1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/SHA1.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeModuleVersion(); 146 }; 147 148 void BitcodeWriterBase::writeModuleVersion() { 149 // VERSION: [version#] 150 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 151 } 152 153 /// Base class to manage the module bitcode writing, currently subclassed for 154 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 155 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 156 protected: 157 /// The Module to write to bitcode. 158 const Module &M; 159 160 /// Enumerates ids for all values in the module. 161 ValueEnumerator VE; 162 163 /// Optional per-module index to write for ThinLTO. 164 const ModuleSummaryIndex *Index; 165 166 /// Map that holds the correspondence between GUIDs in the summary index, 167 /// that came from indirect call profiles, and a value id generated by this 168 /// class to use in the VST and summary block records. 169 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 170 171 /// Tracks the last value id recorded in the GUIDToValueMap. 172 unsigned GlobalValueId; 173 174 /// Saves the offset of the VSTOffset record that must eventually be 175 /// backpatched with the offset of the actual VST. 176 uint64_t VSTOffsetPlaceholder = 0; 177 178 public: 179 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 180 /// writing to the provided \p Buffer. 181 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 182 BitstreamWriter &Stream, 183 bool ShouldPreserveUseListOrder, 184 const ModuleSummaryIndex *Index) 185 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 186 VE(M, ShouldPreserveUseListOrder), Index(Index) { 187 // Assign ValueIds to any callee values in the index that came from 188 // indirect call profiles and were recorded as a GUID not a Value* 189 // (which would have been assigned an ID by the ValueEnumerator). 190 // The starting ValueId is just after the number of values in the 191 // ValueEnumerator, so that they can be emitted in the VST. 192 GlobalValueId = VE.getValues().size(); 193 if (!Index) 194 return; 195 for (const auto &GUIDSummaryLists : *Index) 196 // Examine all summaries for this GUID. 197 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 198 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 199 // For each call in the function summary, see if the call 200 // is to a GUID (which means it is for an indirect call, 201 // otherwise we would have a Value for it). If so, synthesize 202 // a value id. 203 for (auto &CallEdge : FS->calls()) 204 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 205 assignValueId(CallEdge.first.getGUID()); 206 } 207 208 protected: 209 void writePerModuleGlobalValueSummary(); 210 211 private: 212 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 213 GlobalValueSummary *Summary, 214 unsigned ValueID, 215 unsigned FSCallsAbbrev, 216 unsigned FSCallsProfileAbbrev, 217 const Function &F); 218 void writeModuleLevelReferences(const GlobalVariable &V, 219 SmallVector<uint64_t, 64> &NameVals, 220 unsigned FSModRefsAbbrev, 221 unsigned FSModVTableRefsAbbrev); 222 223 void assignValueId(GlobalValue::GUID ValGUID) { 224 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 225 } 226 227 unsigned getValueId(GlobalValue::GUID ValGUID) { 228 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 229 // Expect that any GUID value had a value Id assigned by an 230 // earlier call to assignValueId. 231 assert(VMI != GUIDToValueIdMap.end() && 232 "GUID does not have assigned value Id"); 233 return VMI->second; 234 } 235 236 // Helper to get the valueId for the type of value recorded in VI. 237 unsigned getValueId(ValueInfo VI) { 238 if (!VI.haveGVs() || !VI.getValue()) 239 return getValueId(VI.getGUID()); 240 return VE.getValueID(VI.getValue()); 241 } 242 243 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 244 }; 245 246 /// Class to manage the bitcode writing for a module. 247 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 248 /// Pointer to the buffer allocated by caller for bitcode writing. 249 const SmallVectorImpl<char> &Buffer; 250 251 /// True if a module hash record should be written. 252 bool GenerateHash; 253 254 /// If non-null, when GenerateHash is true, the resulting hash is written 255 /// into ModHash. 256 ModuleHash *ModHash; 257 258 SHA1 Hasher; 259 260 /// The start bit of the identification block. 261 uint64_t BitcodeStartBit; 262 263 public: 264 /// Constructs a ModuleBitcodeWriter object for the given Module, 265 /// writing to the provided \p Buffer. 266 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 267 StringTableBuilder &StrtabBuilder, 268 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 269 const ModuleSummaryIndex *Index, bool GenerateHash, 270 ModuleHash *ModHash = nullptr) 271 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 272 ShouldPreserveUseListOrder, Index), 273 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 274 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 275 276 /// Emit the current module to the bitstream. 277 void write(); 278 279 private: 280 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 281 282 size_t addToStrtab(StringRef Str); 283 284 void writeAttributeGroupTable(); 285 void writeAttributeTable(); 286 void writeTypeTable(); 287 void writeComdats(); 288 void writeValueSymbolTableForwardDecl(); 289 void writeModuleInfo(); 290 void writeValueAsMetadata(const ValueAsMetadata *MD, 291 SmallVectorImpl<uint64_t> &Record); 292 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 unsigned createDILocationAbbrev(); 295 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned &Abbrev); 297 unsigned createGenericDINodeAbbrev(); 298 void writeGenericDINode(const GenericDINode *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 300 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIGenericSubrange(const DIGenericSubrange *N, 303 SmallVectorImpl<uint64_t> &Record, 304 unsigned Abbrev); 305 void writeDIEnumerator(const DIEnumerator *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIStringType(const DIStringType *N, 310 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 311 void writeDIDerivedType(const DIDerivedType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDICompositeType(const DICompositeType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubroutineType(const DISubroutineType *N, 316 SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDICompileUnit(const DICompileUnit *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDISubprogram(const DISubprogram *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDILexicalBlock(const DILexicalBlock *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDICommonBlock(const DICommonBlock *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 342 SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIGlobalVariable(const DIGlobalVariable *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDILocalVariable(const DILocalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDILabel(const DILabel *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDIExpression(const DIExpression *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 357 SmallVectorImpl<uint64_t> &Record, 358 unsigned Abbrev); 359 void writeDIObjCProperty(const DIObjCProperty *N, 360 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 361 void writeDIImportedEntity(const DIImportedEntity *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 unsigned createNamedMetadataAbbrev(); 365 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 366 unsigned createMetadataStringsAbbrev(); 367 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 368 SmallVectorImpl<uint64_t> &Record); 369 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 370 SmallVectorImpl<uint64_t> &Record, 371 std::vector<unsigned> *MDAbbrevs = nullptr, 372 std::vector<uint64_t> *IndexPos = nullptr); 373 void writeModuleMetadata(); 374 void writeFunctionMetadata(const Function &F); 375 void writeFunctionMetadataAttachment(const Function &F); 376 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 377 const GlobalObject &GO); 378 void writeModuleMetadataKinds(); 379 void writeOperandBundleTags(); 380 void writeSyncScopeNames(); 381 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 382 void writeModuleConstants(); 383 bool pushValueAndType(const Value *V, unsigned InstID, 384 SmallVectorImpl<unsigned> &Vals); 385 void writeOperandBundles(const CallBase &CB, unsigned InstID); 386 void pushValue(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void pushValueSigned(const Value *V, unsigned InstID, 389 SmallVectorImpl<uint64_t> &Vals); 390 void writeInstruction(const Instruction &I, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 393 void writeGlobalValueSymbolTable( 394 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 395 void writeUseList(UseListOrder &&Order); 396 void writeUseListBlock(const Function *F); 397 void 398 writeFunction(const Function &F, 399 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 400 void writeBlockInfo(); 401 void writeModuleHash(size_t BlockStartPos); 402 403 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 404 return unsigned(SSID); 405 } 406 407 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 408 }; 409 410 /// Class to manage the bitcode writing for a combined index. 411 class IndexBitcodeWriter : public BitcodeWriterBase { 412 /// The combined index to write to bitcode. 413 const ModuleSummaryIndex &Index; 414 415 /// When writing a subset of the index for distributed backends, client 416 /// provides a map of modules to the corresponding GUIDs/summaries to write. 417 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 418 419 /// Map that holds the correspondence between the GUID used in the combined 420 /// index and a value id generated by this class to use in references. 421 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 422 423 /// Tracks the last value id recorded in the GUIDToValueMap. 424 unsigned GlobalValueId = 0; 425 426 public: 427 /// Constructs a IndexBitcodeWriter object for the given combined index, 428 /// writing to the provided \p Buffer. When writing a subset of the index 429 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 430 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 431 const ModuleSummaryIndex &Index, 432 const std::map<std::string, GVSummaryMapTy> 433 *ModuleToSummariesForIndex = nullptr) 434 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 435 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 436 // Assign unique value ids to all summaries to be written, for use 437 // in writing out the call graph edges. Save the mapping from GUID 438 // to the new global value id to use when writing those edges, which 439 // are currently saved in the index in terms of GUID. 440 forEachSummary([&](GVInfo I, bool) { 441 GUIDToValueIdMap[I.first] = ++GlobalValueId; 442 }); 443 } 444 445 /// The below iterator returns the GUID and associated summary. 446 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 447 448 /// Calls the callback for each value GUID and summary to be written to 449 /// bitcode. This hides the details of whether they are being pulled from the 450 /// entire index or just those in a provided ModuleToSummariesForIndex map. 451 template<typename Functor> 452 void forEachSummary(Functor Callback) { 453 if (ModuleToSummariesForIndex) { 454 for (auto &M : *ModuleToSummariesForIndex) 455 for (auto &Summary : M.second) { 456 Callback(Summary, false); 457 // Ensure aliasee is handled, e.g. for assigning a valueId, 458 // even if we are not importing the aliasee directly (the 459 // imported alias will contain a copy of aliasee). 460 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 461 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 462 } 463 } else { 464 for (auto &Summaries : Index) 465 for (auto &Summary : Summaries.second.SummaryList) 466 Callback({Summaries.first, Summary.get()}, false); 467 } 468 } 469 470 /// Calls the callback for each entry in the modulePaths StringMap that 471 /// should be written to the module path string table. This hides the details 472 /// of whether they are being pulled from the entire index or just those in a 473 /// provided ModuleToSummariesForIndex map. 474 template <typename Functor> void forEachModule(Functor Callback) { 475 if (ModuleToSummariesForIndex) { 476 for (const auto &M : *ModuleToSummariesForIndex) { 477 const auto &MPI = Index.modulePaths().find(M.first); 478 if (MPI == Index.modulePaths().end()) { 479 // This should only happen if the bitcode file was empty, in which 480 // case we shouldn't be importing (the ModuleToSummariesForIndex 481 // would only include the module we are writing and index for). 482 assert(ModuleToSummariesForIndex->size() == 1); 483 continue; 484 } 485 Callback(*MPI); 486 } 487 } else { 488 for (const auto &MPSE : Index.modulePaths()) 489 Callback(MPSE); 490 } 491 } 492 493 /// Main entry point for writing a combined index to bitcode. 494 void write(); 495 496 private: 497 void writeModStrings(); 498 void writeCombinedGlobalValueSummary(); 499 500 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 501 auto VMI = GUIDToValueIdMap.find(ValGUID); 502 if (VMI == GUIDToValueIdMap.end()) 503 return None; 504 return VMI->second; 505 } 506 507 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 508 }; 509 510 } // end anonymous namespace 511 512 static unsigned getEncodedCastOpcode(unsigned Opcode) { 513 switch (Opcode) { 514 default: llvm_unreachable("Unknown cast instruction!"); 515 case Instruction::Trunc : return bitc::CAST_TRUNC; 516 case Instruction::ZExt : return bitc::CAST_ZEXT; 517 case Instruction::SExt : return bitc::CAST_SEXT; 518 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 519 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 520 case Instruction::UIToFP : return bitc::CAST_UITOFP; 521 case Instruction::SIToFP : return bitc::CAST_SITOFP; 522 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 523 case Instruction::FPExt : return bitc::CAST_FPEXT; 524 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 525 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 526 case Instruction::BitCast : return bitc::CAST_BITCAST; 527 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 528 } 529 } 530 531 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 532 switch (Opcode) { 533 default: llvm_unreachable("Unknown binary instruction!"); 534 case Instruction::FNeg: return bitc::UNOP_FNEG; 535 } 536 } 537 538 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 539 switch (Opcode) { 540 default: llvm_unreachable("Unknown binary instruction!"); 541 case Instruction::Add: 542 case Instruction::FAdd: return bitc::BINOP_ADD; 543 case Instruction::Sub: 544 case Instruction::FSub: return bitc::BINOP_SUB; 545 case Instruction::Mul: 546 case Instruction::FMul: return bitc::BINOP_MUL; 547 case Instruction::UDiv: return bitc::BINOP_UDIV; 548 case Instruction::FDiv: 549 case Instruction::SDiv: return bitc::BINOP_SDIV; 550 case Instruction::URem: return bitc::BINOP_UREM; 551 case Instruction::FRem: 552 case Instruction::SRem: return bitc::BINOP_SREM; 553 case Instruction::Shl: return bitc::BINOP_SHL; 554 case Instruction::LShr: return bitc::BINOP_LSHR; 555 case Instruction::AShr: return bitc::BINOP_ASHR; 556 case Instruction::And: return bitc::BINOP_AND; 557 case Instruction::Or: return bitc::BINOP_OR; 558 case Instruction::Xor: return bitc::BINOP_XOR; 559 } 560 } 561 562 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 563 switch (Op) { 564 default: llvm_unreachable("Unknown RMW operation!"); 565 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 566 case AtomicRMWInst::Add: return bitc::RMW_ADD; 567 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 568 case AtomicRMWInst::And: return bitc::RMW_AND; 569 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 570 case AtomicRMWInst::Or: return bitc::RMW_OR; 571 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 572 case AtomicRMWInst::Max: return bitc::RMW_MAX; 573 case AtomicRMWInst::Min: return bitc::RMW_MIN; 574 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 575 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 576 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 577 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 578 } 579 } 580 581 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 582 switch (Ordering) { 583 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 584 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 585 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 586 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 587 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 588 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 589 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 590 } 591 llvm_unreachable("Invalid ordering"); 592 } 593 594 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 595 StringRef Str, unsigned AbbrevToUse) { 596 SmallVector<unsigned, 64> Vals; 597 598 // Code: [strchar x N] 599 for (char C : Str) { 600 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 601 AbbrevToUse = 0; 602 Vals.push_back(C); 603 } 604 605 // Emit the finished record. 606 Stream.EmitRecord(Code, Vals, AbbrevToUse); 607 } 608 609 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 610 switch (Kind) { 611 case Attribute::Alignment: 612 return bitc::ATTR_KIND_ALIGNMENT; 613 case Attribute::AllocSize: 614 return bitc::ATTR_KIND_ALLOC_SIZE; 615 case Attribute::AlwaysInline: 616 return bitc::ATTR_KIND_ALWAYS_INLINE; 617 case Attribute::ArgMemOnly: 618 return bitc::ATTR_KIND_ARGMEMONLY; 619 case Attribute::Builtin: 620 return bitc::ATTR_KIND_BUILTIN; 621 case Attribute::ByVal: 622 return bitc::ATTR_KIND_BY_VAL; 623 case Attribute::Convergent: 624 return bitc::ATTR_KIND_CONVERGENT; 625 case Attribute::InAlloca: 626 return bitc::ATTR_KIND_IN_ALLOCA; 627 case Attribute::Cold: 628 return bitc::ATTR_KIND_COLD; 629 case Attribute::DisableSanitizerInstrumentation: 630 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 631 case Attribute::Hot: 632 return bitc::ATTR_KIND_HOT; 633 case Attribute::ElementType: 634 return bitc::ATTR_KIND_ELEMENTTYPE; 635 case Attribute::InaccessibleMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 637 case Attribute::InaccessibleMemOrArgMemOnly: 638 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 639 case Attribute::InlineHint: 640 return bitc::ATTR_KIND_INLINE_HINT; 641 case Attribute::InReg: 642 return bitc::ATTR_KIND_IN_REG; 643 case Attribute::JumpTable: 644 return bitc::ATTR_KIND_JUMP_TABLE; 645 case Attribute::MinSize: 646 return bitc::ATTR_KIND_MIN_SIZE; 647 case Attribute::Naked: 648 return bitc::ATTR_KIND_NAKED; 649 case Attribute::Nest: 650 return bitc::ATTR_KIND_NEST; 651 case Attribute::NoAlias: 652 return bitc::ATTR_KIND_NO_ALIAS; 653 case Attribute::NoBuiltin: 654 return bitc::ATTR_KIND_NO_BUILTIN; 655 case Attribute::NoCallback: 656 return bitc::ATTR_KIND_NO_CALLBACK; 657 case Attribute::NoCapture: 658 return bitc::ATTR_KIND_NO_CAPTURE; 659 case Attribute::NoDuplicate: 660 return bitc::ATTR_KIND_NO_DUPLICATE; 661 case Attribute::NoFree: 662 return bitc::ATTR_KIND_NOFREE; 663 case Attribute::NoImplicitFloat: 664 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 665 case Attribute::NoInline: 666 return bitc::ATTR_KIND_NO_INLINE; 667 case Attribute::NoRecurse: 668 return bitc::ATTR_KIND_NO_RECURSE; 669 case Attribute::NoMerge: 670 return bitc::ATTR_KIND_NO_MERGE; 671 case Attribute::NonLazyBind: 672 return bitc::ATTR_KIND_NON_LAZY_BIND; 673 case Attribute::NonNull: 674 return bitc::ATTR_KIND_NON_NULL; 675 case Attribute::Dereferenceable: 676 return bitc::ATTR_KIND_DEREFERENCEABLE; 677 case Attribute::DereferenceableOrNull: 678 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 679 case Attribute::NoRedZone: 680 return bitc::ATTR_KIND_NO_RED_ZONE; 681 case Attribute::NoReturn: 682 return bitc::ATTR_KIND_NO_RETURN; 683 case Attribute::NoSync: 684 return bitc::ATTR_KIND_NOSYNC; 685 case Attribute::NoCfCheck: 686 return bitc::ATTR_KIND_NOCF_CHECK; 687 case Attribute::NoProfile: 688 return bitc::ATTR_KIND_NO_PROFILE; 689 case Attribute::NoUnwind: 690 return bitc::ATTR_KIND_NO_UNWIND; 691 case Attribute::NoSanitizeCoverage: 692 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 693 case Attribute::NullPointerIsValid: 694 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 695 case Attribute::OptForFuzzing: 696 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 697 case Attribute::OptimizeForSize: 698 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 699 case Attribute::OptimizeNone: 700 return bitc::ATTR_KIND_OPTIMIZE_NONE; 701 case Attribute::ReadNone: 702 return bitc::ATTR_KIND_READ_NONE; 703 case Attribute::ReadOnly: 704 return bitc::ATTR_KIND_READ_ONLY; 705 case Attribute::Returned: 706 return bitc::ATTR_KIND_RETURNED; 707 case Attribute::ReturnsTwice: 708 return bitc::ATTR_KIND_RETURNS_TWICE; 709 case Attribute::SExt: 710 return bitc::ATTR_KIND_S_EXT; 711 case Attribute::Speculatable: 712 return bitc::ATTR_KIND_SPECULATABLE; 713 case Attribute::StackAlignment: 714 return bitc::ATTR_KIND_STACK_ALIGNMENT; 715 case Attribute::StackProtect: 716 return