1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueSymbolTable.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Program.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV 64 }; 65 66 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 67 switch (Opcode) { 68 default: llvm_unreachable("Unknown cast instruction!"); 69 case Instruction::Trunc : return bitc::CAST_TRUNC; 70 case Instruction::ZExt : return bitc::CAST_ZEXT; 71 case Instruction::SExt : return bitc::CAST_SEXT; 72 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 73 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 74 case Instruction::UIToFP : return bitc::CAST_UITOFP; 75 case Instruction::SIToFP : return bitc::CAST_SITOFP; 76 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 77 case Instruction::FPExt : return bitc::CAST_FPEXT; 78 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 79 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 80 case Instruction::BitCast : return bitc::CAST_BITCAST; 81 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 82 } 83 } 84 85 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 86 switch (Opcode) { 87 default: llvm_unreachable("Unknown binary instruction!"); 88 case Instruction::Add: 89 case Instruction::FAdd: return bitc::BINOP_ADD; 90 case Instruction::Sub: 91 case Instruction::FSub: return bitc::BINOP_SUB; 92 case Instruction::Mul: 93 case Instruction::FMul: return bitc::BINOP_MUL; 94 case Instruction::UDiv: return bitc::BINOP_UDIV; 95 case Instruction::FDiv: 96 case Instruction::SDiv: return bitc::BINOP_SDIV; 97 case Instruction::URem: return bitc::BINOP_UREM; 98 case Instruction::FRem: 99 case Instruction::SRem: return bitc::BINOP_SREM; 100 case Instruction::Shl: return bitc::BINOP_SHL; 101 case Instruction::LShr: return bitc::BINOP_LSHR; 102 case Instruction::AShr: return bitc::BINOP_ASHR; 103 case Instruction::And: return bitc::BINOP_AND; 104 case Instruction::Or: return bitc::BINOP_OR; 105 case Instruction::Xor: return bitc::BINOP_XOR; 106 } 107 } 108 109 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 110 switch (Op) { 111 default: llvm_unreachable("Unknown RMW operation!"); 112 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 113 case AtomicRMWInst::Add: return bitc::RMW_ADD; 114 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 115 case AtomicRMWInst::And: return bitc::RMW_AND; 116 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 117 case AtomicRMWInst::Or: return bitc::RMW_OR; 118 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 119 case AtomicRMWInst::Max: return bitc::RMW_MAX; 120 case AtomicRMWInst::Min: return bitc::RMW_MIN; 121 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 122 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 123 } 124 } 125 126 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 127 switch (Ordering) { 128 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 129 case Unordered: return bitc::ORDERING_UNORDERED; 130 case Monotonic: return bitc::ORDERING_MONOTONIC; 131 case Acquire: return bitc::ORDERING_ACQUIRE; 132 case Release: return bitc::ORDERING_RELEASE; 133 case AcquireRelease: return bitc::ORDERING_ACQREL; 134 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 135 } 136 llvm_unreachable("Invalid ordering"); 137 } 138 139 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 140 switch (SynchScope) { 141 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 142 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 143 } 144 llvm_unreachable("Invalid synch scope"); 145 } 146 147 static void WriteStringRecord(unsigned Code, StringRef Str, 148 unsigned AbbrevToUse, BitstreamWriter &Stream) { 149 SmallVector<unsigned, 64> Vals; 150 151 // Code: [strchar x N] 152 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 153 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 154 AbbrevToUse = 0; 155 Vals.push_back(Str[i]); 156 } 157 158 // Emit the finished record. 159 Stream.EmitRecord(Code, Vals, AbbrevToUse); 160 } 161 162 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 163 switch (Kind) { 164 case Attribute::Alignment: 165 return bitc::ATTR_KIND_ALIGNMENT; 166 case Attribute::AlwaysInline: 167 return bitc::ATTR_KIND_ALWAYS_INLINE; 168 case Attribute::Builtin: 169 return bitc::ATTR_KIND_BUILTIN; 170 case Attribute::ByVal: 171 return bitc::ATTR_KIND_BY_VAL; 172 case Attribute::InAlloca: 173 return bitc::ATTR_KIND_IN_ALLOCA; 174 case Attribute::Cold: 175 return bitc::ATTR_KIND_COLD; 176 case Attribute::InlineHint: 177 return bitc::ATTR_KIND_INLINE_HINT; 178 case Attribute::InReg: 179 return bitc::ATTR_KIND_IN_REG; 180 case Attribute::MinSize: 181 return bitc::ATTR_KIND_MIN_SIZE; 182 case Attribute::Naked: 183 return bitc::ATTR_KIND_NAKED; 184 case Attribute::Nest: 185 return bitc::ATTR_KIND_NEST; 186 case Attribute::NoAlias: 187 return bitc::ATTR_KIND_NO_ALIAS; 188 case Attribute::NoBuiltin: 189 return bitc::ATTR_KIND_NO_BUILTIN; 190 case Attribute::NoCapture: 191 return bitc::ATTR_KIND_NO_CAPTURE; 192 case Attribute::NoDuplicate: 193 return bitc::ATTR_KIND_NO_DUPLICATE; 194 case Attribute::NoImplicitFloat: 195 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 196 case Attribute::NoInline: 197 return bitc::ATTR_KIND_NO_INLINE; 198 case Attribute::NonLazyBind: 199 return bitc::ATTR_KIND_NON_LAZY_BIND; 200 case Attribute::NoRedZone: 201 return bitc::ATTR_KIND_NO_RED_ZONE; 202 case Attribute::NoReturn: 203 return bitc::ATTR_KIND_NO_RETURN; 204 case Attribute::NoUnwind: 205 return bitc::ATTR_KIND_NO_UNWIND; 206 case Attribute::OptimizeForSize: 207 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 208 case Attribute::OptimizeNone: 209 return bitc::ATTR_KIND_OPTIMIZE_NONE; 210 case Attribute::ReadNone: 211 return bitc::ATTR_KIND_READ_NONE; 212 case Attribute::ReadOnly: 213 return bitc::ATTR_KIND_READ_ONLY; 214 case Attribute::Returned: 215 return bitc::ATTR_KIND_RETURNED; 216 case Attribute::ReturnsTwice: 217 return bitc::ATTR_KIND_RETURNS_TWICE; 218 case Attribute::SExt: 219 return bitc::ATTR_KIND_S_EXT; 220 case Attribute::StackAlignment: 221 return bitc::ATTR_KIND_STACK_ALIGNMENT; 222 case Attribute::StackProtect: 223 return bitc::ATTR_KIND_STACK_PROTECT; 224 case Attribute::StackProtectReq: 225 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 226 case Attribute::StackProtectStrong: 227 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 228 case Attribute::StructRet: 229 return bitc::ATTR_KIND_STRUCT_RET; 230 case Attribute::SanitizeAddress: 231 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 232 case Attribute::SanitizeThread: 233 return bitc::ATTR_KIND_SANITIZE_THREAD; 234 case Attribute::SanitizeMemory: 235 return bitc::ATTR_KIND_SANITIZE_MEMORY; 236 case Attribute::UWTable: 237 return bitc::ATTR_KIND_UW_TABLE; 238 case Attribute::ZExt: 239 return bitc::ATTR_KIND_Z_EXT; 240 case Attribute::EndAttrKinds: 241 llvm_unreachable("Can not encode end-attribute kinds marker."); 242 case Attribute::None: 243 llvm_unreachable("Can not encode none-attribute."); 244 } 245 246 llvm_unreachable("Trying to encode unknown attribute"); 247 } 248 249 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 250 BitstreamWriter &Stream) { 251 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 252 if (AttrGrps.empty()) return; 253 254 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 255 256 SmallVector<uint64_t, 64> Record; 257 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 258 AttributeSet AS = AttrGrps[i]; 259 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 260 AttributeSet A = AS.getSlotAttributes(i); 261 262 Record.push_back(VE.getAttributeGroupID(A)); 263 Record.push_back(AS.getSlotIndex(i)); 264 265 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 266 I != E; ++I) { 267 Attribute Attr = *I; 268 if (Attr.isEnumAttribute()) { 269 Record.push_back(0); 270 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 271 } else if (Attr.isAlignAttribute()) { 272 Record.push_back(1); 273 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 274 Record.push_back(Attr.getValueAsInt()); 275 } else { 276 StringRef Kind = Attr.getKindAsString(); 277 StringRef Val = Attr.getValueAsString(); 278 279 Record.push_back(Val.empty() ? 3 : 4); 280 Record.append(Kind.begin(), Kind.end()); 281 Record.push_back(0); 282 if (!Val.empty()) { 283 Record.append(Val.begin(), Val.end()); 284 Record.push_back(0); 285 } 286 } 287 } 288 289 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 290 Record.clear(); 291 } 292 } 293 294 Stream.ExitBlock(); 295 } 296 297 static void WriteAttributeTable(const ValueEnumerator &VE, 298 BitstreamWriter &Stream) { 299 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 300 if (Attrs.empty()) return; 301 302 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 303 304 SmallVector<uint64_t, 64> Record; 305 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 306 const AttributeSet &A = Attrs[i]; 307 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 308 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 309 310 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 311 Record.clear(); 312 } 313 314 Stream.ExitBlock(); 315 } 316 317 /// WriteTypeTable - Write out the type table for a module. 