1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueSymbolTable.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Program.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV, 64 65 // SwitchInst Magic 66 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 67 }; 68 69 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 70 switch (Opcode) { 71 default: llvm_unreachable("Unknown cast instruction!"); 72 case Instruction::Trunc : return bitc::CAST_TRUNC; 73 case Instruction::ZExt : return bitc::CAST_ZEXT; 74 case Instruction::SExt : return bitc::CAST_SEXT; 75 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 76 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 77 case Instruction::UIToFP : return bitc::CAST_UITOFP; 78 case Instruction::SIToFP : return bitc::CAST_SITOFP; 79 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 80 case Instruction::FPExt : return bitc::CAST_FPEXT; 81 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 82 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 83 case Instruction::BitCast : return bitc::CAST_BITCAST; 84 } 85 } 86 87 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 88 switch (Opcode) { 89 default: llvm_unreachable("Unknown binary instruction!"); 90 case Instruction::Add: 91 case Instruction::FAdd: return bitc::BINOP_ADD; 92 case Instruction::Sub: 93 case Instruction::FSub: return bitc::BINOP_SUB; 94 case Instruction::Mul: 95 case Instruction::FMul: return bitc::BINOP_MUL; 96 case Instruction::UDiv: return bitc::BINOP_UDIV; 97 case Instruction::FDiv: 98 case Instruction::SDiv: return bitc::BINOP_SDIV; 99 case Instruction::URem: return bitc::BINOP_UREM; 100 case Instruction::FRem: 101 case Instruction::SRem: return bitc::BINOP_SREM; 102 case Instruction::Shl: return bitc::BINOP_SHL; 103 case Instruction::LShr: return bitc::BINOP_LSHR; 104 case Instruction::AShr: return bitc::BINOP_ASHR; 105 case Instruction::And: return bitc::BINOP_AND; 106 case Instruction::Or: return bitc::BINOP_OR; 107 case Instruction::Xor: return bitc::BINOP_XOR; 108 } 109 } 110 111 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 112 switch (Op) { 113 default: llvm_unreachable("Unknown RMW operation!"); 114 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 115 case AtomicRMWInst::Add: return bitc::RMW_ADD; 116 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 117 case AtomicRMWInst::And: return bitc::RMW_AND; 118 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 119 case AtomicRMWInst::Or: return bitc::RMW_OR; 120 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 121 case AtomicRMWInst::Max: return bitc::RMW_MAX; 122 case AtomicRMWInst::Min: return bitc::RMW_MIN; 123 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 124 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 125 } 126 } 127 128 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 129 switch (Ordering) { 130 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 131 case Unordered: return bitc::ORDERING_UNORDERED; 132 case Monotonic: return bitc::ORDERING_MONOTONIC; 133 case Acquire: return bitc::ORDERING_ACQUIRE; 134 case Release: return bitc::ORDERING_RELEASE; 135 case AcquireRelease: return bitc::ORDERING_ACQREL; 136 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 137 } 138 llvm_unreachable("Invalid ordering"); 139 } 140 141 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 142 switch (SynchScope) { 143 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 144 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 145 } 146 llvm_unreachable("Invalid synch scope"); 147 } 148 149 static void WriteStringRecord(unsigned Code, StringRef Str, 150 unsigned AbbrevToUse, BitstreamWriter &Stream) { 151 SmallVector<unsigned, 64> Vals; 152 153 // Code: [strchar x N] 154 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 155 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 156 AbbrevToUse = 0; 157 Vals.push_back(Str[i]); 158 } 159 160 // Emit the finished record. 161 Stream.EmitRecord(Code, Vals, AbbrevToUse); 162 } 163 164 /// \brief This returns an integer containing an encoding of all the LLVM 165 /// attributes found in the given attribute bitset. Any change to this encoding 166 /// is a breaking change to bitcode compatibility. 167 /// N.B. This should be used only by the bitcode writer! 168 static uint64_t encodeLLVMAttributesForBitcode(AttributeSet Attrs, 169 unsigned Index) { 170 // FIXME: Remove in 4.0! 171 172 // FIXME: It doesn't make sense to store the alignment information as an 173 // expanded out value, we should store it as a log2 value. However, we can't 174 // just change that here without breaking bitcode compatibility. If this ever 175 // becomes a problem in practice, we should introduce new tag numbers in the 176 // bitcode file and have those tags use a more efficiently encoded alignment 177 // field. 178 179 // Store the alignment in the bitcode as a 16-bit raw value instead of a 5-bit 180 // log2 encoded value. Shift the bits above the alignment up by 11 bits. 181 uint64_t EncodedAttrs = Attrs.Raw(Index) & 0xffff; 182 if (Attrs.hasAttribute(Index, Attribute::Alignment)) 183 EncodedAttrs |= Attrs.getParamAlignment(Index) << 16; 184 EncodedAttrs |= (Attrs.Raw(Index) & (0xffffULL << 21)) << 11; 185 return EncodedAttrs; 186 } 187 188 static void WriteAttributeTable(const ValueEnumerator &VE, 189 BitstreamWriter &Stream) { 190 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 191 if (Attrs.empty()) return; 192 193 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 194 195 SmallVector<uint64_t, 64> Record; 196 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 197 const AttributeSet &A = Attrs[i]; 198 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 199 unsigned Index = A.getSlotIndex(i); 200 Record.push_back(Index); 201 Record.push_back(encodeLLVMAttributesForBitcode(A.getSlotAttributes(i), 202 Index)); 203 } 204 205 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record); 206 Record.clear(); 207 } 208 209 Stream.ExitBlock(); 210 } 211 212 /// WriteTypeTable - Write out the type table for a module. 213 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 214 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 215 216 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 217 SmallVector<uint64_t, 64> TypeVals; 218 219 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 220 221 // Abbrev for TYPE_CODE_POINTER. 222 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 223 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 225 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 226 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 227 228 // Abbrev for TYPE_CODE_FUNCTION. 229 Abbv = new BitCodeAbbrev(); 230 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 234 235 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 236 237 // Abbrev for TYPE_CODE_STRUCT_ANON. 238 Abbv = new BitCodeAbbrev(); 239 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 243 244 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 245 246 // Abbrev for TYPE_CODE_STRUCT_NAME. 247 Abbv = new BitCodeAbbrev(); 248 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 251 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 252 253 // Abbrev for TYPE_CODE_STRUCT_NAMED. 254 Abbv = new BitCodeAbbrev(); 255 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 259 260 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 261 262 // Abbrev for TYPE_CODE_ARRAY. 263 Abbv = new BitCodeAbbrev(); 264 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 267 268 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 269 270 // Emit an entry count so the reader can reserve space. 