bitc::ATTR_KIND_STACK_PROTECT; 717 case Attribute::StackProtectReq: 718 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 719 case Attribute::StackProtectStrong: 720 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 721 case Attribute::SafeStack: 722 return bitc::ATTR_KIND_SAFESTACK; 723 case Attribute::ShadowCallStack: 724 return bitc::ATTR_KIND_SHADOWCALLSTACK; 725 case Attribute::StrictFP: 726 return bitc::ATTR_KIND_STRICT_FP; 727 case Attribute::StructRet: 728 return bitc::ATTR_KIND_STRUCT_RET; 729 case Attribute::SanitizeAddress: 730 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 731 case Attribute::SanitizeHWAddress: 732 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 733 case Attribute::SanitizeThread: 734 return bitc::ATTR_KIND_SANITIZE_THREAD; 735 case Attribute::SanitizeMemory: 736 return bitc::ATTR_KIND_SANITIZE_MEMORY; 737 case Attribute::SpeculativeLoadHardening: 738 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 739 case Attribute::SwiftError: 740 return bitc::ATTR_KIND_SWIFT_ERROR; 741 case Attribute::SwiftSelf: 742 return bitc::ATTR_KIND_SWIFT_SELF; 743 case Attribute::SwiftAsync: 744 return bitc::ATTR_KIND_SWIFT_ASYNC; 745 case Attribute::UWTable: 746 return bitc::ATTR_KIND_UW_TABLE; 747 case Attribute::VScaleRange: 748 return bitc::ATTR_KIND_VSCALE_RANGE; 749 case Attribute::WillReturn: 750 return bitc::ATTR_KIND_WILLRETURN; 751 case Attribute::WriteOnly: 752 return bitc::ATTR_KIND_WRITEONLY; 753 case Attribute::ZExt: 754 return bitc::ATTR_KIND_Z_EXT; 755 case Attribute::ImmArg: 756 return bitc::ATTR_KIND_IMMARG; 757 case Attribute::SanitizeMemTag: 758 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 759 case Attribute::Preallocated: 760 return bitc::ATTR_KIND_PREALLOCATED; 761 case Attribute::NoUndef: 762 return bitc::ATTR_KIND_NOUNDEF; 763 case Attribute::ByRef: 764 return bitc::ATTR_KIND_BYREF; 765 case Attribute::MustProgress: 766 return bitc::ATTR_KIND_MUSTPROGRESS; 767 case Attribute::EndAttrKinds: 768 llvm_unreachable("Can not encode end-attribute kinds marker."); 769 case Attribute::None: 770 llvm_unreachable("Can not encode none-attribute."); 771 case Attribute::EmptyKey: 772 case Attribute::TombstoneKey: 773 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 774 } 775 776 llvm_unreachable("Trying to encode unknown attribute"); 777 } 778 779 void ModuleBitcodeWriter::writeAttributeGroupTable() { 780 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 781 VE.getAttributeGroups(); 782 if (AttrGrps.empty()) return; 783 784 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 785 786 SmallVector<uint64_t, 64> Record; 787 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 788 unsigned AttrListIndex = Pair.first; 789 AttributeSet AS = Pair.second; 790 Record.push_back(VE.getAttributeGroupID(Pair)); 791 Record.push_back(AttrListIndex); 792 793 for (Attribute Attr : AS) { 794 if (Attr.isEnumAttribute()) { 795 Record.push_back(0); 796 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 797 } else if (Attr.isIntAttribute()) { 798 Record.push_back(1); 799 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 800 Record.push_back(Attr.getValueAsInt()); 801 } else if (Attr.isStringAttribute()) { 802 StringRef Kind = Attr.getKindAsString(); 803 StringRef Val = Attr.getValueAsString(); 804 805 Record.push_back(Val.empty() ? 3 : 4); 806 Record.append(Kind.begin(), Kind.end()); 807 Record.push_back(0); 808 if (!Val.empty()) { 809 Record.append(Val.begin(), Val.end()); 810 Record.push_back(0); 811 } 812 } else { 813 assert(Attr.isTypeAttribute()); 814 Type *Ty = Attr.getValueAsType(); 815 Record.push_back(Ty ? 6 : 5); 816 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 817 if (Ty) 818 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 819 } 820 } 821 822 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 823 Record.clear(); 824 } 825 826 Stream.ExitBlock(); 827 } 828 829 void ModuleBitcodeWriter::writeAttributeTable() { 830 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 831 if (Attrs.empty()) return; 832 833 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 834 835 SmallVector<uint64_t, 64> Record; 836 for (const AttributeList &AL : Attrs) { 837 for (unsigned i : AL.indexes()) { 838 AttributeSet AS = AL.getAttributes(i); 839 if (AS.hasAttributes()) 840 Record.push_back(VE.getAttributeGroupID({i, AS})); 841 } 842 843 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 844 Record.clear(); 845 } 846 847 Stream.ExitBlock(); 848 } 849 850 /// WriteTypeTable - Write out the type table for a module. 851 void ModuleBitcodeWriter::writeTypeTable() { 852 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 853 854 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 855 SmallVector<uint64_t, 64> TypeVals; 856 857 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 858 859 // Abbrev for TYPE_CODE_POINTER. 860 auto Abbv = std::make_shared<BitCodeAbbrev>(); 861 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 863 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 864 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 865 866 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 867 Abbv = std::make_shared<BitCodeAbbrev>(); 868 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 869 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 870 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 871 872 // Abbrev for TYPE_CODE_FUNCTION. 873 Abbv = std::make_shared<BitCodeAbbrev>(); 874 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 878 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 879 880 // Abbrev for TYPE_CODE_STRUCT_ANON. 881 Abbv = std::make_shared<BitCodeAbbrev>(); 882 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 886 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 887 888 // Abbrev for TYPE_CODE_STRUCT_NAME. 889 Abbv = std::make_shared<BitCodeAbbrev>(); 890 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 893 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 894 895 // Abbrev for TYPE_CODE_STRUCT_NAMED. 896 Abbv = std::make_shared<BitCodeAbbrev>(); 897 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 901 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 902 903 // Abbrev for TYPE_CODE_ARRAY. 904 Abbv = std::make_shared<BitCodeAbbrev>(); 905 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 908 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 909 910 // Emit an entry count so the reader can reserve space. 911 TypeVals.push_back(TypeList.size()); 912 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 913 TypeVals.clear(); 914 915 // Loop over all of the types, emitting each in turn. 916 for (Type *T : TypeList) { 917 int AbbrevToUse = 0; 918 unsigned Code = 0; 919 920 switch (T->getTypeID()) { 921 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 922 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 923 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 924 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 925 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 926 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 927 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 928 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 929 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 930 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 931 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 932 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 933 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 934 case Type::IntegerTyID: 935 // INTEGER: [width] 936 Code = bitc::TYPE_CODE_INTEGER; 937 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 938 break; 939 case Type::PointerTyID: { 940 PointerType *PTy = cast<PointerType>(T); 941 unsigned AddressSpace = PTy->getAddressSpace(); 942 if (PTy->isOpaque()) { 943 // OPAQUE_POINTER: [address space] 944 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 945 TypeVals.push_back(AddressSpace); 946 if (AddressSpace == 0) 947 AbbrevToUse = OpaquePtrAbbrev; 948 } else { 949 // POINTER: [pointee type, address space] 950 Code = bitc::TYPE_CODE_POINTER; 951 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 952 TypeVals.push_back(AddressSpace); 953 if (AddressSpace == 0) 954 AbbrevToUse = PtrAbbrev; 955 } 956 break; 957 } 958 case Type::FunctionTyID: { 959 FunctionType *FT = cast<FunctionType>(T); 960 // FUNCTION: [isvararg, retty, paramty x N] 961 Code = bitc::TYPE_CODE_FUNCTION; 962 TypeVals.push_back(FT->isVarArg()); 963 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 964 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 965 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 966 AbbrevToUse = FunctionAbbrev; 967 break; 968 } 969 case Type::StructTyID: { 970 StructType *ST = cast<StructType>(T); 971 // STRUCT: [ispacked, eltty x N] 972 TypeVals.push_back(ST->isPacked()); 973 // Output all of the element types. 974 for (Type *ET : ST->elements()) 975 TypeVals.push_back(VE.getTypeID(ET)); 976 977 if (ST->isLiteral()) { 978 Code = bitc::TYPE_CODE_STRUCT_ANON; 979 AbbrevToUse = StructAnonAbbrev; 980 } else { 981 if (ST->isOpaque()) { 982 Code = bitc::TYPE_CODE_OPAQUE; 983 } else { 984 Code = bitc::TYPE_CODE_STRUCT_NAMED; 985 AbbrevToUse = StructNamedAbbrev; 986 } 987 988 // Emit the name if it is present. 989 if (!ST->getName().empty()) 990 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 991 StructNameAbbrev); 992 } 993 break; 994 } 995 case Type::ArrayTyID: { 996 ArrayType *AT = cast<ArrayType>(T); 997 // ARRAY: [numelts, eltty] 998 Code = bitc::TYPE_CODE_ARRAY; 999 TypeVals.push_back(AT->getNumElements()); 1000 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1001 AbbrevToUse = ArrayAbbrev; 1002 break; 1003 } 1004 case Type::FixedVectorTyID: 1005 case Type::ScalableVectorTyID: { 1006 VectorType *VT = cast<VectorType>(T); 1007 // VECTOR [numelts, eltty] or 1008 // [numelts, eltty, scalable] 1009 Code = bitc::TYPE_CODE_VECTOR; 1010 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1011 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1012 if (isa<ScalableVectorType>(VT)) 1013 TypeVals.push_back(true); 1014 break; 1015 } 1016 } 1017 1018 // Emit the finished record. 1019 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1020 TypeVals.clear(); 1021 } 1022 1023 Stream.ExitBlock(); 1024 } 1025 1026 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1027 switch (Linkage) { 1028 case GlobalValue::ExternalLinkage: 1029 return 0; 1030 case GlobalValue::WeakAnyLinkage: 1031 return 16; 1032 case GlobalValue::AppendingLinkage: 1033 return 2; 1034 case GlobalValue::InternalLinkage: 1035 return 3; 1036 case GlobalValue::LinkOnceAnyLinkage: 1037 return 18; 1038 case GlobalValue::ExternalWeakLinkage: 1039 return 7; 1040 case GlobalValue::CommonLinkage: 1041 return 8; 1042 case GlobalValue::PrivateLinkage: 1043 return 9; 1044 case GlobalValue::WeakODRLinkage: 1045 return 17; 1046 case GlobalValue::LinkOnceODRLinkage: 1047 return 19; 1048 case GlobalValue::AvailableExternallyLinkage: 1049 return 12; 1050 } 1051 llvm_unreachable("Invalid linkage"); 1052 } 1053 1054 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1055 return getEncodedLinkage(GV.getLinkage()); 1056 } 1057 1058 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1059 uint64_t RawFlags = 0; 1060 RawFlags |= Flags.ReadNone; 1061 RawFlags |= (Flags.ReadOnly << 1); 1062 RawFlags |= (Flags.NoRecurse << 2); 1063 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1064 RawFlags |= (Flags.NoInline << 4); 1065 RawFlags |= (Flags.AlwaysInline << 5); 1066 RawFlags |= (Flags.NoUnwind << 6); 1067 RawFlags |= (Flags.MayThrow << 7); 1068 RawFlags |= (Flags.HasUnknownCall << 8); 1069 RawFlags |= (Flags.MustBeUnreachable << 9); 1070 return RawFlags; 1071 } 1072 1073 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1074 // in BitcodeReader.cpp. 1075 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1076 uint64_t RawFlags = 0; 1077 1078 RawFlags |= Flags.NotEligibleToImport; // bool 1079 RawFlags |= (Flags.Live << 1); 1080 RawFlags |= (Flags.DSOLocal << 2); 1081 RawFlags |= (Flags.CanAutoHide << 3); 1082 1083 // Linkage don't need to be remapped at that time for the summary. Any future 1084 // change to the getEncodedLinkage() function will need to be taken into 1085 // account here as well. 1086 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1087 1088 RawFlags |= (Flags.Visibility << 8); // 2 bits 1089 1090 return RawFlags; 1091 } 1092 1093 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1094 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1095 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1096 return RawFlags; 1097 } 1098 1099 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1100 switch (GV.getVisibility()) { 1101 case GlobalValue::DefaultVisibility: return 0; 1102 case GlobalValue::HiddenVisibility: return 1; 1103 case GlobalValue::ProtectedVisibility: return 2; 1104 } 1105 llvm_unreachable("Invalid visibility"); 1106 } 1107 1108 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1109 switch (GV.getDLLStorageClass()) { 1110 case GlobalValue::DefaultStorageClass: return 0; 1111 case GlobalValue::DLLImportStorageClass: return 1; 1112 case GlobalValue::DLLExportStorageClass: return 2; 1113 } 1114 llvm_unreachable("Invalid DLL storage class"); 1115 } 1116 1117 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1118 switch (GV.getThreadLocalMode()) { 1119 case GlobalVariable::NotThreadLocal: return 0; 1120 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1121 case GlobalVariable::LocalDynamicTLSModel: return 2; 1122 case GlobalVariable::InitialExecTLSModel: return 3; 1123 case GlobalVariable::LocalExecTLSModel: return 4; 1124 } 1125 llvm_unreachable("Invalid TLS model"); 1126 } 1127 1128 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1129 switch (C.getSelectionKind()) { 1130 case Comdat::Any: 1131 return bitc::COMDAT_SELECTION_KIND_ANY; 1132 case Comdat::ExactMatch: 1133 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1134 case Comdat::Largest: 1135 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1136 case Comdat::NoDeduplicate: 1137 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1138 case Comdat::SameSize: 1139 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1140 } 1141 llvm_unreachable("Invalid selection kind"); 1142 } 1143 1144 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1145 switch (GV.getUnnamedAddr()) { 1146 case GlobalValue::UnnamedAddr::None: return 0; 1147 case GlobalValue::UnnamedAddr::Local: return 2; 1148 case GlobalValue::UnnamedAddr::Global: return 1; 1149 } 1150 llvm_unreachable("Invalid unnamed_addr"); 1151 } 1152 1153 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1154 if (GenerateHash) 1155 Hasher.update(Str); 1156 return StrtabBuilder.add(Str); 1157 } 1158 1159 void ModuleBitcodeWriter::writeComdats() { 1160 SmallVector<unsigned, 64> Vals; 1161 for (const Comdat *C : VE.getComdats()) { 1162 // COMDAT: [strtab offset, strtab size, selection_kind] 1163 Vals.push_back(addToStrtab(C->getName())); 1164 Vals.push_back(C->getName().size()); 1165 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1166 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1167 Vals.clear(); 1168 } 1169 } 1170 1171 /// Write a record that will eventually hold the word offset of the 1172 /// module-level VST. For now the offset is 0, which will be backpatched 1173 /// after the real VST is written. Saves the bit offset to backpatch. 1174 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1175 // Write a placeholder value in for the offset of the real VST, 1176 // which is written after the function blocks so that it can include 1177 // the offset of each function. The placeholder offset will be 1178 // updated when the real VST is written. 1179 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1180 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1181 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1182 // hold the real VST offset. Must use fixed instead of VBR as we don't 1183 // know how many VBR chunks to reserve ahead of time. 1184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1185 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1186 1187 // Emit the placeholder 1188 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1189 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1190 1191 // Compute and save the bit offset to the placeholder, which will be 1192 // patched when the real VST is written. We can simply subtract the 32-bit 1193 // fixed size from the current bit number to get the location to backpatch. 1194 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1195 } 1196 1197 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1198 1199 /// Determine the encoding to use for the given string name and length. 1200 static StringEncoding getStringEncoding(StringRef Str) { 1201 bool isChar6 = true; 1202 for (char C : Str) { 1203 if (isChar6) 1204 isChar6 = BitCodeAbbrevOp::isChar6(C); 1205 if ((unsigned char)C & 128) 1206 // don't bother scanning the rest. 1207 return SE_Fixed8; 1208 } 1209 if (isChar6) 1210 return SE_Char6; 1211 return SE_Fixed7; 1212 } 1213 1214 /// Emit top-level description of module, including target triple, inline asm, 1215 /// descriptors for global variables, and function prototype info. 1216 /// Returns the bit offset to backpatch with the location of the real VST. 1217 void ModuleBitcodeWriter::writeModuleInfo() { 1218 // Emit various pieces of data attached to a module. 1219 if (!M.getTargetTriple().empty()) 1220 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1221 0 /*TODO*/); 1222 const std::string &DL = M.getDataLayoutStr(); 1223 if (!DL.empty()) 1224 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1225 if (!M.getModuleInlineAsm().empty()) 1226 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1227 0 /*TODO*/); 1228 1229 // Emit information about sections and GC, computing how many there are. Also 1230 // compute the maximum alignment value. 1231 std::map<std::string, unsigned> SectionMap; 1232 std::map<std::string, unsigned> GCMap; 1233 MaybeAlign MaxAlignment; 1234 unsigned MaxGlobalType = 0; 1235 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1236 if (A) 1237 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1238 }; 1239 for (const GlobalVariable &GV : M.globals()) { 1240 UpdateMaxAlignment(GV.getAlign()); 1241 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1242 if (GV.hasSection()) { 1243 // Give section names unique ID's. 1244 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1245 if (!Entry) { 1246 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1247 0 /*TODO*/); 1248 Entry = SectionMap.size(); 1249 } 1250 } 1251 } 1252 for (const Function &F : M) { 1253 UpdateMaxAlignment(F.getAlign()); 1254 if (F.hasSection()) { 1255 // Give section names unique ID's. 1256 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1257 if (!Entry) { 1258 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1259 0 /*TODO*/); 1260 Entry = SectionMap.size(); 1261 } 1262 } 1263 if (F.hasGC()) { 1264 // Same for GC names. 1265 unsigned &Entry = GCMap[F.getGC()]; 1266 if (!Entry) { 1267 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1268 0 /*TODO*/); 1269 Entry = GCMap.size(); 1270 } 1271 } 1272 } 1273 1274 // Emit abbrev for globals, now that we know # sections and max alignment. 1275 unsigned SimpleGVarAbbrev = 0; 1276 if (!M.global_empty()) { 1277 // Add an abbrev for common globals with no visibility or thread localness. 1278 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1279 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1283 Log2_32_Ceil(MaxGlobalType+1))); 1284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1285 //| explicitType << 1 1286 //| constant 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1289 if (!MaxAlignment) // Alignment. 1290 Abbv->Add(BitCodeAbbrevOp(0)); 1291 else { 1292 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1294 Log2_32_Ceil(MaxEncAlignment+1))); 1295 } 1296 if (SectionMap.empty()) // Section. 1297 Abbv->Add(BitCodeAbbrevOp(0)); 1298 else 1299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1300 Log2_32_Ceil(SectionMap.size()+1))); 1301 // Don't bother emitting vis + thread local. 1302 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1303 } 1304 1305 SmallVector<unsigned, 64> Vals; 1306 // Emit the module's source file name. 1307 { 1308 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1309 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1310 if (Bits == SE_Char6) 1311 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1312 else if (Bits == SE_Fixed7) 1313 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1314 1315 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1316 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1317 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1319 Abbv->Add(AbbrevOpToUse); 1320 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1321 1322 for (const auto P : M.getSourceFileName()) 1323 Vals.push_back((unsigned char)P); 1324 1325 // Emit the finished record. 1326 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1327 Vals.clear(); 1328 } 1329 1330 // Emit the global variable information. 