318 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 319 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 320 321 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 322 SmallVector<uint64_t, 64> TypeVals; 323 324 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 325 326 // Abbrev for TYPE_CODE_POINTER. 327 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 328 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 330 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 331 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 332 333 // Abbrev for TYPE_CODE_FUNCTION. 334 Abbv = new BitCodeAbbrev(); 335 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 339 340 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 341 342 // Abbrev for TYPE_CODE_STRUCT_ANON. 343 Abbv = new BitCodeAbbrev(); 344 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 348 349 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 350 351 // Abbrev for TYPE_CODE_STRUCT_NAME. 352 Abbv = new BitCodeAbbrev(); 353 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 356 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 357 358 // Abbrev for TYPE_CODE_STRUCT_NAMED. 359 Abbv = new BitCodeAbbrev(); 360 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 364 365 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 366 367 // Abbrev for TYPE_CODE_ARRAY. 368 Abbv = new BitCodeAbbrev(); 369 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 372 373 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 374 375 // Emit an entry count so the reader can reserve space. 376 TypeVals.push_back(TypeList.size()); 377 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 378 TypeVals.clear(); 379 380 // Loop over all of the types, emitting each in turn. 381 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 382 Type *T = TypeList[i]; 383 int AbbrevToUse = 0; 384 unsigned Code = 0; 385 386 switch (T->getTypeID()) { 387 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 388 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 389 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 390 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 391 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 392 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 393 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 394 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 395 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 396 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 397 case Type::IntegerTyID: 398 // INTEGER: [width] 399 Code = bitc::TYPE_CODE_INTEGER; 400 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 401 break; 402 case Type::PointerTyID: { 403 PointerType *PTy = cast<PointerType>(T); 404 // POINTER: [pointee type, address space] 405 Code = bitc::TYPE_CODE_POINTER; 406 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 407 unsigned AddressSpace = PTy->getAddressSpace(); 408 TypeVals.push_back(AddressSpace); 409 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 410 break; 411 } 412 case Type::FunctionTyID: { 413 FunctionType *FT = cast<FunctionType>(T); 414 // FUNCTION: [isvararg, retty, paramty x N] 415 Code = bitc::TYPE_CODE_FUNCTION; 416 TypeVals.push_back(FT->isVarArg()); 417 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 418 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 419 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 420 AbbrevToUse = FunctionAbbrev; 421 break; 422 } 423 case Type::StructTyID: { 424 StructType *ST = cast<StructType>(T); 425 // STRUCT: [ispacked, eltty x N] 426 TypeVals.push_back(ST->isPacked()); 427 // Output all of the element types. 428 for (StructType::element_iterator I = ST->element_begin(), 429 E = ST->element_end(); I != E; ++I) 430 TypeVals.push_back(VE.getTypeID(*I)); 431 432 if (ST->isLiteral()) { 433 Code = bitc::TYPE_CODE_STRUCT_ANON; 434 AbbrevToUse = StructAnonAbbrev; 435 } else { 436 if (ST->isOpaque()) { 437 Code = bitc::TYPE_CODE_OPAQUE; 438 } else { 439 Code = bitc::TYPE_CODE_STRUCT_NAMED; 440 AbbrevToUse = StructNamedAbbrev; 441 } 442 443 // Emit the name if it is present. 444 if (!ST->getName().empty()) 445 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 446 StructNameAbbrev, Stream); 447 } 448 break; 449 } 450 case Type::ArrayTyID: { 451 ArrayType *AT = cast<ArrayType>(T); 452 // ARRAY: [numelts, eltty] 453 Code = bitc::TYPE_CODE_ARRAY; 454 TypeVals.push_back(AT->getNumElements()); 455 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 456 AbbrevToUse = ArrayAbbrev; 457 break; 458 } 459 case Type::VectorTyID: { 460 VectorType *VT = cast<VectorType>(T); 461 // VECTOR [numelts, eltty] 462 Code = bitc::TYPE_CODE_VECTOR; 463 TypeVals.push_back(VT->getNumElements()); 464 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 465 break; 466 } 467 } 468 469 // Emit the finished record. 470 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 471 TypeVals.clear(); 472 } 473 474 Stream.ExitBlock(); 475 } 476 477 static unsigned getEncodedLinkage(const GlobalValue *GV) { 478 switch (GV->getLinkage()) { 479 case GlobalValue::ExternalLinkage: return 0; 480 case GlobalValue::WeakAnyLinkage: return 1; 481 case GlobalValue::AppendingLinkage: return 2; 482 case GlobalValue::InternalLinkage: return 3; 483 case GlobalValue::LinkOnceAnyLinkage: return 4; 484 case GlobalValue::ExternalWeakLinkage: return 7; 485 case GlobalValue::CommonLinkage: return 8; 486 case GlobalValue::PrivateLinkage: return 9; 487 case GlobalValue::WeakODRLinkage: return 10; 488 case GlobalValue::LinkOnceODRLinkage: return 11; 489 case GlobalValue::AvailableExternallyLinkage: return 12; 490 } 491 llvm_unreachable("Invalid linkage"); 492 } 493 494 static unsigned getEncodedVisibility(const GlobalValue *GV) { 495 switch (GV->getVisibility()) { 496 case GlobalValue::DefaultVisibility: return 0; 497 case GlobalValue::HiddenVisibility: return 1; 498 case GlobalValue::ProtectedVisibility: return 2; 499 } 500 llvm_unreachable("Invalid visibility"); 501 } 502 503 static unsigned getEncodedDLLStorageClass(const GlobalValue *GV) { 504 switch (GV->getDLLStorageClass()) { 505 case GlobalValue::DefaultStorageClass: return 0; 506 case GlobalValue::DLLImportStorageClass: return 1; 507 case GlobalValue::DLLExportStorageClass: return 2; 508 } 509 llvm_unreachable("Invalid DLL storage class"); 510 } 511 512 static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) { 513 switch (GV->getThreadLocalMode()) { 514 case GlobalVariable::NotThreadLocal: return 0; 515 case GlobalVariable::GeneralDynamicTLSModel: return 1; 516 case GlobalVariable::LocalDynamicTLSModel: return 2; 517 case GlobalVariable::InitialExecTLSModel: return 3; 518 case GlobalVariable::LocalExecTLSModel: return 4; 519 } 520 llvm_unreachable("Invalid TLS model"); 521 } 522 523 // Emit top-level description of module, including target triple, inline asm, 524 // descriptors for global variables, and function prototype info. 525 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 526 BitstreamWriter &Stream) { 527 // Emit various pieces of data attached to a module. 528 if (!M->getTargetTriple().empty()) 529 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 530 0/*TODO*/, Stream); 531 const std::string &DL = M->getDataLayoutStr(); 532 if (!DL.empty()) 533 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 534 if (!M->getModuleInlineAsm().empty()) 535 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 536 0/*TODO*/, Stream); 537 538 // Emit information about sections and GC, computing how many there are. Also 539 // compute the maximum alignment value. 540 std::map<std::string, unsigned> SectionMap; 541 std::map<std::string, unsigned> GCMap; 542 unsigned MaxAlignment = 0; 543 unsigned MaxGlobalType = 0; 544 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 545 GV != E; ++GV) { 546 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 547 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 548 if (GV->hasSection()) { 549 // Give section names unique ID's. 550 unsigned &Entry = SectionMap[GV->getSection()]; 551 if (!Entry) { 552 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 553 0/*TODO*/, Stream); 554 Entry = SectionMap.size(); 555 } 556 } 557 } 558 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 559 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 560 if (F->hasSection()) { 561 // Give section names unique ID's. 562 unsigned &Entry = SectionMap[F->getSection()]; 563 if (!Entry) { 564 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 565 0/*TODO*/, Stream); 566 Entry = SectionMap.size(); 567 } 568 } 569 if (F->hasGC()) { 570 // Same for GC names. 