1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/Program.h" 35 #include "llvm/Support/SHA1.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <cctype> 38 #include <map> 39 using namespace llvm; 40 41 namespace { 42 43 cl::opt<unsigned> 44 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 45 cl::desc("Number of metadatas above which we emit an index " 46 "to enable lazy-loading")); 47 /// These are manifest constants used by the bitcode writer. They do not need to 48 /// be kept in sync with the reader, but need to be consistent within this file. 49 enum { 50 // VALUE_SYMTAB_BLOCK abbrev id's. 51 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 VST_ENTRY_7_ABBREV, 53 VST_ENTRY_6_ABBREV, 54 VST_BBENTRY_6_ABBREV, 55 56 // CONSTANTS_BLOCK abbrev id's. 57 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 CONSTANTS_INTEGER_ABBREV, 59 CONSTANTS_CE_CAST_Abbrev, 60 CONSTANTS_NULL_Abbrev, 61 62 // FUNCTION_BLOCK abbrev id's. 63 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 64 FUNCTION_INST_BINOP_ABBREV, 65 FUNCTION_INST_BINOP_FLAGS_ABBREV, 66 FUNCTION_INST_CAST_ABBREV, 67 FUNCTION_INST_RET_VOID_ABBREV, 68 FUNCTION_INST_RET_VAL_ABBREV, 69 FUNCTION_INST_UNREACHABLE_ABBREV, 70 FUNCTION_INST_GEP_ABBREV, 71 }; 72 73 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 74 /// file type. 75 class BitcodeWriterBase { 76 protected: 77 /// The stream created and owned by the client. 78 BitstreamWriter &Stream; 79 80 public: 81 /// Constructs a BitcodeWriterBase object that writes to the provided 82 /// \p Stream. 83 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 84 85 protected: 86 void writeBitcodeHeader(); 87 void writeModuleVersion(); 88 }; 89 90 void BitcodeWriterBase::writeModuleVersion() { 91 // VERSION: [version#] 92 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 93 } 94 95 /// Class to manage the bitcode writing for a module. 96 class ModuleBitcodeWriter : public BitcodeWriterBase { 97 /// Pointer to the buffer allocated by caller for bitcode writing. 98 const SmallVectorImpl<char> &Buffer; 99 100 StringTableBuilder &StrtabBuilder; 101 102 /// The Module to write to bitcode. 103 const Module &M; 104 105 /// Enumerates ids for all values in the module. 106 ValueEnumerator VE; 107 108 /// Optional per-module index to write for ThinLTO. 109 const ModuleSummaryIndex *Index; 110 111 /// True if a module hash record should be written. 112 bool GenerateHash; 113 114 /// If non-null, when GenerateHash is true, the resulting hash is written 115 /// into ModHash. When GenerateHash is false, that specified value 116 /// is used as the hash instead of computing from the generated bitcode. 117 /// Can be used to produce the same module hash for a minimized bitcode 118 /// used just for the thin link as in the regular full bitcode that will 119 /// be used in the backend. 120 ModuleHash *ModHash; 121 122 /// The start bit of the identification block. 123 uint64_t BitcodeStartBit; 124 125 /// Map that holds the correspondence between GUIDs in the summary index, 126 /// that came from indirect call profiles, and a value id generated by this 127 /// class to use in the VST and summary block records. 128 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 129 130 /// Tracks the last value id recorded in the GUIDToValueMap. 131 unsigned GlobalValueId; 132 133 /// Saves the offset of the VSTOffset record that must eventually be 134 /// backpatched with the offset of the actual VST. 135 uint64_t VSTOffsetPlaceholder = 0; 136 137 public: 138 /// Constructs a ModuleBitcodeWriter object for the given Module, 139 /// writing to the provided \p Buffer. 140 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 141 StringTableBuilder &StrtabBuilder, 142 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 143 const ModuleSummaryIndex *Index, bool GenerateHash, 144 ModuleHash *ModHash = nullptr) 145 : BitcodeWriterBase(Stream), Buffer(Buffer), StrtabBuilder(StrtabBuilder), 146 M(*M), VE(*M, ShouldPreserveUseListOrder), Index(Index), 147 GenerateHash(GenerateHash), ModHash(ModHash), 148 BitcodeStartBit(Stream.GetCurrentBitNo()) { 149 // Assign ValueIds to any callee values in the index that came from 150 // indirect call profiles and were recorded as a GUID not a Value* 151 // (which would have been assigned an ID by the ValueEnumerator). 152 // The starting ValueId is just after the number of values in the 153 // ValueEnumerator, so that they can be emitted in the VST. 154 GlobalValueId = VE.getValues().size(); 155 if (!Index) 156 return; 157 for (const auto &GUIDSummaryLists : *Index) 158 // Examine all summaries for this GUID. 159 for (auto &Summary : GUIDSummaryLists.second) 160 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 161 // For each call in the function summary, see if the call 162 // is to a GUID (which means it is for an indirect call, 163 // otherwise we would have a Value for it). If so, synthesize 164 // a value id. 165 for (auto &CallEdge : FS->calls()) 166 if (CallEdge.first.isGUID()) 167 assignValueId(CallEdge.first.getGUID()); 168 } 169 170 /// Emit the current module to the bitstream. 171 void write(); 172 173 private: 174 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 175 176 void writeAttributeGroupTable(); 177 void writeAttributeTable(); 178 void writeTypeTable(); 179 void writeComdats(); 180 void writeValueSymbolTableForwardDecl(); 181 void writeModuleInfo(); 182 void writeValueAsMetadata(const ValueAsMetadata *MD, 183 SmallVectorImpl<uint64_t> &Record); 184 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 185 unsigned Abbrev); 186 unsigned createDILocationAbbrev(); 187 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 188 unsigned &Abbrev); 189 unsigned createGenericDINodeAbbrev(); 190 void writeGenericDINode(const GenericDINode *N, 191 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 192 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 193 unsigned Abbrev); 194 void writeDIEnumerator(const DIEnumerator *N, 195 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 196 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDIDerivedType(const DIDerivedType *N, 199 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 200 void writeDICompositeType(const DICompositeType *N, 201 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 202 void writeDISubroutineType(const DISubroutineType *N, 203 SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 206 unsigned Abbrev); 207 void writeDICompileUnit(const DICompileUnit *N, 208 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 209 void writeDISubprogram(const DISubprogram *N, 210 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 211 void writeDILexicalBlock(const DILexicalBlock *N, 212 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 213 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 214 SmallVectorImpl<uint64_t> &Record, 215 unsigned Abbrev); 216 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 217 unsigned Abbrev); 218 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 219 unsigned Abbrev); 220 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 221 unsigned Abbrev); 222 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 223 unsigned Abbrev); 224 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 225 SmallVectorImpl<uint64_t> &Record, 226 unsigned Abbrev); 227 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 228 SmallVectorImpl<uint64_t> &Record, 229 unsigned Abbrev); 230 void writeDIGlobalVariable(const DIGlobalVariable *N, 231 SmallVectorImpl<uint64_t> &Record, 232 unsigned Abbrev); 233 void writeDILocalVariable(const DILocalVariable *N, 234 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 235 void writeDIExpression(const DIExpression *N, 236 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 237 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 238 SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIObjCProperty(const DIObjCProperty *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 242 void writeDIImportedEntity(const DIImportedEntity *N, 243 SmallVectorImpl<uint64_t> &Record, 244 unsigned Abbrev); 245 unsigned createNamedMetadataAbbrev(); 246 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 247 unsigned createMetadataStringsAbbrev(); 248 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 249 SmallVectorImpl<uint64_t> &Record); 250 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 251 SmallVectorImpl<uint64_t> &Record, 252 std::vector<unsigned> *MDAbbrevs = nullptr, 253 std::vector<uint64_t> *IndexPos = nullptr); 254 void writeModuleMetadata(); 255 void writeFunctionMetadata(const Function &F); 256 void writeFunctionMetadataAttachment(const Function &F); 257 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 258 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 259 const GlobalObject &GO); 260 void writeModuleMetadataKinds(); 261 void writeOperandBundleTags(); 262 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 263 void writeModuleConstants(); 264 bool pushValueAndType(const Value *V, unsigned InstID, 265 SmallVectorImpl<unsigned> &Vals); 266 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 267 void pushValue(const Value *V, unsigned InstID, 268 SmallVectorImpl<unsigned> &Vals); 269 void pushValueSigned(const Value *V, unsigned InstID, 270 SmallVectorImpl<uint64_t> &Vals); 271 void writeInstruction(const Instruction &I, unsigned InstID, 272 SmallVectorImpl<unsigned> &Vals); 273 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 274 void writeGlobalValueSymbolTable( 275 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 276 void writeUseList(UseListOrder &&Order); 277 void writeUseListBlock(const Function *F); 278 void 279 writeFunction(const Function &F, 280 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 281 void writeBlockInfo(); 282 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 283 GlobalValueSummary *Summary, 284 unsigned ValueID, 285 unsigned FSCallsAbbrev, 286 unsigned FSCallsProfileAbbrev, 287 const Function &F); 288 void writeModuleLevelReferences(const GlobalVariable &V, 289 SmallVector<uint64_t, 64> &NameVals, 290 unsigned FSModRefsAbbrev); 291 void writePerModuleGlobalValueSummary(); 292 void writeModuleHash(size_t BlockStartPos); 293 294 void assignValueId(GlobalValue::GUID ValGUID) { 295 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 296 } 297 unsigned getValueId(GlobalValue::GUID ValGUID) { 298 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 299 // Expect that any GUID value had a value Id assigned by an 300 // earlier call to assignValueId. 301 assert(VMI != GUIDToValueIdMap.end() && 302 "GUID does not have assigned value Id"); 303 return VMI->second; 304 } 305 // Helper to get the valueId for the type of value recorded in VI. 306 unsigned getValueId(ValueInfo VI) { 307 if (VI.isGUID()) 308 return getValueId(VI.getGUID()); 309 return VE.getValueID(VI.getValue()); 310 } 311 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 312 }; 313 314 /// Class to manage the bitcode writing for a combined index. 315 class IndexBitcodeWriter : public BitcodeWriterBase { 316 /// The combined index to write to bitcode. 317 const ModuleSummaryIndex &Index; 318 319 /// When writing a subset of the index for distributed backends, client 320 /// provides a map of modules to the corresponding GUIDs/summaries to write. 321 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 322 323 /// Map that holds the correspondence between the GUID used in the combined 324 /// index and a value id generated by this class to use in references. 325 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 326 327 /// Tracks the last value id recorded in the GUIDToValueMap. 328 unsigned GlobalValueId = 0; 329 330 public: 331 /// Constructs a IndexBitcodeWriter object for the given combined index, 332 /// writing to the provided \p Buffer. When writing a subset of the index 333 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 334 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 335 const std::map<std::string, GVSummaryMapTy> 336 *ModuleToSummariesForIndex = nullptr) 337 : BitcodeWriterBase(Stream), Index(Index), 338 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 339 // Assign unique value ids to all summaries to be written, for use 340 // in writing out the call graph edges. Save the mapping from GUID 341 // to the new global value id to use when writing those edges, which 342 // are currently saved in the index in terms of GUID. 343 for (const auto &I : *this) 344 GUIDToValueIdMap[I.first] = ++GlobalValueId; 345 } 346 347 /// The below iterator returns the GUID and associated summary. 348 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 349 350 /// Iterator over the value GUID and summaries to be written to bitcode, 351 /// hides the details of whether they are being pulled from the entire 352 /// index or just those in a provided ModuleToSummariesForIndex map. 353 class iterator 354 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 355 GVInfo> { 356 /// Enables access to parent class. 357 const IndexBitcodeWriter &Writer; 358 359 // Iterators used when writing only those summaries in a provided 360 // ModuleToSummariesForIndex map: 361 362 /// Points to the last element in outer ModuleToSummariesForIndex map. 363 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack; 364 /// Iterator on outer ModuleToSummariesForIndex map. 365 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter; 366 /// Iterator on an inner global variable summary map. 367 GVSummaryMapTy::const_iterator ModuleGVSummariesIter; 368 369 // Iterators used when writing all summaries in the index: 370 371 /// Points to the last element in the Index outer GlobalValueMap. 372 const_gvsummary_iterator IndexSummariesBack; 373 /// Iterator on outer GlobalValueMap. 374 const_gvsummary_iterator IndexSummariesIter; 375 /// Iterator on an inner GlobalValueSummaryList. 376 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 377 378 public: 379 /// Construct iterator from parent \p Writer and indicate if we are 380 /// constructing the end iterator. 381 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 382 // Set up the appropriate set of iterators given whether we are writing 383 // the full index or just a subset. 384 // Can't setup the Back or inner iterators if the corresponding map 385 // is empty. This will be handled specially in operator== as well. 386 if (Writer.ModuleToSummariesForIndex && 387 !Writer.ModuleToSummariesForIndex->empty()) { 388 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 389 std::next(ModuleSummariesBack) != 390 Writer.ModuleToSummariesForIndex->end(); 391 ModuleSummariesBack++) 392 ; 393 ModuleSummariesIter = !IsAtEnd 394 ? Writer.ModuleToSummariesForIndex->begin() 395 : ModuleSummariesBack; 396 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 397 : ModuleSummariesBack->second.end(); 398 } else if (!Writer.ModuleToSummariesForIndex && 399 Writer.Index.begin() != Writer.Index.end()) { 400 for (IndexSummariesBack = Writer.Index.begin(); 401 std::next(IndexSummariesBack) != Writer.Index.end(); 402 IndexSummariesBack++) 403 ; 404 IndexSummariesIter = 405 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 406 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 407 : IndexSummariesBack->second.end(); 408 } 409 } 410 411 /// Increment the appropriate set of iterators. 412 iterator &operator++() { 413 // First the inner iterator is incremented, then if it is at the end 414 // and there are more outer iterations to go, the inner is reset to 415 // the start of the next inner list. 416 if (Writer.ModuleToSummariesForIndex) { 417 ++ModuleGVSummariesIter; 418 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 419 ModuleSummariesIter != ModuleSummariesBack) { 420 ++ModuleSummariesIter; 421 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 422 } 423 } else { 424 ++IndexGVSummariesIter; 425 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 426 IndexSummariesIter != IndexSummariesBack) { 427 ++IndexSummariesIter; 428 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 429 } 430 } 431 return *this; 432 } 433 434 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 435 /// outer and inner iterator positions. 436 GVInfo operator*() { 437 if (Writer.ModuleToSummariesForIndex) 438 return std::make_pair(ModuleGVSummariesIter->first, 439 ModuleGVSummariesIter->second); 440 return std::make_pair(IndexSummariesIter->first, 441 IndexGVSummariesIter->get()); 442 } 443 444 /// Checks if the iterators are equal, with special handling for empty 445 /// indexes. 446 bool operator==(const iterator &RHS) const { 447 if (Writer.ModuleToSummariesForIndex) { 448 // First ensure that both are writing the same subset. 449 if (Writer.ModuleToSummariesForIndex != 450 RHS.Writer.ModuleToSummariesForIndex) 451 return false; 452 // Already determined above that maps are the same, so if one is 453 // empty, they both are. 454 if (Writer.ModuleToSummariesForIndex->empty()) 455 return true; 456 // Ensure the ModuleGVSummariesIter are iterating over the same 457 // container before checking them below. 458 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 459 return false; 460 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 461 } 462 // First ensure RHS also writing the full index, and that both are 463 // writing the same full index. 464 if (RHS.Writer.ModuleToSummariesForIndex || 465 &Writer.Index != &RHS.Writer.Index) 466 return false; 467 // Already determined above that maps are the same, so if one is 468 // empty, they both are. 469 if (Writer.Index.begin() == Writer.Index.end()) 470 return true; 471 // Ensure the IndexGVSummariesIter are iterating over the same 472 // container before checking them below. 