1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Bitcode/BitCodes.h" 29 #include "llvm/Bitcode/BitstreamWriter.h" 30 #include "llvm/Bitcode/LLVMBitCodes.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 namespace { 90 91 /// These are manifest constants used by the bitcode writer. They do not need to 92 /// be kept in sync with the reader, but need to be consistent within this file. 93 enum { 94 // VALUE_SYMTAB_BLOCK abbrev id's. 95 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 96 VST_ENTRY_7_ABBREV, 97 VST_ENTRY_6_ABBREV, 98 VST_BBENTRY_6_ABBREV, 99 100 // CONSTANTS_BLOCK abbrev id's. 101 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 CONSTANTS_INTEGER_ABBREV, 103 CONSTANTS_CE_CAST_Abbrev, 104 CONSTANTS_NULL_Abbrev, 105 106 // FUNCTION_BLOCK abbrev id's. 107 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 FUNCTION_INST_BINOP_ABBREV, 109 FUNCTION_INST_BINOP_FLAGS_ABBREV, 110 FUNCTION_INST_CAST_ABBREV, 111 FUNCTION_INST_RET_VOID_ABBREV, 112 FUNCTION_INST_RET_VAL_ABBREV, 113 FUNCTION_INST_UNREACHABLE_ABBREV, 114 FUNCTION_INST_GEP_ABBREV, 115 }; 116 117 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 118 /// file type. 119 class BitcodeWriterBase { 120 protected: 121 /// The stream created and owned by the client. 122 BitstreamWriter &Stream; 123 124 StringTableBuilder &StrtabBuilder; 125 126 public: 127 /// Constructs a BitcodeWriterBase object that writes to the provided 128 /// \p Stream. 129 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 130 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 131 132 protected: 133 void writeBitcodeHeader(); 134 void writeModuleVersion(); 135 }; 136 137 void BitcodeWriterBase::writeModuleVersion() { 138 // VERSION: [version#] 139 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 140 } 141 142 /// Base class to manage the module bitcode writing, currently subclassed for 143 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 144 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 145 protected: 146 /// The Module to write to bitcode. 147 const Module &M; 148 149 /// Enumerates ids for all values in the module. 150 ValueEnumerator VE; 151 152 /// Optional per-module index to write for ThinLTO. 153 const ModuleSummaryIndex *Index; 154 155 /// Map that holds the correspondence between GUIDs in the summary index, 156 /// that came from indirect call profiles, and a value id generated by this 157 /// class to use in the VST and summary block records. 158 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 159 160 /// Tracks the last value id recorded in the GUIDToValueMap. 161 unsigned GlobalValueId; 162 163 /// Saves the offset of the VSTOffset record that must eventually be 164 /// backpatched with the offset of the actual VST. 165 uint64_t VSTOffsetPlaceholder = 0; 166 167 public: 168 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 169 /// writing to the provided \p Buffer. 170 ModuleBitcodeWriterBase(const Module *M, StringTableBuilder &StrtabBuilder, 171 BitstreamWriter &Stream, 172 bool ShouldPreserveUseListOrder, 173 const ModuleSummaryIndex *Index) 174 : BitcodeWriterBase(Stream, StrtabBuilder), M(*M), 175 VE(*M, ShouldPreserveUseListOrder), Index(Index) { 176 // Assign ValueIds to any callee values in the index that came from 177 // indirect call profiles and were recorded as a GUID not a Value* 178 // (which would have been assigned an ID by the ValueEnumerator). 179 // The starting ValueId is just after the number of values in the 180 // ValueEnumerator, so that they can be emitted in the VST. 181 GlobalValueId = VE.getValues().size(); 182 if (!Index) 183 return; 184 for (const auto &GUIDSummaryLists : *Index) 185 // Examine all summaries for this GUID. 186 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 187 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 188 // For each call in the function summary, see if the call 189 // is to a GUID (which means it is for an indirect call, 190 // otherwise we would have a Value for it). If so, synthesize 191 // a value id. 192 for (auto &CallEdge : FS->calls()) 193 if (!CallEdge.first.getValue()) 194 assignValueId(CallEdge.first.getGUID()); 195 } 196 197 protected: 198 void writePerModuleGlobalValueSummary(); 199 200 private: 201 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 202 GlobalValueSummary *Summary, 203 unsigned ValueID, 204 unsigned FSCallsAbbrev, 205 unsigned FSCallsProfileAbbrev, 206 const Function &F); 207 void writeModuleLevelReferences(const GlobalVariable &V, 208 SmallVector<uint64_t, 64> &NameVals, 209 unsigned FSModRefsAbbrev); 210 211 void assignValueId(GlobalValue::GUID ValGUID) { 212 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 213 } 214 215 unsigned getValueId(GlobalValue::GUID ValGUID) { 216 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 217 // Expect that any GUID value had a value Id assigned by an 218 // earlier call to assignValueId. 219 assert(VMI != GUIDToValueIdMap.end() && 220 "GUID does not have assigned value Id"); 221 return VMI->second; 222 } 223 224 // Helper to get the valueId for the type of value recorded in VI. 225 unsigned getValueId(ValueInfo VI) { 226 if (!VI.getValue()) 227 return getValueId(VI.getGUID()); 228 return VE.getValueID(VI.getValue()); 229 } 230 231 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 232 }; 233 234 /// Class to manage the bitcode writing for a module. 235 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 236 /// Pointer to the buffer allocated by caller for bitcode writing. 237 const SmallVectorImpl<char> &Buffer; 238 239 /// True if a module hash record should be written. 240 bool GenerateHash; 241 242 /// If non-null, when GenerateHash is true, the resulting hash is written 243 /// into ModHash. 244 ModuleHash *ModHash; 245 246 SHA1 Hasher; 247 248 /// The start bit of the identification block. 249 uint64_t BitcodeStartBit; 250 251 public: 252 /// Constructs a ModuleBitcodeWriter object for the given Module, 253 /// writing to the provided \p Buffer. 254 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 255 StringTableBuilder &StrtabBuilder, 256 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 257 const ModuleSummaryIndex *Index, bool GenerateHash, 258 ModuleHash *ModHash = nullptr) 259 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 260 ShouldPreserveUseListOrder, Index), 261 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 262 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 263 264 /// Emit the current module to the bitstream. 265 void write(); 266 267 private: 268 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 269 270 size_t addToStrtab(StringRef Str); 271 272 void writeAttributeGroupTable(); 273 void writeAttributeTable(); 274 void writeTypeTable(); 275 void writeComdats(); 276 void writeValueSymbolTableForwardDecl(); 277 void writeModuleInfo(); 278 void writeValueAsMetadata(const ValueAsMetadata *MD, 279 SmallVectorImpl<uint64_t> &Record); 280 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 281 unsigned Abbrev); 282 unsigned createDILocationAbbrev(); 283 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 284 unsigned &Abbrev); 285 unsigned createGenericDINodeAbbrev(); 286 void writeGenericDINode(const GenericDINode *N, 287 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 288 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 289 unsigned Abbrev); 290 void writeDIEnumerator(const DIEnumerator *N, 291 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 292 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 void writeDIDerivedType(const DIDerivedType *N, 295 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 296 void writeDICompositeType(const DICompositeType *N, 297 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 298 void writeDISubroutineType(const DISubroutineType *N, 299 SmallVectorImpl<uint64_t> &Record, 300 unsigned Abbrev); 301 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDICompileUnit(const DICompileUnit *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDISubprogram(const DISubprogram *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDILexicalBlock(const DILexicalBlock *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 310 SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 313 unsigned Abbrev); 314 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 315 unsigned Abbrev); 316 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 321 SmallVectorImpl<uint64_t> &Record, 322 unsigned Abbrev); 323 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 324 SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDIGlobalVariable(const DIGlobalVariable *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDILocalVariable(const DILocalVariable *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDIExpression(const DIExpression *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 334 SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIObjCProperty(const DIObjCProperty *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDIImportedEntity(const DIImportedEntity *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 unsigned createNamedMetadataAbbrev(); 342 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 343 unsigned createMetadataStringsAbbrev(); 344 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 345 SmallVectorImpl<uint64_t> &Record); 346 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 347 SmallVectorImpl<uint64_t> &Record, 348 std::vector<unsigned> *MDAbbrevs = nullptr, 349 std::vector<uint64_t> *IndexPos = nullptr); 350 void writeModuleMetadata(); 351 void writeFunctionMetadata(const Function &F); 352 void writeFunctionMetadataAttachment(const Function &F); 353 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 354 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 355 const GlobalObject &GO); 356 void writeModuleMetadataKinds(); 357 void writeOperandBundleTags(); 358 void writeSyncScopeNames(); 359 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 360 void writeModuleConstants(); 361 bool pushValueAndType(const Value *V, unsigned InstID, 362 SmallVectorImpl<unsigned> &Vals); 363 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 364 void pushValue(const Value *V, unsigned InstID, 365 SmallVectorImpl<unsigned> &Vals); 366 void pushValueSigned(const Value *V, unsigned InstID, 367 SmallVectorImpl<uint64_t> &Vals); 368 void writeInstruction(const Instruction &I, unsigned InstID, 369 SmallVectorImpl<unsigned> &Vals); 370 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 371 void writeGlobalValueSymbolTable( 372 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 373 void writeUseList(UseListOrder &&Order); 374 void writeUseListBlock(const Function *F); 375 void 376 writeFunction(const Function &F, 377 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 378 void writeBlockInfo(); 379 void writeModuleHash(size_t BlockStartPos); 380 381 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 382 return unsigned(SSID); 383 } 384 }; 385 386 /// Class to manage the bitcode writing for a combined index. 387 class IndexBitcodeWriter : public BitcodeWriterBase { 388 /// The combined index to write to bitcode. 389 const ModuleSummaryIndex &Index; 390 391 /// When writing a subset of the index for distributed backends, client 392 /// provides a map of modules to the corresponding GUIDs/summaries to write. 393 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 394 395 /// Map that holds the correspondence between the GUID used in the combined 396 /// index and a value id generated by this class to use in references. 397 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 398 399 /// Tracks the last value id recorded in the GUIDToValueMap. 400 unsigned GlobalValueId = 0; 401 402 public: 403 /// Constructs a IndexBitcodeWriter object for the given combined index, 404 /// writing to the provided \p Buffer. When writing a subset of the index 405 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 406 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 407 const ModuleSummaryIndex &Index, 408 const std::map<std::string, GVSummaryMapTy> 409 *ModuleToSummariesForIndex = nullptr) 410 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 411 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 412 // Assign unique value ids to all summaries to be written, for use 413 // in writing out the call graph edges. Save the mapping from GUID 414 // to the new global value id to use when writing those edges, which 415 // are currently saved in the index in terms of GUID. 416 forEachSummary([&](GVInfo I) { 417 GUIDToValueIdMap[I.first] = ++GlobalValueId; 418 }); 419 } 420 421 /// The below iterator returns the GUID and associated summary. 422 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 423 424 /// Calls the callback for each value GUID and summary to be written to 425 /// bitcode. This hides the details of whether they are being pulled from the 426 /// entire index or just those in a provided ModuleToSummariesForIndex map. 427 template<typename Functor> 428 void forEachSummary(Functor Callback) { 429 if (ModuleToSummariesForIndex) { 430 for (auto &M : *ModuleToSummariesForIndex) 431 for (auto &Summary : M.second) 432 Callback(Summary); 433 } else { 434 for (auto &Summaries : Index) 435 for (auto &Summary : Summaries.second.SummaryList) 436 Callback({Summaries.first, Summary.get()}); 437 } 438 } 439 440 /// Calls the callback for each entry in the modulePaths StringMap that 441 /// should be written to the module path string table. This hides the details 442 /// of whether they are being pulled from the entire index or just those in a 443 /// provided ModuleToSummariesForIndex map. 444 template <typename Functor> void forEachModule(Functor Callback) { 445 if (ModuleToSummariesForIndex) { 446 for (const auto &M : *ModuleToSummariesForIndex) { 447 const auto &MPI = Index.modulePaths().find(M.first); 448 if (MPI == Index.modulePaths().end()) { 449 // This should only happen if the bitcode file was empty, in which 450 // case we shouldn't be importing (the ModuleToSummariesForIndex 451 // would only include the module we are writing and index for). 452 assert(ModuleToSummariesForIndex->size() == 1); 453 continue; 454 } 455 Callback(*MPI); 456 } 457 } else { 458 for (const auto &MPSE : Index.modulePaths()) 459 Callback(MPSE); 460 } 461 } 462 463 /// Main entry point for writing a combined index to bitcode. 464 void write(); 465 466 private: 467 void writeModStrings(); 468 void writeCombinedGlobalValueSummary(); 469 470 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 471 auto VMI = GUIDToValueIdMap.find(ValGUID); 472 if (VMI == GUIDToValueIdMap.end()) 473 return None; 474 return VMI->second; 475 } 476 477 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 478 }; 479 480 } // end anonymous namespace 481 482 static unsigned getEncodedCastOpcode(unsigned Opcode) { 483 switch (Opcode) { 484 default: llvm_unreachable("Unknown cast instruction!"); 485 case Instruction::Trunc : return bitc::CAST_TRUNC; 486 case Instruction::ZExt : return bitc::CAST_ZEXT; 487 case Instruction::SExt : return bitc::CAST_SEXT; 488 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 489 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 490 case Instruction::UIToFP : return bitc::CAST_UITOFP; 491 case Instruction::SIToFP : return bitc::CAST_SITOFP; 492 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 493 case Instruction::FPExt : return bitc::CAST_FPEXT; 494 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 495 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 496 case Instruction::BitCast : return bitc::CAST_BITCAST; 497 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 498 } 499 } 500 501 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown binary instruction!"); 504 case Instruction::Add: 505 case Instruction::FAdd: return bitc::BINOP_ADD; 506 case Instruction::Sub: 507 case Instruction::FSub: return bitc::BINOP_SUB; 508 case Instruction::Mul: 509 case Instruction::FMul: return bitc::BINOP_MUL; 510 case Instruction::UDiv: return bitc::BINOP_UDIV; 511 case Instruction::FDiv: 512 case Instruction::SDiv: return bitc::BINOP_SDIV; 513 case Instruction::URem: return bitc::BINOP_UREM; 514 case Instruction::FRem: 515 case Instruction::SRem: return bitc::BINOP_SREM; 516 case Instruction::Shl: return bitc::BINOP_SHL; 517 case Instruction::LShr: return bitc::BINOP_LSHR; 518 case Instruction::AShr: return bitc::BINOP_ASHR; 519 case Instruction::And: return bitc::BINOP_AND; 520 case Instruction::Or: return bitc::BINOP_OR; 521 case Instruction::Xor: return bitc::BINOP_XOR; 522 } 523 } 524 525 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 526 switch (Op) { 527 default: llvm_unreachable("Unknown RMW operation!"); 528 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 529 case AtomicRMWInst::Add: return bitc::RMW_ADD; 530 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 531 case AtomicRMWInst::And: return bitc::RMW_AND; 532 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 533 case AtomicRMWInst::Or: return bitc::RMW_OR; 534 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 535 case AtomicRMWInst::Max: return bitc::RMW_MAX; 536 case AtomicRMWInst::Min: return bitc::RMW_MIN; 537 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 538 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 539 } 540 } 541 542 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 543 switch (Ordering) { 544 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 545 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 546 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 547 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 548 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 549 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 550 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 551 } 552 llvm_unreachable("Invalid ordering"); 553 } 554 555 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 556 StringRef Str, unsigned AbbrevToUse) { 557 SmallVector<unsigned, 64> Vals; 558 559 // Code: [strchar x N] 560 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 561 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 562 AbbrevToUse = 0; 563 Vals.push_back(Str[i]); 564 } 565 566 // Emit the finished record. 