571 unsigned &Entry = GCMap[F->getGC()]; 572 if (!Entry) { 573 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 574 0/*TODO*/, Stream); 575 Entry = GCMap.size(); 576 } 577 } 578 } 579 580 // Emit abbrev for globals, now that we know # sections and max alignment. 581 unsigned SimpleGVarAbbrev = 0; 582 if (!M->global_empty()) { 583 // Add an abbrev for common globals with no visibility or thread localness. 584 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 585 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 587 Log2_32_Ceil(MaxGlobalType+1))); 588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 591 if (MaxAlignment == 0) // Alignment. 592 Abbv->Add(BitCodeAbbrevOp(0)); 593 else { 594 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 596 Log2_32_Ceil(MaxEncAlignment+1))); 597 } 598 if (SectionMap.empty()) // Section. 599 Abbv->Add(BitCodeAbbrevOp(0)); 600 else 601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 602 Log2_32_Ceil(SectionMap.size()+1))); 603 // Don't bother emitting vis + thread local. 604 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 605 } 606 607 // Emit the global variable information. 608 SmallVector<unsigned, 64> Vals; 609 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 610 GV != E; ++GV) { 611 unsigned AbbrevToUse = 0; 612 613 // GLOBALVAR: [type, isconst, initid, 614 // linkage, alignment, section, visibility, threadlocal, 615 // unnamed_addr, externally_initialized, dllstorageclass] 616 Vals.push_back(VE.getTypeID(GV->getType())); 617 Vals.push_back(GV->isConstant()); 618 Vals.push_back(GV->isDeclaration() ? 0 : 619 (VE.getValueID(GV->getInitializer()) + 1)); 620 Vals.push_back(getEncodedLinkage(GV)); 621 Vals.push_back(Log2_32(GV->getAlignment())+1); 622 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 623 if (GV->isThreadLocal() || 624 GV->getVisibility() != GlobalValue::DefaultVisibility || 625 GV->hasUnnamedAddr() || GV->isExternallyInitialized() || 626 GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) { 627 Vals.push_back(getEncodedVisibility(GV)); 628 Vals.push_back(getEncodedThreadLocalMode(GV)); 629 Vals.push_back(GV->hasUnnamedAddr()); 630 Vals.push_back(GV->isExternallyInitialized()); 631 Vals.push_back(getEncodedDLLStorageClass(GV)); 632 } else { 633 AbbrevToUse = SimpleGVarAbbrev; 634 } 635 636 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 637 Vals.clear(); 638 } 639 640 // Emit the function proto information. 641 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 642 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 643 // section, visibility, gc, unnamed_addr, prefix] 644 Vals.push_back(VE.getTypeID(F->getType())); 645 Vals.push_back(F->getCallingConv()); 646 Vals.push_back(F->isDeclaration()); 647 Vals.push_back(getEncodedLinkage(F)); 648 Vals.push_back(VE.getAttributeID(F->getAttributes())); 649 Vals.push_back(Log2_32(F->getAlignment())+1); 650 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 651 Vals.push_back(getEncodedVisibility(F)); 652 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 653 Vals.push_back(F->hasUnnamedAddr()); 654 Vals.push_back(F->hasPrefixData() ? (VE.getValueID(F->getPrefixData()) + 1) 655 : 0); 656 Vals.push_back(getEncodedDLLStorageClass(F)); 657 658 unsigned AbbrevToUse = 0; 659 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 660 Vals.clear(); 661 } 662 663 // Emit the alias information. 664 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 665 AI != E; ++AI) { 666 // ALIAS: [alias type, aliasee val#, linkage, visibility] 667 Vals.push_back(VE.getTypeID(AI->getType())); 668 Vals.push_back(VE.getValueID(AI->getAliasee())); 669 Vals.push_back(getEncodedLinkage(AI)); 670 Vals.push_back(getEncodedVisibility(AI)); 671 Vals.push_back(getEncodedDLLStorageClass(AI)); 672 unsigned AbbrevToUse = 0; 673 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 674 Vals.clear(); 675 } 676 } 677 678 static uint64_t GetOptimizationFlags(const Value *V) { 679 uint64_t Flags = 0; 680 681 if (const OverflowingBinaryOperator *OBO = 682 dyn_cast<OverflowingBinaryOperator>(V)) { 683 if (OBO->hasNoSignedWrap()) 684 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 685 if (OBO->hasNoUnsignedWrap()) 686 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 687 } else if (const PossiblyExactOperator *PEO = 688 dyn_cast<PossiblyExactOperator>(V)) { 689 if (PEO->isExact()) 690 Flags |= 1 << bitc::PEO_EXACT; 691 } else if (const FPMathOperator *FPMO = 692 dyn_cast<const FPMathOperator>(V)) { 693 if (FPMO->hasUnsafeAlgebra()) 694 Flags |= FastMathFlags::UnsafeAlgebra; 695 if (FPMO->hasNoNaNs()) 696 Flags |= FastMathFlags::NoNaNs; 697 if (FPMO->hasNoInfs()) 698 Flags |= FastMathFlags::NoInfs; 699 if (FPMO->hasNoSignedZeros()) 700 Flags |= FastMathFlags::NoSignedZeros; 701 if (FPMO->hasAllowReciprocal()) 702 Flags |= FastMathFlags::AllowReciprocal; 703 } 704 705 return Flags; 706 } 707 708 static void WriteMDNode(const MDNode *N, 709 const ValueEnumerator &VE, 710 BitstreamWriter &Stream, 711 SmallVectorImpl<uint64_t> &Record) { 712 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 713 if (N->getOperand(i)) { 714 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 715 Record.push_back(VE.getValueID(N->getOperand(i))); 716 } else { 717 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 718 Record.push_back(0); 719 } 720 } 721 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 722 bitc::METADATA_NODE; 723 Stream.EmitRecord(MDCode, Record, 0); 724 Record.clear(); 725 } 726 727 static void WriteModuleMetadata(const Module *M, 728 const ValueEnumerator &VE, 729 BitstreamWriter &Stream) { 730 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 731 bool StartedMetadataBlock = false; 732 unsigned MDSAbbrev = 0; 733 SmallVector<uint64_t, 64> Record; 734 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 735 736 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 737 if (!N->isFunctionLocal() || !N->getFunction()) { 738 if (!StartedMetadataBlock) { 739 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 740 StartedMetadataBlock = true; 741 } 742 WriteMDNode(N, VE, Stream, Record); 743 } 744 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 745 if (!StartedMetadataBlock) { 746 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 747 748 // Abbrev for METADATA_STRING. 749 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 750 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 753 MDSAbbrev = Stream.EmitAbbrev(Abbv); 754 StartedMetadataBlock = true; 755 } 756 757 // Code: [strchar x N] 758 Record.append(MDS->begin(), MDS->end()); 759 760 // Emit the finished record. 761 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 762 Record.clear(); 763 } 764 } 765 766 // Write named metadata. 767 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 768 E = M->named_metadata_end(); I != E; ++I) { 769 const NamedMDNode *NMD = I; 770 if (!StartedMetadataBlock) { 771 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 772 StartedMetadataBlock = true; 773 } 774 775 // Write name. 776 StringRef Str = NMD->getName(); 777 for (unsigned i = 0, e = Str.size(); i != e; ++i) 778 Record.push_back(Str[i]); 779 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 780 Record.clear(); 781 782 // Write named metadata operands. 783 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 784 Record.push_back(VE.getValueID(NMD->getOperand(i))); 785 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 786 Record.clear(); 787 } 788 789 if (StartedMetadataBlock) 790 Stream.ExitBlock(); 791 } 792 793 static void WriteFunctionLocalMetadata(const Function &F, 794 const ValueEnumerator &VE, 795 BitstreamWriter &Stream) { 796 bool StartedMetadataBlock = false; 797 SmallVector<uint64_t, 64> Record; 798 const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues(); 799 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 800 if (const MDNode *N = Vals[i]) 801 if (N->isFunctionLocal() && N->getFunction() == &F) { 802 if (!StartedMetadataBlock) { 803 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 804 StartedMetadataBlock = true; 805 } 806 WriteMDNode(N, VE, Stream, Record); 807 } 808 809 if (StartedMetadataBlock) 810 Stream.ExitBlock(); 811 } 812 813 static void WriteMetadataAttachment(const Function &F, 814 const ValueEnumerator &VE, 815 BitstreamWriter &Stream) { 816 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 817 818 SmallVector<uint64_t, 64> Record; 819 820 // Write metadata attachments 821 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 822 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 823 824 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 825 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 826 I != E; ++I) { 827 MDs.clear(); 828 I->getAllMetadataOtherThanDebugLoc(MDs); 829 830 // If no metadata, ignore instruction. 