1331 for (const GlobalVariable &GV : M.globals()) { 1332 unsigned AbbrevToUse = 0; 1333 1334 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1335 // linkage, alignment, section, visibility, threadlocal, 1336 // unnamed_addr, externally_initialized, dllstorageclass, 1337 // comdat, attributes, DSO_Local] 1338 Vals.push_back(addToStrtab(GV.getName())); 1339 Vals.push_back(GV.getName().size()); 1340 Vals.push_back(VE.getTypeID(GV.getValueType())); 1341 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1342 Vals.push_back(GV.isDeclaration() ? 0 : 1343 (VE.getValueID(GV.getInitializer()) + 1)); 1344 Vals.push_back(getEncodedLinkage(GV)); 1345 Vals.push_back(getEncodedAlign(GV.getAlign())); 1346 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1347 : 0); 1348 if (GV.isThreadLocal() || 1349 GV.getVisibility() != GlobalValue::DefaultVisibility || 1350 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1351 GV.isExternallyInitialized() || 1352 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1353 GV.hasComdat() || 1354 GV.hasAttributes() || 1355 GV.isDSOLocal() || 1356 GV.hasPartition()) { 1357 Vals.push_back(getEncodedVisibility(GV)); 1358 Vals.push_back(getEncodedThreadLocalMode(GV)); 1359 Vals.push_back(getEncodedUnnamedAddr(GV)); 1360 Vals.push_back(GV.isExternallyInitialized()); 1361 Vals.push_back(getEncodedDLLStorageClass(GV)); 1362 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1363 1364 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1365 Vals.push_back(VE.getAttributeListID(AL)); 1366 1367 Vals.push_back(GV.isDSOLocal()); 1368 Vals.push_back(addToStrtab(GV.getPartition())); 1369 Vals.push_back(GV.getPartition().size()); 1370 } else { 1371 AbbrevToUse = SimpleGVarAbbrev; 1372 } 1373 1374 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1375 Vals.clear(); 1376 } 1377 1378 // Emit the function proto information. 1379 for (const Function &F : M) { 1380 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1381 // linkage, paramattrs, alignment, section, visibility, gc, 1382 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1383 // prefixdata, personalityfn, DSO_Local, addrspace] 1384 Vals.push_back(addToStrtab(F.getName())); 1385 Vals.push_back(F.getName().size()); 1386 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1387 Vals.push_back(F.getCallingConv()); 1388 Vals.push_back(F.isDeclaration()); 1389 Vals.push_back(getEncodedLinkage(F)); 1390 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1391 Vals.push_back(getEncodedAlign(F.getAlign())); 1392 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1393 : 0); 1394 Vals.push_back(getEncodedVisibility(F)); 1395 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1396 Vals.push_back(getEncodedUnnamedAddr(F)); 1397 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1398 : 0); 1399 Vals.push_back(getEncodedDLLStorageClass(F)); 1400 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1401 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1402 : 0); 1403 Vals.push_back( 1404 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1405 1406 Vals.push_back(F.isDSOLocal()); 1407 Vals.push_back(F.getAddressSpace()); 1408 Vals.push_back(addToStrtab(F.getPartition())); 1409 Vals.push_back(F.getPartition().size()); 1410 1411 unsigned AbbrevToUse = 0; 1412 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1413 Vals.clear(); 1414 } 1415 1416 // Emit the alias information. 1417 for (const GlobalAlias &A : M.aliases()) { 1418 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1419 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1420 // DSO_Local] 1421 Vals.push_back(addToStrtab(A.getName())); 1422 Vals.push_back(A.getName().size()); 1423 Vals.push_back(VE.getTypeID(A.getValueType())); 1424 Vals.push_back(A.getType()->getAddressSpace()); 1425 Vals.push_back(VE.getValueID(A.getAliasee())); 1426 Vals.push_back(getEncodedLinkage(A)); 1427 Vals.push_back(getEncodedVisibility(A)); 1428 Vals.push_back(getEncodedDLLStorageClass(A)); 1429 Vals.push_back(getEncodedThreadLocalMode(A)); 1430 Vals.push_back(getEncodedUnnamedAddr(A)); 1431 Vals.push_back(A.isDSOLocal()); 1432 Vals.push_back(addToStrtab(A.getPartition())); 1433 Vals.push_back(A.getPartition().size()); 1434 1435 unsigned AbbrevToUse = 0; 1436 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1437 Vals.clear(); 1438 } 1439 1440 // Emit the ifunc information. 1441 for (const GlobalIFunc &I : M.ifuncs()) { 1442 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1443 // val#, linkage, visibility, DSO_Local] 1444 Vals.push_back(addToStrtab(I.getName())); 1445 Vals.push_back(I.getName().size()); 1446 Vals.push_back(VE.getTypeID(I.getValueType())); 1447 Vals.push_back(I.getType()->getAddressSpace()); 1448 Vals.push_back(VE.getValueID(I.getResolver())); 1449 Vals.push_back(getEncodedLinkage(I)); 1450 Vals.push_back(getEncodedVisibility(I)); 1451 Vals.push_back(I.isDSOLocal()); 1452 Vals.push_back(addToStrtab(I.getPartition())); 1453 Vals.push_back(I.getPartition().size()); 1454 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1455 Vals.clear(); 1456 } 1457 1458 writeValueSymbolTableForwardDecl(); 1459 } 1460 1461 static uint64_t getOptimizationFlags(const Value *V) { 1462 uint64_t Flags = 0; 1463 1464 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1465 if (OBO->hasNoSignedWrap()) 1466 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1467 if (OBO->hasNoUnsignedWrap()) 1468 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1469 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1470 if (PEO->isExact()) 1471 Flags |= 1 << bitc::PEO_EXACT; 1472 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1473 if (FPMO->hasAllowReassoc()) 1474 Flags |= bitc::AllowReassoc; 1475 if (FPMO->hasNoNaNs()) 1476 Flags |= bitc::NoNaNs; 1477 if (FPMO->hasNoInfs()) 1478 Flags |= bitc::NoInfs; 1479 if (FPMO->hasNoSignedZeros()) 1480 Flags |= bitc::NoSignedZeros; 1481 if (FPMO->hasAllowReciprocal()) 1482 Flags |= bitc::AllowReciprocal; 1483 if (FPMO->hasAllowContract()) 1484 Flags |= bitc::AllowContract; 1485 if (FPMO->hasApproxFunc()) 1486 Flags |= bitc::ApproxFunc; 1487 } 1488 1489 return Flags; 1490 } 1491 1492 void ModuleBitcodeWriter::writeValueAsMetadata( 1493 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1494 // Mimic an MDNode with a value as one operand. 1495 Value *V = MD->getValue(); 1496 Record.push_back(VE.getTypeID(V->getType())); 1497 Record.push_back(VE.getValueID(V)); 1498 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1499 Record.clear(); 1500 } 1501 1502 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1503 SmallVectorImpl<uint64_t> &Record, 1504 unsigned Abbrev) { 1505 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1506 Metadata *MD = N->getOperand(i); 1507 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1508 "Unexpected function-local metadata"); 1509 Record.push_back(VE.getMetadataOrNullID(MD)); 1510 } 1511 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1512 : bitc::METADATA_NODE, 1513 Record, Abbrev); 1514 Record.clear(); 1515 } 1516 1517 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1518 // Assume the column is usually under 128, and always output the inlined-at 1519 // location (it's never more expensive than building an array size 1). 1520 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1521 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1528 return Stream.EmitAbbrev(std::move(Abbv)); 1529 } 1530 1531 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1532 SmallVectorImpl<uint64_t> &Record, 1533 unsigned &Abbrev) { 1534 if (!Abbrev) 1535 Abbrev = createDILocationAbbrev(); 1536 1537 Record.push_back(N->isDistinct()); 1538 Record.push_back(N->getLine()); 1539 Record.push_back(N->getColumn()); 1540 Record.push_back(VE.getMetadataID(N->getScope())); 1541 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1542 Record.push_back(N->isImplicitCode()); 1543 1544 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1545 Record.clear(); 1546 } 1547 1548 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1549 // Assume the column is usually under 128, and always output the inlined-at 1550 // location (it's never more expensive than building an array size 1). 1551 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1552 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1559 return Stream.EmitAbbrev(std::move(Abbv)); 1560 } 1561 1562 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1563 SmallVectorImpl<uint64_t> &Record, 1564 unsigned &Abbrev) { 1565 if (!Abbrev) 1566 Abbrev = createGenericDINodeAbbrev(); 1567 1568 Record.push_back(N->isDistinct()); 1569 Record.push_back(N->getTag()); 1570 Record.push_back(0); // Per-tag version field; unused for now. 1571 1572 for (auto &I : N->operands()) 1573 Record.push_back(VE.getMetadataOrNullID(I)); 1574 1575 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1576 Record.clear(); 1577 } 1578 1579 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1580 SmallVectorImpl<uint64_t> &Record, 1581 unsigned Abbrev) { 1582 const uint64_t Version = 2 << 1; 1583 Record.push_back((uint64_t)N->isDistinct() | Version); 1584 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1587 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1588 1589 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1590 Record.clear(); 1591 } 1592 1593 void ModuleBitcodeWriter::writeDIGenericSubrange( 1594 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1595 unsigned Abbrev) { 1596 Record.push_back((uint64_t)N->isDistinct()); 1597 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1600 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1601 1602 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1603 Record.clear(); 1604 } 1605 1606 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1607 if ((int64_t)V >= 0) 1608 Vals.push_back(V << 1); 1609 else 1610 Vals.push_back((-V << 1) | 1); 1611 } 1612 1613 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1614 // We have an arbitrary precision integer value to write whose 1615 // bit width is > 64. However, in canonical unsigned integer 1616 // format it is likely that the high bits are going to be zero. 1617 // So, we only write the number of active words. 1618 unsigned NumWords = A.getActiveWords(); 1619 const uint64_t *RawData = A.getRawData(); 1620 for (unsigned i = 0; i < NumWords; i++) 1621 emitSignedInt64(Vals, RawData[i]); 1622 } 1623 1624 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1625 SmallVectorImpl<uint64_t> &Record, 1626 unsigned Abbrev) { 1627 const uint64_t IsBigInt = 1 << 2; 1628 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1629 Record.push_back(N->getValue().getBitWidth()); 1630 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1631 emitWideAPInt(Record, N->getValue()); 1632 1633 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1634 Record.clear(); 1635 } 1636 1637 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1638 SmallVectorImpl<uint64_t> &Record, 1639 unsigned Abbrev) { 1640 Record.push_back(N->isDistinct()); 1641 Record.push_back(N->getTag()); 1642 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1643 Record.push_back(N->getSizeInBits()); 1644 Record.push_back(N->getAlignInBits()); 1645 Record.push_back(N->getEncoding()); 1646 Record.push_back(N->getFlags()); 1647 1648 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1649 Record.clear(); 1650 } 1651 1652 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1653 SmallVectorImpl<uint64_t> &Record, 1654 unsigned Abbrev) { 1655 Record.push_back(N->isDistinct()); 1656 Record.push_back(N->getTag()); 1657 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1659 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1660 Record.push_back(N->getSizeInBits()); 1661 Record.push_back(N->getAlignInBits()); 1662 Record.push_back(N->getEncoding()); 1663 1664 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1665 Record.clear(); 1666 } 1667 1668 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1669 SmallVectorImpl<uint64_t> &Record, 1670 unsigned Abbrev) { 1671 Record.push_back(N->isDistinct()); 1672 Record.push_back(N->getTag()); 1673 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1674 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1675 Record.push_back(N->getLine()); 1676 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1677 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1678 Record.push_back(N->getSizeInBits()); 1679 Record.push_back(N->getAlignInBits()); 1680 Record.push_back(N->getOffsetInBits()); 1681 Record.push_back(N->getFlags()); 1682 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1683 1684 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1685 // that there is no DWARF address space associated with DIDerivedType. 1686 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1687 Record.push_back(*DWARFAddressSpace + 1); 1688 else 1689 Record.push_back(0); 1690 1691 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1692 1693 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1694 Record.clear(); 1695 } 1696 1697 void ModuleBitcodeWriter::writeDICompositeType( 1698 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1699 unsigned Abbrev) { 1700 const unsigned IsNotUsedInOldTypeRef = 0x2; 1701 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1702 Record.push_back(N->getTag()); 1703 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1704 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1705 Record.push_back(N->getLine()); 1706 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1707 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1708 Record.push_back(N->getSizeInBits()); 1709 Record.push_back(N->getAlignInBits()); 1710 Record.push_back(N->getOffsetInBits()); 1711 Record.push_back(N->getFlags()); 1712 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1713 Record.push_back(N->getRuntimeLang()); 1714 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1715 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1716 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1717 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1723 1724 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1725 Record.clear(); 1726 } 1727 1728 void ModuleBitcodeWriter::writeDISubroutineType( 1729 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1730 unsigned Abbrev) { 1731 const unsigned HasNoOldTypeRefs = 0x2; 1732 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1733 Record.push_back(N->getFlags()); 1734 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1735 Record.push_back(N->getCC()); 1736 1737 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1738 Record.clear(); 1739 } 1740 1741 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1742 SmallVectorImpl<uint64_t> &Record, 1743 unsigned Abbrev) { 1744 Record.push_back(N->isDistinct()); 1745 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1746 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1747 if (N->getRawChecksum()) { 1748 Record.push_back(N->getRawChecksum()->Kind); 1749 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1750 } else { 1751 // Maintain backwards compatibility with the old internal representation of 1752 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1753 Record.push_back(0); 1754 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1755 } 1756 auto Source = N->getRawSource(); 1757 if (Source) 1758 Record.push_back(VE.getMetadataOrNullID(*Source)); 1759 1760 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1761 Record.clear(); 1762 } 1763 1764 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1765 SmallVectorImpl<uint64_t> &Record, 1766 unsigned Abbrev) { 1767 assert(N->isDistinct() && "Expected distinct compile units"); 1768 Record.push_back(/* IsDistinct */ true); 1769 Record.push_back(N->getSourceLanguage()); 1770 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1771 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1772 Record.push_back(N->isOptimized()); 1773 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1774 Record.push_back(N->getRuntimeVersion()); 1775 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1776 Record.push_back(N->getEmissionKind()); 1777 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1778 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1779 Record.push_back(/* subprograms */ 0); 1780 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1781 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1782 Record.push_back(N->getDWOId()); 1783 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1784 Record.push_back(N->getSplitDebugInlining()); 1785 Record.push_back(N->getDebugInfoForProfiling()); 1786 Record.push_back((unsigned)N->getNameTableKind()); 1787 Record.push_back(N->getRangesBaseAddress()); 1788 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1789 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1790 1791 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1792 Record.clear(); 1793 } 1794 1795 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1796 SmallVectorImpl<uint64_t> &Record, 1797 unsigned Abbrev) { 1798 const uint64_t HasUnitFlag = 1 << 1; 1799 const uint64_t HasSPFlagsFlag = 1 << 2; 1800 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1801 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1804 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1805 Record.push_back(N->getLine()); 1806 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1807 Record.push_back(N->getScopeLine()); 1808 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1809 Record.push_back(N->getSPFlags()); 1810 Record.push_back(N->getVirtualIndex()); 1811 Record.push_back(N->getFlags()); 1812 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1813 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1816 Record.push_back(N->getThisAdjustment()); 1817 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1818 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1819 1820 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1821 Record.clear(); 1822 } 1823 1824 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1825 SmallVectorImpl<uint64_t> &Record, 1826 unsigned Abbrev) { 1827 Record.push_back(N->isDistinct()); 1828 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1829 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1830 Record.push_back(N->getLine()); 1831 Record.push_back(N->getColumn()); 1832 1833 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1834 Record.clear(); 1835 } 1836 1837 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1838 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1839 unsigned Abbrev) { 1840 Record.push_back(N->isDistinct()); 1841 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1842 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1843 Record.push_back(N->getDiscriminator()); 1844 1845 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1846 Record.clear(); 1847 } 1848 1849 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1850 SmallVectorImpl<uint64_t> &Record, 1851 unsigned Abbrev) { 1852 Record.push_back(N->isDistinct()); 1853 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1854 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1857 Record.push_back(N->getLineNo()); 1858 1859 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1860 Record.clear(); 1861 } 1862 1863 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1864 SmallVectorImpl<uint64_t> &Record, 1865 unsigned Abbrev) { 1866 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1867 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1868 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1869 1870 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1871 Record.clear(); 1872 } 1873 1874 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1875 SmallVectorImpl<uint64_t> &Record, 1876 unsigned Abbrev) { 1877 Record.push_back(N->isDistinct()); 1878 Record.push_back(N->getMacinfoType()); 1879 Record.push_back(N->getLine()); 1880 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1881 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1882 1883 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1884 Record.clear(); 1885 } 1886 1887 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1888 SmallVectorImpl<uint64_t> &Record, 1889 unsigned Abbrev) { 1890 Record.push_back(N->isDistinct()); 1891 Record.push_back(N->getMacinfoType()); 1892 Record.push_back(N->getLine()); 1893 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1894 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1895 1896 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1897 Record.clear(); 1898 } 1899 1900 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1901 SmallVectorImpl<uint64_t> &Record, 1902 unsigned Abbrev) { 1903 Record.reserve(N->getArgs().size()); 1904 for (ValueAsMetadata *MD : N->getArgs()) 1905 Record.push_back(VE.getMetadataID(MD)); 1906 1907 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1908 Record.clear(); 1909 } 1910 1911 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1912 SmallVectorImpl<uint64_t> &Record, 1913 unsigned Abbrev) { 1914 Record.push_back(N->isDistinct()); 1915 for (auto &I : N->operands()) 1916 Record.push_back(VE.getMetadataOrNullID(I)); 1917 Record.push_back(N->getLineNo()); 1918 Record.push_back(N->getIsDecl()); 1919 1920 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1921 Record.clear(); 1922 } 1923 1924 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1925 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1926 unsigned Abbrev) { 1927 Record.push_back(N->isDistinct()); 1928 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1929 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1930 Record.push_back(N->isDefault()); 1931 1932 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1933 Record.clear(); 1934 } 1935 1936 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1937 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1938 unsigned Abbrev) { 1939 Record.push_back(N->isDistinct()); 1940 Record.push_back(N->getTag()); 1941 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1942 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1943 Record.push_back(N->isDefault()); 1944 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1945 1946 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1947 Record.clear(); 1948 } 1949 1950 void ModuleBitcodeWriter::writeDIGlobalVariable( 1951 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1952 unsigned Abbrev) { 1953 const uint64_t Version = 2 << 1; 1954 Record.push_back((uint64_t)N->isDistinct() | Version); 1955 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1956 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1957 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1958 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1959 Record.push_back(N->getLine()); 1960 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1961 Record.push_back(N->isLocalToUnit()); 1962 Record.push_back(N->isDefinition()); 1963 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1964 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1965 Record.push_back(N->getAlignInBits()); 1966 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1967 1968 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1969 Record.clear(); 1970 } 1971 1972 void ModuleBitcodeWriter::writeDILocalVariable( 1973 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1974 unsigned Abbrev) { 1975 // In order to support all possible bitcode formats in BitcodeReader we need 1976 // to distinguish the following cases: 1977 // 1) Record has no artificial tag (Record[1]), 1978 // has no obsolete inlinedAt field (Record[9]). 