271 TypeVals.push_back(TypeList.size()); 272 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 273 TypeVals.clear(); 274 275 // Loop over all of the types, emitting each in turn. 276 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 277 Type *T = TypeList[i]; 278 int AbbrevToUse = 0; 279 unsigned Code = 0; 280 281 switch (T->getTypeID()) { 282 default: llvm_unreachable("Unknown type!"); 283 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 284 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 285 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 286 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 287 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 288 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 289 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 290 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 291 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 292 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 293 case Type::IntegerTyID: 294 // INTEGER: [width] 295 Code = bitc::TYPE_CODE_INTEGER; 296 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 297 break; 298 case Type::PointerTyID: { 299 PointerType *PTy = cast<PointerType>(T); 300 // POINTER: [pointee type, address space] 301 Code = bitc::TYPE_CODE_POINTER; 302 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 303 unsigned AddressSpace = PTy->getAddressSpace(); 304 TypeVals.push_back(AddressSpace); 305 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 306 break; 307 } 308 case Type::FunctionTyID: { 309 FunctionType *FT = cast<FunctionType>(T); 310 // FUNCTION: [isvararg, retty, paramty x N] 311 Code = bitc::TYPE_CODE_FUNCTION; 312 TypeVals.push_back(FT->isVarArg()); 313 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 314 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 315 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 316 AbbrevToUse = FunctionAbbrev; 317 break; 318 } 319 case Type::StructTyID: { 320 StructType *ST = cast<StructType>(T); 321 // STRUCT: [ispacked, eltty x N] 322 TypeVals.push_back(ST->isPacked()); 323 // Output all of the element types. 324 for (StructType::element_iterator I = ST->element_begin(), 325 E = ST->element_end(); I != E; ++I) 326 TypeVals.push_back(VE.getTypeID(*I)); 327 328 if (ST->isLiteral()) { 329 Code = bitc::TYPE_CODE_STRUCT_ANON; 330 AbbrevToUse = StructAnonAbbrev; 331 } else { 332 if (ST->isOpaque()) { 333 Code = bitc::TYPE_CODE_OPAQUE; 334 } else { 335 Code = bitc::TYPE_CODE_STRUCT_NAMED; 336 AbbrevToUse = StructNamedAbbrev; 337 } 338 339 // Emit the name if it is present. 340 if (!ST->getName().empty()) 341 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 342 StructNameAbbrev, Stream); 343 } 344 break; 345 } 346 case Type::ArrayTyID: { 347 ArrayType *AT = cast<ArrayType>(T); 348 // ARRAY: [numelts, eltty] 349 Code = bitc::TYPE_CODE_ARRAY; 350 TypeVals.push_back(AT->getNumElements()); 351 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 352 AbbrevToUse = ArrayAbbrev; 353 break; 354 } 355 case Type::VectorTyID: { 356 VectorType *VT = cast<VectorType>(T); 357 // VECTOR [numelts, eltty] 358 Code = bitc::TYPE_CODE_VECTOR; 359 TypeVals.push_back(VT->getNumElements()); 360 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 361 break; 362 } 363 } 364 365 // Emit the finished record. 366 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 367 TypeVals.clear(); 368 } 369 370 Stream.ExitBlock(); 371 } 372 373 static unsigned getEncodedLinkage(const GlobalValue *GV) { 374 switch (GV->getLinkage()) { 375 case GlobalValue::ExternalLinkage: return 0; 376 case GlobalValue::WeakAnyLinkage: return 1; 377 case GlobalValue::AppendingLinkage: return 2; 378 case GlobalValue::InternalLinkage: return 3; 379 case GlobalValue::LinkOnceAnyLinkage: return 4; 380 case GlobalValue::DLLImportLinkage: return 5; 381 case GlobalValue::DLLExportLinkage: return 6; 382 case GlobalValue::ExternalWeakLinkage: return 7; 383 case GlobalValue::CommonLinkage: return 8; 384 case GlobalValue::PrivateLinkage: return 9; 385 case GlobalValue::WeakODRLinkage: return 10; 386 case GlobalValue::LinkOnceODRLinkage: return 11; 387 case GlobalValue::AvailableExternallyLinkage: return 12; 388 case GlobalValue::LinkerPrivateLinkage: return 13; 389 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 390 case GlobalValue::LinkOnceODRAutoHideLinkage: return 15; 391 } 392 llvm_unreachable("Invalid linkage"); 393 } 394 395 static unsigned getEncodedVisibility(const GlobalValue *GV) { 396 switch (GV->getVisibility()) { 397 case GlobalValue::DefaultVisibility: return 0; 398 case GlobalValue::HiddenVisibility: return 1; 399 case GlobalValue::ProtectedVisibility: return 2; 400 } 401 llvm_unreachable("Invalid visibility"); 402 } 403 404 static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) { 405 switch (GV->getThreadLocalMode()) { 406 case GlobalVariable::NotThreadLocal: return 0; 407 case GlobalVariable::GeneralDynamicTLSModel: return 1; 408 case GlobalVariable::LocalDynamicTLSModel: return 2; 409 case GlobalVariable::InitialExecTLSModel: return 3; 410 case GlobalVariable::LocalExecTLSModel: return 4; 411 } 412 llvm_unreachable("Invalid TLS model"); 413 } 414 415 // Emit top-level description of module, including target triple, inline asm, 416 // descriptors for global variables, and function prototype info. 417 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 418 BitstreamWriter &Stream) { 419 // Emit various pieces of data attached to a module. 420 if (!M->getTargetTriple().empty()) 421 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 422 0/*TODO*/, Stream); 423 if (!M->getDataLayout().empty()) 424 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 425 0/*TODO*/, Stream); 426 if (!M->getModuleInlineAsm().empty()) 427 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 428 0/*TODO*/, Stream); 429 430 // Emit information about sections and GC, computing how many there are. Also 431 // compute the maximum alignment value. 432 std::map<std::string, unsigned> SectionMap; 433 std::map<std::string, unsigned> GCMap; 434 unsigned MaxAlignment = 0; 435 unsigned MaxGlobalType = 0; 436 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 437 GV != E; ++GV) { 438 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 439 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 440 if (GV->hasSection()) { 441 // Give section names unique ID's. 442 unsigned &Entry = SectionMap[GV->getSection()]; 443 if (!Entry) { 444 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 445 0/*TODO*/, Stream); 446 Entry = SectionMap.size(); 447 } 448 } 449 } 450 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 451 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 452 if (F->hasSection()) { 453 // Give section names unique ID's. 454 unsigned &Entry = SectionMap[F->getSection()]; 455 if (!Entry) { 456 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 457 0/*TODO*/, Stream); 458 Entry = SectionMap.size(); 459 } 460 } 461 if (F->hasGC()) { 462 // Same for GC names. 463 unsigned &Entry = GCMap[F->getGC()]; 464 if (!Entry) { 465 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 466 0/*TODO*/, Stream); 467 Entry = GCMap.size(); 468 } 469 } 470 } 471 472 // Emit abbrev for globals, now that we know # sections and max alignment. 473 unsigned SimpleGVarAbbrev = 0; 474 if (!M->global_empty()) { 475 // Add an abbrev for common globals with no visibility or thread localness. 476 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 477 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 479 Log2_32_Ceil(MaxGlobalType+1))); 480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 483 if (MaxAlignment == 0) // Alignment. 484 Abbv->Add(BitCodeAbbrevOp(0)); 485 else { 486 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 488 Log2_32_Ceil(MaxEncAlignment+1))); 489 } 490 if (SectionMap.empty()) // Section. 491 Abbv->Add(BitCodeAbbrevOp(0)); 492 else 493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 494 Log2_32_Ceil(SectionMap.size()+1))); 495 // Don't bother emitting vis + thread local. 496 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 497 } 498 499 // Emit the global variable information. 500 SmallVector<unsigned, 64> Vals; 501 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 502 GV != E; ++GV) { 503 unsigned AbbrevToUse = 0; 504 505 // GLOBALVAR: [type, isconst, initid, 506 // linkage, alignment, section, visibility, threadlocal, 507 // unnamed_addr] 508 Vals.push_back(VE.getTypeID(GV->getType())); 509 Vals.push_back(GV->isConstant()); 510 Vals.push_back(GV->isDeclaration() ? 0 : 511 (VE.getValueID(GV->getInitializer()) + 1)); 512 Vals.push_back(getEncodedLinkage(GV)); 513 Vals.push_back(Log2_32(GV->getAlignment())+1); 514 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 515 if (GV->isThreadLocal() || 516 GV->getVisibility() != GlobalValue::DefaultVisibility || 517 GV->hasUnnamedAddr()) { 518 Vals.push_back(getEncodedVisibility(GV)); 519 Vals.push_back(getEncodedThreadLocalMode(GV)); 520 Vals.push_back(GV->hasUnnamedAddr()); 521 } else { 522 AbbrevToUse = SimpleGVarAbbrev; 523 } 524 525 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 526 Vals.clear(); 527 } 528 529 // Emit the function proto information. 