831 if (MDs.empty()) continue; 832 833 Record.push_back(VE.getInstructionID(I)); 834 835 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 836 Record.push_back(MDs[i].first); 837 Record.push_back(VE.getValueID(MDs[i].second)); 838 } 839 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 840 Record.clear(); 841 } 842 843 Stream.ExitBlock(); 844 } 845 846 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 847 SmallVector<uint64_t, 64> Record; 848 849 // Write metadata kinds 850 // METADATA_KIND - [n x [id, name]] 851 SmallVector<StringRef, 8> Names; 852 M->getMDKindNames(Names); 853 854 if (Names.empty()) return; 855 856 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 857 858 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 859 Record.push_back(MDKindID); 860 StringRef KName = Names[MDKindID]; 861 Record.append(KName.begin(), KName.end()); 862 863 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 864 Record.clear(); 865 } 866 867 Stream.ExitBlock(); 868 } 869 870 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 871 if ((int64_t)V >= 0) 872 Vals.push_back(V << 1); 873 else 874 Vals.push_back((-V << 1) | 1); 875 } 876 877 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 878 const ValueEnumerator &VE, 879 BitstreamWriter &Stream, bool isGlobal) { 880 if (FirstVal == LastVal) return; 881 882 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 883 884 unsigned AggregateAbbrev = 0; 885 unsigned String8Abbrev = 0; 886 unsigned CString7Abbrev = 0; 887 unsigned CString6Abbrev = 0; 888 // If this is a constant pool for the module, emit module-specific abbrevs. 889 if (isGlobal) { 890 // Abbrev for CST_CODE_AGGREGATE. 891 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 892 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 895 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 896 897 // Abbrev for CST_CODE_STRING. 898 Abbv = new BitCodeAbbrev(); 899 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 902 String8Abbrev = Stream.EmitAbbrev(Abbv); 903 // Abbrev for CST_CODE_CSTRING. 904 Abbv = new BitCodeAbbrev(); 905 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 908 CString7Abbrev = Stream.EmitAbbrev(Abbv); 909 // Abbrev for CST_CODE_CSTRING. 910 Abbv = new BitCodeAbbrev(); 911 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 914 CString6Abbrev = Stream.EmitAbbrev(Abbv); 915 } 916 917 SmallVector<uint64_t, 64> Record; 918 919 const ValueEnumerator::ValueList &Vals = VE.getValues(); 920 Type *LastTy = nullptr; 921 for (unsigned i = FirstVal; i != LastVal; ++i) { 922 const Value *V = Vals[i].first; 923 // If we need to switch types, do so now. 924 if (V->getType() != LastTy) { 925 LastTy = V->getType(); 926 Record.push_back(VE.getTypeID(LastTy)); 927 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 928 CONSTANTS_SETTYPE_ABBREV); 929 Record.clear(); 930 } 931 932 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 933 Record.push_back(unsigned(IA->hasSideEffects()) | 934 unsigned(IA->isAlignStack()) << 1 | 935 unsigned(IA->getDialect()&1) << 2); 936 937 // Add the asm string. 938 const std::string &AsmStr = IA->getAsmString(); 939 Record.push_back(AsmStr.size()); 940 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 941 Record.push_back(AsmStr[i]); 942 943 // Add the constraint string. 944 const std::string &ConstraintStr = IA->getConstraintString(); 945 Record.push_back(ConstraintStr.size()); 946 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 947 Record.push_back(ConstraintStr[i]); 948 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 949 Record.clear(); 950 continue; 951 } 952 const Constant *C = cast<Constant>(V); 953 unsigned Code = -1U; 954 unsigned AbbrevToUse = 0; 955 if (C->isNullValue()) { 956 Code = bitc::CST_CODE_NULL; 957 } else if (isa<UndefValue>(C)) { 958 Code = bitc::CST_CODE_UNDEF; 959 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 960 if (IV->getBitWidth() <= 64) { 961 uint64_t V = IV->getSExtValue(); 962 emitSignedInt64(Record, V); 963 Code = bitc::CST_CODE_INTEGER; 964 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 965 } else { // Wide integers, > 64 bits in size. 966 // We have an arbitrary precision integer value to write whose 967 // bit width is > 64. However, in canonical unsigned integer 968 // format it is likely that the high bits are going to be zero. 969 // So, we only write the number of active words. 970 unsigned NWords = IV->getValue().getActiveWords(); 971 const uint64_t *RawWords = IV->getValue().getRawData(); 972 for (unsigned i = 0; i != NWords; ++i) { 973 emitSignedInt64(Record, RawWords[i]); 974 } 975 Code = bitc::CST_CODE_WIDE_INTEGER; 976 } 977 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 978 Code = bitc::CST_CODE_FLOAT; 979 Type *Ty = CFP->getType(); 980 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 981 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 982 } else if (Ty->isX86_FP80Ty()) { 983 // api needed to prevent premature destruction 984 // bits are not in the same order as a normal i80 APInt, compensate. 985 APInt api = CFP->getValueAPF().bitcastToAPInt(); 986 const uint64_t *p = api.getRawData(); 987 Record.push_back((p[1] << 48) | (p[0] >> 16)); 988 Record.push_back(p[0] & 0xffffLL); 989 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 990 APInt api = CFP->getValueAPF().bitcastToAPInt(); 991 const uint64_t *p = api.getRawData(); 992 Record.push_back(p[0]); 993 Record.push_back(p[1]); 994 } else { 995 assert (0 && "Unknown FP type!"); 996 } 997 } else if (isa<ConstantDataSequential>(C) && 998 cast<ConstantDataSequential>(C)->isString()) { 999 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1000 // Emit constant strings specially. 1001 unsigned NumElts = Str->getNumElements(); 1002 // If this is a null-terminated string, use the denser CSTRING encoding. 1003 if (Str->isCString()) { 1004 Code = bitc::CST_CODE_CSTRING; 1005 --NumElts; // Don't encode the null, which isn't allowed by char6. 1006 } else { 1007 Code = bitc::CST_CODE_STRING; 1008 AbbrevToUse = String8Abbrev; 1009 } 1010 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1011 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1012 for (unsigned i = 0; i != NumElts; ++i) { 1013 unsigned char V = Str->getElementAsInteger(i); 1014 Record.push_back(V); 1015 isCStr7 &= (V & 128) == 0; 1016 if (isCStrChar6) 1017 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1018 } 1019 1020 if (isCStrChar6) 1021 AbbrevToUse = CString6Abbrev; 1022 else if (isCStr7) 1023 AbbrevToUse = CString7Abbrev; 1024 } else if (const ConstantDataSequential *CDS = 1025 dyn_cast<ConstantDataSequential>(C)) { 1026 Code = bitc::CST_CODE_DATA; 1027 Type *EltTy = CDS->getType()->getElementType(); 1028 if (isa<IntegerType>(EltTy)) { 1029 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1030 Record.push_back(CDS->getElementAsInteger(i)); 1031 } else if (EltTy->isFloatTy()) { 1032 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1033 union { float F; uint32_t I; }; 1034 F = CDS->getElementAsFloat(i); 1035 Record.push_back(I); 1036 } 1037 } else { 1038 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1039 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1040 union { double F; uint64_t I; }; 1041 F = CDS->getElementAsDouble(i); 1042 Record.push_back(I); 1043 } 1044 } 1045 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1046 isa<ConstantVector>(C)) { 1047 Code = bitc::CST_CODE_AGGREGATE; 1048 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1049 Record.push_back(VE.getValueID(C->getOperand(i))); 1050 AbbrevToUse = AggregateAbbrev; 1051 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1052 switch (CE->getOpcode()) { 1053 default: 1054 if (Instruction::isCast(CE->getOpcode())) { 1055 Code = bitc::CST_CODE_CE_CAST; 1056 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1057 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1058 Record.push_back(VE.getValueID(C->getOperand(0))); 1059 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1060 } else { 1061 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1062 Code = bitc::CST_CODE_CE_BINOP; 1063 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1064 Record.push_back(VE.getValueID(C->getOperand(0))); 1065 Record.push_back(VE.getValueID(C->getOperand(1))); 1066 uint64_t Flags = GetOptimizationFlags(CE); 1067 if (Flags != 0) 1068 Record.push_back(Flags); 1069 } 1070 break; 1071 case Instruction::GetElementPtr: 1072 Code = bitc::CST_CODE_CE_GEP; 1073 if (cast<GEPOperator>(C)->isInBounds()) 1074 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1075 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1076 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1077 Record.push_back(VE.getValueID(C->getOperand(i))); 1078 } 1079 break; 1080 case Instruction::Select: 1081 Code = bitc::CST_CODE_CE_SELECT; 1082 Record.push_back(VE.getValueID(C->getOperand(0))); 1083 Record.push_back(VE.getValueID(C->getOperand(1))); 1084 Record.push_back(VE.getValueID(C->getOperand(2))); 1085 break; 1086 case Instruction::ExtractElement: 1087 Code = bitc::CST_CODE_CE_EXTRACTELT; 1088 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1089 Record.push_back(VE.getValueID(C->getOperand(0))); 1090 Record.push_back(VE.getValueID(C->getOperand(1))); 1091 break; 1092 case Instruction::InsertElement: 1093 Code = bitc::CST_CODE_CE_INSERTELT; 1094 Record.push_back(VE.getValueID(C->getOperand(0))); 1095 Record.push_back(VE.getValueID(C->getOperand(1))); 1096 Record.push_back(VE.getValueID(C->getOperand(2))); 1097 break; 1098 case Instruction::ShuffleVector: 1099 // If the return type and argument types are the same, this is a 1100 // standard shufflevector instruction. If the types are different, 1101 // then the shuffle is widening or truncating the input vectors, and 1102 // the argument type must also be encoded. 