1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/TypeSymbolTable.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/System/Program.h" 27 using namespace llvm; 28 29 /// These are manifest constants used by the bitcode writer. They do not need to 30 /// be kept in sync with the reader, but need to be consistent within this file. 31 enum { 32 CurVersion = 0, 33 34 // VALUE_SYMTAB_BLOCK abbrev id's. 35 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 36 VST_ENTRY_7_ABBREV, 37 VST_ENTRY_6_ABBREV, 38 VST_BBENTRY_6_ABBREV, 39 40 // CONSTANTS_BLOCK abbrev id's. 41 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 CONSTANTS_INTEGER_ABBREV, 43 CONSTANTS_CE_CAST_Abbrev, 44 CONSTANTS_NULL_Abbrev, 45 46 // FUNCTION_BLOCK abbrev id's. 47 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 FUNCTION_INST_BINOP_ABBREV, 49 FUNCTION_INST_CAST_ABBREV, 50 FUNCTION_INST_RET_VOID_ABBREV, 51 FUNCTION_INST_RET_VAL_ABBREV, 52 FUNCTION_INST_UNREACHABLE_ABBREV 53 }; 54 55 56 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 57 switch (Opcode) { 58 default: assert(0 && "Unknown cast instruction!"); 59 case Instruction::Trunc : return bitc::CAST_TRUNC; 60 case Instruction::ZExt : return bitc::CAST_ZEXT; 61 case Instruction::SExt : return bitc::CAST_SEXT; 62 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 63 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 64 case Instruction::UIToFP : return bitc::CAST_UITOFP; 65 case Instruction::SIToFP : return bitc::CAST_SITOFP; 66 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 67 case Instruction::FPExt : return bitc::CAST_FPEXT; 68 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 69 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 70 case Instruction::BitCast : return bitc::CAST_BITCAST; 71 } 72 } 73 74 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 75 switch (Opcode) { 76 default: assert(0 && "Unknown binary instruction!"); 77 case Instruction::Add: return bitc::BINOP_ADD; 78 case Instruction::Sub: return bitc::BINOP_SUB; 79 case Instruction::Mul: return bitc::BINOP_MUL; 80 case Instruction::UDiv: return bitc::BINOP_UDIV; 81 case Instruction::FDiv: 82 case Instruction::SDiv: return bitc::BINOP_SDIV; 83 case Instruction::URem: return bitc::BINOP_UREM; 84 case Instruction::FRem: 85 case Instruction::SRem: return bitc::BINOP_SREM; 86 case Instruction::Shl: return bitc::BINOP_SHL; 87 case Instruction::LShr: return bitc::BINOP_LSHR; 88 case Instruction::AShr: return bitc::BINOP_ASHR; 89 case Instruction::And: return bitc::BINOP_AND; 90 case Instruction::Or: return bitc::BINOP_OR; 91 case Instruction::Xor: return bitc::BINOP_XOR; 92 } 93 } 94 95 96 97 static void WriteStringRecord(unsigned Code, const std::string &Str, 98 unsigned AbbrevToUse, BitstreamWriter &Stream) { 99 SmallVector<unsigned, 64> Vals; 100 101 // Code: [strchar x N] 102 for (unsigned i = 0, e = Str.size(); i != e; ++i) 103 Vals.push_back(Str[i]); 104 105 // Emit the finished record. 106 Stream.EmitRecord(Code, Vals, AbbrevToUse); 107 } 108 109 // Emit information about parameter attributes. 110 static void WriteParamAttrTable(const ValueEnumerator &VE, 111 BitstreamWriter &Stream) { 112 const std::vector<PAListPtr> &Attrs = VE.getParamAttrs(); 113 if (Attrs.empty()) return; 114 115 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 116 117 SmallVector<uint64_t, 64> Record; 118 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 119 const PAListPtr &A = Attrs[i]; 120 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 121 const ParamAttrsWithIndex &PAWI = A.getSlot(i); 122 Record.push_back(PAWI.Index); 123 Record.push_back(PAWI.Attrs); 124 } 125 126 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 127 Record.clear(); 128 } 129 130 Stream.ExitBlock(); 131 } 132 133 /// WriteTypeTable - Write out the type table for a module. 134 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 135 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 136 137 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 138 SmallVector<uint64_t, 64> TypeVals; 139 140 // Abbrev for TYPE_CODE_POINTER. 141 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 142 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 144 Log2_32_Ceil(VE.getTypes().size()+1))); 145 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 146 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 147 148 // Abbrev for TYPE_CODE_FUNCTION. 149 Abbv = new BitCodeAbbrev(); 150 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 152 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 155 Log2_32_Ceil(VE.getTypes().size()+1))); 156 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 157 158 // Abbrev for TYPE_CODE_STRUCT. 159 Abbv = new BitCodeAbbrev(); 160 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 164 Log2_32_Ceil(VE.getTypes().size()+1))); 165 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 166 167 // Abbrev for TYPE_CODE_ARRAY. 168 Abbv = new BitCodeAbbrev(); 169 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 172 Log2_32_Ceil(VE.getTypes().size()+1))); 173 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 174 175 // Emit an entry count so the reader can reserve space. 