530 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 531 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 532 // section, visibility, gc, unnamed_addr] 533 Vals.push_back(VE.getTypeID(F->getType())); 534 Vals.push_back(F->getCallingConv()); 535 Vals.push_back(F->isDeclaration()); 536 Vals.push_back(getEncodedLinkage(F)); 537 Vals.push_back(VE.getAttributeID(F->getAttributes())); 538 Vals.push_back(Log2_32(F->getAlignment())+1); 539 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 540 Vals.push_back(getEncodedVisibility(F)); 541 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 542 Vals.push_back(F->hasUnnamedAddr()); 543 544 unsigned AbbrevToUse = 0; 545 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 546 Vals.clear(); 547 } 548 549 // Emit the alias information. 550 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 551 AI != E; ++AI) { 552 // ALIAS: [alias type, aliasee val#, linkage, visibility] 553 Vals.push_back(VE.getTypeID(AI->getType())); 554 Vals.push_back(VE.getValueID(AI->getAliasee())); 555 Vals.push_back(getEncodedLinkage(AI)); 556 Vals.push_back(getEncodedVisibility(AI)); 557 unsigned AbbrevToUse = 0; 558 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 559 Vals.clear(); 560 } 561 } 562 563 static uint64_t GetOptimizationFlags(const Value *V) { 564 uint64_t Flags = 0; 565 566 if (const OverflowingBinaryOperator *OBO = 567 dyn_cast<OverflowingBinaryOperator>(V)) { 568 if (OBO->hasNoSignedWrap()) 569 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 570 if (OBO->hasNoUnsignedWrap()) 571 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 572 } else if (const PossiblyExactOperator *PEO = 573 dyn_cast<PossiblyExactOperator>(V)) { 574 if (PEO->isExact()) 575 Flags |= 1 << bitc::PEO_EXACT; 576 } else if (const FPMathOperator *FPMO = 577 dyn_cast<const FPMathOperator>(V)) { 578 if (FPMO->hasUnsafeAlgebra()) 579 Flags |= FastMathFlags::UnsafeAlgebra; 580 if (FPMO->hasNoNaNs()) 581 Flags |= FastMathFlags::NoNaNs; 582 if (FPMO->hasNoInfs()) 583 Flags |= FastMathFlags::NoInfs; 584 if (FPMO->hasNoSignedZeros()) 585 Flags |= FastMathFlags::NoSignedZeros; 586 if (FPMO->hasAllowReciprocal()) 587 Flags |= FastMathFlags::AllowReciprocal; 588 } 589 590 return Flags; 591 } 592 593 static void WriteMDNode(const MDNode *N, 594 const ValueEnumerator &VE, 595 BitstreamWriter &Stream, 596 SmallVector<uint64_t, 64> &Record) { 597 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 598 if (N->getOperand(i)) { 599 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 600 Record.push_back(VE.getValueID(N->getOperand(i))); 601 } else { 602 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 603 Record.push_back(0); 604 } 605 } 606 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 607 bitc::METADATA_NODE; 608 Stream.EmitRecord(MDCode, Record, 0); 609 Record.clear(); 610 } 611 612 static void WriteModuleMetadata(const Module *M, 613 const ValueEnumerator &VE, 614 BitstreamWriter &Stream) { 615 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 616 bool StartedMetadataBlock = false; 617 unsigned MDSAbbrev = 0; 618 SmallVector<uint64_t, 64> Record; 619 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 620 621 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 622 if (!N->isFunctionLocal() || !N->getFunction()) { 623 if (!StartedMetadataBlock) { 624 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 625 StartedMetadataBlock = true; 626 } 627 WriteMDNode(N, VE, Stream, Record); 628 } 629 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 630 if (!StartedMetadataBlock) { 631 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 632 633 // Abbrev for METADATA_STRING. 634 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 635 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 638 MDSAbbrev = Stream.EmitAbbrev(Abbv); 639 StartedMetadataBlock = true; 640 } 641 642 // Code: [strchar x N] 643 Record.append(MDS->begin(), MDS->end()); 644 645 // Emit the finished record. 646 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 647 Record.clear(); 648 } 649 } 650 651 // Write named metadata. 652 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 653 E = M->named_metadata_end(); I != E; ++I) { 654 const NamedMDNode *NMD = I; 655 if (!StartedMetadataBlock) { 656 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 657 StartedMetadataBlock = true; 658 } 659 660 // Write name. 661 StringRef Str = NMD->getName(); 662 for (unsigned i = 0, e = Str.size(); i != e; ++i) 663 Record.push_back(Str[i]); 664 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 665 Record.clear(); 666 667 // Write named metadata operands. 668 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 669 Record.push_back(VE.getValueID(NMD->getOperand(i))); 670 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 671 Record.clear(); 672 } 673 674 if (StartedMetadataBlock) 675 Stream.ExitBlock(); 676 } 677 678 static void WriteFunctionLocalMetadata(const Function &F, 679 const ValueEnumerator &VE, 680 BitstreamWriter &Stream) { 681 bool StartedMetadataBlock = false; 682 SmallVector<uint64_t, 64> Record; 683 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 684 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 685 if (const MDNode *N = Vals[i]) 686 if (N->isFunctionLocal() && N->getFunction() == &F) { 687 if (!StartedMetadataBlock) { 688 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 689 StartedMetadataBlock = true; 690 } 691 WriteMDNode(N, VE, Stream, Record); 692 } 693 694 if (StartedMetadataBlock) 695 Stream.ExitBlock(); 696 } 697 698 static void WriteMetadataAttachment(const Function &F, 699 const ValueEnumerator &VE, 700 BitstreamWriter &Stream) { 701 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 702 703 SmallVector<uint64_t, 64> Record; 704 705 // Write metadata attachments 706 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 707 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 708 709 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 710 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 711 I != E; ++I) { 712 MDs.clear(); 713 I->getAllMetadataOtherThanDebugLoc(MDs); 714 715 // If no metadata, ignore instruction. 716 if (MDs.empty()) continue; 717 718 Record.push_back(VE.getInstructionID(I)); 719 720 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 721 Record.push_back(MDs[i].first); 722 Record.push_back(VE.getValueID(MDs[i].second)); 723 } 724 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 725 Record.clear(); 726 } 727 728 Stream.ExitBlock(); 729 } 730 731 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 732 SmallVector<uint64_t, 64> Record; 733 734 // Write metadata kinds 735 // METADATA_KIND - [n x [id, name]] 736 SmallVector<StringRef, 8> Names; 737 M->getMDKindNames(Names); 738 739 if (Names.empty()) return; 740 741 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 742 743 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 744 Record.push_back(MDKindID); 745 StringRef KName = Names[MDKindID]; 746 Record.append(KName.begin(), KName.end()); 747 748 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 749 Record.clear(); 750 } 751 752 Stream.ExitBlock(); 753 } 754 755 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 756 if ((int64_t)V >= 0) 757 Vals.push_back(V << 1); 758 else 759 Vals.push_back((-V << 1) | 1); 760 } 761 762 static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals, 763 unsigned &Code, unsigned &AbbrevToUse, const APInt &Val, 764 bool EmitSizeForWideNumbers = false 765 ) { 766 if (Val.getBitWidth() <= 64) { 767 uint64_t V = Val.getSExtValue(); 768 emitSignedInt64(Vals, V); 769 Code = bitc::CST_CODE_INTEGER; 770 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 771 } else { 772 // Wide integers, > 64 bits in size. 773 // We have an arbitrary precision integer value to write whose 774 // bit width is > 64. However, in canonical unsigned integer 775 // format it is likely that the high bits are going to be zero. 776 // So, we only write the number of active words. 777 unsigned NWords = Val.getActiveWords(); 778 779 if (EmitSizeForWideNumbers) 780 Vals.push_back(NWords); 781 782 const uint64_t *RawWords = Val.getRawData(); 783 for (unsigned i = 0; i != NWords; ++i) { 784 emitSignedInt64(Vals, RawWords[i]); 785 } 786 Code = bitc::CST_CODE_WIDE_INTEGER; 787 } 788 } 789 790 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 791 const ValueEnumerator &VE, 792 BitstreamWriter &Stream, bool isGlobal) { 793 if (FirstVal == LastVal) return; 794 795 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 796 797 unsigned AggregateAbbrev = 0; 798 unsigned String8Abbrev = 0; 799 unsigned CString7Abbrev = 0; 800 unsigned CString6Abbrev = 0; 801 // If this is a constant pool for the module, emit module-specific abbrevs. 802 if (isGlobal) { 803 // Abbrev for CST_CODE_AGGREGATE. 