473 if (IndexSummariesIter != RHS.IndexSummariesIter) 474 return false; 475 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 476 } 477 }; 478 479 /// Obtain the start iterator over the summaries to be written. 480 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 481 /// Obtain the end iterator over the summaries to be written. 482 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 483 484 /// Main entry point for writing a combined index to bitcode. 485 void write(); 486 487 private: 488 void writeModStrings(); 489 void writeCombinedGlobalValueSummary(); 490 491 /// Indicates whether the provided \p ModulePath should be written into 492 /// the module string table, e.g. if full index written or if it is in 493 /// the provided subset. 494 bool doIncludeModule(StringRef ModulePath) { 495 return !ModuleToSummariesForIndex || 496 ModuleToSummariesForIndex->count(ModulePath); 497 } 498 499 bool hasValueId(GlobalValue::GUID ValGUID) { 500 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 501 return VMI != GUIDToValueIdMap.end(); 502 } 503 void assignValueId(GlobalValue::GUID ValGUID) { 504 unsigned &ValueId = GUIDToValueIdMap[ValGUID]; 505 if (ValueId == 0) 506 ValueId = ++GlobalValueId; 507 } 508 unsigned getValueId(GlobalValue::GUID ValGUID) { 509 auto VMI = GUIDToValueIdMap.find(ValGUID); 510 assert(VMI != GUIDToValueIdMap.end()); 511 return VMI->second; 512 } 513 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 514 }; 515 } // end anonymous namespace 516 517 static unsigned getEncodedCastOpcode(unsigned Opcode) { 518 switch (Opcode) { 519 default: llvm_unreachable("Unknown cast instruction!"); 520 case Instruction::Trunc : return bitc::CAST_TRUNC; 521 case Instruction::ZExt : return bitc::CAST_ZEXT; 522 case Instruction::SExt : return bitc::CAST_SEXT; 523 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 524 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 525 case Instruction::UIToFP : return bitc::CAST_UITOFP; 526 case Instruction::SIToFP : return bitc::CAST_SITOFP; 527 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 528 case Instruction::FPExt : return bitc::CAST_FPEXT; 529 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 530 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 531 case Instruction::BitCast : return bitc::CAST_BITCAST; 532 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 533 } 534 } 535 536 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 537 switch (Opcode) { 538 default: llvm_unreachable("Unknown binary instruction!"); 539 case Instruction::Add: 540 case Instruction::FAdd: return bitc::BINOP_ADD; 541 case Instruction::Sub: 542 case Instruction::FSub: return bitc::BINOP_SUB; 543 case Instruction::Mul: 544 case Instruction::FMul: return bitc::BINOP_MUL; 545 case Instruction::UDiv: return bitc::BINOP_UDIV; 546 case Instruction::FDiv: 547 case Instruction::SDiv: return bitc::BINOP_SDIV; 548 case Instruction::URem: return bitc::BINOP_UREM; 549 case Instruction::FRem: 550 case Instruction::SRem: return bitc::BINOP_SREM; 551 case Instruction::Shl: return bitc::BINOP_SHL; 552 case Instruction::LShr: return bitc::BINOP_LSHR; 553 case Instruction::AShr: return bitc::BINOP_ASHR; 554 case Instruction::And: return bitc::BINOP_AND; 555 case Instruction::Or: return bitc::BINOP_OR; 556 case Instruction::Xor: return bitc::BINOP_XOR; 557 } 558 } 559 560 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 561 switch (Op) { 562 default: llvm_unreachable("Unknown RMW operation!"); 563 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 564 case AtomicRMWInst::Add: return bitc::RMW_ADD; 565 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 566 case AtomicRMWInst::And: return bitc::RMW_AND; 567 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 568 case AtomicRMWInst::Or: return bitc::RMW_OR; 569 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 570 case AtomicRMWInst::Max: return bitc::RMW_MAX; 571 case AtomicRMWInst::Min: return bitc::RMW_MIN; 572 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 573 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 574 } 575 } 576 577 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 578 switch (Ordering) { 579 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 580 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 581 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 582 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 583 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 584 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 585 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 586 } 587 llvm_unreachable("Invalid ordering"); 588 } 589 590 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 591 switch (SynchScope) { 592 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 593 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 594 } 595 llvm_unreachable("Invalid synch scope"); 596 } 597 598 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 599 StringRef Str, unsigned AbbrevToUse) { 600 SmallVector<unsigned, 64> Vals; 601 602 // Code: [strchar x N] 603 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 604 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 605 AbbrevToUse = 0; 606 Vals.push_back(Str[i]); 607 } 608 609 // Emit the finished record. 610 Stream.EmitRecord(Code, Vals, AbbrevToUse); 611 } 612 613 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 614 switch (Kind) { 615 case Attribute::Alignment: 616 return bitc::ATTR_KIND_ALIGNMENT; 617 case Attribute::AllocSize: 618 return bitc::ATTR_KIND_ALLOC_SIZE; 619 case Attribute::AlwaysInline: 620 return bitc::ATTR_KIND_ALWAYS_INLINE; 621 case Attribute::ArgMemOnly: 622 return bitc::ATTR_KIND_ARGMEMONLY; 623 case Attribute::Builtin: 624 return bitc::ATTR_KIND_BUILTIN; 625 case Attribute::ByVal: 626 return bitc::ATTR_KIND_BY_VAL; 627 case Attribute::Convergent: 628 return bitc::ATTR_KIND_CONVERGENT; 629 case Attribute::InAlloca: 630 return bitc::ATTR_KIND_IN_ALLOCA; 631 case Attribute::Cold: 632 return bitc::ATTR_KIND_COLD; 633 case Attribute::InaccessibleMemOnly: 634 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 635 case Attribute::InaccessibleMemOrArgMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 637 case Attribute::InlineHint: 638 return bitc::ATTR_KIND_INLINE_HINT; 639 case Attribute::InReg: 640 return bitc::ATTR_KIND_IN_REG; 641 case Attribute::JumpTable: 642 return bitc::ATTR_KIND_JUMP_TABLE; 643 case Attribute::MinSize: 644 return bitc::ATTR_KIND_MIN_SIZE; 645 case Attribute::Naked: 646 return bitc::ATTR_KIND_NAKED; 647 case Attribute::Nest: 648 return bitc::ATTR_KIND_NEST; 649 case Attribute::NoAlias: 650 return bitc::ATTR_KIND_NO_ALIAS; 651 case Attribute::NoBuiltin: 652 return bitc::ATTR_KIND_NO_BUILTIN; 653 case Attribute::NoCapture: 654 return bitc::ATTR_KIND_NO_CAPTURE; 655 case Attribute::NoDuplicate: 656 return bitc::ATTR_KIND_NO_DUPLICATE; 657 case Attribute::NoImplicitFloat: 658 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 659 case Attribute::NoInline: 660 return bitc::ATTR_KIND_NO_INLINE; 661 case Attribute::NoRecurse: 662 return bitc::ATTR_KIND_NO_RECURSE; 663 case Attribute::NonLazyBind: 664 return bitc::ATTR_KIND_NON_LAZY_BIND; 665 case Attribute::NonNull: 666 return bitc::ATTR_KIND_NON_NULL; 667 case Attribute::Dereferenceable: 668 return bitc::ATTR_KIND_DEREFERENCEABLE; 669 case Attribute::DereferenceableOrNull: 670 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 671 case Attribute::NoRedZone: 672 return bitc::ATTR_KIND_NO_RED_ZONE; 673 case Attribute::NoReturn: 674 return bitc::ATTR_KIND_NO_RETURN; 675 case Attribute::NoUnwind: 676 return bitc::ATTR_KIND_NO_UNWIND; 677 case Attribute::OptimizeForSize: 678 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 679 case Attribute::OptimizeNone: 680 return bitc::ATTR_KIND_OPTIMIZE_NONE; 681 case Attribute::ReadNone: 682 return bitc::ATTR_KIND_READ_NONE; 683 case Attribute::ReadOnly: 684 return bitc::ATTR_KIND_READ_ONLY; 685 case Attribute::Returned: 686 return bitc::ATTR_KIND_RETURNED; 687 case Attribute::ReturnsTwice: 688 return bitc::ATTR_KIND_RETURNS_TWICE; 689 case Attribute::SExt: 690 return bitc::ATTR_KIND_S_EXT; 691 case Attribute::StackAlignment: 692 return bitc::ATTR_KIND_STACK_ALIGNMENT; 693 case Attribute::StackProtect: 694 return bitc::ATTR_KIND_STACK_PROTECT; 695 case Attribute::StackProtectReq: 696 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 697 case Attribute::StackProtectStrong: 698 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 699 case Attribute::SafeStack: 700 return bitc::ATTR_KIND_SAFESTACK; 701 case Attribute::StructRet: 702 return bitc::ATTR_KIND_STRUCT_RET; 703 case Attribute::SanitizeAddress: 704 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 705 case Attribute::SanitizeThread: 706 return bitc::ATTR_KIND_SANITIZE_THREAD; 707 case Attribute::SanitizeMemory: 708 return bitc::ATTR_KIND_SANITIZE_MEMORY; 709 case Attribute::SwiftError: 710 return bitc::ATTR_KIND_SWIFT_ERROR; 711 case Attribute::SwiftSelf: 712 return bitc::ATTR_KIND_SWIFT_SELF; 713 case Attribute::UWTable: 714 return bitc::ATTR_KIND_UW_TABLE; 715 case Attribute::WriteOnly: 716 return bitc::ATTR_KIND_WRITEONLY; 717 case Attribute::ZExt: 718 return bitc::ATTR_KIND_Z_EXT; 719 case Attribute::EndAttrKinds: 720 llvm_unreachable("Can not encode end-attribute kinds marker."); 721 case Attribute::None: 722 llvm_unreachable("Can not encode none-attribute."); 723 } 724 725 llvm_unreachable("Trying to encode unknown attribute"); 726 } 727 728 void ModuleBitcodeWriter::writeAttributeGroupTable() { 729 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 730 VE.getAttributeGroups(); 731 if (AttrGrps.empty()) return; 732 733 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 734 735 SmallVector<uint64_t, 64> Record; 736 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 737 unsigned AttrListIndex = Pair.first; 738 AttributeSet AS = Pair.second; 739 Record.push_back(VE.getAttributeGroupID(Pair)); 740 Record.push_back(AttrListIndex); 741 742 for (Attribute Attr : AS) { 743 if (Attr.isEnumAttribute()) { 744 Record.push_back(0); 745 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 746 } else if (Attr.isIntAttribute()) { 747 Record.push_back(1); 748 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 749 Record.push_back(Attr.getValueAsInt()); 750 } else { 751 StringRef Kind = Attr.getKindAsString(); 752 StringRef Val = Attr.getValueAsString(); 753 754 Record.push_back(Val.empty() ? 3 : 4); 755 Record.append(Kind.begin(), Kind.end()); 756 Record.push_back(0); 757 if (!Val.empty()) { 758 Record.append(Val.begin(), Val.end()); 759 Record.push_back(0); 760 } 761 } 762 } 763 764 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 765 Record.clear(); 766 } 767 768 Stream.ExitBlock(); 769 } 770 771 void ModuleBitcodeWriter::writeAttributeTable() { 772 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 773 if (Attrs.empty()) return; 774 775 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 776 777 SmallVector<uint64_t, 64> Record; 778 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 779 const AttributeList &A = Attrs[i]; 780 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 781 Record.push_back( 782 VE.getAttributeGroupID({A.getSlotIndex(i), A.getSlotAttributes(i)})); 783 784 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 785 Record.clear(); 786 } 787 788 Stream.ExitBlock(); 789 } 790 791 /// WriteTypeTable - Write out the type table for a module. 792 void ModuleBitcodeWriter::writeTypeTable() { 793 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 794 795 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 796 SmallVector<uint64_t, 64> TypeVals; 797 798 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 799 800 // Abbrev for TYPE_CODE_POINTER. 801 auto Abbv = std::make_shared<BitCodeAbbrev>(); 802 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 804 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 805 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 806 807 // Abbrev for TYPE_CODE_FUNCTION. 808 Abbv = std::make_shared<BitCodeAbbrev>(); 809 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 813 814 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 815 816 // Abbrev for TYPE_CODE_STRUCT_ANON. 817 Abbv = std::make_shared<BitCodeAbbrev>(); 818 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 822 823 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 824 825 // Abbrev for TYPE_CODE_STRUCT_NAME. 826 Abbv = std::make_shared<BitCodeAbbrev>(); 827 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 830 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 831 832 // Abbrev for TYPE_CODE_STRUCT_NAMED. 833 Abbv = std::make_shared<BitCodeAbbrev>(); 834 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 838 839 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 840 841 // Abbrev for TYPE_CODE_ARRAY. 842 Abbv = std::make_shared<BitCodeAbbrev>(); 843 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 846 847 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 848 849 // Emit an entry count so the reader can reserve space. 850 TypeVals.push_back(TypeList.size()); 851 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 852 TypeVals.clear(); 853 854 // Loop over all of the types, emitting each in turn. 855 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 856 Type *T = TypeList[i]; 857 int AbbrevToUse = 0; 858 unsigned Code = 0; 859 860 switch (T->getTypeID()) { 861 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 862 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 863 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 864 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 865 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 866 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 867 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 868 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 869 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 870 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 871 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 872 case Type::IntegerTyID: 873 // INTEGER: [width] 874 Code = bitc::TYPE_CODE_INTEGER; 875 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 876 break; 877 case Type::PointerTyID: { 878 PointerType *PTy = cast<PointerType>(T); 879 // POINTER: [pointee type, address space] 880 Code = bitc::TYPE_CODE_POINTER; 881 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 882 unsigned AddressSpace = PTy->getAddressSpace(); 883 TypeVals.push_back(AddressSpace); 884 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 885 break; 886 } 887 case Type::FunctionTyID: { 888 FunctionType *FT = cast<FunctionType>(T); 889 // FUNCTION: [isvararg, retty, paramty x N] 890 Code = bitc::TYPE_CODE_FUNCTION; 891 TypeVals.push_back(FT->isVarArg()); 892 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 893 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 894 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 895 AbbrevToUse = FunctionAbbrev; 896 break; 897 } 898 case Type::StructTyID: { 899 StructType *ST = cast<StructType>(T); 900 // STRUCT: [ispacked, eltty x N] 901 TypeVals.push_back(ST->isPacked()); 902 // Output all of the element types. 903 for (StructType::element_iterator I = ST->element_begin(), 904 E = ST->element_end(); I != E; ++I) 905 TypeVals.push_back(VE.getTypeID(*I)); 906 907 if (ST->isLiteral()) { 908 Code = bitc::TYPE_CODE_STRUCT_ANON; 909 AbbrevToUse = StructAnonAbbrev; 910 } else { 911 if (ST->isOpaque()) { 912 Code = bitc::TYPE_CODE_OPAQUE; 913 } else { 914 Code = bitc::TYPE_CODE_STRUCT_NAMED; 915 AbbrevToUse = StructNamedAbbrev; 916 } 917 918 // Emit the name if it is present. 919 if (!ST->getName().empty()) 920 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 921 StructNameAbbrev); 922 } 923 break; 924 } 925 case Type::ArrayTyID: { 926 ArrayType *AT = cast<ArrayType>(T); 927 // ARRAY: [numelts, eltty] 928 Code = bitc::TYPE_CODE_ARRAY; 929 TypeVals.push_back(AT->getNumElements()); 930 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 931 AbbrevToUse = ArrayAbbrev; 932 break; 933 } 934 case Type::VectorTyID: { 935 VectorType *VT = cast<VectorType>(T); 936 // VECTOR [numelts, eltty] 937 Code = bitc::TYPE_CODE_VECTOR; 938 TypeVals.push_back(VT->getNumElements()); 939 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 940 break; 941 } 942 } 943 944 // Emit the finished record. 