1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/Program.h" 35 #include "llvm/Support/SHA1.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <cctype> 38 #include <map> 39 using namespace llvm; 40 41 namespace { 42 43 cl::opt<unsigned> 44 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 45 cl::desc("Number of metadatas above which we emit an index " 46 "to enable lazy-loading")); 47 /// These are manifest constants used by the bitcode writer. They do not need to 48 /// be kept in sync with the reader, but need to be consistent within this file. 49 enum { 50 // VALUE_SYMTAB_BLOCK abbrev id's. 51 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 VST_ENTRY_7_ABBREV, 53 VST_ENTRY_6_ABBREV, 54 VST_BBENTRY_6_ABBREV, 55 56 // CONSTANTS_BLOCK abbrev id's. 57 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 CONSTANTS_INTEGER_ABBREV, 59 CONSTANTS_CE_CAST_Abbrev, 60 CONSTANTS_NULL_Abbrev, 61 62 // FUNCTION_BLOCK abbrev id's. 63 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 64 FUNCTION_INST_BINOP_ABBREV, 65 FUNCTION_INST_BINOP_FLAGS_ABBREV, 66 FUNCTION_INST_CAST_ABBREV, 67 FUNCTION_INST_RET_VOID_ABBREV, 68 FUNCTION_INST_RET_VAL_ABBREV, 69 FUNCTION_INST_UNREACHABLE_ABBREV, 70 FUNCTION_INST_GEP_ABBREV, 71 }; 72 73 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 74 /// file type. 75 class BitcodeWriterBase { 76 protected: 77 /// The stream created and owned by the client. 78 BitstreamWriter &Stream; 79 80 public: 81 /// Constructs a BitcodeWriterBase object that writes to the provided 82 /// \p Stream. 83 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 84 85 protected: 86 void writeBitcodeHeader(); 87 void writeModuleVersion(); 88 }; 89 90 void BitcodeWriterBase::writeModuleVersion() { 91 // VERSION: [version#] 92 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 93 } 94 95 /// Class to manage the bitcode writing for a module. 96 class ModuleBitcodeWriter : public BitcodeWriterBase { 97 /// Pointer to the buffer allocated by caller for bitcode writing. 98 const SmallVectorImpl<char> &Buffer; 99 100 StringTableBuilder &StrtabBuilder; 101 102 /// The Module to write to bitcode. 103 const Module &M; 104 105 /// Enumerates ids for all values in the module. 106 ValueEnumerator VE; 107 108 /// Optional per-module index to write for ThinLTO. 109 const ModuleSummaryIndex *Index; 110 111 /// True if a module hash record should be written. 112 bool GenerateHash; 113 114 /// If non-null, when GenerateHash is true, the resulting hash is written 115 /// into ModHash. When GenerateHash is false, that specified value 116 /// is used as the hash instead of computing from the generated bitcode. 117 /// Can be used to produce the same module hash for a minimized bitcode 118 /// used just for the thin link as in the regular full bitcode that will 119 /// be used in the backend. 120 ModuleHash *ModHash; 121 122 /// The start bit of the identification block. 123 uint64_t BitcodeStartBit; 124 125 /// Map that holds the correspondence between GUIDs in the summary index, 126 /// that came from indirect call profiles, and a value id generated by this 127 /// class to use in the VST and summary block records. 128 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 129 130 /// Tracks the last value id recorded in the GUIDToValueMap. 131 unsigned GlobalValueId; 132 133 /// Saves the offset of the VSTOffset record that must eventually be 134 /// backpatched with the offset of the actual VST. 135 uint64_t VSTOffsetPlaceholder = 0; 136 137 public: 138 /// Constructs a ModuleBitcodeWriter object for the given Module, 139 /// writing to the provided \p Buffer. 140 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 141 StringTableBuilder &StrtabBuilder, 142 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 143 const ModuleSummaryIndex *Index, bool GenerateHash, 144 ModuleHash *ModHash = nullptr) 145 : BitcodeWriterBase(Stream), Buffer(Buffer), StrtabBuilder(StrtabBuilder), 146 M(*M), VE(*M, ShouldPreserveUseListOrder), Index(Index), 147 GenerateHash(GenerateHash), ModHash(ModHash), 148 BitcodeStartBit(Stream.GetCurrentBitNo()) { 149 // Assign ValueIds to any callee values in the index that came from 150 // indirect call profiles and were recorded as a GUID not a Value* 151 // (which would have been assigned an ID by the ValueEnumerator). 152 // The starting ValueId is just after the number of values in the 153 // ValueEnumerator, so that they can be emitted in the VST. 154 GlobalValueId = VE.getValues().size(); 155 if (!Index) 156 return; 157 for (const auto &GUIDSummaryLists : *Index) 158 // Examine all summaries for this GUID. 159 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 160 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 161 // For each call in the function summary, see if the call 162 // is to a GUID (which means it is for an indirect call, 163 // otherwise we would have a Value for it). If so, synthesize 164 // a value id. 165 for (auto &CallEdge : FS->calls()) 166 if (!CallEdge.first.getValue()) 167 assignValueId(CallEdge.first.getGUID()); 168 } 169 170 /// Emit the current module to the bitstream. 171 void write(); 172 173 private: 174 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 175 176 void writeAttributeGroupTable(); 177 void writeAttributeTable(); 178 void writeTypeTable(); 179 void writeComdats(); 180 void writeValueSymbolTableForwardDecl(); 181 void writeModuleInfo(); 182 void writeValueAsMetadata(const ValueAsMetadata *MD, 183 SmallVectorImpl<uint64_t> &Record); 184 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 185 unsigned Abbrev); 186 unsigned createDILocationAbbrev(); 187 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 188 unsigned &Abbrev); 189 unsigned createGenericDINodeAbbrev(); 190 void writeGenericDINode(const GenericDINode *N, 191 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 192 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 193 unsigned Abbrev); 194 void writeDIEnumerator(const DIEnumerator *N, 195 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 196 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDIDerivedType(const DIDerivedType *N, 199 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 200 void writeDICompositeType(const DICompositeType *N, 201 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 202 void writeDISubroutineType(const DISubroutineType *N, 203 SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 206 unsigned Abbrev); 207 void writeDICompileUnit(const DICompileUnit *N, 208 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 209 void writeDISubprogram(const DISubprogram *N, 210 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 211 void writeDILexicalBlock(const DILexicalBlock *N, 212 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 213 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 214 SmallVectorImpl<uint64_t> &Record, 215 unsigned Abbrev); 216 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 217 unsigned Abbrev); 218 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 219 unsigned Abbrev); 220 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 221 unsigned Abbrev); 222 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 223 unsigned Abbrev); 224 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 225 SmallVectorImpl<uint64_t> &Record, 226 unsigned Abbrev); 227 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 228 SmallVectorImpl<uint64_t> &Record, 229 unsigned Abbrev); 230 void writeDIGlobalVariable(const DIGlobalVariable *N, 231 SmallVectorImpl<uint64_t> &Record, 232 unsigned Abbrev); 233 void writeDILocalVariable(const DILocalVariable *N, 234 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 235 void writeDIExpression(const DIExpression *N, 236 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 237 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 238 SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIObjCProperty(const DIObjCProperty *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 242 void writeDIImportedEntity(const DIImportedEntity *N, 243 SmallVectorImpl<uint64_t> &Record, 244 unsigned Abbrev); 245 unsigned createNamedMetadataAbbrev(); 246 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 247 unsigned createMetadataStringsAbbrev(); 248 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 249 SmallVectorImpl<uint64_t> &Record); 250 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 251 SmallVectorImpl<uint64_t> &Record, 252 std::vector<unsigned> *MDAbbrevs = nullptr, 253 std::vector<uint64_t> *IndexPos = nullptr); 254 void writeModuleMetadata(); 255 void writeFunctionMetadata(const Function &F); 256 void writeFunctionMetadataAttachment(const Function &F); 257 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 258 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 259 const GlobalObject &GO); 260 void writeModuleMetadataKinds(); 261 void writeOperandBundleTags(); 262 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 263 void writeModuleConstants(); 264 bool pushValueAndType(const Value *V, unsigned InstID, 265 SmallVectorImpl<unsigned> &Vals); 266 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 267 void pushValue(const Value *V, unsigned InstID, 268 SmallVectorImpl<unsigned> &Vals); 269 void pushValueSigned(const Value *V, unsigned InstID, 270 SmallVectorImpl<uint64_t> &Vals); 271 void writeInstruction(const Instruction &I, unsigned InstID, 272 SmallVectorImpl<unsigned> &Vals); 273 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 274 void writeGlobalValueSymbolTable( 275 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 276 void writeUseList(UseListOrder &&Order); 277 void writeUseListBlock(const Function *F); 278 void 279 writeFunction(const Function &F, 280 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 281 void writeBlockInfo(); 282 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 283 GlobalValueSummary *Summary, 284 unsigned ValueID, 285 unsigned FSCallsAbbrev, 286 unsigned FSCallsProfileAbbrev, 287 const Function &F); 288 void writeModuleLevelReferences(const GlobalVariable &V, 289 SmallVector<uint64_t, 64> &NameVals, 290 unsigned FSModRefsAbbrev); 291 void writePerModuleGlobalValueSummary(); 292 void writeModuleHash(size_t BlockStartPos); 293 294 void assignValueId(GlobalValue::GUID ValGUID) { 295 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 296 } 297 unsigned getValueId(GlobalValue::GUID ValGUID) { 298 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 299 // Expect that any GUID value had a value Id assigned by an 300 // earlier call to assignValueId. 301 assert(VMI != GUIDToValueIdMap.end() && 302 "GUID does not have assigned value Id"); 303 return VMI->second; 304 } 305 // Helper to get the valueId for the type of value recorded in VI. 306 unsigned getValueId(ValueInfo VI) { 307 if (!VI.getValue()) 308 return getValueId(VI.getGUID()); 309 return VE.getValueID(VI.getValue()); 310 } 311 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 312 }; 313 314 /// Class to manage the bitcode writing for a combined index. 315 class IndexBitcodeWriter : public BitcodeWriterBase { 316 /// The combined index to write to bitcode. 317 const ModuleSummaryIndex &Index; 318 319 /// When writing a subset of the index for distributed backends, client 320 /// provides a map of modules to the corresponding GUIDs/summaries to write. 321 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 322 323 /// Map that holds the correspondence between the GUID used in the combined 324 /// index and a value id generated by this class to use in references. 325 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 326 327 /// Tracks the last value id recorded in the GUIDToValueMap. 328 unsigned GlobalValueId = 0; 329 330 public: 331 /// Constructs a IndexBitcodeWriter object for the given combined index, 332 /// writing to the provided \p Buffer. When writing a subset of the index 333 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 334 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 335 const std::map<std::string, GVSummaryMapTy> 336 *ModuleToSummariesForIndex = nullptr) 337 : BitcodeWriterBase(Stream), Index(Index), 338 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 339 // Assign unique value ids to all summaries to be written, for use 340 // in writing out the call graph edges. Save the mapping from GUID 341 // to the new global value id to use when writing those edges, which 342 // are currently saved in the index in terms of GUID. 343 forEachSummary([&](GVInfo I) { 344 GUIDToValueIdMap[I.first] = ++GlobalValueId; 345 }); 346 } 347 348 /// The below iterator returns the GUID and associated summary. 