804 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 805 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 808 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 809 810 // Abbrev for CST_CODE_STRING. 811 Abbv = new BitCodeAbbrev(); 812 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 815 String8Abbrev = Stream.EmitAbbrev(Abbv); 816 // Abbrev for CST_CODE_CSTRING. 817 Abbv = new BitCodeAbbrev(); 818 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 821 CString7Abbrev = Stream.EmitAbbrev(Abbv); 822 // Abbrev for CST_CODE_CSTRING. 823 Abbv = new BitCodeAbbrev(); 824 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 827 CString6Abbrev = Stream.EmitAbbrev(Abbv); 828 } 829 830 SmallVector<uint64_t, 64> Record; 831 832 const ValueEnumerator::ValueList &Vals = VE.getValues(); 833 Type *LastTy = 0; 834 for (unsigned i = FirstVal; i != LastVal; ++i) { 835 const Value *V = Vals[i].first; 836 // If we need to switch types, do so now. 837 if (V->getType() != LastTy) { 838 LastTy = V->getType(); 839 Record.push_back(VE.getTypeID(LastTy)); 840 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 841 CONSTANTS_SETTYPE_ABBREV); 842 Record.clear(); 843 } 844 845 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 846 Record.push_back(unsigned(IA->hasSideEffects()) | 847 unsigned(IA->isAlignStack()) << 1 | 848 unsigned(IA->getDialect()&1) << 2); 849 850 // Add the asm string. 851 const std::string &AsmStr = IA->getAsmString(); 852 Record.push_back(AsmStr.size()); 853 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 854 Record.push_back(AsmStr[i]); 855 856 // Add the constraint string. 857 const std::string &ConstraintStr = IA->getConstraintString(); 858 Record.push_back(ConstraintStr.size()); 859 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 860 Record.push_back(ConstraintStr[i]); 861 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 862 Record.clear(); 863 continue; 864 } 865 const Constant *C = cast<Constant>(V); 866 unsigned Code = -1U; 867 unsigned AbbrevToUse = 0; 868 if (C->isNullValue()) { 869 Code = bitc::CST_CODE_NULL; 870 } else if (isa<UndefValue>(C)) { 871 Code = bitc::CST_CODE_UNDEF; 872 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 873 EmitAPInt(Record, Code, AbbrevToUse, IV->getValue()); 874 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 875 Code = bitc::CST_CODE_FLOAT; 876 Type *Ty = CFP->getType(); 877 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 878 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 879 } else if (Ty->isX86_FP80Ty()) { 880 // api needed to prevent premature destruction 881 // bits are not in the same order as a normal i80 APInt, compensate. 882 APInt api = CFP->getValueAPF().bitcastToAPInt(); 883 const uint64_t *p = api.getRawData(); 884 Record.push_back((p[1] << 48) | (p[0] >> 16)); 885 Record.push_back(p[0] & 0xffffLL); 886 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 887 APInt api = CFP->getValueAPF().bitcastToAPInt(); 888 const uint64_t *p = api.getRawData(); 889 Record.push_back(p[0]); 890 Record.push_back(p[1]); 891 } else { 892 assert (0 && "Unknown FP type!"); 893 } 894 } else if (isa<ConstantDataSequential>(C) && 895 cast<ConstantDataSequential>(C)->isString()) { 896 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 897 // Emit constant strings specially. 898 unsigned NumElts = Str->getNumElements(); 899 // If this is a null-terminated string, use the denser CSTRING encoding. 900 if (Str->isCString()) { 901 Code = bitc::CST_CODE_CSTRING; 902 --NumElts; // Don't encode the null, which isn't allowed by char6. 903 } else { 904 Code = bitc::CST_CODE_STRING; 905 AbbrevToUse = String8Abbrev; 906 } 907 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 908 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 909 for (unsigned i = 0; i != NumElts; ++i) { 910 unsigned char V = Str->getElementAsInteger(i); 911 Record.push_back(V); 912 isCStr7 &= (V & 128) == 0; 913 if (isCStrChar6) 914 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 915 } 916 917 if (isCStrChar6) 918 AbbrevToUse = CString6Abbrev; 919 else if (isCStr7) 920 AbbrevToUse = CString7Abbrev; 921 } else if (const ConstantDataSequential *CDS = 922 dyn_cast<ConstantDataSequential>(C)) { 923 Code = bitc::CST_CODE_DATA; 924 Type *EltTy = CDS->getType()->getElementType(); 925 if (isa<IntegerType>(EltTy)) { 926 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 927 Record.push_back(CDS->getElementAsInteger(i)); 928 } else if (EltTy->isFloatTy()) { 929 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 930 union { float F; uint32_t I; }; 931 F = CDS->getElementAsFloat(i); 932 Record.push_back(I); 933 } 934 } else { 935 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 936 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 937 union { double F; uint64_t I; }; 938 F = CDS->getElementAsDouble(i); 939 Record.push_back(I); 940 } 941 } 942 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 943 isa<ConstantVector>(C)) { 944 Code = bitc::CST_CODE_AGGREGATE; 945 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 946 Record.push_back(VE.getValueID(C->getOperand(i))); 947 AbbrevToUse = AggregateAbbrev; 948 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 949 switch (CE->getOpcode()) { 950 default: 951 if (Instruction::isCast(CE->getOpcode())) { 952 Code = bitc::CST_CODE_CE_CAST; 953 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 954 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 955 Record.push_back(VE.getValueID(C->getOperand(0))); 956 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 957 } else { 958 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 959 Code = bitc::CST_CODE_CE_BINOP; 960 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 961 Record.push_back(VE.getValueID(C->getOperand(0))); 962 Record.push_back(VE.getValueID(C->getOperand(1))); 963 uint64_t Flags = GetOptimizationFlags(CE); 964 if (Flags != 0) 965 Record.push_back(Flags); 966 } 967 break; 968 case Instruction::GetElementPtr: 969 Code = bitc::CST_CODE_CE_GEP; 970 if (cast<GEPOperator>(C)->isInBounds()) 971 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 972 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 973 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 974 Record.push_back(VE.getValueID(C->getOperand(i))); 975 } 976 break; 977 case Instruction::Select: 978 Code = bitc::CST_CODE_CE_SELECT; 979 Record.push_back(VE.getValueID(C->getOperand(0))); 980 Record.push_back(VE.getValueID(C->getOperand(1))); 981 Record.push_back(VE.getValueID(C->getOperand(2))); 982 break; 983 case Instruction::ExtractElement: 984 Code = bitc::CST_CODE_CE_EXTRACTELT; 985 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 986 Record.push_back(VE.getValueID(C->getOperand(0))); 987 Record.push_back(VE.getValueID(C->getOperand(1))); 988 break; 989 case Instruction::InsertElement: 990 Code = bitc::CST_CODE_CE_INSERTELT; 991 Record.push_back(VE.getValueID(C->getOperand(0))); 992 Record.push_back(VE.getValueID(C->getOperand(1))); 993 Record.push_back(VE.getValueID(C->getOperand(2))); 994 break; 995 case Instruction::ShuffleVector: 996 // If the return type and argument types are the same, this is a 997 // standard shufflevector instruction. If the types are different, 998 // then the shuffle is widening or truncating the input vectors, and 999 // the argument type must also be encoded. 1000 if (C->getType() == C->getOperand(0)->getType()) { 1001 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1002 } else { 1003 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1004 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1005 } 1006 Record.push_back(VE.getValueID(C->getOperand(0))); 1007 Record.push_back(VE.getValueID(C->getOperand(1))); 1008 Record.push_back(VE.getValueID(C->getOperand(2))); 1009 break; 1010 case Instruction::ICmp: 1011 case Instruction::FCmp: 1012 Code = bitc::CST_CODE_CE_CMP; 1013 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1014 Record.push_back(VE.getValueID(C->getOperand(0))); 1015 Record.push_back(VE.getValueID(C->getOperand(1))); 1016 Record.push_back(CE->getPredicate()); 1017 break; 1018 } 1019 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1020 Code = bitc::CST_CODE_BLOCKADDRESS; 1021 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1022 Record.push_back(VE.getValueID(BA->getFunction())); 1023 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1024 } else { 1025 #ifndef NDEBUG 1026 C->dump(); 1027 #endif 1028 llvm_unreachable("Unknown constant!"); 1029 } 1030 Stream.EmitRecord(Code, Record, AbbrevToUse); 1031 Record.clear(); 1032 } 1033 1034 Stream.ExitBlock(); 1035 } 1036 1037 static void WriteModuleConstants(const ValueEnumerator &VE, 1038 BitstreamWriter &Stream) { 1039 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1040 1041 // Find the first constant to emit, which is the first non-globalvalue value. 