1979 // In this case Record size will be 8, HasAlignment flag is false. 1980 // 2) Record has artificial tag (Record[1]), 1981 // has no obsolete inlignedAt field (Record[9]). 1982 // In this case Record size will be 9, HasAlignment flag is false. 1983 // 3) Record has both artificial tag (Record[1]) and 1984 // obsolete inlignedAt field (Record[9]). 1985 // In this case Record size will be 10, HasAlignment flag is false. 1986 // 4) Record has neither artificial tag, nor inlignedAt field, but 1987 // HasAlignment flag is true and Record[8] contains alignment value. 1988 const uint64_t HasAlignmentFlag = 1 << 1; 1989 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1990 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1991 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1992 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1993 Record.push_back(N->getLine()); 1994 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1995 Record.push_back(N->getArg()); 1996 Record.push_back(N->getFlags()); 1997 Record.push_back(N->getAlignInBits()); 1998 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1999 2000 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2001 Record.clear(); 2002 } 2003 2004 void ModuleBitcodeWriter::writeDILabel( 2005 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2006 unsigned Abbrev) { 2007 Record.push_back((uint64_t)N->isDistinct()); 2008 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2009 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2010 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2011 Record.push_back(N->getLine()); 2012 2013 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2014 Record.clear(); 2015 } 2016 2017 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2018 SmallVectorImpl<uint64_t> &Record, 2019 unsigned Abbrev) { 2020 Record.reserve(N->getElements().size() + 1); 2021 const uint64_t Version = 3 << 1; 2022 Record.push_back((uint64_t)N->isDistinct() | Version); 2023 Record.append(N->elements_begin(), N->elements_end()); 2024 2025 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2026 Record.clear(); 2027 } 2028 2029 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2030 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2031 unsigned Abbrev) { 2032 Record.push_back(N->isDistinct()); 2033 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2034 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2035 2036 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2037 Record.clear(); 2038 } 2039 2040 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2041 SmallVectorImpl<uint64_t> &Record, 2042 unsigned Abbrev) { 2043 Record.push_back(N->isDistinct()); 2044 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2045 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2046 Record.push_back(N->getLine()); 2047 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2048 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2049 Record.push_back(N->getAttributes()); 2050 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2051 2052 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2053 Record.clear(); 2054 } 2055 2056 void ModuleBitcodeWriter::writeDIImportedEntity( 2057 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2058 unsigned Abbrev) { 2059 Record.push_back(N->isDistinct()); 2060 Record.push_back(N->getTag()); 2061 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2062 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2063 Record.push_back(N->getLine()); 2064 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2065 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2066 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2067 2068 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2069 Record.clear(); 2070 } 2071 2072 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2073 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2074 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2077 return Stream.EmitAbbrev(std::move(Abbv)); 2078 } 2079 2080 void ModuleBitcodeWriter::writeNamedMetadata( 2081 SmallVectorImpl<uint64_t> &Record) { 2082 if (M.named_metadata_empty()) 2083 return; 2084 2085 unsigned Abbrev = createNamedMetadataAbbrev(); 2086 for (const NamedMDNode &NMD : M.named_metadata()) { 2087 // Write name. 2088 StringRef Str = NMD.getName(); 2089 Record.append(Str.bytes_begin(), Str.bytes_end()); 2090 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2091 Record.clear(); 2092 2093 // Write named metadata operands. 2094 for (const MDNode *N : NMD.operands()) 2095 Record.push_back(VE.getMetadataID(N)); 2096 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2097 Record.clear(); 2098 } 2099 } 2100 2101 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2102 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2103 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2107 return Stream.EmitAbbrev(std::move(Abbv)); 2108 } 2109 2110 /// Write out a record for MDString. 2111 /// 2112 /// All the metadata strings in a metadata block are emitted in a single 2113 /// record. The sizes and strings themselves are shoved into a blob. 2114 void ModuleBitcodeWriter::writeMetadataStrings( 2115 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2116 if (Strings.empty()) 2117 return; 2118 2119 // Start the record with the number of strings. 2120 Record.push_back(bitc::METADATA_STRINGS); 2121 Record.push_back(Strings.size()); 2122 2123 // Emit the sizes of the strings in the blob. 2124 SmallString<256> Blob; 2125 { 2126 BitstreamWriter W(Blob); 2127 for (const Metadata *MD : Strings) 2128 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2129 W.FlushToWord(); 2130 } 2131 2132 // Add the offset to the strings to the record. 2133 Record.push_back(Blob.size()); 2134 2135 // Add the strings to the blob. 2136 for (const Metadata *MD : Strings) 2137 Blob.append(cast<MDString>(MD)->getString()); 2138 2139 // Emit the final record. 2140 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2141 Record.clear(); 2142 } 2143 2144 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2145 enum MetadataAbbrev : unsigned { 2146 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2147 #include "llvm/IR/Metadata.def" 2148 LastPlusOne 2149 }; 2150 2151 void ModuleBitcodeWriter::writeMetadataRecords( 2152 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2153 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2154 if (MDs.empty()) 2155 return; 2156 2157 // Initialize MDNode abbreviations. 2158 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2159 #include "llvm/IR/Metadata.def" 2160 2161 for (const Metadata *MD : MDs) { 2162 if (IndexPos) 2163 IndexPos->push_back(Stream.GetCurrentBitNo()); 2164 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2165 assert(N->isResolved() && "Expected forward references to be resolved"); 2166 2167 switch (N->getMetadataID()) { 2168 default: 2169 llvm_unreachable("Invalid MDNode subclass"); 2170 #define HANDLE_MDNODE_LEAF(CLASS) \ 2171 case Metadata::CLASS##Kind: \ 2172 if (MDAbbrevs) \ 2173 write##CLASS(cast<CLASS>(N), Record, \ 2174 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2175 else \ 2176 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2177 continue; 2178 #include "llvm/IR/Metadata.def" 2179 } 2180 } 2181 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2182 } 2183 } 2184 2185 void ModuleBitcodeWriter::writeModuleMetadata() { 2186 if (!VE.hasMDs() && M.named_metadata_empty()) 2187 return; 2188 2189 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2190 SmallVector<uint64_t, 64> Record; 2191 2192 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2193 // block and load any metadata. 2194 std::vector<unsigned> MDAbbrevs; 2195 2196 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2197 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2198 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2199 createGenericDINodeAbbrev(); 2200 2201 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2202 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2205 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2206 2207 Abbv = std::make_shared<BitCodeAbbrev>(); 2208 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2211 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2212 2213 // Emit MDStrings together upfront. 2214 writeMetadataStrings(VE.getMDStrings(), Record); 2215 2216 // We only emit an index for the metadata record if we have more than a given 2217 // (naive) threshold of metadatas, otherwise it is not worth it. 2218 if (VE.getNonMDStrings().size() > IndexThreshold) { 2219 // Write a placeholder value in for the offset of the metadata index, 2220 // which is written after the records, so that it can include 2221 // the offset of each entry. The placeholder offset will be 2222 // updated after all records are emitted. 2223 uint64_t Vals[] = {0, 0}; 2224 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2225 } 2226 2227 // Compute and save the bit offset to the current position, which will be 2228 // patched when we emit the index later. We can simply subtract the 64-bit 2229 // fixed size from the current bit number to get the location to backpatch. 2230 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2231 2232 // This index will contain the bitpos for each individual record. 2233 std::vector<uint64_t> IndexPos; 2234 IndexPos.reserve(VE.getNonMDStrings().size()); 2235 2236 // Write all the records 2237 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2238 2239 if (VE.getNonMDStrings().size() > IndexThreshold) { 2240 // Now that we have emitted all the records we will emit the index. But 2241 // first 2242 // backpatch the forward reference so that the reader can skip the records 2243 // efficiently. 2244 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2245 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2246 2247 // Delta encode the index. 2248 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2249 for (auto &Elt : IndexPos) { 2250 auto EltDelta = Elt - PreviousValue; 2251 PreviousValue = Elt; 2252 Elt = EltDelta; 2253 } 2254 // Emit the index record. 2255 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2256 IndexPos.clear(); 2257 } 2258 2259 // Write the named metadata now. 2260 writeNamedMetadata(Record); 2261 2262 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2263 SmallVector<uint64_t, 4> Record; 2264 Record.push_back(VE.getValueID(&GO)); 2265 pushGlobalMetadataAttachment(Record, GO); 2266 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2267 }; 2268 for (const Function &F : M) 2269 if (F.isDeclaration() && F.hasMetadata()) 2270 AddDeclAttachedMetadata(F); 2271 // FIXME: Only store metadata for declarations here, and move data for global 2272 // variable definitions to a separate block (PR28134). 2273 for (const GlobalVariable &GV : M.globals()) 2274 if (GV.hasMetadata()) 2275 AddDeclAttachedMetadata(GV); 2276 2277 Stream.ExitBlock(); 2278 } 2279 2280 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2281 if (!VE.hasMDs()) 2282 return; 2283 2284 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2285 SmallVector<uint64_t, 64> Record; 2286 writeMetadataStrings(VE.getMDStrings(), Record); 2287 writeMetadataRecords(VE.getNonMDStrings(), Record); 2288 Stream.ExitBlock(); 2289 } 2290 2291 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2292 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2293 // [n x [id, mdnode]] 2294 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2295 GO.getAllMetadata(MDs); 2296 for (const auto &I : MDs) { 2297 Record.push_back(I.first); 2298 Record.push_back(VE.getMetadataID(I.second)); 2299 } 2300 } 2301 2302 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2303 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2304 2305 SmallVector<uint64_t, 64> Record; 2306 2307 if (F.hasMetadata()) { 2308 pushGlobalMetadataAttachment(Record, F); 2309 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2310 Record.clear(); 2311 } 2312 2313 // Write metadata attachments 2314 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2315 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2316 for (const BasicBlock &BB : F) 2317 for (const Instruction &I : BB) { 2318 MDs.clear(); 2319 I.getAllMetadataOtherThanDebugLoc(MDs); 2320 2321 // If no metadata, ignore instruction. 2322 if (MDs.empty()) continue; 2323 2324 Record.push_back(VE.getInstructionID(&I)); 2325 2326 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2327 Record.push_back(MDs[i].first); 2328 Record.push_back(VE.getMetadataID(MDs[i].second)); 2329 } 2330 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2331 Record.clear(); 2332 } 2333 2334 Stream.ExitBlock(); 2335 } 2336 2337 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2338 SmallVector<uint64_t, 64> Record; 2339 2340 // Write metadata kinds 2341 // METADATA_KIND - [n x [id, name]] 2342 SmallVector<StringRef, 8> Names; 2343 M.getMDKindNames(Names); 2344 2345 if (Names.empty()) return; 2346 2347 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2348 2349 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2350 Record.push_back(MDKindID); 2351 StringRef KName = Names[MDKindID]; 2352 Record.append(KName.begin(), KName.end()); 2353 2354 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2355 Record.clear(); 2356 } 2357 2358 Stream.ExitBlock(); 2359 } 2360 2361 void ModuleBitcodeWriter::writeOperandBundleTags() { 2362 // Write metadata kinds 2363 // 2364 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2365 // 2366 // OPERAND_BUNDLE_TAG - [strchr x N] 2367 2368 SmallVector<StringRef, 8> Tags; 2369 M.getOperandBundleTags(Tags); 2370 2371 if (Tags.empty()) 2372 return; 2373 2374 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2375 2376 SmallVector<uint64_t, 64> Record; 2377 2378 for (auto Tag : Tags) { 2379 Record.append(Tag.begin(), Tag.end()); 2380 2381 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2382 Record.clear(); 2383 } 2384 2385 Stream.ExitBlock(); 2386 } 2387 2388 void ModuleBitcodeWriter::writeSyncScopeNames() { 2389 SmallVector<StringRef, 8> SSNs; 2390 M.getContext().getSyncScopeNames(SSNs); 2391 if (SSNs.empty()) 2392 return; 2393 2394 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2395 2396 SmallVector<uint64_t, 64> Record; 2397 for (auto SSN : SSNs) { 2398 Record.append(SSN.begin(), SSN.end()); 2399 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2400 Record.clear(); 2401 } 2402 2403 Stream.ExitBlock(); 2404 } 2405 2406 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2407 bool isGlobal) { 2408 if (FirstVal == LastVal) return; 2409 2410 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2411 2412 unsigned AggregateAbbrev = 0; 2413 unsigned String8Abbrev = 0; 2414 unsigned CString7Abbrev = 0; 2415 unsigned CString6Abbrev = 0; 2416 // If this is a constant pool for the module, emit module-specific abbrevs. 2417 if (isGlobal) { 2418 // Abbrev for CST_CODE_AGGREGATE. 2419 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2420 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2423 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2424 2425 // Abbrev for CST_CODE_STRING. 2426 Abbv = std::make_shared<BitCodeAbbrev>(); 2427 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2430 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2431 // Abbrev for CST_CODE_CSTRING. 2432 Abbv = std::make_shared<BitCodeAbbrev>(); 2433 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2436 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2437 // Abbrev for CST_CODE_CSTRING. 2438 Abbv = std::make_shared<BitCodeAbbrev>(); 2439 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2442 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2443 } 2444 2445 SmallVector<uint64_t, 64> Record; 2446 2447 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2448 Type *LastTy = nullptr; 2449 for (unsigned i = FirstVal; i != LastVal; ++i) { 2450 const Value *V = Vals[i].first; 2451 // If we need to switch types, do so now. 2452 if (V->getType() != LastTy) { 2453 LastTy = V->getType(); 2454 Record.push_back(VE.getTypeID(LastTy)); 2455 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2456 CONSTANTS_SETTYPE_ABBREV); 2457 Record.clear(); 2458 } 2459 2460 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2461 Record.push_back( 2462 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2463 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2464 2465 // Add the asm string. 2466 const std::string &AsmStr = IA->getAsmString(); 2467 Record.push_back(AsmStr.size()); 2468 Record.append(AsmStr.begin(), AsmStr.end()); 2469 2470 // Add the constraint string. 2471 const std::string &ConstraintStr = IA->getConstraintString(); 2472 Record.push_back(ConstraintStr.size()); 2473 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2474 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2475 Record.clear(); 2476 continue; 2477 } 2478 const Constant *C = cast<Constant>(V); 2479 unsigned Code = -1U; 2480 unsigned AbbrevToUse = 0; 2481 if (C->isNullValue()) { 2482 Code = bitc::CST_CODE_NULL; 2483 } else if (isa<PoisonValue>(C)) { 2484 Code = bitc::CST_CODE_POISON; 2485 } else if (isa<UndefValue>(C)) { 2486 Code = bitc::CST_CODE_UNDEF; 2487 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2488 if (IV->getBitWidth() <= 64) { 2489 uint64_t V = IV->getSExtValue(); 2490 emitSignedInt64(Record, V); 2491 Code = bitc::CST_CODE_INTEGER; 2492 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2493 } else { // Wide integers, > 64 bits in size. 2494 emitWideAPInt(Record, IV->getValue()); 2495 Code = bitc::CST_CODE_WIDE_INTEGER; 2496 } 2497 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2498 Code = bitc::CST_CODE_FLOAT; 2499 Type *Ty = CFP->getType(); 2500 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2501 Ty->isDoubleTy()) { 2502 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2503 } else if (Ty->isX86_FP80Ty()) { 2504 // api needed to prevent premature destruction 2505 // bits are not in the same order as a normal i80 APInt, compensate. 2506 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2507 const uint64_t *p = api.getRawData(); 2508 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2509 Record.push_back(p[0] & 0xffffLL); 2510 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2511 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2512 const uint64_t *p = api.getRawData(); 2513 Record.push_back(p[0]); 2514 Record.push_back(p[1]); 2515 } else { 2516 assert(0 && "Unknown FP type!"); 2517 } 2518 } else if (isa<ConstantDataSequential>(C) && 2519 cast<ConstantDataSequential>(C)->isString()) { 2520 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2521 // Emit constant strings specially. 2522 unsigned NumElts = Str->getNumElements(); 2523 // If this is a null-terminated string, use the denser CSTRING encoding. 2524 if (Str->isCString()) { 2525 Code = bitc::CST_CODE_CSTRING; 2526 --NumElts; // Don't encode the null, which isn't allowed by char6. 