1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Analysis/BlockFrequencyInfo.h" 18 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 19 #include "llvm/Analysis/BranchProbabilityInfo.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Bitcode/BitstreamWriter.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/UseListOrder.h" 36 #include "llvm/IR/ValueSymbolTable.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/Program.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cctype> 43 #include <map> 44 using namespace llvm; 45 46 /// These are manifest constants used by the bitcode writer. They do not need to 47 /// be kept in sync with the reader, but need to be consistent within this file. 48 enum { 49 // VALUE_SYMTAB_BLOCK abbrev id's. 50 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 VST_ENTRY_7_ABBREV, 52 VST_ENTRY_6_ABBREV, 53 VST_BBENTRY_6_ABBREV, 54 55 // CONSTANTS_BLOCK abbrev id's. 56 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 57 CONSTANTS_INTEGER_ABBREV, 58 CONSTANTS_CE_CAST_Abbrev, 59 CONSTANTS_NULL_Abbrev, 60 61 // FUNCTION_BLOCK abbrev id's. 62 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 63 FUNCTION_INST_BINOP_ABBREV, 64 FUNCTION_INST_BINOP_FLAGS_ABBREV, 65 FUNCTION_INST_CAST_ABBREV, 66 FUNCTION_INST_RET_VOID_ABBREV, 67 FUNCTION_INST_RET_VAL_ABBREV, 68 FUNCTION_INST_UNREACHABLE_ABBREV, 69 FUNCTION_INST_GEP_ABBREV, 70 }; 71 72 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 73 switch (Opcode) { 74 default: llvm_unreachable("Unknown cast instruction!"); 75 case Instruction::Trunc : return bitc::CAST_TRUNC; 76 case Instruction::ZExt : return bitc::CAST_ZEXT; 77 case Instruction::SExt : return bitc::CAST_SEXT; 78 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 79 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 80 case Instruction::UIToFP : return bitc::CAST_UITOFP; 81 case Instruction::SIToFP : return bitc::CAST_SITOFP; 82 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 83 case Instruction::FPExt : return bitc::CAST_FPEXT; 84 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 85 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 86 case Instruction::BitCast : return bitc::CAST_BITCAST; 87 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 88 } 89 } 90 91 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 92 switch (Opcode) { 93 default: llvm_unreachable("Unknown binary instruction!"); 94 case Instruction::Add: 95 case Instruction::FAdd: return bitc::BINOP_ADD; 96 case Instruction::Sub: 97 case Instruction::FSub: return bitc::BINOP_SUB; 98 case Instruction::Mul: 99 case Instruction::FMul: return bitc::BINOP_MUL; 100 case Instruction::UDiv: return bitc::BINOP_UDIV; 101 case Instruction::FDiv: 102 case Instruction::SDiv: return bitc::BINOP_SDIV; 103 case Instruction::URem: return bitc::BINOP_UREM; 104 case Instruction::FRem: 105 case Instruction::SRem: return bitc::BINOP_SREM; 106 case Instruction::Shl: return bitc::BINOP_SHL; 107 case Instruction::LShr: return bitc::BINOP_LSHR; 108 case Instruction::AShr: return bitc::BINOP_ASHR; 109 case Instruction::And: return bitc::BINOP_AND; 110 case Instruction::Or: return bitc::BINOP_OR; 111 case Instruction::Xor: return bitc::BINOP_XOR; 112 } 113 } 114 115 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 116 switch (Op) { 117 default: llvm_unreachable("Unknown RMW operation!"); 118 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 119 case AtomicRMWInst::Add: return bitc::RMW_ADD; 120 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 121 case AtomicRMWInst::And: return bitc::RMW_AND; 122 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 123 case AtomicRMWInst::Or: return bitc::RMW_OR; 124 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 125 case AtomicRMWInst::Max: return bitc::RMW_MAX; 126 case AtomicRMWInst::Min: return bitc::RMW_MIN; 127 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 128 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 129 } 130 } 131 132 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 133 switch (Ordering) { 134 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 135 case Unordered: return bitc::ORDERING_UNORDERED; 136 case Monotonic: return bitc::ORDERING_MONOTONIC; 137 case Acquire: return bitc::ORDERING_ACQUIRE; 138 case Release: return bitc::ORDERING_RELEASE; 139 case AcquireRelease: return bitc::ORDERING_ACQREL; 140 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 141 } 142 llvm_unreachable("Invalid ordering"); 143 } 144 145 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 146 switch (SynchScope) { 147 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 148 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 149 } 150 llvm_unreachable("Invalid synch scope"); 151 } 152 153 static void WriteStringRecord(unsigned Code, StringRef Str, 154 unsigned AbbrevToUse, BitstreamWriter &Stream) { 155 SmallVector<unsigned, 64> Vals; 156 157 // Code: [strchar x N] 158 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 159 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 160 AbbrevToUse = 0; 161 Vals.push_back(Str[i]); 162 } 163 164 // Emit the finished record. 165 Stream.EmitRecord(Code, Vals, AbbrevToUse); 166 } 167 168 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 169 switch (Kind) { 170 case Attribute::Alignment: 171 return bitc::ATTR_KIND_ALIGNMENT; 172 case Attribute::AlwaysInline: 173 return bitc::ATTR_KIND_ALWAYS_INLINE; 174 case Attribute::ArgMemOnly: 175 return bitc::ATTR_KIND_ARGMEMONLY; 176 case Attribute::Builtin: 177 return bitc::ATTR_KIND_BUILTIN; 178 case Attribute::ByVal: 179 return bitc::ATTR_KIND_BY_VAL; 180 case Attribute::Convergent: 181 return bitc::ATTR_KIND_CONVERGENT; 182 case Attribute::InAlloca: 183 return bitc::ATTR_KIND_IN_ALLOCA; 184 case Attribute::Cold: 185 return bitc::ATTR_KIND_COLD; 186 case Attribute::InaccessibleMemOnly: 187 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 188 case Attribute::InaccessibleMemOrArgMemOnly: 189 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 190 case Attribute::InlineHint: 191 return bitc::ATTR_KIND_INLINE_HINT; 192 case Attribute::InReg: 193 return bitc::ATTR_KIND_IN_REG; 194 case Attribute::JumpTable: 195 return bitc::ATTR_KIND_JUMP_TABLE; 196 case Attribute::MinSize: 197 return bitc::ATTR_KIND_MIN_SIZE; 198 case Attribute::Naked: 199 return bitc::ATTR_KIND_NAKED; 200 case Attribute::Nest: 201 return bitc::ATTR_KIND_NEST; 202 case Attribute::NoAlias: 203 return bitc::ATTR_KIND_NO_ALIAS; 204 case Attribute::NoBuiltin: 205 return bitc::ATTR_KIND_NO_BUILTIN; 206 case Attribute::NoCapture: 207 return bitc::ATTR_KIND_NO_CAPTURE; 208 case Attribute::NoDuplicate: 209 return bitc::ATTR_KIND_NO_DUPLICATE; 210 case Attribute::NoImplicitFloat: 211 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 212 case Attribute::NoInline: 213 return bitc::ATTR_KIND_NO_INLINE; 214 case Attribute::NoRecurse: 215 return bitc::ATTR_KIND_NO_RECURSE; 216 case Attribute::NonLazyBind: 217 return bitc::ATTR_KIND_NON_LAZY_BIND; 218 case Attribute::NonNull: 219 return bitc::ATTR_KIND_NON_NULL; 220 case Attribute::Dereferenceable: 221 return bitc::ATTR_KIND_DEREFERENCEABLE; 222 case Attribute::DereferenceableOrNull: 223 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 224 case Attribute::NoRedZone: 225 return bitc::ATTR_KIND_NO_RED_ZONE; 226 case Attribute::NoReturn: 227 return bitc::ATTR_KIND_NO_RETURN; 228 case Attribute::NoUnwind: 229 return bitc::ATTR_KIND_NO_UNWIND; 230 case Attribute::OptimizeForSize: 231 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 232 case Attribute::OptimizeNone: 233 return bitc::ATTR_KIND_OPTIMIZE_NONE; 234 case Attribute::ReadNone: 235 return bitc::ATTR_KIND_READ_NONE; 236 case Attribute::ReadOnly: 237 return bitc::ATTR_KIND_READ_ONLY; 238 case Attribute::Returned: 239 return bitc::ATTR_KIND_RETURNED; 240 case Attribute::ReturnsTwice: 241 return bitc::ATTR_KIND_RETURNS_TWICE; 242 case Attribute::SExt: 243 return bitc::ATTR_KIND_S_EXT; 244 case Attribute::StackAlignment: 245 return bitc::ATTR_KIND_STACK_ALIGNMENT; 246 case Attribute::StackProtect: 247 return bitc::ATTR_KIND_STACK_PROTECT; 248 case Attribute::StackProtectReq: 249 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 250 case Attribute::StackProtectStrong: 251 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 252 case Attribute::SafeStack: 253 return bitc::ATTR_KIND_SAFESTACK; 254 case Attribute::StructRet: 255 return bitc::ATTR_KIND_STRUCT_RET; 256 case Attribute::SanitizeAddress: 257 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 258 case Attribute::SanitizeThread: 259 return bitc::ATTR_KIND_SANITIZE_THREAD; 260 case Attribute::SanitizeMemory: 261 return bitc::ATTR_KIND_SANITIZE_MEMORY; 262 case Attribute::UWTable: 263 return bitc::ATTR_KIND_UW_TABLE; 264 case Attribute::ZExt: 265 return bitc::ATTR_KIND_Z_EXT; 266 case Attribute::EndAttrKinds: 267 llvm_unreachable("Can not encode end-attribute kinds marker."); 268 case Attribute::None: 269 llvm_unreachable("Can not encode none-attribute."); 270 } 271 272 llvm_unreachable("Trying to encode unknown attribute"); 273 } 274 275 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 276 BitstreamWriter &Stream) { 277 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 278 if (AttrGrps.empty()) return; 279 280 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 281 282 SmallVector<uint64_t, 64> Record; 283 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 284 AttributeSet AS = AttrGrps[i]; 285 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 286 AttributeSet A = AS.getSlotAttributes(i); 287 288 Record.push_back(VE.getAttributeGroupID(A)); 289 Record.push_back(AS.getSlotIndex(i)); 290 291 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 292 I != E; ++I) { 293 Attribute Attr = *I; 294 if (Attr.isEnumAttribute()) { 295 Record.push_back(0); 296 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 297 } else if (Attr.isIntAttribute()) { 298 Record.push_back(1); 299 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 300 Record.push_back(Attr.getValueAsInt()); 301 } else { 302 StringRef Kind = Attr.getKindAsString(); 303 StringRef Val = Attr.getValueAsString(); 304 305 Record.push_back(Val.empty() ? 3 : 4); 306 Record.append(Kind.begin(), Kind.end()); 307 Record.push_back(0); 308 if (!Val.empty()) { 309 Record.append(Val.begin(), Val.end()); 310 Record.push_back(0); 311 } 312 } 313 } 314 315 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 316 Record.clear(); 317 } 318 } 319 320 Stream.ExitBlock(); 321 } 322 323 static void WriteAttributeTable(const ValueEnumerator &VE, 324 BitstreamWriter &Stream) { 325 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 326 if (Attrs.empty()) return; 327 328 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 329 330 SmallVector<uint64_t, 64> Record; 331 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 332 const AttributeSet &A = Attrs[i]; 333 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 334 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 335 336 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 337 Record.clear(); 338 } 339 340 Stream.ExitBlock(); 341 } 342 343 /// WriteTypeTable - Write out the type table for a module. 344 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 345 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 346 347 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 348 SmallVector<uint64_t, 64> TypeVals; 349 350 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 351 352 // Abbrev for TYPE_CODE_POINTER. 353 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 354 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 356 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 357 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 358 359 // Abbrev for TYPE_CODE_FUNCTION. 360 Abbv = new BitCodeAbbrev(); 361 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 365 366 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 367 368 // Abbrev for TYPE_CODE_STRUCT_ANON. 369 Abbv = new BitCodeAbbrev(); 370 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Abbrev for TYPE_CODE_STRUCT_NAME. 378 Abbv = new BitCodeAbbrev(); 379 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 382 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 383 384 // Abbrev for TYPE_CODE_STRUCT_NAMED. 385 Abbv = new BitCodeAbbrev(); 386 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 390 391 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 392 393 // Abbrev for TYPE_CODE_ARRAY. 394 Abbv = new BitCodeAbbrev(); 395 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 398 399 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 400 401 // Emit an entry count so the reader can reserve space. 402 TypeVals.push_back(TypeList.size()); 403 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 404 TypeVals.clear(); 405 406 // Loop over all of the types, emitting each in turn. 407 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 408 Type *T = TypeList[i]; 409 int AbbrevToUse = 0; 410 unsigned Code = 0; 411 412 switch (T->getTypeID()) { 413 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 414 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 415 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 416 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 417 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 418 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 419 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 420 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 421 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 422 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 423 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 424 case Type::IntegerTyID: 425 // INTEGER: [width] 426 Code = bitc::TYPE_CODE_INTEGER; 427 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 428 break; 429 case Type::PointerTyID: { 430 PointerType *PTy = cast<PointerType>(T); 431 // POINTER: [pointee type, address space] 432 Code = bitc::TYPE_CODE_POINTER; 433 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 434 unsigned AddressSpace = PTy->getAddressSpace(); 435 TypeVals.push_back(AddressSpace); 436 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 437 break; 438 } 439 case Type::FunctionTyID: { 440 FunctionType *FT = cast<FunctionType>(T); 441 // FUNCTION: [isvararg, retty, paramty x N] 442 Code = bitc::TYPE_CODE_FUNCTION; 443 TypeVals.push_back(FT->isVarArg()); 444 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 445 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 446 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 447 AbbrevToUse = FunctionAbbrev; 448 break; 449 } 450 case Type::StructTyID: { 451 StructType *ST = cast<StructType>(T); 452 // STRUCT: [ispacked, eltty x N] 453 TypeVals.push_back(ST->isPacked()); 454 // Output all of the element types. 