349 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 350 351 /// Calls the callback for each value GUID and summary to be written to 352 /// bitcode. This hides the details of whether they are being pulled from the 353 /// entire index or just those in a provided ModuleToSummariesForIndex map. 354 void forEachSummary(std::function<void(GVInfo)> Callback) { 355 if (ModuleToSummariesForIndex) { 356 for (auto &M : *ModuleToSummariesForIndex) 357 for (auto &Summary : M.second) 358 Callback(Summary); 359 } else { 360 for (auto &Summaries : Index) 361 for (auto &Summary : Summaries.second.SummaryList) 362 Callback({Summaries.first, Summary.get()}); 363 } 364 } 365 366 /// Main entry point for writing a combined index to bitcode. 367 void write(); 368 369 private: 370 void writeModStrings(); 371 void writeCombinedGlobalValueSummary(); 372 373 /// Indicates whether the provided \p ModulePath should be written into 374 /// the module string table, e.g. if full index written or if it is in 375 /// the provided subset. 376 bool doIncludeModule(StringRef ModulePath) { 377 return !ModuleToSummariesForIndex || 378 ModuleToSummariesForIndex->count(ModulePath); 379 } 380 381 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 382 auto VMI = GUIDToValueIdMap.find(ValGUID); 383 if (VMI == GUIDToValueIdMap.end()) 384 return None; 385 return VMI->second; 386 } 387 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 388 }; 389 } // end anonymous namespace 390 391 static unsigned getEncodedCastOpcode(unsigned Opcode) { 392 switch (Opcode) { 393 default: llvm_unreachable("Unknown cast instruction!"); 394 case Instruction::Trunc : return bitc::CAST_TRUNC; 395 case Instruction::ZExt : return bitc::CAST_ZEXT; 396 case Instruction::SExt : return bitc::CAST_SEXT; 397 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 398 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 399 case Instruction::UIToFP : return bitc::CAST_UITOFP; 400 case Instruction::SIToFP : return bitc::CAST_SITOFP; 401 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 402 case Instruction::FPExt : return bitc::CAST_FPEXT; 403 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 404 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 405 case Instruction::BitCast : return bitc::CAST_BITCAST; 406 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 407 } 408 } 409 410 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 411 switch (Opcode) { 412 default: llvm_unreachable("Unknown binary instruction!"); 413 case Instruction::Add: 414 case Instruction::FAdd: return bitc::BINOP_ADD; 415 case Instruction::Sub: 416 case Instruction::FSub: return bitc::BINOP_SUB; 417 case Instruction::Mul: 418 case Instruction::FMul: return bitc::BINOP_MUL; 419 case Instruction::UDiv: return bitc::BINOP_UDIV; 420 case Instruction::FDiv: 421 case Instruction::SDiv: return bitc::BINOP_SDIV; 422 case Instruction::URem: return bitc::BINOP_UREM; 423 case Instruction::FRem: 424 case Instruction::SRem: return bitc::BINOP_SREM; 425 case Instruction::Shl: return bitc::BINOP_SHL; 426 case Instruction::LShr: return bitc::BINOP_LSHR; 427 case Instruction::AShr: return bitc::BINOP_ASHR; 428 case Instruction::And: return bitc::BINOP_AND; 429 case Instruction::Or: return bitc::BINOP_OR; 430 case Instruction::Xor: return bitc::BINOP_XOR; 431 } 432 } 433 434 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 435 switch (Op) { 436 default: llvm_unreachable("Unknown RMW operation!"); 437 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 438 case AtomicRMWInst::Add: return bitc::RMW_ADD; 439 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 440 case AtomicRMWInst::And: return bitc::RMW_AND; 441 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 442 case AtomicRMWInst::Or: return bitc::RMW_OR; 443 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 444 case AtomicRMWInst::Max: return bitc::RMW_MAX; 445 case AtomicRMWInst::Min: return bitc::RMW_MIN; 446 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 447 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 448 } 449 } 450 451 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 452 switch (Ordering) { 453 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 454 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 455 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 456 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 457 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 458 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 459 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 460 } 461 llvm_unreachable("Invalid ordering"); 462 } 463 464 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 465 switch (SynchScope) { 466 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 467 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 468 } 469 llvm_unreachable("Invalid synch scope"); 470 } 471 472 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 473 StringRef Str, unsigned AbbrevToUse) { 474 SmallVector<unsigned, 64> Vals; 475 476 // Code: [strchar x N] 477 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 478 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 479 AbbrevToUse = 0; 480 Vals.push_back(Str[i]); 481 } 482 483 // Emit the finished record. 484 Stream.EmitRecord(Code, Vals, AbbrevToUse); 485 } 486 487 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 488 switch (Kind) { 489 case Attribute::Alignment: 490 return bitc::ATTR_KIND_ALIGNMENT; 491 case Attribute::AllocSize: 492 return bitc::ATTR_KIND_ALLOC_SIZE; 493 case Attribute::AlwaysInline: 494 return bitc::ATTR_KIND_ALWAYS_INLINE; 495 case Attribute::ArgMemOnly: 496 return bitc::ATTR_KIND_ARGMEMONLY; 497 case Attribute::Builtin: 498 return bitc::ATTR_KIND_BUILTIN; 499 case Attribute::ByVal: 500 return bitc::ATTR_KIND_BY_VAL; 501 case Attribute::Convergent: 502 return bitc::ATTR_KIND_CONVERGENT; 503 case Attribute::InAlloca: 504 return bitc::ATTR_KIND_IN_ALLOCA; 505 case Attribute::Cold: 506 return bitc::ATTR_KIND_COLD; 507 case Attribute::InaccessibleMemOnly: 508 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 509 case Attribute::InaccessibleMemOrArgMemOnly: 510 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 511 case Attribute::InlineHint: 512 return bitc::ATTR_KIND_INLINE_HINT; 513 case Attribute::InReg: 514 return bitc::ATTR_KIND_IN_REG; 515 case Attribute::JumpTable: 516 return bitc::ATTR_KIND_JUMP_TABLE; 517 case Attribute::MinSize: 518 return bitc::ATTR_KIND_MIN_SIZE; 519 case Attribute::Naked: 520 return bitc::ATTR_KIND_NAKED; 521 case Attribute::Nest: 522 return bitc::ATTR_KIND_NEST; 523 case Attribute::NoAlias: 524 return bitc::ATTR_KIND_NO_ALIAS; 525 case Attribute::NoBuiltin: 526 return bitc::ATTR_KIND_NO_BUILTIN; 527 case Attribute::NoCapture: 528 return bitc::ATTR_KIND_NO_CAPTURE; 529 case Attribute::NoDuplicate: 530 return bitc::ATTR_KIND_NO_DUPLICATE; 531 case Attribute::NoImplicitFloat: 532 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 533 case Attribute::NoInline: 534 return bitc::ATTR_KIND_NO_INLINE; 535 case Attribute::NoRecurse: 536 return bitc::ATTR_KIND_NO_RECURSE; 537 case Attribute::NonLazyBind: 538 return bitc::ATTR_KIND_NON_LAZY_BIND; 539 case Attribute::NonNull: 540 return bitc::ATTR_KIND_NON_NULL; 541 case Attribute::Dereferenceable: 542 return bitc::ATTR_KIND_DEREFERENCEABLE; 543 case Attribute::DereferenceableOrNull: 544 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 545 case Attribute::NoRedZone: 546 return bitc::ATTR_KIND_NO_RED_ZONE; 547 case Attribute::NoReturn: 548 return bitc::ATTR_KIND_NO_RETURN; 549 case Attribute::NoUnwind: 550 return bitc::ATTR_KIND_NO_UNWIND; 551 case Attribute::OptimizeForSize: 552 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 553 case Attribute::OptimizeNone: 554 return bitc::ATTR_KIND_OPTIMIZE_NONE; 555 case Attribute::ReadNone: 556 return bitc::ATTR_KIND_READ_NONE; 557 case Attribute::ReadOnly: 558 return bitc::ATTR_KIND_READ_ONLY; 559 case Attribute::Returned: 560 return bitc::ATTR_KIND_RETURNED; 561 case Attribute::ReturnsTwice: 562 return bitc::ATTR_KIND_RETURNS_TWICE; 563 case Attribute::SExt: 564 return bitc::ATTR_KIND_S_EXT; 565 case Attribute::Speculatable: 566 return bitc::ATTR_KIND_SPECULATABLE; 567 case Attribute::StackAlignment: 568 return bitc::ATTR_KIND_STACK_ALIGNMENT; 569 case Attribute::StackProtect: 570 return bitc::ATTR_KIND_STACK_PROTECT; 571 case Attribute::StackProtectReq: 572 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 573 case Attribute::StackProtectStrong: 574 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 575 case Attribute::SafeStack: 576 return bitc::ATTR_KIND_SAFESTACK; 577 case Attribute::StructRet: 578 return bitc::ATTR_KIND_STRUCT_RET; 579 case Attribute::SanitizeAddress: 580 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 581 case Attribute::SanitizeThread: 582 return bitc::ATTR_KIND_SANITIZE_THREAD; 583 case Attribute::SanitizeMemory: 584 return bitc::ATTR_KIND_SANITIZE_MEMORY; 585 case Attribute::SwiftError: 586 return bitc::ATTR_KIND_SWIFT_ERROR; 587 case Attribute::SwiftSelf: 588 return bitc::ATTR_KIND_SWIFT_SELF; 589 case Attribute::UWTable: 590 return bitc::ATTR_KIND_UW_TABLE; 591 case Attribute::WriteOnly: 592 return bitc::ATTR_KIND_WRITEONLY; 593 case Attribute::ZExt: 594 return bitc::ATTR_KIND_Z_EXT; 595 case Attribute::EndAttrKinds: 596 llvm_unreachable("Can not encode end-attribute kinds marker."); 597 case Attribute::None: 598 llvm_unreachable("Can not encode none-attribute."); 599 } 600 601 llvm_unreachable("Trying to encode unknown attribute"); 602 } 603 604 void ModuleBitcodeWriter::writeAttributeGroupTable() { 605 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 606 VE.getAttributeGroups(); 607 if (AttrGrps.empty()) return; 608 609 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 610 611 SmallVector<uint64_t, 64> Record; 612 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 613 unsigned AttrListIndex = Pair.first; 614 AttributeSet AS = Pair.second; 615 Record.push_back(VE.getAttributeGroupID(Pair)); 616 Record.push_back(AttrListIndex); 617 618 for (Attribute Attr : AS) { 619 if (Attr.isEnumAttribute()) { 620 Record.push_back(0); 621 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 622 } else if (Attr.isIntAttribute()) { 623 Record.push_back(1); 624 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 625 Record.push_back(Attr.getValueAsInt()); 626 } else { 627 StringRef Kind = Attr.getKindAsString(); 628 StringRef Val = Attr.getValueAsString(); 629 630 Record.push_back(Val.empty() ? 3 : 4); 631 Record.append(Kind.begin(), Kind.end()); 632 Record.push_back(0); 633 if (!Val.empty()) { 634 Record.append(Val.begin(), Val.end()); 635 Record.push_back(0); 636 } 637 } 638 } 639 640 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 641 Record.clear(); 642 } 643 644 Stream.ExitBlock(); 645 } 646 647 void ModuleBitcodeWriter::writeAttributeTable() { 648 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 649 if (Attrs.empty()) return; 650 651 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 652 653 SmallVector<uint64_t, 64> Record; 654 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 655 AttributeList AL = Attrs[i]; 656 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 657 AttributeSet AS = AL.getAttributes(i); 658 if (AS.hasAttributes()) 659 Record.push_back(VE.getAttributeGroupID({i, AS})); 660 } 661 662 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 663 Record.clear(); 664 } 665 666 Stream.ExitBlock(); 667 } 668 669 /// WriteTypeTable - Write out the type table for a module. 670 void ModuleBitcodeWriter::writeTypeTable() { 671 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 672 673 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 674 SmallVector<uint64_t, 64> TypeVals; 675 676 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 677 678 // Abbrev for TYPE_CODE_POINTER. 679 auto Abbv = std::make_shared<BitCodeAbbrev>(); 680 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 682 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 683 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 684 685 // Abbrev for TYPE_CODE_FUNCTION. 686 Abbv = std::make_shared<BitCodeAbbrev>(); 687 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 691 692 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 693 694 // Abbrev for TYPE_CODE_STRUCT_ANON. 695 Abbv = std::make_shared<BitCodeAbbrev>(); 696 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 700 701 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 702 703 // Abbrev for TYPE_CODE_STRUCT_NAME. 704 Abbv = std::make_shared<BitCodeAbbrev>(); 705 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 708 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 709 710 // Abbrev for TYPE_CODE_STRUCT_NAMED. 711 Abbv = std::make_shared<BitCodeAbbrev>(); 712 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 716 717 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 718 719 // Abbrev for TYPE_CODE_ARRAY. 720 Abbv = std::make_shared<BitCodeAbbrev>(); 721 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 724 725 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 726 727 // Emit an entry count so the reader can reserve space. 