2527 } else { 2528 Code = bitc::CST_CODE_STRING; 2529 AbbrevToUse = String8Abbrev; 2530 } 2531 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2532 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2533 for (unsigned i = 0; i != NumElts; ++i) { 2534 unsigned char V = Str->getElementAsInteger(i); 2535 Record.push_back(V); 2536 isCStr7 &= (V & 128) == 0; 2537 if (isCStrChar6) 2538 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2539 } 2540 2541 if (isCStrChar6) 2542 AbbrevToUse = CString6Abbrev; 2543 else if (isCStr7) 2544 AbbrevToUse = CString7Abbrev; 2545 } else if (const ConstantDataSequential *CDS = 2546 dyn_cast<ConstantDataSequential>(C)) { 2547 Code = bitc::CST_CODE_DATA; 2548 Type *EltTy = CDS->getElementType(); 2549 if (isa<IntegerType>(EltTy)) { 2550 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2551 Record.push_back(CDS->getElementAsInteger(i)); 2552 } else { 2553 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2554 Record.push_back( 2555 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2556 } 2557 } else if (isa<ConstantAggregate>(C)) { 2558 Code = bitc::CST_CODE_AGGREGATE; 2559 for (const Value *Op : C->operands()) 2560 Record.push_back(VE.getValueID(Op)); 2561 AbbrevToUse = AggregateAbbrev; 2562 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2563 switch (CE->getOpcode()) { 2564 default: 2565 if (Instruction::isCast(CE->getOpcode())) { 2566 Code = bitc::CST_CODE_CE_CAST; 2567 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2568 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2569 Record.push_back(VE.getValueID(C->getOperand(0))); 2570 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2571 } else { 2572 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2573 Code = bitc::CST_CODE_CE_BINOP; 2574 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2575 Record.push_back(VE.getValueID(C->getOperand(0))); 2576 Record.push_back(VE.getValueID(C->getOperand(1))); 2577 uint64_t Flags = getOptimizationFlags(CE); 2578 if (Flags != 0) 2579 Record.push_back(Flags); 2580 } 2581 break; 2582 case Instruction::FNeg: { 2583 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2584 Code = bitc::CST_CODE_CE_UNOP; 2585 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2586 Record.push_back(VE.getValueID(C->getOperand(0))); 2587 uint64_t Flags = getOptimizationFlags(CE); 2588 if (Flags != 0) 2589 Record.push_back(Flags); 2590 break; 2591 } 2592 case Instruction::GetElementPtr: { 2593 Code = bitc::CST_CODE_CE_GEP; 2594 const auto *GO = cast<GEPOperator>(C); 2595 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2596 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2597 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2598 Record.push_back((*Idx << 1) | GO->isInBounds()); 2599 } else if (GO->isInBounds()) 2600 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2601 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2602 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2603 Record.push_back(VE.getValueID(C->getOperand(i))); 2604 } 2605 break; 2606 } 2607 case Instruction::Select: 2608 Code = bitc::CST_CODE_CE_SELECT; 2609 Record.push_back(VE.getValueID(C->getOperand(0))); 2610 Record.push_back(VE.getValueID(C->getOperand(1))); 2611 Record.push_back(VE.getValueID(C->getOperand(2))); 2612 break; 2613 case Instruction::ExtractElement: 2614 Code = bitc::CST_CODE_CE_EXTRACTELT; 2615 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2616 Record.push_back(VE.getValueID(C->getOperand(0))); 2617 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2618 Record.push_back(VE.getValueID(C->getOperand(1))); 2619 break; 2620 case Instruction::InsertElement: 2621 Code = bitc::CST_CODE_CE_INSERTELT; 2622 Record.push_back(VE.getValueID(C->getOperand(0))); 2623 Record.push_back(VE.getValueID(C->getOperand(1))); 2624 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2625 Record.push_back(VE.getValueID(C->getOperand(2))); 2626 break; 2627 case Instruction::ShuffleVector: 2628 // If the return type and argument types are the same, this is a 2629 // standard shufflevector instruction. If the types are different, 2630 // then the shuffle is widening or truncating the input vectors, and 2631 // the argument type must also be encoded. 2632 if (C->getType() == C->getOperand(0)->getType()) { 2633 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2634 } else { 2635 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2636 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2637 } 2638 Record.push_back(VE.getValueID(C->getOperand(0))); 2639 Record.push_back(VE.getValueID(C->getOperand(1))); 2640 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2641 break; 2642 case Instruction::ICmp: 2643 case Instruction::FCmp: 2644 Code = bitc::CST_CODE_CE_CMP; 2645 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2646 Record.push_back(VE.getValueID(C->getOperand(0))); 2647 Record.push_back(VE.getValueID(C->getOperand(1))); 2648 Record.push_back(CE->getPredicate()); 2649 break; 2650 } 2651 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2652 Code = bitc::CST_CODE_BLOCKADDRESS; 2653 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2654 Record.push_back(VE.getValueID(BA->getFunction())); 2655 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2656 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2657 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2658 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2659 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2660 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2661 Code = bitc::CST_CODE_NO_CFI_VALUE; 2662 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2663 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2664 } else { 2665 #ifndef NDEBUG 2666 C->dump(); 2667 #endif 2668 llvm_unreachable("Unknown constant!"); 2669 } 2670 Stream.EmitRecord(Code, Record, AbbrevToUse); 2671 Record.clear(); 2672 } 2673 2674 Stream.ExitBlock(); 2675 } 2676 2677 void ModuleBitcodeWriter::writeModuleConstants() { 2678 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2679 2680 // Find the first constant to emit, which is the first non-globalvalue value. 2681 // We know globalvalues have been emitted by WriteModuleInfo. 2682 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2683 if (!isa<GlobalValue>(Vals[i].first)) { 2684 writeConstants(i, Vals.size(), true); 2685 return; 2686 } 2687 } 2688 } 2689 2690 /// pushValueAndType - The file has to encode both the value and type id for 2691 /// many values, because we need to know what type to create for forward 2692 /// references. However, most operands are not forward references, so this type 2693 /// field is not needed. 2694 /// 2695 /// This function adds V's value ID to Vals. If the value ID is higher than the 2696 /// instruction ID, then it is a forward reference, and it also includes the 2697 /// type ID. The value ID that is written is encoded relative to the InstID. 2698 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2699 SmallVectorImpl<unsigned> &Vals) { 2700 unsigned ValID = VE.getValueID(V); 2701 // Make encoding relative to the InstID. 2702 Vals.push_back(InstID - ValID); 2703 if (ValID >= InstID) { 2704 Vals.push_back(VE.getTypeID(V->getType())); 2705 return true; 2706 } 2707 return false; 2708 } 2709 2710 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2711 unsigned InstID) { 2712 SmallVector<unsigned, 64> Record; 2713 LLVMContext &C = CS.getContext(); 2714 2715 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2716 const auto &Bundle = CS.getOperandBundleAt(i); 2717 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2718 2719 for (auto &Input : Bundle.Inputs) 2720 pushValueAndType(Input, InstID, Record); 2721 2722 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2723 Record.clear(); 2724 } 2725 } 2726 2727 /// pushValue - Like pushValueAndType, but where the type of the value is 2728 /// omitted (perhaps it was already encoded in an earlier operand). 2729 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2730 SmallVectorImpl<unsigned> &Vals) { 2731 unsigned ValID = VE.getValueID(V); 2732 Vals.push_back(InstID - ValID); 2733 } 2734 2735 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2736 SmallVectorImpl<uint64_t> &Vals) { 2737 unsigned ValID = VE.getValueID(V); 2738 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2739 emitSignedInt64(Vals, diff); 2740 } 2741 2742 /// WriteInstruction - Emit an instruction to the specified stream. 2743 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2744 unsigned InstID, 2745 SmallVectorImpl<unsigned> &Vals) { 2746 unsigned Code = 0; 2747 unsigned AbbrevToUse = 0; 2748 VE.setInstructionID(&I); 2749 switch (I.getOpcode()) { 2750 default: 2751 if (Instruction::isCast(I.getOpcode())) { 2752 Code = bitc::FUNC_CODE_INST_CAST; 2753 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2754 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2755 Vals.push_back(VE.getTypeID(I.getType())); 2756 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2757 } else { 2758 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2759 Code = bitc::FUNC_CODE_INST_BINOP; 2760 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2761 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2762 pushValue(I.getOperand(1), InstID, Vals); 2763 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2764 uint64_t Flags = getOptimizationFlags(&I); 2765 if (Flags != 0) { 2766 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2767 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2768 Vals.push_back(Flags); 2769 } 2770 } 2771 break; 2772 case Instruction::FNeg: { 2773 Code = bitc::FUNC_CODE_INST_UNOP; 2774 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2775 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2776 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2777 uint64_t Flags = getOptimizationFlags(&I); 2778 if (Flags != 0) { 2779 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2780 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2781 Vals.push_back(Flags); 2782 } 2783 break; 2784 } 2785 case Instruction::GetElementPtr: { 2786 Code = bitc::FUNC_CODE_INST_GEP; 2787 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2788 auto &GEPInst = cast<GetElementPtrInst>(I); 2789 Vals.push_back(GEPInst.isInBounds()); 2790 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2791 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2792 pushValueAndType(I.getOperand(i), InstID, Vals); 2793 break; 2794 } 2795 case Instruction::ExtractValue: { 2796 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2797 pushValueAndType(I.getOperand(0), InstID, Vals); 2798 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2799 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2800 break; 2801 } 2802 case Instruction::InsertValue: { 2803 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2804 pushValueAndType(I.getOperand(0), InstID, Vals); 2805 pushValueAndType(I.getOperand(1), InstID, Vals); 2806 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2807 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2808 break; 2809 } 2810 case Instruction::Select: { 2811 Code = bitc::FUNC_CODE_INST_VSELECT; 2812 pushValueAndType(I.getOperand(1), InstID, Vals); 2813 pushValue(I.getOperand(2), InstID, Vals); 2814 pushValueAndType(I.getOperand(0), InstID, Vals); 2815 uint64_t Flags = getOptimizationFlags(&I); 2816 if (Flags != 0) 2817 Vals.push_back(Flags); 2818 break; 2819 } 2820 case Instruction::ExtractElement: 2821 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2822 pushValueAndType(I.getOperand(0), InstID, Vals); 2823 pushValueAndType(I.getOperand(1), InstID, Vals); 2824 break; 2825 case Instruction::InsertElement: 2826 Code = bitc::FUNC_CODE_INST_INSERTELT; 2827 pushValueAndType(I.getOperand(0), InstID, Vals); 2828 pushValue(I.getOperand(1), InstID, Vals); 2829 pushValueAndType(I.getOperand(2), InstID, Vals); 2830 break; 2831 case Instruction::ShuffleVector: 2832 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2833 pushValueAndType(I.getOperand(0), InstID, Vals); 2834 pushValue(I.getOperand(1), InstID, Vals); 2835 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2836 Vals); 2837 break; 2838 case Instruction::ICmp: 2839 case Instruction::FCmp: { 2840 // compare returning Int1Ty or vector of Int1Ty 2841 Code = bitc::FUNC_CODE_INST_CMP2; 2842 pushValueAndType(I.getOperand(0), InstID, Vals); 2843 pushValue(I.getOperand(1), InstID, Vals); 2844 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2845 uint64_t Flags = getOptimizationFlags(&I); 2846 if (Flags != 0) 2847 Vals.push_back(Flags); 2848 break; 2849 } 2850 2851 case Instruction::Ret: 2852 { 2853 Code = bitc::FUNC_CODE_INST_RET; 2854 unsigned NumOperands = I.getNumOperands(); 2855 if (NumOperands == 0) 2856 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2857 else if (NumOperands == 1) { 2858 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2859 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2860 } else { 2861 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2862 pushValueAndType(I.getOperand(i), InstID, Vals); 2863 } 2864 } 2865 break; 2866 case Instruction::Br: 2867 { 2868 Code = bitc::FUNC_CODE_INST_BR; 2869 const BranchInst &II = cast<BranchInst>(I); 2870 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2871 if (II.isConditional()) { 2872 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2873 pushValue(II.getCondition(), InstID, Vals); 2874 } 2875 } 2876 break; 2877 case Instruction::Switch: 2878 { 2879 Code = bitc::FUNC_CODE_INST_SWITCH; 2880 const SwitchInst &SI = cast<SwitchInst>(I); 2881 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2882 pushValue(SI.getCondition(), InstID, Vals); 2883 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2884 for (auto Case : SI.cases()) { 2885 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2886 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2887 } 2888 } 2889 break; 2890 case Instruction::IndirectBr: 2891 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2892 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2893 // Encode the address operand as relative, but not the basic blocks. 2894 pushValue(I.getOperand(0), InstID, Vals); 2895 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2896 Vals.push_back(VE.getValueID(I.getOperand(i))); 2897 break; 2898 2899 case Instruction::Invoke: { 2900 const InvokeInst *II = cast<InvokeInst>(&I); 2901 const Value *Callee = II->getCalledOperand(); 2902 FunctionType *FTy = II->getFunctionType(); 2903 2904 if (II->hasOperandBundles()) 2905 writeOperandBundles(*II, InstID); 2906 2907 Code = bitc::FUNC_CODE_INST_INVOKE; 2908 2909 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2910 Vals.push_back(II->getCallingConv() | 1 << 13); 2911 Vals.push_back(VE.getValueID(II->getNormalDest())); 2912 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2913 Vals.push_back(VE.getTypeID(FTy)); 2914 pushValueAndType(Callee, InstID, Vals); 2915 2916 // Emit value #'s for the fixed parameters. 2917 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2918 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2919 2920 // Emit type/value pairs for varargs params. 2921 if (FTy->isVarArg()) { 2922 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2923 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2924 } 2925 break; 2926 } 2927 case Instruction::Resume: 2928 Code = bitc::FUNC_CODE_INST_RESUME; 2929 pushValueAndType(I.getOperand(0), InstID, Vals); 2930 break; 2931 case Instruction::CleanupRet: { 2932 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2933 const auto &CRI = cast<CleanupReturnInst>(I); 2934 pushValue(CRI.getCleanupPad(), InstID, Vals); 2935 if (CRI.hasUnwindDest()) 2936 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2937 break; 2938 } 2939 case Instruction::CatchRet: { 2940 Code = bitc::FUNC_CODE_INST_CATCHRET; 2941 const auto &CRI = cast<CatchReturnInst>(I); 2942 pushValue(CRI.getCatchPad(), InstID, Vals); 2943 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2944 break; 2945 } 2946 case Instruction::CleanupPad: 2947 case Instruction::CatchPad: { 2948 const auto &FuncletPad = cast<FuncletPadInst>(I); 2949 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2950 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2951 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2952 2953 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2954 Vals.push_back(NumArgOperands); 2955 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2956 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2957 break; 2958 } 2959 case Instruction::CatchSwitch: { 2960 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2961 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2962 2963 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2964 2965 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2966 Vals.push_back(NumHandlers); 2967 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2968 Vals.push_back(VE.getValueID(CatchPadBB)); 2969 2970 if (CatchSwitch.hasUnwindDest()) 2971 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2972 break; 2973 } 2974 case Instruction::CallBr: { 2975 const CallBrInst *CBI = cast<CallBrInst>(&I); 2976 const Value *Callee = CBI->getCalledOperand(); 2977 FunctionType *FTy = CBI->getFunctionType(); 2978 2979 if (CBI->hasOperandBundles()) 2980 writeOperandBundles(*CBI, InstID); 2981 2982 Code = bitc::FUNC_CODE_INST_CALLBR; 2983 2984 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2985 2986 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2987 1 << bitc::CALL_EXPLICIT_TYPE); 2988 2989 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2990 Vals.push_back(CBI->getNumIndirectDests()); 2991 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2992 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2993 2994 Vals.push_back(VE.getTypeID(FTy)); 2995 pushValueAndType(Callee, InstID, Vals); 2996 2997 // Emit value #'s for the fixed parameters. 2998 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2999 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3000 3001 // Emit type/value pairs for varargs params. 3002 if (FTy->isVarArg()) { 3003 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3004 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3005 } 3006 break; 3007 } 3008 case Instruction::Unreachable: 3009 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3010 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3011 break; 3012 3013 case Instruction::PHI: { 3014 const PHINode &PN = cast<PHINode>(I); 3015 Code = bitc::FUNC_CODE_INST_PHI; 3016 // With the newer instruction encoding, forward references could give 3017 // negative valued IDs. This is most common for PHIs, so we use 3018 // signed VBRs. 3019 SmallVector<uint64_t, 128> Vals64; 3020 Vals64.push_back(VE.getTypeID(PN.getType())); 3021 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3022 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3023 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3024 } 3025 3026 uint64_t Flags = getOptimizationFlags(&I); 3027 if (Flags != 0) 3028 Vals64.push_back(Flags); 3029 3030 // Emit a Vals64 vector and exit. 3031 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3032 Vals64.clear(); 3033 return; 3034 } 3035 3036 case Instruction::LandingPad: { 3037 const LandingPadInst &LP = cast<LandingPadInst>(I); 3038 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3039 Vals.push_back(VE.getTypeID(LP.getType())); 3040 Vals.push_back(LP.isCleanup()); 3041 Vals.push_back(LP.getNumClauses()); 3042 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3043 if (LP.isCatch(I)) 3044 Vals.push_back(LandingPadInst::Catch); 3045 else 3046 Vals.push_back(LandingPadInst::Filter); 3047 pushValueAndType(LP.getClause(I), InstID, Vals); 3048 } 3049 break; 3050 } 3051 3052 case Instruction::Alloca: { 3053 Code = bitc::FUNC_CODE_INST_ALLOCA; 3054 const AllocaInst &AI = cast<AllocaInst>(I); 3055 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3056 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3057 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3058 using APV = AllocaPackedValues; 3059 unsigned Record = 0; 3060 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3061 Bitfield::set<APV::AlignLower>( 3062 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3063 Bitfield::set<APV::AlignUpper>(Record, 3064 EncodedAlign >> APV::AlignLower::Bits); 3065 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3066 Bitfield::set<APV::ExplicitType>(Record, true); 3067 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3068 Vals.push_back(Record); 3069 break; 3070 } 3071 3072 case Instruction::Load: 3073 if (cast<LoadInst>(I).isAtomic()) { 3074 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3075 pushValueAndType(I.getOperand(0), InstID, Vals); 3076 } else { 3077 Code = bitc::FUNC_CODE_INST_LOAD; 3078 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3079 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3080 } 3081 Vals.push_back(VE.getTypeID(I.getType())); 3082 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3083 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3084 if (cast<LoadInst>(I).isAtomic()) { 3085 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3086 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3087 } 3088 break; 3089 case Instruction::Store: 3090 if (cast<StoreInst>(I).isAtomic()) 3091 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3092 else 3093 Code = bitc::FUNC_CODE_INST_STORE; 3094 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3095 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3096 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3097 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3098 if (cast<StoreInst>(I).isAtomic()) { 3099 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3100 Vals.push_back( 3101 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3102 } 3103 break; 3104 case Instruction::AtomicCmpXchg: 3105 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3106 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3107 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3108 pushValue(I.getOperand(2), InstID, Vals); // newval. 