567 Stream.EmitRecord(Code, Vals, AbbrevToUse); 568 } 569 570 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 571 switch (Kind) { 572 case Attribute::Alignment: 573 return bitc::ATTR_KIND_ALIGNMENT; 574 case Attribute::AllocSize: 575 return bitc::ATTR_KIND_ALLOC_SIZE; 576 case Attribute::AlwaysInline: 577 return bitc::ATTR_KIND_ALWAYS_INLINE; 578 case Attribute::ArgMemOnly: 579 return bitc::ATTR_KIND_ARGMEMONLY; 580 case Attribute::Builtin: 581 return bitc::ATTR_KIND_BUILTIN; 582 case Attribute::ByVal: 583 return bitc::ATTR_KIND_BY_VAL; 584 case Attribute::Convergent: 585 return bitc::ATTR_KIND_CONVERGENT; 586 case Attribute::InAlloca: 587 return bitc::ATTR_KIND_IN_ALLOCA; 588 case Attribute::Cold: 589 return bitc::ATTR_KIND_COLD; 590 case Attribute::InaccessibleMemOnly: 591 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 592 case Attribute::InaccessibleMemOrArgMemOnly: 593 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 594 case Attribute::InlineHint: 595 return bitc::ATTR_KIND_INLINE_HINT; 596 case Attribute::InReg: 597 return bitc::ATTR_KIND_IN_REG; 598 case Attribute::JumpTable: 599 return bitc::ATTR_KIND_JUMP_TABLE; 600 case Attribute::MinSize: 601 return bitc::ATTR_KIND_MIN_SIZE; 602 case Attribute::Naked: 603 return bitc::ATTR_KIND_NAKED; 604 case Attribute::Nest: 605 return bitc::ATTR_KIND_NEST; 606 case Attribute::NoAlias: 607 return bitc::ATTR_KIND_NO_ALIAS; 608 case Attribute::NoBuiltin: 609 return bitc::ATTR_KIND_NO_BUILTIN; 610 case Attribute::NoCapture: 611 return bitc::ATTR_KIND_NO_CAPTURE; 612 case Attribute::NoDuplicate: 613 return bitc::ATTR_KIND_NO_DUPLICATE; 614 case Attribute::NoImplicitFloat: 615 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 616 case Attribute::NoInline: 617 return bitc::ATTR_KIND_NO_INLINE; 618 case Attribute::NoRecurse: 619 return bitc::ATTR_KIND_NO_RECURSE; 620 case Attribute::NonLazyBind: 621 return bitc::ATTR_KIND_NON_LAZY_BIND; 622 case Attribute::NonNull: 623 return bitc::ATTR_KIND_NON_NULL; 624 case Attribute::Dereferenceable: 625 return bitc::ATTR_KIND_DEREFERENCEABLE; 626 case Attribute::DereferenceableOrNull: 627 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 628 case Attribute::NoRedZone: 629 return bitc::ATTR_KIND_NO_RED_ZONE; 630 case Attribute::NoReturn: 631 return bitc::ATTR_KIND_NO_RETURN; 632 case Attribute::NoUnwind: 633 return bitc::ATTR_KIND_NO_UNWIND; 634 case Attribute::OptimizeForSize: 635 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 636 case Attribute::OptimizeNone: 637 return bitc::ATTR_KIND_OPTIMIZE_NONE; 638 case Attribute::ReadNone: 639 return bitc::ATTR_KIND_READ_NONE; 640 case Attribute::ReadOnly: 641 return bitc::ATTR_KIND_READ_ONLY; 642 case Attribute::Returned: 643 return bitc::ATTR_KIND_RETURNED; 644 case Attribute::ReturnsTwice: 645 return bitc::ATTR_KIND_RETURNS_TWICE; 646 case Attribute::SExt: 647 return bitc::ATTR_KIND_S_EXT; 648 case Attribute::Speculatable: 649 return bitc::ATTR_KIND_SPECULATABLE; 650 case Attribute::StackAlignment: 651 return bitc::ATTR_KIND_STACK_ALIGNMENT; 652 case Attribute::StackProtect: 653 return bitc::ATTR_KIND_STACK_PROTECT; 654 case Attribute::StackProtectReq: 655 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 656 case Attribute::StackProtectStrong: 657 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 658 case Attribute::SafeStack: 659 return bitc::ATTR_KIND_SAFESTACK; 660 case Attribute::StrictFP: 661 return bitc::ATTR_KIND_STRICT_FP; 662 case Attribute::StructRet: 663 return bitc::ATTR_KIND_STRUCT_RET; 664 case Attribute::SanitizeAddress: 665 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 666 case Attribute::SanitizeThread: 667 return bitc::ATTR_KIND_SANITIZE_THREAD; 668 case Attribute::SanitizeMemory: 669 return bitc::ATTR_KIND_SANITIZE_MEMORY; 670 case Attribute::SwiftError: 671 return bitc::ATTR_KIND_SWIFT_ERROR; 672 case Attribute::SwiftSelf: 673 return bitc::ATTR_KIND_SWIFT_SELF; 674 case Attribute::UWTable: 675 return bitc::ATTR_KIND_UW_TABLE; 676 case Attribute::WriteOnly: 677 return bitc::ATTR_KIND_WRITEONLY; 678 case Attribute::ZExt: 679 return bitc::ATTR_KIND_Z_EXT; 680 case Attribute::EndAttrKinds: 681 llvm_unreachable("Can not encode end-attribute kinds marker."); 682 case Attribute::None: 683 llvm_unreachable("Can not encode none-attribute."); 684 } 685 686 llvm_unreachable("Trying to encode unknown attribute"); 687 } 688 689 void ModuleBitcodeWriter::writeAttributeGroupTable() { 690 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 691 VE.getAttributeGroups(); 692 if (AttrGrps.empty()) return; 693 694 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 695 696 SmallVector<uint64_t, 64> Record; 697 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 698 unsigned AttrListIndex = Pair.first; 699 AttributeSet AS = Pair.second; 700 Record.push_back(VE.getAttributeGroupID(Pair)); 701 Record.push_back(AttrListIndex); 702 703 for (Attribute Attr : AS) { 704 if (Attr.isEnumAttribute()) { 705 Record.push_back(0); 706 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 707 } else if (Attr.isIntAttribute()) { 708 Record.push_back(1); 709 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 710 Record.push_back(Attr.getValueAsInt()); 711 } else { 712 StringRef Kind = Attr.getKindAsString(); 713 StringRef Val = Attr.getValueAsString(); 714 715 Record.push_back(Val.empty() ? 3 : 4); 716 Record.append(Kind.begin(), Kind.end()); 717 Record.push_back(0); 718 if (!Val.empty()) { 719 Record.append(Val.begin(), Val.end()); 720 Record.push_back(0); 721 } 722 } 723 } 724 725 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 726 Record.clear(); 727 } 728 729 Stream.ExitBlock(); 730 } 731 732 void ModuleBitcodeWriter::writeAttributeTable() { 733 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 734 if (Attrs.empty()) return; 735 736 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 737 738 SmallVector<uint64_t, 64> Record; 739 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 740 AttributeList AL = Attrs[i]; 741 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 742 AttributeSet AS = AL.getAttributes(i); 743 if (AS.hasAttributes()) 744 Record.push_back(VE.getAttributeGroupID({i, AS})); 745 } 746 747 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 748 Record.clear(); 749 } 750 751 Stream.ExitBlock(); 752 } 753 754 /// WriteTypeTable - Write out the type table for a module. 755 void ModuleBitcodeWriter::writeTypeTable() { 756 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 757 758 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 759 SmallVector<uint64_t, 64> TypeVals; 760 761 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 762 763 // Abbrev for TYPE_CODE_POINTER. 764 auto Abbv = std::make_shared<BitCodeAbbrev>(); 765 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 767 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 768 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 769 770 // Abbrev for TYPE_CODE_FUNCTION. 771 Abbv = std::make_shared<BitCodeAbbrev>(); 772 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 776 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 777 778 // Abbrev for TYPE_CODE_STRUCT_ANON. 779 Abbv = std::make_shared<BitCodeAbbrev>(); 780 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 784 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 785 786 // Abbrev for TYPE_CODE_STRUCT_NAME. 787 Abbv = std::make_shared<BitCodeAbbrev>(); 788 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 791 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 792 793 // Abbrev for TYPE_CODE_STRUCT_NAMED. 794 Abbv = std::make_shared<BitCodeAbbrev>(); 795 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 799 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 800 801 // Abbrev for TYPE_CODE_ARRAY. 802 Abbv = std::make_shared<BitCodeAbbrev>(); 803 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 806 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 807 808 // Emit an entry count so the reader can reserve space. 809 TypeVals.push_back(TypeList.size()); 810 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 811 TypeVals.clear(); 812 813 // Loop over all of the types, emitting each in turn. 814 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 815 Type *T = TypeList[i]; 816 int AbbrevToUse = 0; 817 unsigned Code = 0; 818 819 switch (T->getTypeID()) { 820 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 821 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 822 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 823 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 824 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 825 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 826 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 827 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 828 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 829 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 830 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 831 case Type::IntegerTyID: 832 // INTEGER: [width] 833 Code = bitc::TYPE_CODE_INTEGER; 834 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 835 break; 836 case Type::PointerTyID: { 837 PointerType *PTy = cast<PointerType>(T); 838 // POINTER: [pointee type, address space] 839 Code = bitc::TYPE_CODE_POINTER; 840 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 841 unsigned AddressSpace = PTy->getAddressSpace(); 842 TypeVals.push_back(AddressSpace); 843 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 844 break; 845 } 846 case Type::FunctionTyID: { 847 FunctionType *FT = cast<FunctionType>(T); 848 // FUNCTION: [isvararg, retty, paramty x N] 849 Code = bitc::TYPE_CODE_FUNCTION; 850 TypeVals.push_back(FT->isVarArg()); 851 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 852 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 853 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 854 AbbrevToUse = FunctionAbbrev; 855 break; 856 } 857 case Type::StructTyID: { 858 StructType *ST = cast<StructType>(T); 859 // STRUCT: [ispacked, eltty x N] 860 TypeVals.push_back(ST->isPacked()); 861 // Output all of the element types. 862 for (StructType::element_iterator I = ST->element_begin(), 863 E = ST->element_end(); I != E; ++I) 864 TypeVals.push_back(VE.getTypeID(*I)); 865 866 if (ST->isLiteral()) { 867 Code = bitc::TYPE_CODE_STRUCT_ANON; 868 AbbrevToUse = StructAnonAbbrev; 869 } else { 870 if (ST->isOpaque()) { 871 Code = bitc::TYPE_CODE_OPAQUE; 872 } else { 873 Code = bitc::TYPE_CODE_STRUCT_NAMED; 874 AbbrevToUse = StructNamedAbbrev; 875 } 876 877 // Emit the name if it is present. 878 if (!ST->getName().empty()) 879 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 880 StructNameAbbrev); 881 } 882 break; 883 } 884 case Type::ArrayTyID: { 885 ArrayType *AT = cast<ArrayType>(T); 886 // ARRAY: [numelts, eltty] 887 Code = bitc::TYPE_CODE_ARRAY; 888 TypeVals.push_back(AT->getNumElements()); 889 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 890 AbbrevToUse = ArrayAbbrev; 891 break; 892 } 893 case Type::VectorTyID: { 894 VectorType *VT = cast<VectorType>(T); 895 // VECTOR [numelts, eltty] 896 Code = bitc::TYPE_CODE_VECTOR; 897 TypeVals.push_back(VT->getNumElements()); 898 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 899 break; 900 } 901 } 902 903 // Emit the finished record. 904 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 905 TypeVals.clear(); 906 } 907 908 Stream.ExitBlock(); 909 } 910 911 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 912 switch (Linkage) { 913 case GlobalValue::ExternalLinkage: 914 return 0; 915 case GlobalValue::WeakAnyLinkage: 916 return 16; 917 case GlobalValue::AppendingLinkage: 918 return 2; 919 case GlobalValue::InternalLinkage: 920 return 3; 921 case GlobalValue::LinkOnceAnyLinkage: 922 return 18; 923 case GlobalValue::ExternalWeakLinkage: 924 return 7; 925 case GlobalValue::CommonLinkage: 926 return 8; 927 case GlobalValue::PrivateLinkage: 928 return 9; 929 case GlobalValue::WeakODRLinkage: 930 return 17; 931 case GlobalValue::LinkOnceODRLinkage: 932 return 19; 933 case GlobalValue::AvailableExternallyLinkage: 934 return 12; 935 } 936 llvm_unreachable("Invalid linkage"); 937 } 938 939 static unsigned getEncodedLinkage(const GlobalValue &GV) { 940 return getEncodedLinkage(GV.getLinkage()); 941 } 942 943 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 944 uint64_t RawFlags = 0; 945 RawFlags |= Flags.ReadNone; 946 RawFlags |= (Flags.ReadOnly << 1); 947 RawFlags |= (Flags.NoRecurse << 2); 948 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 949 return RawFlags; 950 } 951 952 // Decode the flags for GlobalValue in the summary 953 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 954 uint64_t RawFlags = 0; 955 956 RawFlags |= Flags.NotEligibleToImport; // bool 957 RawFlags |= (Flags.Live << 1); 958 RawFlags |= (Flags.DSOLocal << 2); 959 960 // Linkage don't need to be remapped at that time for the summary. Any future 961 // change to the getEncodedLinkage() function will need to be taken into 962 // account here as well. 963 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 964 965 return RawFlags; 966 } 967 968 static unsigned getEncodedVisibility(const GlobalValue &GV) { 969 switch (GV.getVisibility()) { 970 case GlobalValue::DefaultVisibility: return 0; 971 case GlobalValue::HiddenVisibility: return 1; 972 case GlobalValue::ProtectedVisibility: return 2; 973 } 974 llvm_unreachable("Invalid visibility"); 975 } 976 977 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 978 switch (GV.getDLLStorageClass()) { 979 case GlobalValue::DefaultStorageClass: return 0; 980 case GlobalValue::DLLImportStorageClass: return 1; 981 case GlobalValue::DLLExportStorageClass: return 2; 982 } 983 llvm_unreachable("Invalid DLL storage class"); 984 } 985 986 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 987 switch (GV.getThreadLocalMode()) { 988 case GlobalVariable::NotThreadLocal: return 0; 989 case GlobalVariable::GeneralDynamicTLSModel: return 1; 990 case GlobalVariable::LocalDynamicTLSModel: return 2; 991 case GlobalVariable::InitialExecTLSModel: return 3; 992 case GlobalVariable::LocalExecTLSModel: return 4; 993 } 994 llvm_unreachable("Invalid TLS model"); 995 } 996 997 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 998 switch (C.getSelectionKind()) { 999 case Comdat::Any: 1000 return bitc::COMDAT_SELECTION_KIND_ANY; 1001 case Comdat::ExactMatch: 1002 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1003 case Comdat::Largest: 1004 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1005 case Comdat::NoDuplicates: 1006 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1007 case Comdat::SameSize: 1008 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1009 } 1010 llvm_unreachable("Invalid selection kind"); 1011 } 1012 1013 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1014 switch (GV.getUnnamedAddr()) { 1015 case GlobalValue::UnnamedAddr::None: return 0; 1016 case GlobalValue::UnnamedAddr::Local: return 2; 1017 case GlobalValue::UnnamedAddr::Global: return 1; 1018 } 1019 llvm_unreachable("Invalid unnamed_addr"); 1020 } 1021 1022 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1023 if (GenerateHash) 1024 Hasher.update(Str); 1025 return StrtabBuilder.add(Str); 1026 } 1027 1028 void ModuleBitcodeWriter::writeComdats() { 1029 SmallVector<unsigned, 64> Vals; 1030 for (const Comdat *C : VE.getComdats()) { 1031 // COMDAT: [strtab offset, strtab size, selection_kind] 1032 Vals.push_back(addToStrtab(C->getName())); 1033 Vals.push_back(C->getName().size()); 1034 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1035 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1036 Vals.clear(); 1037 } 1038 } 1039 1040 /// Write a record that will eventually hold the word offset of the 1041 /// module-level VST. For now the offset is 0, which will be backpatched 1042 /// after the real VST is written. Saves the bit offset to backpatch. 1043 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1044 // Write a placeholder value in for the offset of the real VST, 1045 // which is written after the function blocks so that it can include 1046 // the offset of each function. The placeholder offset will be 1047 // updated when the real VST is written. 1048 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1049 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1050 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1051 // hold the real VST offset. Must use fixed instead of VBR as we don't 1052 // know how many VBR chunks to reserve ahead of time. 1053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1054 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1055 1056 // Emit the placeholder 1057 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1058 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1059 1060 // Compute and save the bit offset to the placeholder, which will be 1061 // patched when the real VST is written. We can simply subtract the 32-bit 1062 // fixed size from the current bit number to get the location to backpatch. 1063 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1064 } 1065 1066 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1067 1068 /// Determine the encoding to use for the given string name and length. 1069 static StringEncoding getStringEncoding(StringRef Str) { 1070 bool isChar6 = true; 1071 for (char C : Str) { 1072 if (isChar6) 1073 isChar6 = BitCodeAbbrevOp::isChar6(C); 1074 if ((unsigned char)C & 128) 1075 // don't bother scanning the rest. 1076 return SE_Fixed8; 1077 } 1078 if (isChar6) 1079 return SE_Char6; 1080 return SE_Fixed7; 1081 } 1082 1083 /// Emit top-level description of module, including target triple, inline asm, 1084 /// descriptors for global variables, and function prototype info. 1085 /// Returns the bit offset to backpatch with the location of the real VST. 1086 void ModuleBitcodeWriter::writeModuleInfo() { 1087 // Emit various pieces of data attached to a module. 1088 if (!M.getTargetTriple().empty()) 1089 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1090 0 /*TODO*/); 1091 const std::string &DL = M.getDataLayoutStr(); 1092 if (!DL.empty()) 1093 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1094 if (!M.getModuleInlineAsm().empty()) 1095 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1096 0 /*TODO*/); 1097 1098 // Emit information about sections and GC, computing how many there are. Also 1099 // compute the maximum alignment value. 