728 TypeVals.push_back(TypeList.size()); 729 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 730 TypeVals.clear(); 731 732 // Loop over all of the types, emitting each in turn. 733 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 734 Type *T = TypeList[i]; 735 int AbbrevToUse = 0; 736 unsigned Code = 0; 737 738 switch (T->getTypeID()) { 739 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 740 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 741 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 742 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 743 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 744 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 745 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 746 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 747 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 748 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 749 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 750 case Type::IntegerTyID: 751 // INTEGER: [width] 752 Code = bitc::TYPE_CODE_INTEGER; 753 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 754 break; 755 case Type::PointerTyID: { 756 PointerType *PTy = cast<PointerType>(T); 757 // POINTER: [pointee type, address space] 758 Code = bitc::TYPE_CODE_POINTER; 759 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 760 unsigned AddressSpace = PTy->getAddressSpace(); 761 TypeVals.push_back(AddressSpace); 762 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 763 break; 764 } 765 case Type::FunctionTyID: { 766 FunctionType *FT = cast<FunctionType>(T); 767 // FUNCTION: [isvararg, retty, paramty x N] 768 Code = bitc::TYPE_CODE_FUNCTION; 769 TypeVals.push_back(FT->isVarArg()); 770 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 771 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 772 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 773 AbbrevToUse = FunctionAbbrev; 774 break; 775 } 776 case Type::StructTyID: { 777 StructType *ST = cast<StructType>(T); 778 // STRUCT: [ispacked, eltty x N] 779 TypeVals.push_back(ST->isPacked()); 780 // Output all of the element types. 781 for (StructType::element_iterator I = ST->element_begin(), 782 E = ST->element_end(); I != E; ++I) 783 TypeVals.push_back(VE.getTypeID(*I)); 784 785 if (ST->isLiteral()) { 786 Code = bitc::TYPE_CODE_STRUCT_ANON; 787 AbbrevToUse = StructAnonAbbrev; 788 } else { 789 if (ST->isOpaque()) { 790 Code = bitc::TYPE_CODE_OPAQUE; 791 } else { 792 Code = bitc::TYPE_CODE_STRUCT_NAMED; 793 AbbrevToUse = StructNamedAbbrev; 794 } 795 796 // Emit the name if it is present. 797 if (!ST->getName().empty()) 798 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 799 StructNameAbbrev); 800 } 801 break; 802 } 803 case Type::ArrayTyID: { 804 ArrayType *AT = cast<ArrayType>(T); 805 // ARRAY: [numelts, eltty] 806 Code = bitc::TYPE_CODE_ARRAY; 807 TypeVals.push_back(AT->getNumElements()); 808 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 809 AbbrevToUse = ArrayAbbrev; 810 break; 811 } 812 case Type::VectorTyID: { 813 VectorType *VT = cast<VectorType>(T); 814 // VECTOR [numelts, eltty] 815 Code = bitc::TYPE_CODE_VECTOR; 816 TypeVals.push_back(VT->getNumElements()); 817 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 818 break; 819 } 820 } 821 822 // Emit the finished record. 823 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 824 TypeVals.clear(); 825 } 826 827 Stream.ExitBlock(); 828 } 829 830 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 831 switch (Linkage) { 832 case GlobalValue::ExternalLinkage: 833 return 0; 834 case GlobalValue::WeakAnyLinkage: 835 return 16; 836 case GlobalValue::AppendingLinkage: 837 return 2; 838 case GlobalValue::InternalLinkage: 839 return 3; 840 case GlobalValue::LinkOnceAnyLinkage: 841 return 18; 842 case GlobalValue::ExternalWeakLinkage: 843 return 7; 844 case GlobalValue::CommonLinkage: 845 return 8; 846 case GlobalValue::PrivateLinkage: 847 return 9; 848 case GlobalValue::WeakODRLinkage: 849 return 17; 850 case GlobalValue::LinkOnceODRLinkage: 851 return 19; 852 case GlobalValue::AvailableExternallyLinkage: 853 return 12; 854 } 855 llvm_unreachable("Invalid linkage"); 856 } 857 858 static unsigned getEncodedLinkage(const GlobalValue &GV) { 859 return getEncodedLinkage(GV.getLinkage()); 860 } 861 862 // Decode the flags for GlobalValue in the summary 863 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 864 uint64_t RawFlags = 0; 865 866 RawFlags |= Flags.NotEligibleToImport; // bool 867 RawFlags |= (Flags.Live << 1); 868 // Linkage don't need to be remapped at that time for the summary. Any future 869 // change to the getEncodedLinkage() function will need to be taken into 870 // account here as well. 871 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 872 873 return RawFlags; 874 } 875 876 static unsigned getEncodedVisibility(const GlobalValue &GV) { 877 switch (GV.getVisibility()) { 878 case GlobalValue::DefaultVisibility: return 0; 879 case GlobalValue::HiddenVisibility: return 1; 880 case GlobalValue::ProtectedVisibility: return 2; 881 } 882 llvm_unreachable("Invalid visibility"); 883 } 884 885 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 886 switch (GV.getDLLStorageClass()) { 887 case GlobalValue::DefaultStorageClass: return 0; 888 case GlobalValue::DLLImportStorageClass: return 1; 889 case GlobalValue::DLLExportStorageClass: return 2; 890 } 891 llvm_unreachable("Invalid DLL storage class"); 892 } 893 894 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 895 switch (GV.getThreadLocalMode()) { 896 case GlobalVariable::NotThreadLocal: return 0; 897 case GlobalVariable::GeneralDynamicTLSModel: return 1; 898 case GlobalVariable::LocalDynamicTLSModel: return 2; 899 case GlobalVariable::InitialExecTLSModel: return 3; 900 case GlobalVariable::LocalExecTLSModel: return 4; 901 } 902 llvm_unreachable("Invalid TLS model"); 903 } 904 905 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 906 switch (C.getSelectionKind()) { 907 case Comdat::Any: 908 return bitc::COMDAT_SELECTION_KIND_ANY; 909 case Comdat::ExactMatch: 910 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 911 case Comdat::Largest: 912 return bitc::COMDAT_SELECTION_KIND_LARGEST; 913 case Comdat::NoDuplicates: 914 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 915 case Comdat::SameSize: 916 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 917 } 918 llvm_unreachable("Invalid selection kind"); 919 } 920 921 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 922 switch (GV.getUnnamedAddr()) { 923 case GlobalValue::UnnamedAddr::None: return 0; 924 case GlobalValue::UnnamedAddr::Local: return 2; 925 case GlobalValue::UnnamedAddr::Global: return 1; 926 } 927 llvm_unreachable("Invalid unnamed_addr"); 928 } 929 930 void ModuleBitcodeWriter::writeComdats() { 931 SmallVector<unsigned, 64> Vals; 932 for (const Comdat *C : VE.getComdats()) { 933 // COMDAT: [strtab offset, strtab size, selection_kind] 934 Vals.push_back(StrtabBuilder.add(C->getName())); 935 Vals.push_back(C->getName().size()); 936 Vals.push_back(getEncodedComdatSelectionKind(*C)); 937 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 938 Vals.clear(); 939 } 940 } 941 942 /// Write a record that will eventually hold the word offset of the 943 /// module-level VST. For now the offset is 0, which will be backpatched 944 /// after the real VST is written. Saves the bit offset to backpatch. 945 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 946 // Write a placeholder value in for the offset of the real VST, 947 // which is written after the function blocks so that it can include 948 // the offset of each function. The placeholder offset will be 949 // updated when the real VST is written. 950 auto Abbv = std::make_shared<BitCodeAbbrev>(); 951 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 952 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 953 // hold the real VST offset. Must use fixed instead of VBR as we don't 954 // know how many VBR chunks to reserve ahead of time. 955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 956 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 957 958 // Emit the placeholder 959 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 960 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 961 962 // Compute and save the bit offset to the placeholder, which will be 963 // patched when the real VST is written. We can simply subtract the 32-bit 964 // fixed size from the current bit number to get the location to backpatch. 965 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 966 } 967 968 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 969 970 /// Determine the encoding to use for the given string name and length. 971 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 972 bool isChar6 = true; 973 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 974 if (isChar6) 975 isChar6 = BitCodeAbbrevOp::isChar6(*C); 976 if ((unsigned char)*C & 128) 977 // don't bother scanning the rest. 978 return SE_Fixed8; 979 } 980 if (isChar6) 981 return SE_Char6; 982 else 983 return SE_Fixed7; 984 } 985 986 /// Emit top-level description of module, including target triple, inline asm, 987 /// descriptors for global variables, and function prototype info. 988 /// Returns the bit offset to backpatch with the location of the real VST. 989 void ModuleBitcodeWriter::writeModuleInfo() { 990 // Emit various pieces of data attached to a module. 991 if (!M.getTargetTriple().empty()) 992 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 993 0 /*TODO*/); 994 const std::string &DL = M.getDataLayoutStr(); 995 if (!DL.empty()) 996 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 997 if (!M.getModuleInlineAsm().empty()) 998 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 999 0 /*TODO*/); 1000 1001 // Emit information about sections and GC, computing how many there are. Also 1002 // compute the maximum alignment value. 1003 std::map<std::string, unsigned> SectionMap; 1004 std::map<std::string, unsigned> GCMap; 1005 unsigned MaxAlignment = 0; 1006 unsigned MaxGlobalType = 0; 1007 for (const GlobalValue &GV : M.globals()) { 1008 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1009 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1010 if (GV.hasSection()) { 1011 // Give section names unique ID's. 1012 unsigned &Entry = SectionMap[GV.getSection()]; 1013 if (!Entry) { 1014 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1015 0 /*TODO*/); 1016 Entry = SectionMap.size(); 1017 } 1018 } 1019 } 1020 for (const Function &F : M) { 1021 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1022 if (F.hasSection()) { 1023 // Give section names unique ID's. 1024 unsigned &Entry = SectionMap[F.getSection()]; 1025 if (!Entry) { 1026 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1027 0 /*TODO*/); 1028 Entry = SectionMap.size(); 1029 } 1030 } 1031 if (F.hasGC()) { 1032 // Same for GC names. 1033 unsigned &Entry = GCMap[F.getGC()]; 1034 if (!Entry) { 1035 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1036 0 /*TODO*/); 1037 Entry = GCMap.size(); 1038 } 1039 } 1040 } 1041 1042 // Emit abbrev for globals, now that we know # sections and max alignment. 1043 unsigned SimpleGVarAbbrev = 0; 1044 if (!M.global_empty()) { 1045 // Add an abbrev for common globals with no visibility or thread localness. 1046 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1047 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1051 Log2_32_Ceil(MaxGlobalType+1))); 1052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1053 //| explicitType << 1 1054 //| constant 1055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1057 if (MaxAlignment == 0) // Alignment. 1058 Abbv->Add(BitCodeAbbrevOp(0)); 1059 else { 1060 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1062 Log2_32_Ceil(MaxEncAlignment+1))); 1063 } 1064 if (SectionMap.empty()) // Section. 1065 Abbv->Add(BitCodeAbbrevOp(0)); 1066 else 1067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1068 Log2_32_Ceil(SectionMap.size()+1))); 1069 // Don't bother emitting vis + thread local. 1070 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1071 } 1072 1073 SmallVector<unsigned, 64> Vals; 1074 // Emit the module's source file name. 1075 { 1076 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1077 M.getSourceFileName().size()); 1078 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1079 if (Bits == SE_Char6) 1080 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1081 else if (Bits == SE_Fixed7) 1082 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1083 1084 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1085 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1086 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1088 Abbv->Add(AbbrevOpToUse); 1089 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1090 1091 for (const auto P : M.getSourceFileName()) 1092 Vals.push_back((unsigned char)P); 1093 1094 // Emit the finished record. 