945 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 946 TypeVals.clear(); 947 } 948 949 Stream.ExitBlock(); 950 } 951 952 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 953 switch (Linkage) { 954 case GlobalValue::ExternalLinkage: 955 return 0; 956 case GlobalValue::WeakAnyLinkage: 957 return 16; 958 case GlobalValue::AppendingLinkage: 959 return 2; 960 case GlobalValue::InternalLinkage: 961 return 3; 962 case GlobalValue::LinkOnceAnyLinkage: 963 return 18; 964 case GlobalValue::ExternalWeakLinkage: 965 return 7; 966 case GlobalValue::CommonLinkage: 967 return 8; 968 case GlobalValue::PrivateLinkage: 969 return 9; 970 case GlobalValue::WeakODRLinkage: 971 return 17; 972 case GlobalValue::LinkOnceODRLinkage: 973 return 19; 974 case GlobalValue::AvailableExternallyLinkage: 975 return 12; 976 } 977 llvm_unreachable("Invalid linkage"); 978 } 979 980 static unsigned getEncodedLinkage(const GlobalValue &GV) { 981 return getEncodedLinkage(GV.getLinkage()); 982 } 983 984 // Decode the flags for GlobalValue in the summary 985 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 986 uint64_t RawFlags = 0; 987 988 RawFlags |= Flags.NotEligibleToImport; // bool 989 RawFlags |= (Flags.LiveRoot << 1); 990 // Linkage don't need to be remapped at that time for the summary. Any future 991 // change to the getEncodedLinkage() function will need to be taken into 992 // account here as well. 993 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 994 995 return RawFlags; 996 } 997 998 static unsigned getEncodedVisibility(const GlobalValue &GV) { 999 switch (GV.getVisibility()) { 1000 case GlobalValue::DefaultVisibility: return 0; 1001 case GlobalValue::HiddenVisibility: return 1; 1002 case GlobalValue::ProtectedVisibility: return 2; 1003 } 1004 llvm_unreachable("Invalid visibility"); 1005 } 1006 1007 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1008 switch (GV.getDLLStorageClass()) { 1009 case GlobalValue::DefaultStorageClass: return 0; 1010 case GlobalValue::DLLImportStorageClass: return 1; 1011 case GlobalValue::DLLExportStorageClass: return 2; 1012 } 1013 llvm_unreachable("Invalid DLL storage class"); 1014 } 1015 1016 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1017 switch (GV.getThreadLocalMode()) { 1018 case GlobalVariable::NotThreadLocal: return 0; 1019 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1020 case GlobalVariable::LocalDynamicTLSModel: return 2; 1021 case GlobalVariable::InitialExecTLSModel: return 3; 1022 case GlobalVariable::LocalExecTLSModel: return 4; 1023 } 1024 llvm_unreachable("Invalid TLS model"); 1025 } 1026 1027 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1028 switch (C.getSelectionKind()) { 1029 case Comdat::Any: 1030 return bitc::COMDAT_SELECTION_KIND_ANY; 1031 case Comdat::ExactMatch: 1032 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1033 case Comdat::Largest: 1034 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1035 case Comdat::NoDuplicates: 1036 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1037 case Comdat::SameSize: 1038 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1039 } 1040 llvm_unreachable("Invalid selection kind"); 1041 } 1042 1043 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1044 switch (GV.getUnnamedAddr()) { 1045 case GlobalValue::UnnamedAddr::None: return 0; 1046 case GlobalValue::UnnamedAddr::Local: return 2; 1047 case GlobalValue::UnnamedAddr::Global: return 1; 1048 } 1049 llvm_unreachable("Invalid unnamed_addr"); 1050 } 1051 1052 void ModuleBitcodeWriter::writeComdats() { 1053 SmallVector<unsigned, 64> Vals; 1054 for (const Comdat *C : VE.getComdats()) { 1055 // COMDAT: [strtab offset, strtab size, selection_kind] 1056 Vals.push_back(StrtabBuilder.add(C->getName())); 1057 Vals.push_back(C->getName().size()); 1058 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1059 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1060 Vals.clear(); 1061 } 1062 } 1063 1064 /// Write a record that will eventually hold the word offset of the 1065 /// module-level VST. For now the offset is 0, which will be backpatched 1066 /// after the real VST is written. Saves the bit offset to backpatch. 1067 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1068 // Write a placeholder value in for the offset of the real VST, 1069 // which is written after the function blocks so that it can include 1070 // the offset of each function. The placeholder offset will be 1071 // updated when the real VST is written. 1072 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1073 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1074 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1075 // hold the real VST offset. Must use fixed instead of VBR as we don't 1076 // know how many VBR chunks to reserve ahead of time. 1077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1078 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1079 1080 // Emit the placeholder 1081 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1082 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1083 1084 // Compute and save the bit offset to the placeholder, which will be 1085 // patched when the real VST is written. We can simply subtract the 32-bit 1086 // fixed size from the current bit number to get the location to backpatch. 1087 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1088 } 1089 1090 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1091 1092 /// Determine the encoding to use for the given string name and length. 1093 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1094 bool isChar6 = true; 1095 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1096 if (isChar6) 1097 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1098 if ((unsigned char)*C & 128) 1099 // don't bother scanning the rest. 1100 return SE_Fixed8; 1101 } 1102 if (isChar6) 1103 return SE_Char6; 1104 else 1105 return SE_Fixed7; 1106 } 1107 1108 /// Emit top-level description of module, including target triple, inline asm, 1109 /// descriptors for global variables, and function prototype info. 1110 /// Returns the bit offset to backpatch with the location of the real VST. 1111 void ModuleBitcodeWriter::writeModuleInfo() { 1112 // Emit various pieces of data attached to a module. 1113 if (!M.getTargetTriple().empty()) 1114 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1115 0 /*TODO*/); 1116 const std::string &DL = M.getDataLayoutStr(); 1117 if (!DL.empty()) 1118 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1119 if (!M.getModuleInlineAsm().empty()) 1120 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1121 0 /*TODO*/); 1122 1123 // Emit information about sections and GC, computing how many there are. Also 1124 // compute the maximum alignment value. 1125 std::map<std::string, unsigned> SectionMap; 1126 std::map<std::string, unsigned> GCMap; 1127 unsigned MaxAlignment = 0; 1128 unsigned MaxGlobalType = 0; 1129 for (const GlobalValue &GV : M.globals()) { 1130 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1131 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1132 if (GV.hasSection()) { 1133 // Give section names unique ID's. 1134 unsigned &Entry = SectionMap[GV.getSection()]; 1135 if (!Entry) { 1136 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1137 0 /*TODO*/); 1138 Entry = SectionMap.size(); 1139 } 1140 } 1141 } 1142 for (const Function &F : M) { 1143 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1144 if (F.hasSection()) { 1145 // Give section names unique ID's. 1146 unsigned &Entry = SectionMap[F.getSection()]; 1147 if (!Entry) { 1148 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1149 0 /*TODO*/); 1150 Entry = SectionMap.size(); 1151 } 1152 } 1153 if (F.hasGC()) { 1154 // Same for GC names. 1155 unsigned &Entry = GCMap[F.getGC()]; 1156 if (!Entry) { 1157 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1158 0 /*TODO*/); 1159 Entry = GCMap.size(); 1160 } 1161 } 1162 } 1163 1164 // Emit abbrev for globals, now that we know # sections and max alignment. 1165 unsigned SimpleGVarAbbrev = 0; 1166 if (!M.global_empty()) { 1167 // Add an abbrev for common globals with no visibility or thread localness. 1168 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1169 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1173 Log2_32_Ceil(MaxGlobalType+1))); 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1175 //| explicitType << 1 1176 //| constant 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1179 if (MaxAlignment == 0) // Alignment. 1180 Abbv->Add(BitCodeAbbrevOp(0)); 1181 else { 1182 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1184 Log2_32_Ceil(MaxEncAlignment+1))); 1185 } 1186 if (SectionMap.empty()) // Section. 1187 Abbv->Add(BitCodeAbbrevOp(0)); 1188 else 1189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1190 Log2_32_Ceil(SectionMap.size()+1))); 1191 // Don't bother emitting vis + thread local. 1192 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1193 } 1194 1195 SmallVector<unsigned, 64> Vals; 1196 // Emit the module's source file name. 1197 { 1198 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1199 M.getSourceFileName().size()); 1200 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1201 if (Bits == SE_Char6) 1202 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1203 else if (Bits == SE_Fixed7) 1204 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1205 1206 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1207 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1208 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1210 Abbv->Add(AbbrevOpToUse); 1211 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1212 1213 for (const auto P : M.getSourceFileName()) 1214 Vals.push_back((unsigned char)P); 1215 1216 // Emit the finished record. 1217 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1218 Vals.clear(); 1219 } 1220 1221 // Emit the global variable information. 1222 for (const GlobalVariable &GV : M.globals()) { 1223 unsigned AbbrevToUse = 0; 1224 1225 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1226 // linkage, alignment, section, visibility, threadlocal, 1227 // unnamed_addr, externally_initialized, dllstorageclass, 1228 // comdat] 1229 Vals.push_back(StrtabBuilder.add(GV.getName())); 1230 Vals.push_back(GV.getName().size()); 1231 Vals.push_back(VE.getTypeID(GV.getValueType())); 1232 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1233 Vals.push_back(GV.isDeclaration() ? 0 : 1234 (VE.getValueID(GV.getInitializer()) + 1)); 1235 Vals.push_back(getEncodedLinkage(GV)); 1236 Vals.push_back(Log2_32(GV.getAlignment())+1); 1237 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1238 if (GV.isThreadLocal() || 1239 GV.getVisibility() != GlobalValue::DefaultVisibility || 1240 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1241 GV.isExternallyInitialized() || 1242 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1243 GV.hasComdat()) { 1244 Vals.push_back(getEncodedVisibility(GV)); 1245 Vals.push_back(getEncodedThreadLocalMode(GV)); 1246 Vals.push_back(getEncodedUnnamedAddr(GV)); 1247 Vals.push_back(GV.isExternallyInitialized()); 1248 Vals.push_back(getEncodedDLLStorageClass(GV)); 1249 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1250 } else { 1251 AbbrevToUse = SimpleGVarAbbrev; 1252 } 1253 1254 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1255 Vals.clear(); 1256 } 1257 1258 // Emit the function proto information. 1259 for (const Function &F : M) { 1260 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1261 // linkage, paramattrs, alignment, section, visibility, gc, 1262 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1263 // prefixdata, personalityfn] 1264 Vals.push_back(StrtabBuilder.add(F.getName())); 1265 Vals.push_back(F.getName().size()); 1266 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1267 Vals.push_back(F.getCallingConv()); 1268 Vals.push_back(F.isDeclaration()); 1269 Vals.push_back(getEncodedLinkage(F)); 1270 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1271 Vals.push_back(Log2_32(F.getAlignment())+1); 1272 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1273 Vals.push_back(getEncodedVisibility(F)); 1274 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1275 Vals.push_back(getEncodedUnnamedAddr(F)); 1276 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1277 : 0); 1278 Vals.push_back(getEncodedDLLStorageClass(F)); 1279 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1280 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1281 : 0); 1282 Vals.push_back( 1283 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1284 1285 unsigned AbbrevToUse = 0; 1286 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1287 Vals.clear(); 1288 } 1289 1290 // Emit the alias information. 1291 for (const GlobalAlias &A : M.aliases()) { 1292 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1293 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1294 Vals.push_back(StrtabBuilder.add(A.getName())); 1295 Vals.push_back(A.getName().size()); 1296 Vals.push_back(VE.getTypeID(A.getValueType())); 1297 Vals.push_back(A.getType()->getAddressSpace()); 1298 Vals.push_back(VE.getValueID(A.getAliasee())); 1299 Vals.push_back(getEncodedLinkage(A)); 1300 Vals.push_back(getEncodedVisibility(A)); 1301 Vals.push_back(getEncodedDLLStorageClass(A)); 1302 Vals.push_back(getEncodedThreadLocalMode(A)); 1303 Vals.push_back(getEncodedUnnamedAddr(A)); 1304 unsigned AbbrevToUse = 0; 1305 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1306 Vals.clear(); 1307 } 1308 1309 // Emit the ifunc information. 1310 for (const GlobalIFunc &I : M.ifuncs()) { 1311 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1312 // val#, linkage, visibility] 1313 Vals.push_back(StrtabBuilder.add(I.getName())); 1314 Vals.push_back(I.getName().size()); 1315 Vals.push_back(VE.getTypeID(I.getValueType())); 1316 Vals.push_back(I.getType()->getAddressSpace()); 1317 Vals.push_back(VE.getValueID(I.getResolver())); 1318 Vals.push_back(getEncodedLinkage(I)); 1319 Vals.push_back(getEncodedVisibility(I)); 1320 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1321 Vals.clear(); 1322 } 1323 1324 writeValueSymbolTableForwardDecl(); 1325 } 1326 1327 static uint64_t getOptimizationFlags(const Value *V) { 1328 uint64_t Flags = 0; 1329 1330 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1331 if (OBO->hasNoSignedWrap()) 1332 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1333 if (OBO->hasNoUnsignedWrap()) 1334 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1335 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1336 if (PEO->isExact()) 1337 Flags |= 1 << bitc::PEO_EXACT; 1338 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1339 if (FPMO->hasUnsafeAlgebra()) 1340 Flags |= FastMathFlags::UnsafeAlgebra; 1341 if (FPMO->hasNoNaNs()) 1342 Flags |= FastMathFlags::NoNaNs; 1343 if (FPMO->hasNoInfs()) 1344 Flags |= FastMathFlags::NoInfs; 1345 if (FPMO->hasNoSignedZeros()) 1346 Flags |= FastMathFlags::NoSignedZeros; 1347 if (FPMO->hasAllowReciprocal()) 1348 Flags |= FastMathFlags::AllowReciprocal; 1349 if (FPMO->hasAllowContract()) 1350 Flags |= FastMathFlags::AllowContract; 1351 } 1352 1353 return Flags; 1354 } 1355 1356 void ModuleBitcodeWriter::writeValueAsMetadata( 1357 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1358 // Mimic an MDNode with a value as one operand. 1359 Value *V = MD->getValue(); 1360 Record.push_back(VE.getTypeID(V->getType())); 1361 Record.push_back(VE.getValueID(V)); 1362 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1363 Record.clear(); 1364 } 1365 1366 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1367 SmallVectorImpl<uint64_t> &Record, 1368 unsigned Abbrev) { 1369 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1370 Metadata *MD = N->getOperand(i); 1371 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1372 "Unexpected function-local metadata"); 1373 Record.push_back(VE.getMetadataOrNullID(MD)); 1374 } 1375 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1376 : bitc::METADATA_NODE, 1377 Record, Abbrev); 1378 Record.clear(); 1379 } 1380 1381 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1382 // Assume the column is usually under 128, and always output the inlined-at 1383 // location (it's never more expensive than building an array size 1). 1384 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1385 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1391 return Stream.EmitAbbrev(std::move(Abbv)); 1392 } 1393 1394 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1395 SmallVectorImpl<uint64_t> &Record, 1396 unsigned &Abbrev) { 1397 if (!Abbrev) 1398 Abbrev = createDILocationAbbrev(); 1399 1400 Record.push_back(N->isDistinct()); 1401 Record.push_back(N->getLine()); 1402 Record.push_back(N->getColumn()); 1403 Record.push_back(VE.getMetadataID(N->getScope())); 1404 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1405 1406 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1407 Record.clear(); 1408 } 1409 1410 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1411 // Assume the column is usually under 128, and always output the inlined-at 1412 // location (it's never more expensive than building an array size 1). 1413 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1414 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1421 return Stream.EmitAbbrev(std::move(Abbv)); 1422 } 1423 1424 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1425 SmallVectorImpl<uint64_t> &Record, 1426 unsigned &Abbrev) { 1427 if (!Abbrev) 1428 Abbrev = createGenericDINodeAbbrev(); 1429 1430 Record.push_back(N->isDistinct()); 1431 Record.push_back(N->getTag()); 1432 Record.push_back(0); // Per-tag version field; unused for now. 1433 1434 for (auto &I : N->operands()) 1435 Record.push_back(VE.getMetadataOrNullID(I)); 1436 1437 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1438 Record.clear(); 1439 } 1440 1441 static uint64_t rotateSign(int64_t I) { 1442 uint64_t U = I; 1443 return I < 0 ? ~(U << 1) : U << 1; 1444 } 1445 1446 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1447 SmallVectorImpl<uint64_t> &Record, 1448 unsigned Abbrev) { 1449 Record.push_back(N->isDistinct()); 1450 Record.push_back(N->getCount()); 1451 Record.push_back(rotateSign(N->getLowerBound())); 1452 1453 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1454 Record.clear(); 1455 } 1456 1457 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1458 SmallVectorImpl<uint64_t> &Record, 1459 unsigned Abbrev) { 1460 Record.push_back(N->isDistinct()); 1461 Record.push_back(rotateSign(N->getValue())); 1462 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1463 1464 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1465 Record.clear(); 1466 } 1467 1468 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1469 SmallVectorImpl<uint64_t> &Record, 1470 unsigned Abbrev) { 1471 Record.push_back(N->isDistinct()); 1472 Record.push_back(N->getTag()); 1473 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1474 Record.push_back(N->getSizeInBits()); 1475 Record.push_back(N->getAlignInBits()); 1476 Record.push_back(N->getEncoding()); 1477 1478 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1479 Record.clear(); 1480 } 1481 1482 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1483 SmallVectorImpl<uint64_t> &Record, 1484 unsigned Abbrev) { 1485 Record.push_back(N->isDistinct()); 1486 Record.push_back(N->getTag()); 1487 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1488 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1489 Record.push_back(N->getLine()); 1490 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1491 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1492 Record.push_back(N->getSizeInBits()); 1493 Record.push_back(N->getAlignInBits()); 1494 Record.push_back(N->getOffsetInBits()); 1495 Record.push_back(N->getFlags()); 1496 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1497 1498 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1499 // that there is no DWARF address space associated with DIDerivedType. 