1100 std::map<std::string, unsigned> SectionMap; 1101 std::map<std::string, unsigned> GCMap; 1102 unsigned MaxAlignment = 0; 1103 unsigned MaxGlobalType = 0; 1104 for (const GlobalValue &GV : M.globals()) { 1105 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1106 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1107 if (GV.hasSection()) { 1108 // Give section names unique ID's. 1109 unsigned &Entry = SectionMap[GV.getSection()]; 1110 if (!Entry) { 1111 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1112 0 /*TODO*/); 1113 Entry = SectionMap.size(); 1114 } 1115 } 1116 } 1117 for (const Function &F : M) { 1118 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1119 if (F.hasSection()) { 1120 // Give section names unique ID's. 1121 unsigned &Entry = SectionMap[F.getSection()]; 1122 if (!Entry) { 1123 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1124 0 /*TODO*/); 1125 Entry = SectionMap.size(); 1126 } 1127 } 1128 if (F.hasGC()) { 1129 // Same for GC names. 1130 unsigned &Entry = GCMap[F.getGC()]; 1131 if (!Entry) { 1132 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1133 0 /*TODO*/); 1134 Entry = GCMap.size(); 1135 } 1136 } 1137 } 1138 1139 // Emit abbrev for globals, now that we know # sections and max alignment. 1140 unsigned SimpleGVarAbbrev = 0; 1141 if (!M.global_empty()) { 1142 // Add an abbrev for common globals with no visibility or thread localness. 1143 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1144 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1148 Log2_32_Ceil(MaxGlobalType+1))); 1149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1150 //| explicitType << 1 1151 //| constant 1152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1154 if (MaxAlignment == 0) // Alignment. 1155 Abbv->Add(BitCodeAbbrevOp(0)); 1156 else { 1157 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1159 Log2_32_Ceil(MaxEncAlignment+1))); 1160 } 1161 if (SectionMap.empty()) // Section. 1162 Abbv->Add(BitCodeAbbrevOp(0)); 1163 else 1164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1165 Log2_32_Ceil(SectionMap.size()+1))); 1166 // Don't bother emitting vis + thread local. 1167 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1168 } 1169 1170 SmallVector<unsigned, 64> Vals; 1171 // Emit the module's source file name. 1172 { 1173 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1174 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1175 if (Bits == SE_Char6) 1176 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1177 else if (Bits == SE_Fixed7) 1178 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1179 1180 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1181 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1182 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1184 Abbv->Add(AbbrevOpToUse); 1185 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1186 1187 for (const auto P : M.getSourceFileName()) 1188 Vals.push_back((unsigned char)P); 1189 1190 // Emit the finished record. 1191 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1192 Vals.clear(); 1193 } 1194 1195 // Emit the global variable information. 1196 for (const GlobalVariable &GV : M.globals()) { 1197 unsigned AbbrevToUse = 0; 1198 1199 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1200 // linkage, alignment, section, visibility, threadlocal, 1201 // unnamed_addr, externally_initialized, dllstorageclass, 1202 // comdat, attributes, DSO_Local] 1203 Vals.push_back(addToStrtab(GV.getName())); 1204 Vals.push_back(GV.getName().size()); 1205 Vals.push_back(VE.getTypeID(GV.getValueType())); 1206 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1207 Vals.push_back(GV.isDeclaration() ? 0 : 1208 (VE.getValueID(GV.getInitializer()) + 1)); 1209 Vals.push_back(getEncodedLinkage(GV)); 1210 Vals.push_back(Log2_32(GV.getAlignment())+1); 1211 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1212 if (GV.isThreadLocal() || 1213 GV.getVisibility() != GlobalValue::DefaultVisibility || 1214 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1215 GV.isExternallyInitialized() || 1216 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1217 GV.hasComdat() || 1218 GV.hasAttributes() || 1219 GV.isDSOLocal()) { 1220 Vals.push_back(getEncodedVisibility(GV)); 1221 Vals.push_back(getEncodedThreadLocalMode(GV)); 1222 Vals.push_back(getEncodedUnnamedAddr(GV)); 1223 Vals.push_back(GV.isExternallyInitialized()); 1224 Vals.push_back(getEncodedDLLStorageClass(GV)); 1225 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1226 1227 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1228 Vals.push_back(VE.getAttributeListID(AL)); 1229 1230 Vals.push_back(GV.isDSOLocal()); 1231 } else { 1232 AbbrevToUse = SimpleGVarAbbrev; 1233 } 1234 1235 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1236 Vals.clear(); 1237 } 1238 1239 // Emit the function proto information. 1240 for (const Function &F : M) { 1241 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1242 // linkage, paramattrs, alignment, section, visibility, gc, 1243 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1244 // prefixdata, personalityfn, DSO_Local] 1245 Vals.push_back(addToStrtab(F.getName())); 1246 Vals.push_back(F.getName().size()); 1247 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1248 Vals.push_back(F.getCallingConv()); 1249 Vals.push_back(F.isDeclaration()); 1250 Vals.push_back(getEncodedLinkage(F)); 1251 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1252 Vals.push_back(Log2_32(F.getAlignment())+1); 1253 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1254 Vals.push_back(getEncodedVisibility(F)); 1255 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1256 Vals.push_back(getEncodedUnnamedAddr(F)); 1257 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1258 : 0); 1259 Vals.push_back(getEncodedDLLStorageClass(F)); 1260 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1261 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1262 : 0); 1263 Vals.push_back( 1264 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1265 1266 Vals.push_back(F.isDSOLocal()); 1267 unsigned AbbrevToUse = 0; 1268 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1269 Vals.clear(); 1270 } 1271 1272 // Emit the alias information. 1273 for (const GlobalAlias &A : M.aliases()) { 1274 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1275 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1276 // DSO_Local] 1277 Vals.push_back(addToStrtab(A.getName())); 1278 Vals.push_back(A.getName().size()); 1279 Vals.push_back(VE.getTypeID(A.getValueType())); 1280 Vals.push_back(A.getType()->getAddressSpace()); 1281 Vals.push_back(VE.getValueID(A.getAliasee())); 1282 Vals.push_back(getEncodedLinkage(A)); 1283 Vals.push_back(getEncodedVisibility(A)); 1284 Vals.push_back(getEncodedDLLStorageClass(A)); 1285 Vals.push_back(getEncodedThreadLocalMode(A)); 1286 Vals.push_back(getEncodedUnnamedAddr(A)); 1287 Vals.push_back(A.isDSOLocal()); 1288 1289 unsigned AbbrevToUse = 0; 1290 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1291 Vals.clear(); 1292 } 1293 1294 // Emit the ifunc information. 1295 for (const GlobalIFunc &I : M.ifuncs()) { 1296 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1297 // val#, linkage, visibility] 1298 Vals.push_back(addToStrtab(I.getName())); 1299 Vals.push_back(I.getName().size()); 1300 Vals.push_back(VE.getTypeID(I.getValueType())); 1301 Vals.push_back(I.getType()->getAddressSpace()); 1302 Vals.push_back(VE.getValueID(I.getResolver())); 1303 Vals.push_back(getEncodedLinkage(I)); 1304 Vals.push_back(getEncodedVisibility(I)); 1305 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1306 Vals.clear(); 1307 } 1308 1309 writeValueSymbolTableForwardDecl(); 1310 } 1311 1312 static uint64_t getOptimizationFlags(const Value *V) { 1313 uint64_t Flags = 0; 1314 1315 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1316 if (OBO->hasNoSignedWrap()) 1317 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1318 if (OBO->hasNoUnsignedWrap()) 1319 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1320 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1321 if (PEO->isExact()) 1322 Flags |= 1 << bitc::PEO_EXACT; 1323 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1324 if (FPMO->hasAllowReassoc()) 1325 Flags |= FastMathFlags::AllowReassoc; 1326 if (FPMO->hasNoNaNs()) 1327 Flags |= FastMathFlags::NoNaNs; 1328 if (FPMO->hasNoInfs()) 1329 Flags |= FastMathFlags::NoInfs; 1330 if (FPMO->hasNoSignedZeros()) 1331 Flags |= FastMathFlags::NoSignedZeros; 1332 if (FPMO->hasAllowReciprocal()) 1333 Flags |= FastMathFlags::AllowReciprocal; 1334 if (FPMO->hasAllowContract()) 1335 Flags |= FastMathFlags::AllowContract; 1336 if (FPMO->hasApproxFunc()) 1337 Flags |= FastMathFlags::ApproxFunc; 1338 } 1339 1340 return Flags; 1341 } 1342 1343 void ModuleBitcodeWriter::writeValueAsMetadata( 1344 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1345 // Mimic an MDNode with a value as one operand. 1346 Value *V = MD->getValue(); 1347 Record.push_back(VE.getTypeID(V->getType())); 1348 Record.push_back(VE.getValueID(V)); 1349 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1350 Record.clear(); 1351 } 1352 1353 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1354 SmallVectorImpl<uint64_t> &Record, 1355 unsigned Abbrev) { 1356 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1357 Metadata *MD = N->getOperand(i); 1358 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1359 "Unexpected function-local metadata"); 1360 Record.push_back(VE.getMetadataOrNullID(MD)); 1361 } 1362 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1363 : bitc::METADATA_NODE, 1364 Record, Abbrev); 1365 Record.clear(); 1366 } 1367 1368 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1369 // Assume the column is usually under 128, and always output the inlined-at 1370 // location (it's never more expensive than building an array size 1). 1371 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1372 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1378 return Stream.EmitAbbrev(std::move(Abbv)); 1379 } 1380 1381 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1382 SmallVectorImpl<uint64_t> &Record, 1383 unsigned &Abbrev) { 1384 if (!Abbrev) 1385 Abbrev = createDILocationAbbrev(); 1386 1387 Record.push_back(N->isDistinct()); 1388 Record.push_back(N->getLine()); 1389 Record.push_back(N->getColumn()); 1390 Record.push_back(VE.getMetadataID(N->getScope())); 1391 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1392 1393 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1394 Record.clear(); 1395 } 1396 1397 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1398 // Assume the column is usually under 128, and always output the inlined-at 1399 // location (it's never more expensive than building an array size 1). 1400 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1401 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1408 return Stream.EmitAbbrev(std::move(Abbv)); 1409 } 1410 1411 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1412 SmallVectorImpl<uint64_t> &Record, 1413 unsigned &Abbrev) { 1414 if (!Abbrev) 1415 Abbrev = createGenericDINodeAbbrev(); 1416 1417 Record.push_back(N->isDistinct()); 1418 Record.push_back(N->getTag()); 1419 Record.push_back(0); // Per-tag version field; unused for now. 1420 1421 for (auto &I : N->operands()) 1422 Record.push_back(VE.getMetadataOrNullID(I)); 1423 1424 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1425 Record.clear(); 1426 } 1427 1428 static uint64_t rotateSign(int64_t I) { 1429 uint64_t U = I; 1430 return I < 0 ? ~(U << 1) : U << 1; 1431 } 1432 1433 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1434 SmallVectorImpl<uint64_t> &Record, 1435 unsigned Abbrev) { 1436 Record.push_back(N->isDistinct()); 1437 Record.push_back(N->getCount()); 1438 Record.push_back(rotateSign(N->getLowerBound())); 1439 1440 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1441 Record.clear(); 1442 } 1443 1444 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1445 SmallVectorImpl<uint64_t> &Record, 1446 unsigned Abbrev) { 1447 Record.push_back(N->isDistinct()); 1448 Record.push_back(rotateSign(N->getValue())); 1449 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1450 1451 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1452 Record.clear(); 1453 } 1454 1455 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1456 SmallVectorImpl<uint64_t> &Record, 1457 unsigned Abbrev) { 1458 Record.push_back(N->isDistinct()); 1459 Record.push_back(N->getTag()); 1460 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1461 Record.push_back(N->getSizeInBits()); 1462 Record.push_back(N->getAlignInBits()); 1463 Record.push_back(N->getEncoding()); 1464 1465 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1466 Record.clear(); 1467 } 1468 1469 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1470 SmallVectorImpl<uint64_t> &Record, 1471 unsigned Abbrev) { 1472 Record.push_back(N->isDistinct()); 1473 Record.push_back(N->getTag()); 1474 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1475 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1476 Record.push_back(N->getLine()); 1477 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1478 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1479 Record.push_back(N->getSizeInBits()); 1480 Record.push_back(N->getAlignInBits()); 1481 Record.push_back(N->getOffsetInBits()); 1482 Record.push_back(N->getFlags()); 1483 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1484 1485 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1486 // that there is no DWARF address space associated with DIDerivedType. 1487 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1488 Record.push_back(*DWARFAddressSpace + 1); 1489 else 1490 Record.push_back(0); 1491 1492 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1493 Record.clear(); 1494 } 1495 1496 void ModuleBitcodeWriter::writeDICompositeType( 1497 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1498 unsigned Abbrev) { 1499 const unsigned IsNotUsedInOldTypeRef = 0x2; 1500 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1501 Record.push_back(N->getTag()); 1502 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1503 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1504 Record.push_back(N->getLine()); 1505 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1506 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1507 Record.push_back(N->getSizeInBits()); 1508 Record.push_back(N->getAlignInBits()); 1509 Record.push_back(N->getOffsetInBits()); 1510 Record.push_back(N->getFlags()); 1511 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1512 Record.push_back(N->getRuntimeLang()); 1513 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1514 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1515 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1516 1517 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1518 Record.clear(); 1519 } 1520 1521 void ModuleBitcodeWriter::writeDISubroutineType( 1522 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1523 unsigned Abbrev) { 1524 const unsigned HasNoOldTypeRefs = 0x2; 1525 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1526 Record.push_back(N->getFlags()); 1527 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1528 Record.push_back(N->getCC()); 1529 1530 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1531 Record.clear(); 1532 } 1533 1534 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1535 SmallVectorImpl<uint64_t> &Record, 1536 unsigned Abbrev) { 1537 Record.push_back(N->isDistinct()); 1538 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1539 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1540 Record.push_back(N->getChecksumKind()); 1541 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1542 1543 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1544 Record.clear(); 1545 } 1546 1547 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1548 SmallVectorImpl<uint64_t> &Record, 1549 unsigned Abbrev) { 1550 assert(N->isDistinct() && "Expected distinct compile units"); 1551 Record.push_back(/* IsDistinct */ true); 1552 Record.push_back(N->getSourceLanguage()); 1553 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1554 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1555 Record.push_back(N->isOptimized()); 1556 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1557 Record.push_back(N->getRuntimeVersion()); 1558 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1559 Record.push_back(N->getEmissionKind()); 1560 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1561 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1562 Record.push_back(/* subprograms */ 0); 1563 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1564 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1565 Record.push_back(N->getDWOId()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1567 Record.push_back(N->getSplitDebugInlining()); 1568 Record.push_back(N->getDebugInfoForProfiling()); 1569 Record.push_back(N->getGnuPubnames()); 1570 1571 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1572 Record.clear(); 1573 } 1574 1575 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1576 SmallVectorImpl<uint64_t> &Record, 1577 unsigned Abbrev) { 1578 uint64_t HasUnitFlag = 1 << 1; 1579 Record.push_back(N->isDistinct() | HasUnitFlag); 1580 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1581 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1582 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1583 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1584 Record.push_back(N->getLine()); 1585 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1586 Record.push_back(N->isLocalToUnit()); 1587 Record.push_back(N->isDefinition()); 1588 Record.push_back(N->getScopeLine()); 1589 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1590 Record.push_back(N->getVirtuality()); 1591 Record.push_back(N->getVirtualIndex()); 1592 Record.push_back(N->getFlags()); 1593 Record.push_back(N->isOptimized()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1596 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1598 Record.push_back(N->getThisAdjustment()); 1599 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1600 1601 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1602 Record.clear(); 1603 } 1604 1605 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1606 SmallVectorImpl<uint64_t> &Record, 1607 unsigned Abbrev) { 1608 