1103 if (C->getType() == C->getOperand(0)->getType()) { 1104 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1105 } else { 1106 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1107 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1108 } 1109 Record.push_back(VE.getValueID(C->getOperand(0))); 1110 Record.push_back(VE.getValueID(C->getOperand(1))); 1111 Record.push_back(VE.getValueID(C->getOperand(2))); 1112 break; 1113 case Instruction::ICmp: 1114 case Instruction::FCmp: 1115 Code = bitc::CST_CODE_CE_CMP; 1116 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1117 Record.push_back(VE.getValueID(C->getOperand(0))); 1118 Record.push_back(VE.getValueID(C->getOperand(1))); 1119 Record.push_back(CE->getPredicate()); 1120 break; 1121 } 1122 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1123 Code = bitc::CST_CODE_BLOCKADDRESS; 1124 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1125 Record.push_back(VE.getValueID(BA->getFunction())); 1126 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1127 } else { 1128 #ifndef NDEBUG 1129 C->dump(); 1130 #endif 1131 llvm_unreachable("Unknown constant!"); 1132 } 1133 Stream.EmitRecord(Code, Record, AbbrevToUse); 1134 Record.clear(); 1135 } 1136 1137 Stream.ExitBlock(); 1138 } 1139 1140 static void WriteModuleConstants(const ValueEnumerator &VE, 1141 BitstreamWriter &Stream) { 1142 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1143 1144 // Find the first constant to emit, which is the first non-globalvalue value. 1145 // We know globalvalues have been emitted by WriteModuleInfo. 1146 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1147 if (!isa<GlobalValue>(Vals[i].first)) { 1148 WriteConstants(i, Vals.size(), VE, Stream, true); 1149 return; 1150 } 1151 } 1152 } 1153 1154 /// PushValueAndType - The file has to encode both the value and type id for 1155 /// many values, because we need to know what type to create for forward 1156 /// references. However, most operands are not forward references, so this type 1157 /// field is not needed. 1158 /// 1159 /// This function adds V's value ID to Vals. If the value ID is higher than the 1160 /// instruction ID, then it is a forward reference, and it also includes the 1161 /// type ID. The value ID that is written is encoded relative to the InstID. 1162 static bool PushValueAndType(const Value *V, unsigned InstID, 1163 SmallVectorImpl<unsigned> &Vals, 1164 ValueEnumerator &VE) { 1165 unsigned ValID = VE.getValueID(V); 1166 // Make encoding relative to the InstID. 1167 Vals.push_back(InstID - ValID); 1168 if (ValID >= InstID) { 1169 Vals.push_back(VE.getTypeID(V->getType())); 1170 return true; 1171 } 1172 return false; 1173 } 1174 1175 /// pushValue - Like PushValueAndType, but where the type of the value is 1176 /// omitted (perhaps it was already encoded in an earlier operand). 1177 static void pushValue(const Value *V, unsigned InstID, 1178 SmallVectorImpl<unsigned> &Vals, 1179 ValueEnumerator &VE) { 1180 unsigned ValID = VE.getValueID(V); 1181 Vals.push_back(InstID - ValID); 1182 } 1183 1184 static void pushValueSigned(const Value *V, unsigned InstID, 1185 SmallVectorImpl<uint64_t> &Vals, 1186 ValueEnumerator &VE) { 1187 unsigned ValID = VE.getValueID(V); 1188 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1189 emitSignedInt64(Vals, diff); 1190 } 1191 1192 /// WriteInstruction - Emit an instruction to the specified stream. 1193 static void WriteInstruction(const Instruction &I, unsigned InstID, 1194 ValueEnumerator &VE, BitstreamWriter &Stream, 1195 SmallVectorImpl<unsigned> &Vals) { 1196 unsigned Code = 0; 1197 unsigned AbbrevToUse = 0; 1198 VE.setInstructionID(&I); 1199 switch (I.getOpcode()) { 1200 default: 1201 if (Instruction::isCast(I.getOpcode())) { 1202 Code = bitc::FUNC_CODE_INST_CAST; 1203 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1204 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1205 Vals.push_back(VE.getTypeID(I.getType())); 1206 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1207 } else { 1208 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1209 Code = bitc::FUNC_CODE_INST_BINOP; 1210 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1211 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1212 pushValue(I.getOperand(1), InstID, Vals, VE); 1213 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1214 uint64_t Flags = GetOptimizationFlags(&I); 1215 if (Flags != 0) { 1216 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1217 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1218 Vals.push_back(Flags); 1219 } 1220 } 1221 break; 1222 1223 case Instruction::GetElementPtr: 1224 Code = bitc::FUNC_CODE_INST_GEP; 1225 if (cast<GEPOperator>(&I)->isInBounds()) 1226 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1227 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1228 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1229 break; 1230 case Instruction::ExtractValue: { 1231 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1232 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1233 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1234 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1235 Vals.push_back(*i); 1236 break; 1237 } 1238 case Instruction::InsertValue: { 1239 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1240 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1241 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1242 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1243 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1244 Vals.push_back(*i); 1245 break; 1246 } 1247 case Instruction::Select: 1248 Code = bitc::FUNC_CODE_INST_VSELECT; 1249 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1250 pushValue(I.getOperand(2), InstID, Vals, VE); 1251 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1252 break; 1253 case Instruction::ExtractElement: 1254 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1255 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1256 pushValue(I.getOperand(1), InstID, Vals, VE); 1257 break; 1258 case Instruction::InsertElement: 1259 Code = bitc::FUNC_CODE_INST_INSERTELT; 1260 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1261 pushValue(I.getOperand(1), InstID, Vals, VE); 1262 pushValue(I.getOperand(2), InstID, Vals, VE); 1263 break; 1264 case Instruction::ShuffleVector: 1265 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1266 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1267 pushValue(I.getOperand(1), InstID, Vals, VE); 1268 pushValue(I.getOperand(2), InstID, Vals, VE); 1269 break; 1270 case Instruction::ICmp: 1271 case Instruction::FCmp: 1272 // compare returning Int1Ty or vector of Int1Ty 1273 Code = bitc::FUNC_CODE_INST_CMP2; 1274 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1275 pushValue(I.getOperand(1), InstID, Vals, VE); 1276 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1277 break; 1278 1279 case Instruction::Ret: 1280 { 1281 Code = bitc::FUNC_CODE_INST_RET; 1282 unsigned NumOperands = I.getNumOperands(); 1283 if (NumOperands == 0) 1284 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1285 else if (NumOperands == 1) { 1286 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1287 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1288 } else { 1289 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1290 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1291 } 1292 } 1293 break; 1294 case Instruction::Br: 1295 { 1296 Code = bitc::FUNC_CODE_INST_BR; 1297 const BranchInst &II = cast<BranchInst>(I); 1298 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1299 if (II.isConditional()) { 1300 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1301 pushValue(II.getCondition(), InstID, Vals, VE); 1302 } 1303 } 1304 break; 1305 case Instruction::Switch: 1306 { 1307 Code = bitc::FUNC_CODE_INST_SWITCH; 1308 const SwitchInst &SI = cast<SwitchInst>(I); 1309 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1310 pushValue(SI.getCondition(), InstID, Vals, VE); 1311 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1312 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1313 i != e; ++i) { 1314 Vals.push_back(VE.getValueID(i.getCaseValue())); 1315 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1316 } 1317 } 1318 break; 1319 case Instruction::IndirectBr: 1320 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1321 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1322 // Encode the address operand as relative, but not the basic blocks. 