455 for (StructType::element_iterator I = ST->element_begin(), 456 E = ST->element_end(); I != E; ++I) 457 TypeVals.push_back(VE.getTypeID(*I)); 458 459 if (ST->isLiteral()) { 460 Code = bitc::TYPE_CODE_STRUCT_ANON; 461 AbbrevToUse = StructAnonAbbrev; 462 } else { 463 if (ST->isOpaque()) { 464 Code = bitc::TYPE_CODE_OPAQUE; 465 } else { 466 Code = bitc::TYPE_CODE_STRUCT_NAMED; 467 AbbrevToUse = StructNamedAbbrev; 468 } 469 470 // Emit the name if it is present. 471 if (!ST->getName().empty()) 472 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 473 StructNameAbbrev, Stream); 474 } 475 break; 476 } 477 case Type::ArrayTyID: { 478 ArrayType *AT = cast<ArrayType>(T); 479 // ARRAY: [numelts, eltty] 480 Code = bitc::TYPE_CODE_ARRAY; 481 TypeVals.push_back(AT->getNumElements()); 482 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 483 AbbrevToUse = ArrayAbbrev; 484 break; 485 } 486 case Type::VectorTyID: { 487 VectorType *VT = cast<VectorType>(T); 488 // VECTOR [numelts, eltty] 489 Code = bitc::TYPE_CODE_VECTOR; 490 TypeVals.push_back(VT->getNumElements()); 491 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 492 break; 493 } 494 } 495 496 // Emit the finished record. 497 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 498 TypeVals.clear(); 499 } 500 501 Stream.ExitBlock(); 502 } 503 504 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 505 switch (Linkage) { 506 case GlobalValue::ExternalLinkage: 507 return 0; 508 case GlobalValue::WeakAnyLinkage: 509 return 16; 510 case GlobalValue::AppendingLinkage: 511 return 2; 512 case GlobalValue::InternalLinkage: 513 return 3; 514 case GlobalValue::LinkOnceAnyLinkage: 515 return 18; 516 case GlobalValue::ExternalWeakLinkage: 517 return 7; 518 case GlobalValue::CommonLinkage: 519 return 8; 520 case GlobalValue::PrivateLinkage: 521 return 9; 522 case GlobalValue::WeakODRLinkage: 523 return 17; 524 case GlobalValue::LinkOnceODRLinkage: 525 return 19; 526 case GlobalValue::AvailableExternallyLinkage: 527 return 12; 528 } 529 llvm_unreachable("Invalid linkage"); 530 } 531 532 static unsigned getEncodedLinkage(const GlobalValue &GV) { 533 return getEncodedLinkage(GV.getLinkage()); 534 } 535 536 static unsigned getEncodedVisibility(const GlobalValue &GV) { 537 switch (GV.getVisibility()) { 538 case GlobalValue::DefaultVisibility: return 0; 539 case GlobalValue::HiddenVisibility: return 1; 540 case GlobalValue::ProtectedVisibility: return 2; 541 } 542 llvm_unreachable("Invalid visibility"); 543 } 544 545 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 546 switch (GV.getDLLStorageClass()) { 547 case GlobalValue::DefaultStorageClass: return 0; 548 case GlobalValue::DLLImportStorageClass: return 1; 549 case GlobalValue::DLLExportStorageClass: return 2; 550 } 551 llvm_unreachable("Invalid DLL storage class"); 552 } 553 554 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 555 switch (GV.getThreadLocalMode()) { 556 case GlobalVariable::NotThreadLocal: return 0; 557 case GlobalVariable::GeneralDynamicTLSModel: return 1; 558 case GlobalVariable::LocalDynamicTLSModel: return 2; 559 case GlobalVariable::InitialExecTLSModel: return 3; 560 case GlobalVariable::LocalExecTLSModel: return 4; 561 } 562 llvm_unreachable("Invalid TLS model"); 563 } 564 565 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 566 switch (C.getSelectionKind()) { 567 case Comdat::Any: 568 return bitc::COMDAT_SELECTION_KIND_ANY; 569 case Comdat::ExactMatch: 570 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 571 case Comdat::Largest: 572 return bitc::COMDAT_SELECTION_KIND_LARGEST; 573 case Comdat::NoDuplicates: 574 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 575 case Comdat::SameSize: 576 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 577 } 578 llvm_unreachable("Invalid selection kind"); 579 } 580 581 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 582 SmallVector<unsigned, 64> Vals; 583 for (const Comdat *C : VE.getComdats()) { 584 // COMDAT: [selection_kind, name] 585 Vals.push_back(getEncodedComdatSelectionKind(*C)); 586 size_t Size = C->getName().size(); 587 assert(isUInt<32>(Size)); 588 Vals.push_back(Size); 589 for (char Chr : C->getName()) 590 Vals.push_back((unsigned char)Chr); 591 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 592 Vals.clear(); 593 } 594 } 595 596 /// Write a record that will eventually hold the word offset of the 597 /// module-level VST. For now the offset is 0, which will be backpatched 598 /// after the real VST is written. Returns the bit offset to backpatch. 599 static uint64_t WriteValueSymbolTableForwardDecl(BitstreamWriter &Stream) { 600 // Write a placeholder value in for the offset of the real VST, 601 // which is written after the function blocks so that it can include 602 // the offset of each function. The placeholder offset will be 603 // updated when the real VST is written. 604 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 605 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 606 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 607 // hold the real VST offset. Must use fixed instead of VBR as we don't 608 // know how many VBR chunks to reserve ahead of time. 609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 610 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 611 612 // Emit the placeholder 613 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 614 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 615 616 // Compute and return the bit offset to the placeholder, which will be 617 // patched when the real VST is written. We can simply subtract the 32-bit 618 // fixed size from the current bit number to get the location to backpatch. 619 return Stream.GetCurrentBitNo() - 32; 620 } 621 622 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 623 624 /// Determine the encoding to use for the given string name and length. 625 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 626 bool isChar6 = true; 627 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 628 if (isChar6) 629 isChar6 = BitCodeAbbrevOp::isChar6(*C); 630 if ((unsigned char)*C & 128) 631 // don't bother scanning the rest. 632 return SE_Fixed8; 633 } 634 if (isChar6) 635 return SE_Char6; 636 else 637 return SE_Fixed7; 638 } 639 640 /// Emit top-level description of module, including target triple, inline asm, 641 /// descriptors for global variables, and function prototype info. 642 /// Returns the bit offset to backpatch with the location of the real VST. 643 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 644 BitstreamWriter &Stream) { 645 // Emit various pieces of data attached to a module. 646 if (!M->getTargetTriple().empty()) 647 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 648 0/*TODO*/, Stream); 649 const std::string &DL = M->getDataLayoutStr(); 650 if (!DL.empty()) 651 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 652 if (!M->getModuleInlineAsm().empty()) 653 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 654 0/*TODO*/, Stream); 655 656 // Emit information about sections and GC, computing how many there are. Also 657 // compute the maximum alignment value. 658 std::map<std::string, unsigned> SectionMap; 659 std::map<std::string, unsigned> GCMap; 660 unsigned MaxAlignment = 0; 661 unsigned MaxGlobalType = 0; 662 for (const GlobalValue &GV : M->globals()) { 663 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 664 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 665 if (GV.hasSection()) { 666 // Give section names unique ID's. 667 unsigned &Entry = SectionMap[GV.getSection()]; 668 if (!Entry) { 669 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 670 0/*TODO*/, Stream); 671 Entry = SectionMap.size(); 672 } 673 } 674 } 675 for (const Function &F : *M) { 676 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 677 if (F.hasSection()) { 678 // Give section names unique ID's. 679 unsigned &Entry = SectionMap[F.getSection()]; 680 if (!Entry) { 681 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 682 0/*TODO*/, Stream); 683 Entry = SectionMap.size(); 684 } 685 } 686 if (F.hasGC()) { 687 // Same for GC names. 688 unsigned &Entry = GCMap[F.getGC()]; 689 if (!Entry) { 690 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 691 0/*TODO*/, Stream); 692 Entry = GCMap.size(); 693 } 694 } 695 } 696 697 // Emit abbrev for globals, now that we know # sections and max alignment. 698 unsigned SimpleGVarAbbrev = 0; 699 if (!M->global_empty()) { 700 // Add an abbrev for common globals with no visibility or thread localness. 701 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 702 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 704 Log2_32_Ceil(MaxGlobalType+1))); 705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 706 //| explicitType << 1 707 //| constant 708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 710 if (MaxAlignment == 0) // Alignment. 711 Abbv->Add(BitCodeAbbrevOp(0)); 712 else { 713 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 715 Log2_32_Ceil(MaxEncAlignment+1))); 716 } 717 if (SectionMap.empty()) // Section. 718 Abbv->Add(BitCodeAbbrevOp(0)); 719 else 720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 721 Log2_32_Ceil(SectionMap.size()+1))); 722 // Don't bother emitting vis + thread local. 723 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 724 } 725 726 // Emit the global variable information. 727 SmallVector<unsigned, 64> Vals; 728 for (const GlobalVariable &GV : M->globals()) { 729 unsigned AbbrevToUse = 0; 730 731 // GLOBALVAR: [type, isconst, initid, 732 // linkage, alignment, section, visibility, threadlocal, 733 // unnamed_addr, externally_initialized, dllstorageclass, 734 // comdat] 735 Vals.push_back(VE.getTypeID(GV.getValueType())); 736 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 737 Vals.push_back(GV.isDeclaration() ? 0 : 738 (VE.getValueID(GV.getInitializer()) + 1)); 739 Vals.push_back(getEncodedLinkage(GV)); 740 Vals.push_back(Log2_32(GV.getAlignment())+1); 741 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 742 if (GV.isThreadLocal() || 743 GV.getVisibility() != GlobalValue::DefaultVisibility || 744 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 745 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 746 GV.hasComdat()) { 747 Vals.push_back(getEncodedVisibility(GV)); 748 Vals.push_back(getEncodedThreadLocalMode(GV)); 749 Vals.push_back(GV.hasUnnamedAddr()); 750 Vals.push_back(GV.isExternallyInitialized()); 751 Vals.push_back(getEncodedDLLStorageClass(GV)); 752 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 753 } else { 754 AbbrevToUse = SimpleGVarAbbrev; 755 } 756 757 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 758 Vals.clear(); 759 } 760 761 // Emit the function proto information. 762 for (const Function &F : *M) { 763 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 764 // section, visibility, gc, unnamed_addr, prologuedata, 765 // dllstorageclass, comdat, prefixdata, personalityfn] 766 Vals.push_back(VE.getTypeID(F.getFunctionType())); 767 Vals.push_back(F.getCallingConv()); 768 Vals.push_back(F.isDeclaration()); 769 Vals.push_back(getEncodedLinkage(F)); 770 Vals.push_back(VE.getAttributeID(F.getAttributes())); 771 Vals.push_back(Log2_32(F.getAlignment())+1); 772 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 773 Vals.push_back(getEncodedVisibility(F)); 774 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 775 Vals.push_back(F.hasUnnamedAddr()); 776 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 777 : 0); 778 Vals.push_back(getEncodedDLLStorageClass(F)); 779 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 780 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 781 : 0); 782 Vals.push_back( 783 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 784 785 unsigned AbbrevToUse = 0; 786 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 787 Vals.clear(); 788 } 789 790 // Emit the alias information. 791 for (const GlobalAlias &A : M->aliases()) { 792 // ALIAS: [alias type, aliasee val#, linkage, visibility] 793 Vals.push_back(VE.getTypeID(A.getValueType())); 794 Vals.push_back(A.getType()->getAddressSpace()); 795 Vals.push_back(VE.getValueID(A.getAliasee())); 796 Vals.push_back(getEncodedLinkage(A)); 797 Vals.push_back(getEncodedVisibility(A)); 798 Vals.push_back(getEncodedDLLStorageClass(A)); 799 Vals.push_back(getEncodedThreadLocalMode(A)); 800 Vals.push_back(A.hasUnnamedAddr()); 801 unsigned AbbrevToUse = 0; 802 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 803 Vals.clear(); 804 } 805 806 // Write a record indicating the number of module-level metadata IDs 807 // This is needed because the ids of metadata are assigned implicitly 808 // based on their ordering in the bitcode, with the function-level 809 // metadata ids starting after the module-level metadata ids. For 810 // function importing where we lazy load the metadata as a postpass, 811 // we want to avoid parsing the module-level metadata before parsing 812 // the imported functions. 813 { 814 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 815 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_METADATA_VALUES)); 816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 817 unsigned MDValsAbbrev = Stream.EmitAbbrev(Abbv); 818 Vals.push_back(VE.numMDs()); 819 Stream.EmitRecord(bitc::MODULE_CODE_METADATA_VALUES, Vals, MDValsAbbrev); 820 Vals.clear(); 821 } 822 823 // Emit the module's source file name. 824 { 825 StringEncoding Bits = getStringEncoding(M->getSourceFileName().data(), 826 M->getSourceFileName().size()); 827 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 828 if (Bits == SE_Char6) 829 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 830 else if (Bits == SE_Fixed7) 831 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 832 833 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 834 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 835 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 837 Abbv->Add(AbbrevOpToUse); 838 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 839 840 for (const auto P : M->getSourceFileName()) 841 Vals.push_back((unsigned char)P); 842 843 // Emit the finished record. 844 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 845 Vals.clear(); 846 } 847 848 // If we have a VST, write the VSTOFFSET record placeholder and return 849 // its offset. 850 if (M->getValueSymbolTable().empty()) 851 return 0; 852 return WriteValueSymbolTableForwardDecl(Stream); 853 } 854 855 static uint64_t GetOptimizationFlags(const Value *V) { 856 uint64_t Flags = 0; 857 858 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 859 if (OBO->hasNoSignedWrap()) 860 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 861 if (OBO->hasNoUnsignedWrap()) 862 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 863 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 864 if (PEO->isExact()) 865 Flags |= 1 << bitc::PEO_EXACT; 866 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 867 if (FPMO->hasUnsafeAlgebra()) 868 Flags |= FastMathFlags::UnsafeAlgebra; 869 if (FPMO->hasNoNaNs()) 870 Flags |= FastMathFlags::NoNaNs; 871 if (FPMO->hasNoInfs()) 872 Flags |= FastMathFlags::NoInfs; 873 if (FPMO->hasNoSignedZeros()) 874 Flags |= FastMathFlags::NoSignedZeros; 875 if (FPMO->hasAllowReciprocal()) 876 Flags |= FastMathFlags::AllowReciprocal; 877 } 878 879 return Flags; 880 } 881 882 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 883 const ValueEnumerator &VE, 884 BitstreamWriter &Stream, 885 SmallVectorImpl<uint64_t> &Record) { 886 // Mimic an MDNode with a value as one operand. 