1500 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1501 Record.push_back(*DWARFAddressSpace + 1); 1502 else 1503 Record.push_back(0); 1504 1505 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1506 Record.clear(); 1507 } 1508 1509 void ModuleBitcodeWriter::writeDICompositeType( 1510 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1511 unsigned Abbrev) { 1512 const unsigned IsNotUsedInOldTypeRef = 0x2; 1513 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1514 Record.push_back(N->getTag()); 1515 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1516 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1517 Record.push_back(N->getLine()); 1518 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1519 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1520 Record.push_back(N->getSizeInBits()); 1521 Record.push_back(N->getAlignInBits()); 1522 Record.push_back(N->getOffsetInBits()); 1523 Record.push_back(N->getFlags()); 1524 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1525 Record.push_back(N->getRuntimeLang()); 1526 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1527 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1528 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1529 1530 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1531 Record.clear(); 1532 } 1533 1534 void ModuleBitcodeWriter::writeDISubroutineType( 1535 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1536 unsigned Abbrev) { 1537 const unsigned HasNoOldTypeRefs = 0x2; 1538 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1539 Record.push_back(N->getFlags()); 1540 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1541 Record.push_back(N->getCC()); 1542 1543 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1544 Record.clear(); 1545 } 1546 1547 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1548 SmallVectorImpl<uint64_t> &Record, 1549 unsigned Abbrev) { 1550 Record.push_back(N->isDistinct()); 1551 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1552 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1553 Record.push_back(N->getChecksumKind()); 1554 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1555 1556 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1557 Record.clear(); 1558 } 1559 1560 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1561 SmallVectorImpl<uint64_t> &Record, 1562 unsigned Abbrev) { 1563 assert(N->isDistinct() && "Expected distinct compile units"); 1564 Record.push_back(/* IsDistinct */ true); 1565 Record.push_back(N->getSourceLanguage()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1567 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1568 Record.push_back(N->isOptimized()); 1569 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1570 Record.push_back(N->getRuntimeVersion()); 1571 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1572 Record.push_back(N->getEmissionKind()); 1573 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1574 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1575 Record.push_back(/* subprograms */ 0); 1576 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1577 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1578 Record.push_back(N->getDWOId()); 1579 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1580 Record.push_back(N->getSplitDebugInlining()); 1581 Record.push_back(N->getDebugInfoForProfiling()); 1582 1583 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1584 Record.clear(); 1585 } 1586 1587 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1588 SmallVectorImpl<uint64_t> &Record, 1589 unsigned Abbrev) { 1590 uint64_t HasUnitFlag = 1 << 1; 1591 Record.push_back(N->isDistinct() | HasUnitFlag); 1592 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1593 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1594 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1596 Record.push_back(N->getLine()); 1597 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1598 Record.push_back(N->isLocalToUnit()); 1599 Record.push_back(N->isDefinition()); 1600 Record.push_back(N->getScopeLine()); 1601 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1602 Record.push_back(N->getVirtuality()); 1603 Record.push_back(N->getVirtualIndex()); 1604 Record.push_back(N->getFlags()); 1605 Record.push_back(N->isOptimized()); 1606 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1607 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1608 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1609 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1610 Record.push_back(N->getThisAdjustment()); 1611 1612 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1613 Record.clear(); 1614 } 1615 1616 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1617 SmallVectorImpl<uint64_t> &Record, 1618 unsigned Abbrev) { 1619 Record.push_back(N->isDistinct()); 1620 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1621 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1622 Record.push_back(N->getLine()); 1623 Record.push_back(N->getColumn()); 1624 1625 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1626 Record.clear(); 1627 } 1628 1629 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1630 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1631 unsigned Abbrev) { 1632 Record.push_back(N->isDistinct()); 1633 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1634 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1635 Record.push_back(N->getDiscriminator()); 1636 1637 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1638 Record.clear(); 1639 } 1640 1641 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1642 SmallVectorImpl<uint64_t> &Record, 1643 unsigned Abbrev) { 1644 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1645 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1646 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1647 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1648 Record.push_back(N->getLine()); 1649 1650 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1651 Record.clear(); 1652 } 1653 1654 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1655 SmallVectorImpl<uint64_t> &Record, 1656 unsigned Abbrev) { 1657 Record.push_back(N->isDistinct()); 1658 Record.push_back(N->getMacinfoType()); 1659 Record.push_back(N->getLine()); 1660 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1662 1663 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1664 Record.clear(); 1665 } 1666 1667 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1668 SmallVectorImpl<uint64_t> &Record, 1669 unsigned Abbrev) { 1670 Record.push_back(N->isDistinct()); 1671 Record.push_back(N->getMacinfoType()); 1672 Record.push_back(N->getLine()); 1673 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1674 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1675 1676 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1677 Record.clear(); 1678 } 1679 1680 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1681 SmallVectorImpl<uint64_t> &Record, 1682 unsigned Abbrev) { 1683 Record.push_back(N->isDistinct()); 1684 for (auto &I : N->operands()) 1685 Record.push_back(VE.getMetadataOrNullID(I)); 1686 1687 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1688 Record.clear(); 1689 } 1690 1691 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1692 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1693 unsigned Abbrev) { 1694 Record.push_back(N->isDistinct()); 1695 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1696 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1697 1698 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1699 Record.clear(); 1700 } 1701 1702 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1703 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1704 unsigned Abbrev) { 1705 Record.push_back(N->isDistinct()); 1706 Record.push_back(N->getTag()); 1707 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1708 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1710 1711 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1712 Record.clear(); 1713 } 1714 1715 void ModuleBitcodeWriter::writeDIGlobalVariable( 1716 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1717 unsigned Abbrev) { 1718 const uint64_t Version = 1 << 1; 1719 Record.push_back((uint64_t)N->isDistinct() | Version); 1720 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1724 Record.push_back(N->getLine()); 1725 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1726 Record.push_back(N->isLocalToUnit()); 1727 Record.push_back(N->isDefinition()); 1728 Record.push_back(/* expr */ 0); 1729 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1730 Record.push_back(N->getAlignInBits()); 1731 1732 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1733 Record.clear(); 1734 } 1735 1736 void ModuleBitcodeWriter::writeDILocalVariable( 1737 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1738 unsigned Abbrev) { 1739 // In order to support all possible bitcode formats in BitcodeReader we need 1740 // to distinguish the following cases: 1741 // 1) Record has no artificial tag (Record[1]), 1742 // has no obsolete inlinedAt field (Record[9]). 1743 // In this case Record size will be 8, HasAlignment flag is false. 1744 // 2) Record has artificial tag (Record[1]), 1745 // has no obsolete inlignedAt field (Record[9]). 1746 // In this case Record size will be 9, HasAlignment flag is false. 1747 // 3) Record has both artificial tag (Record[1]) and 1748 // obsolete inlignedAt field (Record[9]). 1749 // In this case Record size will be 10, HasAlignment flag is false. 1750 // 4) Record has neither artificial tag, nor inlignedAt field, but 1751 // HasAlignment flag is true and Record[8] contains alignment value. 1752 const uint64_t HasAlignmentFlag = 1 << 1; 1753 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1754 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1755 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1756 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1757 Record.push_back(N->getLine()); 1758 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1759 Record.push_back(N->getArg()); 1760 Record.push_back(N->getFlags()); 1761 Record.push_back(N->getAlignInBits()); 1762 1763 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1764 Record.clear(); 1765 } 1766 1767 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1768 SmallVectorImpl<uint64_t> &Record, 1769 unsigned Abbrev) { 1770 Record.reserve(N->getElements().size() + 1); 1771 const uint64_t Version = 2 << 1; 1772 Record.push_back((uint64_t)N->isDistinct() | Version); 1773 Record.append(N->elements_begin(), N->elements_end()); 1774 1775 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1776 Record.clear(); 1777 } 1778 1779 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1780 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1781 unsigned Abbrev) { 1782 Record.push_back(N->isDistinct()); 1783 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1784 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1785 1786 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1787 Record.clear(); 1788 } 1789 1790 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1791 SmallVectorImpl<uint64_t> &Record, 1792 unsigned Abbrev) { 1793 Record.push_back(N->isDistinct()); 1794 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1795 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1796 Record.push_back(N->getLine()); 1797 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1799 Record.push_back(N->getAttributes()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1801 1802 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1803 Record.clear(); 1804 } 1805 1806 void ModuleBitcodeWriter::writeDIImportedEntity( 1807 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1808 unsigned Abbrev) { 1809 Record.push_back(N->isDistinct()); 1810 Record.push_back(N->getTag()); 1811 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1812 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1813 Record.push_back(N->getLine()); 1814 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1815 1816 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1817 Record.clear(); 1818 } 1819 1820 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1821 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1822 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1825 return Stream.EmitAbbrev(std::move(Abbv)); 1826 } 1827 1828 void ModuleBitcodeWriter::writeNamedMetadata( 1829 SmallVectorImpl<uint64_t> &Record) { 1830 if (M.named_metadata_empty()) 1831 return; 1832 1833 unsigned Abbrev = createNamedMetadataAbbrev(); 1834 for (const NamedMDNode &NMD : M.named_metadata()) { 1835 // Write name. 1836 StringRef Str = NMD.getName(); 1837 Record.append(Str.bytes_begin(), Str.bytes_end()); 1838 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1839 Record.clear(); 1840 1841 // Write named metadata operands. 1842 for (const MDNode *N : NMD.operands()) 1843 Record.push_back(VE.getMetadataID(N)); 1844 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1845 Record.clear(); 1846 } 1847 } 1848 1849 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1850 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1851 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1855 return Stream.EmitAbbrev(std::move(Abbv)); 1856 } 1857 1858 /// Write out a record for MDString. 1859 /// 1860 /// All the metadata strings in a metadata block are emitted in a single 1861 /// record. The sizes and strings themselves are shoved into a blob. 1862 void ModuleBitcodeWriter::writeMetadataStrings( 1863 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1864 if (Strings.empty()) 1865 return; 1866 1867 // Start the record with the number of strings. 1868 Record.push_back(bitc::METADATA_STRINGS); 1869 Record.push_back(Strings.size()); 1870 1871 // Emit the sizes of the strings in the blob. 1872 SmallString<256> Blob; 1873 { 1874 BitstreamWriter W(Blob); 1875 for (const Metadata *MD : Strings) 1876 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1877 W.FlushToWord(); 1878 } 1879 1880 // Add the offset to the strings to the record. 1881 Record.push_back(Blob.size()); 1882 1883 // Add the strings to the blob. 1884 for (const Metadata *MD : Strings) 1885 Blob.append(cast<MDString>(MD)->getString()); 1886 1887 // Emit the final record. 1888 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1889 Record.clear(); 1890 } 1891 1892 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1893 enum MetadataAbbrev : unsigned { 1894 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1895 #include "llvm/IR/Metadata.def" 1896 LastPlusOne 1897 }; 1898 1899 void ModuleBitcodeWriter::writeMetadataRecords( 1900 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1901 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1902 if (MDs.empty()) 1903 return; 1904 1905 // Initialize MDNode abbreviations. 1906 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1907 #include "llvm/IR/Metadata.def" 1908 1909 for (const Metadata *MD : MDs) { 1910 if (IndexPos) 1911 IndexPos->push_back(Stream.GetCurrentBitNo()); 1912 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1913 assert(N->isResolved() && "Expected forward references to be resolved"); 1914 1915 switch (N->getMetadataID()) { 1916 default: 1917 llvm_unreachable("Invalid MDNode subclass"); 1918 #define HANDLE_MDNODE_LEAF(CLASS) \ 1919 case Metadata::CLASS##Kind: \ 1920 if (MDAbbrevs) \ 1921 write##CLASS(cast<CLASS>(N), Record, \ 1922 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1923 else \ 1924 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1925 continue; 1926 #include "llvm/IR/Metadata.def" 1927 } 1928 } 1929 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1930 } 1931 } 1932 1933 void ModuleBitcodeWriter::writeModuleMetadata() { 1934 if (!VE.hasMDs() && M.named_metadata_empty()) 1935 return; 1936 1937 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1938 SmallVector<uint64_t, 64> Record; 1939 1940 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1941 // block and load any metadata. 1942 std::vector<unsigned> MDAbbrevs; 1943 1944 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1945 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1946 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1947 createGenericDINodeAbbrev(); 1948 1949 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1950 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1953 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1954 1955 Abbv = std::make_shared<BitCodeAbbrev>(); 1956 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1959 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1960 1961 // Emit MDStrings together upfront. 1962 writeMetadataStrings(VE.getMDStrings(), Record); 1963 1964 // We only emit an index for the metadata record if we have more than a given 1965 // (naive) threshold of metadatas, otherwise it is not worth it. 1966 if (VE.getNonMDStrings().size() > IndexThreshold) { 1967 // Write a placeholder value in for the offset of the metadata index, 1968 // which is written after the records, so that it can include 1969 // the offset of each entry. The placeholder offset will be 1970 // updated after all records are emitted. 