3109 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3110 Vals.push_back( 3111 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3112 Vals.push_back( 3113 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3114 Vals.push_back( 3115 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3116 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3117 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3118 break; 3119 case Instruction::AtomicRMW: 3120 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3121 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3122 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3123 Vals.push_back( 3124 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3125 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3126 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3127 Vals.push_back( 3128 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3129 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3130 break; 3131 case Instruction::Fence: 3132 Code = bitc::FUNC_CODE_INST_FENCE; 3133 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3134 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3135 break; 3136 case Instruction::Call: { 3137 const CallInst &CI = cast<CallInst>(I); 3138 FunctionType *FTy = CI.getFunctionType(); 3139 3140 if (CI.hasOperandBundles()) 3141 writeOperandBundles(CI, InstID); 3142 3143 Code = bitc::FUNC_CODE_INST_CALL; 3144 3145 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3146 3147 unsigned Flags = getOptimizationFlags(&I); 3148 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3149 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3150 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3151 1 << bitc::CALL_EXPLICIT_TYPE | 3152 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3153 unsigned(Flags != 0) << bitc::CALL_FMF); 3154 if (Flags != 0) 3155 Vals.push_back(Flags); 3156 3157 Vals.push_back(VE.getTypeID(FTy)); 3158 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3159 3160 // Emit value #'s for the fixed parameters. 3161 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3162 // Check for labels (can happen with asm labels). 3163 if (FTy->getParamType(i)->isLabelTy()) 3164 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3165 else 3166 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3167 } 3168 3169 // Emit type/value pairs for varargs params. 3170 if (FTy->isVarArg()) { 3171 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3172 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3173 } 3174 break; 3175 } 3176 case Instruction::VAArg: 3177 Code = bitc::FUNC_CODE_INST_VAARG; 3178 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3179 pushValue(I.getOperand(0), InstID, Vals); // valist. 3180 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3181 break; 3182 case Instruction::Freeze: 3183 Code = bitc::FUNC_CODE_INST_FREEZE; 3184 pushValueAndType(I.getOperand(0), InstID, Vals); 3185 break; 3186 } 3187 3188 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3189 Vals.clear(); 3190 } 3191 3192 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3193 /// to allow clients to efficiently find the function body. 3194 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3195 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3196 // Get the offset of the VST we are writing, and backpatch it into 3197 // the VST forward declaration record. 3198 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3199 // The BitcodeStartBit was the stream offset of the identification block. 3200 VSTOffset -= bitcodeStartBit(); 3201 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3202 // Note that we add 1 here because the offset is relative to one word 3203 // before the start of the identification block, which was historically 3204 // always the start of the regular bitcode header. 3205 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3206 3207 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3208 3209 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3210 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3213 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3214 3215 for (const Function &F : M) { 3216 uint64_t Record[2]; 3217 3218 if (F.isDeclaration()) 3219 continue; 3220 3221 Record[0] = VE.getValueID(&F); 3222 3223 // Save the word offset of the function (from the start of the 3224 // actual bitcode written to the stream). 3225 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3226 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3227 // Note that we add 1 here because the offset is relative to one word 3228 // before the start of the identification block, which was historically 3229 // always the start of the regular bitcode header. 3230 Record[1] = BitcodeIndex / 32 + 1; 3231 3232 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3233 } 3234 3235 Stream.ExitBlock(); 3236 } 3237 3238 /// Emit names for arguments, instructions and basic blocks in a function. 3239 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3240 const ValueSymbolTable &VST) { 3241 if (VST.empty()) 3242 return; 3243 3244 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3245 3246 // FIXME: Set up the abbrev, we know how many values there are! 3247 // FIXME: We know if the type names can use 7-bit ascii. 3248 SmallVector<uint64_t, 64> NameVals; 3249 3250 for (const ValueName &Name : VST) { 3251 // Figure out the encoding to use for the name. 3252 StringEncoding Bits = getStringEncoding(Name.getKey()); 3253 3254 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3255 NameVals.push_back(VE.getValueID(Name.getValue())); 3256 3257 // VST_CODE_ENTRY: [valueid, namechar x N] 3258 // VST_CODE_BBENTRY: [bbid, namechar x N] 3259 unsigned Code; 3260 if (isa<BasicBlock>(Name.getValue())) { 3261 Code = bitc::VST_CODE_BBENTRY; 3262 if (Bits == SE_Char6) 3263 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3264 } else { 3265 Code = bitc::VST_CODE_ENTRY; 3266 if (Bits == SE_Char6) 3267 AbbrevToUse = VST_ENTRY_6_ABBREV; 3268 else if (Bits == SE_Fixed7) 3269 AbbrevToUse = VST_ENTRY_7_ABBREV; 3270 } 3271 3272 for (const auto P : Name.getKey()) 3273 NameVals.push_back((unsigned char)P); 3274 3275 // Emit the finished record. 3276 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3277 NameVals.clear(); 3278 } 3279 3280 Stream.ExitBlock(); 3281 } 3282 3283 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3284 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3285 unsigned Code; 3286 if (isa<BasicBlock>(Order.V)) 3287 Code = bitc::USELIST_CODE_BB; 3288 else 3289 Code = bitc::USELIST_CODE_DEFAULT; 3290 3291 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3292 Record.push_back(VE.getValueID(Order.V)); 3293 Stream.EmitRecord(Code, Record); 3294 } 3295 3296 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3297 assert(VE.shouldPreserveUseListOrder() && 3298 "Expected to be preserving use-list order"); 3299 3300 auto hasMore = [&]() { 3301 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3302 }; 3303 if (!hasMore()) 3304 // Nothing to do. 3305 return; 3306 3307 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3308 while (hasMore()) { 3309 writeUseList(std::move(VE.UseListOrders.back())); 3310 VE.UseListOrders.pop_back(); 3311 } 3312 Stream.ExitBlock(); 3313 } 3314 3315 /// Emit a function body to the module stream. 3316 void ModuleBitcodeWriter::writeFunction( 3317 const Function &F, 3318 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3319 // Save the bitcode index of the start of this function block for recording 3320 // in the VST. 3321 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3322 3323 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3324 VE.incorporateFunction(F); 3325 3326 SmallVector<unsigned, 64> Vals; 3327 3328 // Emit the number of basic blocks, so the reader can create them ahead of 3329 // time. 3330 Vals.push_back(VE.getBasicBlocks().size()); 3331 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3332 Vals.clear(); 3333 3334 // If there are function-local constants, emit them now. 3335 unsigned CstStart, CstEnd; 3336 VE.getFunctionConstantRange(CstStart, CstEnd); 3337 writeConstants(CstStart, CstEnd, false); 3338 3339 // If there is function-local metadata, emit it now. 3340 writeFunctionMetadata(F); 3341 3342 // Keep a running idea of what the instruction ID is. 3343 unsigned InstID = CstEnd; 3344 3345 bool NeedsMetadataAttachment = F.hasMetadata(); 3346 3347 DILocation *LastDL = nullptr; 3348 // Finally, emit all the instructions, in order. 3349 for (const BasicBlock &BB : F) 3350 for (const Instruction &I : BB) { 3351 writeInstruction(I, InstID, Vals); 3352 3353 if (!I.getType()->isVoidTy()) 3354 ++InstID; 3355 3356 // If the instruction has metadata, write a metadata attachment later. 3357 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3358 3359 // If the instruction has a debug location, emit it. 3360 DILocation *DL = I.getDebugLoc(); 3361 if (!DL) 3362 continue; 3363 3364 if (DL == LastDL) { 3365 // Just repeat the same debug loc as last time. 3366 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3367 continue; 3368 } 3369 3370 Vals.push_back(DL->getLine()); 3371 Vals.push_back(DL->getColumn()); 3372 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3373 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3374 Vals.push_back(DL->isImplicitCode()); 3375 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3376 Vals.clear(); 3377 3378 LastDL = DL; 3379 } 3380 3381 // Emit names for all the instructions etc. 3382 if (auto *Symtab = F.getValueSymbolTable()) 3383 writeFunctionLevelValueSymbolTable(*Symtab); 3384 3385 if (NeedsMetadataAttachment) 3386 writeFunctionMetadataAttachment(F); 3387 if (VE.shouldPreserveUseListOrder()) 3388 writeUseListBlock(&F); 3389 VE.purgeFunction(); 3390 Stream.ExitBlock(); 3391 } 3392 3393 // Emit blockinfo, which defines the standard abbreviations etc. 3394 void ModuleBitcodeWriter::writeBlockInfo() { 3395 // We only want to emit block info records for blocks that have multiple 3396 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3397 // Other blocks can define their abbrevs inline. 3398 Stream.EnterBlockInfoBlock(); 3399 3400 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3401 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3406 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3407 VST_ENTRY_8_ABBREV) 3408 llvm_unreachable("Unexpected abbrev ordering!"); 3409 } 3410 3411 { // 7-bit fixed width VST_CODE_ENTRY strings. 3412 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3413 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3417 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3418 VST_ENTRY_7_ABBREV) 3419 llvm_unreachable("Unexpected abbrev ordering!"); 3420 } 3421 { // 6-bit char6 VST_CODE_ENTRY strings. 3422 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3423 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3427 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3428 VST_ENTRY_6_ABBREV) 3429 llvm_unreachable("Unexpected abbrev ordering!"); 3430 } 3431 { // 6-bit char6 VST_CODE_BBENTRY strings. 3432 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3433 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3437 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3438 VST_BBENTRY_6_ABBREV) 3439 llvm_unreachable("Unexpected abbrev ordering!"); 3440 } 3441 3442 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3443 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3444 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3446 VE.computeBitsRequiredForTypeIndicies())); 3447 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3448 CONSTANTS_SETTYPE_ABBREV) 3449 llvm_unreachable("Unexpected abbrev ordering!"); 3450 } 3451 3452 { // INTEGER abbrev for CONSTANTS_BLOCK. 3453 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3454 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3456 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3457 CONSTANTS_INTEGER_ABBREV) 3458 llvm_unreachable("Unexpected abbrev ordering!"); 3459 } 3460 3461 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3462 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3463 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3466 VE.computeBitsRequiredForTypeIndicies())); 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3468 3469 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3470 CONSTANTS_CE_CAST_Abbrev) 3471 llvm_unreachable("Unexpected abbrev ordering!"); 3472 } 3473 { // NULL abbrev for CONSTANTS_BLOCK. 3474 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3475 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3476 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3477 CONSTANTS_NULL_Abbrev) 3478 llvm_unreachable("Unexpected abbrev ordering!"); 3479 } 3480 3481 // FIXME: This should only use space for first class types! 3482 3483 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3484 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3485 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3488 VE.computeBitsRequiredForTypeIndicies())); 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3491 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3492 FUNCTION_INST_LOAD_ABBREV) 3493 llvm_unreachable("Unexpected abbrev ordering!"); 3494 } 3495 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3496 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3497 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3500 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3501 FUNCTION_INST_UNOP_ABBREV) 3502 llvm_unreachable("Unexpected abbrev ordering!"); 3503 } 3504 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3505 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3506 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3510 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3511 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3512 llvm_unreachable("Unexpected abbrev ordering!"); 3513 } 3514 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3515 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3516 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3520 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3521 FUNCTION_INST_BINOP_ABBREV) 3522 llvm_unreachable("Unexpected abbrev ordering!"); 3523 } 3524 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3525 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3526 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3531 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3532 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3533 llvm_unreachable("Unexpected abbrev ordering!"); 3534 } 3535 { // INST_CAST abbrev for FUNCTION_BLOCK. 3536 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3537 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3540 VE.computeBitsRequiredForTypeIndicies())); 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3542 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3543 FUNCTION_INST_CAST_ABBREV) 3544 llvm_unreachable("Unexpected abbrev ordering!"); 3545 } 3546 3547 { // INST_RET abbrev for FUNCTION_BLOCK. 3548 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3549 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3550 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3551 FUNCTION_INST_RET_VOID_ABBREV) 3552 llvm_unreachable("Unexpected abbrev ordering!"); 3553 } 3554 { // INST_RET abbrev for FUNCTION_BLOCK. 3555 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3556 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3558 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3559 FUNCTION_INST_RET_VAL_ABBREV) 3560 llvm_unreachable("Unexpected abbrev ordering!"); 3561 } 3562 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3563 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3564 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3565 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3566 FUNCTION_INST_UNREACHABLE_ABBREV) 3567 llvm_unreachable("Unexpected abbrev ordering!"); 3568 } 3569 { 3570 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3571 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3574 Log2_32_Ceil(VE.getTypes().size() + 1))); 3575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3577 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3578 FUNCTION_INST_GEP_ABBREV) 3579 llvm_unreachable("Unexpected abbrev ordering!"); 3580 } 3581 3582 Stream.ExitBlock(); 3583 } 3584 3585 /// Write the module path strings, currently only used when generating 3586 /// a combined index file. 3587 void IndexBitcodeWriter::writeModStrings() { 3588 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3589 3590 // TODO: See which abbrev sizes we actually need to emit 3591 3592 // 8-bit fixed-width MST_ENTRY strings. 3593 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3594 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3598 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3599 3600 // 7-bit fixed width MST_ENTRY strings. 3601 Abbv = std::make_shared<BitCodeAbbrev>(); 3602 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3606 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3607 3608 // 6-bit char6 MST_ENTRY strings. 3609 Abbv = std::make_shared<BitCodeAbbrev>(); 3610 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3614 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3615 3616 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3617 Abbv = std::make_shared<BitCodeAbbrev>(); 3618 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3624 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3625 3626 SmallVector<unsigned, 64> Vals; 3627 forEachModule( 3628 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3629 StringRef Key = MPSE.getKey(); 3630 const auto &Value = MPSE.getValue(); 3631 StringEncoding Bits = getStringEncoding(Key); 3632 unsigned AbbrevToUse = Abbrev8Bit; 3633 if (Bits == SE_Char6) 3634 AbbrevToUse = Abbrev6Bit; 3635 else if (Bits == SE_Fixed7) 3636 AbbrevToUse = Abbrev7Bit; 3637 3638 Vals.push_back(Value.first); 3639 Vals.append(Key.begin(), Key.end()); 3640 3641 // Emit the finished record. 3642 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3643 3644 // Emit an optional hash for the module now 3645 const auto &Hash = Value.second; 3646 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3647 Vals.assign(Hash.begin(), Hash.end()); 3648 // Emit the hash record. 3649 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3650 } 3651 3652 Vals.clear(); 3653 }); 3654 Stream.ExitBlock(); 3655 } 3656 3657 /// Write the function type metadata related records that need to appear before 3658 /// a function summary entry (whether per-module or combined). 3659 template <typename Fn> 3660 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3661 FunctionSummary *FS, 3662 Fn GetValueID) { 3663 if (!FS->type_tests().empty()) 3664 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3665 3666 SmallVector<uint64_t, 64> Record; 3667 3668 auto WriteVFuncIdVec = [&](uint64_t Ty, 3669 ArrayRef<FunctionSummary::VFuncId> VFs) { 3670 if (VFs.empty()) 3671 return; 3672 Record.clear(); 3673 for (auto &VF : VFs) { 3674 Record.push_back(VF.GUID); 3675 Record.push_back(VF.Offset); 3676 } 3677 Stream.EmitRecord(Ty, Record); 3678 }; 3679 3680 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3681 FS->type_test_assume_vcalls()); 3682 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3683 FS->type_checked_load_vcalls()); 3684 3685 auto WriteConstVCallVec = [&](uint64_t Ty, 3686 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3687 for (auto &VC : VCs) { 3688 Record.clear(); 3689 Record.push_back(VC.VFunc.GUID); 3690 Record.push_back(VC.VFunc.Offset); 3691 llvm::append_range(Record, VC.Args); 3692 Stream.EmitRecord(Ty, Record); 3693 } 3694 }; 3695 3696 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3697 FS->type_test_assume_const_vcalls()); 3698 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3699 FS->type_checked_load_const_vcalls()); 3700 3701 auto WriteRange = [&](ConstantRange Range) { 3702 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3703 assert(Range.getLower().getNumWords() == 1); 3704 assert(Range.getUpper().getNumWords() == 1); 3705 emitSignedInt64(Record, *Range.getLower().getRawData()); 3706 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3707 }; 3708 3709 if (!FS->paramAccesses().empty()) { 3710 Record.clear(); 3711 for (auto &Arg : FS->paramAccesses()) { 3712 size_t UndoSize = Record.size(); 3713 Record.push_back(Arg.ParamNo); 3714 WriteRange(Arg.Use); 3715 Record.push_back(Arg.Calls.size()); 3716 for (auto &Call : Arg.Calls) { 3717 Record.push_back(Call.ParamNo); 3718 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3719 if (!ValueID) { 3720 // If ValueID is unknown we can't drop just this call, we must drop 3721 // entire parameter. 