176 TypeVals.push_back(TypeList.size()); 177 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 178 TypeVals.clear(); 179 180 // Loop over all of the types, emitting each in turn. 181 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 182 const Type *T = TypeList[i].first; 183 int AbbrevToUse = 0; 184 unsigned Code = 0; 185 186 switch (T->getTypeID()) { 187 default: assert(0 && "Unknown type!"); 188 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 189 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 190 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 191 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 192 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 193 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 194 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 195 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 196 case Type::IntegerTyID: 197 // INTEGER: [width] 198 Code = bitc::TYPE_CODE_INTEGER; 199 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 200 break; 201 case Type::PointerTyID: { 202 const PointerType *PTy = cast<PointerType>(T); 203 // POINTER: [pointee type, address space] 204 Code = bitc::TYPE_CODE_POINTER; 205 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 206 unsigned AddressSpace = PTy->getAddressSpace(); 207 TypeVals.push_back(AddressSpace); 208 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 209 break; 210 } 211 case Type::FunctionTyID: { 212 const FunctionType *FT = cast<FunctionType>(T); 213 // FUNCTION: [isvararg, attrid, retty, paramty x N] 214 Code = bitc::TYPE_CODE_FUNCTION; 215 TypeVals.push_back(FT->isVarArg()); 216 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 217 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 218 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 219 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 220 AbbrevToUse = FunctionAbbrev; 221 break; 222 } 223 case Type::StructTyID: { 224 const StructType *ST = cast<StructType>(T); 225 // STRUCT: [ispacked, eltty x N] 226 Code = bitc::TYPE_CODE_STRUCT; 227 TypeVals.push_back(ST->isPacked()); 228 // Output all of the element types. 229 for (StructType::element_iterator I = ST->element_begin(), 230 E = ST->element_end(); I != E; ++I) 231 TypeVals.push_back(VE.getTypeID(*I)); 232 AbbrevToUse = StructAbbrev; 233 break; 234 } 235 case Type::ArrayTyID: { 236 const ArrayType *AT = cast<ArrayType>(T); 237 // ARRAY: [numelts, eltty] 238 Code = bitc::TYPE_CODE_ARRAY; 239 TypeVals.push_back(AT->getNumElements()); 240 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 241 AbbrevToUse = ArrayAbbrev; 242 break; 243 } 244 case Type::VectorTyID: { 245 const VectorType *VT = cast<VectorType>(T); 246 // VECTOR [numelts, eltty] 247 Code = bitc::TYPE_CODE_VECTOR; 248 TypeVals.push_back(VT->getNumElements()); 249 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 250 break; 251 } 252 } 253 254 // Emit the finished record. 255 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 256 TypeVals.clear(); 257 } 258 259 Stream.ExitBlock(); 260 } 261 262 static unsigned getEncodedLinkage(const GlobalValue *GV) { 263 switch (GV->getLinkage()) { 264 default: assert(0 && "Invalid linkage!"); 265 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 266 case GlobalValue::ExternalLinkage: return 0; 267 case GlobalValue::WeakLinkage: return 1; 268 case GlobalValue::AppendingLinkage: return 2; 269 case GlobalValue::InternalLinkage: return 3; 270 case GlobalValue::LinkOnceLinkage: return 4; 271 case GlobalValue::DLLImportLinkage: return 5; 272 case GlobalValue::DLLExportLinkage: return 6; 273 case GlobalValue::ExternalWeakLinkage: return 7; 274 case GlobalValue::CommonLinkage: return 8; 275 } 276 } 277 278 static unsigned getEncodedVisibility(const GlobalValue *GV) { 279 switch (GV->getVisibility()) { 280 default: assert(0 && "Invalid visibility!"); 281 case GlobalValue::DefaultVisibility: return 0; 282 case GlobalValue::HiddenVisibility: return 1; 283 case GlobalValue::ProtectedVisibility: return 2; 284 } 285 } 286 287 // Emit top-level description of module, including target triple, inline asm, 288 // descriptors for global variables, and function prototype info. 289 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 290 BitstreamWriter &Stream) { 291 // Emit the list of dependent libraries for the Module. 292 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 293 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 294 295 // Emit various pieces of data attached to a module. 296 if (!M->getTargetTriple().empty()) 297 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 298 0/*TODO*/, Stream); 299 if (!M->getDataLayout().empty()) 300 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 301 0/*TODO*/, Stream); 302 if (!M->getModuleInlineAsm().empty()) 303 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 304 0/*TODO*/, Stream); 305 306 // Emit information about sections and collectors, computing how many there 307 // are. Also compute the maximum alignment value. 308 std::map<std::string, unsigned> SectionMap; 309 std::map<std::string, unsigned> CollectorMap; 310 unsigned MaxAlignment = 0; 311 unsigned MaxGlobalType = 0; 312 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 313 GV != E; ++GV) { 314 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 315 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 316 317 if (!GV->hasSection()) continue; 318 // Give section names unique ID's. 319 unsigned &Entry = SectionMap[GV->getSection()]; 320 if (Entry != 0) continue; 321 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 322 0/*TODO*/, Stream); 323 Entry = SectionMap.size(); 324 } 325 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 326 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 327 if (F->hasSection()) { 328 // Give section names unique ID's. 329 unsigned &Entry = SectionMap[F->getSection()]; 330 if (!Entry) { 331 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 332 0/*TODO*/, Stream); 333 Entry = SectionMap.size(); 334 } 335 } 336 if (F->hasCollector()) { 337 // Same for collector names. 