1971 uint64_t Vals[] = {0, 0}; 1972 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1973 } 1974 1975 // Compute and save the bit offset to the current position, which will be 1976 // patched when we emit the index later. We can simply subtract the 64-bit 1977 // fixed size from the current bit number to get the location to backpatch. 1978 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1979 1980 // This index will contain the bitpos for each individual record. 1981 std::vector<uint64_t> IndexPos; 1982 IndexPos.reserve(VE.getNonMDStrings().size()); 1983 1984 // Write all the records 1985 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1986 1987 if (VE.getNonMDStrings().size() > IndexThreshold) { 1988 // Now that we have emitted all the records we will emit the index. But 1989 // first 1990 // backpatch the forward reference so that the reader can skip the records 1991 // efficiently. 1992 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1993 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1994 1995 // Delta encode the index. 1996 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1997 for (auto &Elt : IndexPos) { 1998 auto EltDelta = Elt - PreviousValue; 1999 PreviousValue = Elt; 2000 Elt = EltDelta; 2001 } 2002 // Emit the index record. 2003 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2004 IndexPos.clear(); 2005 } 2006 2007 // Write the named metadata now. 2008 writeNamedMetadata(Record); 2009 2010 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2011 SmallVector<uint64_t, 4> Record; 2012 Record.push_back(VE.getValueID(&GO)); 2013 pushGlobalMetadataAttachment(Record, GO); 2014 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2015 }; 2016 for (const Function &F : M) 2017 if (F.isDeclaration() && F.hasMetadata()) 2018 AddDeclAttachedMetadata(F); 2019 // FIXME: Only store metadata for declarations here, and move data for global 2020 // variable definitions to a separate block (PR28134). 2021 for (const GlobalVariable &GV : M.globals()) 2022 if (GV.hasMetadata()) 2023 AddDeclAttachedMetadata(GV); 2024 2025 Stream.ExitBlock(); 2026 } 2027 2028 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2029 if (!VE.hasMDs()) 2030 return; 2031 2032 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2033 SmallVector<uint64_t, 64> Record; 2034 writeMetadataStrings(VE.getMDStrings(), Record); 2035 writeMetadataRecords(VE.getNonMDStrings(), Record); 2036 Stream.ExitBlock(); 2037 } 2038 2039 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2040 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2041 // [n x [id, mdnode]] 2042 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2043 GO.getAllMetadata(MDs); 2044 for (const auto &I : MDs) { 2045 Record.push_back(I.first); 2046 Record.push_back(VE.getMetadataID(I.second)); 2047 } 2048 } 2049 2050 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2051 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2052 2053 SmallVector<uint64_t, 64> Record; 2054 2055 if (F.hasMetadata()) { 2056 pushGlobalMetadataAttachment(Record, F); 2057 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2058 Record.clear(); 2059 } 2060 2061 // Write metadata attachments 2062 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2063 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2064 for (const BasicBlock &BB : F) 2065 for (const Instruction &I : BB) { 2066 MDs.clear(); 2067 I.getAllMetadataOtherThanDebugLoc(MDs); 2068 2069 // If no metadata, ignore instruction. 2070 if (MDs.empty()) continue; 2071 2072 Record.push_back(VE.getInstructionID(&I)); 2073 2074 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2075 Record.push_back(MDs[i].first); 2076 Record.push_back(VE.getMetadataID(MDs[i].second)); 2077 } 2078 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2079 Record.clear(); 2080 } 2081 2082 Stream.ExitBlock(); 2083 } 2084 2085 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2086 SmallVector<uint64_t, 64> Record; 2087 2088 // Write metadata kinds 2089 // METADATA_KIND - [n x [id, name]] 2090 SmallVector<StringRef, 8> Names; 2091 M.getMDKindNames(Names); 2092 2093 if (Names.empty()) return; 2094 2095 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2096 2097 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2098 Record.push_back(MDKindID); 2099 StringRef KName = Names[MDKindID]; 2100 Record.append(KName.begin(), KName.end()); 2101 2102 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2103 Record.clear(); 2104 } 2105 2106 Stream.ExitBlock(); 2107 } 2108 2109 void ModuleBitcodeWriter::writeOperandBundleTags() { 2110 // Write metadata kinds 2111 // 2112 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2113 // 2114 // OPERAND_BUNDLE_TAG - [strchr x N] 2115 2116 SmallVector<StringRef, 8> Tags; 2117 M.getOperandBundleTags(Tags); 2118 2119 if (Tags.empty()) 2120 return; 2121 2122 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2123 2124 SmallVector<uint64_t, 64> Record; 2125 2126 for (auto Tag : Tags) { 2127 Record.append(Tag.begin(), Tag.end()); 2128 2129 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2130 Record.clear(); 2131 } 2132 2133 Stream.ExitBlock(); 2134 } 2135 2136 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2137 if ((int64_t)V >= 0) 2138 Vals.push_back(V << 1); 2139 else 2140 Vals.push_back((-V << 1) | 1); 2141 } 2142 2143 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2144 bool isGlobal) { 2145 if (FirstVal == LastVal) return; 2146 2147 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2148 2149 unsigned AggregateAbbrev = 0; 2150 unsigned String8Abbrev = 0; 2151 unsigned CString7Abbrev = 0; 2152 unsigned CString6Abbrev = 0; 2153 // If this is a constant pool for the module, emit module-specific abbrevs. 2154 if (isGlobal) { 2155 // Abbrev for CST_CODE_AGGREGATE. 2156 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2157 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2160 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2161 2162 // Abbrev for CST_CODE_STRING. 2163 Abbv = std::make_shared<BitCodeAbbrev>(); 2164 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2167 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2168 // Abbrev for CST_CODE_CSTRING. 2169 Abbv = std::make_shared<BitCodeAbbrev>(); 2170 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2173 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2174 // Abbrev for CST_CODE_CSTRING. 2175 Abbv = std::make_shared<BitCodeAbbrev>(); 2176 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2179 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2180 } 2181 2182 SmallVector<uint64_t, 64> Record; 2183 2184 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2185 Type *LastTy = nullptr; 2186 for (unsigned i = FirstVal; i != LastVal; ++i) { 2187 const Value *V = Vals[i].first; 2188 // If we need to switch types, do so now. 2189 if (V->getType() != LastTy) { 2190 LastTy = V->getType(); 2191 Record.push_back(VE.getTypeID(LastTy)); 2192 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2193 CONSTANTS_SETTYPE_ABBREV); 2194 Record.clear(); 2195 } 2196 2197 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2198 Record.push_back(unsigned(IA->hasSideEffects()) | 2199 unsigned(IA->isAlignStack()) << 1 | 2200 unsigned(IA->getDialect()&1) << 2); 2201 2202 // Add the asm string. 2203 const std::string &AsmStr = IA->getAsmString(); 2204 Record.push_back(AsmStr.size()); 2205 Record.append(AsmStr.begin(), AsmStr.end()); 2206 2207 // Add the constraint string. 2208 const std::string &ConstraintStr = IA->getConstraintString(); 2209 Record.push_back(ConstraintStr.size()); 2210 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2211 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2212 Record.clear(); 2213 continue; 2214 } 2215 const Constant *C = cast<Constant>(V); 2216 unsigned Code = -1U; 2217 unsigned AbbrevToUse = 0; 2218 if (C->isNullValue()) { 2219 Code = bitc::CST_CODE_NULL; 2220 } else if (isa<UndefValue>(C)) { 2221 Code = bitc::CST_CODE_UNDEF; 2222 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2223 if (IV->getBitWidth() <= 64) { 2224 uint64_t V = IV->getSExtValue(); 2225 emitSignedInt64(Record, V); 2226 Code = bitc::CST_CODE_INTEGER; 2227 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2228 } else { // Wide integers, > 64 bits in size. 2229 // We have an arbitrary precision integer value to write whose 2230 // bit width is > 64. However, in canonical unsigned integer 2231 // format it is likely that the high bits are going to be zero. 2232 // So, we only write the number of active words. 2233 unsigned NWords = IV->getValue().getActiveWords(); 2234 const uint64_t *RawWords = IV->getValue().getRawData(); 2235 for (unsigned i = 0; i != NWords; ++i) { 2236 emitSignedInt64(Record, RawWords[i]); 2237 } 2238 Code = bitc::CST_CODE_WIDE_INTEGER; 2239 } 2240 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2241 Code = bitc::CST_CODE_FLOAT; 2242 Type *Ty = CFP->getType(); 2243 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2244 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2245 } else if (Ty->isX86_FP80Ty()) { 2246 // api needed to prevent premature destruction 2247 // bits are not in the same order as a normal i80 APInt, compensate. 2248 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2249 const uint64_t *p = api.getRawData(); 2250 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2251 Record.push_back(p[0] & 0xffffLL); 2252 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2253 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2254 const uint64_t *p = api.getRawData(); 2255 Record.push_back(p[0]); 2256 Record.push_back(p[1]); 2257 } else { 2258 assert (0 && "Unknown FP type!"); 2259 } 2260 } else if (isa<ConstantDataSequential>(C) && 2261 cast<ConstantDataSequential>(C)->isString()) { 2262 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2263 // Emit constant strings specially. 2264 unsigned NumElts = Str->getNumElements(); 2265 // If this is a null-terminated string, use the denser CSTRING encoding. 2266 if (Str->isCString()) { 2267 Code = bitc::CST_CODE_CSTRING; 2268 --NumElts; // Don't encode the null, which isn't allowed by char6. 2269 } else { 2270 Code = bitc::CST_CODE_STRING; 2271 AbbrevToUse = String8Abbrev; 2272 } 2273 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2274 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2275 for (unsigned i = 0; i != NumElts; ++i) { 2276 unsigned char V = Str->getElementAsInteger(i); 2277 Record.push_back(V); 2278 isCStr7 &= (V & 128) == 0; 2279 if (isCStrChar6) 2280 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2281 } 2282 2283 if (isCStrChar6) 2284 AbbrevToUse = CString6Abbrev; 2285 else if (isCStr7) 2286 AbbrevToUse = CString7Abbrev; 2287 } else if (const ConstantDataSequential *CDS = 2288 dyn_cast<ConstantDataSequential>(C)) { 2289 Code = bitc::CST_CODE_DATA; 2290 Type *EltTy = CDS->getType()->getElementType(); 2291 if (isa<IntegerType>(EltTy)) { 2292 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2293 Record.push_back(CDS->getElementAsInteger(i)); 2294 } else { 2295 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2296 Record.push_back( 2297 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2298 } 2299 } else if (isa<ConstantAggregate>(C)) { 2300 Code = bitc::CST_CODE_AGGREGATE; 2301 for (const Value *Op : C->operands()) 2302 Record.push_back(VE.getValueID(Op)); 2303 AbbrevToUse = AggregateAbbrev; 2304 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2305 switch (CE->getOpcode()) { 2306 default: 2307 if (Instruction::isCast(CE->getOpcode())) { 2308 Code = bitc::CST_CODE_CE_CAST; 2309 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2310 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2311 Record.push_back(VE.getValueID(C->getOperand(0))); 2312 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2313 } else { 2314 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2315 Code = bitc::CST_CODE_CE_BINOP; 2316 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2317 Record.push_back(VE.getValueID(C->getOperand(0))); 2318 Record.push_back(VE.getValueID(C->getOperand(1))); 2319 uint64_t Flags = getOptimizationFlags(CE); 2320 if (Flags != 0) 2321 Record.push_back(Flags); 2322 } 2323 break; 2324 case Instruction::GetElementPtr: { 2325 Code = bitc::CST_CODE_CE_GEP; 2326 const auto *GO = cast<GEPOperator>(C); 2327 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2328 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2329 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2330 Record.push_back((*Idx << 1) | GO->isInBounds()); 2331 } else if (GO->isInBounds()) 2332 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2333 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2334 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2335 Record.push_back(VE.getValueID(C->getOperand(i))); 2336 } 2337 break; 2338 } 2339 case Instruction::Select: 2340 Code = bitc::CST_CODE_CE_SELECT; 2341 Record.push_back(VE.getValueID(C->getOperand(0))); 2342 Record.push_back(VE.getValueID(C->getOperand(1))); 2343 Record.push_back(VE.getValueID(C->getOperand(2))); 2344 break; 2345 case Instruction::ExtractElement: 2346 Code = bitc::CST_CODE_CE_EXTRACTELT; 2347 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2348 Record.push_back(VE.getValueID(C->getOperand(0))); 2349 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2350 Record.push_back(VE.getValueID(C->getOperand(1))); 2351 break; 2352 case Instruction::InsertElement: 2353 Code = bitc::CST_CODE_CE_INSERTELT; 2354 Record.push_back(VE.getValueID(C->getOperand(0))); 2355 Record.push_back(VE.getValueID(C->getOperand(1))); 2356 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2357 Record.push_back(VE.getValueID(C->getOperand(2))); 2358 break; 2359 case Instruction::ShuffleVector: 2360 // If the return type and argument types are the same, this is a 2361 // standard shufflevector instruction. If the types are different, 2362 // then the shuffle is widening or truncating the input vectors, and 2363 // the argument type must also be encoded. 2364 if (C->getType() == C->getOperand(0)->getType()) { 2365 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2366 } else { 2367 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2368 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2369 } 2370 Record.push_back(VE.getValueID(C->getOperand(0))); 2371 Record.push_back(VE.getValueID(C->getOperand(1))); 2372 Record.push_back(VE.getValueID(C->getOperand(2))); 2373 break; 2374 case Instruction::ICmp: 2375 case Instruction::FCmp: 2376 Code = bitc::CST_CODE_CE_CMP; 2377 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2378 Record.push_back(VE.getValueID(C->getOperand(0))); 2379 Record.push_back(VE.getValueID(C->getOperand(1))); 2380 Record.push_back(CE->getPredicate()); 2381 break; 2382 } 2383 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2384 Code = bitc::CST_CODE_BLOCKADDRESS; 2385 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2386 Record.push_back(VE.getValueID(BA->getFunction())); 2387 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2388 } else { 2389 #ifndef NDEBUG 2390 C->dump(); 2391 #endif 2392 llvm_unreachable("Unknown constant!"); 2393 } 2394 Stream.EmitRecord(Code, Record, AbbrevToUse); 2395 Record.clear(); 2396 } 2397 2398 Stream.ExitBlock(); 2399 } 2400 2401 void ModuleBitcodeWriter::writeModuleConstants() { 2402 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2403 2404 // Find the first constant to emit, which is the first non-globalvalue value. 2405 // We know globalvalues have been emitted by WriteModuleInfo. 2406 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2407 if (!isa<GlobalValue>(Vals[i].first)) { 2408 writeConstants(i, Vals.size(), true); 2409 return; 2410 } 2411 } 2412 } 2413 2414 /// pushValueAndType - The file has to encode both the value and type id for 2415 /// many values, because we need to know what type to create for forward 2416 /// references. However, most operands are not forward references, so this type 2417 /// field is not needed. 2418 /// 2419 /// This function adds V's value ID to Vals. If the value ID is higher than the 2420 /// instruction ID, then it is a forward reference, and it also includes the 2421 /// type ID. The value ID that is written is encoded relative to the InstID. 2422 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2423 SmallVectorImpl<unsigned> &Vals) { 2424 unsigned ValID = VE.getValueID(V); 2425 // Make encoding relative to the InstID. 2426 Vals.push_back(InstID - ValID); 2427 if (ValID >= InstID) { 2428 Vals.push_back(VE.getTypeID(V->getType())); 2429 return true; 2430 } 2431 return false; 2432 } 2433 2434 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2435 unsigned InstID) { 2436 SmallVector<unsigned, 64> Record; 2437 LLVMContext &C = CS.getInstruction()->getContext(); 2438 2439 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2440 const auto &Bundle = CS.getOperandBundleAt(i); 2441 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2442 2443 for (auto &Input : Bundle.Inputs) 2444 pushValueAndType(Input, InstID, Record); 2445 2446 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2447 Record.clear(); 2448 } 2449 } 2450 2451 /// pushValue - Like pushValueAndType, but where the type of the value is 2452 /// omitted (perhaps it was already encoded in an earlier operand). 