Record.push_back(N->isDistinct()); 1609 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1610 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1611 Record.push_back(N->getLine()); 1612 Record.push_back(N->getColumn()); 1613 1614 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1615 Record.clear(); 1616 } 1617 1618 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1619 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1620 unsigned Abbrev) { 1621 Record.push_back(N->isDistinct()); 1622 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1623 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1624 Record.push_back(N->getDiscriminator()); 1625 1626 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1627 Record.clear(); 1628 } 1629 1630 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1631 SmallVectorImpl<uint64_t> &Record, 1632 unsigned Abbrev) { 1633 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1634 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1635 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1636 1637 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1638 Record.clear(); 1639 } 1640 1641 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1642 SmallVectorImpl<uint64_t> &Record, 1643 unsigned Abbrev) { 1644 Record.push_back(N->isDistinct()); 1645 Record.push_back(N->getMacinfoType()); 1646 Record.push_back(N->getLine()); 1647 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1648 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1649 1650 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1651 Record.clear(); 1652 } 1653 1654 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1655 SmallVectorImpl<uint64_t> &Record, 1656 unsigned Abbrev) { 1657 Record.push_back(N->isDistinct()); 1658 Record.push_back(N->getMacinfoType()); 1659 Record.push_back(N->getLine()); 1660 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1662 1663 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1664 Record.clear(); 1665 } 1666 1667 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1668 SmallVectorImpl<uint64_t> &Record, 1669 unsigned Abbrev) { 1670 Record.push_back(N->isDistinct()); 1671 for (auto &I : N->operands()) 1672 Record.push_back(VE.getMetadataOrNullID(I)); 1673 1674 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1675 Record.clear(); 1676 } 1677 1678 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1679 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1680 unsigned Abbrev) { 1681 Record.push_back(N->isDistinct()); 1682 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1683 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1684 1685 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1686 Record.clear(); 1687 } 1688 1689 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1690 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1691 unsigned Abbrev) { 1692 Record.push_back(N->isDistinct()); 1693 Record.push_back(N->getTag()); 1694 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1695 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1696 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1697 1698 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1699 Record.clear(); 1700 } 1701 1702 void ModuleBitcodeWriter::writeDIGlobalVariable( 1703 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1704 unsigned Abbrev) { 1705 const uint64_t Version = 1 << 1; 1706 Record.push_back((uint64_t)N->isDistinct() | Version); 1707 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1708 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1711 Record.push_back(N->getLine()); 1712 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1713 Record.push_back(N->isLocalToUnit()); 1714 Record.push_back(N->isDefinition()); 1715 Record.push_back(/* expr */ 0); 1716 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1717 Record.push_back(N->getAlignInBits()); 1718 1719 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1720 Record.clear(); 1721 } 1722 1723 void ModuleBitcodeWriter::writeDILocalVariable( 1724 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1725 unsigned Abbrev) { 1726 // In order to support all possible bitcode formats in BitcodeReader we need 1727 // to distinguish the following cases: 1728 // 1) Record has no artificial tag (Record[1]), 1729 // has no obsolete inlinedAt field (Record[9]). 1730 // In this case Record size will be 8, HasAlignment flag is false. 1731 // 2) Record has artificial tag (Record[1]), 1732 // has no obsolete inlignedAt field (Record[9]). 1733 // In this case Record size will be 9, HasAlignment flag is false. 1734 // 3) Record has both artificial tag (Record[1]) and 1735 // obsolete inlignedAt field (Record[9]). 1736 // In this case Record size will be 10, HasAlignment flag is false. 1737 // 4) Record has neither artificial tag, nor inlignedAt field, but 1738 // HasAlignment flag is true and Record[8] contains alignment value. 1739 const uint64_t HasAlignmentFlag = 1 << 1; 1740 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1741 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1742 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1743 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1744 Record.push_back(N->getLine()); 1745 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1746 Record.push_back(N->getArg()); 1747 Record.push_back(N->getFlags()); 1748 Record.push_back(N->getAlignInBits()); 1749 1750 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1751 Record.clear(); 1752 } 1753 1754 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1755 SmallVectorImpl<uint64_t> &Record, 1756 unsigned Abbrev) { 1757 Record.reserve(N->getElements().size() + 1); 1758 const uint64_t Version = 3 << 1; 1759 Record.push_back((uint64_t)N->isDistinct() | Version); 1760 Record.append(N->elements_begin(), N->elements_end()); 1761 1762 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1763 Record.clear(); 1764 } 1765 1766 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1767 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1768 unsigned Abbrev) { 1769 Record.push_back(N->isDistinct()); 1770 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1771 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1772 1773 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1774 Record.clear(); 1775 } 1776 1777 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1778 SmallVectorImpl<uint64_t> &Record, 1779 unsigned Abbrev) { 1780 Record.push_back(N->isDistinct()); 1781 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1782 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1783 Record.push_back(N->getLine()); 1784 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1785 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1786 Record.push_back(N->getAttributes()); 1787 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1788 1789 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1790 Record.clear(); 1791 } 1792 1793 void ModuleBitcodeWriter::writeDIImportedEntity( 1794 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1795 unsigned Abbrev) { 1796 Record.push_back(N->isDistinct()); 1797 Record.push_back(N->getTag()); 1798 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1799 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1800 Record.push_back(N->getLine()); 1801 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1803 1804 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1805 Record.clear(); 1806 } 1807 1808 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1809 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1810 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1813 return Stream.EmitAbbrev(std::move(Abbv)); 1814 } 1815 1816 void ModuleBitcodeWriter::writeNamedMetadata( 1817 SmallVectorImpl<uint64_t> &Record) { 1818 if (M.named_metadata_empty()) 1819 return; 1820 1821 unsigned Abbrev = createNamedMetadataAbbrev(); 1822 for (const NamedMDNode &NMD : M.named_metadata()) { 1823 // Write name. 1824 StringRef Str = NMD.getName(); 1825 Record.append(Str.bytes_begin(), Str.bytes_end()); 1826 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1827 Record.clear(); 1828 1829 // Write named metadata operands. 1830 for (const MDNode *N : NMD.operands()) 1831 Record.push_back(VE.getMetadataID(N)); 1832 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1833 Record.clear(); 1834 } 1835 } 1836 1837 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1838 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1839 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1843 return Stream.EmitAbbrev(std::move(Abbv)); 1844 } 1845 1846 /// Write out a record for MDString. 1847 /// 1848 /// All the metadata strings in a metadata block are emitted in a single 1849 /// record. The sizes and strings themselves are shoved into a blob. 1850 void ModuleBitcodeWriter::writeMetadataStrings( 1851 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1852 if (Strings.empty()) 1853 return; 1854 1855 // Start the record with the number of strings. 1856 Record.push_back(bitc::METADATA_STRINGS); 1857 Record.push_back(Strings.size()); 1858 1859 // Emit the sizes of the strings in the blob. 1860 SmallString<256> Blob; 1861 { 1862 BitstreamWriter W(Blob); 1863 for (const Metadata *MD : Strings) 1864 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1865 W.FlushToWord(); 1866 } 1867 1868 // Add the offset to the strings to the record. 1869 Record.push_back(Blob.size()); 1870 1871 // Add the strings to the blob. 1872 for (const Metadata *MD : Strings) 1873 Blob.append(cast<MDString>(MD)->getString()); 1874 1875 // Emit the final record. 1876 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1877 Record.clear(); 1878 } 1879 1880 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1881 enum MetadataAbbrev : unsigned { 1882 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1883 #include "llvm/IR/Metadata.def" 1884 LastPlusOne 1885 }; 1886 1887 void ModuleBitcodeWriter::writeMetadataRecords( 1888 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1889 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1890 if (MDs.empty()) 1891 return; 1892 1893 // Initialize MDNode abbreviations. 1894 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1895 #include "llvm/IR/Metadata.def" 1896 1897 for (const Metadata *MD : MDs) { 1898 if (IndexPos) 1899 IndexPos->push_back(Stream.GetCurrentBitNo()); 1900 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1901 assert(N->isResolved() && "Expected forward references to be resolved"); 1902 1903 switch (N->getMetadataID()) { 1904 default: 1905 llvm_unreachable("Invalid MDNode subclass"); 1906 #define HANDLE_MDNODE_LEAF(CLASS) \ 1907 case Metadata::CLASS##Kind: \ 1908 if (MDAbbrevs) \ 1909 write##CLASS(cast<CLASS>(N), Record, \ 1910 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1911 else \ 1912 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1913 continue; 1914 #include "llvm/IR/Metadata.def" 1915 } 1916 } 1917 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1918 } 1919 } 1920 1921 void ModuleBitcodeWriter::writeModuleMetadata() { 1922 if (!VE.hasMDs() && M.named_metadata_empty()) 1923 return; 1924 1925 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1926 SmallVector<uint64_t, 64> Record; 1927 1928 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1929 // block and load any metadata. 1930 std::vector<unsigned> MDAbbrevs; 1931 1932 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1933 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1934 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1935 createGenericDINodeAbbrev(); 1936 1937 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1938 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1941 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1942 1943 Abbv = std::make_shared<BitCodeAbbrev>(); 1944 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1947 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1948 1949 // Emit MDStrings together upfront. 1950 writeMetadataStrings(VE.getMDStrings(), Record); 1951 1952 // We only emit an index for the metadata record if we have more than a given 1953 // (naive) threshold of metadatas, otherwise it is not worth it. 1954 if (VE.getNonMDStrings().size() > IndexThreshold) { 1955 // Write a placeholder value in for the offset of the metadata index, 1956 // which is written after the records, so that it can include 1957 // the offset of each entry. The placeholder offset will be 1958 // updated after all records are emitted. 1959 uint64_t Vals[] = {0, 0}; 1960 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1961 } 1962 1963 // Compute and save the bit offset to the current position, which will be 1964 // patched when we emit the index later. We can simply subtract the 64-bit 1965 // fixed size from the current bit number to get the location to backpatch. 1966 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1967 1968 // This index will contain the bitpos for each individual record. 1969 std::vector<uint64_t> IndexPos; 1970 IndexPos.reserve(VE.getNonMDStrings().size()); 1971 1972 // Write all the records 1973 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1974 1975 if (VE.getNonMDStrings().size() > IndexThreshold) { 1976 // Now that we have emitted all the records we will emit the index. But 1977 // first 1978 // backpatch the forward reference so that the reader can skip the records 1979 // efficiently. 1980 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1981 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1982 1983 // Delta encode the index. 1984 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1985 for (auto &Elt : IndexPos) { 1986 auto EltDelta = Elt - PreviousValue; 1987 PreviousValue = Elt; 1988 Elt = EltDelta; 1989 } 1990 // Emit the index record. 1991 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1992 IndexPos.clear(); 1993 } 1994 1995 // Write the named metadata now. 1996 writeNamedMetadata(Record); 1997 1998 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1999 SmallVector<uint64_t, 4> Record; 2000 Record.push_back(VE.getValueID(&GO)); 2001 pushGlobalMetadataAttachment(Record, GO); 2002 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2003 }; 2004 for (const Function &F : M) 2005 if (F.isDeclaration() && F.hasMetadata()) 2006 AddDeclAttachedMetadata(F); 2007 // FIXME: Only store metadata for declarations here, and move data for global 2008 // variable definitions to a separate block (PR28134). 2009 for (const GlobalVariable &GV : M.globals()) 2010 if (GV.hasMetadata()) 2011 AddDeclAttachedMetadata(GV); 2012 2013 Stream.ExitBlock(); 2014 } 2015 2016 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2017 if (!VE.hasMDs()) 2018 return; 2019 2020 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2021 SmallVector<uint64_t, 64> Record; 2022 writeMetadataStrings(VE.getMDStrings(), Record); 2023 writeMetadataRecords(VE.getNonMDStrings(), Record); 2024 Stream.ExitBlock(); 2025 } 2026 2027 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2028 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2029 // [n x [id, mdnode]] 2030 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2031 GO.getAllMetadata(MDs); 2032 for (const auto &I : MDs) { 2033 Record.push_back(I.first); 2034 Record.push_back(VE.getMetadataID(I.second)); 2035 } 2036 } 2037 2038 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2039 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2040 2041 SmallVector<uint64_t, 64> Record; 2042 2043 if (F.hasMetadata()) { 2044 pushGlobalMetadataAttachment(Record, F); 2045 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2046 Record.clear(); 2047 } 2048 2049 // Write metadata attachments 2050 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2051 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2052 for (const BasicBlock &BB : F) 2053 for (const Instruction &I : BB) { 2054 MDs.clear(); 2055 I.getAllMetadataOtherThanDebugLoc(MDs); 2056 2057 // If no metadata, ignore instruction. 2058 if (MDs.empty()) continue; 2059 2060 Record.push_back(VE.getInstructionID(&I)); 2061 2062 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2063 Record.push_back(MDs[i].first); 2064 Record.push_back(VE.getMetadataID(MDs[i].second)); 2065 } 2066 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2067 Record.clear(); 2068 } 2069 2070 Stream.ExitBlock(); 2071 } 2072 2073 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2074 SmallVector<uint64_t, 64> Record; 2075 2076 // Write metadata kinds 2077 // METADATA_KIND - [n x [id, name]] 2078 SmallVector<StringRef, 8> Names; 2079 M.getMDKindNames(Names); 2080 2081 if (Names.empty()) return; 2082 2083 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2084 2085 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2086 Record.push_back(MDKindID); 2087 StringRef KName = Names[MDKindID]; 2088 Record.append(KName.begin(), KName.end()); 2089 2090 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2091 Record.clear(); 2092 } 2093 2094 Stream.ExitBlock(); 2095 } 2096 2097 void ModuleBitcodeWriter::writeOperandBundleTags() { 2098 // Write metadata kinds 2099 // 2100 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2101 // 2102 // OPERAND_BUNDLE_TAG - [strchr x N] 2103 2104 SmallVector<StringRef, 8> Tags; 2105 M.getOperandBundleTags(Tags); 2106 2107 if (Tags.empty()) 2108 return; 2109 2110 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2111 2112 SmallVector<uint64_t, 64> Record; 2113 2114 for (auto Tag : Tags) { 2115 Record.append(Tag.begin(), Tag.end()); 2116 2117 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2118 Record.clear(); 2119 } 2120 2121 Stream.ExitBlock(); 2122 } 2123 2124 void ModuleBitcodeWriter::writeSyncScopeNames() { 2125 SmallVector<StringRef, 8> SSNs; 2126 M.getContext().getSyncScopeNames(SSNs); 2127 if (SSNs.empty()) 2128 return; 2129 2130 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2131 2132 SmallVector<uint64_t, 64> Record; 2133 for (auto SSN : SSNs) { 2134 Record.append(SSN.begin(), SSN.end()); 2135 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2136 Record.clear(); 2137 } 2138 2139 Stream.ExitBlock(); 2140 } 2141 2142 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2143 if ((int64_t)V >= 0) 2144 Vals.push_back(V << 1); 2145 else 2146 Vals.push_back((-V << 1) | 1); 2147 } 2148 2149 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2150 bool isGlobal) { 2151 if (FirstVal == LastVal) return; 2152 2153 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2154 2155 unsigned AggregateAbbrev = 0; 2156 unsigned String8Abbrev = 0; 2157 unsigned CString7Abbrev = 0; 2158 unsigned CString6Abbrev = 0; 2159 // If this is a constant pool for the module, emit module-specific abbrevs. 