338 unsigned &Entry = CollectorMap[F->getCollector()]; 339 if (!Entry) { 340 WriteStringRecord(bitc::MODULE_CODE_COLLECTORNAME, F->getCollector(), 341 0/*TODO*/, Stream); 342 Entry = CollectorMap.size(); 343 } 344 } 345 } 346 347 // Emit abbrev for globals, now that we know # sections and max alignment. 348 unsigned SimpleGVarAbbrev = 0; 349 if (!M->global_empty()) { 350 // Add an abbrev for common globals with no visibility or thread localness. 351 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 352 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 354 Log2_32_Ceil(MaxGlobalType+1))); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 358 if (MaxAlignment == 0) // Alignment. 359 Abbv->Add(BitCodeAbbrevOp(0)); 360 else { 361 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 363 Log2_32_Ceil(MaxEncAlignment+1))); 364 } 365 if (SectionMap.empty()) // Section. 366 Abbv->Add(BitCodeAbbrevOp(0)); 367 else 368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 369 Log2_32_Ceil(SectionMap.size()+1))); 370 // Don't bother emitting vis + thread local. 371 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 372 } 373 374 // Emit the global variable information. 375 SmallVector<unsigned, 64> Vals; 376 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 377 GV != E; ++GV) { 378 unsigned AbbrevToUse = 0; 379 380 // GLOBALVAR: [type, isconst, initid, 381 // linkage, alignment, section, visibility, threadlocal] 382 Vals.push_back(VE.getTypeID(GV->getType())); 383 Vals.push_back(GV->isConstant()); 384 Vals.push_back(GV->isDeclaration() ? 0 : 385 (VE.getValueID(GV->getInitializer()) + 1)); 386 Vals.push_back(getEncodedLinkage(GV)); 387 Vals.push_back(Log2_32(GV->getAlignment())+1); 388 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 389 if (GV->isThreadLocal() || 390 GV->getVisibility() != GlobalValue::DefaultVisibility) { 391 Vals.push_back(getEncodedVisibility(GV)); 392 Vals.push_back(GV->isThreadLocal()); 393 } else { 394 AbbrevToUse = SimpleGVarAbbrev; 395 } 396 397 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 398 Vals.clear(); 399 } 400 401 // Emit the function proto information. 402 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 403 // FUNCTION: [type, callingconv, isproto, paramattr, 404 // linkage, alignment, section, visibility, collector] 405 Vals.push_back(VE.getTypeID(F->getType())); 406 Vals.push_back(F->getCallingConv()); 407 Vals.push_back(F->isDeclaration()); 408 Vals.push_back(getEncodedLinkage(F)); 409 Vals.push_back(VE.getParamAttrID(F->getParamAttrs())); 410 Vals.push_back(Log2_32(F->getAlignment())+1); 411 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 412 Vals.push_back(getEncodedVisibility(F)); 413 Vals.push_back(F->hasCollector() ? CollectorMap[F->getCollector()] : 0); 414 415 unsigned AbbrevToUse = 0; 416 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 417 Vals.clear(); 418 } 419 420 421 // Emit the alias information. 422 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 423 AI != E; ++AI) { 424 Vals.push_back(VE.getTypeID(AI->getType())); 425 Vals.push_back(VE.getValueID(AI->getAliasee())); 426 Vals.push_back(getEncodedLinkage(AI)); 427 Vals.push_back(getEncodedVisibility(AI)); 428 unsigned AbbrevToUse = 0; 429 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 430 Vals.clear(); 431 } 432 } 433 434 435 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 436 const ValueEnumerator &VE, 437 BitstreamWriter &Stream, bool isGlobal) { 438 if (FirstVal == LastVal) return; 439 440 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 441 442 unsigned AggregateAbbrev = 0; 443 unsigned String8Abbrev = 0; 444 unsigned CString7Abbrev = 0; 445 unsigned CString6Abbrev = 0; 446 // If this is a constant pool for the module, emit module-specific abbrevs. 447 if (isGlobal) { 448 // Abbrev for CST_CODE_AGGREGATE. 449 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 450 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 453 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 454 455 // Abbrev for CST_CODE_STRING. 456 Abbv = new BitCodeAbbrev(); 457 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 460 String8Abbrev = Stream.EmitAbbrev(Abbv); 461 // Abbrev for CST_CODE_CSTRING. 462 Abbv = new BitCodeAbbrev(); 463 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 466 CString7Abbrev = Stream.EmitAbbrev(Abbv); 467 // Abbrev for CST_CODE_CSTRING. 468 Abbv = new BitCodeAbbrev(); 469 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 472 CString6Abbrev = Stream.EmitAbbrev(Abbv); 473 } 474 475 SmallVector<uint64_t, 64> Record; 476 477 const ValueEnumerator::ValueList &Vals = VE.getValues(); 478 const Type *LastTy = 0; 479 for (unsigned i = FirstVal; i != LastVal; ++i) { 480 const Value *V = Vals[i].first; 481 // If we need to switch types, do so now. 482 if (V->getType() != LastTy) { 483 LastTy = V->getType(); 484 Record.push_back(VE.getTypeID(LastTy)); 485 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 486 CONSTANTS_SETTYPE_ABBREV); 487 Record.clear(); 488 } 489 490 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 491 Record.push_back(unsigned(IA->hasSideEffects())); 492 493 // Add the asm string. 494 const std::string &AsmStr = IA->getAsmString(); 495 Record.push_back(AsmStr.size()); 496 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 497 Record.push_back(AsmStr[i]); 498 499 // Add the constraint string. 