1323 pushValue(I.getOperand(0), InstID, Vals, VE); 1324 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1325 Vals.push_back(VE.getValueID(I.getOperand(i))); 1326 break; 1327 1328 case Instruction::Invoke: { 1329 const InvokeInst *II = cast<InvokeInst>(&I); 1330 const Value *Callee(II->getCalledValue()); 1331 PointerType *PTy = cast<PointerType>(Callee->getType()); 1332 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1333 Code = bitc::FUNC_CODE_INST_INVOKE; 1334 1335 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1336 Vals.push_back(II->getCallingConv()); 1337 Vals.push_back(VE.getValueID(II->getNormalDest())); 1338 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1339 PushValueAndType(Callee, InstID, Vals, VE); 1340 1341 // Emit value #'s for the fixed parameters. 1342 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1343 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1344 1345 // Emit type/value pairs for varargs params. 1346 if (FTy->isVarArg()) { 1347 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1348 i != e; ++i) 1349 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1350 } 1351 break; 1352 } 1353 case Instruction::Resume: 1354 Code = bitc::FUNC_CODE_INST_RESUME; 1355 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1356 break; 1357 case Instruction::Unreachable: 1358 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1359 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1360 break; 1361 1362 case Instruction::PHI: { 1363 const PHINode &PN = cast<PHINode>(I); 1364 Code = bitc::FUNC_CODE_INST_PHI; 1365 // With the newer instruction encoding, forward references could give 1366 // negative valued IDs. This is most common for PHIs, so we use 1367 // signed VBRs. 1368 SmallVector<uint64_t, 128> Vals64; 1369 Vals64.push_back(VE.getTypeID(PN.getType())); 1370 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1371 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1372 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1373 } 1374 // Emit a Vals64 vector and exit. 1375 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1376 Vals64.clear(); 1377 return; 1378 } 1379 1380 case Instruction::LandingPad: { 1381 const LandingPadInst &LP = cast<LandingPadInst>(I); 1382 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1383 Vals.push_back(VE.getTypeID(LP.getType())); 1384 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1385 Vals.push_back(LP.isCleanup()); 1386 Vals.push_back(LP.getNumClauses()); 1387 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1388 if (LP.isCatch(I)) 1389 Vals.push_back(LandingPadInst::Catch); 1390 else 1391 Vals.push_back(LandingPadInst::Filter); 1392 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1393 } 1394 break; 1395 } 1396 1397 case Instruction::Alloca: 1398 Code = bitc::FUNC_CODE_INST_ALLOCA; 1399 Vals.push_back(VE.getTypeID(I.getType())); 1400 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1401 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1402 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1403 break; 1404 1405 case Instruction::Load: 1406 if (cast<LoadInst>(I).isAtomic()) { 1407 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1408 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1409 } else { 1410 Code = bitc::FUNC_CODE_INST_LOAD; 1411 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1412 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1413 } 1414 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1415 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1416 if (cast<LoadInst>(I).isAtomic()) { 1417 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1418 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1419 } 1420 break; 1421 case Instruction::Store: 1422 if (cast<StoreInst>(I).isAtomic()) 1423 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1424 else 1425 Code = bitc::FUNC_CODE_INST_STORE; 1426 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1427 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1428 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1429 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1430 if (cast<StoreInst>(I).isAtomic()) { 1431 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1432 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1433 } 1434 break; 1435 case Instruction::AtomicCmpXchg: 1436 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1437 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1438 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1439 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1440 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1441 Vals.push_back(GetEncodedOrdering( 1442 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1443 Vals.push_back(GetEncodedSynchScope( 1444 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1445 Vals.push_back(GetEncodedOrdering( 1446 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1447 break; 1448 case Instruction::AtomicRMW: 1449 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1450 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1451 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1452 Vals.push_back(GetEncodedRMWOperation( 1453 cast<AtomicRMWInst>(I).getOperation())); 1454 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1455 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1456 Vals.push_back(GetEncodedSynchScope( 1457 cast<AtomicRMWInst>(I).getSynchScope())); 1458 break; 1459 case Instruction::Fence: 1460 Code = bitc::FUNC_CODE_INST_FENCE; 1461 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1462 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1463 break; 1464 case Instruction::Call: { 1465 const CallInst &CI = cast<CallInst>(I); 1466 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1467 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1468 1469 Code = bitc::FUNC_CODE_INST_CALL; 1470 1471 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1472 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1473 unsigned(CI.isMustTailCall()) << 14); 1474 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1475 1476 // Emit value #'s for the fixed parameters. 1477 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1478 // Check for labels (can happen with asm labels). 1479 if (FTy->getParamType(i)->isLabelTy()) 1480 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1481 else 1482 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1483 } 1484 1485 // Emit type/value pairs for varargs params. 1486 if (FTy->isVarArg()) { 1487 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1488 i != e; ++i) 1489 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1490 } 1491 break; 1492 } 1493 case Instruction::VAArg: 1494 Code = bitc::FUNC_CODE_INST_VAARG; 1495 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1496 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1497 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1498 break; 1499 } 1500 1501 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1502 Vals.clear(); 1503 } 1504 1505 // Emit names for globals/functions etc. 1506 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1507 const ValueEnumerator &VE, 1508 BitstreamWriter &Stream) { 1509 if (VST.empty()) return; 1510 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1511 1512 // FIXME: Set up the abbrev, we know how many values there are! 1513 // FIXME: We know if the type names can use 7-bit ascii. 