3722 Record.resize(UndoSize); 3723 break; 3724 } 3725 Record.push_back(*ValueID); 3726 WriteRange(Call.Offsets); 3727 } 3728 } 3729 if (!Record.empty()) 3730 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3731 } 3732 } 3733 3734 /// Collect type IDs from type tests used by function. 3735 static void 3736 getReferencedTypeIds(FunctionSummary *FS, 3737 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3738 if (!FS->type_tests().empty()) 3739 for (auto &TT : FS->type_tests()) 3740 ReferencedTypeIds.insert(TT); 3741 3742 auto GetReferencedTypesFromVFuncIdVec = 3743 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3744 for (auto &VF : VFs) 3745 ReferencedTypeIds.insert(VF.GUID); 3746 }; 3747 3748 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3749 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3750 3751 auto GetReferencedTypesFromConstVCallVec = 3752 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3753 for (auto &VC : VCs) 3754 ReferencedTypeIds.insert(VC.VFunc.GUID); 3755 }; 3756 3757 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3758 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3759 } 3760 3761 static void writeWholeProgramDevirtResolutionByArg( 3762 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3763 const WholeProgramDevirtResolution::ByArg &ByArg) { 3764 NameVals.push_back(args.size()); 3765 llvm::append_range(NameVals, args); 3766 3767 NameVals.push_back(ByArg.TheKind); 3768 NameVals.push_back(ByArg.Info); 3769 NameVals.push_back(ByArg.Byte); 3770 NameVals.push_back(ByArg.Bit); 3771 } 3772 3773 static void writeWholeProgramDevirtResolution( 3774 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3775 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3776 NameVals.push_back(Id); 3777 3778 NameVals.push_back(Wpd.TheKind); 3779 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3780 NameVals.push_back(Wpd.SingleImplName.size()); 3781 3782 NameVals.push_back(Wpd.ResByArg.size()); 3783 for (auto &A : Wpd.ResByArg) 3784 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3785 } 3786 3787 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3788 StringTableBuilder &StrtabBuilder, 3789 const std::string &Id, 3790 const TypeIdSummary &Summary) { 3791 NameVals.push_back(StrtabBuilder.add(Id)); 3792 NameVals.push_back(Id.size()); 3793 3794 NameVals.push_back(Summary.TTRes.TheKind); 3795 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3796 NameVals.push_back(Summary.TTRes.AlignLog2); 3797 NameVals.push_back(Summary.TTRes.SizeM1); 3798 NameVals.push_back(Summary.TTRes.BitMask); 3799 NameVals.push_back(Summary.TTRes.InlineBits); 3800 3801 for (auto &W : Summary.WPDRes) 3802 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3803 W.second); 3804 } 3805 3806 static void writeTypeIdCompatibleVtableSummaryRecord( 3807 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3808 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3809 ValueEnumerator &VE) { 3810 NameVals.push_back(StrtabBuilder.add(Id)); 3811 NameVals.push_back(Id.size()); 3812 3813 for (auto &P : Summary) { 3814 NameVals.push_back(P.AddressPointOffset); 3815 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3816 } 3817 } 3818 3819 // Helper to emit a single function summary record. 3820 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3821 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3822 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3823 const Function &F) { 3824 NameVals.push_back(ValueID); 3825 3826 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3827 3828 writeFunctionTypeMetadataRecords( 3829 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3830 return {VE.getValueID(VI.getValue())}; 3831 }); 3832 3833 auto SpecialRefCnts = FS->specialRefCounts(); 3834 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3835 NameVals.push_back(FS->instCount()); 3836 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3837 NameVals.push_back(FS->refs().size()); 3838 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3839 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3840 3841 for (auto &RI : FS->refs()) 3842 NameVals.push_back(VE.getValueID(RI.getValue())); 3843 3844 bool HasProfileData = 3845 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3846 for (auto &ECI : FS->calls()) { 3847 NameVals.push_back(getValueId(ECI.first)); 3848 if (HasProfileData) 3849 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3850 else if (WriteRelBFToSummary) 3851 NameVals.push_back(ECI.second.RelBlockFreq); 3852 } 3853 3854 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3855 unsigned Code = 3856 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3857 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3858 : bitc::FS_PERMODULE)); 3859 3860 // Emit the finished record. 3861 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3862 NameVals.clear(); 3863 } 3864 3865 // Collect the global value references in the given variable's initializer, 3866 // and emit them in a summary record. 3867 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3868 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3869 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3870 auto VI = Index->getValueInfo(V.getGUID()); 3871 if (!VI || VI.getSummaryList().empty()) { 3872 // Only declarations should not have a summary (a declaration might however 3873 // have a summary if the def was in module level asm). 3874 assert(V.isDeclaration()); 3875 return; 3876 } 3877 auto *Summary = VI.getSummaryList()[0].get(); 3878 NameVals.push_back(VE.getValueID(&V)); 3879 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3880 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3881 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3882 3883 auto VTableFuncs = VS->vTableFuncs(); 3884 if (!VTableFuncs.empty()) 3885 NameVals.push_back(VS->refs().size()); 3886 3887 unsigned SizeBeforeRefs = NameVals.size(); 3888 for (auto &RI : VS->refs()) 3889 NameVals.push_back(VE.getValueID(RI.getValue())); 3890 // Sort the refs for determinism output, the vector returned by FS->refs() has 3891 // been initialized from a DenseSet. 3892 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3893 3894 if (VTableFuncs.empty()) 3895 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3896 FSModRefsAbbrev); 3897 else { 3898 // VTableFuncs pairs should already be sorted by offset. 3899 for (auto &P : VTableFuncs) { 3900 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3901 NameVals.push_back(P.VTableOffset); 3902 } 3903 3904 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3905 FSModVTableRefsAbbrev); 3906 } 3907 NameVals.clear(); 3908 } 3909 3910 /// Emit the per-module summary section alongside the rest of 3911 /// the module's bitcode. 3912 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3913 // By default we compile with ThinLTO if the module has a summary, but the 3914 // client can request full LTO with a module flag. 3915 bool IsThinLTO = true; 3916 if (auto *MD = 3917 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3918 IsThinLTO = MD->getZExtValue(); 3919 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3920 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3921 4); 3922 3923 Stream.EmitRecord( 3924 bitc::FS_VERSION, 3925 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3926 3927 // Write the index flags. 3928 uint64_t Flags = 0; 3929 // Bits 1-3 are set only in the combined index, skip them. 3930 if (Index->enableSplitLTOUnit()) 3931 Flags |= 0x8; 3932 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3933 3934 if (Index->begin() == Index->end()) { 3935 Stream.ExitBlock(); 3936 return; 3937 } 3938 3939 for (const auto &GVI : valueIds()) { 3940 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3941 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3942 } 3943 3944 // Abbrev for FS_PERMODULE_PROFILE. 3945 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3946 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3954 // numrefs x valueid, n x (valueid, hotness) 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3957 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3958 3959 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3960 Abbv = std::make_shared<BitCodeAbbrev>(); 3961 if (WriteRelBFToSummary) 3962 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3963 else 3964 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3972 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3975 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3976 3977 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3978 Abbv = std::make_shared<BitCodeAbbrev>(); 3979 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3984 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3985 3986 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3987 Abbv = std::make_shared<BitCodeAbbrev>(); 3988 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3992 // numrefs x valueid, n x (valueid , offset) 3993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3995 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3996 3997 // Abbrev for FS_ALIAS. 3998 Abbv = std::make_shared<BitCodeAbbrev>(); 3999 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4003 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4004 4005 // Abbrev for FS_TYPE_ID_METADATA 4006 Abbv = std::make_shared<BitCodeAbbrev>(); 4007 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4010 // n x (valueid , offset) 4011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4013 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4014 4015 SmallVector<uint64_t, 64> NameVals; 4016 // Iterate over the list of functions instead of the Index to 4017 // ensure the ordering is stable. 4018 for (const Function &F : M) { 4019 // Summary emission does not support anonymous functions, they have to 4020 // renamed using the anonymous function renaming pass. 4021 if (!F.hasName()) 4022 report_fatal_error("Unexpected anonymous function when writing summary"); 4023 4024 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4025 if (!VI || VI.getSummaryList().empty()) { 4026 // Only declarations should not have a summary (a declaration might 4027 // however have a summary if the def was in module level asm). 4028 assert(F.isDeclaration()); 4029 continue; 4030 } 4031 auto *Summary = VI.getSummaryList()[0].get(); 4032 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4033 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4034 } 4035 4036 // Capture references from GlobalVariable initializers, which are outside 4037 // of a function scope. 4038 for (const GlobalVariable &G : M.globals()) 4039 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4040 FSModVTableRefsAbbrev); 4041 4042 for (const GlobalAlias &A : M.aliases()) { 4043 auto *Aliasee = A.getAliaseeObject(); 4044 if (!Aliasee->hasName()) 4045 // Nameless function don't have an entry in the summary, skip it. 4046 continue; 4047 auto AliasId = VE.getValueID(&A); 4048 auto AliaseeId = VE.getValueID(Aliasee); 4049 NameVals.push_back(AliasId); 4050 auto *Summary = Index->getGlobalValueSummary(A); 4051 AliasSummary *AS = cast<AliasSummary>(Summary); 4052 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4053 NameVals.push_back(AliaseeId); 4054 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4055 NameVals.clear(); 4056 } 4057 4058 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4059 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4060 S.second, VE); 4061 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4062 TypeIdCompatibleVtableAbbrev); 4063 NameVals.clear(); 4064 } 4065 4066 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4067 ArrayRef<uint64_t>{Index->getBlockCount()}); 4068 4069 Stream.ExitBlock(); 4070 } 4071 4072 /// Emit the combined summary section into the combined index file. 4073 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4074 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4075 Stream.EmitRecord( 4076 bitc::FS_VERSION, 4077 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4078 4079 // Write the index flags. 4080 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4081 4082 for (const auto &GVI : valueIds()) { 4083 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4084 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4085 } 4086 4087 // Abbrev for FS_COMBINED. 4088 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4089 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4099 // numrefs x valueid, n x (valueid) 4100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4102 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4103 4104 // Abbrev for FS_COMBINED_PROFILE. 4105 Abbv = std::make_shared<BitCodeAbbrev>(); 4106 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4116 // numrefs x valueid, n x (valueid, hotness) 4117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4119 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4120 4121 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4122 Abbv = std::make_shared<BitCodeAbbrev>(); 4123 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4129 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4130 4131 // Abbrev for FS_COMBINED_ALIAS. 4132 Abbv = std::make_shared<BitCodeAbbrev>(); 4133 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4138 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4139 4140 // The aliases are emitted as a post-pass, and will point to the value 4141 // id of the aliasee. Save them in a vector for post-processing. 4142 SmallVector<AliasSummary *, 64> Aliases; 4143 4144 // Save the value id for each summary for alias emission. 4145 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4146 4147 SmallVector<uint64_t, 64> NameVals; 4148 4149 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4150 // with the type ids referenced by this index file. 4151 std::set<GlobalValue::GUID> ReferencedTypeIds; 4152 4153 // For local linkage, we also emit the original name separately 4154 // immediately after the record. 4155 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4156 // We don't need to emit the original name if we are writing the index for 4157 // distributed backends (in which case ModuleToSummariesForIndex is 4158 // non-null). The original name is only needed during the thin link, since 4159 // for SamplePGO the indirect call targets for local functions have 4160 // have the original name annotated in profile. 4161 // Continue to emit it when writing out the entire combined index, which is 4162 // used in testing the thin link via llvm-lto. 4163 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4164 return; 4165 NameVals.push_back(S.getOriginalName()); 4166 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4167 NameVals.clear(); 4168 }; 4169 4170 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4171 forEachSummary([&](GVInfo I, bool IsAliasee) { 4172 GlobalValueSummary *S = I.second; 4173 assert(S); 4174 DefOrUseGUIDs.insert(I.first); 4175 for (const ValueInfo &VI : S->refs()) 4176 DefOrUseGUIDs.insert(VI.getGUID()); 4177 4178 auto ValueId = getValueId(I.first); 4179 assert(ValueId); 4180 SummaryToValueIdMap[S] = *ValueId; 4181 4182 // If this is invoked for an aliasee, we want to record the above 4183 // mapping, but then not emit a summary entry (if the aliasee is 4184 // to be imported, we will invoke this separately with IsAliasee=false). 4185 if (IsAliasee) 4186 return; 4187 4188 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4189 // Will process aliases as a post-pass because the reader wants all 4190 // global to be loaded first. 4191 Aliases.push_back(AS); 4192 return; 4193 } 4194 4195 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4196 NameVals.push_back(*ValueId); 4197 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4198 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4199 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4200 for (auto &RI : VS->refs()) { 4201 auto RefValueId = getValueId(RI.getGUID()); 4202 if (!RefValueId) 4203 continue; 4204 NameVals.push_back(*RefValueId); 4205 } 4206 4207 // Emit the finished record. 4208 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4209 FSModRefsAbbrev); 4210 NameVals.clear(); 4211 MaybeEmitOriginalName(*S); 4212 return; 4213 } 4214 4215 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4216 return getValueId(VI.getGUID()); 4217 }; 4218 4219 auto *FS = cast<FunctionSummary>(S); 4220 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4221 getReferencedTypeIds(FS, ReferencedTypeIds); 4222 4223 NameVals.push_back(*ValueId); 4224 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4225 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4226 NameVals.push_back(FS->instCount()); 4227 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4228 NameVals.push_back(FS->entryCount()); 4229 4230 // Fill in below 4231 NameVals.push_back(0); // numrefs 4232 NameVals.push_back(0); // rorefcnt 4233 NameVals.push_back(0); // worefcnt 4234 4235 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4236 for (auto &RI : FS->refs()) { 4237 auto RefValueId = getValueId(RI.getGUID()); 4238 if (!RefValueId) 4239 continue; 4240 NameVals.push_back(*RefValueId); 4241 if (RI.isReadOnly()) 4242 RORefCnt++; 4243 else if (RI.isWriteOnly()) 4244 WORefCnt++; 4245 Count++; 4246 } 4247 NameVals[6] = Count; 4248 NameVals[7] = RORefCnt; 4249 NameVals[8] = WORefCnt; 4250 4251 bool HasProfileData = false; 4252 for (auto &EI : FS->calls()) { 4253 HasProfileData |= 4254 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4255 if (HasProfileData) 4256 break; 4257 } 4258 4259 for (auto &EI : FS->calls()) { 4260 // If this GUID doesn't have a value id, it doesn't have a function 4261 // summary and we don't need to record any calls to it. 4262 Optional<unsigned> CallValueId = GetValueId(EI.first); 4263 if (!CallValueId) 4264 continue; 4265 NameVals.push_back(*CallValueId); 4266 if (HasProfileData) 4267 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4268 } 4269 4270 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4271 unsigned Code = 4272 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4273 4274 // Emit the finished record. 4275 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4276 NameVals.clear(); 4277 MaybeEmitOriginalName(*S); 4278 }); 4279 4280 for (auto *AS : Aliases) { 4281 auto AliasValueId = SummaryToValueIdMap[AS]; 4282 assert(AliasValueId); 4283 NameVals.push_back(AliasValueId); 4284 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4285 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4286 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4287 assert(AliaseeValueId); 4288 NameVals.push_back(AliaseeValueId); 4289 4290 // Emit the finished record. 4291 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4292 NameVals.clear(); 4293 MaybeEmitOriginalName(*AS); 4294 4295 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4296 getReferencedTypeIds(FS, ReferencedTypeIds); 4297 } 4298 4299 if (!Index.cfiFunctionDefs().empty()) { 4300 for (auto &S : Index.cfiFunctionDefs()) { 4301 if (DefOrUseGUIDs.count( 4302 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4303 NameVals.push_back(StrtabBuilder.add(S)); 4304 NameVals.push_back(S.size()); 4305 } 4306 } 4307 if (!NameVals.empty()) { 4308 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4309 NameVals.clear(); 4310 } 4311 } 4312 4313 if (!Index.cfiFunctionDecls().empty()) { 4314 for (auto &S : Index.cfiFunctionDecls()) { 4315 if (DefOrUseGUIDs.count( 4316 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4317 NameVals.push_back(StrtabBuilder.add(S)); 4318 NameVals.push_back(S.size()); 4319 } 4320 } 4321 if (!NameVals.empty()) { 4322 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4323 NameVals.clear(); 4324 } 4325 } 4326 4327 // Walk the GUIDs that were referenced, and write the 4328 // corresponding type id records. 4329 for (auto &T : ReferencedTypeIds) { 4330 auto TidIter = Index.typeIds().equal_range(T); 4331 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4332 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4333 It->second.second); 4334 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4335 NameVals.clear(); 4336 } 4337 } 4338 4339 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4340 ArrayRef<uint64_t>{Index.getBlockCount()}); 4341 4342 Stream.ExitBlock(); 4343 } 4344 4345 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4346 /// current llvm version, and a record for the epoch number. 