887 Value *V = MD->getValue(); 888 Record.push_back(VE.getTypeID(V->getType())); 889 Record.push_back(VE.getValueID(V)); 890 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 891 Record.clear(); 892 } 893 894 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 895 BitstreamWriter &Stream, 896 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 897 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 898 Metadata *MD = N->getOperand(i); 899 assert(!(MD && isa<LocalAsMetadata>(MD)) && 900 "Unexpected function-local metadata"); 901 Record.push_back(VE.getMetadataOrNullID(MD)); 902 } 903 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 904 : bitc::METADATA_NODE, 905 Record, Abbrev); 906 Record.clear(); 907 } 908 909 static unsigned createDILocationAbbrev(BitstreamWriter &Stream) { 910 // Assume the column is usually under 128, and always output the inlined-at 911 // location (it's never more expensive than building an array size 1). 912 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 913 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 919 return Stream.EmitAbbrev(Abbv); 920 } 921 922 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE, 923 BitstreamWriter &Stream, 924 SmallVectorImpl<uint64_t> &Record, 925 unsigned &Abbrev) { 926 if (!Abbrev) 927 Abbrev = createDILocationAbbrev(Stream); 928 929 Record.push_back(N->isDistinct()); 930 Record.push_back(N->getLine()); 931 Record.push_back(N->getColumn()); 932 Record.push_back(VE.getMetadataID(N->getScope())); 933 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 934 935 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 936 Record.clear(); 937 } 938 939 static void WriteGenericDINode(const GenericDINode *N, 940 const ValueEnumerator &VE, 941 BitstreamWriter &Stream, 942 SmallVectorImpl<uint64_t> &Record, 943 unsigned Abbrev) { 944 Record.push_back(N->isDistinct()); 945 Record.push_back(N->getTag()); 946 Record.push_back(0); // Per-tag version field; unused for now. 947 948 for (auto &I : N->operands()) 949 Record.push_back(VE.getMetadataOrNullID(I)); 950 951 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 952 Record.clear(); 953 } 954 955 static uint64_t rotateSign(int64_t I) { 956 uint64_t U = I; 957 return I < 0 ? ~(U << 1) : U << 1; 958 } 959 960 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &, 961 BitstreamWriter &Stream, 962 SmallVectorImpl<uint64_t> &Record, 963 unsigned Abbrev) { 964 Record.push_back(N->isDistinct()); 965 Record.push_back(N->getCount()); 966 Record.push_back(rotateSign(N->getLowerBound())); 967 968 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 969 Record.clear(); 970 } 971 972 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 973 BitstreamWriter &Stream, 974 SmallVectorImpl<uint64_t> &Record, 975 unsigned Abbrev) { 976 Record.push_back(N->isDistinct()); 977 Record.push_back(rotateSign(N->getValue())); 978 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 979 980 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 981 Record.clear(); 982 } 983 984 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 985 BitstreamWriter &Stream, 986 SmallVectorImpl<uint64_t> &Record, 987 unsigned Abbrev) { 988 Record.push_back(N->isDistinct()); 989 Record.push_back(N->getTag()); 990 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 991 Record.push_back(N->getSizeInBits()); 992 Record.push_back(N->getAlignInBits()); 993 Record.push_back(N->getEncoding()); 994 995 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 996 Record.clear(); 997 } 998 999 static void WriteDIDerivedType(const DIDerivedType *N, 1000 const ValueEnumerator &VE, 1001 BitstreamWriter &Stream, 1002 SmallVectorImpl<uint64_t> &Record, 1003 unsigned Abbrev) { 1004 Record.push_back(N->isDistinct()); 1005 Record.push_back(N->getTag()); 1006 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1007 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1008 Record.push_back(N->getLine()); 1009 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1010 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1011 Record.push_back(N->getSizeInBits()); 1012 Record.push_back(N->getAlignInBits()); 1013 Record.push_back(N->getOffsetInBits()); 1014 Record.push_back(N->getFlags()); 1015 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1016 1017 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1018 Record.clear(); 1019 } 1020 1021 static void WriteDICompositeType(const DICompositeType *N, 1022 const ValueEnumerator &VE, 1023 BitstreamWriter &Stream, 1024 SmallVectorImpl<uint64_t> &Record, 1025 unsigned Abbrev) { 1026 Record.push_back(N->isDistinct()); 1027 Record.push_back(N->getTag()); 1028 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1029 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1030 Record.push_back(N->getLine()); 1031 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1032 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1033 Record.push_back(N->getSizeInBits()); 1034 Record.push_back(N->getAlignInBits()); 1035 Record.push_back(N->getOffsetInBits()); 1036 Record.push_back(N->getFlags()); 1037 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1038 Record.push_back(N->getRuntimeLang()); 1039 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1040 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1041 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1042 1043 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1044 Record.clear(); 1045 } 1046 1047 static void WriteDISubroutineType(const DISubroutineType *N, 1048 const ValueEnumerator &VE, 1049 BitstreamWriter &Stream, 1050 SmallVectorImpl<uint64_t> &Record, 1051 unsigned Abbrev) { 1052 Record.push_back(N->isDistinct()); 1053 Record.push_back(N->getFlags()); 1054 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1055 1056 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1057 Record.clear(); 1058 } 1059 1060 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE, 1061 BitstreamWriter &Stream, 1062 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1063 Record.push_back(N->isDistinct()); 1064 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1065 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1066 1067 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1068 Record.clear(); 1069 } 1070 1071 static void WriteDICompileUnit(const DICompileUnit *N, 1072 const ValueEnumerator &VE, 1073 BitstreamWriter &Stream, 1074 SmallVectorImpl<uint64_t> &Record, 1075 unsigned Abbrev) { 1076 assert(N->isDistinct() && "Expected distinct compile units"); 1077 Record.push_back(/* IsDistinct */ true); 1078 Record.push_back(N->getSourceLanguage()); 1079 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1080 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1081 Record.push_back(N->isOptimized()); 1082 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1083 Record.push_back(N->getRuntimeVersion()); 1084 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1085 Record.push_back(N->getEmissionKind()); 1086 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1087 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1088 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 1089 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1090 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1091 Record.push_back(N->getDWOId()); 1092 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1093 1094 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1095 Record.clear(); 1096 } 1097 1098 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 1099 BitstreamWriter &Stream, 1100 SmallVectorImpl<uint64_t> &Record, 1101 unsigned Abbrev) { 1102 Record.push_back(N->isDistinct()); 1103 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1104 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1105 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1106 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1107 Record.push_back(N->getLine()); 1108 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1109 Record.push_back(N->isLocalToUnit()); 1110 Record.push_back(N->isDefinition()); 1111 Record.push_back(N->getScopeLine()); 1112 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1113 Record.push_back(N->getVirtuality()); 1114 Record.push_back(N->getVirtualIndex()); 1115 Record.push_back(N->getFlags()); 1116 Record.push_back(N->isOptimized()); 1117 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1118 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1119 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1120 1121 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1122 Record.clear(); 1123 } 1124 1125 static void WriteDILexicalBlock(const DILexicalBlock *N, 1126 const ValueEnumerator &VE, 1127 BitstreamWriter &Stream, 1128 SmallVectorImpl<uint64_t> &Record, 1129 unsigned Abbrev) { 1130 Record.push_back(N->isDistinct()); 1131 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1132 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1133 Record.push_back(N->getLine()); 1134 Record.push_back(N->getColumn()); 1135 1136 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1137 Record.clear(); 1138 } 1139 1140 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N, 1141 const ValueEnumerator &VE, 1142 BitstreamWriter &Stream, 1143 SmallVectorImpl<uint64_t> &Record, 1144 unsigned Abbrev) { 1145 Record.push_back(N->isDistinct()); 1146 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1147 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1148 Record.push_back(N->getDiscriminator()); 1149 1150 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1151 Record.clear(); 1152 } 1153 1154 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1155 BitstreamWriter &Stream, 1156 SmallVectorImpl<uint64_t> &Record, 1157 unsigned Abbrev) { 1158 Record.push_back(N->isDistinct()); 1159 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1160 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1161 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1162 Record.push_back(N->getLine()); 1163 1164 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1165 Record.clear(); 1166 } 1167 1168 static void WriteDIMacro(const DIMacro *N, const ValueEnumerator &VE, 1169 BitstreamWriter &Stream, 1170 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1171 Record.push_back(N->isDistinct()); 1172 Record.push_back(N->getMacinfoType()); 1173 Record.push_back(N->getLine()); 1174 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1175 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1176 1177 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1178 Record.clear(); 1179 } 1180 1181 static void WriteDIMacroFile(const DIMacroFile *N, const ValueEnumerator &VE, 1182 BitstreamWriter &Stream, 1183 SmallVectorImpl<uint64_t> &Record, 1184 unsigned Abbrev) { 1185 Record.push_back(N->isDistinct()); 1186 Record.push_back(N->getMacinfoType()); 1187 Record.push_back(N->getLine()); 1188 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1189 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1190 1191 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1192 Record.clear(); 1193 } 1194 1195 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE, 1196 BitstreamWriter &Stream, 1197 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1198 Record.push_back(N->isDistinct()); 1199 for (auto &I : N->operands()) 1200 Record.push_back(VE.getMetadataOrNullID(I)); 1201 1202 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1203 Record.clear(); 1204 } 1205 1206 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N, 1207 const ValueEnumerator &VE, 1208 BitstreamWriter &Stream, 1209 SmallVectorImpl<uint64_t> &Record, 1210 unsigned Abbrev) { 1211 Record.push_back(N->isDistinct()); 1212 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1213 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1214 1215 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1216 Record.clear(); 1217 } 1218 1219 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N, 1220 const ValueEnumerator &VE, 1221 BitstreamWriter &Stream, 1222 SmallVectorImpl<uint64_t> &Record, 1223 unsigned Abbrev) { 1224 Record.push_back(N->isDistinct()); 1225 Record.push_back(N->getTag()); 1226 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1227 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1228 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1229 1230 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1231 Record.clear(); 1232 } 1233 1234 static void WriteDIGlobalVariable(const DIGlobalVariable *N, 1235 const ValueEnumerator &VE, 1236 BitstreamWriter &Stream, 1237 SmallVectorImpl<uint64_t> &Record, 1238 unsigned Abbrev) { 1239 Record.push_back(N->isDistinct()); 1240 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1241 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1242 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1243 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1244 Record.push_back(N->getLine()); 1245 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1246 Record.push_back(N->isLocalToUnit()); 1247 Record.push_back(N->isDefinition()); 1248 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1249 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1250 1251 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1252 Record.clear(); 1253 } 1254 1255 static void WriteDILocalVariable(const DILocalVariable *N, 1256 const ValueEnumerator &VE, 1257 BitstreamWriter &Stream, 1258 SmallVectorImpl<uint64_t> &Record, 1259 unsigned Abbrev) { 1260 Record.push_back(N->isDistinct()); 1261 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1262 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1263 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1264 Record.push_back(N->getLine()); 1265 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1266 Record.push_back(N->getArg()); 1267 Record.push_back(N->getFlags()); 1268 1269 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1270 Record.clear(); 1271 } 1272 1273 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &, 1274 BitstreamWriter &Stream, 1275 SmallVectorImpl<uint64_t> &Record, 1276 unsigned Abbrev) { 1277 Record.reserve(N->getElements().size() + 1); 1278 1279 Record.push_back(N->isDistinct()); 1280 Record.append(N->elements_begin(), N->elements_end()); 1281 1282 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1283 Record.clear(); 1284 } 1285 1286 static void WriteDIObjCProperty(const DIObjCProperty *N, 1287 const ValueEnumerator &VE, 1288 BitstreamWriter &Stream, 1289 SmallVectorImpl<uint64_t> &Record, 1290 unsigned Abbrev) { 1291 Record.push_back(N->isDistinct()); 1292 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1293 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1294 Record.push_back(N->getLine()); 1295 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1296 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1297 Record.push_back(N->getAttributes()); 1298 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1299 1300 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1301 Record.clear(); 1302 } 1303 1304 static void WriteDIImportedEntity(const DIImportedEntity *N, 1305 const ValueEnumerator &VE, 1306 BitstreamWriter &Stream, 1307 SmallVectorImpl<uint64_t> &Record, 1308 unsigned Abbrev) { 1309 Record.push_back(N->isDistinct()); 1310 Record.push_back(N->getTag()); 1311 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1312 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1313 Record.push_back(N->getLine()); 1314 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1315 1316 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1317 Record.clear(); 1318 } 1319 1320 static unsigned createNamedMetadataAbbrev(BitstreamWriter &Stream) { 1321 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1322 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1325 return Stream.EmitAbbrev(Abbv); 1326 } 1327 1328 static void writeNamedMetadata(const Module &M, const ValueEnumerator &VE, 1329 BitstreamWriter &Stream, 1330 SmallVectorImpl<uint64_t> &Record) { 1331 if (M.named_metadata_empty()) 1332 return; 1333 1334 unsigned Abbrev = createNamedMetadataAbbrev(Stream); 1335 for (const NamedMDNode &NMD : M.named_metadata()) { 1336 // Write name. 1337 StringRef Str = NMD.getName(); 1338 Record.append(Str.bytes_begin(), Str.bytes_end()); 1339 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1340 Record.clear(); 1341 1342 // Write named metadata operands. 