1514 SmallVector<unsigned, 64> NameVals; 1515 1516 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1517 SI != SE; ++SI) { 1518 1519 const ValueName &Name = *SI; 1520 1521 // Figure out the encoding to use for the name. 1522 bool is7Bit = true; 1523 bool isChar6 = true; 1524 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1525 C != E; ++C) { 1526 if (isChar6) 1527 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1528 if ((unsigned char)*C & 128) { 1529 is7Bit = false; 1530 break; // don't bother scanning the rest. 1531 } 1532 } 1533 1534 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1535 1536 // VST_ENTRY: [valueid, namechar x N] 1537 // VST_BBENTRY: [bbid, namechar x N] 1538 unsigned Code; 1539 if (isa<BasicBlock>(SI->getValue())) { 1540 Code = bitc::VST_CODE_BBENTRY; 1541 if (isChar6) 1542 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1543 } else { 1544 Code = bitc::VST_CODE_ENTRY; 1545 if (isChar6) 1546 AbbrevToUse = VST_ENTRY_6_ABBREV; 1547 else if (is7Bit) 1548 AbbrevToUse = VST_ENTRY_7_ABBREV; 1549 } 1550 1551 NameVals.push_back(VE.getValueID(SI->getValue())); 1552 for (const char *P = Name.getKeyData(), 1553 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1554 NameVals.push_back((unsigned char)*P); 1555 1556 // Emit the finished record. 1557 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1558 NameVals.clear(); 1559 } 1560 Stream.ExitBlock(); 1561 } 1562 1563 /// WriteFunction - Emit a function body to the module stream. 1564 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1565 BitstreamWriter &Stream) { 1566 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1567 VE.incorporateFunction(F); 1568 1569 SmallVector<unsigned, 64> Vals; 1570 1571 // Emit the number of basic blocks, so the reader can create them ahead of 1572 // time. 1573 Vals.push_back(VE.getBasicBlocks().size()); 1574 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1575 Vals.clear(); 1576 1577 // If there are function-local constants, emit them now. 1578 unsigned CstStart, CstEnd; 1579 VE.getFunctionConstantRange(CstStart, CstEnd); 1580 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1581 1582 // If there is function-local metadata, emit it now. 1583 WriteFunctionLocalMetadata(F, VE, Stream); 1584 1585 // Keep a running idea of what the instruction ID is. 1586 unsigned InstID = CstEnd; 1587 1588 bool NeedsMetadataAttachment = false; 1589 1590 DebugLoc LastDL; 1591 1592 // Finally, emit all the instructions, in order. 1593 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1594 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1595 I != E; ++I) { 1596 WriteInstruction(*I, InstID, VE, Stream, Vals); 1597 1598 if (!I->getType()->isVoidTy()) 1599 ++InstID; 1600 1601 // If the instruction has metadata, write a metadata attachment later. 1602 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1603 1604 // If the instruction has a debug location, emit it. 1605 DebugLoc DL = I->getDebugLoc(); 1606 if (DL.isUnknown()) { 1607 // nothing todo. 1608 } else if (DL == LastDL) { 1609 // Just repeat the same debug loc as last time. 1610 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1611 } else { 1612 MDNode *Scope, *IA; 1613 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1614 1615 Vals.push_back(DL.getLine()); 1616 Vals.push_back(DL.getCol()); 1617 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1618 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1619 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1620 Vals.clear(); 1621 1622 LastDL = DL; 1623 } 1624 } 1625 1626 // Emit names for all the instructions etc. 1627 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1628 1629 if (NeedsMetadataAttachment) 1630 WriteMetadataAttachment(F, VE, Stream); 1631 VE.purgeFunction(); 1632 Stream.ExitBlock(); 1633 } 1634 1635 // Emit blockinfo, which defines the standard abbreviations etc. 1636 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1637 // We only want to emit block info records for blocks that have multiple 1638 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1639 // Other blocks can define their abbrevs inline. 1640 Stream.EnterBlockInfoBlock(2); 1641 1642 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1643 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1648 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1649 Abbv) != VST_ENTRY_8_ABBREV) 1650 llvm_unreachable("Unexpected abbrev ordering!"); 1651 } 1652 1653 { // 7-bit fixed width VST_ENTRY strings. 1654 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1655 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1659 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1660 Abbv) != VST_ENTRY_7_ABBREV) 1661 llvm_unreachable("Unexpected abbrev ordering!"); 1662 } 1663 { // 6-bit char6 VST_ENTRY strings. 1664 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1665 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1669 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1670 Abbv) != VST_ENTRY_6_ABBREV) 1671 llvm_unreachable("Unexpected abbrev ordering!"); 1672 } 1673 { // 6-bit char6 VST_BBENTRY strings. 1674 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1675 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1679 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1680 Abbv) != VST_BBENTRY_6_ABBREV) 1681 llvm_unreachable("Unexpected abbrev ordering!"); 1682 } 1683 1684 1685 1686 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1687 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1688 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1690 Log2_32_Ceil(VE.getTypes().size()+1))); 1691 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1692 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1693 llvm_unreachable("Unexpected abbrev ordering!"); 1694 } 1695 1696 { // INTEGER abbrev for CONSTANTS_BLOCK. 1697 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1698 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1700 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1701 Abbv) != CONSTANTS_INTEGER_ABBREV) 1702 llvm_unreachable("Unexpected abbrev ordering!"); 1703 } 1704 1705 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1706 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1707 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1710 Log2_32_Ceil(VE.getTypes().size()+1))); 1711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1712 1713 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1714 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1715 llvm_unreachable("Unexpected abbrev ordering!"); 1716 } 1717 { // NULL abbrev for CONSTANTS_BLOCK. 1718 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1719 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1720 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1721 Abbv) != CONSTANTS_NULL_Abbrev) 1722 llvm_unreachable("Unexpected abbrev ordering!"); 1723 } 1724 1725 // FIXME: This should only use space for first class types! 1726 1727 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1728 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1729 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1733 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1734 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1735 llvm_unreachable("Unexpected abbrev ordering!"); 1736 } 1737 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1738 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1739 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1743 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1744 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1745 llvm_unreachable("Unexpected abbrev ordering!"); 1746 } 1747 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1748 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1749 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1754 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1755 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1756 llvm_unreachable("Unexpected abbrev ordering!"); 1757 } 1758 { // INST_CAST abbrev for FUNCTION_BLOCK. 1759 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1760 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1763 Log2_32_Ceil(VE.getTypes().size()+1))); 1764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1765 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1766 Abbv) != FUNCTION_INST_CAST_ABBREV) 1767 llvm_unreachable("Unexpected abbrev ordering!"); 1768 } 1769 1770 { // INST_RET abbrev for FUNCTION_BLOCK. 1771 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1772 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1773 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1774 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1775 llvm_unreachable("Unexpected abbrev ordering!"); 1776 } 1777 { // INST_RET abbrev for FUNCTION_BLOCK. 