2160 if (isGlobal) { 2161 // Abbrev for CST_CODE_AGGREGATE. 2162 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2163 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2166 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2167 2168 // Abbrev for CST_CODE_STRING. 2169 Abbv = std::make_shared<BitCodeAbbrev>(); 2170 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2173 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2174 // Abbrev for CST_CODE_CSTRING. 2175 Abbv = std::make_shared<BitCodeAbbrev>(); 2176 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2179 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2180 // Abbrev for CST_CODE_CSTRING. 2181 Abbv = std::make_shared<BitCodeAbbrev>(); 2182 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2185 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2186 } 2187 2188 SmallVector<uint64_t, 64> Record; 2189 2190 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2191 Type *LastTy = nullptr; 2192 for (unsigned i = FirstVal; i != LastVal; ++i) { 2193 const Value *V = Vals[i].first; 2194 // If we need to switch types, do so now. 2195 if (V->getType() != LastTy) { 2196 LastTy = V->getType(); 2197 Record.push_back(VE.getTypeID(LastTy)); 2198 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2199 CONSTANTS_SETTYPE_ABBREV); 2200 Record.clear(); 2201 } 2202 2203 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2204 Record.push_back(unsigned(IA->hasSideEffects()) | 2205 unsigned(IA->isAlignStack()) << 1 | 2206 unsigned(IA->getDialect()&1) << 2); 2207 2208 // Add the asm string. 2209 const std::string &AsmStr = IA->getAsmString(); 2210 Record.push_back(AsmStr.size()); 2211 Record.append(AsmStr.begin(), AsmStr.end()); 2212 2213 // Add the constraint string. 2214 const std::string &ConstraintStr = IA->getConstraintString(); 2215 Record.push_back(ConstraintStr.size()); 2216 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2217 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2218 Record.clear(); 2219 continue; 2220 } 2221 const Constant *C = cast<Constant>(V); 2222 unsigned Code = -1U; 2223 unsigned AbbrevToUse = 0; 2224 if (C->isNullValue()) { 2225 Code = bitc::CST_CODE_NULL; 2226 } else if (isa<UndefValue>(C)) { 2227 Code = bitc::CST_CODE_UNDEF; 2228 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2229 if (IV->getBitWidth() <= 64) { 2230 uint64_t V = IV->getSExtValue(); 2231 emitSignedInt64(Record, V); 2232 Code = bitc::CST_CODE_INTEGER; 2233 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2234 } else { // Wide integers, > 64 bits in size. 2235 // We have an arbitrary precision integer value to write whose 2236 // bit width is > 64. However, in canonical unsigned integer 2237 // format it is likely that the high bits are going to be zero. 2238 // So, we only write the number of active words. 2239 unsigned NWords = IV->getValue().getActiveWords(); 2240 const uint64_t *RawWords = IV->getValue().getRawData(); 2241 for (unsigned i = 0; i != NWords; ++i) { 2242 emitSignedInt64(Record, RawWords[i]); 2243 } 2244 Code = bitc::CST_CODE_WIDE_INTEGER; 2245 } 2246 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2247 Code = bitc::CST_CODE_FLOAT; 2248 Type *Ty = CFP->getType(); 2249 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2250 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2251 } else if (Ty->isX86_FP80Ty()) { 2252 // api needed to prevent premature destruction 2253 // bits are not in the same order as a normal i80 APInt, compensate. 2254 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2255 const uint64_t *p = api.getRawData(); 2256 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2257 Record.push_back(p[0] & 0xffffLL); 2258 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2259 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2260 const uint64_t *p = api.getRawData(); 2261 Record.push_back(p[0]); 2262 Record.push_back(p[1]); 2263 } else { 2264 assert(0 && "Unknown FP type!"); 2265 } 2266 } else if (isa<ConstantDataSequential>(C) && 2267 cast<ConstantDataSequential>(C)->isString()) { 2268 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2269 // Emit constant strings specially. 2270 unsigned NumElts = Str->getNumElements(); 2271 // If this is a null-terminated string, use the denser CSTRING encoding. 2272 if (Str->isCString()) { 2273 Code = bitc::CST_CODE_CSTRING; 2274 --NumElts; // Don't encode the null, which isn't allowed by char6. 2275 } else { 2276 Code = bitc::CST_CODE_STRING; 2277 AbbrevToUse = String8Abbrev; 2278 } 2279 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2280 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2281 for (unsigned i = 0; i != NumElts; ++i) { 2282 unsigned char V = Str->getElementAsInteger(i); 2283 Record.push_back(V); 2284 isCStr7 &= (V & 128) == 0; 2285 if (isCStrChar6) 2286 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2287 } 2288 2289 if (isCStrChar6) 2290 AbbrevToUse = CString6Abbrev; 2291 else if (isCStr7) 2292 AbbrevToUse = CString7Abbrev; 2293 } else if (const ConstantDataSequential *CDS = 2294 dyn_cast<ConstantDataSequential>(C)) { 2295 Code = bitc::CST_CODE_DATA; 2296 Type *EltTy = CDS->getType()->getElementType(); 2297 if (isa<IntegerType>(EltTy)) { 2298 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2299 Record.push_back(CDS->getElementAsInteger(i)); 2300 } else { 2301 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2302 Record.push_back( 2303 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2304 } 2305 } else if (isa<ConstantAggregate>(C)) { 2306 Code = bitc::CST_CODE_AGGREGATE; 2307 for (const Value *Op : C->operands()) 2308 Record.push_back(VE.getValueID(Op)); 2309 AbbrevToUse = AggregateAbbrev; 2310 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2311 switch (CE->getOpcode()) { 2312 default: 2313 if (Instruction::isCast(CE->getOpcode())) { 2314 Code = bitc::CST_CODE_CE_CAST; 2315 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2316 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2317 Record.push_back(VE.getValueID(C->getOperand(0))); 2318 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2319 } else { 2320 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2321 Code = bitc::CST_CODE_CE_BINOP; 2322 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2323 Record.push_back(VE.getValueID(C->getOperand(0))); 2324 Record.push_back(VE.getValueID(C->getOperand(1))); 2325 uint64_t Flags = getOptimizationFlags(CE); 2326 if (Flags != 0) 2327 Record.push_back(Flags); 2328 } 2329 break; 2330 case Instruction::GetElementPtr: { 2331 Code = bitc::CST_CODE_CE_GEP; 2332 const auto *GO = cast<GEPOperator>(C); 2333 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2334 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2335 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2336 Record.push_back((*Idx << 1) | GO->isInBounds()); 2337 } else if (GO->isInBounds()) 2338 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2339 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2340 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2341 Record.push_back(VE.getValueID(C->getOperand(i))); 2342 } 2343 break; 2344 } 2345 case Instruction::Select: 2346 Code = bitc::CST_CODE_CE_SELECT; 2347 Record.push_back(VE.getValueID(C->getOperand(0))); 2348 Record.push_back(VE.getValueID(C->getOperand(1))); 2349 Record.push_back(VE.getValueID(C->getOperand(2))); 2350 break; 2351 case Instruction::ExtractElement: 2352 Code = bitc::CST_CODE_CE_EXTRACTELT; 2353 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2354 Record.push_back(VE.getValueID(C->getOperand(0))); 2355 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2356 Record.push_back(VE.getValueID(C->getOperand(1))); 2357 break; 2358 case Instruction::InsertElement: 2359 Code = bitc::CST_CODE_CE_INSERTELT; 2360 Record.push_back(VE.getValueID(C->getOperand(0))); 2361 Record.push_back(VE.getValueID(C->getOperand(1))); 2362 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2363 Record.push_back(VE.getValueID(C->getOperand(2))); 2364 break; 2365 case Instruction::ShuffleVector: 2366 // If the return type and argument types are the same, this is a 2367 // standard shufflevector instruction. If the types are different, 2368 // then the shuffle is widening or truncating the input vectors, and 2369 // the argument type must also be encoded. 2370 if (C->getType() == C->getOperand(0)->getType()) { 2371 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2372 } else { 2373 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2374 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2375 } 2376 Record.push_back(VE.getValueID(C->getOperand(0))); 2377 Record.push_back(VE.getValueID(C->getOperand(1))); 2378 Record.push_back(VE.getValueID(C->getOperand(2))); 2379 break; 2380 case Instruction::ICmp: 2381 case Instruction::FCmp: 2382 Code = bitc::CST_CODE_CE_CMP; 2383 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2384 Record.push_back(VE.getValueID(C->getOperand(0))); 2385 Record.push_back(VE.getValueID(C->getOperand(1))); 2386 Record.push_back(CE->getPredicate()); 2387 break; 2388 } 2389 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2390 Code = bitc::CST_CODE_BLOCKADDRESS; 2391 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2392 Record.push_back(VE.getValueID(BA->getFunction())); 2393 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2394 } else { 2395 #ifndef NDEBUG 2396 C->dump(); 2397 #endif 2398 llvm_unreachable("Unknown constant!"); 2399 } 2400 Stream.EmitRecord(Code, Record, AbbrevToUse); 2401 Record.clear(); 2402 } 2403 2404 Stream.ExitBlock(); 2405 } 2406 2407 void ModuleBitcodeWriter::writeModuleConstants() { 2408 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2409 2410 // Find the first constant to emit, which is the first non-globalvalue value. 2411 // We know globalvalues have been emitted by WriteModuleInfo. 2412 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2413 if (!isa<GlobalValue>(Vals[i].first)) { 2414 writeConstants(i, Vals.size(), true); 2415 return; 2416 } 2417 } 2418 } 2419 2420 /// pushValueAndType - The file has to encode both the value and type id for 2421 /// many values, because we need to know what type to create for forward 2422 /// references. However, most operands are not forward references, so this type 2423 /// field is not needed. 2424 /// 2425 /// This function adds V's value ID to Vals. If the value ID is higher than the 2426 /// instruction ID, then it is a forward reference, and it also includes the 2427 /// type ID. The value ID that is written is encoded relative to the InstID. 2428 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2429 SmallVectorImpl<unsigned> &Vals) { 2430 unsigned ValID = VE.getValueID(V); 2431 // Make encoding relative to the InstID. 2432 Vals.push_back(InstID - ValID); 2433 if (ValID >= InstID) { 2434 Vals.push_back(VE.getTypeID(V->getType())); 2435 return true; 2436 } 2437 return false; 2438 } 2439 2440 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2441 unsigned InstID) { 2442 SmallVector<unsigned, 64> Record; 2443 LLVMContext &C = CS.getInstruction()->getContext(); 2444 2445 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2446 const auto &Bundle = CS.getOperandBundleAt(i); 2447 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2448 2449 for (auto &Input : Bundle.Inputs) 2450 pushValueAndType(Input, InstID, Record); 2451 2452 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2453 Record.clear(); 2454 } 2455 } 2456 2457 /// pushValue - Like pushValueAndType, but where the type of the value is 2458 /// omitted (perhaps it was already encoded in an earlier operand). 2459 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2460 SmallVectorImpl<unsigned> &Vals) { 2461 unsigned ValID = VE.getValueID(V); 2462 Vals.push_back(InstID - ValID); 2463 } 2464 2465 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2466 SmallVectorImpl<uint64_t> &Vals) { 2467 unsigned ValID = VE.getValueID(V); 2468 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2469 emitSignedInt64(Vals, diff); 2470 } 2471 2472 /// WriteInstruction - Emit an instruction to the specified stream. 2473 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2474 unsigned InstID, 2475 SmallVectorImpl<unsigned> &Vals) { 2476 unsigned Code = 0; 2477 unsigned AbbrevToUse = 0; 2478 VE.setInstructionID(&I); 2479 switch (I.getOpcode()) { 2480 default: 2481 if (Instruction::isCast(I.getOpcode())) { 2482 Code = bitc::FUNC_CODE_INST_CAST; 2483 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2484 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2485 Vals.push_back(VE.getTypeID(I.getType())); 2486 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2487 } else { 2488 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2489 Code = bitc::FUNC_CODE_INST_BINOP; 2490 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2491 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2492 pushValue(I.getOperand(1), InstID, Vals); 2493 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2494 uint64_t Flags = getOptimizationFlags(&I); 2495 if (Flags != 0) { 2496 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2497 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2498 Vals.push_back(Flags); 2499 } 2500 } 2501 break; 2502 2503 case Instruction::GetElementPtr: { 2504 Code = bitc::FUNC_CODE_INST_GEP; 2505 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2506 auto &GEPInst = cast<GetElementPtrInst>(I); 2507 Vals.push_back(GEPInst.isInBounds()); 2508 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2509 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2510 pushValueAndType(I.getOperand(i), InstID, Vals); 2511 break; 2512 } 2513 case Instruction::ExtractValue: { 2514 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2515 pushValueAndType(I.getOperand(0), InstID, Vals); 2516 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2517 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2518 break; 2519 } 2520 case Instruction::InsertValue: { 2521 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2522 pushValueAndType(I.getOperand(0), InstID, Vals); 2523 pushValueAndType(I.getOperand(1), InstID, Vals); 2524 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2525 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2526 break; 2527 } 2528 case Instruction::Select: 2529 Code = bitc::FUNC_CODE_INST_VSELECT; 2530 pushValueAndType(I.getOperand(1), InstID, Vals); 2531 pushValue(I.getOperand(2), InstID, Vals); 2532 pushValueAndType(I.getOperand(0), InstID, Vals); 2533 break; 2534 case Instruction::ExtractElement: 2535 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2536 pushValueAndType(I.getOperand(0), InstID, Vals); 2537 pushValueAndType(I.getOperand(1), InstID, Vals); 2538 break; 2539 case Instruction::InsertElement: 2540 Code = bitc::FUNC_CODE_INST_INSERTELT; 2541 pushValueAndType(I.getOperand(0), InstID, Vals); 2542 pushValue(I.getOperand(1), InstID, Vals); 2543 pushValueAndType(I.getOperand(2), InstID, Vals); 2544 break; 2545 case Instruction::ShuffleVector: 2546 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2547 pushValueAndType(I.getOperand(0), InstID, Vals); 2548 pushValue(I.getOperand(1), InstID, Vals); 2549 pushValue(I.getOperand(2), InstID, Vals); 2550 break; 2551 case Instruction::ICmp: 2552 case Instruction::FCmp: { 2553 // compare returning Int1Ty or vector of Int1Ty 2554 Code = bitc::FUNC_CODE_INST_CMP2; 2555 pushValueAndType(I.getOperand(0), InstID, Vals); 2556 pushValue(I.getOperand(1), InstID, Vals); 2557 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2558 uint64_t Flags = getOptimizationFlags(&I); 2559 if (Flags != 0) 2560 Vals.push_back(Flags); 2561 break; 2562 } 2563 2564 case Instruction::Ret: 2565 { 2566 Code = bitc::FUNC_CODE_INST_RET; 2567 unsigned NumOperands = I.getNumOperands(); 2568 if (NumOperands == 0) 2569 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2570 else if (NumOperands == 1) { 2571 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2572 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2573 } else { 2574 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2575 pushValueAndType(I.getOperand(i), InstID, Vals); 2576 } 2577 } 2578 break; 2579 case Instruction::Br: 2580 { 2581 Code = bitc::FUNC_CODE_INST_BR; 2582 const BranchInst &II = cast<BranchInst>(I); 2583 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2584 if (II.isConditional()) { 2585 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2586 pushValue(II.getCondition(), InstID, Vals); 2587 } 2588 } 2589 break; 2590 case Instruction::Switch: 2591 { 2592 Code = bitc::FUNC_CODE_INST_SWITCH; 2593 const SwitchInst &SI = cast<SwitchInst>(I); 2594 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2595 pushValue(SI.getCondition(), InstID, Vals); 2596 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2597 for (auto Case : SI.cases()) { 2598 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2599 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2600 } 2601 } 2602 break; 2603 case Instruction::IndirectBr: 2604 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2605 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2606 // Encode the address operand as relative, but not the basic blocks. 2607 pushValue(I.getOperand(0), InstID, Vals); 2608 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2609 Vals.push_back(VE.getValueID(I.getOperand(i))); 2610 break; 2611 2612 case Instruction::Invoke: { 2613 const InvokeInst *II = cast<InvokeInst>(&I); 2614 const Value *Callee = II->getCalledValue(); 2615 FunctionType *FTy = II->getFunctionType(); 2616 2617 if (II->hasOperandBundles()) 2618 writeOperandBundles(II, InstID); 2619 2620 Code = bitc::FUNC_CODE_INST_INVOKE; 2621 2622 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2623 Vals.push_back(II->getCallingConv() | 1 << 13); 2624 Vals.push_back(VE.getValueID(II->getNormalDest())); 2625 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2626 Vals.push_back(VE.getTypeID(FTy)); 2627 pushValueAndType(Callee, InstID, Vals); 2628 2629 // Emit value #'s for the fixed parameters. 