2453 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2454 SmallVectorImpl<unsigned> &Vals) { 2455 unsigned ValID = VE.getValueID(V); 2456 Vals.push_back(InstID - ValID); 2457 } 2458 2459 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2460 SmallVectorImpl<uint64_t> &Vals) { 2461 unsigned ValID = VE.getValueID(V); 2462 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2463 emitSignedInt64(Vals, diff); 2464 } 2465 2466 /// WriteInstruction - Emit an instruction to the specified stream. 2467 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2468 unsigned InstID, 2469 SmallVectorImpl<unsigned> &Vals) { 2470 unsigned Code = 0; 2471 unsigned AbbrevToUse = 0; 2472 VE.setInstructionID(&I); 2473 switch (I.getOpcode()) { 2474 default: 2475 if (Instruction::isCast(I.getOpcode())) { 2476 Code = bitc::FUNC_CODE_INST_CAST; 2477 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2478 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2479 Vals.push_back(VE.getTypeID(I.getType())); 2480 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2481 } else { 2482 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2483 Code = bitc::FUNC_CODE_INST_BINOP; 2484 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2485 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2486 pushValue(I.getOperand(1), InstID, Vals); 2487 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2488 uint64_t Flags = getOptimizationFlags(&I); 2489 if (Flags != 0) { 2490 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2491 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2492 Vals.push_back(Flags); 2493 } 2494 } 2495 break; 2496 2497 case Instruction::GetElementPtr: { 2498 Code = bitc::FUNC_CODE_INST_GEP; 2499 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2500 auto &GEPInst = cast<GetElementPtrInst>(I); 2501 Vals.push_back(GEPInst.isInBounds()); 2502 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2503 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2504 pushValueAndType(I.getOperand(i), InstID, Vals); 2505 break; 2506 } 2507 case Instruction::ExtractValue: { 2508 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2509 pushValueAndType(I.getOperand(0), InstID, Vals); 2510 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2511 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2512 break; 2513 } 2514 case Instruction::InsertValue: { 2515 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2516 pushValueAndType(I.getOperand(0), InstID, Vals); 2517 pushValueAndType(I.getOperand(1), InstID, Vals); 2518 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2519 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2520 break; 2521 } 2522 case Instruction::Select: 2523 Code = bitc::FUNC_CODE_INST_VSELECT; 2524 pushValueAndType(I.getOperand(1), InstID, Vals); 2525 pushValue(I.getOperand(2), InstID, Vals); 2526 pushValueAndType(I.getOperand(0), InstID, Vals); 2527 break; 2528 case Instruction::ExtractElement: 2529 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2530 pushValueAndType(I.getOperand(0), InstID, Vals); 2531 pushValueAndType(I.getOperand(1), InstID, Vals); 2532 break; 2533 case Instruction::InsertElement: 2534 Code = bitc::FUNC_CODE_INST_INSERTELT; 2535 pushValueAndType(I.getOperand(0), InstID, Vals); 2536 pushValue(I.getOperand(1), InstID, Vals); 2537 pushValueAndType(I.getOperand(2), InstID, Vals); 2538 break; 2539 case Instruction::ShuffleVector: 2540 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2541 pushValueAndType(I.getOperand(0), InstID, Vals); 2542 pushValue(I.getOperand(1), InstID, Vals); 2543 pushValue(I.getOperand(2), InstID, Vals); 2544 break; 2545 case Instruction::ICmp: 2546 case Instruction::FCmp: { 2547 // compare returning Int1Ty or vector of Int1Ty 2548 Code = bitc::FUNC_CODE_INST_CMP2; 2549 pushValueAndType(I.getOperand(0), InstID, Vals); 2550 pushValue(I.getOperand(1), InstID, Vals); 2551 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2552 uint64_t Flags = getOptimizationFlags(&I); 2553 if (Flags != 0) 2554 Vals.push_back(Flags); 2555 break; 2556 } 2557 2558 case Instruction::Ret: 2559 { 2560 Code = bitc::FUNC_CODE_INST_RET; 2561 unsigned NumOperands = I.getNumOperands(); 2562 if (NumOperands == 0) 2563 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2564 else if (NumOperands == 1) { 2565 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2566 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2567 } else { 2568 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2569 pushValueAndType(I.getOperand(i), InstID, Vals); 2570 } 2571 } 2572 break; 2573 case Instruction::Br: 2574 { 2575 Code = bitc::FUNC_CODE_INST_BR; 2576 const BranchInst &II = cast<BranchInst>(I); 2577 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2578 if (II.isConditional()) { 2579 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2580 pushValue(II.getCondition(), InstID, Vals); 2581 } 2582 } 2583 break; 2584 case Instruction::Switch: 2585 { 2586 Code = bitc::FUNC_CODE_INST_SWITCH; 2587 const SwitchInst &SI = cast<SwitchInst>(I); 2588 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2589 pushValue(SI.getCondition(), InstID, Vals); 2590 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2591 for (auto Case : SI.cases()) { 2592 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2593 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2594 } 2595 } 2596 break; 2597 case Instruction::IndirectBr: 2598 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2599 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2600 // Encode the address operand as relative, but not the basic blocks. 2601 pushValue(I.getOperand(0), InstID, Vals); 2602 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2603 Vals.push_back(VE.getValueID(I.getOperand(i))); 2604 break; 2605 2606 case Instruction::Invoke: { 2607 const InvokeInst *II = cast<InvokeInst>(&I); 2608 const Value *Callee = II->getCalledValue(); 2609 FunctionType *FTy = II->getFunctionType(); 2610 2611 if (II->hasOperandBundles()) 2612 writeOperandBundles(II, InstID); 2613 2614 Code = bitc::FUNC_CODE_INST_INVOKE; 2615 2616 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2617 Vals.push_back(II->getCallingConv() | 1 << 13); 2618 Vals.push_back(VE.getValueID(II->getNormalDest())); 2619 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2620 Vals.push_back(VE.getTypeID(FTy)); 2621 pushValueAndType(Callee, InstID, Vals); 2622 2623 // Emit value #'s for the fixed parameters. 2624 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2625 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2626 2627 // Emit type/value pairs for varargs params. 2628 if (FTy->isVarArg()) { 2629 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2630 i != e; ++i) 2631 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2632 } 2633 break; 2634 } 2635 case Instruction::Resume: 2636 Code = bitc::FUNC_CODE_INST_RESUME; 2637 pushValueAndType(I.getOperand(0), InstID, Vals); 2638 break; 2639 case Instruction::CleanupRet: { 2640 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2641 const auto &CRI = cast<CleanupReturnInst>(I); 2642 pushValue(CRI.getCleanupPad(), InstID, Vals); 2643 if (CRI.hasUnwindDest()) 2644 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2645 break; 2646 } 2647 case Instruction::CatchRet: { 2648 Code = bitc::FUNC_CODE_INST_CATCHRET; 2649 const auto &CRI = cast<CatchReturnInst>(I); 2650 pushValue(CRI.getCatchPad(), InstID, Vals); 2651 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2652 break; 2653 } 2654 case Instruction::CleanupPad: 2655 case Instruction::CatchPad: { 2656 const auto &FuncletPad = cast<FuncletPadInst>(I); 2657 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2658 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2659 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2660 2661 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2662 Vals.push_back(NumArgOperands); 2663 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2664 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2665 break; 2666 } 2667 case Instruction::CatchSwitch: { 2668 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2669 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2670 2671 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2672 2673 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2674 Vals.push_back(NumHandlers); 2675 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2676 Vals.push_back(VE.getValueID(CatchPadBB)); 2677 2678 if (CatchSwitch.hasUnwindDest()) 2679 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2680 break; 2681 } 2682 case Instruction::Unreachable: 2683 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2684 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2685 break; 2686 2687 case Instruction::PHI: { 2688 const PHINode &PN = cast<PHINode>(I); 2689 Code = bitc::FUNC_CODE_INST_PHI; 2690 // With the newer instruction encoding, forward references could give 2691 // negative valued IDs. This is most common for PHIs, so we use 2692 // signed VBRs. 2693 SmallVector<uint64_t, 128> Vals64; 2694 Vals64.push_back(VE.getTypeID(PN.getType())); 2695 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2696 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2697 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2698 } 2699 // Emit a Vals64 vector and exit. 2700 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2701 Vals64.clear(); 2702 return; 2703 } 2704 2705 case Instruction::LandingPad: { 2706 const LandingPadInst &LP = cast<LandingPadInst>(I); 2707 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2708 Vals.push_back(VE.getTypeID(LP.getType())); 2709 Vals.push_back(LP.isCleanup()); 2710 Vals.push_back(LP.getNumClauses()); 2711 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2712 if (LP.isCatch(I)) 2713 Vals.push_back(LandingPadInst::Catch); 2714 else 2715 Vals.push_back(LandingPadInst::Filter); 2716 pushValueAndType(LP.getClause(I), InstID, Vals); 2717 } 2718 break; 2719 } 2720 2721 case Instruction::Alloca: { 2722 Code = bitc::FUNC_CODE_INST_ALLOCA; 2723 const AllocaInst &AI = cast<AllocaInst>(I); 2724 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2725 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2726 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2727 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2728 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2729 "not enough bits for maximum alignment"); 2730 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2731 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2732 AlignRecord |= 1 << 6; 2733 AlignRecord |= AI.isSwiftError() << 7; 2734 Vals.push_back(AlignRecord); 2735 break; 2736 } 2737 2738 case Instruction::Load: 2739 if (cast<LoadInst>(I).isAtomic()) { 2740 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2741 pushValueAndType(I.getOperand(0), InstID, Vals); 2742 } else { 2743 Code = bitc::FUNC_CODE_INST_LOAD; 2744 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2745 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2746 } 2747 Vals.push_back(VE.getTypeID(I.getType())); 2748 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2749 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2750 if (cast<LoadInst>(I).isAtomic()) { 2751 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2752 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2753 } 2754 break; 2755 case Instruction::Store: 2756 if (cast<StoreInst>(I).isAtomic()) 2757 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2758 else 2759 Code = bitc::FUNC_CODE_INST_STORE; 2760 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2761 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2762 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2763 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2764 if (cast<StoreInst>(I).isAtomic()) { 2765 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2766 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2767 } 2768 break; 2769 case Instruction::AtomicCmpXchg: 2770 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2771 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2772 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2773 pushValue(I.getOperand(2), InstID, Vals); // newval. 2774 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2775 Vals.push_back( 2776 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2777 Vals.push_back( 2778 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2779 Vals.push_back( 2780 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2781 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2782 break; 2783 case Instruction::AtomicRMW: 2784 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2785 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2786 pushValue(I.getOperand(1), InstID, Vals); // val. 2787 Vals.push_back( 2788 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2789 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2790 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2791 Vals.push_back( 2792 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2793 break; 2794 case Instruction::Fence: 2795 Code = bitc::FUNC_CODE_INST_FENCE; 2796 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2797 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2798 break; 2799 case Instruction::Call: { 2800 const CallInst &CI = cast<CallInst>(I); 2801 FunctionType *FTy = CI.getFunctionType(); 2802 2803 if (CI.hasOperandBundles()) 2804 writeOperandBundles(&CI, InstID); 2805 2806 Code = bitc::FUNC_CODE_INST_CALL; 2807 2808 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2809 2810 unsigned Flags = getOptimizationFlags(&I); 2811 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2812 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2813 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2814 1 << bitc::CALL_EXPLICIT_TYPE | 2815 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2816 unsigned(Flags != 0) << bitc::CALL_FMF); 2817 if (Flags != 0) 2818 Vals.push_back(Flags); 2819 2820 Vals.push_back(VE.getTypeID(FTy)); 2821 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2822 2823 // Emit value #'s for the fixed parameters. 2824 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2825 // Check for labels (can happen with asm labels). 2826 if (FTy->getParamType(i)->isLabelTy()) 2827 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2828 else 2829 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2830 } 2831 2832 // Emit type/value pairs for varargs params. 2833 if (FTy->isVarArg()) { 2834 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2835 i != e; ++i) 2836 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2837 } 2838 break; 2839 } 2840 case Instruction::VAArg: 2841 Code = bitc::FUNC_CODE_INST_VAARG; 2842 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2843 pushValue(I.getOperand(0), InstID, Vals); // valist. 2844 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2845 break; 2846 } 2847 2848 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2849 Vals.clear(); 2850 } 2851 2852 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2853 /// to allow clients to efficiently find the function body. 2854 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2855 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2856 // Get the offset of the VST we are writing, and backpatch it into 2857 // the VST forward declaration record. 2858 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2859 // The BitcodeStartBit was the stream offset of the identification block. 2860 VSTOffset -= bitcodeStartBit(); 2861 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2862 // Note that we add 1 here because the offset is relative to one word 2863 // before the start of the identification block, which was historically 2864 // always the start of the regular bitcode header. 2865 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2866 2867 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2868 2869 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2870 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2873 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2874 2875 for (const Function &F : M) { 2876 uint64_t Record[2]; 2877 2878 if (F.isDeclaration()) 2879 continue; 2880 2881 Record[0] = VE.getValueID(&F); 2882 2883 // Save the word offset of the function (from the start of the 2884 // actual bitcode written to the stream). 2885 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2886 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2887 // Note that we add 1 here because the offset is relative to one word 2888 // before the start of the identification block, which was historically 2889 // always the start of the regular bitcode header. 2890 Record[1] = BitcodeIndex / 32 + 1; 2891 2892 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2893 } 2894 2895 Stream.ExitBlock(); 2896 } 2897 2898 /// Emit names for arguments, instructions and basic blocks in a function. 2899 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2900 const ValueSymbolTable &VST) { 2901 if (VST.empty()) 2902 return; 2903 2904 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2905 2906 // FIXME: Set up the abbrev, we know how many values there are! 2907 // FIXME: We know if the type names can use 7-bit ascii. 2908 SmallVector<uint64_t, 64> NameVals; 2909 2910 for (const ValueName &Name : VST) { 2911 // Figure out the encoding to use for the name. 2912 StringEncoding Bits = 2913 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2914 2915 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2916 NameVals.push_back(VE.getValueID(Name.getValue())); 2917 2918 // VST_CODE_ENTRY: [valueid, namechar x N] 2919 // VST_CODE_BBENTRY: [bbid, namechar x N] 2920 unsigned Code; 2921 if (isa<BasicBlock>(Name.getValue())) { 2922 Code = bitc::VST_CODE_BBENTRY; 2923 if (Bits == SE_Char6) 2924 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2925 } else { 2926 Code = bitc::VST_CODE_ENTRY; 2927 if (Bits == SE_Char6) 2928 AbbrevToUse = VST_ENTRY_6_ABBREV; 2929 else if (Bits == SE_Fixed7) 2930 AbbrevToUse = VST_ENTRY_7_ABBREV; 2931 } 2932 2933 for (const auto P : Name.getKey()) 2934 NameVals.push_back((unsigned char)P); 2935 2936 // Emit the finished record. 