1095 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1096 Vals.clear(); 1097 } 1098 1099 // Emit the global variable information. 1100 for (const GlobalVariable &GV : M.globals()) { 1101 unsigned AbbrevToUse = 0; 1102 1103 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1104 // linkage, alignment, section, visibility, threadlocal, 1105 // unnamed_addr, externally_initialized, dllstorageclass, 1106 // comdat, attributes] 1107 Vals.push_back(StrtabBuilder.add(GV.getName())); 1108 Vals.push_back(GV.getName().size()); 1109 Vals.push_back(VE.getTypeID(GV.getValueType())); 1110 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1111 Vals.push_back(GV.isDeclaration() ? 0 : 1112 (VE.getValueID(GV.getInitializer()) + 1)); 1113 Vals.push_back(getEncodedLinkage(GV)); 1114 Vals.push_back(Log2_32(GV.getAlignment())+1); 1115 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1116 if (GV.isThreadLocal() || 1117 GV.getVisibility() != GlobalValue::DefaultVisibility || 1118 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1119 GV.isExternallyInitialized() || 1120 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1121 GV.hasComdat() || 1122 GV.hasAttributes()) { 1123 Vals.push_back(getEncodedVisibility(GV)); 1124 Vals.push_back(getEncodedThreadLocalMode(GV)); 1125 Vals.push_back(getEncodedUnnamedAddr(GV)); 1126 Vals.push_back(GV.isExternallyInitialized()); 1127 Vals.push_back(getEncodedDLLStorageClass(GV)); 1128 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1129 1130 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1131 Vals.push_back(VE.getAttributeListID(AL)); 1132 } else { 1133 AbbrevToUse = SimpleGVarAbbrev; 1134 } 1135 1136 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1137 Vals.clear(); 1138 } 1139 1140 // Emit the function proto information. 1141 for (const Function &F : M) { 1142 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1143 // linkage, paramattrs, alignment, section, visibility, gc, 1144 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1145 // prefixdata, personalityfn] 1146 Vals.push_back(StrtabBuilder.add(F.getName())); 1147 Vals.push_back(F.getName().size()); 1148 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1149 Vals.push_back(F.getCallingConv()); 1150 Vals.push_back(F.isDeclaration()); 1151 Vals.push_back(getEncodedLinkage(F)); 1152 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1153 Vals.push_back(Log2_32(F.getAlignment())+1); 1154 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1155 Vals.push_back(getEncodedVisibility(F)); 1156 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1157 Vals.push_back(getEncodedUnnamedAddr(F)); 1158 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1159 : 0); 1160 Vals.push_back(getEncodedDLLStorageClass(F)); 1161 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1162 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1163 : 0); 1164 Vals.push_back( 1165 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1166 1167 unsigned AbbrevToUse = 0; 1168 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1169 Vals.clear(); 1170 } 1171 1172 // Emit the alias information. 1173 for (const GlobalAlias &A : M.aliases()) { 1174 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1175 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1176 Vals.push_back(StrtabBuilder.add(A.getName())); 1177 Vals.push_back(A.getName().size()); 1178 Vals.push_back(VE.getTypeID(A.getValueType())); 1179 Vals.push_back(A.getType()->getAddressSpace()); 1180 Vals.push_back(VE.getValueID(A.getAliasee())); 1181 Vals.push_back(getEncodedLinkage(A)); 1182 Vals.push_back(getEncodedVisibility(A)); 1183 Vals.push_back(getEncodedDLLStorageClass(A)); 1184 Vals.push_back(getEncodedThreadLocalMode(A)); 1185 Vals.push_back(getEncodedUnnamedAddr(A)); 1186 unsigned AbbrevToUse = 0; 1187 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1188 Vals.clear(); 1189 } 1190 1191 // Emit the ifunc information. 1192 for (const GlobalIFunc &I : M.ifuncs()) { 1193 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1194 // val#, linkage, visibility] 1195 Vals.push_back(StrtabBuilder.add(I.getName())); 1196 Vals.push_back(I.getName().size()); 1197 Vals.push_back(VE.getTypeID(I.getValueType())); 1198 Vals.push_back(I.getType()->getAddressSpace()); 1199 Vals.push_back(VE.getValueID(I.getResolver())); 1200 Vals.push_back(getEncodedLinkage(I)); 1201 Vals.push_back(getEncodedVisibility(I)); 1202 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1203 Vals.clear(); 1204 } 1205 1206 writeValueSymbolTableForwardDecl(); 1207 } 1208 1209 static uint64_t getOptimizationFlags(const Value *V) { 1210 uint64_t Flags = 0; 1211 1212 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1213 if (OBO->hasNoSignedWrap()) 1214 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1215 if (OBO->hasNoUnsignedWrap()) 1216 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1217 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1218 if (PEO->isExact()) 1219 Flags |= 1 << bitc::PEO_EXACT; 1220 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1221 if (FPMO->hasUnsafeAlgebra()) 1222 Flags |= FastMathFlags::UnsafeAlgebra; 1223 if (FPMO->hasNoNaNs()) 1224 Flags |= FastMathFlags::NoNaNs; 1225 if (FPMO->hasNoInfs()) 1226 Flags |= FastMathFlags::NoInfs; 1227 if (FPMO->hasNoSignedZeros()) 1228 Flags |= FastMathFlags::NoSignedZeros; 1229 if (FPMO->hasAllowReciprocal()) 1230 Flags |= FastMathFlags::AllowReciprocal; 1231 if (FPMO->hasAllowContract()) 1232 Flags |= FastMathFlags::AllowContract; 1233 } 1234 1235 return Flags; 1236 } 1237 1238 void ModuleBitcodeWriter::writeValueAsMetadata( 1239 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1240 // Mimic an MDNode with a value as one operand. 1241 Value *V = MD->getValue(); 1242 Record.push_back(VE.getTypeID(V->getType())); 1243 Record.push_back(VE.getValueID(V)); 1244 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1245 Record.clear(); 1246 } 1247 1248 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1249 SmallVectorImpl<uint64_t> &Record, 1250 unsigned Abbrev) { 1251 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1252 Metadata *MD = N->getOperand(i); 1253 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1254 "Unexpected function-local metadata"); 1255 Record.push_back(VE.getMetadataOrNullID(MD)); 1256 } 1257 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1258 : bitc::METADATA_NODE, 1259 Record, Abbrev); 1260 Record.clear(); 1261 } 1262 1263 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1264 // Assume the column is usually under 128, and always output the inlined-at 1265 // location (it's never more expensive than building an array size 1). 1266 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1267 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1273 return Stream.EmitAbbrev(std::move(Abbv)); 1274 } 1275 1276 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1277 SmallVectorImpl<uint64_t> &Record, 1278 unsigned &Abbrev) { 1279 if (!Abbrev) 1280 Abbrev = createDILocationAbbrev(); 1281 1282 Record.push_back(N->isDistinct()); 1283 Record.push_back(N->getLine()); 1284 Record.push_back(N->getColumn()); 1285 Record.push_back(VE.getMetadataID(N->getScope())); 1286 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1287 1288 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1289 Record.clear(); 1290 } 1291 1292 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1293 // Assume the column is usually under 128, and always output the inlined-at 1294 // location (it's never more expensive than building an array size 1). 1295 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1296 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1303 return Stream.EmitAbbrev(std::move(Abbv)); 1304 } 1305 1306 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1307 SmallVectorImpl<uint64_t> &Record, 1308 unsigned &Abbrev) { 1309 if (!Abbrev) 1310 Abbrev = createGenericDINodeAbbrev(); 1311 1312 Record.push_back(N->isDistinct()); 1313 Record.push_back(N->getTag()); 1314 Record.push_back(0); // Per-tag version field; unused for now. 1315 1316 for (auto &I : N->operands()) 1317 Record.push_back(VE.getMetadataOrNullID(I)); 1318 1319 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1320 Record.clear(); 1321 } 1322 1323 static uint64_t rotateSign(int64_t I) { 1324 uint64_t U = I; 1325 return I < 0 ? ~(U << 1) : U << 1; 1326 } 1327 1328 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1329 SmallVectorImpl<uint64_t> &Record, 1330 unsigned Abbrev) { 1331 Record.push_back(N->isDistinct()); 1332 Record.push_back(N->getCount()); 1333 Record.push_back(rotateSign(N->getLowerBound())); 1334 1335 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1336 Record.clear(); 1337 } 1338 1339 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1340 SmallVectorImpl<uint64_t> &Record, 1341 unsigned Abbrev) { 1342 Record.push_back(N->isDistinct()); 1343 Record.push_back(rotateSign(N->getValue())); 1344 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1345 1346 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1347 Record.clear(); 1348 } 1349 1350 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1351 SmallVectorImpl<uint64_t> &Record, 1352 unsigned Abbrev) { 1353 Record.push_back(N->isDistinct()); 1354 Record.push_back(N->getTag()); 1355 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1356 Record.push_back(N->getSizeInBits()); 1357 Record.push_back(N->getAlignInBits()); 1358 Record.push_back(N->getEncoding()); 1359 1360 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1361 Record.clear(); 1362 } 1363 1364 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1365 SmallVectorImpl<uint64_t> &Record, 1366 unsigned Abbrev) { 1367 Record.push_back(N->isDistinct()); 1368 Record.push_back(N->getTag()); 1369 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1370 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1371 Record.push_back(N->getLine()); 1372 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1373 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1374 Record.push_back(N->getSizeInBits()); 1375 Record.push_back(N->getAlignInBits()); 1376 Record.push_back(N->getOffsetInBits()); 1377 Record.push_back(N->getFlags()); 1378 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1379 1380 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1381 // that there is no DWARF address space associated with DIDerivedType. 1382 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1383 Record.push_back(*DWARFAddressSpace + 1); 1384 else 1385 Record.push_back(0); 1386 1387 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1388 Record.clear(); 1389 } 1390 1391 void ModuleBitcodeWriter::writeDICompositeType( 1392 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1393 unsigned Abbrev) { 1394 const unsigned IsNotUsedInOldTypeRef = 0x2; 1395 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1396 Record.push_back(N->getTag()); 1397 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1398 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1399 Record.push_back(N->getLine()); 1400 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1401 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1402 Record.push_back(N->getSizeInBits()); 1403 Record.push_back(N->getAlignInBits()); 1404 Record.push_back(N->getOffsetInBits()); 1405 Record.push_back(N->getFlags()); 1406 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1407 Record.push_back(N->getRuntimeLang()); 1408 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1409 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1410 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1411 1412 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1413 Record.clear(); 1414 } 1415 1416 void ModuleBitcodeWriter::writeDISubroutineType( 1417 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1418 unsigned Abbrev) { 1419 const unsigned HasNoOldTypeRefs = 0x2; 1420 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1421 Record.push_back(N->getFlags()); 1422 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1423 Record.push_back(N->getCC()); 1424 1425 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1426 Record.clear(); 1427 } 1428 1429 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1430 SmallVectorImpl<uint64_t> &Record, 1431 unsigned Abbrev) { 1432 Record.push_back(N->isDistinct()); 1433 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1434 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1435 Record.push_back(N->getChecksumKind()); 1436 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1437 1438 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1439 Record.clear(); 1440 } 1441 1442 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1443 SmallVectorImpl<uint64_t> &Record, 1444 unsigned Abbrev) { 1445 assert(N->isDistinct() && "Expected distinct compile units"); 1446 Record.push_back(/* IsDistinct */ true); 1447 Record.push_back(N->getSourceLanguage()); 1448 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1449 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1450 Record.push_back(N->isOptimized()); 1451 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1452 Record.push_back(N->getRuntimeVersion()); 1453 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1454 Record.push_back(N->getEmissionKind()); 1455 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1456 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1457 Record.push_back(/* subprograms */ 0); 1458 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1459 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1460 Record.push_back(N->getDWOId()); 1461 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1462 Record.push_back(N->getSplitDebugInlining()); 1463 Record.push_back(N->getDebugInfoForProfiling()); 1464 1465 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1466 Record.clear(); 1467 } 1468 1469 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1470 SmallVectorImpl<uint64_t> &Record, 1471 unsigned Abbrev) { 1472 uint64_t HasUnitFlag = 1 << 1; 1473 Record.push_back(N->isDistinct() | HasUnitFlag); 1474 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1475 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1476 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1477 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1478 Record.push_back(N->getLine()); 1479 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1480 Record.push_back(N->isLocalToUnit()); 1481 Record.push_back(N->isDefinition()); 1482 Record.push_back(N->getScopeLine()); 1483 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1484 Record.push_back(N->getVirtuality()); 1485 Record.push_back(N->getVirtualIndex()); 1486 Record.push_back(N->getFlags()); 1487 Record.push_back(N->isOptimized()); 1488 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1489 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1490 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1491 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1492 Record.push_back(N->getThisAdjustment()); 1493 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1494 1495 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1496 Record.clear(); 1497 } 1498 1499 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1500 SmallVectorImpl<uint64_t> &Record, 1501 unsigned Abbrev) { 1502 Record.push_back(N->isDistinct()); 1503 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1504 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1505 Record.push_back(N->getLine()); 1506 Record.push_back(N->getColumn()); 1507 1508 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1509 Record.clear(); 1510 } 1511 1512 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1513 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1514 unsigned Abbrev) { 1515 Record.push_back(N->isDistinct()); 1516 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1517 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1518 Record.push_back(N->getDiscriminator()); 1519 1520 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1521 Record.clear(); 1522 } 1523 1524 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1525 SmallVectorImpl<uint64_t> &Record, 1526 unsigned Abbrev) { 1527 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1528 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1529 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1530 1531 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1532 Record.clear(); 1533 } 1534 1535 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1536 SmallVectorImpl<uint64_t> &Record, 1537 unsigned Abbrev) { 1538 Record.push_back(N->isDistinct()); 1539 Record.push_back(N->getMacinfoType()); 1540 Record.push_back(N->getLine()); 1541 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1542 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1543 1544 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1545 Record.clear(); 1546 } 1547 1548 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1549 SmallVectorImpl<uint64_t> &Record, 1550 unsigned Abbrev) { 1551 Record.push_back(N->isDistinct()); 1552 Record.push_back(N->getMacinfoType()); 1553 Record.push_back(N->getLine()); 1554 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1555 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1556 1557 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1558 Record.clear(); 1559 } 1560 1561 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1562 SmallVectorImpl<uint64_t> &Record, 1563 unsigned Abbrev) { 1564 Record.push_back(N->isDistinct()); 1565 for (auto &I : N->operands()) 1566 Record.push_back(VE.getMetadataOrNullID(I)); 1567 1568 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1569 Record.clear(); 1570 } 1571 1572 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1573 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1574 unsigned Abbrev) { 1575 Record.push_back(N->isDistinct()); 1576 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1577 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1578 1579 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1580 Record.clear(); 1581 } 1582 1583 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1584 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1585 unsigned Abbrev) { 1586 Record.push_back(N->isDistinct()); 1587 Record.push_back(N->getTag()); 1588 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1589 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1590 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1591 1592 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1593 Record.clear(); 1594 } 1595 1596 void ModuleBitcodeWriter::writeDIGlobalVariable( 1597 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1598 unsigned Abbrev) { 1599 const uint64_t Version = 1 << 1; 1600 Record.push_back((uint64_t)N->isDistinct() | Version); 1601 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1602 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1603 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1604 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1605 Record.push_back(N->getLine()); 1606 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1607 Record.push_back(N->isLocalToUnit()); 1608 Record.push_back(N->isDefinition()); 1609 Record.push_back(/* expr */ 0); 1610 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1611 Record.push_back(N->getAlignInBits()); 1612 1613 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1614 Record.clear(); 1615 } 1616 1617 void ModuleBitcodeWriter::writeDILocalVariable( 1618 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1619 unsigned Abbrev) { 1620 // In order to support all possible bitcode formats in BitcodeReader we need 1621 // to distinguish the following cases: 1622 // 1) Record has no artificial tag (Record[1]), 1623 // has no obsolete inlinedAt field (Record[9]). 1624 // In this case Record size will be 8, HasAlignment flag is false. 1625 // 2) Record has artificial tag (Record[1]), 1626 // has no obsolete inlignedAt field (Record[9]). 1627 // In this case Record size will be 9, HasAlignment flag is false. 1628 // 3) Record has both artificial tag (Record[1]) and 1629 // obsolete inlignedAt field (Record[9]). 1630 // In this case Record size will be 10, HasAlignment flag is false. 1631 // 4) Record has neither artificial tag, nor inlignedAt field, but 1632 // HasAlignment flag is true and Record[8] contains alignment value. 1633 const uint64_t HasAlignmentFlag = 1 << 1; 1634 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1635 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1636 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1637 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1638 Record.push_back(N->getLine()); 1639 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1640 Record.push_back(N->getArg()); 1641 Record.push_back(N->getFlags()); 1642 Record.push_back(N->getAlignInBits()); 1643 1644 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1645 Record.clear(); 1646 } 1647 1648 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1649 SmallVectorImpl<uint64_t> &Record, 1650 unsigned Abbrev) { 1651 Record.reserve(N->getElements().size() + 1); 1652 const uint64_t Version = 2 << 1; 1653 Record.push_back((uint64_t)N->isDistinct() | Version); 1654 Record.append(N->elements_begin(), N->elements_end()); 1655 1656 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1657 Record.clear(); 1658 } 1659 1660 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1661 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1662 unsigned Abbrev) { 1663 Record.push_back(N->isDistinct()); 1664 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1665 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1666 1667 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1668 Record.clear(); 1669 } 1670 1671 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1672 SmallVectorImpl<uint64_t> &Record, 1673 unsigned Abbrev) { 1674 Record.push_back(N->isDistinct()); 1675 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1677 Record.push_back(N->getLine()); 1678 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1679 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1680 Record.push_back(N->getAttributes()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1682 1683 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1684 Record.clear(); 1685 } 1686 1687 void ModuleBitcodeWriter::writeDIImportedEntity( 1688 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1689 unsigned Abbrev) { 1690 Record.push_back(N->isDistinct()); 1691 Record.push_back(N->getTag()); 1692 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1693 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1694 Record.push_back(N->getLine()); 1695 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1696 1697 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1698 Record.clear(); 1699 } 1700 1701 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1702 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1703 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1706 return Stream.EmitAbbrev(std::move(Abbv)); 1707 } 1708 1709 void ModuleBitcodeWriter::writeNamedMetadata( 1710 SmallVectorImpl<uint64_t> &Record) { 1711 if (M.named_metadata_empty()) 1712 return; 1713 1714 unsigned Abbrev = createNamedMetadataAbbrev(); 1715 for (const NamedMDNode &NMD : M.named_metadata()) { 1716 // Write name. 1717 StringRef Str = NMD.getName(); 1718 Record.append(Str.bytes_begin(), Str.bytes_end()); 1719 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1720 Record.clear(); 1721 1722 // Write named metadata operands. 1723 for (const MDNode *N : NMD.operands()) 1724 Record.push_back(VE.getMetadataID(N)); 1725 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1726 Record.clear(); 1727 } 1728 } 1729 1730 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1731 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1732 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1736 return Stream.EmitAbbrev(std::move(Abbv)); 1737 } 1738 1739 /// Write out a record for MDString. 1740 /// 1741 /// All the metadata strings in a metadata block are emitted in a single 1742 /// record. The sizes and strings themselves are shoved into a blob. 1743 void ModuleBitcodeWriter::writeMetadataStrings( 1744 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1745 if (Strings.empty()) 1746 return; 1747 1748 // Start the record with the number of strings. 1749 Record.push_back(bitc::METADATA_STRINGS); 1750 Record.push_back(Strings.size()); 1751 1752 // Emit the sizes of the strings in the blob. 1753 SmallString<256> Blob; 1754 { 1755 BitstreamWriter W(Blob); 1756 for (const Metadata *MD : Strings) 1757 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1758 W.FlushToWord(); 1759 } 1760 1761 // Add the offset to the strings to the record. 1762 Record.push_back(Blob.size()); 1763 1764 // Add the strings to the blob. 1765 for (const Metadata *MD : Strings) 1766 Blob.append(cast<MDString>(MD)->getString()); 1767 1768 // Emit the final record. 1769 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1770 Record.clear(); 1771 } 1772 1773 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1774 enum MetadataAbbrev : unsigned { 1775 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1776 #include "llvm/IR/Metadata.def" 1777 LastPlusOne 1778 }; 1779 1780 void ModuleBitcodeWriter::writeMetadataRecords( 1781 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1782 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1783 if (MDs.empty()) 1784 return; 1785 1786 // Initialize MDNode abbreviations. 