1343 for (const MDNode *N : NMD.operands()) 1344 Record.push_back(VE.getMetadataID(N)); 1345 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1346 Record.clear(); 1347 } 1348 } 1349 1350 static void WriteModuleMetadata(const Module &M, 1351 const ValueEnumerator &VE, 1352 BitstreamWriter &Stream) { 1353 const auto &MDs = VE.getMDs(); 1354 if (MDs.empty() && M.named_metadata_empty()) 1355 return; 1356 1357 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1358 1359 unsigned MDSAbbrev = 0; 1360 if (VE.hasMDString()) { 1361 // Abbrev for METADATA_STRING. 1362 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1363 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1366 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1367 } 1368 1369 // Initialize MDNode abbreviations. 1370 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1371 #include "llvm/IR/Metadata.def" 1372 1373 if (VE.hasGenericDINode()) { 1374 // Abbrev for METADATA_GENERIC_DEBUG. 1375 // 1376 // Assume the column is usually under 128, and always output the inlined-at 1377 // location (it's never more expensive than building an array size 1). 1378 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1379 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1386 GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv); 1387 } 1388 1389 SmallVector<uint64_t, 64> Record; 1390 for (const Metadata *MD : MDs) { 1391 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1392 assert(N->isResolved() && "Expected forward references to be resolved"); 1393 1394 switch (N->getMetadataID()) { 1395 default: 1396 llvm_unreachable("Invalid MDNode subclass"); 1397 #define HANDLE_MDNODE_LEAF(CLASS) \ 1398 case Metadata::CLASS##Kind: \ 1399 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1400 continue; 1401 #include "llvm/IR/Metadata.def" 1402 } 1403 } 1404 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1405 WriteValueAsMetadata(MDC, VE, Stream, Record); 1406 continue; 1407 } 1408 const MDString *MDS = cast<MDString>(MD); 1409 // Code: [strchar x N] 1410 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1411 1412 // Emit the finished record. 1413 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1414 Record.clear(); 1415 } 1416 1417 writeNamedMetadata(M, VE, Stream, Record); 1418 Stream.ExitBlock(); 1419 } 1420 1421 static void WriteFunctionLocalMetadata(const Function &F, 1422 const ValueEnumerator &VE, 1423 BitstreamWriter &Stream) { 1424 bool StartedMetadataBlock = false; 1425 SmallVector<uint64_t, 64> Record; 1426 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1427 VE.getFunctionLocalMDs(); 1428 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1429 assert(MDs[i] && "Expected valid function-local metadata"); 1430 if (!StartedMetadataBlock) { 1431 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1432 StartedMetadataBlock = true; 1433 } 1434 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1435 } 1436 1437 if (StartedMetadataBlock) 1438 Stream.ExitBlock(); 1439 } 1440 1441 static void WriteMetadataAttachment(const Function &F, 1442 const ValueEnumerator &VE, 1443 BitstreamWriter &Stream) { 1444 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1445 1446 SmallVector<uint64_t, 64> Record; 1447 1448 // Write metadata attachments 1449 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1450 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1451 F.getAllMetadata(MDs); 1452 if (!MDs.empty()) { 1453 for (const auto &I : MDs) { 1454 Record.push_back(I.first); 1455 Record.push_back(VE.getMetadataID(I.second)); 1456 } 1457 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1458 Record.clear(); 1459 } 1460 1461 for (const BasicBlock &BB : F) 1462 for (const Instruction &I : BB) { 1463 MDs.clear(); 1464 I.getAllMetadataOtherThanDebugLoc(MDs); 1465 1466 // If no metadata, ignore instruction. 1467 if (MDs.empty()) continue; 1468 1469 Record.push_back(VE.getInstructionID(&I)); 1470 1471 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1472 Record.push_back(MDs[i].first); 1473 Record.push_back(VE.getMetadataID(MDs[i].second)); 1474 } 1475 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1476 Record.clear(); 1477 } 1478 1479 Stream.ExitBlock(); 1480 } 1481 1482 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1483 SmallVector<uint64_t, 64> Record; 1484 1485 // Write metadata kinds 1486 // METADATA_KIND - [n x [id, name]] 1487 SmallVector<StringRef, 8> Names; 1488 M->getMDKindNames(Names); 1489 1490 if (Names.empty()) return; 1491 1492 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1493 1494 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1495 Record.push_back(MDKindID); 1496 StringRef KName = Names[MDKindID]; 1497 Record.append(KName.begin(), KName.end()); 1498 1499 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1500 Record.clear(); 1501 } 1502 1503 Stream.ExitBlock(); 1504 } 1505 1506 static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) { 1507 // Write metadata kinds 1508 // 1509 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1510 // 1511 // OPERAND_BUNDLE_TAG - [strchr x N] 1512 1513 SmallVector<StringRef, 8> Tags; 1514 M->getOperandBundleTags(Tags); 1515 1516 if (Tags.empty()) 1517 return; 1518 1519 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1520 1521 SmallVector<uint64_t, 64> Record; 1522 1523 for (auto Tag : Tags) { 1524 Record.append(Tag.begin(), Tag.end()); 1525 1526 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 1527 Record.clear(); 1528 } 1529 1530 Stream.ExitBlock(); 1531 } 1532 1533 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1534 if ((int64_t)V >= 0) 1535 Vals.push_back(V << 1); 1536 else 1537 Vals.push_back((-V << 1) | 1); 1538 } 1539 1540 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1541 const ValueEnumerator &VE, 1542 BitstreamWriter &Stream, bool isGlobal) { 1543 if (FirstVal == LastVal) return; 1544 1545 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1546 1547 unsigned AggregateAbbrev = 0; 1548 unsigned String8Abbrev = 0; 1549 unsigned CString7Abbrev = 0; 1550 unsigned CString6Abbrev = 0; 1551 // If this is a constant pool for the module, emit module-specific abbrevs. 1552 if (isGlobal) { 1553 // Abbrev for CST_CODE_AGGREGATE. 1554 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1555 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1558 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1559 1560 // Abbrev for CST_CODE_STRING. 1561 Abbv = new BitCodeAbbrev(); 1562 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1565 String8Abbrev = Stream.EmitAbbrev(Abbv); 1566 // Abbrev for CST_CODE_CSTRING. 1567 Abbv = new BitCodeAbbrev(); 1568 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1571 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1572 // Abbrev for CST_CODE_CSTRING. 1573 Abbv = new BitCodeAbbrev(); 1574 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1577 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1578 } 1579 1580 SmallVector<uint64_t, 64> Record; 1581 1582 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1583 Type *LastTy = nullptr; 1584 for (unsigned i = FirstVal; i != LastVal; ++i) { 1585 const Value *V = Vals[i].first; 1586 // If we need to switch types, do so now. 1587 if (V->getType() != LastTy) { 1588 LastTy = V->getType(); 1589 Record.push_back(VE.getTypeID(LastTy)); 1590 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1591 CONSTANTS_SETTYPE_ABBREV); 1592 Record.clear(); 1593 } 1594 1595 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1596 Record.push_back(unsigned(IA->hasSideEffects()) | 1597 unsigned(IA->isAlignStack()) << 1 | 1598 unsigned(IA->getDialect()&1) << 2); 1599 1600 // Add the asm string. 1601 const std::string &AsmStr = IA->getAsmString(); 1602 Record.push_back(AsmStr.size()); 1603 Record.append(AsmStr.begin(), AsmStr.end()); 1604 1605 // Add the constraint string. 1606 const std::string &ConstraintStr = IA->getConstraintString(); 1607 Record.push_back(ConstraintStr.size()); 1608 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1609 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1610 Record.clear(); 1611 continue; 1612 } 1613 const Constant *C = cast<Constant>(V); 1614 unsigned Code = -1U; 1615 unsigned AbbrevToUse = 0; 1616 if (C->isNullValue()) { 1617 Code = bitc::CST_CODE_NULL; 1618 } else if (isa<UndefValue>(C)) { 1619 Code = bitc::CST_CODE_UNDEF; 1620 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1621 if (IV->getBitWidth() <= 64) { 1622 uint64_t V = IV->getSExtValue(); 1623 emitSignedInt64(Record, V); 1624 Code = bitc::CST_CODE_INTEGER; 1625 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1626 } else { // Wide integers, > 64 bits in size. 1627 // We have an arbitrary precision integer value to write whose 1628 // bit width is > 64. However, in canonical unsigned integer 1629 // format it is likely that the high bits are going to be zero. 1630 // So, we only write the number of active words. 1631 unsigned NWords = IV->getValue().getActiveWords(); 1632 const uint64_t *RawWords = IV->getValue().getRawData(); 1633 for (unsigned i = 0; i != NWords; ++i) { 1634 emitSignedInt64(Record, RawWords[i]); 1635 } 1636 Code = bitc::CST_CODE_WIDE_INTEGER; 1637 } 1638 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1639 Code = bitc::CST_CODE_FLOAT; 1640 Type *Ty = CFP->getType(); 1641 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1642 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1643 } else if (Ty->isX86_FP80Ty()) { 1644 // api needed to prevent premature destruction 1645 // bits are not in the same order as a normal i80 APInt, compensate. 1646 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1647 const uint64_t *p = api.getRawData(); 1648 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1649 Record.push_back(p[0] & 0xffffLL); 1650 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1651 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1652 const uint64_t *p = api.getRawData(); 1653 Record.push_back(p[0]); 1654 Record.push_back(p[1]); 1655 } else { 1656 assert (0 && "Unknown FP type!"); 1657 } 1658 } else if (isa<ConstantDataSequential>(C) && 1659 cast<ConstantDataSequential>(C)->isString()) { 1660 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1661 // Emit constant strings specially. 1662 unsigned NumElts = Str->getNumElements(); 1663 // If this is a null-terminated string, use the denser CSTRING encoding. 1664 if (Str->isCString()) { 1665 Code = bitc::CST_CODE_CSTRING; 1666 --NumElts; // Don't encode the null, which isn't allowed by char6. 1667 } else { 1668 Code = bitc::CST_CODE_STRING; 1669 AbbrevToUse = String8Abbrev; 1670 } 1671 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1672 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1673 for (unsigned i = 0; i != NumElts; ++i) { 1674 unsigned char V = Str->getElementAsInteger(i); 1675 Record.push_back(V); 1676 isCStr7 &= (V & 128) == 0; 1677 if (isCStrChar6) 1678 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1679 } 1680 1681 if (isCStrChar6) 1682 AbbrevToUse = CString6Abbrev; 1683 else if (isCStr7) 1684 AbbrevToUse = CString7Abbrev; 1685 } else if (const ConstantDataSequential *CDS = 1686 dyn_cast<ConstantDataSequential>(C)) { 1687 Code = bitc::CST_CODE_DATA; 1688 Type *EltTy = CDS->getType()->getElementType(); 1689 if (isa<IntegerType>(EltTy)) { 1690 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1691 Record.push_back(CDS->getElementAsInteger(i)); 1692 } else { 1693 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1694 Record.push_back( 1695 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 1696 } 1697 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1698 isa<ConstantVector>(C)) { 1699 Code = bitc::CST_CODE_AGGREGATE; 1700 for (const Value *Op : C->operands()) 1701 Record.push_back(VE.getValueID(Op)); 1702 AbbrevToUse = AggregateAbbrev; 1703 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1704 switch (CE->getOpcode()) { 1705 default: 1706 if (Instruction::isCast(CE->getOpcode())) { 1707 Code = bitc::CST_CODE_CE_CAST; 1708 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1709 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1710 Record.push_back(VE.getValueID(C->getOperand(0))); 1711 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1712 } else { 1713 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1714 Code = bitc::CST_CODE_CE_BINOP; 1715 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1716 Record.push_back(VE.getValueID(C->getOperand(0))); 1717 Record.push_back(VE.getValueID(C->getOperand(1))); 1718 uint64_t Flags = GetOptimizationFlags(CE); 1719 if (Flags != 0) 1720 Record.push_back(Flags); 1721 } 1722 break; 1723 case Instruction::GetElementPtr: { 1724 Code = bitc::CST_CODE_CE_GEP; 1725 const auto *GO = cast<GEPOperator>(C); 1726 if (GO->isInBounds()) 1727 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1728 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1729 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1730 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1731 Record.push_back(VE.getValueID(C->getOperand(i))); 1732 } 1733 break; 1734 } 1735 case Instruction::Select: 1736 Code = bitc::CST_CODE_CE_SELECT; 1737 Record.push_back(VE.getValueID(C->getOperand(0))); 1738 Record.push_back(VE.getValueID(C->getOperand(1))); 1739 Record.push_back(VE.getValueID(C->getOperand(2))); 1740 break; 1741 case Instruction::ExtractElement: 1742 Code = bitc::CST_CODE_CE_EXTRACTELT; 1743 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1744 Record.push_back(VE.getValueID(C->getOperand(0))); 1745 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1746 Record.push_back(VE.getValueID(C->getOperand(1))); 1747 break; 1748 case Instruction::InsertElement: 1749 Code = bitc::CST_CODE_CE_INSERTELT; 1750 Record.push_back(VE.getValueID(C->getOperand(0))); 1751 Record.push_back(VE.getValueID(C->getOperand(1))); 1752 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1753 Record.push_back(VE.getValueID(C->getOperand(2))); 1754 break; 1755 case Instruction::ShuffleVector: 1756 // If the return type and argument types are the same, this is a 1757 // standard shufflevector instruction. If the types are different, 1758 // then the shuffle is widening or truncating the input vectors, and 1759 // the argument type must also be encoded. 