2630 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2631 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2632 2633 // Emit type/value pairs for varargs params. 2634 if (FTy->isVarArg()) { 2635 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2636 i != e; ++i) 2637 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2638 } 2639 break; 2640 } 2641 case Instruction::Resume: 2642 Code = bitc::FUNC_CODE_INST_RESUME; 2643 pushValueAndType(I.getOperand(0), InstID, Vals); 2644 break; 2645 case Instruction::CleanupRet: { 2646 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2647 const auto &CRI = cast<CleanupReturnInst>(I); 2648 pushValue(CRI.getCleanupPad(), InstID, Vals); 2649 if (CRI.hasUnwindDest()) 2650 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2651 break; 2652 } 2653 case Instruction::CatchRet: { 2654 Code = bitc::FUNC_CODE_INST_CATCHRET; 2655 const auto &CRI = cast<CatchReturnInst>(I); 2656 pushValue(CRI.getCatchPad(), InstID, Vals); 2657 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2658 break; 2659 } 2660 case Instruction::CleanupPad: 2661 case Instruction::CatchPad: { 2662 const auto &FuncletPad = cast<FuncletPadInst>(I); 2663 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2664 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2665 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2666 2667 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2668 Vals.push_back(NumArgOperands); 2669 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2670 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2671 break; 2672 } 2673 case Instruction::CatchSwitch: { 2674 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2675 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2676 2677 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2678 2679 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2680 Vals.push_back(NumHandlers); 2681 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2682 Vals.push_back(VE.getValueID(CatchPadBB)); 2683 2684 if (CatchSwitch.hasUnwindDest()) 2685 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2686 break; 2687 } 2688 case Instruction::Unreachable: 2689 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2690 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2691 break; 2692 2693 case Instruction::PHI: { 2694 const PHINode &PN = cast<PHINode>(I); 2695 Code = bitc::FUNC_CODE_INST_PHI; 2696 // With the newer instruction encoding, forward references could give 2697 // negative valued IDs. This is most common for PHIs, so we use 2698 // signed VBRs. 2699 SmallVector<uint64_t, 128> Vals64; 2700 Vals64.push_back(VE.getTypeID(PN.getType())); 2701 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2702 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2703 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2704 } 2705 // Emit a Vals64 vector and exit. 2706 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2707 Vals64.clear(); 2708 return; 2709 } 2710 2711 case Instruction::LandingPad: { 2712 const LandingPadInst &LP = cast<LandingPadInst>(I); 2713 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2714 Vals.push_back(VE.getTypeID(LP.getType())); 2715 Vals.push_back(LP.isCleanup()); 2716 Vals.push_back(LP.getNumClauses()); 2717 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2718 if (LP.isCatch(I)) 2719 Vals.push_back(LandingPadInst::Catch); 2720 else 2721 Vals.push_back(LandingPadInst::Filter); 2722 pushValueAndType(LP.getClause(I), InstID, Vals); 2723 } 2724 break; 2725 } 2726 2727 case Instruction::Alloca: { 2728 Code = bitc::FUNC_CODE_INST_ALLOCA; 2729 const AllocaInst &AI = cast<AllocaInst>(I); 2730 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2731 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2732 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2733 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2734 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2735 "not enough bits for maximum alignment"); 2736 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2737 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2738 AlignRecord |= 1 << 6; 2739 AlignRecord |= AI.isSwiftError() << 7; 2740 Vals.push_back(AlignRecord); 2741 break; 2742 } 2743 2744 case Instruction::Load: 2745 if (cast<LoadInst>(I).isAtomic()) { 2746 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2747 pushValueAndType(I.getOperand(0), InstID, Vals); 2748 } else { 2749 Code = bitc::FUNC_CODE_INST_LOAD; 2750 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2751 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2752 } 2753 Vals.push_back(VE.getTypeID(I.getType())); 2754 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2755 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2756 if (cast<LoadInst>(I).isAtomic()) { 2757 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2758 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2759 } 2760 break; 2761 case Instruction::Store: 2762 if (cast<StoreInst>(I).isAtomic()) 2763 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2764 else 2765 Code = bitc::FUNC_CODE_INST_STORE; 2766 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2767 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2768 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2769 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2770 if (cast<StoreInst>(I).isAtomic()) { 2771 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2772 Vals.push_back( 2773 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2774 } 2775 break; 2776 case Instruction::AtomicCmpXchg: 2777 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2778 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2779 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2780 pushValue(I.getOperand(2), InstID, Vals); // newval. 2781 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2782 Vals.push_back( 2783 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2784 Vals.push_back( 2785 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2786 Vals.push_back( 2787 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2788 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2789 break; 2790 case Instruction::AtomicRMW: 2791 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2792 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2793 pushValue(I.getOperand(1), InstID, Vals); // val. 2794 Vals.push_back( 2795 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2796 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2797 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2798 Vals.push_back( 2799 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2800 break; 2801 case Instruction::Fence: 2802 Code = bitc::FUNC_CODE_INST_FENCE; 2803 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2804 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2805 break; 2806 case Instruction::Call: { 2807 const CallInst &CI = cast<CallInst>(I); 2808 FunctionType *FTy = CI.getFunctionType(); 2809 2810 if (CI.hasOperandBundles()) 2811 writeOperandBundles(&CI, InstID); 2812 2813 Code = bitc::FUNC_CODE_INST_CALL; 2814 2815 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2816 2817 unsigned Flags = getOptimizationFlags(&I); 2818 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2819 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2820 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2821 1 << bitc::CALL_EXPLICIT_TYPE | 2822 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2823 unsigned(Flags != 0) << bitc::CALL_FMF); 2824 if (Flags != 0) 2825 Vals.push_back(Flags); 2826 2827 Vals.push_back(VE.getTypeID(FTy)); 2828 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2829 2830 // Emit value #'s for the fixed parameters. 2831 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2832 // Check for labels (can happen with asm labels). 2833 if (FTy->getParamType(i)->isLabelTy()) 2834 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2835 else 2836 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2837 } 2838 2839 // Emit type/value pairs for varargs params. 2840 if (FTy->isVarArg()) { 2841 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2842 i != e; ++i) 2843 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2844 } 2845 break; 2846 } 2847 case Instruction::VAArg: 2848 Code = bitc::FUNC_CODE_INST_VAARG; 2849 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2850 pushValue(I.getOperand(0), InstID, Vals); // valist. 2851 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2852 break; 2853 } 2854 2855 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2856 Vals.clear(); 2857 } 2858 2859 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2860 /// to allow clients to efficiently find the function body. 2861 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2862 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2863 // Get the offset of the VST we are writing, and backpatch it into 2864 // the VST forward declaration record. 2865 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2866 // The BitcodeStartBit was the stream offset of the identification block. 2867 VSTOffset -= bitcodeStartBit(); 2868 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2869 // Note that we add 1 here because the offset is relative to one word 2870 // before the start of the identification block, which was historically 2871 // always the start of the regular bitcode header. 2872 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2873 2874 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2875 2876 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2877 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2880 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2881 2882 for (const Function &F : M) { 2883 uint64_t Record[2]; 2884 2885 if (F.isDeclaration()) 2886 continue; 2887 2888 Record[0] = VE.getValueID(&F); 2889 2890 // Save the word offset of the function (from the start of the 2891 // actual bitcode written to the stream). 2892 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2893 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2894 // Note that we add 1 here because the offset is relative to one word 2895 // before the start of the identification block, which was historically 2896 // always the start of the regular bitcode header. 2897 Record[1] = BitcodeIndex / 32 + 1; 2898 2899 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2900 } 2901 2902 Stream.ExitBlock(); 2903 } 2904 2905 /// Emit names for arguments, instructions and basic blocks in a function. 2906 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2907 const ValueSymbolTable &VST) { 2908 if (VST.empty()) 2909 return; 2910 2911 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2912 2913 // FIXME: Set up the abbrev, we know how many values there are! 2914 // FIXME: We know if the type names can use 7-bit ascii. 2915 SmallVector<uint64_t, 64> NameVals; 2916 2917 for (const ValueName &Name : VST) { 2918 // Figure out the encoding to use for the name. 2919 StringEncoding Bits = getStringEncoding(Name.getKey()); 2920 2921 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2922 NameVals.push_back(VE.getValueID(Name.getValue())); 2923 2924 // VST_CODE_ENTRY: [valueid, namechar x N] 2925 // VST_CODE_BBENTRY: [bbid, namechar x N] 2926 unsigned Code; 2927 if (isa<BasicBlock>(Name.getValue())) { 2928 Code = bitc::VST_CODE_BBENTRY; 2929 if (Bits == SE_Char6) 2930 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2931 } else { 2932 Code = bitc::VST_CODE_ENTRY; 2933 if (Bits == SE_Char6) 2934 AbbrevToUse = VST_ENTRY_6_ABBREV; 2935 else if (Bits == SE_Fixed7) 2936 AbbrevToUse = VST_ENTRY_7_ABBREV; 2937 } 2938 2939 for (const auto P : Name.getKey()) 2940 NameVals.push_back((unsigned char)P); 2941 2942 // Emit the finished record. 2943 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2944 NameVals.clear(); 2945 } 2946 2947 Stream.ExitBlock(); 2948 } 2949 2950 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2951 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2952 unsigned Code; 2953 if (isa<BasicBlock>(Order.V)) 2954 Code = bitc::USELIST_CODE_BB; 2955 else 2956 Code = bitc::USELIST_CODE_DEFAULT; 2957 2958 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2959 Record.push_back(VE.getValueID(Order.V)); 2960 Stream.EmitRecord(Code, Record); 2961 } 2962 2963 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2964 assert(VE.shouldPreserveUseListOrder() && 2965 "Expected to be preserving use-list order"); 2966 2967 auto hasMore = [&]() { 2968 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2969 }; 2970 if (!hasMore()) 2971 // Nothing to do. 2972 return; 2973 2974 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2975 while (hasMore()) { 2976 writeUseList(std::move(VE.UseListOrders.back())); 2977 VE.UseListOrders.pop_back(); 2978 } 2979 Stream.ExitBlock(); 2980 } 2981 2982 /// Emit a function body to the module stream. 2983 void ModuleBitcodeWriter::writeFunction( 2984 const Function &F, 2985 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2986 // Save the bitcode index of the start of this function block for recording 2987 // in the VST. 2988 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2989 2990 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2991 VE.incorporateFunction(F); 2992 2993 SmallVector<unsigned, 64> Vals; 2994 2995 // Emit the number of basic blocks, so the reader can create them ahead of 2996 // time. 2997 Vals.push_back(VE.getBasicBlocks().size()); 2998 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2999 Vals.clear(); 3000 3001 // If there are function-local constants, emit them now. 3002 unsigned CstStart, CstEnd; 3003 VE.getFunctionConstantRange(CstStart, CstEnd); 3004 writeConstants(CstStart, CstEnd, false); 3005 3006 // If there is function-local metadata, emit it now. 3007 writeFunctionMetadata(F); 3008 3009 // Keep a running idea of what the instruction ID is. 3010 unsigned InstID = CstEnd; 3011 3012 bool NeedsMetadataAttachment = F.hasMetadata(); 3013 3014 DILocation *LastDL = nullptr; 3015 // Finally, emit all the instructions, in order. 3016 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3017 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3018 I != E; ++I) { 3019 writeInstruction(*I, InstID, Vals); 3020 3021 if (!I->getType()->isVoidTy()) 3022 ++InstID; 3023 3024 // If the instruction has metadata, write a metadata attachment later. 3025 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3026 3027 // If the instruction has a debug location, emit it. 3028 DILocation *DL = I->getDebugLoc(); 3029 if (!DL) 3030 continue; 3031 3032 if (DL == LastDL) { 3033 // Just repeat the same debug loc as last time. 3034 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3035 continue; 3036 } 3037 3038 Vals.push_back(DL->getLine()); 3039 Vals.push_back(DL->getColumn()); 3040 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3041 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3042 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3043 Vals.clear(); 3044 3045 LastDL = DL; 3046 } 3047 3048 // Emit names for all the instructions etc. 3049 if (auto *Symtab = F.getValueSymbolTable()) 3050 writeFunctionLevelValueSymbolTable(*Symtab); 3051 3052 if (NeedsMetadataAttachment) 3053 writeFunctionMetadataAttachment(F); 3054 if (VE.shouldPreserveUseListOrder()) 3055 writeUseListBlock(&F); 3056 VE.purgeFunction(); 3057 Stream.ExitBlock(); 3058 } 3059 3060 // Emit blockinfo, which defines the standard abbreviations etc. 3061 void ModuleBitcodeWriter::writeBlockInfo() { 3062 // We only want to emit block info records for blocks that have multiple 3063 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3064 // Other blocks can define their abbrevs inline. 3065 Stream.EnterBlockInfoBlock(); 3066 3067 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3068 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3073 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3074 VST_ENTRY_8_ABBREV) 3075 llvm_unreachable("Unexpected abbrev ordering!"); 3076 } 3077 3078 { // 7-bit fixed width VST_CODE_ENTRY strings. 3079 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3080 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3084 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3085 VST_ENTRY_7_ABBREV) 3086 llvm_unreachable("Unexpected abbrev ordering!"); 3087 } 3088 { // 6-bit char6 VST_CODE_ENTRY strings. 3089 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3090 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3094 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3095 VST_ENTRY_6_ABBREV) 3096 llvm_unreachable("Unexpected abbrev ordering!"); 3097 } 3098 { // 6-bit char6 VST_CODE_BBENTRY strings. 3099 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3100 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3104 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3105 VST_BBENTRY_6_ABBREV) 3106 llvm_unreachable("Unexpected abbrev ordering!"); 3107 } 3108 3109 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3110 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3111 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3113 VE.computeBitsRequiredForTypeIndicies())); 3114 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3115 CONSTANTS_SETTYPE_ABBREV) 3116 llvm_unreachable("Unexpected abbrev ordering!"); 3117 } 3118 3119 { // INTEGER abbrev for CONSTANTS_BLOCK. 3120 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3121 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3123 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3124 CONSTANTS_INTEGER_ABBREV) 3125 llvm_unreachable("Unexpected abbrev ordering!"); 3126 } 3127 3128 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3129 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3130 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3133 VE.computeBitsRequiredForTypeIndicies())); 3134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3135 3136 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3137 CONSTANTS_CE_CAST_Abbrev) 3138 llvm_unreachable("Unexpected abbrev ordering!"); 3139 } 3140 { // NULL abbrev for CONSTANTS_BLOCK. 3141 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3142 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3143 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3144 CONSTANTS_NULL_Abbrev) 3145 llvm_unreachable("Unexpected abbrev ordering!"); 3146 } 3147 3148 // FIXME: This should only use space for first class types! 