1042 // We know globalvalues have been emitted by WriteModuleInfo. 1043 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1044 if (!isa<GlobalValue>(Vals[i].first)) { 1045 WriteConstants(i, Vals.size(), VE, Stream, true); 1046 return; 1047 } 1048 } 1049 } 1050 1051 /// PushValueAndType - The file has to encode both the value and type id for 1052 /// many values, because we need to know what type to create for forward 1053 /// references. However, most operands are not forward references, so this type 1054 /// field is not needed. 1055 /// 1056 /// This function adds V's value ID to Vals. If the value ID is higher than the 1057 /// instruction ID, then it is a forward reference, and it also includes the 1058 /// type ID. The value ID that is written is encoded relative to the InstID. 1059 static bool PushValueAndType(const Value *V, unsigned InstID, 1060 SmallVector<unsigned, 64> &Vals, 1061 ValueEnumerator &VE) { 1062 unsigned ValID = VE.getValueID(V); 1063 // Make encoding relative to the InstID. 1064 Vals.push_back(InstID - ValID); 1065 if (ValID >= InstID) { 1066 Vals.push_back(VE.getTypeID(V->getType())); 1067 return true; 1068 } 1069 return false; 1070 } 1071 1072 /// pushValue - Like PushValueAndType, but where the type of the value is 1073 /// omitted (perhaps it was already encoded in an earlier operand). 1074 static void pushValue(const Value *V, unsigned InstID, 1075 SmallVector<unsigned, 64> &Vals, 1076 ValueEnumerator &VE) { 1077 unsigned ValID = VE.getValueID(V); 1078 Vals.push_back(InstID - ValID); 1079 } 1080 1081 static void pushValue64(const Value *V, unsigned InstID, 1082 SmallVector<uint64_t, 128> &Vals, 1083 ValueEnumerator &VE) { 1084 uint64_t ValID = VE.getValueID(V); 1085 Vals.push_back(InstID - ValID); 1086 } 1087 1088 static void pushValueSigned(const Value *V, unsigned InstID, 1089 SmallVector<uint64_t, 128> &Vals, 1090 ValueEnumerator &VE) { 1091 unsigned ValID = VE.getValueID(V); 1092 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1093 emitSignedInt64(Vals, diff); 1094 } 1095 1096 /// WriteInstruction - Emit an instruction to the specified stream. 1097 static void WriteInstruction(const Instruction &I, unsigned InstID, 1098 ValueEnumerator &VE, BitstreamWriter &Stream, 1099 SmallVector<unsigned, 64> &Vals) { 1100 unsigned Code = 0; 1101 unsigned AbbrevToUse = 0; 1102 VE.setInstructionID(&I); 1103 switch (I.getOpcode()) { 1104 default: 1105 if (Instruction::isCast(I.getOpcode())) { 1106 Code = bitc::FUNC_CODE_INST_CAST; 1107 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1108 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1109 Vals.push_back(VE.getTypeID(I.getType())); 1110 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1111 } else { 1112 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1113 Code = bitc::FUNC_CODE_INST_BINOP; 1114 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1115 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1116 pushValue(I.getOperand(1), InstID, Vals, VE); 1117 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1118 uint64_t Flags = GetOptimizationFlags(&I); 1119 if (Flags != 0) { 1120 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1121 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1122 Vals.push_back(Flags); 1123 } 1124 } 1125 break; 1126 1127 case Instruction::GetElementPtr: 1128 Code = bitc::FUNC_CODE_INST_GEP; 1129 if (cast<GEPOperator>(&I)->isInBounds()) 1130 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1131 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1132 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1133 break; 1134 case Instruction::ExtractValue: { 1135 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1136 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1137 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1138 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1139 Vals.push_back(*i); 1140 break; 1141 } 1142 case Instruction::InsertValue: { 1143 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1144 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1145 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1146 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1147 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1148 Vals.push_back(*i); 1149 break; 1150 } 1151 case Instruction::Select: 1152 Code = bitc::FUNC_CODE_INST_VSELECT; 1153 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1154 pushValue(I.getOperand(2), InstID, Vals, VE); 1155 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1156 break; 1157 case Instruction::ExtractElement: 1158 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1159 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1160 pushValue(I.getOperand(1), InstID, Vals, VE); 1161 break; 1162 case Instruction::InsertElement: 1163 Code = bitc::FUNC_CODE_INST_INSERTELT; 1164 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1165 pushValue(I.getOperand(1), InstID, Vals, VE); 1166 pushValue(I.getOperand(2), InstID, Vals, VE); 1167 break; 1168 case Instruction::ShuffleVector: 1169 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1170 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1171 pushValue(I.getOperand(1), InstID, Vals, VE); 1172 pushValue(I.getOperand(2), InstID, Vals, VE); 1173 break; 1174 case Instruction::ICmp: 1175 case Instruction::FCmp: 1176 // compare returning Int1Ty or vector of Int1Ty 1177 Code = bitc::FUNC_CODE_INST_CMP2; 1178 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1179 pushValue(I.getOperand(1), InstID, Vals, VE); 1180 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1181 break; 1182 1183 case Instruction::Ret: 1184 { 1185 Code = bitc::FUNC_CODE_INST_RET; 1186 unsigned NumOperands = I.getNumOperands(); 1187 if (NumOperands == 0) 1188 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1189 else if (NumOperands == 1) { 1190 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1191 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1192 } else { 1193 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1194 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1195 } 1196 } 1197 break; 1198 case Instruction::Br: 1199 { 1200 Code = bitc::FUNC_CODE_INST_BR; 1201 BranchInst &II = cast<BranchInst>(I); 1202 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1203 if (II.isConditional()) { 1204 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1205 pushValue(II.getCondition(), InstID, Vals, VE); 1206 } 1207 } 1208 break; 1209 case Instruction::Switch: 1210 { 1211 // Redefine Vals, since here we need to use 64 bit values 1212 // explicitly to store large APInt numbers. 1213 SmallVector<uint64_t, 128> Vals64; 1214 1215 Code = bitc::FUNC_CODE_INST_SWITCH; 1216 SwitchInst &SI = cast<SwitchInst>(I); 1217 1218 uint32_t SwitchRecordHeader = SI.hash() | (SWITCH_INST_MAGIC << 16); 1219 Vals64.push_back(SwitchRecordHeader); 1220 1221 Vals64.push_back(VE.getTypeID(SI.getCondition()->getType())); 1222 pushValue64(SI.getCondition(), InstID, Vals64, VE); 1223 Vals64.push_back(VE.getValueID(SI.getDefaultDest())); 1224 Vals64.push_back(SI.getNumCases()); 1225 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); 1226 i != e; ++i) { 1227 IntegersSubset& CaseRanges = i.getCaseValueEx(); 1228 unsigned Code, Abbrev; // will unused. 1229 1230 if (CaseRanges.isSingleNumber()) { 1231 Vals64.push_back(1/*NumItems = 1*/); 1232 Vals64.push_back(true/*IsSingleNumber = true*/); 1233 EmitAPInt(Vals64, Code, Abbrev, CaseRanges.getSingleNumber(0), true); 1234 } else { 1235 1236 Vals64.push_back(CaseRanges.getNumItems()); 1237 1238 if (CaseRanges.isSingleNumbersOnly()) { 1239 for (unsigned ri = 0, rn = CaseRanges.getNumItems(); 1240 ri != rn; ++ri) { 1241 1242 Vals64.push_back(true/*IsSingleNumber = true*/); 1243 1244 EmitAPInt(Vals64, Code, Abbrev, 1245 CaseRanges.getSingleNumber(ri), true); 1246 } 1247 } else 1248 for (unsigned ri = 0, rn = CaseRanges.getNumItems(); 1249 ri != rn; ++ri) { 1250 IntegersSubset::Range r = CaseRanges.getItem(ri); 1251 bool IsSingleNumber = CaseRanges.isSingleNumber(ri); 1252 1253 Vals64.push_back(IsSingleNumber); 1254 1255 EmitAPInt(Vals64, Code, Abbrev, r.getLow(), true); 1256 if (!IsSingleNumber) 1257 EmitAPInt(Vals64, Code, Abbrev, r.getHigh(), true); 1258 } 1259 } 1260 Vals64.push_back(VE.getValueID(i.getCaseSuccessor())); 1261 } 1262 1263 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1264 1265 // Also do expected action - clear external Vals collection: 1266 Vals.clear(); 1267 return; 1268 } 1269 break; 1270 case Instruction::IndirectBr: 1271 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1272 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1273 // Encode the address operand as relative, but not the basic blocks. 