1760 if (C->getType() == C->getOperand(0)->getType()) { 1761 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1762 } else { 1763 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1764 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1765 } 1766 Record.push_back(VE.getValueID(C->getOperand(0))); 1767 Record.push_back(VE.getValueID(C->getOperand(1))); 1768 Record.push_back(VE.getValueID(C->getOperand(2))); 1769 break; 1770 case Instruction::ICmp: 1771 case Instruction::FCmp: 1772 Code = bitc::CST_CODE_CE_CMP; 1773 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1774 Record.push_back(VE.getValueID(C->getOperand(0))); 1775 Record.push_back(VE.getValueID(C->getOperand(1))); 1776 Record.push_back(CE->getPredicate()); 1777 break; 1778 } 1779 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1780 Code = bitc::CST_CODE_BLOCKADDRESS; 1781 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1782 Record.push_back(VE.getValueID(BA->getFunction())); 1783 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1784 } else { 1785 #ifndef NDEBUG 1786 C->dump(); 1787 #endif 1788 llvm_unreachable("Unknown constant!"); 1789 } 1790 Stream.EmitRecord(Code, Record, AbbrevToUse); 1791 Record.clear(); 1792 } 1793 1794 Stream.ExitBlock(); 1795 } 1796 1797 static void WriteModuleConstants(const ValueEnumerator &VE, 1798 BitstreamWriter &Stream) { 1799 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1800 1801 // Find the first constant to emit, which is the first non-globalvalue value. 1802 // We know globalvalues have been emitted by WriteModuleInfo. 1803 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1804 if (!isa<GlobalValue>(Vals[i].first)) { 1805 WriteConstants(i, Vals.size(), VE, Stream, true); 1806 return; 1807 } 1808 } 1809 } 1810 1811 /// PushValueAndType - The file has to encode both the value and type id for 1812 /// many values, because we need to know what type to create for forward 1813 /// references. However, most operands are not forward references, so this type 1814 /// field is not needed. 1815 /// 1816 /// This function adds V's value ID to Vals. If the value ID is higher than the 1817 /// instruction ID, then it is a forward reference, and it also includes the 1818 /// type ID. The value ID that is written is encoded relative to the InstID. 1819 static bool PushValueAndType(const Value *V, unsigned InstID, 1820 SmallVectorImpl<unsigned> &Vals, 1821 ValueEnumerator &VE) { 1822 unsigned ValID = VE.getValueID(V); 1823 // Make encoding relative to the InstID. 1824 Vals.push_back(InstID - ValID); 1825 if (ValID >= InstID) { 1826 Vals.push_back(VE.getTypeID(V->getType())); 1827 return true; 1828 } 1829 return false; 1830 } 1831 1832 static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS, 1833 unsigned InstID, ValueEnumerator &VE) { 1834 SmallVector<unsigned, 64> Record; 1835 LLVMContext &C = CS.getInstruction()->getContext(); 1836 1837 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1838 const auto &Bundle = CS.getOperandBundleAt(i); 1839 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 1840 1841 for (auto &Input : Bundle.Inputs) 1842 PushValueAndType(Input, InstID, Record, VE); 1843 1844 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 1845 Record.clear(); 1846 } 1847 } 1848 1849 /// pushValue - Like PushValueAndType, but where the type of the value is 1850 /// omitted (perhaps it was already encoded in an earlier operand). 1851 static void pushValue(const Value *V, unsigned InstID, 1852 SmallVectorImpl<unsigned> &Vals, 1853 ValueEnumerator &VE) { 1854 unsigned ValID = VE.getValueID(V); 1855 Vals.push_back(InstID - ValID); 1856 } 1857 1858 static void pushValueSigned(const Value *V, unsigned InstID, 1859 SmallVectorImpl<uint64_t> &Vals, 1860 ValueEnumerator &VE) { 1861 unsigned ValID = VE.getValueID(V); 1862 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1863 emitSignedInt64(Vals, diff); 1864 } 1865 1866 /// WriteInstruction - Emit an instruction to the specified stream. 1867 static void WriteInstruction(const Instruction &I, unsigned InstID, 1868 ValueEnumerator &VE, BitstreamWriter &Stream, 1869 SmallVectorImpl<unsigned> &Vals) { 1870 unsigned Code = 0; 1871 unsigned AbbrevToUse = 0; 1872 VE.setInstructionID(&I); 1873 switch (I.getOpcode()) { 1874 default: 1875 if (Instruction::isCast(I.getOpcode())) { 1876 Code = bitc::FUNC_CODE_INST_CAST; 1877 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1878 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1879 Vals.push_back(VE.getTypeID(I.getType())); 1880 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1881 } else { 1882 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1883 Code = bitc::FUNC_CODE_INST_BINOP; 1884 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1885 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1886 pushValue(I.getOperand(1), InstID, Vals, VE); 1887 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1888 uint64_t Flags = GetOptimizationFlags(&I); 1889 if (Flags != 0) { 1890 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1891 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1892 Vals.push_back(Flags); 1893 } 1894 } 1895 break; 1896 1897 case Instruction::GetElementPtr: { 1898 Code = bitc::FUNC_CODE_INST_GEP; 1899 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1900 auto &GEPInst = cast<GetElementPtrInst>(I); 1901 Vals.push_back(GEPInst.isInBounds()); 1902 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1903 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1904 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1905 break; 1906 } 1907 case Instruction::ExtractValue: { 1908 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1909 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1910 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1911 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1912 break; 1913 } 1914 case Instruction::InsertValue: { 1915 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1916 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1917 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1918 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1919 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1920 break; 1921 } 1922 case Instruction::Select: 1923 Code = bitc::FUNC_CODE_INST_VSELECT; 1924 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1925 pushValue(I.getOperand(2), InstID, Vals, VE); 1926 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1927 break; 1928 case Instruction::ExtractElement: 1929 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1930 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1931 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1932 break; 1933 case Instruction::InsertElement: 1934 Code = bitc::FUNC_CODE_INST_INSERTELT; 1935 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1936 pushValue(I.getOperand(1), InstID, Vals, VE); 1937 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1938 break; 1939 case Instruction::ShuffleVector: 1940 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1941 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1942 pushValue(I.getOperand(1), InstID, Vals, VE); 1943 pushValue(I.getOperand(2), InstID, Vals, VE); 1944 break; 1945 case Instruction::ICmp: 1946 case Instruction::FCmp: { 1947 // compare returning Int1Ty or vector of Int1Ty 1948 Code = bitc::FUNC_CODE_INST_CMP2; 1949 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1950 pushValue(I.getOperand(1), InstID, Vals, VE); 1951 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1952 uint64_t Flags = GetOptimizationFlags(&I); 1953 if (Flags != 0) 1954 Vals.push_back(Flags); 1955 break; 1956 } 1957 1958 case Instruction::Ret: 1959 { 1960 Code = bitc::FUNC_CODE_INST_RET; 1961 unsigned NumOperands = I.getNumOperands(); 1962 if (NumOperands == 0) 1963 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1964 else if (NumOperands == 1) { 1965 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1966 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1967 } else { 1968 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1969 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1970 } 1971 } 1972 break; 1973 case Instruction::Br: 1974 { 1975 Code = bitc::FUNC_CODE_INST_BR; 1976 const BranchInst &II = cast<BranchInst>(I); 1977 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1978 if (II.isConditional()) { 1979 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1980 pushValue(II.getCondition(), InstID, Vals, VE); 1981 } 1982 } 1983 break; 1984 case Instruction::Switch: 1985 { 1986 Code = bitc::FUNC_CODE_INST_SWITCH; 1987 const SwitchInst &SI = cast<SwitchInst>(I); 1988 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1989 pushValue(SI.getCondition(), InstID, Vals, VE); 1990 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1991 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 1992 Vals.push_back(VE.getValueID(Case.getCaseValue())); 1993 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 1994 } 1995 } 1996 break; 1997 case Instruction::IndirectBr: 1998 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1999 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2000 // Encode the address operand as relative, but not the basic blocks. 2001 pushValue(I.getOperand(0), InstID, Vals, VE); 2002 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2003 Vals.push_back(VE.getValueID(I.getOperand(i))); 2004 break; 2005 2006 case Instruction::Invoke: { 2007 const InvokeInst *II = cast<InvokeInst>(&I); 2008 const Value *Callee = II->getCalledValue(); 2009 FunctionType *FTy = II->getFunctionType(); 2010 2011 if (II->hasOperandBundles()) 2012 WriteOperandBundles(Stream, II, InstID, VE); 2013 2014 Code = bitc::FUNC_CODE_INST_INVOKE; 2015 2016 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2017 Vals.push_back(II->getCallingConv() | 1 << 13); 2018 Vals.push_back(VE.getValueID(II->getNormalDest())); 2019 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2020 Vals.push_back(VE.getTypeID(FTy)); 2021 PushValueAndType(Callee, InstID, Vals, VE); 2022 2023 // Emit value #'s for the fixed parameters. 2024 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2025 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 2026 2027 // Emit type/value pairs for varargs params. 2028 if (FTy->isVarArg()) { 2029 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 2030 i != e; ++i) 2031 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 2032 } 2033 break; 2034 } 2035 case Instruction::Resume: 2036 Code = bitc::FUNC_CODE_INST_RESUME; 2037 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2038 break; 2039 case Instruction::CleanupRet: { 2040 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2041 const auto &CRI = cast<CleanupReturnInst>(I); 2042 pushValue(CRI.getCleanupPad(), InstID, Vals, VE); 2043 if (CRI.hasUnwindDest()) 2044 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2045 break; 2046 } 2047 case Instruction::CatchRet: { 2048 Code = bitc::FUNC_CODE_INST_CATCHRET; 2049 const auto &CRI = cast<CatchReturnInst>(I); 2050 pushValue(CRI.getCatchPad(), InstID, Vals, VE); 2051 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2052 break; 2053 } 2054 case Instruction::CleanupPad: 2055 case Instruction::CatchPad: { 2056 const auto &FuncletPad = cast<FuncletPadInst>(I); 2057 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2058 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2059 pushValue(FuncletPad.getParentPad(), InstID, Vals, VE); 2060 2061 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2062 Vals.push_back(NumArgOperands); 2063 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2064 PushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals, VE); 2065 break; 2066 } 2067 case Instruction::CatchSwitch: { 2068 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2069 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2070 2071 pushValue(CatchSwitch.getParentPad(), InstID, Vals, VE); 2072 2073 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2074 Vals.push_back(NumHandlers); 2075 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2076 Vals.push_back(VE.getValueID(CatchPadBB)); 2077 2078 if (CatchSwitch.hasUnwindDest()) 2079 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2080 break; 2081 } 2082 case Instruction::Unreachable: 2083 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2084 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2085 break; 2086 2087 case Instruction::PHI: { 2088 const PHINode &PN = cast<PHINode>(I); 2089 Code = bitc::FUNC_CODE_INST_PHI; 2090 // With the newer instruction encoding, forward references could give 2091 // negative valued IDs. This is most common for PHIs, so we use 2092 // signed VBRs. 2093 SmallVector<uint64_t, 128> Vals64; 2094 Vals64.push_back(VE.getTypeID(PN.getType())); 2095 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2096 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 2097 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2098 } 2099 // Emit a Vals64 vector and exit. 2100 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2101 Vals64.clear(); 2102 return; 2103 } 2104 2105 case Instruction::LandingPad: { 2106 const LandingPadInst &LP = cast<LandingPadInst>(I); 2107 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2108 Vals.push_back(VE.getTypeID(LP.getType())); 2109 Vals.push_back(LP.isCleanup()); 2110 Vals.push_back(LP.getNumClauses()); 2111 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2112 if (LP.isCatch(I)) 2113 Vals.push_back(LandingPadInst::Catch); 2114 else 2115 Vals.push_back(LandingPadInst::Filter); 2116 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 2117 } 2118 break; 2119 } 2120 2121 case Instruction::Alloca: { 2122 Code = bitc::FUNC_CODE_INST_ALLOCA; 2123 const AllocaInst &AI = cast<AllocaInst>(I); 2124 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2125 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2126 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2127 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2128 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2129 "not enough bits for