500 const std::string &ConstraintStr = IA->getConstraintString(); 501 Record.push_back(ConstraintStr.size()); 502 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 503 Record.push_back(ConstraintStr[i]); 504 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 505 Record.clear(); 506 continue; 507 } 508 const Constant *C = cast<Constant>(V); 509 unsigned Code = -1U; 510 unsigned AbbrevToUse = 0; 511 if (C->isNullValue()) { 512 Code = bitc::CST_CODE_NULL; 513 } else if (isa<UndefValue>(C)) { 514 Code = bitc::CST_CODE_UNDEF; 515 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 516 if (IV->getBitWidth() <= 64) { 517 int64_t V = IV->getSExtValue(); 518 if (V >= 0) 519 Record.push_back(V << 1); 520 else 521 Record.push_back((-V << 1) | 1); 522 Code = bitc::CST_CODE_INTEGER; 523 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 524 } else { // Wide integers, > 64 bits in size. 525 // We have an arbitrary precision integer value to write whose 526 // bit width is > 64. However, in canonical unsigned integer 527 // format it is likely that the high bits are going to be zero. 528 // So, we only write the number of active words. 529 unsigned NWords = IV->getValue().getActiveWords(); 530 const uint64_t *RawWords = IV->getValue().getRawData(); 531 for (unsigned i = 0; i != NWords; ++i) { 532 int64_t V = RawWords[i]; 533 if (V >= 0) 534 Record.push_back(V << 1); 535 else 536 Record.push_back((-V << 1) | 1); 537 } 538 Code = bitc::CST_CODE_WIDE_INTEGER; 539 } 540 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 541 Code = bitc::CST_CODE_FLOAT; 542 const Type *Ty = CFP->getType(); 543 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 544 Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue()); 545 } else if (Ty == Type::X86_FP80Ty) { 546 // api needed to prevent premature destruction 547 APInt api = CFP->getValueAPF().convertToAPInt(); 548 const uint64_t *p = api.getRawData(); 549 Record.push_back(p[0]); 550 Record.push_back((uint16_t)p[1]); 551 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 552 APInt api = CFP->getValueAPF().convertToAPInt(); 553 const uint64_t *p = api.getRawData(); 554 Record.push_back(p[0]); 555 Record.push_back(p[1]); 556 } else { 557 assert (0 && "Unknown FP type!"); 558 } 559 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 560 // Emit constant strings specially. 561 unsigned NumOps = C->getNumOperands(); 562 // If this is a null-terminated string, use the denser CSTRING encoding. 563 if (C->getOperand(NumOps-1)->isNullValue()) { 564 Code = bitc::CST_CODE_CSTRING; 565 --NumOps; // Don't encode the null, which isn't allowed by char6. 566 } else { 567 Code = bitc::CST_CODE_STRING; 568 AbbrevToUse = String8Abbrev; 569 } 570 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 571 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 572 for (unsigned i = 0; i != NumOps; ++i) { 573 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 574 Record.push_back(V); 575 isCStr7 &= (V & 128) == 0; 576 if (isCStrChar6) 577 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 578 } 579 580 if (isCStrChar6) 581 AbbrevToUse = CString6Abbrev; 582 else if (isCStr7) 583 AbbrevToUse = CString7Abbrev; 584 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 585 isa<ConstantVector>(V)) { 586 Code = bitc::CST_CODE_AGGREGATE; 587 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 588 Record.push_back(VE.getValueID(C->getOperand(i))); 589 AbbrevToUse = AggregateAbbrev; 590 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 591 switch (CE->getOpcode()) { 592 default: 593 if (Instruction::isCast(CE->getOpcode())) { 594 Code = bitc::CST_CODE_CE_CAST; 595 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 596 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 597 Record.push_back(VE.getValueID(C->getOperand(0))); 598 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 599 } else { 600 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 601 Code = bitc::CST_CODE_CE_BINOP; 602 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 603 Record.push_back(VE.getValueID(C->getOperand(0))); 604 Record.push_back(VE.getValueID(C->getOperand(1))); 605 } 606 break; 607 case Instruction::GetElementPtr: 608 Code = bitc::CST_CODE_CE_GEP; 609 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 610 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 611 Record.push_back(VE.getValueID(C->getOperand(i))); 612 } 613 break; 614 case Instruction::ExtractValue: { 615 Code = bitc::CST_CODE_CE_EXTRACTVAL; 616 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 617 Record.push_back(VE.getValueID(C->getOperand(0))); 618 const SmallVector<unsigned, 4> &Indices = CE->getIndices(); 619 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 620 Record.push_back(Indices[i]); 621 break; 622 } 623 case Instruction::InsertValue: { 624 Code = bitc::CST_CODE_CE_INSERTVAL; 625 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 626 Record.push_back(VE.getValueID(C->getOperand(0))); 627 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 628 Record.push_back(VE.getValueID(C->getOperand(1))); 629 const SmallVector<unsigned, 4> &Indices = CE->getIndices(); 630 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 631 Record.push_back(Indices[i]); 632 break; 633 } 634 case Instruction::Select: 635 Code = bitc::CST_CODE_CE_SELECT; 636 Record.push_back(VE.getValueID(C->getOperand(0))); 637 Record.push_back(VE.getValueID(C->getOperand(1))); 638 Record.push_back(VE.getValueID(C->getOperand(2))); 639 break; 640 case Instruction::ExtractElement: 641 Code = bitc::CST_CODE_CE_EXTRACTELT; 642 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 643 Record.push_back(VE.getValueID(C->getOperand(0))); 644 Record.push_back(VE.getValueID(C->getOperand(1))); 645 break; 646 case Instruction::InsertElement: 647 Code = bitc::CST_CODE_CE_INSERTELT; 648 Record.push_back(VE.getValueID(C->getOperand(0))); 649 Record.push_back(VE.getValueID(C->getOperand(1))); 650 Record.push_back(VE.getValueID(C->getOperand(2))); 651 break; 652 case