1274 pushValue(I.getOperand(0), InstID, Vals, VE); 1275 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1276 Vals.push_back(VE.getValueID(I.getOperand(i))); 1277 break; 1278 1279 case Instruction::Invoke: { 1280 const InvokeInst *II = cast<InvokeInst>(&I); 1281 const Value *Callee(II->getCalledValue()); 1282 PointerType *PTy = cast<PointerType>(Callee->getType()); 1283 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1284 Code = bitc::FUNC_CODE_INST_INVOKE; 1285 1286 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1287 Vals.push_back(II->getCallingConv()); 1288 Vals.push_back(VE.getValueID(II->getNormalDest())); 1289 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1290 PushValueAndType(Callee, InstID, Vals, VE); 1291 1292 // Emit value #'s for the fixed parameters. 1293 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1294 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1295 1296 // Emit type/value pairs for varargs params. 1297 if (FTy->isVarArg()) { 1298 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1299 i != e; ++i) 1300 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1301 } 1302 break; 1303 } 1304 case Instruction::Resume: 1305 Code = bitc::FUNC_CODE_INST_RESUME; 1306 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1307 break; 1308 case Instruction::Unreachable: 1309 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1310 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1311 break; 1312 1313 case Instruction::PHI: { 1314 const PHINode &PN = cast<PHINode>(I); 1315 Code = bitc::FUNC_CODE_INST_PHI; 1316 // With the newer instruction encoding, forward references could give 1317 // negative valued IDs. This is most common for PHIs, so we use 1318 // signed VBRs. 1319 SmallVector<uint64_t, 128> Vals64; 1320 Vals64.push_back(VE.getTypeID(PN.getType())); 1321 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1322 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1323 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1324 } 1325 // Emit a Vals64 vector and exit. 1326 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1327 Vals64.clear(); 1328 return; 1329 } 1330 1331 case Instruction::LandingPad: { 1332 const LandingPadInst &LP = cast<LandingPadInst>(I); 1333 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1334 Vals.push_back(VE.getTypeID(LP.getType())); 1335 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1336 Vals.push_back(LP.isCleanup()); 1337 Vals.push_back(LP.getNumClauses()); 1338 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1339 if (LP.isCatch(I)) 1340 Vals.push_back(LandingPadInst::Catch); 1341 else 1342 Vals.push_back(LandingPadInst::Filter); 1343 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1344 } 1345 break; 1346 } 1347 1348 case Instruction::Alloca: 1349 Code = bitc::FUNC_CODE_INST_ALLOCA; 1350 Vals.push_back(VE.getTypeID(I.getType())); 1351 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1352 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1353 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1354 break; 1355 1356 case Instruction::Load: 1357 if (cast<LoadInst>(I).isAtomic()) { 1358 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1359 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1360 } else { 1361 Code = bitc::FUNC_CODE_INST_LOAD; 1362 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1363 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1364 } 1365 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1366 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1367 if (cast<LoadInst>(I).isAtomic()) { 1368 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1369 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1370 } 1371 break; 1372 case Instruction::Store: 1373 if (cast<StoreInst>(I).isAtomic()) 1374 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1375 else 1376 Code = bitc::FUNC_CODE_INST_STORE; 1377 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1378 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1379 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1380 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1381 if (cast<StoreInst>(I).isAtomic()) { 1382 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1383 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1384 } 1385 break; 1386 case Instruction::AtomicCmpXchg: 1387 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1388 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1389 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1390 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1391 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1392 Vals.push_back(GetEncodedOrdering( 1393 cast<AtomicCmpXchgInst>(I).getOrdering())); 1394 Vals.push_back(GetEncodedSynchScope( 1395 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1396 break; 1397 case Instruction::AtomicRMW: 1398 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1399 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1400 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1401 Vals.push_back(GetEncodedRMWOperation( 1402 cast<AtomicRMWInst>(I).getOperation())); 1403 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1404 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1405 Vals.push_back(GetEncodedSynchScope( 1406 cast<AtomicRMWInst>(I).getSynchScope())); 1407 break; 1408 case Instruction::Fence: 1409 Code = bitc::FUNC_CODE_INST_FENCE; 1410 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1411 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1412 break; 1413 case Instruction::Call: { 1414 const CallInst &CI = cast<CallInst>(I); 1415 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1416 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1417 1418 Code = bitc::FUNC_CODE_INST_CALL; 1419 1420 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1421 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1422 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1423 1424 // Emit value #'s for the fixed parameters. 1425 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1426 // Check for labels (can happen with asm labels). 1427 if (FTy->getParamType(i)->isLabelTy()) 1428 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1429 else 1430 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1431 } 1432 1433 // Emit type/value pairs for varargs params. 1434 if (FTy->isVarArg()) { 1435 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1436 i != e; ++i) 1437 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1438 } 1439 break; 1440 } 1441 case Instruction::VAArg: 1442 Code = bitc::FUNC_CODE_INST_VAARG; 1443 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1444 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1445 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1446 break; 1447 } 1448 1449 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1450 Vals.clear(); 1451 } 1452 1453 // Emit names for globals/functions etc. 1454 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1455 const ValueEnumerator &VE, 1456 BitstreamWriter &Stream) { 1457 if (VST.empty()) return; 1458 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1459 1460 // FIXME: Set up the abbrev, we know how many values there are! 1461 // FIXME: We know if the type names can use 7-bit ascii. 1462 SmallVector<unsigned, 64> NameVals; 1463 1464 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1465 SI != SE; ++SI) { 1466 1467 const ValueName &Name = *SI; 1468 1469 // Figure out the encoding to use for the name. 1470 bool is7Bit = true; 1471 bool isChar6 = true; 1472 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1473 C != E; ++C) { 1474 if (isChar6) 1475 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1476 if ((unsigned char)*C & 128) { 1477 is7Bit = false; 1478 break; // don't bother scanning the rest. 1479 } 1480 } 1481 1482 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1483 1484 // VST_ENTRY: [valueid, namechar x N] 1485 // VST_BBENTRY: [bbid, namechar x N] 1486 unsigned Code; 1487 if (isa<BasicBlock>(SI->getValue())) { 1488 Code = bitc::VST_CODE_BBENTRY; 1489 if (isChar6) 1490 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1491 } else { 1492 Code = bitc::VST_CODE_ENTRY; 1493 if (isChar6) 1494 AbbrevToUse = VST_ENTRY_6_ABBREV; 1495 else if (is7Bit) 1496 AbbrevToUse = VST_ENTRY_7_ABBREV; 1497 } 1498 1499 NameVals.push_back(VE.getValueID(SI->getValue())); 1500 for (const char *P = Name.getKeyData(), 1501 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1502 NameVals.push_back((unsigned char)*P); 1503 1504 // Emit the finished record. 