3149 3150 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3151 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3152 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3155 VE.computeBitsRequiredForTypeIndicies())); 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3158 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3159 FUNCTION_INST_LOAD_ABBREV) 3160 llvm_unreachable("Unexpected abbrev ordering!"); 3161 } 3162 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3163 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3164 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3168 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3169 FUNCTION_INST_BINOP_ABBREV) 3170 llvm_unreachable("Unexpected abbrev ordering!"); 3171 } 3172 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3173 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3174 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3179 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3180 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3181 llvm_unreachable("Unexpected abbrev ordering!"); 3182 } 3183 { // INST_CAST abbrev for FUNCTION_BLOCK. 3184 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3185 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3188 VE.computeBitsRequiredForTypeIndicies())); 3189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3190 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3191 FUNCTION_INST_CAST_ABBREV) 3192 llvm_unreachable("Unexpected abbrev ordering!"); 3193 } 3194 3195 { // INST_RET abbrev for FUNCTION_BLOCK. 3196 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3197 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3198 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3199 FUNCTION_INST_RET_VOID_ABBREV) 3200 llvm_unreachable("Unexpected abbrev ordering!"); 3201 } 3202 { // INST_RET abbrev for FUNCTION_BLOCK. 3203 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3204 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3206 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3207 FUNCTION_INST_RET_VAL_ABBREV) 3208 llvm_unreachable("Unexpected abbrev ordering!"); 3209 } 3210 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3211 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3212 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3213 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3214 FUNCTION_INST_UNREACHABLE_ABBREV) 3215 llvm_unreachable("Unexpected abbrev ordering!"); 3216 } 3217 { 3218 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3219 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3222 Log2_32_Ceil(VE.getTypes().size() + 1))); 3223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3225 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3226 FUNCTION_INST_GEP_ABBREV) 3227 llvm_unreachable("Unexpected abbrev ordering!"); 3228 } 3229 3230 Stream.ExitBlock(); 3231 } 3232 3233 /// Write the module path strings, currently only used when generating 3234 /// a combined index file. 3235 void IndexBitcodeWriter::writeModStrings() { 3236 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3237 3238 // TODO: See which abbrev sizes we actually need to emit 3239 3240 // 8-bit fixed-width MST_ENTRY strings. 3241 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3242 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3246 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3247 3248 // 7-bit fixed width MST_ENTRY strings. 3249 Abbv = std::make_shared<BitCodeAbbrev>(); 3250 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3254 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3255 3256 // 6-bit char6 MST_ENTRY strings. 3257 Abbv = std::make_shared<BitCodeAbbrev>(); 3258 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3262 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3263 3264 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3265 Abbv = std::make_shared<BitCodeAbbrev>(); 3266 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3272 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3273 3274 SmallVector<unsigned, 64> Vals; 3275 forEachModule( 3276 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3277 StringRef Key = MPSE.getKey(); 3278 const auto &Value = MPSE.getValue(); 3279 StringEncoding Bits = getStringEncoding(Key); 3280 unsigned AbbrevToUse = Abbrev8Bit; 3281 if (Bits == SE_Char6) 3282 AbbrevToUse = Abbrev6Bit; 3283 else if (Bits == SE_Fixed7) 3284 AbbrevToUse = Abbrev7Bit; 3285 3286 Vals.push_back(Value.first); 3287 Vals.append(Key.begin(), Key.end()); 3288 3289 // Emit the finished record. 3290 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3291 3292 // Emit an optional hash for the module now 3293 const auto &Hash = Value.second; 3294 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3295 Vals.assign(Hash.begin(), Hash.end()); 3296 // Emit the hash record. 3297 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3298 } 3299 3300 Vals.clear(); 3301 }); 3302 Stream.ExitBlock(); 3303 } 3304 3305 /// Write the function type metadata related records that need to appear before 3306 /// a function summary entry (whether per-module or combined). 3307 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3308 FunctionSummary *FS) { 3309 if (!FS->type_tests().empty()) 3310 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3311 3312 SmallVector<uint64_t, 64> Record; 3313 3314 auto WriteVFuncIdVec = [&](uint64_t Ty, 3315 ArrayRef<FunctionSummary::VFuncId> VFs) { 3316 if (VFs.empty()) 3317 return; 3318 Record.clear(); 3319 for (auto &VF : VFs) { 3320 Record.push_back(VF.GUID); 3321 Record.push_back(VF.Offset); 3322 } 3323 Stream.EmitRecord(Ty, Record); 3324 }; 3325 3326 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3327 FS->type_test_assume_vcalls()); 3328 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3329 FS->type_checked_load_vcalls()); 3330 3331 auto WriteConstVCallVec = [&](uint64_t Ty, 3332 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3333 for (auto &VC : VCs) { 3334 Record.clear(); 3335 Record.push_back(VC.VFunc.GUID); 3336 Record.push_back(VC.VFunc.Offset); 3337 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3338 Stream.EmitRecord(Ty, Record); 3339 } 3340 }; 3341 3342 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3343 FS->type_test_assume_const_vcalls()); 3344 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3345 FS->type_checked_load_const_vcalls()); 3346 } 3347 3348 // Helper to emit a single function summary record. 3349 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3350 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3351 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3352 const Function &F) { 3353 NameVals.push_back(ValueID); 3354 3355 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3356 writeFunctionTypeMetadataRecords(Stream, FS); 3357 3358 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3359 NameVals.push_back(FS->instCount()); 3360 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3361 NameVals.push_back(FS->refs().size()); 3362 3363 for (auto &RI : FS->refs()) 3364 NameVals.push_back(VE.getValueID(RI.getValue())); 3365 3366 bool HasProfileData = F.getEntryCount().hasValue(); 3367 for (auto &ECI : FS->calls()) { 3368 NameVals.push_back(getValueId(ECI.first)); 3369 if (HasProfileData) 3370 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3371 } 3372 3373 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3374 unsigned Code = 3375 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3376 3377 // Emit the finished record. 3378 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3379 NameVals.clear(); 3380 } 3381 3382 // Collect the global value references in the given variable's initializer, 3383 // and emit them in a summary record. 3384 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3385 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3386 unsigned FSModRefsAbbrev) { 3387 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3388 if (!VI || VI.getSummaryList().empty()) { 3389 // Only declarations should not have a summary (a declaration might however 3390 // have a summary if the def was in module level asm). 3391 assert(V.isDeclaration()); 3392 return; 3393 } 3394 auto *Summary = VI.getSummaryList()[0].get(); 3395 NameVals.push_back(VE.getValueID(&V)); 3396 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3397 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3398 3399 unsigned SizeBeforeRefs = NameVals.size(); 3400 for (auto &RI : VS->refs()) 3401 NameVals.push_back(VE.getValueID(RI.getValue())); 3402 // Sort the refs for determinism output, the vector returned by FS->refs() has 3403 // been initialized from a DenseSet. 3404 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3405 3406 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3407 FSModRefsAbbrev); 3408 NameVals.clear(); 3409 } 3410 3411 // Current version for the summary. 3412 // This is bumped whenever we introduce changes in the way some record are 3413 // interpreted, like flags for instance. 3414 static const uint64_t INDEX_VERSION = 4; 3415 3416 /// Emit the per-module summary section alongside the rest of 3417 /// the module's bitcode. 3418 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3419 // By default we compile with ThinLTO if the module has a summary, but the 3420 // client can request full LTO with a module flag. 3421 bool IsThinLTO = true; 3422 if (auto *MD = 3423 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3424 IsThinLTO = MD->getZExtValue(); 3425 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3426 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3427 4); 3428 3429 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3430 3431 if (Index->begin() == Index->end()) { 3432 Stream.ExitBlock(); 3433 return; 3434 } 3435 3436 for (const auto &GVI : valueIds()) { 3437 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3438 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3439 } 3440 3441 // Abbrev for FS_PERMODULE. 3442 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3443 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3449 // numrefs x valueid, n x (valueid) 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3452 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3453 3454 // Abbrev for FS_PERMODULE_PROFILE. 3455 Abbv = std::make_shared<BitCodeAbbrev>(); 3456 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3462 // numrefs x valueid, n x (valueid, hotness) 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3465 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3466 3467 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3468 Abbv = std::make_shared<BitCodeAbbrev>(); 3469 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3474 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3475 3476 // Abbrev for FS_ALIAS. 3477 Abbv = std::make_shared<BitCodeAbbrev>(); 3478 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3482 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3483 3484 SmallVector<uint64_t, 64> NameVals; 3485 // Iterate over the list of functions instead of the Index to 3486 // ensure the ordering is stable. 3487 for (const Function &F : M) { 3488 // Summary emission does not support anonymous functions, they have to 3489 // renamed using the anonymous function renaming pass. 3490 if (!F.hasName()) 3491 report_fatal_error("Unexpected anonymous function when writing summary"); 3492 3493 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3494 if (!VI || VI.getSummaryList().empty()) { 3495 // Only declarations should not have a summary (a declaration might 3496 // however have a summary if the def was in module level asm). 3497 assert(F.isDeclaration()); 3498 continue; 3499 } 3500 auto *Summary = VI.getSummaryList()[0].get(); 3501 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3502 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3503 } 3504 3505 // Capture references from GlobalVariable initializers, which are outside 3506 // of a function scope. 3507 for (const GlobalVariable &G : M.globals()) 3508 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3509 3510 for (const GlobalAlias &A : M.aliases()) { 3511 auto *Aliasee = A.getBaseObject(); 3512 if (!Aliasee->hasName()) 3513 // Nameless function don't have an entry in the summary, skip it. 3514 continue; 3515 auto AliasId = VE.getValueID(&A); 3516 auto AliaseeId = VE.getValueID(Aliasee); 3517 NameVals.push_back(AliasId); 3518 auto *Summary = Index->getGlobalValueSummary(A); 3519 AliasSummary *AS = cast<AliasSummary>(Summary); 3520 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3521 NameVals.push_back(AliaseeId); 3522 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3523 NameVals.clear(); 3524 } 3525 3526 Stream.ExitBlock(); 3527 } 3528 3529 /// Emit the combined summary section into the combined index file. 3530 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3531 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3532 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3533 3534 for (const auto &GVI : valueIds()) { 3535 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3536 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3537 } 3538 3539 // Abbrev for FS_COMBINED. 3540 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3541 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3548 // numrefs x valueid, n x (valueid) 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3551 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3552 3553 // Abbrev for FS_COMBINED_PROFILE. 3554 Abbv = std::make_shared<BitCodeAbbrev>(); 3555 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3562 // numrefs x valueid, n x (valueid, hotness) 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3565 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3566 3567 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3568 Abbv = std::make_shared<BitCodeAbbrev>(); 3569 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3575 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3576 3577 // Abbrev for FS_COMBINED_ALIAS. 3578 Abbv = std::make_shared<BitCodeAbbrev>(); 3579 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3584 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3585 3586 // The aliases are emitted as a post-pass, and will point to the value 3587 // id of the aliasee. Save them in a vector for post-processing. 3588 SmallVector<AliasSummary *, 64> Aliases; 3589 3590 // Save the value id for each summary for alias emission. 3591 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3592 3593 SmallVector<uint64_t, 64> NameVals; 3594 3595 // For local linkage, we also emit the original name separately 3596 // immediately after the record. 3597 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3598 if (!GlobalValue::isLocalLinkage(S.linkage())) 3599 return; 3600 NameVals.push_back(S.getOriginalName()); 3601 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3602 NameVals.clear(); 3603 }; 3604 3605 forEachSummary([&](GVInfo I) { 3606 GlobalValueSummary *S = I.second; 3607 assert(S); 3608 3609 auto ValueId = getValueId(I.first); 3610 assert(ValueId); 3611 SummaryToValueIdMap[S] = *ValueId; 3612 3613 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3614 // Will process aliases as a post-pass because the reader wants all 3615 // global to be loaded first. 3616 Aliases.push_back(AS); 3617 return; 3618 } 3619 3620 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3621 NameVals.push_back(*ValueId); 3622 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3623 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3624 for (auto &RI : VS->refs()) { 3625 auto RefValueId = getValueId(RI.getGUID()); 3626 if (!RefValueId) 3627 continue; 3628 NameVals.push_back(*RefValueId); 3629 } 3630 3631 // Emit the finished record. 3632 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3633 FSModRefsAbbrev); 3634 NameVals.clear(); 3635 MaybeEmitOriginalName(*S); 3636 return; 3637 } 3638 3639 auto *FS = cast<FunctionSummary>(S); 3640 writeFunctionTypeMetadataRecords(Stream, FS); 3641 3642 NameVals.push_back(*ValueId); 3643 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3644 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3645 NameVals.push_back(FS->instCount()); 3646 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3647 // Fill in below 3648 NameVals.push_back(0); 3649 3650 unsigned Count = 0; 3651 for (auto &RI : FS->refs()) { 3652 auto RefValueId = getValueId(RI.getGUID()); 3653 if (!RefValueId) 3654 continue; 3655 NameVals.push_back(*RefValueId); 3656 Count++; 3657 } 3658 NameVals[5] = Count; 3659 3660 bool HasProfileData = false; 3661 for (auto &EI : FS->calls()) { 3662 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3663 if (HasProfileData) 3664 break; 3665 } 3666 3667 for (auto &EI : FS->calls()) { 3668 // If this GUID doesn't have a value id, it doesn't have a function 3669 // summary and we don't need to record any calls to it. 3670 GlobalValue::GUID GUID = EI.first.getGUID(); 3671 auto CallValueId = getValueId(GUID); 3672 if (!CallValueId) { 3673 // For SamplePGO, the indirect call targets for local functions will 3674 // have its original name annotated in profile. We try to find the 3675 // corresponding PGOFuncName as the GUID. 3676 GUID = Index.getGUIDFromOriginalID(GUID); 3677 if (GUID == 0) 3678 continue; 3679 CallValueId = getValueId(GUID); 3680 if (!CallValueId) 3681 continue; 3682 // The mapping from OriginalId to GUID may return a GUID 3683 // that corresponds to a static variable. Filter it out here. 3684 // This can happen when 3685 // 1) There is a call to a library function which does not have 3686 // a CallValidId; 3687 // 2) There is a static variable with the OriginalGUID identical 3688 // to the GUID of the library function in 1); 3689 // When this happens, the logic for SamplePGO kicks in and 3690 // the static variable in 2) will be found, which needs to be 3691 // filtered out. 3692 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 3693 if (GVSum && 3694 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 3695 continue; 3696 } 3697 NameVals.push_back(*CallValueId); 3698 if (HasProfileData) 3699 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3700 } 3701 3702 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3703 unsigned Code = 3704 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3705 3706 // Emit the finished record. 