2937 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2938 NameVals.clear(); 2939 } 2940 2941 Stream.ExitBlock(); 2942 } 2943 2944 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2945 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2946 unsigned Code; 2947 if (isa<BasicBlock>(Order.V)) 2948 Code = bitc::USELIST_CODE_BB; 2949 else 2950 Code = bitc::USELIST_CODE_DEFAULT; 2951 2952 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2953 Record.push_back(VE.getValueID(Order.V)); 2954 Stream.EmitRecord(Code, Record); 2955 } 2956 2957 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2958 assert(VE.shouldPreserveUseListOrder() && 2959 "Expected to be preserving use-list order"); 2960 2961 auto hasMore = [&]() { 2962 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2963 }; 2964 if (!hasMore()) 2965 // Nothing to do. 2966 return; 2967 2968 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2969 while (hasMore()) { 2970 writeUseList(std::move(VE.UseListOrders.back())); 2971 VE.UseListOrders.pop_back(); 2972 } 2973 Stream.ExitBlock(); 2974 } 2975 2976 /// Emit a function body to the module stream. 2977 void ModuleBitcodeWriter::writeFunction( 2978 const Function &F, 2979 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2980 // Save the bitcode index of the start of this function block for recording 2981 // in the VST. 2982 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2983 2984 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2985 VE.incorporateFunction(F); 2986 2987 SmallVector<unsigned, 64> Vals; 2988 2989 // Emit the number of basic blocks, so the reader can create them ahead of 2990 // time. 2991 Vals.push_back(VE.getBasicBlocks().size()); 2992 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2993 Vals.clear(); 2994 2995 // If there are function-local constants, emit them now. 2996 unsigned CstStart, CstEnd; 2997 VE.getFunctionConstantRange(CstStart, CstEnd); 2998 writeConstants(CstStart, CstEnd, false); 2999 3000 // If there is function-local metadata, emit it now. 3001 writeFunctionMetadata(F); 3002 3003 // Keep a running idea of what the instruction ID is. 3004 unsigned InstID = CstEnd; 3005 3006 bool NeedsMetadataAttachment = F.hasMetadata(); 3007 3008 DILocation *LastDL = nullptr; 3009 // Finally, emit all the instructions, in order. 3010 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3011 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3012 I != E; ++I) { 3013 writeInstruction(*I, InstID, Vals); 3014 3015 if (!I->getType()->isVoidTy()) 3016 ++InstID; 3017 3018 // If the instruction has metadata, write a metadata attachment later. 3019 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3020 3021 // If the instruction has a debug location, emit it. 3022 DILocation *DL = I->getDebugLoc(); 3023 if (!DL) 3024 continue; 3025 3026 if (DL == LastDL) { 3027 // Just repeat the same debug loc as last time. 3028 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3029 continue; 3030 } 3031 3032 Vals.push_back(DL->getLine()); 3033 Vals.push_back(DL->getColumn()); 3034 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3035 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3036 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3037 Vals.clear(); 3038 3039 LastDL = DL; 3040 } 3041 3042 // Emit names for all the instructions etc. 3043 if (auto *Symtab = F.getValueSymbolTable()) 3044 writeFunctionLevelValueSymbolTable(*Symtab); 3045 3046 if (NeedsMetadataAttachment) 3047 writeFunctionMetadataAttachment(F); 3048 if (VE.shouldPreserveUseListOrder()) 3049 writeUseListBlock(&F); 3050 VE.purgeFunction(); 3051 Stream.ExitBlock(); 3052 } 3053 3054 // Emit blockinfo, which defines the standard abbreviations etc. 3055 void ModuleBitcodeWriter::writeBlockInfo() { 3056 // We only want to emit block info records for blocks that have multiple 3057 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3058 // Other blocks can define their abbrevs inline. 3059 Stream.EnterBlockInfoBlock(); 3060 3061 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3062 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3067 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3068 VST_ENTRY_8_ABBREV) 3069 llvm_unreachable("Unexpected abbrev ordering!"); 3070 } 3071 3072 { // 7-bit fixed width VST_CODE_ENTRY strings. 3073 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3074 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3078 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3079 VST_ENTRY_7_ABBREV) 3080 llvm_unreachable("Unexpected abbrev ordering!"); 3081 } 3082 { // 6-bit char6 VST_CODE_ENTRY strings. 3083 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3084 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3088 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3089 VST_ENTRY_6_ABBREV) 3090 llvm_unreachable("Unexpected abbrev ordering!"); 3091 } 3092 { // 6-bit char6 VST_CODE_BBENTRY strings. 3093 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3094 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3098 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3099 VST_BBENTRY_6_ABBREV) 3100 llvm_unreachable("Unexpected abbrev ordering!"); 3101 } 3102 3103 3104 3105 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3106 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3107 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3109 VE.computeBitsRequiredForTypeIndicies())); 3110 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3111 CONSTANTS_SETTYPE_ABBREV) 3112 llvm_unreachable("Unexpected abbrev ordering!"); 3113 } 3114 3115 { // INTEGER abbrev for CONSTANTS_BLOCK. 3116 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3117 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3119 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3120 CONSTANTS_INTEGER_ABBREV) 3121 llvm_unreachable("Unexpected abbrev ordering!"); 3122 } 3123 3124 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3125 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3126 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3129 VE.computeBitsRequiredForTypeIndicies())); 3130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3131 3132 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3133 CONSTANTS_CE_CAST_Abbrev) 3134 llvm_unreachable("Unexpected abbrev ordering!"); 3135 } 3136 { // NULL abbrev for CONSTANTS_BLOCK. 3137 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3138 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3139 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3140 CONSTANTS_NULL_Abbrev) 3141 llvm_unreachable("Unexpected abbrev ordering!"); 3142 } 3143 3144 // FIXME: This should only use space for first class types! 3145 3146 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3147 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3148 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3151 VE.computeBitsRequiredForTypeIndicies())); 3152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3154 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3155 FUNCTION_INST_LOAD_ABBREV) 3156 llvm_unreachable("Unexpected abbrev ordering!"); 3157 } 3158 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3159 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3160 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3164 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3165 FUNCTION_INST_BINOP_ABBREV) 3166 llvm_unreachable("Unexpected abbrev ordering!"); 3167 } 3168 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3169 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3170 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3175 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3176 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3177 llvm_unreachable("Unexpected abbrev ordering!"); 3178 } 3179 { // INST_CAST abbrev for FUNCTION_BLOCK. 3180 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3181 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3184 VE.computeBitsRequiredForTypeIndicies())); 3185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3186 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3187 FUNCTION_INST_CAST_ABBREV) 3188 llvm_unreachable("Unexpected abbrev ordering!"); 3189 } 3190 3191 { // INST_RET abbrev for FUNCTION_BLOCK. 3192 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3193 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3194 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3195 FUNCTION_INST_RET_VOID_ABBREV) 3196 llvm_unreachable("Unexpected abbrev ordering!"); 3197 } 3198 { // INST_RET abbrev for FUNCTION_BLOCK. 3199 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3200 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3202 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3203 FUNCTION_INST_RET_VAL_ABBREV) 3204 llvm_unreachable("Unexpected abbrev ordering!"); 3205 } 3206 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3207 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3208 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3209 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3210 FUNCTION_INST_UNREACHABLE_ABBREV) 3211 llvm_unreachable("Unexpected abbrev ordering!"); 3212 } 3213 { 3214 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3215 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3218 Log2_32_Ceil(VE.getTypes().size() + 1))); 3219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3221 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3222 FUNCTION_INST_GEP_ABBREV) 3223 llvm_unreachable("Unexpected abbrev ordering!"); 3224 } 3225 3226 Stream.ExitBlock(); 3227 } 3228 3229 /// Write the module path strings, currently only used when generating 3230 /// a combined index file. 3231 void IndexBitcodeWriter::writeModStrings() { 3232 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3233 3234 // TODO: See which abbrev sizes we actually need to emit 3235 3236 // 8-bit fixed-width MST_ENTRY strings. 3237 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3238 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3242 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3243 3244 // 7-bit fixed width MST_ENTRY strings. 3245 Abbv = std::make_shared<BitCodeAbbrev>(); 3246 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3250 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3251 3252 // 6-bit char6 MST_ENTRY strings. 3253 Abbv = std::make_shared<BitCodeAbbrev>(); 3254 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3258 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3259 3260 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3261 Abbv = std::make_shared<BitCodeAbbrev>(); 3262 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3268 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3269 3270 SmallVector<unsigned, 64> Vals; 3271 for (const auto &MPSE : Index.modulePaths()) { 3272 if (!doIncludeModule(MPSE.getKey())) 3273 continue; 3274 StringEncoding Bits = 3275 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3276 unsigned AbbrevToUse = Abbrev8Bit; 3277 if (Bits == SE_Char6) 3278 AbbrevToUse = Abbrev6Bit; 3279 else if (Bits == SE_Fixed7) 3280 AbbrevToUse = Abbrev7Bit; 3281 3282 Vals.push_back(MPSE.getValue().first); 3283 3284 for (const auto P : MPSE.getKey()) 3285 Vals.push_back((unsigned char)P); 3286 3287 // Emit the finished record. 3288 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3289 3290 Vals.clear(); 3291 // Emit an optional hash for the module now 3292 auto &Hash = MPSE.getValue().second; 3293 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3294 for (auto Val : Hash) { 3295 if (Val) 3296 AllZero = false; 3297 Vals.push_back(Val); 3298 } 3299 if (!AllZero) { 3300 // Emit the hash record. 3301 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3302 } 3303 3304 Vals.clear(); 3305 } 3306 Stream.ExitBlock(); 3307 } 3308 3309 /// Write the function type metadata related records that need to appear before 3310 /// a function summary entry (whether per-module or combined). 3311 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3312 FunctionSummary *FS) { 3313 if (!FS->type_tests().empty()) 3314 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3315 3316 SmallVector<uint64_t, 64> Record; 3317 3318 auto WriteVFuncIdVec = [&](uint64_t Ty, 3319 ArrayRef<FunctionSummary::VFuncId> VFs) { 3320 if (VFs.empty()) 3321 return; 3322 Record.clear(); 3323 for (auto &VF : VFs) { 3324 Record.push_back(VF.GUID); 3325 Record.push_back(VF.Offset); 3326 } 3327 Stream.EmitRecord(Ty, Record); 3328 }; 3329 3330 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3331 FS->type_test_assume_vcalls()); 3332 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3333 FS->type_checked_load_vcalls()); 3334 3335 auto WriteConstVCallVec = [&](uint64_t Ty, 3336 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3337 for (auto &VC : VCs) { 3338 Record.clear(); 3339 Record.push_back(VC.VFunc.GUID); 3340 Record.push_back(VC.VFunc.Offset); 3341 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3342 Stream.EmitRecord(Ty, Record); 3343 } 3344 }; 3345 3346 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3347 FS->type_test_assume_const_vcalls()); 3348 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3349 FS->type_checked_load_const_vcalls()); 3350 } 3351 3352 // Helper to emit a single function summary record. 3353 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3354 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3355 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3356 const Function &F) { 3357 NameVals.push_back(ValueID); 3358 3359 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3360 writeFunctionTypeMetadataRecords(Stream, FS); 3361 3362 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3363 NameVals.push_back(FS->instCount()); 3364 NameVals.push_back(FS->refs().size()); 3365 3366 for (auto &RI : FS->refs()) 3367 NameVals.push_back(VE.getValueID(RI.getValue())); 3368 3369 bool HasProfileData = F.getEntryCount().hasValue(); 3370 for (auto &ECI : FS->calls()) { 3371 NameVals.push_back(getValueId(ECI.first)); 3372 if (HasProfileData) 3373 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3374 } 3375 3376 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3377 unsigned Code = 3378 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3379 3380 // Emit the finished record. 3381 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3382 NameVals.clear(); 3383 } 3384 3385 // Collect the global value references in the given variable's initializer, 3386 // and emit them in a summary record. 3387 void ModuleBitcodeWriter::writeModuleLevelReferences( 3388 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3389 unsigned FSModRefsAbbrev) { 3390 auto Summaries = 3391 Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName())); 3392 if (Summaries == Index->end()) { 3393 // Only declarations should not have a summary (a declaration might however 3394 // have a summary if the def was in module level asm). 3395 assert(V.isDeclaration()); 3396 return; 3397 } 3398 auto *Summary = Summaries->second.front().get(); 3399 NameVals.push_back(VE.getValueID(&V)); 3400 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3401 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3402 3403 unsigned SizeBeforeRefs = NameVals.size(); 3404 for (auto &RI : VS->refs()) 3405 NameVals.push_back(VE.getValueID(RI.getValue())); 3406 // Sort the refs for determinism output, the vector returned by FS->refs() has 3407 // been initialized from a DenseSet. 3408 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3409 3410 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3411 FSModRefsAbbrev); 3412 NameVals.clear(); 3413 } 3414 3415 // Current version for the summary. 3416 // This is bumped whenever we introduce changes in the way some record are 3417 // interpreted, like flags for instance. 3418 static const uint64_t INDEX_VERSION = 3; 3419 3420 /// Emit the per-module summary section alongside the rest of 3421 /// the module's bitcode. 3422 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3423 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3424 3425 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3426 3427 if (Index->begin() == Index->end()) { 3428 Stream.ExitBlock(); 3429 return; 3430 } 3431 3432 for (const auto &GVI : valueIds()) { 3433 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3434 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3435 } 3436 3437 // Abbrev for FS_PERMODULE. 3438 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3439 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3444 // numrefs x valueid, n x (valueid) 3445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3447 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3448 3449 // Abbrev for FS_PERMODULE_PROFILE. 3450 Abbv = std::make_shared<BitCodeAbbrev>(); 3451 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3456 // numrefs x valueid, n x (valueid, hotness) 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3459 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3460 3461 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3462 Abbv = std::make_shared<BitCodeAbbrev>(); 3463 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3468 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3469 3470 // Abbrev for FS_ALIAS. 3471 Abbv = std::make_shared<BitCodeAbbrev>(); 3472 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3476 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3477 3478 SmallVector<uint64_t, 64> NameVals; 3479 // Iterate over the list of functions instead of the Index to 3480 // ensure the ordering is stable. 