1787 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1788 #include "llvm/IR/Metadata.def" 1789 1790 for (const Metadata *MD : MDs) { 1791 if (IndexPos) 1792 IndexPos->push_back(Stream.GetCurrentBitNo()); 1793 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1794 assert(N->isResolved() && "Expected forward references to be resolved"); 1795 1796 switch (N->getMetadataID()) { 1797 default: 1798 llvm_unreachable("Invalid MDNode subclass"); 1799 #define HANDLE_MDNODE_LEAF(CLASS) \ 1800 case Metadata::CLASS##Kind: \ 1801 if (MDAbbrevs) \ 1802 write##CLASS(cast<CLASS>(N), Record, \ 1803 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1804 else \ 1805 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1806 continue; 1807 #include "llvm/IR/Metadata.def" 1808 } 1809 } 1810 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1811 } 1812 } 1813 1814 void ModuleBitcodeWriter::writeModuleMetadata() { 1815 if (!VE.hasMDs() && M.named_metadata_empty()) 1816 return; 1817 1818 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1819 SmallVector<uint64_t, 64> Record; 1820 1821 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1822 // block and load any metadata. 1823 std::vector<unsigned> MDAbbrevs; 1824 1825 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1826 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1827 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1828 createGenericDINodeAbbrev(); 1829 1830 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1831 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1834 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1835 1836 Abbv = std::make_shared<BitCodeAbbrev>(); 1837 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1840 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1841 1842 // Emit MDStrings together upfront. 1843 writeMetadataStrings(VE.getMDStrings(), Record); 1844 1845 // We only emit an index for the metadata record if we have more than a given 1846 // (naive) threshold of metadatas, otherwise it is not worth it. 1847 if (VE.getNonMDStrings().size() > IndexThreshold) { 1848 // Write a placeholder value in for the offset of the metadata index, 1849 // which is written after the records, so that it can include 1850 // the offset of each entry. The placeholder offset will be 1851 // updated after all records are emitted. 1852 uint64_t Vals[] = {0, 0}; 1853 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1854 } 1855 1856 // Compute and save the bit offset to the current position, which will be 1857 // patched when we emit the index later. We can simply subtract the 64-bit 1858 // fixed size from the current bit number to get the location to backpatch. 1859 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1860 1861 // This index will contain the bitpos for each individual record. 1862 std::vector<uint64_t> IndexPos; 1863 IndexPos.reserve(VE.getNonMDStrings().size()); 1864 1865 // Write all the records 1866 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1867 1868 if (VE.getNonMDStrings().size() > IndexThreshold) { 1869 // Now that we have emitted all the records we will emit the index. But 1870 // first 1871 // backpatch the forward reference so that the reader can skip the records 1872 // efficiently. 1873 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1874 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1875 1876 // Delta encode the index. 1877 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1878 for (auto &Elt : IndexPos) { 1879 auto EltDelta = Elt - PreviousValue; 1880 PreviousValue = Elt; 1881 Elt = EltDelta; 1882 } 1883 // Emit the index record. 1884 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1885 IndexPos.clear(); 1886 } 1887 1888 // Write the named metadata now. 1889 writeNamedMetadata(Record); 1890 1891 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1892 SmallVector<uint64_t, 4> Record; 1893 Record.push_back(VE.getValueID(&GO)); 1894 pushGlobalMetadataAttachment(Record, GO); 1895 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1896 }; 1897 for (const Function &F : M) 1898 if (F.isDeclaration() && F.hasMetadata()) 1899 AddDeclAttachedMetadata(F); 1900 // FIXME: Only store metadata for declarations here, and move data for global 1901 // variable definitions to a separate block (PR28134). 1902 for (const GlobalVariable &GV : M.globals()) 1903 if (GV.hasMetadata()) 1904 AddDeclAttachedMetadata(GV); 1905 1906 Stream.ExitBlock(); 1907 } 1908 1909 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1910 if (!VE.hasMDs()) 1911 return; 1912 1913 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1914 SmallVector<uint64_t, 64> Record; 1915 writeMetadataStrings(VE.getMDStrings(), Record); 1916 writeMetadataRecords(VE.getNonMDStrings(), Record); 1917 Stream.ExitBlock(); 1918 } 1919 1920 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1921 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1922 // [n x [id, mdnode]] 1923 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1924 GO.getAllMetadata(MDs); 1925 for (const auto &I : MDs) { 1926 Record.push_back(I.first); 1927 Record.push_back(VE.getMetadataID(I.second)); 1928 } 1929 } 1930 1931 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1932 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1933 1934 SmallVector<uint64_t, 64> Record; 1935 1936 if (F.hasMetadata()) { 1937 pushGlobalMetadataAttachment(Record, F); 1938 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1939 Record.clear(); 1940 } 1941 1942 // Write metadata attachments 1943 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1944 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1945 for (const BasicBlock &BB : F) 1946 for (const Instruction &I : BB) { 1947 MDs.clear(); 1948 I.getAllMetadataOtherThanDebugLoc(MDs); 1949 1950 // If no metadata, ignore instruction. 1951 if (MDs.empty()) continue; 1952 1953 Record.push_back(VE.getInstructionID(&I)); 1954 1955 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1956 Record.push_back(MDs[i].first); 1957 Record.push_back(VE.getMetadataID(MDs[i].second)); 1958 } 1959 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1960 Record.clear(); 1961 } 1962 1963 Stream.ExitBlock(); 1964 } 1965 1966 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 1967 SmallVector<uint64_t, 64> Record; 1968 1969 // Write metadata kinds 1970 // METADATA_KIND - [n x [id, name]] 1971 SmallVector<StringRef, 8> Names; 1972 M.getMDKindNames(Names); 1973 1974 if (Names.empty()) return; 1975 1976 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1977 1978 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1979 Record.push_back(MDKindID); 1980 StringRef KName = Names[MDKindID]; 1981 Record.append(KName.begin(), KName.end()); 1982 1983 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1984 Record.clear(); 1985 } 1986 1987 Stream.ExitBlock(); 1988 } 1989 1990 void ModuleBitcodeWriter::writeOperandBundleTags() { 1991 // Write metadata kinds 1992 // 1993 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1994 // 1995 // OPERAND_BUNDLE_TAG - [strchr x N] 1996 1997 SmallVector<StringRef, 8> Tags; 1998 M.getOperandBundleTags(Tags); 1999 2000 if (Tags.empty()) 2001 return; 2002 2003 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2004 2005 SmallVector<uint64_t, 64> Record; 2006 2007 for (auto Tag : Tags) { 2008 Record.append(Tag.begin(), Tag.end()); 2009 2010 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2011 Record.clear(); 2012 } 2013 2014 Stream.ExitBlock(); 2015 } 2016 2017 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2018 if ((int64_t)V >= 0) 2019 Vals.push_back(V << 1); 2020 else 2021 Vals.push_back((-V << 1) | 1); 2022 } 2023 2024 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2025 bool isGlobal) { 2026 if (FirstVal == LastVal) return; 2027 2028 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2029 2030 unsigned AggregateAbbrev = 0; 2031 unsigned String8Abbrev = 0; 2032 unsigned CString7Abbrev = 0; 2033 unsigned CString6Abbrev = 0; 2034 // If this is a constant pool for the module, emit module-specific abbrevs. 2035 if (isGlobal) { 2036 // Abbrev for CST_CODE_AGGREGATE. 2037 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2038 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2041 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2042 2043 // Abbrev for CST_CODE_STRING. 2044 Abbv = std::make_shared<BitCodeAbbrev>(); 2045 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2048 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2049 // Abbrev for CST_CODE_CSTRING. 2050 Abbv = std::make_shared<BitCodeAbbrev>(); 2051 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2054 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2055 // Abbrev for CST_CODE_CSTRING. 2056 Abbv = std::make_shared<BitCodeAbbrev>(); 2057 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2060 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2061 } 2062 2063 SmallVector<uint64_t, 64> Record; 2064 2065 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2066 Type *LastTy = nullptr; 2067 for (unsigned i = FirstVal; i != LastVal; ++i) { 2068 const Value *V = Vals[i].first; 2069 // If we need to switch types, do so now. 2070 if (V->getType() != LastTy) { 2071 LastTy = V->getType(); 2072 Record.push_back(VE.getTypeID(LastTy)); 2073 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2074 CONSTANTS_SETTYPE_ABBREV); 2075 Record.clear(); 2076 } 2077 2078 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2079 Record.push_back(unsigned(IA->hasSideEffects()) | 2080 unsigned(IA->isAlignStack()) << 1 | 2081 unsigned(IA->getDialect()&1) << 2); 2082 2083 // Add the asm string. 2084 const std::string &AsmStr = IA->getAsmString(); 2085 Record.push_back(AsmStr.size()); 2086 Record.append(AsmStr.begin(), AsmStr.end()); 2087 2088 // Add the constraint string. 2089 const std::string &ConstraintStr = IA->getConstraintString(); 2090 Record.push_back(ConstraintStr.size()); 2091 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2092 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2093 Record.clear(); 2094 continue; 2095 } 2096 const Constant *C = cast<Constant>(V); 2097 unsigned Code = -1U; 2098 unsigned AbbrevToUse = 0; 2099 if (C->isNullValue()) { 2100 Code = bitc::CST_CODE_NULL; 2101 } else if (isa<UndefValue>(C)) { 2102 Code = bitc::CST_CODE_UNDEF; 2103 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2104 if (IV->getBitWidth() <= 64) { 2105 uint64_t V = IV->getSExtValue(); 2106 emitSignedInt64(Record, V); 2107 Code = bitc::CST_CODE_INTEGER; 2108 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2109 } else { // Wide integers, > 64 bits in size. 2110 // We have an arbitrary precision integer value to write whose 2111 // bit width is > 64. However, in canonical unsigned integer 2112 // format it is likely that the high bits are going to be zero. 2113 // So, we only write the number of active words. 2114 unsigned NWords = IV->getValue().getActiveWords(); 2115 const uint64_t *RawWords = IV->getValue().getRawData(); 2116 for (unsigned i = 0; i != NWords; ++i) { 2117 emitSignedInt64(Record, RawWords[i]); 2118 } 2119 Code = bitc::CST_CODE_WIDE_INTEGER; 2120 } 2121 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2122 Code = bitc::CST_CODE_FLOAT; 2123 Type *Ty = CFP->getType(); 2124 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2125 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2126 } else if (Ty->isX86_FP80Ty()) { 2127 // api needed to prevent premature destruction 2128 // bits are not in the same order as a normal i80 APInt, compensate. 2129 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2130 const uint64_t *p = api.getRawData(); 2131 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2132 Record.push_back(p[0] & 0xffffLL); 2133 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2134 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2135 const uint64_t *p = api.getRawData(); 2136 Record.push_back(p[0]); 2137 Record.push_back(p[1]); 2138 } else { 2139 assert (0 && "Unknown FP type!"); 2140 } 2141 } else if (isa<ConstantDataSequential>(C) && 2142 cast<ConstantDataSequential>(C)->isString()) { 2143 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2144 // Emit constant strings specially. 2145 unsigned NumElts = Str->getNumElements(); 2146 // If this is a null-terminated string, use the denser CSTRING encoding. 2147 if (Str->isCString()) { 2148 Code = bitc::CST_CODE_CSTRING; 2149 --NumElts; // Don't encode the null, which isn't allowed by char6. 