Instruction::ShuffleVector: 653 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 654 Record.push_back(VE.getValueID(C->getOperand(0))); 655 Record.push_back(VE.getValueID(C->getOperand(1))); 656 Record.push_back(VE.getValueID(C->getOperand(2))); 657 break; 658 case Instruction::ICmp: 659 case Instruction::FCmp: 660 case Instruction::VICmp: 661 case Instruction::VFCmp: 662 Code = bitc::CST_CODE_CE_CMP; 663 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 664 Record.push_back(VE.getValueID(C->getOperand(0))); 665 Record.push_back(VE.getValueID(C->getOperand(1))); 666 Record.push_back(CE->getPredicate()); 667 break; 668 } 669 } else { 670 assert(0 && "Unknown constant!"); 671 } 672 Stream.EmitRecord(Code, Record, AbbrevToUse); 673 Record.clear(); 674 } 675 676 Stream.ExitBlock(); 677 } 678 679 static void WriteModuleConstants(const ValueEnumerator &VE, 680 BitstreamWriter &Stream) { 681 const ValueEnumerator::ValueList &Vals = VE.getValues(); 682 683 // Find the first constant to emit, which is the first non-globalvalue value. 684 // We know globalvalues have been emitted by WriteModuleInfo. 685 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 686 if (!isa<GlobalValue>(Vals[i].first)) { 687 WriteConstants(i, Vals.size(), VE, Stream, true); 688 return; 689 } 690 } 691 } 692 693 /// PushValueAndType - The file has to encode both the value and type id for 694 /// many values, because we need to know what type to create for forward 695 /// references. However, most operands are not forward references, so this type 696 /// field is not needed. 697 /// 698 /// This function adds V's value ID to Vals. If the value ID is higher than the 699 /// instruction ID, then it is a forward reference, and it also includes the 700 /// type ID. 701 static bool PushValueAndType(Value *V, unsigned InstID, 702 SmallVector<unsigned, 64> &Vals, 703 ValueEnumerator &VE) { 704 unsigned ValID = VE.getValueID(V); 705 Vals.push_back(ValID); 706 if (ValID >= InstID) { 707 Vals.push_back(VE.getTypeID(V->getType())); 708 return true; 709 } 710 return false; 711 } 712 713 /// WriteInstruction - Emit an instruction to the specified stream. 714 static void WriteInstruction(const Instruction &I, unsigned InstID, 715 ValueEnumerator &VE, BitstreamWriter &Stream, 716 SmallVector<unsigned, 64> &Vals) { 717 unsigned Code = 0; 718 unsigned AbbrevToUse = 0; 719 switch (I.getOpcode()) { 720 default: 721 if (Instruction::isCast(I.getOpcode())) { 722 Code = bitc::FUNC_CODE_INST_CAST; 723 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 724 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 725 Vals.push_back(VE.getTypeID(I.getType())); 726 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 727 } else { 728 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 729 Code = bitc::FUNC_CODE_INST_BINOP; 730 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 731 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 732 Vals.push_back(VE.getValueID(I.getOperand(1))); 733 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 734 } 735 break; 736 737 case Instruction::GetElementPtr: 738 Code = bitc::FUNC_CODE_INST_GEP; 739 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 740 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 741 break; 742 case Instruction::ExtractValue: { 743 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 744 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 745 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 746 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 747 Vals.push_back(*i); 748 break; 749 } 750 case Instruction::InsertValue: { 751 Code = bitc::FUNC_CODE_INST_INSERTVAL; 752 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 753 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 754 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 755 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 756 Vals.push_back(*i); 757 break; 758 } 759 case Instruction::Select: 760 Code = bitc::FUNC_CODE_INST_SELECT; 761 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 762 Vals.push_back(VE.getValueID(I.getOperand(2))); 763 Vals.push_back(VE.getValueID(I.getOperand(0))); 764 break; 765 case Instruction::ExtractElement: 766 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 767 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 768 Vals.push_back(VE.getValueID(I.getOperand(1))); 769 break; 770 case Instruction::InsertElement: 771 Code = bitc::FUNC_CODE_INST_INSERTELT; 772 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 773 Vals.push_back(VE.getValueID(I.getOperand(1))); 774 Vals.push_back(VE.getValueID(I.getOperand(2))); 775 break; 776 case Instruction::ShuffleVector: 777 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 778 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 779 Vals.push_back(VE.getValueID(I.getOperand(1))); 780 Vals.push_back(VE.getValueID(I.getOperand(2))); 781 break; 782 case Instruction::ICmp: 783 case Instruction::FCmp: 784 case Instruction::VICmp: 785 case Instruction::VFCmp: 786 Code = bitc::FUNC_CODE_INST_CMP; 787 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 788 Vals.push_back(VE.getValueID(I.getOperand(1))); 789 Vals.push_back(cast<CmpInst>(I).getPredicate()); 790 break; 791 case Instruction::GetResult: 792 Code = bitc::FUNC_CODE_INST_GETRESULT; 793 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 794 Vals.push_back(cast<GetResultInst>(I).getIndex()); 795 break; 796 797 case Instruction::Ret: 798 { 799 Code = bitc::FUNC_CODE_INST_RET; 800 unsigned NumOperands = I.getNumOperands(); 801 if (NumOperands == 0) 802 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 803 else if (NumOperands == 