1505 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1506 NameVals.clear(); 1507 } 1508 Stream.ExitBlock(); 1509 } 1510 1511 /// WriteFunction - Emit a function body to the module stream. 1512 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1513 BitstreamWriter &Stream) { 1514 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1515 VE.incorporateFunction(F); 1516 1517 SmallVector<unsigned, 64> Vals; 1518 1519 // Emit the number of basic blocks, so the reader can create them ahead of 1520 // time. 1521 Vals.push_back(VE.getBasicBlocks().size()); 1522 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1523 Vals.clear(); 1524 1525 // If there are function-local constants, emit them now. 1526 unsigned CstStart, CstEnd; 1527 VE.getFunctionConstantRange(CstStart, CstEnd); 1528 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1529 1530 // If there is function-local metadata, emit it now. 1531 WriteFunctionLocalMetadata(F, VE, Stream); 1532 1533 // Keep a running idea of what the instruction ID is. 1534 unsigned InstID = CstEnd; 1535 1536 bool NeedsMetadataAttachment = false; 1537 1538 DebugLoc LastDL; 1539 1540 // Finally, emit all the instructions, in order. 1541 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1542 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1543 I != E; ++I) { 1544 WriteInstruction(*I, InstID, VE, Stream, Vals); 1545 1546 if (!I->getType()->isVoidTy()) 1547 ++InstID; 1548 1549 // If the instruction has metadata, write a metadata attachment later. 1550 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1551 1552 // If the instruction has a debug location, emit it. 1553 DebugLoc DL = I->getDebugLoc(); 1554 if (DL.isUnknown()) { 1555 // nothing todo. 1556 } else if (DL == LastDL) { 1557 // Just repeat the same debug loc as last time. 1558 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1559 } else { 1560 MDNode *Scope, *IA; 1561 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1562 1563 Vals.push_back(DL.getLine()); 1564 Vals.push_back(DL.getCol()); 1565 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1566 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1567 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1568 Vals.clear(); 1569 1570 LastDL = DL; 1571 } 1572 } 1573 1574 // Emit names for all the instructions etc. 1575 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1576 1577 if (NeedsMetadataAttachment) 1578 WriteMetadataAttachment(F, VE, Stream); 1579 VE.purgeFunction(); 1580 Stream.ExitBlock(); 1581 } 1582 1583 // Emit blockinfo, which defines the standard abbreviations etc. 1584 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1585 // We only want to emit block info records for blocks that have multiple 1586 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1587 // Other blocks can define their abbrevs inline. 1588 Stream.EnterBlockInfoBlock(2); 1589 1590 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1591 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1596 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1597 Abbv) != VST_ENTRY_8_ABBREV) 1598 llvm_unreachable("Unexpected abbrev ordering!"); 1599 } 1600 1601 { // 7-bit fixed width VST_ENTRY strings. 1602 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1603 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1607 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1608 Abbv) != VST_ENTRY_7_ABBREV) 1609 llvm_unreachable("Unexpected abbrev ordering!"); 1610 } 1611 { // 6-bit char6 VST_ENTRY strings. 1612 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1613 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1617 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1618 Abbv) != VST_ENTRY_6_ABBREV) 1619 llvm_unreachable("Unexpected abbrev ordering!"); 1620 } 1621 { // 6-bit char6 VST_BBENTRY strings. 1622 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1623 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1627 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1628 Abbv) != VST_BBENTRY_6_ABBREV) 1629 llvm_unreachable("Unexpected abbrev ordering!"); 1630 } 1631 1632 1633 1634 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1635 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1636 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1638 Log2_32_Ceil(VE.getTypes().size()+1))); 1639 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1640 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1641 llvm_unreachable("Unexpected abbrev ordering!"); 1642 } 1643 1644 { // INTEGER abbrev for CONSTANTS_BLOCK. 1645 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1646 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1648 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1649 Abbv) != CONSTANTS_INTEGER_ABBREV) 1650 llvm_unreachable("Unexpected abbrev ordering!"); 1651 } 1652 1653 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1654 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1655 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1658 Log2_32_Ceil(VE.getTypes().size()+1))); 1659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1660 1661 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1662 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1663 llvm_unreachable("Unexpected abbrev ordering!"); 1664 } 1665 { // NULL abbrev for CONSTANTS_BLOCK. 1666 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1667 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1668 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1669 Abbv) != CONSTANTS_NULL_Abbrev) 1670 llvm_unreachable("Unexpected abbrev ordering!"); 1671 } 1672 1673 // FIXME: This should only use space for first class types! 1674 1675 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1676 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1677 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1681 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1682 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1683 llvm_unreachable("Unexpected abbrev ordering!"); 1684 } 1685 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1686 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1687 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1691 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1692 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1693 llvm_unreachable("Unexpected abbrev ordering!"); 1694 } 1695 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1696 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1697 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1702 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1703 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1704 llvm_unreachable("Unexpected abbrev ordering!"); 1705 } 1706 { // INST_CAST abbrev for FUNCTION_BLOCK. 1707 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1708 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1711 Log2_32_Ceil(VE.getTypes().size()+1))); 1712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1713 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1714 Abbv) != FUNCTION_INST_CAST_ABBREV) 1715 llvm_unreachable("Unexpected abbrev ordering!"); 1716 } 1717 1718 { // INST_RET abbrev for FUNCTION_BLOCK. 1719 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1720 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1721 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1722 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1723 llvm_unreachable("Unexpected abbrev ordering!"); 1724 } 1725 { // INST_RET abbrev for FUNCTION_BLOCK. 1726 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1727 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1729 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1730 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1731 llvm_unreachable("Unexpected abbrev ordering!"); 1732 } 1733 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1734 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1735 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1736 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1737 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1738 llvm_unreachable("Unexpected abbrev ordering!"); 1739 } 1740 1741 Stream.ExitBlock(); 1742 } 1743 1744 // Sort the Users based on the order in which the reader parses the bitcode 1745 // file. 1746 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1747 // TODO: Implement. 