3707 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3708 NameVals.clear(); 3709 MaybeEmitOriginalName(*S); 3710 }); 3711 3712 for (auto *AS : Aliases) { 3713 auto AliasValueId = SummaryToValueIdMap[AS]; 3714 assert(AliasValueId); 3715 NameVals.push_back(AliasValueId); 3716 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3717 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3718 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3719 assert(AliaseeValueId); 3720 NameVals.push_back(AliaseeValueId); 3721 3722 // Emit the finished record. 3723 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3724 NameVals.clear(); 3725 MaybeEmitOriginalName(*AS); 3726 } 3727 3728 if (!Index.cfiFunctionDefs().empty()) { 3729 for (auto &S : Index.cfiFunctionDefs()) { 3730 NameVals.push_back(StrtabBuilder.add(S)); 3731 NameVals.push_back(S.size()); 3732 } 3733 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3734 NameVals.clear(); 3735 } 3736 3737 if (!Index.cfiFunctionDecls().empty()) { 3738 for (auto &S : Index.cfiFunctionDecls()) { 3739 NameVals.push_back(StrtabBuilder.add(S)); 3740 NameVals.push_back(S.size()); 3741 } 3742 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3743 NameVals.clear(); 3744 } 3745 3746 Stream.ExitBlock(); 3747 } 3748 3749 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3750 /// current llvm version, and a record for the epoch number. 3751 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3752 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3753 3754 // Write the "user readable" string identifying the bitcode producer 3755 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3756 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3759 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3760 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3761 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3762 3763 // Write the epoch version 3764 Abbv = std::make_shared<BitCodeAbbrev>(); 3765 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3767 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3768 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3769 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3770 Stream.ExitBlock(); 3771 } 3772 3773 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3774 // Emit the module's hash. 3775 // MODULE_CODE_HASH: [5*i32] 3776 if (GenerateHash) { 3777 uint32_t Vals[5]; 3778 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3779 Buffer.size() - BlockStartPos)); 3780 StringRef Hash = Hasher.result(); 3781 for (int Pos = 0; Pos < 20; Pos += 4) { 3782 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3783 } 3784 3785 // Emit the finished record. 3786 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3787 3788 if (ModHash) 3789 // Save the written hash value. 3790 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3791 } 3792 } 3793 3794 void ModuleBitcodeWriter::write() { 3795 writeIdentificationBlock(Stream); 3796 3797 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3798 size_t BlockStartPos = Buffer.size(); 3799 3800 writeModuleVersion(); 3801 3802 // Emit blockinfo, which defines the standard abbreviations etc. 3803 writeBlockInfo(); 3804 3805 // Emit information about attribute groups. 3806 writeAttributeGroupTable(); 3807 3808 // Emit information about parameter attributes. 3809 writeAttributeTable(); 3810 3811 // Emit information describing all of the types in the module. 3812 writeTypeTable(); 3813 3814 writeComdats(); 3815 3816 // Emit top-level description of module, including target triple, inline asm, 3817 // descriptors for global variables, and function prototype info. 3818 writeModuleInfo(); 3819 3820 // Emit constants. 3821 writeModuleConstants(); 3822 3823 // Emit metadata kind names. 3824 writeModuleMetadataKinds(); 3825 3826 // Emit metadata. 3827 writeModuleMetadata(); 3828 3829 // Emit module-level use-lists. 3830 if (VE.shouldPreserveUseListOrder()) 3831 writeUseListBlock(nullptr); 3832 3833 writeOperandBundleTags(); 3834 writeSyncScopeNames(); 3835 3836 // Emit function bodies. 3837 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3838 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3839 if (!F->isDeclaration()) 3840 writeFunction(*F, FunctionToBitcodeIndex); 3841 3842 // Need to write after the above call to WriteFunction which populates 3843 // the summary information in the index. 3844 if (Index) 3845 writePerModuleGlobalValueSummary(); 3846 3847 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3848 3849 writeModuleHash(BlockStartPos); 3850 3851 Stream.ExitBlock(); 3852 } 3853 3854 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3855 uint32_t &Position) { 3856 support::endian::write32le(&Buffer[Position], Value); 3857 Position += 4; 3858 } 3859 3860 /// If generating a bc file on darwin, we have to emit a 3861 /// header and trailer to make it compatible with the system archiver. To do 3862 /// this we emit the following header, and then emit a trailer that pads the 3863 /// file out to be a multiple of 16 bytes. 3864 /// 3865 /// struct bc_header { 3866 /// uint32_t Magic; // 0x0B17C0DE 3867 /// uint32_t Version; // Version, currently always 0. 3868 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3869 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3870 /// uint32_t CPUType; // CPU specifier. 3871 /// ... potentially more later ... 3872 /// }; 3873 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3874 const Triple &TT) { 3875 unsigned CPUType = ~0U; 3876 3877 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3878 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3879 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3880 // specific constants here because they are implicitly part of the Darwin ABI. 3881 enum { 3882 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3883 DARWIN_CPU_TYPE_X86 = 7, 3884 DARWIN_CPU_TYPE_ARM = 12, 3885 DARWIN_CPU_TYPE_POWERPC = 18 3886 }; 3887 3888 Triple::ArchType Arch = TT.getArch(); 3889 if (Arch == Triple::x86_64) 3890 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3891 else if (Arch == Triple::x86) 3892 CPUType = DARWIN_CPU_TYPE_X86; 3893 else if (Arch == Triple::ppc) 3894 CPUType = DARWIN_CPU_TYPE_POWERPC; 3895 else if (Arch == Triple::ppc64) 3896 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3897 else if (Arch == Triple::arm || Arch == Triple::thumb) 3898 CPUType = DARWIN_CPU_TYPE_ARM; 3899 3900 // Traditional Bitcode starts after header. 3901 assert(Buffer.size() >= BWH_HeaderSize && 3902 "Expected header size to be reserved"); 3903 unsigned BCOffset = BWH_HeaderSize; 3904 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3905 3906 // Write the magic and version. 3907 unsigned Position = 0; 3908 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3909 writeInt32ToBuffer(0, Buffer, Position); // Version. 3910 writeInt32ToBuffer(BCOffset, Buffer, Position); 3911 writeInt32ToBuffer(BCSize, Buffer, Position); 3912 writeInt32ToBuffer(CPUType, Buffer, Position); 3913 3914 // If the file is not a multiple of 16 bytes, insert dummy padding. 3915 while (Buffer.size() & 15) 3916 Buffer.push_back(0); 3917 } 3918 3919 /// Helper to write the header common to all bitcode files. 3920 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3921 // Emit the file header. 3922 Stream.Emit((unsigned)'B', 8); 3923 Stream.Emit((unsigned)'C', 8); 3924 Stream.Emit(0x0, 4); 3925 Stream.Emit(0xC, 4); 3926 Stream.Emit(0xE, 4); 3927 Stream.Emit(0xD, 4); 3928 } 3929 3930 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3931 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3932 writeBitcodeHeader(*Stream); 3933 } 3934 3935 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3936 3937 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3938 Stream->EnterSubblock(Block, 3); 3939 3940 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3941 Abbv->Add(BitCodeAbbrevOp(Record)); 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3943 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3944 3945 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3946 3947 Stream->ExitBlock(); 3948 } 3949 3950 void BitcodeWriter::writeSymtab() { 3951 assert(!WroteStrtab && !WroteSymtab); 3952 3953 // If any module has module-level inline asm, we will require a registered asm 3954 // parser for the target so that we can create an accurate symbol table for 3955 // the module. 3956 for (Module *M : Mods) { 3957 if (M->getModuleInlineAsm().empty()) 3958 continue; 3959 3960 std::string Err; 3961 const Triple TT(M->getTargetTriple()); 3962 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 3963 if (!T || !T->hasMCAsmParser()) 3964 return; 3965 } 3966 3967 WroteSymtab = true; 3968 SmallVector<char, 0> Symtab; 3969 // The irsymtab::build function may be unable to create a symbol table if the 3970 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 3971 // table is not required for correctness, but we still want to be able to 3972 // write malformed modules to bitcode files, so swallow the error. 3973 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 3974 consumeError(std::move(E)); 3975 return; 3976 } 3977 3978 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 3979 {Symtab.data(), Symtab.size()}); 3980 } 3981 3982 void BitcodeWriter::writeStrtab() { 3983 assert(!WroteStrtab); 3984 3985 std::vector<char> Strtab; 3986 StrtabBuilder.finalizeInOrder(); 3987 Strtab.resize(StrtabBuilder.getSize()); 3988 StrtabBuilder.write((uint8_t *)Strtab.data()); 3989 3990 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3991 {Strtab.data(), Strtab.size()}); 3992 3993 WroteStrtab = true; 3994 } 3995 3996 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3997 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3998 WroteStrtab = true; 3999 } 4000 4001 void BitcodeWriter::writeModule(const Module *M, 4002 bool ShouldPreserveUseListOrder, 4003 const ModuleSummaryIndex *Index, 4004 bool GenerateHash, ModuleHash *ModHash) { 4005 assert(!WroteStrtab); 4006 4007 // The Mods vector is used by irsymtab::build, which requires non-const 4008 // Modules in case it needs to materialize metadata. But the bitcode writer 4009 // requires that the module is materialized, so we can cast to non-const here, 4010 // after checking that it is in fact materialized. 4011 assert(M->isMaterialized()); 4012 Mods.push_back(const_cast<Module *>(M)); 4013 4014 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4015 ShouldPreserveUseListOrder, Index, 4016 GenerateHash, ModHash); 4017 ModuleWriter.write(); 4018 } 4019 4020 void BitcodeWriter::writeIndex( 4021 const ModuleSummaryIndex *Index, 4022 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4023 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4024 ModuleToSummariesForIndex); 4025 IndexWriter.write(); 4026 } 4027 4028 /// WriteBitcodeToFile - Write the specified module to the specified output 4029 /// stream. 4030 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 4031 bool ShouldPreserveUseListOrder, 4032 const ModuleSummaryIndex *Index, 4033 bool GenerateHash, ModuleHash *ModHash) { 4034 SmallVector<char, 0> Buffer; 4035 Buffer.reserve(256*1024); 4036 4037 // If this is darwin or another generic macho target, reserve space for the 4038 // header. 4039 Triple TT(M->getTargetTriple()); 4040 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4041 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4042 4043 BitcodeWriter Writer(Buffer); 4044 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4045 ModHash); 4046 Writer.writeSymtab(); 4047 Writer.writeStrtab(); 4048 4049 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4050 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4051 4052 // Write the generated bitstream to "Out". 4053 Out.write((char*)&Buffer.front(), Buffer.size()); 4054 } 4055 4056 void IndexBitcodeWriter::write() { 4057 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4058 4059 writeModuleVersion(); 4060 4061 // Write the module paths in the combined index. 4062 writeModStrings(); 4063 4064 // Write the summary combined index records. 4065 writeCombinedGlobalValueSummary(); 4066 4067 Stream.ExitBlock(); 4068 } 4069 4070 // Write the specified module summary index to the given raw output stream, 4071 // where it will be written in a new bitcode block. This is used when 4072 // writing the combined index file for ThinLTO. When writing a subset of the 4073 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4074 void llvm::WriteIndexToFile( 4075 const ModuleSummaryIndex &Index, raw_ostream &Out, 4076 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4077 SmallVector<char, 0> Buffer; 4078 Buffer.reserve(256 * 1024); 4079 4080 BitcodeWriter Writer(Buffer); 4081 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4082 Writer.writeStrtab(); 4083 4084 Out.write((char *)&Buffer.front(), Buffer.size()); 4085 } 4086 4087 namespace { 4088 4089 /// Class to manage the bitcode writing for a thin link bitcode file. 4090 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4091 /// ModHash is for use in ThinLTO incremental build, generated while writing 4092 /// the module bitcode file. 4093 const ModuleHash *ModHash; 4094 4095 public: 4096 ThinLinkBitcodeWriter(const Module *M, StringTableBuilder &StrtabBuilder, 4097 BitstreamWriter &Stream, 4098 const ModuleSummaryIndex &Index, 4099 const ModuleHash &ModHash) 4100 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4101 /*ShouldPreserveUseListOrder=*/false, &Index), 4102 ModHash(&ModHash) {} 4103 4104 void write(); 4105 4106 private: 4107 void writeSimplifiedModuleInfo(); 4108 }; 4109 4110 } // end anonymous namespace 4111 4112 // This function writes a simpilified module info for thin link bitcode file. 4113 // It only contains the source file name along with the name(the offset and 4114 // size in strtab) and linkage for global values. For the global value info 4115 // entry, in order to keep linkage at offset 5, there are three zeros used 4116 // as padding. 4117 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4118 SmallVector<unsigned, 64> Vals; 4119 // Emit the module's source file name. 4120 { 4121 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4122 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4123 if (Bits == SE_Char6) 4124 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4125 else if (Bits == SE_Fixed7) 4126 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4127 4128 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4129 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4130 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4132 Abbv->Add(AbbrevOpToUse); 4133 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4134 4135 for (const auto P : M.getSourceFileName()) 4136 Vals.push_back((unsigned char)P); 4137 4138 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4139 Vals.clear(); 4140 } 4141 4142 // Emit the global variable information. 4143 for (const GlobalVariable &GV : M.globals()) { 4144 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4145 Vals.push_back(StrtabBuilder.add(GV.getName())); 4146 Vals.push_back(GV.getName().size()); 4147 Vals.push_back(0); 4148 Vals.push_back(0); 4149 Vals.push_back(0); 4150 Vals.push_back(getEncodedLinkage(GV)); 4151 4152 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4153 Vals.clear(); 4154 } 4155 4156 // Emit the function proto information. 4157 for (const Function &F : M) { 4158 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4159 Vals.push_back(StrtabBuilder.add(F.getName())); 4160 Vals.push_back(F.getName().size()); 4161 Vals.push_back(0); 4162 Vals.push_back(0); 4163 Vals.push_back(0); 4164 Vals.push_back(getEncodedLinkage(F)); 4165 4166 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4167 Vals.clear(); 4168 } 4169 4170 // Emit the alias information. 4171 for (const GlobalAlias &A : M.aliases()) { 4172 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4173 Vals.push_back(StrtabBuilder.add(A.getName())); 4174 Vals.push_back(A.getName().size()); 4175 Vals.push_back(0); 4176 Vals.push_back(0); 4177 Vals.push_back(0); 4178 Vals.push_back(getEncodedLinkage(A)); 4179 4180 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4181 Vals.clear(); 4182 } 4183 4184 // Emit the ifunc information. 4185 for (const GlobalIFunc &I : M.ifuncs()) { 4186 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4187 Vals.push_back(StrtabBuilder.add(I.getName())); 4188 Vals.push_back(I.getName().size()); 4189 Vals.push_back(0); 4190 Vals.push_back(0); 4191 Vals.push_back(0); 4192 Vals.push_back(getEncodedLinkage(I)); 4193 4194 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4195 Vals.clear(); 4196 } 4197 } 4198 4199 void ThinLinkBitcodeWriter::write() { 4200 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4201 4202 writeModuleVersion(); 4203 4204 writeSimplifiedModuleInfo(); 4205 4206 writePerModuleGlobalValueSummary(); 4207 4208 // Write module hash. 4209 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4210 4211 Stream.ExitBlock(); 4212 } 4213 4214 void BitcodeWriter::writeThinLinkBitcode(const Module *M, 4215 const ModuleSummaryIndex &Index, 4216 const ModuleHash &ModHash) { 4217 assert(!WroteStrtab); 4218 4219 // The Mods vector is used by irsymtab::build, which requires non-const 4220 // Modules in case it needs to materialize metadata. But the bitcode writer 4221 // requires that the module is materialized, so we can cast to non-const here, 4222 // after checking that it is in fact materialized. 4223 assert(M->isMaterialized()); 4224 Mods.push_back(const_cast<Module *>(M)); 4225 4226 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4227 ModHash); 4228 ThinLinkWriter.write(); 4229 } 4230 4231 // Write the specified thin link bitcode file to the given raw output stream, 4232 // where it will be written in a new bitcode block. This is used when 4233 // writing the per-module index file for ThinLTO. 4234 void llvm::WriteThinLinkBitcodeToFile(const Module *M, raw_ostream &Out, 4235 const ModuleSummaryIndex &Index, 4236 const ModuleHash &ModHash) { 4237 SmallVector<char, 0> Buffer; 4238 Buffer.reserve(256 * 1024); 4239 4240 BitcodeWriter Writer(Buffer); 4241 Writer.writeThinLinkBitcode(M, Index, ModHash); 4242 Writer.writeSymtab(); 4243 Writer.writeStrtab(); 4244 4245 Out.write((char *)&Buffer.front(), Buffer.size()); 4246 } 4247