2150 } else { 2151 Code = bitc::CST_CODE_STRING; 2152 AbbrevToUse = String8Abbrev; 2153 } 2154 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2155 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2156 for (unsigned i = 0; i != NumElts; ++i) { 2157 unsigned char V = Str->getElementAsInteger(i); 2158 Record.push_back(V); 2159 isCStr7 &= (V & 128) == 0; 2160 if (isCStrChar6) 2161 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2162 } 2163 2164 if (isCStrChar6) 2165 AbbrevToUse = CString6Abbrev; 2166 else if (isCStr7) 2167 AbbrevToUse = CString7Abbrev; 2168 } else if (const ConstantDataSequential *CDS = 2169 dyn_cast<ConstantDataSequential>(C)) { 2170 Code = bitc::CST_CODE_DATA; 2171 Type *EltTy = CDS->getType()->getElementType(); 2172 if (isa<IntegerType>(EltTy)) { 2173 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2174 Record.push_back(CDS->getElementAsInteger(i)); 2175 } else { 2176 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2177 Record.push_back( 2178 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2179 } 2180 } else if (isa<ConstantAggregate>(C)) { 2181 Code = bitc::CST_CODE_AGGREGATE; 2182 for (const Value *Op : C->operands()) 2183 Record.push_back(VE.getValueID(Op)); 2184 AbbrevToUse = AggregateAbbrev; 2185 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2186 switch (CE->getOpcode()) { 2187 default: 2188 if (Instruction::isCast(CE->getOpcode())) { 2189 Code = bitc::CST_CODE_CE_CAST; 2190 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2191 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2192 Record.push_back(VE.getValueID(C->getOperand(0))); 2193 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2194 } else { 2195 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2196 Code = bitc::CST_CODE_CE_BINOP; 2197 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2198 Record.push_back(VE.getValueID(C->getOperand(0))); 2199 Record.push_back(VE.getValueID(C->getOperand(1))); 2200 uint64_t Flags = getOptimizationFlags(CE); 2201 if (Flags != 0) 2202 Record.push_back(Flags); 2203 } 2204 break; 2205 case Instruction::GetElementPtr: { 2206 Code = bitc::CST_CODE_CE_GEP; 2207 const auto *GO = cast<GEPOperator>(C); 2208 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2209 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2210 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2211 Record.push_back((*Idx << 1) | GO->isInBounds()); 2212 } else if (GO->isInBounds()) 2213 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2214 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2215 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2216 Record.push_back(VE.getValueID(C->getOperand(i))); 2217 } 2218 break; 2219 } 2220 case Instruction::Select: 2221 Code = bitc::CST_CODE_CE_SELECT; 2222 Record.push_back(VE.getValueID(C->getOperand(0))); 2223 Record.push_back(VE.getValueID(C->getOperand(1))); 2224 Record.push_back(VE.getValueID(C->getOperand(2))); 2225 break; 2226 case Instruction::ExtractElement: 2227 Code = bitc::CST_CODE_CE_EXTRACTELT; 2228 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2229 Record.push_back(VE.getValueID(C->getOperand(0))); 2230 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2231 Record.push_back(VE.getValueID(C->getOperand(1))); 2232 break; 2233 case Instruction::InsertElement: 2234 Code = bitc::CST_CODE_CE_INSERTELT; 2235 Record.push_back(VE.getValueID(C->getOperand(0))); 2236 Record.push_back(VE.getValueID(C->getOperand(1))); 2237 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2238 Record.push_back(VE.getValueID(C->getOperand(2))); 2239 break; 2240 case Instruction::ShuffleVector: 2241 // If the return type and argument types are the same, this is a 2242 // standard shufflevector instruction. If the types are different, 2243 // then the shuffle is widening or truncating the input vectors, and 2244 // the argument type must also be encoded. 2245 if (C->getType() == C->getOperand(0)->getType()) { 2246 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2247 } else { 2248 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2249 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2250 } 2251 Record.push_back(VE.getValueID(C->getOperand(0))); 2252 Record.push_back(VE.getValueID(C->getOperand(1))); 2253 Record.push_back(VE.getValueID(C->getOperand(2))); 2254 break; 2255 case Instruction::ICmp: 2256 case Instruction::FCmp: 2257 Code = bitc::CST_CODE_CE_CMP; 2258 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2259 Record.push_back(VE.getValueID(C->getOperand(0))); 2260 Record.push_back(VE.getValueID(C->getOperand(1))); 2261 Record.push_back(CE->getPredicate()); 2262 break; 2263 } 2264 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2265 Code = bitc::CST_CODE_BLOCKADDRESS; 2266 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2267 Record.push_back(VE.getValueID(BA->getFunction())); 2268 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2269 } else { 2270 #ifndef NDEBUG 2271 C->dump(); 2272 #endif 2273 llvm_unreachable("Unknown constant!"); 2274 } 2275 Stream.EmitRecord(Code, Record, AbbrevToUse); 2276 Record.clear(); 2277 } 2278 2279 Stream.ExitBlock(); 2280 } 2281 2282 void ModuleBitcodeWriter::writeModuleConstants() { 2283 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2284 2285 // Find the first constant to emit, which is the first non-globalvalue value. 2286 // We know globalvalues have been emitted by WriteModuleInfo. 2287 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2288 if (!isa<GlobalValue>(Vals[i].first)) { 2289 writeConstants(i, Vals.size(), true); 2290 return; 2291 } 2292 } 2293 } 2294 2295 /// pushValueAndType - The file has to encode both the value and type id for 2296 /// many values, because we need to know what type to create for forward 2297 /// references. However, most operands are not forward references, so this type 2298 /// field is not needed. 2299 /// 2300 /// This function adds V's value ID to Vals. If the value ID is higher than the 2301 /// instruction ID, then it is a forward reference, and it also includes the 2302 /// type ID. The value ID that is written is encoded relative to the InstID. 2303 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2304 SmallVectorImpl<unsigned> &Vals) { 2305 unsigned ValID = VE.getValueID(V); 2306 // Make encoding relative to the InstID. 2307 Vals.push_back(InstID - ValID); 2308 if (ValID >= InstID) { 2309 Vals.push_back(VE.getTypeID(V->getType())); 2310 return true; 2311 } 2312 return false; 2313 } 2314 2315 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2316 unsigned InstID) { 2317 SmallVector<unsigned, 64> Record; 2318 LLVMContext &C = CS.getInstruction()->getContext(); 2319 2320 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2321 const auto &Bundle = CS.getOperandBundleAt(i); 2322 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2323 2324 for (auto &Input : Bundle.Inputs) 2325 pushValueAndType(Input, InstID, Record); 2326 2327 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2328 Record.clear(); 2329 } 2330 } 2331 2332 /// pushValue - Like pushValueAndType, but where the type of the value is 2333 /// omitted (perhaps it was already encoded in an earlier operand). 2334 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2335 SmallVectorImpl<unsigned> &Vals) { 2336 unsigned ValID = VE.getValueID(V); 2337 Vals.push_back(InstID - ValID); 2338 } 2339 2340 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2341 SmallVectorImpl<uint64_t> &Vals) { 2342 unsigned ValID = VE.getValueID(V); 2343 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2344 emitSignedInt64(Vals, diff); 2345 } 2346 2347 /// WriteInstruction - Emit an instruction to the specified stream. 2348 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2349 unsigned InstID, 2350 SmallVectorImpl<unsigned> &Vals) { 2351 unsigned Code = 0; 2352 unsigned AbbrevToUse = 0; 2353 VE.setInstructionID(&I); 2354 switch (I.getOpcode()) { 2355 default: 2356 if (Instruction::isCast(I.getOpcode())) { 2357 Code = bitc::FUNC_CODE_INST_CAST; 2358 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2359 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2360 Vals.push_back(VE.getTypeID(I.getType())); 2361 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2362 } else { 2363 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2364 Code = bitc::FUNC_CODE_INST_BINOP; 2365 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2366 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2367 pushValue(I.getOperand(1), InstID, Vals); 2368 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2369 uint64_t Flags = getOptimizationFlags(&I); 2370 if (Flags != 0) { 2371 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2372 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2373 Vals.push_back(Flags); 2374 } 2375 } 2376 break; 2377 2378 case Instruction::GetElementPtr: { 2379 Code = bitc::FUNC_CODE_INST_GEP; 2380 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2381 auto &GEPInst = cast<GetElementPtrInst>(I); 2382 Vals.push_back(GEPInst.isInBounds()); 2383 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2384 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2385 pushValueAndType(I.getOperand(i), InstID, Vals); 2386 break; 2387 } 2388 case Instruction::ExtractValue: { 2389 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2390 pushValueAndType(I.getOperand(0), InstID, Vals); 2391 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2392 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2393 break; 2394 } 2395 case Instruction::InsertValue: { 2396 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2397 pushValueAndType(I.getOperand(0), InstID, Vals); 2398 pushValueAndType(I.getOperand(1), InstID, Vals); 2399 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2400 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2401 break; 2402 } 2403 case Instruction::Select: 2404 Code = bitc::FUNC_CODE_INST_VSELECT; 2405 pushValueAndType(I.getOperand(1), InstID, Vals); 2406 pushValue(I.getOperand(2), InstID, Vals); 2407 pushValueAndType(I.getOperand(0), InstID, Vals); 2408 break; 2409 case Instruction::ExtractElement: 2410 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2411 pushValueAndType(I.getOperand(0), InstID, Vals); 2412 pushValueAndType(I.getOperand(1), InstID, Vals); 2413 break; 2414 case Instruction::InsertElement: 2415 Code = bitc::FUNC_CODE_INST_INSERTELT; 2416 pushValueAndType(I.getOperand(0), InstID, Vals); 2417 pushValue(I.getOperand(1), InstID, Vals); 2418 pushValueAndType(I.getOperand(2), InstID, Vals); 2419 break; 2420 case Instruction::ShuffleVector: 2421 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2422 pushValueAndType(I.getOperand(0), InstID, Vals); 2423 pushValue(I.getOperand(1), InstID, Vals); 2424 pushValue(I.getOperand(2), InstID, Vals); 2425 break; 2426 case Instruction::ICmp: 2427 case Instruction::FCmp: { 2428 // compare returning Int1Ty or vector of Int1Ty 2429 Code = bitc::FUNC_CODE_INST_CMP2; 2430 pushValueAndType(I.getOperand(0), InstID, Vals); 2431 pushValue(I.getOperand(1), InstID, Vals); 2432 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2433 uint64_t Flags = getOptimizationFlags(&I); 2434 if (Flags != 0) 2435 Vals.push_back(Flags); 2436 break; 2437 } 2438 2439 case Instruction::Ret: 2440 { 2441 Code = bitc::FUNC_CODE_INST_RET; 2442 unsigned NumOperands = I.getNumOperands(); 2443 if (NumOperands == 0) 2444 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2445 else if (NumOperands == 1) { 2446 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2447 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2448 } else { 2449 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2450 pushValueAndType(I.getOperand(i), InstID, Vals); 2451 } 2452 } 2453 break; 2454 case Instruction::Br: 2455 { 2456 Code = bitc::FUNC_CODE_INST_BR; 2457 const BranchInst &II = cast<BranchInst>(I); 2458 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2459 if (II.isConditional()) { 2460 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2461 pushValue(II.getCondition(), InstID, Vals); 2462 } 2463 } 2464 break; 2465 case Instruction::Switch: 2466 { 2467 Code = bitc::FUNC_CODE_INST_SWITCH; 2468 const SwitchInst &SI = cast<SwitchInst>(I); 2469 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2470 pushValue(SI.getCondition(), InstID, Vals); 2471 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2472 for (auto Case : SI.cases()) { 2473 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2474 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2475 } 2476 } 2477 break; 2478 case Instruction::IndirectBr: 2479 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2480 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2481 // Encode the address operand as relative, but not the basic blocks. 2482 pushValue(I.getOperand(0), InstID, Vals); 2483 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2484 Vals.push_back(VE.getValueID(I.getOperand(i))); 2485 break; 2486 2487 case Instruction::Invoke: { 2488 const InvokeInst *II = cast<InvokeInst>(&I); 2489 const Value *Callee = II->getCalledValue(); 2490 FunctionType *FTy = II->getFunctionType(); 2491 2492 if (II->hasOperandBundles()) 2493 writeOperandBundles(II, InstID); 2494 2495 Code = bitc::FUNC_CODE_INST_INVOKE; 2496 2497 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2498 Vals.push_back(II->getCallingConv() | 1 << 13); 2499 Vals.push_back(VE.getValueID(II->getNormalDest())); 2500 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2501 Vals.push_back(VE.getTypeID(FTy)); 2502 pushValueAndType(Callee, InstID, Vals); 2503 2504 // Emit value #'s for the fixed parameters. 