maximum alignment"); 2130 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2131 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2132 AlignRecord |= 1 << 6; 2133 // Reserve bit 7 for SwiftError flag. 2134 // AlignRecord |= AI.isSwiftError() << 7; 2135 Vals.push_back(AlignRecord); 2136 break; 2137 } 2138 2139 case Instruction::Load: 2140 if (cast<LoadInst>(I).isAtomic()) { 2141 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2142 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2143 } else { 2144 Code = bitc::FUNC_CODE_INST_LOAD; 2145 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 2146 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2147 } 2148 Vals.push_back(VE.getTypeID(I.getType())); 2149 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2150 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2151 if (cast<LoadInst>(I).isAtomic()) { 2152 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2153 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2154 } 2155 break; 2156 case Instruction::Store: 2157 if (cast<StoreInst>(I).isAtomic()) 2158 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2159 else 2160 Code = bitc::FUNC_CODE_INST_STORE; 2161 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 2162 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 2163 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2164 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2165 if (cast<StoreInst>(I).isAtomic()) { 2166 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2167 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2168 } 2169 break; 2170 case Instruction::AtomicCmpXchg: 2171 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2172 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2173 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 2174 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 2175 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2176 Vals.push_back(GetEncodedOrdering( 2177 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2178 Vals.push_back(GetEncodedSynchScope( 2179 cast<AtomicCmpXchgInst>(I).getSynchScope())); 2180 Vals.push_back(GetEncodedOrdering( 2181 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2182 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2183 break; 2184 case Instruction::AtomicRMW: 2185 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2186 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2187 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 2188 Vals.push_back(GetEncodedRMWOperation( 2189 cast<AtomicRMWInst>(I).getOperation())); 2190 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2191 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2192 Vals.push_back(GetEncodedSynchScope( 2193 cast<AtomicRMWInst>(I).getSynchScope())); 2194 break; 2195 case Instruction::Fence: 2196 Code = bitc::FUNC_CODE_INST_FENCE; 2197 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2198 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2199 break; 2200 case Instruction::Call: { 2201 const CallInst &CI = cast<CallInst>(I); 2202 FunctionType *FTy = CI.getFunctionType(); 2203 2204 if (CI.hasOperandBundles()) 2205 WriteOperandBundles(Stream, &CI, InstID, VE); 2206 2207 Code = bitc::FUNC_CODE_INST_CALL; 2208 2209 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2210 2211 unsigned Flags = GetOptimizationFlags(&I); 2212 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2213 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2214 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2215 1 << bitc::CALL_EXPLICIT_TYPE | 2216 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2217 unsigned(Flags != 0) << bitc::CALL_FMF); 2218 if (Flags != 0) 2219 Vals.push_back(Flags); 2220 2221 Vals.push_back(VE.getTypeID(FTy)); 2222 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 2223 2224 // Emit value #'s for the fixed parameters. 2225 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2226 // Check for labels (can happen with asm labels). 2227 if (FTy->getParamType(i)->isLabelTy()) 2228 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2229 else 2230 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 2231 } 2232 2233 // Emit type/value pairs for varargs params. 2234 if (FTy->isVarArg()) { 2235 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2236 i != e; ++i) 2237 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 2238 } 2239 break; 2240 } 2241 case Instruction::VAArg: 2242 Code = bitc::FUNC_CODE_INST_VAARG; 2243 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2244 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 2245 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2246 break; 2247 } 2248 2249 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2250 Vals.clear(); 2251 } 2252 2253 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder, 2254 /// BitcodeStartBit and ModuleSummaryIndex are only passed for the module-level 2255 /// VST, where we are including a function bitcode index and need to 2256 /// backpatch the VST forward declaration record. 2257 static void WriteValueSymbolTable( 2258 const ValueSymbolTable &VST, const ValueEnumerator &VE, 2259 BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0, 2260 uint64_t BitcodeStartBit = 0, 2261 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> 2262 *FunctionIndex = nullptr) { 2263 if (VST.empty()) { 2264 // WriteValueSymbolTableForwardDecl should have returned early as 2265 // well. Ensure this handling remains in sync by asserting that 2266 // the placeholder offset is not set. 2267 assert(VSTOffsetPlaceholder == 0); 2268 return; 2269 } 2270 2271 if (VSTOffsetPlaceholder > 0) { 2272 // Get the offset of the VST we are writing, and backpatch it into 2273 // the VST forward declaration record. 2274 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2275 // The BitcodeStartBit was the stream offset of the actual bitcode 2276 // (e.g. excluding any initial darwin header). 2277 VSTOffset -= BitcodeStartBit; 2278 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2279 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2280 } 2281 2282 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2283 2284 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2285 // records, which are not used in the per-function VSTs. 2286 unsigned FnEntry8BitAbbrev; 2287 unsigned FnEntry7BitAbbrev; 2288 unsigned FnEntry6BitAbbrev; 2289 if (VSTOffsetPlaceholder > 0) { 2290 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2291 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2292 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2297 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2298 2299 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2300 Abbv = new BitCodeAbbrev(); 2301 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2306 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2307 2308 // 6-bit char6 VST_CODE_FNENTRY function strings. 2309 Abbv = new BitCodeAbbrev(); 2310 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2315 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2316 } 2317 2318 // FIXME: Set up the abbrev, we know how many values there are! 2319 // FIXME: We know if the type names can use 7-bit ascii. 2320 SmallVector<unsigned, 64> NameVals; 2321 2322 for (const ValueName &Name : VST) { 2323 // Figure out the encoding to use for the name. 2324 StringEncoding Bits = 2325 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2326 2327 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2328 NameVals.push_back(VE.getValueID(Name.getValue())); 2329 2330 Function *F = dyn_cast<Function>(Name.getValue()); 2331 if (!F) { 2332 // If value is an alias, need to get the aliased base object to 2333 // see if it is a function. 2334 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2335 if (GA && GA->getBaseObject()) 2336 F = dyn_cast<Function>(GA->getBaseObject()); 2337 } 2338 2339 // VST_CODE_ENTRY: [valueid, namechar x N] 2340 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2341 // VST_CODE_BBENTRY: [bbid, namechar x N] 2342 unsigned Code; 2343 if (isa<BasicBlock>(Name.getValue())) { 2344 Code = bitc::VST_CODE_BBENTRY; 2345 if (Bits == SE_Char6) 2346 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2347 } else if (F && !F->isDeclaration()) { 2348 // Must be the module-level VST, where we pass in the Index and 2349 // have a VSTOffsetPlaceholder. The function-level VST should not 2350 // contain any Function symbols. 2351 assert(FunctionIndex); 2352 assert(VSTOffsetPlaceholder > 0); 2353 2354 // Save the word offset of the function (from the start of the 2355 // actual bitcode written to the stream). 2356 uint64_t BitcodeIndex = 2357 (*FunctionIndex)[F]->bitcodeIndex() - BitcodeStartBit; 2358 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2359 NameVals.push_back(BitcodeIndex / 32); 2360 2361 Code = bitc::VST_CODE_FNENTRY; 2362 AbbrevToUse = FnEntry8BitAbbrev; 2363 if (Bits == SE_Char6) 2364 AbbrevToUse = FnEntry6BitAbbrev; 2365 else if (Bits == SE_Fixed7) 2366 AbbrevToUse = FnEntry7BitAbbrev; 2367 } else { 2368 Code = bitc::VST_CODE_ENTRY; 2369 if (Bits == SE_Char6) 2370 AbbrevToUse = VST_ENTRY_6_ABBREV; 2371 else if (Bits == SE_Fixed7) 2372 AbbrevToUse = VST_ENTRY_7_ABBREV; 2373 } 2374 2375 for (const auto P : Name.getKey()) 2376 NameVals.push_back((unsigned char)P); 2377 2378 // Emit the finished record. 2379 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2380 NameVals.clear(); 2381 } 2382 Stream.ExitBlock(); 2383 } 2384 2385 /// Emit function names and summary offsets for the combined index 2386 /// used by ThinLTO. 2387 static void 2388 WriteCombinedValueSymbolTable(const ModuleSummaryIndex &Index, 2389 BitstreamWriter &Stream, 2390 std::map<uint64_t, unsigned> &GUIDToValueIdMap, 2391 uint64_t VSTOffsetPlaceholder) { 2392 assert(VSTOffsetPlaceholder > 0 && "Expected non-zero VSTOffsetPlaceholder"); 2393 // Get the offset of the VST we are writing, and backpatch it into 2394 // the VST forward declaration record. 2395 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2396 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2397 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2398 2399 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2400 2401 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2402 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_GVDEFENTRY)); 2403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // sumoffset 2405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // guid 2406 unsigned DefEntryAbbrev = Stream.EmitAbbrev(Abbv); 2407 2408 Abbv = new BitCodeAbbrev(); 2409 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2412 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2413 2414 SmallVector<uint64_t, 64> NameVals; 2415 2416 for (const auto &FII : Index) { 2417 uint64_t FuncGUID = FII.first; 2418 const auto &VMI = GUIDToValueIdMap.find(FuncGUID); 2419 assert(VMI != GUIDToValueIdMap.end()); 2420 2421 for (const auto &FI : FII.second) { 2422 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, sumoffset, guid] 2423 NameVals.push_back(VMI->second); 2424 NameVals.push_back(FI->bitcodeIndex()); 2425 NameVals.push_back(FuncGUID); 2426 2427 // Emit the finished record. 2428 Stream.EmitRecord(bitc::VST_CODE_COMBINED_GVDEFENTRY, NameVals, 2429 DefEntryAbbrev); 2430 NameVals.clear(); 2431 } 2432 GUIDToValueIdMap.erase(VMI); 2433 } 2434 for (const auto &GVI : GUIDToValueIdMap) { 2435 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2436 NameVals.push_back(GVI.second); 2437 NameVals.push_back(GVI.first); 2438 2439 // Emit the finished record. 2440 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2441 NameVals.clear(); 2442 } 2443 Stream.ExitBlock(); 2444 } 2445 2446 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2447 BitstreamWriter &Stream) { 2448 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2449 unsigned Code; 2450 if (isa<BasicBlock>(Order.V)) 2451 Code = bitc::USELIST_CODE_BB; 2452 else 2453 Code = bitc::USELIST_CODE_DEFAULT; 2454 2455 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2456 Record.push_back(VE.getValueID(Order.V)); 2457 Stream.EmitRecord(Code, Record); 2458 } 2459 2460 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2461 BitstreamWriter &Stream) { 2462 assert(VE.shouldPreserveUseListOrder() && 2463 "Expected to be preserving use-list order"); 2464 2465 auto hasMore = [&]() { 2466 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2467 }; 2468 if (!hasMore()) 2469 // Nothing to do. 2470 return; 2471 2472 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2473 while (hasMore()) { 2474 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2475 VE.UseListOrders.pop_back(); 2476 } 2477 Stream.ExitBlock(); 2478 } 2479 2480 // Walk through the operands of a given User via worklist iteration and populate 2481 // the set of GlobalValue references encountered. Invoked either on an 2482 // Instruction or a GlobalVariable (which walks its initializer). 2483 static void findRefEdges(const User *CurUser, const ValueEnumerator &VE, 2484 DenseSet<unsigned> &RefEdges, 2485 SmallPtrSet<const User *, 8> &Visited) { 2486 SmallVector<const User *, 32> Worklist; 2487 Worklist.push_back(CurUser); 2488 2489 while (!Worklist.empty()) { 2490 const User *U = Worklist.pop_back_val(); 2491 2492 if (!Visited.insert(U).second) 2493 continue; 2494 2495 ImmutableCallSite CS(U); 2496 2497 for (const auto &OI : U->operands()) { 2498 const User *Operand = dyn_cast<User>(OI); 2499 if (!Operand) 2500 continue; 2501 if (isa<BlockAddress>(Operand)) 2502 continue; 2503 if (isa<GlobalValue>(Operand)) { 2504 // We have a reference to a global value. This should be added to 2505 // the reference set unless it is a callee. Callees are handled 2506 // specially by WriteFunction and are added to a separate list. 2507 if (!(CS && CS.isCallee(&OI))) 2508 RefEdges.insert(VE.getValueID(Operand)); 2509 continue; 2510 } 2511 Worklist.push_back(Operand); 2512 } 2513 } 2514 } 2515 2516 /// Emit a function body to the module stream. 2517 static void WriteFunction( 2518 const Function &F, const Module *M, ValueEnumerator &VE, 2519 BitstreamWriter &Stream, 2520 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex, 2521 bool EmitSummaryIndex) { 2522 // Save the bitcode index of the start of this function block for recording 2523 // in the VST. 2524 uint64_t BitcodeIndex = Stream.GetCurrentBitNo(); 2525 2526 bool HasProfileData = F.getEntryCount().hasValue(); 2527 std::unique_ptr<BlockFrequencyInfo> BFI; 2528 if (EmitSummaryIndex && HasProfileData) { 2529 Function &Func = const_cast<Function &>(F); 2530 LoopInfo LI{DominatorTree(Func)}; 2531 BranchProbabilityInfo BPI{Func, LI}; 2532 BFI = llvm::make_unique<BlockFrequencyInfo>(Func, BPI, LI); 2533 } 2534 2535 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2536 VE.incorporateFunction(F); 2537 2538 SmallVector<unsigned, 64> Vals; 2539 2540 // Emit the number of basic blocks, so the reader can create them ahead of 2541 // time. 2542 Vals.push_back(VE.getBasicBlocks().size()); 2543 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2544 Vals.clear(); 2545 2546 // If there are function-local constants, emit them now. 2547 unsigned CstStart, CstEnd; 2548 VE.getFunctionConstantRange(CstStart, CstEnd); 2549 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2550 2551 // If there is function-local metadata, emit it now. 2552 WriteFunctionLocalMetadata(F, VE, Stream); 2553 2554 // Keep a running idea of what the instruction ID is. 2555 unsigned InstID = CstEnd; 2556 2557 bool NeedsMetadataAttachment = F.hasMetadata(); 2558 2559 DILocation *LastDL = nullptr; 2560 unsigned NumInsts = 0; 2561 // Map from callee ValueId to profile count. Used to accumulate profile 2562 // counts for all static calls to a given callee. 