1748 return true; 1749 } 1750 1751 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1752 BitstreamWriter &Stream) { 1753 1754 // One or zero uses can't get out of order. 1755 if (V->use_empty() || V->hasNUses(1)) 1756 return; 1757 1758 // Make a copy of the in-memory use-list for sorting. 1759 unsigned UseListSize = std::distance(V->use_begin(), V->use_end()); 1760 SmallVector<const User*, 8> UseList; 1761 UseList.reserve(UseListSize); 1762 for (Value::const_use_iterator I = V->use_begin(), E = V->use_end(); 1763 I != E; ++I) { 1764 const User *U = *I; 1765 UseList.push_back(U); 1766 } 1767 1768 // Sort the copy based on the order read by the BitcodeReader. 1769 std::sort(UseList.begin(), UseList.end(), bitcodereader_order); 1770 1771 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1772 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1773 1774 // TODO: Emit the USELIST_CODE_ENTRYs. 1775 } 1776 1777 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1778 BitstreamWriter &Stream) { 1779 VE.incorporateFunction(*F); 1780 1781 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1782 AI != AE; ++AI) 1783 WriteUseList(AI, VE, Stream); 1784 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1785 ++BB) { 1786 WriteUseList(BB, VE, Stream); 1787 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1788 ++II) { 1789 WriteUseList(II, VE, Stream); 1790 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1791 OI != E; ++OI) { 1792 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1793 isa<InlineAsm>(*OI)) 1794 WriteUseList(*OI, VE, Stream); 1795 } 1796 } 1797 } 1798 VE.purgeFunction(); 1799 } 1800 1801 // Emit use-lists. 1802 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1803 BitstreamWriter &Stream) { 1804 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1805 1806 // XXX: this modifies the module, but in a way that should never change the 1807 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1808 // contain entries in the use_list that do not exist in the Module and are 1809 // not stored in the .bc file. 1810 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1811 I != E; ++I) 1812 I->removeDeadConstantUsers(); 1813 1814 // Write the global variables. 1815 for (Module::const_global_iterator GI = M->global_begin(), 1816 GE = M->global_end(); GI != GE; ++GI) { 1817 WriteUseList(GI, VE, Stream); 1818 1819 // Write the global variable initializers. 1820 if (GI->hasInitializer()) 1821 WriteUseList(GI->getInitializer(), VE, Stream); 1822 } 1823 1824 // Write the functions. 1825 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1826 WriteUseList(FI, VE, Stream); 1827 if (!FI->isDeclaration()) 1828 WriteFunctionUseList(FI, VE, Stream); 1829 } 1830 1831 // Write the aliases. 1832 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1833 AI != AE; ++AI) { 1834 WriteUseList(AI, VE, Stream); 1835 WriteUseList(AI->getAliasee(), VE, Stream); 1836 } 1837 1838 Stream.ExitBlock(); 1839 } 1840 1841 /// WriteModule - Emit the specified module to the bitstream. 1842 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1843 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1844 1845 SmallVector<unsigned, 1> Vals; 1846 unsigned CurVersion = 1; 1847 Vals.push_back(CurVersion); 1848 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1849 1850 // Analyze the module, enumerating globals, functions, etc. 1851 ValueEnumerator VE(M); 1852 1853 // Emit blockinfo, which defines the standard abbreviations etc. 1854 WriteBlockInfo(VE, Stream); 1855 1856 // Emit information about parameter attributes. 1857 WriteAttributeTable(VE, Stream); 1858 1859 // Emit information describing all of the types in the module. 1860 WriteTypeTable(VE, Stream); 1861 1862 // Emit top-level description of module, including target triple, inline asm, 1863 // descriptors for global variables, and function prototype info. 1864 WriteModuleInfo(M, VE, Stream); 1865 1866 // Emit constants. 1867 WriteModuleConstants(VE, Stream); 1868 1869 // Emit metadata. 1870 WriteModuleMetadata(M, VE, Stream); 1871 1872 // Emit metadata. 1873 WriteModuleMetadataStore(M, Stream); 1874 1875 // Emit names for globals/functions etc. 1876 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1877 1878 // Emit use-lists. 1879 if (EnablePreserveUseListOrdering) 1880 WriteModuleUseLists(M, VE, Stream); 1881 1882 // Emit function bodies. 1883 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1884 if (!F->isDeclaration()) 1885 WriteFunction(*F, VE, Stream); 1886 1887 Stream.ExitBlock(); 1888 } 1889 1890 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1891 /// header and trailer to make it compatible with the system archiver. To do 1892 /// this we emit the following header, and then emit a trailer that pads the 1893 /// file out to be a multiple of 16 bytes. 1894 /// 1895 /// struct bc_header { 1896 /// uint32_t Magic; // 0x0B17C0DE 1897 /// uint32_t Version; // Version, currently always 0. 1898 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1899 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1900 /// uint32_t CPUType; // CPU specifier. 1901 /// ... potentially more later ... 1902 /// }; 1903 enum { 1904 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1905 DarwinBCHeaderSize = 5*4 1906 }; 1907 1908 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1909 uint32_t &Position) { 1910 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1911 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1912 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1913 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1914 Position += 4; 1915 } 1916 1917 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1918 const Triple &TT) { 1919 unsigned CPUType = ~0U; 1920 1921 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1922 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1923 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1924 // specific constants here because they are implicitly part of the Darwin ABI. 1925 enum { 1926 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1927 DARWIN_CPU_TYPE_X86 = 7, 1928 DARWIN_CPU_TYPE_ARM = 12, 1929 DARWIN_CPU_TYPE_POWERPC = 18 1930 }; 1931 1932 Triple::ArchType Arch = TT.getArch(); 1933 if (Arch == Triple::x86_64) 1934 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1935 else if (Arch == Triple::x86) 1936 CPUType = DARWIN_CPU_TYPE_X86; 1937 else if (Arch == Triple::ppc) 1938 CPUType = DARWIN_CPU_TYPE_POWERPC; 1939 else if (Arch == Triple::ppc64) 1940 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1941 else if (Arch == Triple::arm || Arch == Triple::thumb) 1942 CPUType = DARWIN_CPU_TYPE_ARM; 1943 1944 // Traditional Bitcode starts after header. 1945 assert(Buffer.size() >= DarwinBCHeaderSize && 1946 "Expected header size to be reserved"); 1947 unsigned BCOffset = DarwinBCHeaderSize; 1948 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 1949 1950 // Write the magic and version. 1951 unsigned Position = 0; 1952 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 1953 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 1954 WriteInt32ToBuffer(BCOffset , Buffer, Position); 1955 WriteInt32ToBuffer(BCSize , Buffer, Position); 1956 WriteInt32ToBuffer(CPUType , Buffer, Position); 1957 1958 // If the file is not a multiple of 16 bytes, insert dummy padding. 1959 while (Buffer.size() & 15) 1960 Buffer.push_back(0); 1961 } 1962 1963 /// WriteBitcodeToFile - Write the specified module to the specified output 1964 /// stream. 1965 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1966 SmallVector<char, 0> Buffer; 1967 Buffer.reserve(256*1024); 1968 1969 // If this is darwin or another generic macho target, reserve space for the 1970 // header. 1971 Triple TT(M->getTargetTriple()); 1972 if (TT.isOSDarwin()) 1973 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 1974 1975 // Emit the module into the buffer. 1976 { 1977 BitstreamWriter Stream(Buffer); 1978 1979 // Emit the file header. 1980 Stream.Emit((unsigned)'B', 8); 1981 Stream.Emit((unsigned)'C', 8); 1982 Stream.Emit(0x0, 4); 1983 Stream.Emit(0xC, 4); 1984 Stream.Emit(0xE, 4); 1985 Stream.Emit(0xD, 4); 1986 1987 // Emit the module. 1988 WriteModule(M, Stream); 1989 } 1990 1991 if (TT.isOSDarwin()) 1992 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 1993 1994 // Write the generated bitstream to "Out". 1995 Out.write((char*)&Buffer.front(), Buffer.size()); 1996 } 1997