1778 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1779 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1781 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1782 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1783 llvm_unreachable("Unexpected abbrev ordering!"); 1784 } 1785 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1786 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1787 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1788 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1789 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1790 llvm_unreachable("Unexpected abbrev ordering!"); 1791 } 1792 1793 Stream.ExitBlock(); 1794 } 1795 1796 // Sort the Users based on the order in which the reader parses the bitcode 1797 // file. 1798 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1799 // TODO: Implement. 1800 return true; 1801 } 1802 1803 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1804 BitstreamWriter &Stream) { 1805 1806 // One or zero uses can't get out of order. 1807 if (V->use_empty() || V->hasNUses(1)) 1808 return; 1809 1810 // Make a copy of the in-memory use-list for sorting. 1811 SmallVector<const User*, 8> UserList(V->user_begin(), V->user_end()); 1812 1813 // Sort the copy based on the order read by the BitcodeReader. 1814 std::sort(UserList.begin(), UserList.end(), bitcodereader_order); 1815 1816 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1817 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1818 1819 // TODO: Emit the USELIST_CODE_ENTRYs. 1820 } 1821 1822 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1823 BitstreamWriter &Stream) { 1824 VE.incorporateFunction(*F); 1825 1826 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1827 AI != AE; ++AI) 1828 WriteUseList(AI, VE, Stream); 1829 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1830 ++BB) { 1831 WriteUseList(BB, VE, Stream); 1832 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1833 ++II) { 1834 WriteUseList(II, VE, Stream); 1835 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1836 OI != E; ++OI) { 1837 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1838 isa<InlineAsm>(*OI)) 1839 WriteUseList(*OI, VE, Stream); 1840 } 1841 } 1842 } 1843 VE.purgeFunction(); 1844 } 1845 1846 // Emit use-lists. 1847 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1848 BitstreamWriter &Stream) { 1849 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1850 1851 // XXX: this modifies the module, but in a way that should never change the 1852 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1853 // contain entries in the use_list that do not exist in the Module and are 1854 // not stored in the .bc file. 1855 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1856 I != E; ++I) 1857 I->removeDeadConstantUsers(); 1858 1859 // Write the global variables. 1860 for (Module::const_global_iterator GI = M->global_begin(), 1861 GE = M->global_end(); GI != GE; ++GI) { 1862 WriteUseList(GI, VE, Stream); 1863 1864 // Write the global variable initializers. 1865 if (GI->hasInitializer()) 1866 WriteUseList(GI->getInitializer(), VE, Stream); 1867 } 1868 1869 // Write the functions. 1870 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1871 WriteUseList(FI, VE, Stream); 1872 if (!FI->isDeclaration()) 1873 WriteFunctionUseList(FI, VE, Stream); 1874 if (FI->hasPrefixData()) 1875 WriteUseList(FI->getPrefixData(), VE, Stream); 1876 } 1877 1878 // Write the aliases. 1879 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1880 AI != AE; ++AI) { 1881 WriteUseList(AI, VE, Stream); 1882 WriteUseList(AI->getAliasee(), VE, Stream); 1883 } 1884 1885 Stream.ExitBlock(); 1886 } 1887 1888 /// WriteModule - Emit the specified module to the bitstream. 1889 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1890 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1891 1892 SmallVector<unsigned, 1> Vals; 1893 unsigned CurVersion = 1; 1894 Vals.push_back(CurVersion); 1895 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1896 1897 // Analyze the module, enumerating globals, functions, etc. 1898 ValueEnumerator VE(M); 1899 1900 // Emit blockinfo, which defines the standard abbreviations etc. 1901 WriteBlockInfo(VE, Stream); 1902 1903 // Emit information about attribute groups. 1904 WriteAttributeGroupTable(VE, Stream); 1905 1906 // Emit information about parameter attributes. 1907 WriteAttributeTable(VE, Stream); 1908 1909 // Emit information describing all of the types in the module. 1910 WriteTypeTable(VE, Stream); 1911 1912 // Emit top-level description of module, including target triple, inline asm, 1913 // descriptors for global variables, and function prototype info. 1914 WriteModuleInfo(M, VE, Stream); 1915 1916 // Emit constants. 1917 WriteModuleConstants(VE, Stream); 1918 1919 // Emit metadata. 1920 WriteModuleMetadata(M, VE, Stream); 1921 1922 // Emit metadata. 1923 WriteModuleMetadataStore(M, Stream); 1924 1925 // Emit names for globals/functions etc. 1926 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1927 1928 // Emit use-lists. 1929 if (EnablePreserveUseListOrdering) 1930 WriteModuleUseLists(M, VE, Stream); 1931 1932 // Emit function bodies. 1933 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1934 if (!F->isDeclaration()) 1935 WriteFunction(*F, VE, Stream); 1936 1937 Stream.ExitBlock(); 1938 } 1939 1940 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1941 /// header and trailer to make it compatible with the system archiver. To do 1942 /// this we emit the following header, and then emit a trailer that pads the 1943 /// file out to be a multiple of 16 bytes. 1944 /// 1945 /// struct bc_header { 1946 /// uint32_t Magic; // 0x0B17C0DE 1947 /// uint32_t Version; // Version, currently always 0. 1948 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1949 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1950 /// uint32_t CPUType; // CPU specifier. 1951 /// ... potentially more later ... 1952 /// }; 1953 enum { 1954 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1955 DarwinBCHeaderSize = 5*4 1956 }; 1957 1958 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1959 uint32_t &Position) { 1960 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1961 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1962 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1963 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1964 Position += 4; 1965 } 1966 1967 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1968 const Triple &TT) { 1969 unsigned CPUType = ~0U; 1970 1971 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1972 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1973 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1974 // specific constants here because they are implicitly part of the Darwin ABI. 1975 enum { 1976 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1977 DARWIN_CPU_TYPE_X86 = 7, 1978 DARWIN_CPU_TYPE_ARM = 12, 1979 DARWIN_CPU_TYPE_POWERPC = 18 1980 }; 1981 1982 Triple::ArchType Arch = TT.getArch(); 1983 if (Arch == Triple::x86_64) 1984 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1985 else if (Arch == Triple::x86) 1986 CPUType = DARWIN_CPU_TYPE_X86; 1987 else if (Arch == Triple::ppc) 1988 CPUType = DARWIN_CPU_TYPE_POWERPC; 1989 else if (Arch == Triple::ppc64) 1990 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1991 else if (Arch == Triple::arm || Arch == Triple::thumb) 1992 CPUType = DARWIN_CPU_TYPE_ARM; 1993 1994 // Traditional Bitcode starts after header. 1995 assert(Buffer.size() >= DarwinBCHeaderSize && 1996 "Expected header size to be reserved"); 1997 unsigned BCOffset = DarwinBCHeaderSize; 1998 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 1999 2000 // Write the magic and version. 2001 unsigned Position = 0; 2002 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2003 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2004 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2005 WriteInt32ToBuffer(BCSize , Buffer, Position); 2006 WriteInt32ToBuffer(CPUType , Buffer, Position); 2007 2008 // If the file is not a multiple of 16 bytes, insert dummy padding. 2009 while (Buffer.size() & 15) 2010 Buffer.push_back(0); 2011 } 2012 2013 /// WriteBitcodeToFile - Write the specified module to the specified output 2014 /// stream. 2015 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2016 SmallVector<char, 0> Buffer; 2017 Buffer.reserve(256*1024); 2018 2019 // If this is darwin or another generic macho target, reserve space for the 2020 // header. 2021 Triple TT(M->getTargetTriple()); 2022 if (TT.isOSDarwin()) 2023 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2024 2025 // Emit the module into the buffer. 2026 { 2027 BitstreamWriter Stream(Buffer); 2028 2029 // Emit the file header. 2030 Stream.Emit((unsigned)'B', 8); 2031 Stream.Emit((unsigned)'C', 8); 2032 Stream.Emit(0x0, 4); 2033 Stream.Emit(0xC, 4); 2034 Stream.Emit(0xE, 4); 2035 Stream.Emit(0xD, 4); 2036 2037 // Emit the module. 2038 WriteModule(M, Stream); 2039 } 2040 2041 if (TT.isOSDarwin()) 2042 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2043 2044 // Write the generated bitstream to "Out". 2045 Out.write((char*)&Buffer.front(), Buffer.size()); 2046 } 2047