3481 for (const Function &F : M) { 3482 // Summary emission does not support anonymous functions, they have to 3483 // renamed using the anonymous function renaming pass. 3484 if (!F.hasName()) 3485 report_fatal_error("Unexpected anonymous function when writing summary"); 3486 3487 auto Summaries = 3488 Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName())); 3489 if (Summaries == Index->end()) { 3490 // Only declarations should not have a summary (a declaration might 3491 // however have a summary if the def was in module level asm). 3492 assert(F.isDeclaration()); 3493 continue; 3494 } 3495 auto *Summary = Summaries->second.front().get(); 3496 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3497 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3498 } 3499 3500 // Capture references from GlobalVariable initializers, which are outside 3501 // of a function scope. 3502 for (const GlobalVariable &G : M.globals()) 3503 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3504 3505 for (const GlobalAlias &A : M.aliases()) { 3506 auto *Aliasee = A.getBaseObject(); 3507 if (!Aliasee->hasName()) 3508 // Nameless function don't have an entry in the summary, skip it. 3509 continue; 3510 auto AliasId = VE.getValueID(&A); 3511 auto AliaseeId = VE.getValueID(Aliasee); 3512 NameVals.push_back(AliasId); 3513 auto *Summary = Index->getGlobalValueSummary(A); 3514 AliasSummary *AS = cast<AliasSummary>(Summary); 3515 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3516 NameVals.push_back(AliaseeId); 3517 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3518 NameVals.clear(); 3519 } 3520 3521 Stream.ExitBlock(); 3522 } 3523 3524 /// Emit the combined summary section into the combined index file. 3525 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3526 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3527 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3528 3529 // Create value IDs for undefined references. 3530 for (const auto &I : *this) { 3531 if (auto *VS = dyn_cast<GlobalVarSummary>(I.second)) { 3532 for (auto &RI : VS->refs()) 3533 assignValueId(RI.getGUID()); 3534 continue; 3535 } 3536 3537 auto *FS = dyn_cast<FunctionSummary>(I.second); 3538 if (!FS) 3539 continue; 3540 for (auto &RI : FS->refs()) 3541 assignValueId(RI.getGUID()); 3542 3543 for (auto &EI : FS->calls()) { 3544 GlobalValue::GUID GUID = EI.first.getGUID(); 3545 if (!hasValueId(GUID)) { 3546 // For SamplePGO, the indirect call targets for local functions will 3547 // have its original name annotated in profile. We try to find the 3548 // corresponding PGOFuncName as the GUID. 3549 GUID = Index.getGUIDFromOriginalID(GUID); 3550 if (GUID == 0 || !hasValueId(GUID)) 3551 continue; 3552 } 3553 assignValueId(GUID); 3554 } 3555 } 3556 3557 for (const auto &GVI : valueIds()) { 3558 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3559 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3560 } 3561 3562 // Abbrev for FS_COMBINED. 3563 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3564 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3570 // numrefs x valueid, n x (valueid) 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3573 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3574 3575 // Abbrev for FS_COMBINED_PROFILE. 3576 Abbv = std::make_shared<BitCodeAbbrev>(); 3577 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3583 // numrefs x valueid, n x (valueid, hotness) 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3586 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3587 3588 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3589 Abbv = std::make_shared<BitCodeAbbrev>(); 3590 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3596 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3597 3598 // Abbrev for FS_COMBINED_ALIAS. 3599 Abbv = std::make_shared<BitCodeAbbrev>(); 3600 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3605 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3606 3607 // The aliases are emitted as a post-pass, and will point to the value 3608 // id of the aliasee. Save them in a vector for post-processing. 3609 SmallVector<AliasSummary *, 64> Aliases; 3610 3611 // Save the value id for each summary for alias emission. 3612 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3613 3614 SmallVector<uint64_t, 64> NameVals; 3615 3616 // For local linkage, we also emit the original name separately 3617 // immediately after the record. 3618 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3619 if (!GlobalValue::isLocalLinkage(S.linkage())) 3620 return; 3621 NameVals.push_back(S.getOriginalName()); 3622 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3623 NameVals.clear(); 3624 }; 3625 3626 for (const auto &I : *this) { 3627 GlobalValueSummary *S = I.second; 3628 assert(S); 3629 3630 assert(hasValueId(I.first)); 3631 unsigned ValueId = getValueId(I.first); 3632 SummaryToValueIdMap[S] = ValueId; 3633 3634 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3635 // Will process aliases as a post-pass because the reader wants all 3636 // global to be loaded first. 3637 Aliases.push_back(AS); 3638 continue; 3639 } 3640 3641 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3642 NameVals.push_back(ValueId); 3643 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3644 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3645 for (auto &RI : VS->refs()) { 3646 NameVals.push_back(getValueId(RI.getGUID())); 3647 } 3648 3649 // Emit the finished record. 3650 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3651 FSModRefsAbbrev); 3652 NameVals.clear(); 3653 MaybeEmitOriginalName(*S); 3654 continue; 3655 } 3656 3657 auto *FS = cast<FunctionSummary>(S); 3658 writeFunctionTypeMetadataRecords(Stream, FS); 3659 3660 NameVals.push_back(ValueId); 3661 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3662 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3663 NameVals.push_back(FS->instCount()); 3664 NameVals.push_back(FS->refs().size()); 3665 3666 for (auto &RI : FS->refs()) { 3667 NameVals.push_back(getValueId(RI.getGUID())); 3668 } 3669 3670 bool HasProfileData = false; 3671 for (auto &EI : FS->calls()) { 3672 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3673 if (HasProfileData) 3674 break; 3675 } 3676 3677 for (auto &EI : FS->calls()) { 3678 // If this GUID doesn't have a value id, it doesn't have a function 3679 // summary and we don't need to record any calls to it. 3680 GlobalValue::GUID GUID = EI.first.getGUID(); 3681 if (!hasValueId(GUID)) { 3682 // For SamplePGO, the indirect call targets for local functions will 3683 // have its original name annotated in profile. We try to find the 3684 // corresponding PGOFuncName as the GUID. 3685 GUID = Index.getGUIDFromOriginalID(GUID); 3686 if (GUID == 0 || !hasValueId(GUID)) 3687 continue; 3688 } 3689 NameVals.push_back(getValueId(GUID)); 3690 if (HasProfileData) 3691 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3692 } 3693 3694 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3695 unsigned Code = 3696 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3697 3698 // Emit the finished record. 3699 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3700 NameVals.clear(); 3701 MaybeEmitOriginalName(*S); 3702 } 3703 3704 for (auto *AS : Aliases) { 3705 auto AliasValueId = SummaryToValueIdMap[AS]; 3706 assert(AliasValueId); 3707 NameVals.push_back(AliasValueId); 3708 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3709 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3710 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3711 assert(AliaseeValueId); 3712 NameVals.push_back(AliaseeValueId); 3713 3714 // Emit the finished record. 3715 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3716 NameVals.clear(); 3717 MaybeEmitOriginalName(*AS); 3718 } 3719 3720 Stream.ExitBlock(); 3721 } 3722 3723 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3724 /// current llvm version, and a record for the epoch number. 3725 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3726 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3727 3728 // Write the "user readable" string identifying the bitcode producer 3729 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3730 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3733 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3734 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3735 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3736 3737 // Write the epoch version 3738 Abbv = std::make_shared<BitCodeAbbrev>(); 3739 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3741 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3742 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3743 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3744 Stream.ExitBlock(); 3745 } 3746 3747 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3748 // Emit the module's hash. 3749 // MODULE_CODE_HASH: [5*i32] 3750 if (GenerateHash) { 3751 SHA1 Hasher; 3752 uint32_t Vals[5]; 3753 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3754 Buffer.size() - BlockStartPos)); 3755 StringRef Hash = Hasher.result(); 3756 for (int Pos = 0; Pos < 20; Pos += 4) { 3757 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3758 } 3759 3760 // Emit the finished record. 3761 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3762 3763 if (ModHash) 3764 // Save the written hash value. 3765 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3766 } else if (ModHash) 3767 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3768 } 3769 3770 void ModuleBitcodeWriter::write() { 3771 writeIdentificationBlock(Stream); 3772 3773 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3774 size_t BlockStartPos = Buffer.size(); 3775 3776 writeModuleVersion(); 3777 3778 // Emit blockinfo, which defines the standard abbreviations etc. 3779 writeBlockInfo(); 3780 3781 // Emit information about attribute groups. 3782 writeAttributeGroupTable(); 3783 3784 // Emit information about parameter attributes. 3785 writeAttributeTable(); 3786 3787 // Emit information describing all of the types in the module. 3788 writeTypeTable(); 3789 3790 writeComdats(); 3791 3792 // Emit top-level description of module, including target triple, inline asm, 3793 // descriptors for global variables, and function prototype info. 3794 writeModuleInfo(); 3795 3796 // Emit constants. 3797 writeModuleConstants(); 3798 3799 // Emit metadata kind names. 3800 writeModuleMetadataKinds(); 3801 3802 // Emit metadata. 3803 writeModuleMetadata(); 3804 3805 // Emit module-level use-lists. 3806 if (VE.shouldPreserveUseListOrder()) 3807 writeUseListBlock(nullptr); 3808 3809 writeOperandBundleTags(); 3810 3811 // Emit function bodies. 3812 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3813 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3814 if (!F->isDeclaration()) 3815 writeFunction(*F, FunctionToBitcodeIndex); 3816 3817 // Need to write after the above call to WriteFunction which populates 3818 // the summary information in the index. 3819 if (Index) 3820 writePerModuleGlobalValueSummary(); 3821 3822 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3823 3824 writeModuleHash(BlockStartPos); 3825 3826 Stream.ExitBlock(); 3827 } 3828 3829 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3830 uint32_t &Position) { 3831 support::endian::write32le(&Buffer[Position], Value); 3832 Position += 4; 3833 } 3834 3835 /// If generating a bc file on darwin, we have to emit a 3836 /// header and trailer to make it compatible with the system archiver. To do 3837 /// this we emit the following header, and then emit a trailer that pads the 3838 /// file out to be a multiple of 16 bytes. 3839 /// 3840 /// struct bc_header { 3841 /// uint32_t Magic; // 0x0B17C0DE 3842 /// uint32_t Version; // Version, currently always 0. 3843 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3844 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3845 /// uint32_t CPUType; // CPU specifier. 3846 /// ... potentially more later ... 3847 /// }; 3848 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3849 const Triple &TT) { 3850 unsigned CPUType = ~0U; 3851 3852 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3853 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3854 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3855 // specific constants here because they are implicitly part of the Darwin ABI. 3856 enum { 3857 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3858 DARWIN_CPU_TYPE_X86 = 7, 3859 DARWIN_CPU_TYPE_ARM = 12, 3860 DARWIN_CPU_TYPE_POWERPC = 18 3861 }; 3862 3863 Triple::ArchType Arch = TT.getArch(); 3864 if (Arch == Triple::x86_64) 3865 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3866 else if (Arch == Triple::x86) 3867 CPUType = DARWIN_CPU_TYPE_X86; 3868 else if (Arch == Triple::ppc) 3869 CPUType = DARWIN_CPU_TYPE_POWERPC; 3870 else if (Arch == Triple::ppc64) 3871 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3872 else if (Arch == Triple::arm || Arch == Triple::thumb) 3873 CPUType = DARWIN_CPU_TYPE_ARM; 3874 3875 // Traditional Bitcode starts after header. 3876 assert(Buffer.size() >= BWH_HeaderSize && 3877 "Expected header size to be reserved"); 3878 unsigned BCOffset = BWH_HeaderSize; 3879 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3880 3881 // Write the magic and version. 3882 unsigned Position = 0; 3883 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3884 writeInt32ToBuffer(0, Buffer, Position); // Version. 3885 writeInt32ToBuffer(BCOffset, Buffer, Position); 3886 writeInt32ToBuffer(BCSize, Buffer, Position); 3887 writeInt32ToBuffer(CPUType, Buffer, Position); 3888 3889 // If the file is not a multiple of 16 bytes, insert dummy padding. 3890 while (Buffer.size() & 15) 3891 Buffer.push_back(0); 3892 } 3893 3894 /// Helper to write the header common to all bitcode files. 3895 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3896 // Emit the file header. 3897 Stream.Emit((unsigned)'B', 8); 3898 Stream.Emit((unsigned)'C', 8); 3899 Stream.Emit(0x0, 4); 3900 Stream.Emit(0xC, 4); 3901 Stream.Emit(0xE, 4); 3902 Stream.Emit(0xD, 4); 3903 } 3904 3905 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3906 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3907 writeBitcodeHeader(*Stream); 3908 } 3909 3910 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3911 3912 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3913 Stream->EnterSubblock(Block, 3); 3914 3915 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3916 Abbv->Add(BitCodeAbbrevOp(Record)); 3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3918 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3919 3920 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3921 3922 Stream->ExitBlock(); 3923 } 3924 3925 void BitcodeWriter::writeStrtab() { 3926 assert(!WroteStrtab); 3927 3928 std::vector<char> Strtab; 3929 StrtabBuilder.finalizeInOrder(); 3930 Strtab.resize(StrtabBuilder.getSize()); 3931 StrtabBuilder.write((uint8_t *)Strtab.data()); 3932 3933 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3934 {Strtab.data(), Strtab.size()}); 3935 3936 WroteStrtab = true; 3937 } 3938 3939 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3940 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3941 WroteStrtab = true; 3942 } 3943 3944 void BitcodeWriter::writeModule(const Module *M, 3945 bool ShouldPreserveUseListOrder, 3946 const ModuleSummaryIndex *Index, 3947 bool GenerateHash, ModuleHash *ModHash) { 3948 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3949 ShouldPreserveUseListOrder, Index, 3950 GenerateHash, ModHash); 3951 ModuleWriter.write(); 3952 } 3953 3954 /// WriteBitcodeToFile - Write the specified module to the specified output 3955 /// stream. 3956 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3957 bool ShouldPreserveUseListOrder, 3958 const ModuleSummaryIndex *Index, 3959 bool GenerateHash, ModuleHash *ModHash) { 3960 SmallVector<char, 0> Buffer; 3961 Buffer.reserve(256*1024); 3962 3963 // If this is darwin or another generic macho target, reserve space for the 3964 // header. 3965 Triple TT(M->getTargetTriple()); 3966 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3967 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3968 3969 BitcodeWriter Writer(Buffer); 3970 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3971 ModHash); 3972 Writer.writeStrtab(); 3973 3974 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3975 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3976 3977 // Write the generated bitstream to "Out". 3978 Out.write((char*)&Buffer.front(), Buffer.size()); 3979 } 3980 3981 void IndexBitcodeWriter::write() { 3982 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3983 3984 writeModuleVersion(); 3985 3986 // Write the module paths in the combined index. 3987 writeModStrings(); 3988 3989 // Write the summary combined index records. 3990 writeCombinedGlobalValueSummary(); 3991 3992 Stream.ExitBlock(); 3993 } 3994 3995 // Write the specified module summary index to the given raw output stream, 3996 // where it will be written in a new bitcode block. This is used when 3997 // writing the combined index file for ThinLTO. When writing a subset of the 3998 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3999 void llvm::WriteIndexToFile( 4000 const ModuleSummaryIndex &Index, raw_ostream &Out, 4001 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4002 SmallVector<char, 0> Buffer; 4003 Buffer.reserve(256 * 1024); 4004 4005 BitstreamWriter Stream(Buffer); 4006 writeBitcodeHeader(Stream); 4007 4008 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 4009 IndexWriter.write(); 4010 4011 Out.write((char *)&Buffer.front(), Buffer.size()); 4012 } 4013