2563 DenseMap<unsigned, CalleeInfo> CallGraphEdges; 2564 DenseSet<unsigned> RefEdges; 2565 2566 SmallPtrSet<const User *, 8> Visited; 2567 // Finally, emit all the instructions, in order. 2568 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2569 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2570 I != E; ++I) { 2571 WriteInstruction(*I, InstID, VE, Stream, Vals); 2572 2573 if (!isa<DbgInfoIntrinsic>(I)) 2574 ++NumInsts; 2575 2576 if (!I->getType()->isVoidTy()) 2577 ++InstID; 2578 2579 if (EmitSummaryIndex) { 2580 if (auto CS = ImmutableCallSite(&*I)) { 2581 auto *CalledFunction = CS.getCalledFunction(); 2582 if (CalledFunction && CalledFunction->hasName() && 2583 !CalledFunction->isIntrinsic()) { 2584 auto ScaledCount = BFI ? BFI->getBlockProfileCount(&*BB) : None; 2585 unsigned CalleeId = VE.getValueID( 2586 M->getValueSymbolTable().lookup(CalledFunction->getName())); 2587 CallGraphEdges[CalleeId] += 2588 (ScaledCount ? ScaledCount.getValue() : 0); 2589 } 2590 } 2591 findRefEdges(&*I, VE, RefEdges, Visited); 2592 } 2593 2594 // If the instruction has metadata, write a metadata attachment later. 2595 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2596 2597 // If the instruction has a debug location, emit it. 2598 DILocation *DL = I->getDebugLoc(); 2599 if (!DL) 2600 continue; 2601 2602 if (DL == LastDL) { 2603 // Just repeat the same debug loc as last time. 2604 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2605 continue; 2606 } 2607 2608 Vals.push_back(DL->getLine()); 2609 Vals.push_back(DL->getColumn()); 2610 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2611 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2612 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2613 Vals.clear(); 2614 2615 LastDL = DL; 2616 } 2617 2618 std::unique_ptr<FunctionSummary> FuncSummary; 2619 if (EmitSummaryIndex) { 2620 FuncSummary = llvm::make_unique<FunctionSummary>(F.getLinkage(), NumInsts); 2621 FuncSummary->addCallGraphEdges(CallGraphEdges); 2622 FuncSummary->addRefEdges(RefEdges); 2623 } 2624 FunctionIndex[&F] = 2625 llvm::make_unique<GlobalValueInfo>(BitcodeIndex, std::move(FuncSummary)); 2626 2627 // Emit names for all the instructions etc. 2628 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2629 2630 if (NeedsMetadataAttachment) 2631 WriteMetadataAttachment(F, VE, Stream); 2632 if (VE.shouldPreserveUseListOrder()) 2633 WriteUseListBlock(&F, VE, Stream); 2634 VE.purgeFunction(); 2635 Stream.ExitBlock(); 2636 } 2637 2638 // Emit blockinfo, which defines the standard abbreviations etc. 2639 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2640 // We only want to emit block info records for blocks that have multiple 2641 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2642 // Other blocks can define their abbrevs inline. 2643 Stream.EnterBlockInfoBlock(2); 2644 2645 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2646 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2651 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2652 Abbv) != VST_ENTRY_8_ABBREV) 2653 llvm_unreachable("Unexpected abbrev ordering!"); 2654 } 2655 2656 { // 7-bit fixed width VST_CODE_ENTRY strings. 2657 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2658 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2661 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2662 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2663 Abbv) != VST_ENTRY_7_ABBREV) 2664 llvm_unreachable("Unexpected abbrev ordering!"); 2665 } 2666 { // 6-bit char6 VST_CODE_ENTRY strings. 2667 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2668 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2672 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2673 Abbv) != VST_ENTRY_6_ABBREV) 2674 llvm_unreachable("Unexpected abbrev ordering!"); 2675 } 2676 { // 6-bit char6 VST_CODE_BBENTRY strings. 2677 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2678 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2682 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2683 Abbv) != VST_BBENTRY_6_ABBREV) 2684 llvm_unreachable("Unexpected abbrev ordering!"); 2685 } 2686 2687 2688 2689 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2690 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2691 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2693 VE.computeBitsRequiredForTypeIndicies())); 2694 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2695 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2696 llvm_unreachable("Unexpected abbrev ordering!"); 2697 } 2698 2699 { // INTEGER abbrev for CONSTANTS_BLOCK. 2700 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2701 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2703 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2704 Abbv) != CONSTANTS_INTEGER_ABBREV) 2705 llvm_unreachable("Unexpected abbrev ordering!"); 2706 } 2707 2708 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2709 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2710 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2713 VE.computeBitsRequiredForTypeIndicies())); 2714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2715 2716 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2717 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2718 llvm_unreachable("Unexpected abbrev ordering!"); 2719 } 2720 { // NULL abbrev for CONSTANTS_BLOCK. 2721 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2722 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2723 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2724 Abbv) != CONSTANTS_NULL_Abbrev) 2725 llvm_unreachable("Unexpected abbrev ordering!"); 2726 } 2727 2728 // FIXME: This should only use space for first class types! 2729 2730 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2731 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2732 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2735 VE.computeBitsRequiredForTypeIndicies())); 2736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2738 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2739 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2740 llvm_unreachable("Unexpected abbrev ordering!"); 2741 } 2742 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2743 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2744 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2748 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2749 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2750 llvm_unreachable("Unexpected abbrev ordering!"); 2751 } 2752 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2753 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2754 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2759 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2760 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2761 llvm_unreachable("Unexpected abbrev ordering!"); 2762 } 2763 { // INST_CAST abbrev for FUNCTION_BLOCK. 2764 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2765 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2768 VE.computeBitsRequiredForTypeIndicies())); 2769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2770 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2771 Abbv) != FUNCTION_INST_CAST_ABBREV) 2772 llvm_unreachable("Unexpected abbrev ordering!"); 2773 } 2774 2775 { // INST_RET abbrev for FUNCTION_BLOCK. 2776 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2777 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2778 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2779 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2780 llvm_unreachable("Unexpected abbrev ordering!"); 2781 } 2782 { // INST_RET abbrev for FUNCTION_BLOCK. 2783 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2784 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2786 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2787 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2788 llvm_unreachable("Unexpected abbrev ordering!"); 2789 } 2790 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2791 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2792 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2793 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2794 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2795 llvm_unreachable("Unexpected abbrev ordering!"); 2796 } 2797 { 2798 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2799 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2802 Log2_32_Ceil(VE.getTypes().size() + 1))); 2803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2805 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2806 FUNCTION_INST_GEP_ABBREV) 2807 llvm_unreachable("Unexpected abbrev ordering!"); 2808 } 2809 2810 Stream.ExitBlock(); 2811 } 2812 2813 /// Write the module path strings, currently only used when generating 2814 /// a combined index file. 2815 static void WriteModStrings(const ModuleSummaryIndex &I, 2816 BitstreamWriter &Stream) { 2817 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 2818 2819 // TODO: See which abbrev sizes we actually need to emit 2820 2821 // 8-bit fixed-width MST_ENTRY strings. 2822 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2823 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2827 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 2828 2829 // 7-bit fixed width MST_ENTRY strings. 2830 Abbv = new BitCodeAbbrev(); 2831 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2835 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 2836 2837 // 6-bit char6 MST_ENTRY strings. 2838 Abbv = new BitCodeAbbrev(); 2839 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2843 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 2844 2845 SmallVector<unsigned, 64> NameVals; 2846 for (const StringMapEntry<uint64_t> &MPSE : I.modPathStringEntries()) { 2847 StringEncoding Bits = 2848 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 2849 unsigned AbbrevToUse = Abbrev8Bit; 2850 if (Bits == SE_Char6) 2851 AbbrevToUse = Abbrev6Bit; 2852 else if (Bits == SE_Fixed7) 2853 AbbrevToUse = Abbrev7Bit; 2854 2855 NameVals.push_back(MPSE.getValue()); 2856 2857 for (const auto P : MPSE.getKey()) 2858 NameVals.push_back((unsigned char)P); 2859 2860 // Emit the finished record. 2861 Stream.EmitRecord(bitc::MST_CODE_ENTRY, NameVals, AbbrevToUse); 2862 NameVals.clear(); 2863 } 2864 Stream.ExitBlock(); 2865 } 2866 2867 // Helper to emit a single function summary record. 2868 static void WritePerModuleFunctionSummaryRecord( 2869 SmallVector<uint64_t, 64> &NameVals, FunctionSummary *FS, unsigned ValueID, 2870 unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 2871 BitstreamWriter &Stream, const Function &F) { 2872 assert(FS); 2873 NameVals.push_back(ValueID); 2874 NameVals.push_back(getEncodedLinkage(FS->linkage())); 2875 NameVals.push_back(FS->instCount()); 2876 NameVals.push_back(FS->refs().size()); 2877 2878 for (auto &RI : FS->refs()) 2879 NameVals.push_back(RI); 2880 2881 bool HasProfileData = F.getEntryCount().hasValue(); 2882 for (auto &ECI : FS->edges()) { 2883 NameVals.push_back(ECI.first); 2884 assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite"); 2885 NameVals.push_back(ECI.second.CallsiteCount); 2886 if (HasProfileData) 2887 NameVals.push_back(ECI.second.ProfileCount); 2888 } 2889 2890 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 2891 unsigned Code = 2892 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 2893 2894 // Emit the finished record. 2895 Stream.EmitRecord(Code, NameVals, FSAbbrev); 2896 NameVals.clear(); 2897 } 2898 2899 // Collect the global value references in the given variable's initializer, 2900 // and emit them in a summary record. 2901 static void WriteModuleLevelReferences(const GlobalVariable &V, 2902 const ValueEnumerator &VE, 2903 SmallVector<uint64_t, 64> &NameVals, 2904 unsigned FSModRefsAbbrev, 2905 BitstreamWriter &Stream) { 2906 // Only interested in recording variable defs in the summary. 2907 if (V.isDeclaration()) 2908 return; 2909 DenseSet<unsigned> RefEdges; 2910 SmallPtrSet<const User *, 8> Visited; 2911 findRefEdges(&V, VE, RefEdges, Visited); 2912 NameVals.push_back(VE.getValueID(&V)); 2913 NameVals.push_back(getEncodedLinkage(V.getLinkage())); 2914 for (auto RefId : RefEdges) { 2915 NameVals.push_back(RefId); 2916 } 2917 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 2918 FSModRefsAbbrev); 2919 NameVals.clear(); 2920 } 2921 2922 /// Emit the per-module summary section alongside the rest of 2923 /// the module's bitcode. 2924 static void WritePerModuleGlobalValueSummary( 2925 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex, 2926 const Module *M, const ValueEnumerator &VE, BitstreamWriter &Stream) { 2927 if (M->empty()) 2928 return; 2929 2930 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 2931 2932 // Abbrev for FS_PERMODULE. 2933 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2934 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 2935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2939 // numrefs x valueid, n x (valueid, callsitecount) 2940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2942 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 2943 2944 // Abbrev for FS_PERMODULE_PROFILE. 2945 Abbv = new BitCodeAbbrev(); 2946 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 2947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2951 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 2952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2954 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 2955 2956 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 2957 Abbv = new BitCodeAbbrev(); 2958 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 2959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 2962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2963 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 2964 2965 SmallVector<uint64_t, 64> NameVals; 2966 // Iterate over the list of functions instead of the FunctionIndex map to 2967 // ensure the ordering is stable. 2968 for (const Function &F : *M) { 2969 if (F.isDeclaration()) 2970 continue; 2971 // Skip anonymous functions. We will emit a function summary for 2972 // any aliases below. 