1) { 804 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 805 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 806 } else { 807 for (unsigned i = 0, e = NumOperands; i != e; ++i) 808 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 809 } 810 } 811 break; 812 case Instruction::Br: 813 Code = bitc::FUNC_CODE_INST_BR; 814 Vals.push_back(VE.getValueID(I.getOperand(0))); 815 if (cast<BranchInst>(I).isConditional()) { 816 Vals.push_back(VE.getValueID(I.getOperand(1))); 817 Vals.push_back(VE.getValueID(I.getOperand(2))); 818 } 819 break; 820 case Instruction::Switch: 821 Code = bitc::FUNC_CODE_INST_SWITCH; 822 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 823 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 824 Vals.push_back(VE.getValueID(I.getOperand(i))); 825 break; 826 case Instruction::Invoke: { 827 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 828 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 829 Code = bitc::FUNC_CODE_INST_INVOKE; 830 831 const InvokeInst *II = cast<InvokeInst>(&I); 832 Vals.push_back(VE.getParamAttrID(II->getParamAttrs())); 833 Vals.push_back(II->getCallingConv()); 834 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest 835 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest 836 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee 837 838 // Emit value #'s for the fixed parameters. 839 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 840 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 841 842 // Emit type/value pairs for varargs params. 843 if (FTy->isVarArg()) { 844 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 845 i != e; ++i) 846 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 847 } 848 break; 849 } 850 case Instruction::Unwind: 851 Code = bitc::FUNC_CODE_INST_UNWIND; 852 break; 853 case Instruction::Unreachable: 854 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 855 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 856 break; 857 858 case Instruction::PHI: 859 Code = bitc::FUNC_CODE_INST_PHI; 860 Vals.push_back(VE.getTypeID(I.getType())); 861 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 862 Vals.push_back(VE.getValueID(I.getOperand(i))); 863 break; 864 865 case Instruction::Malloc: 866 Code = bitc::FUNC_CODE_INST_MALLOC; 867 Vals.push_back(VE.getTypeID(I.getType())); 868 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 869 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 870 break; 871 872 case Instruction::Free: 873 Code = bitc::FUNC_CODE_INST_FREE; 874 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 875 break; 876 877 case Instruction::Alloca: 878 Code = bitc::FUNC_CODE_INST_ALLOCA; 879 Vals.push_back(VE.getTypeID(I.getType())); 880 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 881 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 882 break; 883 884 case Instruction::Load: 885 Code = bitc::FUNC_CODE_INST_LOAD; 886 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 887 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 888 889 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 890 Vals.push_back(cast<LoadInst>(I).isVolatile()); 891 break; 892 case Instruction::Store: 893 Code = bitc::FUNC_CODE_INST_STORE2; 894 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 895 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 896 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 897 Vals.push_back(cast<StoreInst>(I).isVolatile()); 898 break; 899 case Instruction::Call: { 900 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 901 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 902 903 Code = bitc::FUNC_CODE_INST_CALL; 904 905 const CallInst *CI = cast<CallInst>(&I); 906 Vals.push_back(VE.getParamAttrID(CI->getParamAttrs())); 907 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 908 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 909 910 // Emit value #'s for the fixed parameters. 911 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 912 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 913 914 // Emit type/value pairs for varargs params. 915 if (FTy->isVarArg()) { 916 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 917 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 918 i != e; ++i) 919 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 920 } 921 break; 922 } 923 case Instruction::VAArg: 924 Code = bitc::FUNC_CODE_INST_VAARG; 925 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 926 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 927 Vals.push_back(VE.getTypeID(I.getType())); // restype. 928 break; 929 } 930 931 Stream.EmitRecord(Code, Vals, AbbrevToUse); 932 Vals.clear(); 933 } 934 935 // Emit names for globals/functions etc. 936 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 937 const ValueEnumerator &VE, 938 BitstreamWriter &Stream) { 939 if (VST.empty()) return; 940 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 941 942 // FIXME: Set up the abbrev, we know how many values there are! 943 // FIXME: We know if the type names can use 7-bit ascii. 