626 Stream.Emit(0, 8); 1627 ++BufferSize; 1628 } 1629 } 1630 1631 1632 /// WriteBitcodeToFile - Write the specified module to the specified output 1633 /// stream. 1634 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1635 std::vector<unsigned char> Buffer; 1636 BitstreamWriter Stream(Buffer); 1637 1638 Buffer.reserve(256*1024); 1639 1640 WriteBitcodeToStream( M, Stream ); 1641 1642 // Write the generated bitstream to "Out". 1643 Out.write((char*)&Buffer.front(), Buffer.size()); 1644 } 1645 1646 /// WriteBitcodeToStream - Write the specified module to the specified output 1647 /// stream. 1648 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1649 // If this is darwin or another generic macho target, emit a file header and 1650 // trailer if needed. 1651 bool isMacho = 1652 M->getTargetTriple().find("-darwin") != std::string::npos || 1653 M->getTargetTriple().find("-macho") != std::string::npos; 1654 if (isMacho) 1655 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1656 1657 // Emit the file header. 1658 Stream.Emit((unsigned)'B', 8); 1659 Stream.Emit((unsigned)'C', 8); 1660 Stream.Emit(0x0, 4); 1661 Stream.Emit(0xC, 4); 1662 Stream.Emit(0xE, 4); 1663 Stream.Emit(0xD, 4); 1664 1665 // Emit the module. 1666 WriteModule(M, Stream); 1667 1668 if (isMacho) 1669 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1670 } 1671