2973 if (!F.hasName()) 2974 continue; 2975 2976 assert(FunctionIndex.count(&F) == 1); 2977 2978 WritePerModuleFunctionSummaryRecord( 2979 NameVals, cast<FunctionSummary>(FunctionIndex[&F]->summary()), 2980 VE.getValueID(M->getValueSymbolTable().lookup(F.getName())), 2981 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, F); 2982 } 2983 2984 for (const GlobalAlias &A : M->aliases()) { 2985 if (!A.getBaseObject()) 2986 continue; 2987 const Function *F = dyn_cast<Function>(A.getBaseObject()); 2988 if (!F || F->isDeclaration()) 2989 continue; 2990 2991 assert(FunctionIndex.count(F) == 1); 2992 FunctionSummary *FS = 2993 cast<FunctionSummary>(FunctionIndex[F]->summary()); 2994 // Add the alias to the reference list of aliasee function. 2995 FS->addRefEdge( 2996 VE.getValueID(M->getValueSymbolTable().lookup(A.getName()))); 2997 WritePerModuleFunctionSummaryRecord( 2998 NameVals, FS, 2999 VE.getValueID(M->getValueSymbolTable().lookup(A.getName())), 3000 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, *F); 3001 } 3002 3003 // Capture references from GlobalVariable initializers, which are outside 3004 // of a function scope. 3005 for (const GlobalVariable &G : M->globals()) 3006 WriteModuleLevelReferences(G, VE, NameVals, FSModRefsAbbrev, Stream); 3007 for (const GlobalAlias &A : M->aliases()) 3008 if (auto *GV = dyn_cast<GlobalVariable>(A.getBaseObject())) 3009 WriteModuleLevelReferences(*GV, VE, NameVals, FSModRefsAbbrev, Stream); 3010 3011 Stream.ExitBlock(); 3012 } 3013 3014 /// Emit the combined summary section into the combined index file. 3015 static void WriteCombinedGlobalValueSummary( 3016 const ModuleSummaryIndex &I, BitstreamWriter &Stream, 3017 std::map<uint64_t, unsigned> &GUIDToValueIdMap, unsigned GlobalValueId) { 3018 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3019 3020 // Abbrev for FS_COMBINED. 3021 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3022 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3027 // numrefs x valueid, n x (valueid, callsitecount) 3028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3030 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3031 3032 // Abbrev for FS_COMBINED_PROFILE. 3033 Abbv = new BitCodeAbbrev(); 3034 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3039 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3042 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3043 3044 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3045 Abbv = new BitCodeAbbrev(); 3046 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3051 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3052 3053 SmallVector<uint64_t, 64> NameVals; 3054 for (const auto &FII : I) { 3055 for (auto &FI : FII.second) { 3056 GlobalValueSummary *S = FI->summary(); 3057 assert(S); 3058 3059 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3060 NameVals.push_back(I.getModuleId(VS->modulePath())); 3061 NameVals.push_back(getEncodedLinkage(VS->linkage())); 3062 for (auto &RI : VS->refs()) { 3063 const auto &VMI = GUIDToValueIdMap.find(RI); 3064 unsigned RefId; 3065 // If this GUID doesn't have an entry, assign one. 3066 if (VMI == GUIDToValueIdMap.end()) { 3067 GUIDToValueIdMap[RI] = ++GlobalValueId; 3068 RefId = GlobalValueId; 3069 } else { 3070 RefId = VMI->second; 3071 } 3072 NameVals.push_back(RefId); 3073 } 3074 3075 // Record the starting offset of this summary entry for use 3076 // in the VST entry. Add the current code size since the 3077 // reader will invoke readRecord after the abbrev id read. 3078 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + 3079 Stream.GetAbbrevIDWidth()); 3080 3081 // Emit the finished record. 3082 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3083 FSModRefsAbbrev); 3084 NameVals.clear(); 3085 continue; 3086 } 3087 3088 auto *FS = cast<FunctionSummary>(S); 3089 NameVals.push_back(I.getModuleId(FS->modulePath())); 3090 NameVals.push_back(getEncodedLinkage(FS->linkage())); 3091 NameVals.push_back(FS->instCount()); 3092 NameVals.push_back(FS->refs().size()); 3093 3094 for (auto &RI : FS->refs()) { 3095 const auto &VMI = GUIDToValueIdMap.find(RI); 3096 unsigned RefId; 3097 // If this GUID doesn't have an entry, assign one. 3098 if (VMI == GUIDToValueIdMap.end()) { 3099 GUIDToValueIdMap[RI] = ++GlobalValueId; 3100 RefId = GlobalValueId; 3101 } else { 3102 RefId = VMI->second; 3103 } 3104 NameVals.push_back(RefId); 3105 } 3106 3107 bool HasProfileData = false; 3108 for (auto &EI : FS->edges()) { 3109 HasProfileData |= EI.second.ProfileCount != 0; 3110 if (HasProfileData) 3111 break; 3112 } 3113 3114 for (auto &EI : FS->edges()) { 3115 const auto &VMI = GUIDToValueIdMap.find(EI.first); 3116 // If this GUID doesn't have an entry, it doesn't have a function 3117 // summary and we don't need to record any calls to it. 3118 if (VMI == GUIDToValueIdMap.end()) 3119 continue; 3120 NameVals.push_back(VMI->second); 3121 assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3122 NameVals.push_back(EI.second.CallsiteCount); 3123 if (HasProfileData) 3124 NameVals.push_back(EI.second.ProfileCount); 3125 } 3126 3127 // Record the starting offset of this summary entry for use 3128 // in the VST entry. Add the current code size since the 3129 // reader will invoke readRecord after the abbrev id read. 3130 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth()); 3131 3132 unsigned FSAbbrev = 3133 (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3134 unsigned Code = 3135 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3136 3137 // Emit the finished record. 3138 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3139 NameVals.clear(); 3140 } 3141 } 3142 3143 Stream.ExitBlock(); 3144 } 3145 3146 // Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3147 // current llvm version, and a record for the epoch number. 3148 static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) { 3149 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3150 3151 // Write the "user readable" string identifying the bitcode producer 3152 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3153 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3156 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3157 WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING, 3158 "LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream); 3159 3160 // Write the epoch version 3161 Abbv = new BitCodeAbbrev(); 3162 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3164 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3165 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3166 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3167 Stream.ExitBlock(); 3168 } 3169 3170 /// WriteModule - Emit the specified module to the bitstream. 3171 static void WriteModule(const Module *M, BitstreamWriter &Stream, 3172 bool ShouldPreserveUseListOrder, 3173 uint64_t BitcodeStartBit, bool EmitSummaryIndex) { 3174 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3175 3176 SmallVector<unsigned, 1> Vals; 3177 unsigned CurVersion = 1; 3178 Vals.push_back(CurVersion); 3179 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3180 3181 // Analyze the module, enumerating globals, functions, etc. 3182 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 3183 3184 // Emit blockinfo, which defines the standard abbreviations etc. 3185 WriteBlockInfo(VE, Stream); 3186 3187 // Emit information about attribute groups. 3188 WriteAttributeGroupTable(VE, Stream); 3189 3190 // Emit information about parameter attributes. 3191 WriteAttributeTable(VE, Stream); 3192 3193 // Emit information describing all of the types in the module. 3194 WriteTypeTable(VE, Stream); 3195 3196 writeComdats(VE, Stream); 3197 3198 // Emit top-level description of module, including target triple, inline asm, 3199 // descriptors for global variables, and function prototype info. 3200 uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream); 3201 3202 // Emit constants. 3203 WriteModuleConstants(VE, Stream); 3204 3205 // Emit metadata. 3206 WriteModuleMetadata(*M, VE, Stream); 3207 3208 // Emit metadata. 3209 WriteModuleMetadataStore(M, Stream); 3210 3211 // Emit module-level use-lists. 3212 if (VE.shouldPreserveUseListOrder()) 3213 WriteUseListBlock(nullptr, VE, Stream); 3214 3215 WriteOperandBundleTags(M, Stream); 3216 3217 // Emit function bodies. 3218 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> FunctionIndex; 3219 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 3220 if (!F->isDeclaration()) 3221 WriteFunction(*F, M, VE, Stream, FunctionIndex, EmitSummaryIndex); 3222 3223 // Need to write after the above call to WriteFunction which populates 3224 // the summary information in the index. 3225 if (EmitSummaryIndex) 3226 WritePerModuleGlobalValueSummary(FunctionIndex, M, VE, Stream); 3227 3228 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream, 3229 VSTOffsetPlaceholder, BitcodeStartBit, &FunctionIndex); 3230 3231 Stream.ExitBlock(); 3232 } 3233 3234 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 3235 /// header and trailer to make it compatible with the system archiver. To do 3236 /// this we emit the following header, and then emit a trailer that pads the 3237 /// file out to be a multiple of 16 bytes. 3238 /// 3239 /// struct bc_header { 3240 /// uint32_t Magic; // 0x0B17C0DE 3241 /// uint32_t Version; // Version, currently always 0. 3242 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3243 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3244 /// uint32_t CPUType; // CPU specifier. 3245 /// ... potentially more later ... 3246 /// }; 3247 3248 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3249 uint32_t &Position) { 3250 support::endian::write32le(&Buffer[Position], Value); 3251 Position += 4; 3252 } 3253 3254 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3255 const Triple &TT) { 3256 unsigned CPUType = ~0U; 3257 3258 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3259 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3260 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3261 // specific constants here because they are implicitly part of the Darwin ABI. 3262 enum { 3263 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3264 DARWIN_CPU_TYPE_X86 = 7, 3265 DARWIN_CPU_TYPE_ARM = 12, 3266 DARWIN_CPU_TYPE_POWERPC = 18 3267 }; 3268 3269 Triple::ArchType Arch = TT.getArch(); 3270 if (Arch == Triple::x86_64) 3271 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3272 else if (Arch == Triple::x86) 3273 CPUType = DARWIN_CPU_TYPE_X86; 3274 else if (Arch == Triple::ppc) 3275 CPUType = DARWIN_CPU_TYPE_POWERPC; 3276 else if (Arch == Triple::ppc64) 3277 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3278 else if (Arch == Triple::arm || Arch == Triple::thumb) 3279 CPUType = DARWIN_CPU_TYPE_ARM; 3280 3281 // Traditional Bitcode starts after header. 3282 assert(Buffer.size() >= BWH_HeaderSize && 3283 "Expected header size to be reserved"); 3284 unsigned BCOffset = BWH_HeaderSize; 3285 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3286 3287 // Write the magic and version. 3288 unsigned Position = 0; 3289 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 3290 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 3291 WriteInt32ToBuffer(BCOffset , Buffer, Position); 3292 WriteInt32ToBuffer(BCSize , Buffer, Position); 3293 WriteInt32ToBuffer(CPUType , Buffer, Position); 3294 3295 // If the file is not a multiple of 16 bytes, insert dummy padding. 3296 while (Buffer.size() & 15) 3297 Buffer.push_back(0); 3298 } 3299 3300 /// Helper to write the header common to all bitcode files. 3301 static void WriteBitcodeHeader(BitstreamWriter &Stream) { 3302 // Emit the file header. 3303 Stream.Emit((unsigned)'B', 8); 3304 Stream.Emit((unsigned)'C', 8); 3305 Stream.Emit(0x0, 4); 3306 Stream.Emit(0xC, 4); 3307 Stream.Emit(0xE, 4); 3308 Stream.Emit(0xD, 4); 3309 } 3310 3311 /// WriteBitcodeToFile - Write the specified module to the specified output 3312 /// stream. 3313 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3314 bool ShouldPreserveUseListOrder, 3315 bool EmitSummaryIndex) { 3316 SmallVector<char, 0> Buffer; 3317 Buffer.reserve(256*1024); 3318 3319 // If this is darwin or another generic macho target, reserve space for the 3320 // header. 3321 Triple TT(M->getTargetTriple()); 3322 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3323 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3324 3325 // Emit the module into the buffer. 3326 { 3327 BitstreamWriter Stream(Buffer); 3328 // Save the start bit of the actual bitcode, in case there is space 3329 // saved at the start for the darwin header above. The reader stream 3330 // will start at the bitcode, and we need the offset of the VST 3331 // to line up. 3332 uint64_t BitcodeStartBit = Stream.GetCurrentBitNo(); 3333 3334 // Emit the file header. 3335 WriteBitcodeHeader(Stream); 3336 3337 WriteIdentificationBlock(M, Stream); 3338 3339 // Emit the module. 3340 WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit, 3341 EmitSummaryIndex); 3342 } 3343 3344 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3345 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 3346 3347 // Write the generated bitstream to "Out". 3348 Out.write((char*)&Buffer.front(), Buffer.size()); 3349 } 3350 3351 // Write the specified module summary index to the given raw output stream, 3352 // where it will be written in a new bitcode block. This is used when 3353 // writing the combined index file for ThinLTO. 3354 void llvm::WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out) { 3355 SmallVector<char, 0> Buffer; 3356 Buffer.reserve(256 * 1024); 3357 3358 BitstreamWriter Stream(Buffer); 3359 3360 // Emit the bitcode header. 3361 WriteBitcodeHeader(Stream); 3362 3363 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3364 3365 SmallVector<unsigned, 1> Vals; 3366 unsigned CurVersion = 1; 3367 Vals.push_back(CurVersion); 3368 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3369 3370 // If we have a VST, write the VSTOFFSET record placeholder and record 3371 // its offset. 3372 uint64_t VSTOffsetPlaceholder = WriteValueSymbolTableForwardDecl(Stream); 3373 3374 // Write the module paths in the combined index. 3375 WriteModStrings(Index, Stream); 3376 3377 // Assign unique value ids to all functions in the index for use 3378 // in writing out the call graph edges. Save the mapping from GUID 3379 // to the new global value id to use when writing those edges, which 3380 // are currently saved in the index in terms of GUID. 3381 std::map<uint64_t, unsigned> GUIDToValueIdMap; 3382 unsigned GlobalValueId = 0; 3383 for (auto &II : Index) 3384 GUIDToValueIdMap[II.first] = ++GlobalValueId; 3385 3386 // Write the summary combined index records. 3387 WriteCombinedGlobalValueSummary(Index, Stream, GUIDToValueIdMap, 3388 GlobalValueId); 3389 3390 // Need a special VST writer for the combined index (we don't have a 3391 // real VST and real values when this is invoked). 3392 WriteCombinedValueSymbolTable(Index, Stream, GUIDToValueIdMap, 3393 VSTOffsetPlaceholder); 3394 3395 Stream.ExitBlock(); 3396 3397 Out.write((char *)&Buffer.front(), Buffer.size()); 3398 } 3399