944 SmallVector<unsigned, 64> NameVals; 945 946 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 947 SI != SE; ++SI) { 948 949 const ValueName &Name = *SI; 950 951 // Figure out the encoding to use for the name. 952 bool is7Bit = true; 953 bool isChar6 = true; 954 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 955 C != E; ++C) { 956 if (isChar6) 957 isChar6 = BitCodeAbbrevOp::isChar6(*C); 958 if ((unsigned char)*C & 128) { 959 is7Bit = false; 960 break; // don't bother scanning the rest. 961 } 962 } 963 964 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 965 966 // VST_ENTRY: [valueid, namechar x N] 967 // VST_BBENTRY: [bbid, namechar x N] 968 unsigned Code; 969 if (isa<BasicBlock>(SI->getValue())) { 970 Code = bitc::VST_CODE_BBENTRY; 971 if (isChar6) 972 AbbrevToUse = VST_BBENTRY_6_ABBREV; 973 } else { 974 Code = bitc::VST_CODE_ENTRY; 975 if (isChar6) 976 AbbrevToUse = VST_ENTRY_6_ABBREV; 977 else if (is7Bit) 978 AbbrevToUse = VST_ENTRY_7_ABBREV; 979 } 980 981 NameVals.push_back(VE.getValueID(SI->getValue())); 982 for (const char *P = Name.getKeyData(), 983 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 984 NameVals.push_back((unsigned char)*P); 985 986 // Emit the finished record. 987 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 988 NameVals.clear(); 989 } 990 Stream.ExitBlock(); 991 } 992 993 /// WriteFunction - Emit a function body to the module stream. 994 static void WriteFunction(const Function &F, ValueEnumerator &VE, 995 BitstreamWriter &Stream) { 996 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 997 VE.incorporateFunction(F); 998 999 SmallVector<unsigned, 64> Vals; 1000 1001 // Emit the number of basic blocks, so the reader can create them ahead of 1002 // time. 1003 Vals.push_back(VE.getBasicBlocks().size()); 1004 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1005 Vals.clear(); 1006 1007 // If there are function-local constants, emit them now. 1008 unsigned CstStart, CstEnd; 1009 VE.getFunctionConstantRange(CstStart, CstEnd); 1010 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1011 1012 // Keep a running idea of what the instruction ID is. 1013 unsigned InstID = CstEnd; 1014 1015 // Finally, emit all the instructions, in order. 1016 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1017 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1018 I != E; ++I) { 1019 WriteInstruction(*I, InstID, VE, Stream, Vals); 1020 if (I->getType() != Type::VoidTy) 1021 ++InstID; 1022 } 1023 1024 // Emit names for all the instructions etc. 1025 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1026 1027 VE.purgeFunction(); 1028 Stream.ExitBlock(); 1029 } 1030 1031 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1032 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1033 const ValueEnumerator &VE, 1034 BitstreamWriter &Stream) { 1035 if (TST.empty()) return; 1036 1037 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1038 1039 // 7-bit fixed width VST_CODE_ENTRY strings. 1040 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1041 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1043 Log2_32_Ceil(VE.getTypes().size()+1))); 1044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1046 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1047 1048 SmallVector<unsigned, 64> NameVals; 1049 1050 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1051 TI != TE; ++TI) { 1052 // TST_ENTRY: [typeid, namechar x N] 1053 NameVals.push_back(VE.getTypeID(TI->second)); 1054 1055 const std::string &Str = TI->first; 1056 bool is7Bit = true; 1057 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1058 NameVals.push_back((unsigned char)Str[i]); 1059 if (Str[i] & 128) 1060 is7Bit = false; 1061 } 1062 1063 // Emit the finished record. 1064 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1065 NameVals.clear(); 1066 } 1067 1068 Stream.ExitBlock(); 1069 } 1070 1071 // Emit blockinfo, which defines the standard abbreviations etc. 1072 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1073 // We only want to emit block info records for blocks that have multiple 1074 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1075 // blocks can defined their abbrevs inline. 1076 Stream.EnterBlockInfoBlock(2); 1077 1078 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1079 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1084 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1085 Abbv) != VST_ENTRY_8_ABBREV) 1086 assert(0 && "Unexpected abbrev ordering!"); 1087 } 1088 1089 { // 7-bit fixed width VST_ENTRY strings. 1090 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1091 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1095 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1096 Abbv) != VST_ENTRY_7_ABBREV) 1097 assert(0 && "Unexpected abbrev ordering!"); 1098 } 1099 { // 6-bit char6 VST_ENTRY strings. 1100 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1101 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1105 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1106 Abbv) != VST_ENTRY_6_ABBREV) 1107 assert(0 && "Unexpected abbrev ordering!"); 1108 } 1109 { // 6-bit char6 VST_BBENTRY strings. 1110 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1111 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1115 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1116 Abbv) != VST_BBENTRY_6_ABBREV) 1117 assert(0 && "Unexpected abbrev ordering!"); 1118 } 1119 1120 1121 1122 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1123 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1124 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1126 Log2_32_Ceil(VE.getTypes().size()+1))); 1127 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1128 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1129 assert(0 && "Unexpected abbrev ordering!"); 1130 } 1131 1132 { // INTEGER abbrev for CONSTANTS_BLOCK. 1133 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1134 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1136 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1137 Abbv) != CONSTANTS_INTEGER_ABBREV) 1138 assert(0 && "Unexpected abbrev ordering!"); 1139 } 1140 1141 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1142 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1143 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1146 Log2_32_Ceil(VE.getTypes().size()+1))); 1147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1148 1149 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1150 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1151 assert(0 && "Unexpected abbrev ordering!"); 1152 } 1153 { // NULL abbrev for CONSTANTS_BLOCK. 