4347 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4348 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4349 4350 // Write the "user readable" string identifying the bitcode producer 4351 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4352 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4355 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4356 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4357 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4358 4359 // Write the epoch version 4360 Abbv = std::make_shared<BitCodeAbbrev>(); 4361 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4363 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4364 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4365 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4366 Stream.ExitBlock(); 4367 } 4368 4369 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4370 // Emit the module's hash. 4371 // MODULE_CODE_HASH: [5*i32] 4372 if (GenerateHash) { 4373 uint32_t Vals[5]; 4374 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4375 Buffer.size() - BlockStartPos)); 4376 StringRef Hash = Hasher.result(); 4377 for (int Pos = 0; Pos < 20; Pos += 4) { 4378 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4379 } 4380 4381 // Emit the finished record. 4382 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4383 4384 if (ModHash) 4385 // Save the written hash value. 4386 llvm::copy(Vals, std::begin(*ModHash)); 4387 } 4388 } 4389 4390 void ModuleBitcodeWriter::write() { 4391 writeIdentificationBlock(Stream); 4392 4393 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4394 size_t BlockStartPos = Buffer.size(); 4395 4396 writeModuleVersion(); 4397 4398 // Emit blockinfo, which defines the standard abbreviations etc. 4399 writeBlockInfo(); 4400 4401 // Emit information describing all of the types in the module. 4402 writeTypeTable(); 4403 4404 // Emit information about attribute groups. 4405 writeAttributeGroupTable(); 4406 4407 // Emit information about parameter attributes. 4408 writeAttributeTable(); 4409 4410 writeComdats(); 4411 4412 // Emit top-level description of module, including target triple, inline asm, 4413 // descriptors for global variables, and function prototype info. 4414 writeModuleInfo(); 4415 4416 // Emit constants. 4417 writeModuleConstants(); 4418 4419 // Emit metadata kind names. 4420 writeModuleMetadataKinds(); 4421 4422 // Emit metadata. 4423 writeModuleMetadata(); 4424 4425 // Emit module-level use-lists. 4426 if (VE.shouldPreserveUseListOrder()) 4427 writeUseListBlock(nullptr); 4428 4429 writeOperandBundleTags(); 4430 writeSyncScopeNames(); 4431 4432 // Emit function bodies. 4433 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4434 for (const Function &F : M) 4435 if (!F.isDeclaration()) 4436 writeFunction(F, FunctionToBitcodeIndex); 4437 4438 // Need to write after the above call to WriteFunction which populates 4439 // the summary information in the index. 4440 if (Index) 4441 writePerModuleGlobalValueSummary(); 4442 4443 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4444 4445 writeModuleHash(BlockStartPos); 4446 4447 Stream.ExitBlock(); 4448 } 4449 4450 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4451 uint32_t &Position) { 4452 support::endian::write32le(&Buffer[Position], Value); 4453 Position += 4; 4454 } 4455 4456 /// If generating a bc file on darwin, we have to emit a 4457 /// header and trailer to make it compatible with the system archiver. To do 4458 /// this we emit the following header, and then emit a trailer that pads the 4459 /// file out to be a multiple of 16 bytes. 4460 /// 4461 /// struct bc_header { 4462 /// uint32_t Magic; // 0x0B17C0DE 4463 /// uint32_t Version; // Version, currently always 0. 4464 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4465 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4466 /// uint32_t CPUType; // CPU specifier. 4467 /// ... potentially more later ... 4468 /// }; 4469 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4470 const Triple &TT) { 4471 unsigned CPUType = ~0U; 4472 4473 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4474 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4475 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4476 // specific constants here because they are implicitly part of the Darwin ABI. 4477 enum { 4478 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4479 DARWIN_CPU_TYPE_X86 = 7, 4480 DARWIN_CPU_TYPE_ARM = 12, 4481 DARWIN_CPU_TYPE_POWERPC = 18 4482 }; 4483 4484 Triple::ArchType Arch = TT.getArch(); 4485 if (Arch == Triple::x86_64) 4486 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4487 else if (Arch == Triple::x86) 4488 CPUType = DARWIN_CPU_TYPE_X86; 4489 else if (Arch == Triple::ppc) 4490 CPUType = DARWIN_CPU_TYPE_POWERPC; 4491 else if (Arch == Triple::ppc64) 4492 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4493 else if (Arch == Triple::arm || Arch == Triple::thumb) 4494 CPUType = DARWIN_CPU_TYPE_ARM; 4495 4496 // Traditional Bitcode starts after header. 4497 assert(Buffer.size() >= BWH_HeaderSize && 4498 "Expected header size to be reserved"); 4499 unsigned BCOffset = BWH_HeaderSize; 4500 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4501 4502 // Write the magic and version. 4503 unsigned Position = 0; 4504 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4505 writeInt32ToBuffer(0, Buffer, Position); // Version. 4506 writeInt32ToBuffer(BCOffset, Buffer, Position); 4507 writeInt32ToBuffer(BCSize, Buffer, Position); 4508 writeInt32ToBuffer(CPUType, Buffer, Position); 4509 4510 // If the file is not a multiple of 16 bytes, insert dummy padding. 4511 while (Buffer.size() & 15) 4512 Buffer.push_back(0); 4513 } 4514 4515 /// Helper to write the header common to all bitcode files. 4516 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4517 // Emit the file header. 4518 Stream.Emit((unsigned)'B', 8); 4519 Stream.Emit((unsigned)'C', 8); 4520 Stream.Emit(0x0, 4); 4521 Stream.Emit(0xC, 4); 4522 Stream.Emit(0xE, 4); 4523 Stream.Emit(0xD, 4); 4524 } 4525 4526 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4527 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4528 writeBitcodeHeader(*Stream); 4529 } 4530 4531 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4532 4533 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4534 Stream->EnterSubblock(Block, 3); 4535 4536 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4537 Abbv->Add(BitCodeAbbrevOp(Record)); 4538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4539 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4540 4541 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4542 4543 Stream->ExitBlock(); 4544 } 4545 4546 void BitcodeWriter::writeSymtab() { 4547 assert(!WroteStrtab && !WroteSymtab); 4548 4549 // If any module has module-level inline asm, we will require a registered asm 4550 // parser for the target so that we can create an accurate symbol table for 4551 // the module. 4552 for (Module *M : Mods) { 4553 if (M->getModuleInlineAsm().empty()) 4554 continue; 4555 4556 std::string Err; 4557 const Triple TT(M->getTargetTriple()); 4558 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4559 if (!T || !T->hasMCAsmParser()) 4560 return; 4561 } 4562 4563 WroteSymtab = true; 4564 SmallVector<char, 0> Symtab; 4565 // The irsymtab::build function may be unable to create a symbol table if the 4566 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4567 // table is not required for correctness, but we still want to be able to 4568 // write malformed modules to bitcode files, so swallow the error. 4569 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4570 consumeError(std::move(E)); 4571 return; 4572 } 4573 4574 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4575 {Symtab.data(), Symtab.size()}); 4576 } 4577 4578 void BitcodeWriter::writeStrtab() { 4579 assert(!WroteStrtab); 4580 4581 std::vector<char> Strtab; 4582 StrtabBuilder.finalizeInOrder(); 4583 Strtab.resize(StrtabBuilder.getSize()); 4584 StrtabBuilder.write((uint8_t *)Strtab.data()); 4585 4586 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4587 {Strtab.data(), Strtab.size()}); 4588 4589 WroteStrtab = true; 4590 } 4591 4592 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4593 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4594 WroteStrtab = true; 4595 } 4596 4597 void BitcodeWriter::writeModule(const Module &M, 4598 bool ShouldPreserveUseListOrder, 4599 const ModuleSummaryIndex *Index, 4600 bool GenerateHash, ModuleHash *ModHash) { 4601 assert(!WroteStrtab); 4602 4603 // The Mods vector is used by irsymtab::build, which requires non-const 4604 // Modules in case it needs to materialize metadata. But the bitcode writer 4605 // requires that the module is materialized, so we can cast to non-const here, 4606 // after checking that it is in fact materialized. 4607 assert(M.isMaterialized()); 4608 Mods.push_back(const_cast<Module *>(&M)); 4609 4610 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4611 ShouldPreserveUseListOrder, Index, 4612 GenerateHash, ModHash); 4613 ModuleWriter.write(); 4614 } 4615 4616 void BitcodeWriter::writeIndex( 4617 const ModuleSummaryIndex *Index, 4618 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4619 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4620 ModuleToSummariesForIndex); 4621 IndexWriter.write(); 4622 } 4623 4624 /// Write the specified module to the specified output stream. 4625 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4626 bool ShouldPreserveUseListOrder, 4627 const ModuleSummaryIndex *Index, 4628 bool GenerateHash, ModuleHash *ModHash) { 4629 SmallVector<char, 0> Buffer; 4630 Buffer.reserve(256*1024); 4631 4632 // If this is darwin or another generic macho target, reserve space for the 4633 // header. 4634 Triple TT(M.getTargetTriple()); 4635 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4636 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4637 4638 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4639 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4640 ModHash); 4641 Writer.writeSymtab(); 4642 Writer.writeStrtab(); 4643 4644 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4645 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4646 4647 // Write the generated bitstream to "Out". 4648 if (!Buffer.empty()) 4649 Out.write((char *)&Buffer.front(), Buffer.size()); 4650 } 4651 4652 void IndexBitcodeWriter::write() { 4653 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4654 4655 writeModuleVersion(); 4656 4657 // Write the module paths in the combined index. 4658 writeModStrings(); 4659 4660 // Write the summary combined index records. 4661 writeCombinedGlobalValueSummary(); 4662 4663 Stream.ExitBlock(); 4664 } 4665 4666 // Write the specified module summary index to the given raw output stream, 4667 // where it will be written in a new bitcode block. This is used when 4668 // writing the combined index file for ThinLTO. When writing a subset of the 4669 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4670 void llvm::WriteIndexToFile( 4671 const ModuleSummaryIndex &Index, raw_ostream &Out, 4672 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4673 SmallVector<char, 0> Buffer; 4674 Buffer.reserve(256 * 1024); 4675 4676 BitcodeWriter Writer(Buffer); 4677 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4678 Writer.writeStrtab(); 4679 4680 Out.write((char *)&Buffer.front(), Buffer.size()); 4681 } 4682 4683 namespace { 4684 4685 /// Class to manage the bitcode writing for a thin link bitcode file. 4686 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4687 /// ModHash is for use in ThinLTO incremental build, generated while writing 4688 /// the module bitcode file. 4689 const ModuleHash *ModHash; 4690 4691 public: 4692 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4693 BitstreamWriter &Stream, 4694 const ModuleSummaryIndex &Index, 4695 const ModuleHash &ModHash) 4696 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4697 /*ShouldPreserveUseListOrder=*/false, &Index), 4698 ModHash(&ModHash) {} 4699 4700 void write(); 4701 4702 private: 4703 void writeSimplifiedModuleInfo(); 4704 }; 4705 4706 } // end anonymous namespace 4707 4708 // This function writes a simpilified module info for thin link bitcode file. 4709 // It only contains the source file name along with the name(the offset and 4710 // size in strtab) and linkage for global values. For the global value info 4711 // entry, in order to keep linkage at offset 5, there are three zeros used 4712 // as padding. 4713 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4714 SmallVector<unsigned, 64> Vals; 4715 // Emit the module's source file name. 4716 { 4717 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4718 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4719 if (Bits == SE_Char6) 4720 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4721 else if (Bits == SE_Fixed7) 4722 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4723 4724 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4725 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4726 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4728 Abbv->Add(AbbrevOpToUse); 4729 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4730 4731 for (const auto P : M.getSourceFileName()) 4732 Vals.push_back((unsigned char)P); 4733 4734 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4735 Vals.clear(); 4736 } 4737 4738 // Emit the global variable information. 4739 for (const GlobalVariable &GV : M.globals()) { 4740 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4741 Vals.push_back(StrtabBuilder.add(GV.getName())); 4742 Vals.push_back(GV.getName().size()); 4743 Vals.push_back(0); 4744 Vals.push_back(0); 4745 Vals.push_back(0); 4746 Vals.push_back(getEncodedLinkage(GV)); 4747 4748 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4749 Vals.clear(); 4750 } 4751 4752 // Emit the function proto information. 4753 for (const Function &F : M) { 4754 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4755 Vals.push_back(StrtabBuilder.add(F.getName())); 4756 Vals.push_back(F.getName().size()); 4757 Vals.push_back(0); 4758 Vals.push_back(0); 4759 Vals.push_back(0); 4760 Vals.push_back(getEncodedLinkage(F)); 4761 4762 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4763 Vals.clear(); 4764 } 4765 4766 // Emit the alias information. 4767 for (const GlobalAlias &A : M.aliases()) { 4768 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4769 Vals.push_back(StrtabBuilder.add(A.getName())); 4770 Vals.push_back(A.getName().size()); 4771 Vals.push_back(0); 4772 Vals.push_back(0); 4773 Vals.push_back(0); 4774 Vals.push_back(getEncodedLinkage(A)); 4775 4776 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4777 Vals.clear(); 4778 } 4779 4780 // Emit the ifunc information. 4781 for (const GlobalIFunc &I : M.ifuncs()) { 4782 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4783 Vals.push_back(StrtabBuilder.add(I.getName())); 4784 Vals.push_back(I.getName().size()); 4785 Vals.push_back(0); 4786 Vals.push_back(0); 4787 Vals.push_back(0); 4788 Vals.push_back(getEncodedLinkage(I)); 4789 4790 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4791 Vals.clear(); 4792 } 4793 } 4794 4795 void ThinLinkBitcodeWriter::write() { 4796 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4797 4798 writeModuleVersion(); 4799 4800 writeSimplifiedModuleInfo(); 4801 4802 writePerModuleGlobalValueSummary(); 4803 4804 // Write module hash. 4805 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4806 4807 Stream.ExitBlock(); 4808 } 4809 4810 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4811 const ModuleSummaryIndex &Index, 4812 const ModuleHash &ModHash) { 4813 assert(!WroteStrtab); 4814 4815 // The Mods vector is used by irsymtab::build, which requires non-const 4816 // Modules in case it needs to materialize metadata. But the bitcode writer 4817 // requires that the module is materialized, so we can cast to non-const here, 4818 // after checking that it is in fact materialized. 4819 assert(M.isMaterialized()); 4820 Mods.push_back(const_cast<Module *>(&M)); 4821 4822 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4823 ModHash); 4824 ThinLinkWriter.write(); 4825 } 4826 4827 // Write the specified thin link bitcode file to the given raw output stream, 4828 // where it will be written in a new bitcode block. This is used when 4829 // writing the per-module index file for ThinLTO. 4830 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4831 const ModuleSummaryIndex &Index, 4832 const ModuleHash &ModHash) { 4833 SmallVector<char, 0> Buffer; 4834 Buffer.reserve(256 * 1024); 4835 4836 BitcodeWriter Writer(Buffer); 4837 Writer.writeThinLinkBitcode(M, Index, ModHash); 4838 Writer.writeSymtab(); 4839 Writer.writeStrtab(); 4840 4841 Out.write((char *)&Buffer.front(), Buffer.size()); 4842 } 4843 4844 static const char *getSectionNameForBitcode(const Triple &T) { 4845 switch (T.getObjectFormat()) { 4846 case Triple::MachO: 4847 return "__LLVM,__bitcode"; 4848 case Triple::COFF: 4849 case Triple::ELF: 4850 case Triple::Wasm: 4851 case Triple::UnknownObjectFormat: 4852 return ".llvmbc"; 4853 case Triple::GOFF: 4854 llvm_unreachable("GOFF is not yet implemented"); 4855 break; 4856 case Triple::XCOFF: 4857 llvm_unreachable("XCOFF is not yet implemented"); 4858 break; 4859 } 4860 llvm_unreachable("Unimplemented ObjectFormatType"); 4861 } 4862 4863 static const char *getSectionNameForCommandline(const Triple &T) { 4864 switch (T.getObjectFormat()) { 4865 case Triple::MachO: 4866 return "__LLVM,__cmdline"; 4867 case Triple::COFF: 4868 case Triple::ELF: 4869 case Triple::Wasm: 4870 case Triple::UnknownObjectFormat: 4871 return ".llvmcmd"; 4872 case Triple::GOFF: 4873 llvm_unreachable("GOFF is not yet implemented"); 4874 break; 4875 case Triple::XCOFF: 4876 llvm_unreachable("XCOFF is not yet implemented"); 4877 break; 4878 } 4879 llvm_unreachable("Unimplemented ObjectFormatType"); 4880 } 4881 4882 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4883 bool EmbedBitcode, bool EmbedCmdline, 4884 const std::vector<uint8_t> &CmdArgs) { 4885 // Save llvm.compiler.used and remove it. 4886 SmallVector<Constant *, 2> UsedArray; 4887 SmallVector<GlobalValue *, 4> UsedGlobals; 4888 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4889 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4890 for (auto *GV : UsedGlobals) { 4891 if (GV->getName() != "llvm.embedded.module" && 4892 GV->getName() != "llvm.cmdline") 4893 UsedArray.push_back( 4894 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4895 } 4896 if (Used) 4897 Used->eraseFromParent(); 4898 4899 // Embed the bitcode for the llvm module. 4900 std::string Data; 4901 ArrayRef<uint8_t> ModuleData; 4902 Triple T(M.getTargetTriple()); 4903 4904 if (EmbedBitcode) { 4905 if (Buf.getBufferSize() == 0 || 4906 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4907 (const unsigned char *)Buf.getBufferEnd())) { 4908 // If the input is LLVM Assembly, bitcode is produced by serializing 4909 // the module. Use-lists order need to be preserved in this case. 4910 llvm::raw_string_ostream OS(Data); 4911 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4912 ModuleData = 4913 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4914 } else 4915 // If the input is LLVM bitcode, write the input byte stream directly. 4916 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4917 Buf.getBufferSize()); 4918 } 4919 llvm::Constant *ModuleConstant = 4920 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4921 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4922 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4923 ModuleConstant); 4924 GV->setSection(getSectionNameForBitcode(T)); 4925 // Set alignment to 1 to prevent padding between two contributions from input 4926 // sections after linking. 4927 GV->setAlignment(Align(1)); 4928 UsedArray.push_back( 4929 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4930 if (llvm::GlobalVariable *Old = 4931 M.getGlobalVariable("llvm.embedded.module", true)) { 4932 assert(Old->hasOneUse() && 4933 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4934 GV->takeName(Old); 4935 Old->eraseFromParent(); 4936 } else { 4937 GV->setName("llvm.embedded.module"); 4938 } 4939 4940 // Skip if only bitcode needs to be embedded. 4941 if (EmbedCmdline) { 4942 // Embed command-line options. 4943 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4944 CmdArgs.size()); 4945 llvm::Constant *CmdConstant = 4946 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4947 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4948 llvm::GlobalValue::PrivateLinkage, 4949 CmdConstant); 4950 GV->setSection(getSectionNameForCommandline(T)); 4951 GV->setAlignment(Align(1)); 4952 UsedArray.push_back( 4953 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4954 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4955 assert(Old->hasOneUse() && 4956 "llvm.cmdline can only be used once in llvm.compiler.used"); 4957 GV->takeName(Old); 4958 Old->eraseFromParent(); 4959 } else { 4960 GV->setName("llvm.cmdline"); 4961 } 4962 } 4963 4964 if (UsedArray.empty()) 4965 return; 4966 4967 // Recreate llvm.compiler.used. 4968 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4969 auto *NewUsed = new GlobalVariable( 4970 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4971 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4972 NewUsed->setSection("llvm.metadata"); 4973 } 4974