1154 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1155 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1156 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1157 Abbv) != CONSTANTS_NULL_Abbrev) 1158 assert(0 && "Unexpected abbrev ordering!"); 1159 } 1160 1161 // FIXME: This should only use space for first class types! 1162 1163 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1164 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1165 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1169 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1170 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1171 assert(0 && "Unexpected abbrev ordering!"); 1172 } 1173 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1174 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1175 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1179 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1180 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1181 assert(0 && "Unexpected abbrev ordering!"); 1182 } 1183 { // INST_CAST abbrev for FUNCTION_BLOCK. 1184 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1185 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1188 Log2_32_Ceil(VE.getTypes().size()+1))); 1189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1190 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1191 Abbv) != FUNCTION_INST_CAST_ABBREV) 1192 assert(0 && "Unexpected abbrev ordering!"); 1193 } 1194 1195 { // INST_RET abbrev for FUNCTION_BLOCK. 1196 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1197 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1198 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1199 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1200 assert(0 && "Unexpected abbrev ordering!"); 1201 } 1202 { // INST_RET abbrev for FUNCTION_BLOCK. 1203 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1204 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1206 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1207 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1208 assert(0 && "Unexpected abbrev ordering!"); 1209 } 1210 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1211 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1212 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1213 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1214 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1215 assert(0 && "Unexpected abbrev ordering!"); 1216 } 1217 1218 Stream.ExitBlock(); 1219 } 1220 1221 1222 /// WriteModule - Emit the specified module to the bitstream. 1223 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1224 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1225 1226 // Emit the version number if it is non-zero. 1227 if (CurVersion) { 1228 SmallVector<unsigned, 1> Vals; 1229 Vals.push_back(CurVersion); 1230 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1231 } 1232 1233 // Analyze the module, enumerating globals, functions, etc. 1234 ValueEnumerator VE(M); 1235 1236 // Emit blockinfo, which defines the standard abbreviations etc. 1237 WriteBlockInfo(VE, Stream); 1238 1239 // Emit information about parameter attributes. 1240 WriteParamAttrTable(VE, Stream); 1241 1242 // Emit information describing all of the types in the module. 1243 WriteTypeTable(VE, Stream); 1244 1245 // Emit top-level description of module, including target triple, inline asm, 1246 // descriptors for global variables, and function prototype info. 1247 WriteModuleInfo(M, VE, Stream); 1248 1249 // Emit constants. 1250 WriteModuleConstants(VE, Stream); 1251 1252 // If we have any aggregate values in the value table, purge them - these can 1253 // only be used to initialize global variables. Doing so makes the value 1254 // namespace smaller for code in functions. 1255 int NumNonAggregates = VE.PurgeAggregateValues(); 1256 if (NumNonAggregates != -1) { 1257 SmallVector<unsigned, 1> Vals; 1258 Vals.push_back(NumNonAggregates); 1259 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1260 } 1261 1262 // Emit function bodies. 1263 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1264 if (!I->isDeclaration()) 1265 WriteFunction(*I, VE, Stream); 1266 1267 // Emit the type symbol table information. 1268 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1269 1270 // Emit names for globals/functions etc. 1271 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1272 1273 Stream.ExitBlock(); 1274 } 1275 1276 1277 /// WriteBitcodeToFile - Write the specified module to the specified output 1278 /// stream. 1279 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1280 std::vector<unsigned char> Buffer; 1281 BitstreamWriter Stream(Buffer); 1282 1283 Buffer.reserve(256*1024); 1284 1285 // Emit the file header. 1286 Stream.Emit((unsigned)'B', 8); 1287 Stream.Emit((unsigned)'C', 8); 1288 Stream.Emit(0x0, 4); 1289 Stream.Emit(0xC, 4); 1290 Stream.Emit(0xE, 4); 1291 Stream.Emit(0xD, 4); 1292 1293 // Emit the module. 1294 WriteModule(M, Stream); 1295 1296 // If writing to stdout, set binary mode. 1297 if (llvm::cout == Out) 1298 sys::Program::ChangeStdoutToBinary(); 1299 1300 // Write the generated bitstream to "Out". 1301 Out.write((char*)&Buffer.front(), Buffer.size()); 1302 1303 // Make sure it hits disk now. 1304 Out.flush(); 1305 } 1306