2505 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2506 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2507 2508 // Emit type/value pairs for varargs params. 2509 if (FTy->isVarArg()) { 2510 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2511 i != e; ++i) 2512 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2513 } 2514 break; 2515 } 2516 case Instruction::Resume: 2517 Code = bitc::FUNC_CODE_INST_RESUME; 2518 pushValueAndType(I.getOperand(0), InstID, Vals); 2519 break; 2520 case Instruction::CleanupRet: { 2521 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2522 const auto &CRI = cast<CleanupReturnInst>(I); 2523 pushValue(CRI.getCleanupPad(), InstID, Vals); 2524 if (CRI.hasUnwindDest()) 2525 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2526 break; 2527 } 2528 case Instruction::CatchRet: { 2529 Code = bitc::FUNC_CODE_INST_CATCHRET; 2530 const auto &CRI = cast<CatchReturnInst>(I); 2531 pushValue(CRI.getCatchPad(), InstID, Vals); 2532 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2533 break; 2534 } 2535 case Instruction::CleanupPad: 2536 case Instruction::CatchPad: { 2537 const auto &FuncletPad = cast<FuncletPadInst>(I); 2538 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2539 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2540 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2541 2542 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2543 Vals.push_back(NumArgOperands); 2544 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2545 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2546 break; 2547 } 2548 case Instruction::CatchSwitch: { 2549 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2550 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2551 2552 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2553 2554 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2555 Vals.push_back(NumHandlers); 2556 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2557 Vals.push_back(VE.getValueID(CatchPadBB)); 2558 2559 if (CatchSwitch.hasUnwindDest()) 2560 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2561 break; 2562 } 2563 case Instruction::Unreachable: 2564 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2565 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2566 break; 2567 2568 case Instruction::PHI: { 2569 const PHINode &PN = cast<PHINode>(I); 2570 Code = bitc::FUNC_CODE_INST_PHI; 2571 // With the newer instruction encoding, forward references could give 2572 // negative valued IDs. This is most common for PHIs, so we use 2573 // signed VBRs. 2574 SmallVector<uint64_t, 128> Vals64; 2575 Vals64.push_back(VE.getTypeID(PN.getType())); 2576 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2577 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2578 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2579 } 2580 // Emit a Vals64 vector and exit. 2581 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2582 Vals64.clear(); 2583 return; 2584 } 2585 2586 case Instruction::LandingPad: { 2587 const LandingPadInst &LP = cast<LandingPadInst>(I); 2588 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2589 Vals.push_back(VE.getTypeID(LP.getType())); 2590 Vals.push_back(LP.isCleanup()); 2591 Vals.push_back(LP.getNumClauses()); 2592 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2593 if (LP.isCatch(I)) 2594 Vals.push_back(LandingPadInst::Catch); 2595 else 2596 Vals.push_back(LandingPadInst::Filter); 2597 pushValueAndType(LP.getClause(I), InstID, Vals); 2598 } 2599 break; 2600 } 2601 2602 case Instruction::Alloca: { 2603 Code = bitc::FUNC_CODE_INST_ALLOCA; 2604 const AllocaInst &AI = cast<AllocaInst>(I); 2605 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2606 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2607 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2608 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2609 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2610 "not enough bits for maximum alignment"); 2611 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2612 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2613 AlignRecord |= 1 << 6; 2614 AlignRecord |= AI.isSwiftError() << 7; 2615 Vals.push_back(AlignRecord); 2616 break; 2617 } 2618 2619 case Instruction::Load: 2620 if (cast<LoadInst>(I).isAtomic()) { 2621 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2622 pushValueAndType(I.getOperand(0), InstID, Vals); 2623 } else { 2624 Code = bitc::FUNC_CODE_INST_LOAD; 2625 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2626 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2627 } 2628 Vals.push_back(VE.getTypeID(I.getType())); 2629 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2630 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2631 if (cast<LoadInst>(I).isAtomic()) { 2632 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2633 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2634 } 2635 break; 2636 case Instruction::Store: 2637 if (cast<StoreInst>(I).isAtomic()) 2638 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2639 else 2640 Code = bitc::FUNC_CODE_INST_STORE; 2641 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2642 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2643 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2644 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2645 if (cast<StoreInst>(I).isAtomic()) { 2646 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2647 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2648 } 2649 break; 2650 case Instruction::AtomicCmpXchg: 2651 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2652 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2653 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2654 pushValue(I.getOperand(2), InstID, Vals); // newval. 2655 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2656 Vals.push_back( 2657 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2658 Vals.push_back( 2659 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2660 Vals.push_back( 2661 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2662 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2663 break; 2664 case Instruction::AtomicRMW: 2665 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2666 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2667 pushValue(I.getOperand(1), InstID, Vals); // val. 2668 Vals.push_back( 2669 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2670 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2671 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2672 Vals.push_back( 2673 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2674 break; 2675 case Instruction::Fence: 2676 Code = bitc::FUNC_CODE_INST_FENCE; 2677 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2678 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2679 break; 2680 case Instruction::Call: { 2681 const CallInst &CI = cast<CallInst>(I); 2682 FunctionType *FTy = CI.getFunctionType(); 2683 2684 if (CI.hasOperandBundles()) 2685 writeOperandBundles(&CI, InstID); 2686 2687 Code = bitc::FUNC_CODE_INST_CALL; 2688 2689 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2690 2691 unsigned Flags = getOptimizationFlags(&I); 2692 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2693 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2694 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2695 1 << bitc::CALL_EXPLICIT_TYPE | 2696 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2697 unsigned(Flags != 0) << bitc::CALL_FMF); 2698 if (Flags != 0) 2699 Vals.push_back(Flags); 2700 2701 Vals.push_back(VE.getTypeID(FTy)); 2702 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2703 2704 // Emit value #'s for the fixed parameters. 2705 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2706 // Check for labels (can happen with asm labels). 2707 if (FTy->getParamType(i)->isLabelTy()) 2708 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2709 else 2710 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2711 } 2712 2713 // Emit type/value pairs for varargs params. 2714 if (FTy->isVarArg()) { 2715 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2716 i != e; ++i) 2717 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2718 } 2719 break; 2720 } 2721 case Instruction::VAArg: 2722 Code = bitc::FUNC_CODE_INST_VAARG; 2723 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2724 pushValue(I.getOperand(0), InstID, Vals); // valist. 2725 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2726 break; 2727 } 2728 2729 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2730 Vals.clear(); 2731 } 2732 2733 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2734 /// to allow clients to efficiently find the function body. 2735 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2736 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2737 // Get the offset of the VST we are writing, and backpatch it into 2738 // the VST forward declaration record. 2739 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2740 // The BitcodeStartBit was the stream offset of the identification block. 2741 VSTOffset -= bitcodeStartBit(); 2742 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2743 // Note that we add 1 here because the offset is relative to one word 2744 // before the start of the identification block, which was historically 2745 // always the start of the regular bitcode header. 2746 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2747 2748 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2749 2750 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2751 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2754 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2755 2756 for (const Function &F : M) { 2757 uint64_t Record[2]; 2758 2759 if (F.isDeclaration()) 2760 continue; 2761 2762 Record[0] = VE.getValueID(&F); 2763 2764 // Save the word offset of the function (from the start of the 2765 // actual bitcode written to the stream). 2766 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2767 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2768 // Note that we add 1 here because the offset is relative to one word 2769 // before the start of the identification block, which was historically 2770 // always the start of the regular bitcode header. 2771 Record[1] = BitcodeIndex / 32 + 1; 2772 2773 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2774 } 2775 2776 Stream.ExitBlock(); 2777 } 2778 2779 /// Emit names for arguments, instructions and basic blocks in a function. 2780 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2781 const ValueSymbolTable &VST) { 2782 if (VST.empty()) 2783 return; 2784 2785 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2786 2787 // FIXME: Set up the abbrev, we know how many values there are! 2788 // FIXME: We know if the type names can use 7-bit ascii. 2789 SmallVector<uint64_t, 64> NameVals; 2790 2791 for (const ValueName &Name : VST) { 2792 // Figure out the encoding to use for the name. 2793 StringEncoding Bits = 2794 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2795 2796 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2797 NameVals.push_back(VE.getValueID(Name.getValue())); 2798 2799 // VST_CODE_ENTRY: [valueid, namechar x N] 2800 // VST_CODE_BBENTRY: [bbid, namechar x N] 2801 unsigned Code; 2802 if (isa<BasicBlock>(Name.getValue())) { 2803 Code = bitc::VST_CODE_BBENTRY; 2804 if (Bits == SE_Char6) 2805 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2806 } else { 2807 Code = bitc::VST_CODE_ENTRY; 2808 if (Bits == SE_Char6) 2809 AbbrevToUse = VST_ENTRY_6_ABBREV; 2810 else if (Bits == SE_Fixed7) 2811 AbbrevToUse = VST_ENTRY_7_ABBREV; 2812 } 2813 2814 for (const auto P : Name.getKey()) 2815 NameVals.push_back((unsigned char)P); 2816 2817 // Emit the finished record. 2818 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2819 NameVals.clear(); 2820 } 2821 2822 Stream.ExitBlock(); 2823 } 2824 2825 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2826 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2827 unsigned Code; 2828 if (isa<BasicBlock>(Order.V)) 2829 Code = bitc::USELIST_CODE_BB; 2830 else 2831 Code = bitc::USELIST_CODE_DEFAULT; 2832 2833 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2834 Record.push_back(VE.getValueID(Order.V)); 2835 Stream.EmitRecord(Code, Record); 2836 } 2837 2838 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2839 assert(VE.shouldPreserveUseListOrder() && 2840 "Expected to be preserving use-list order"); 2841 2842 auto hasMore = [&]() { 2843 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2844 }; 2845 if (!hasMore()) 2846 // Nothing to do. 2847 return; 2848 2849 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2850 while (hasMore()) { 2851 writeUseList(std::move(VE.UseListOrders.back())); 2852 VE.UseListOrders.pop_back(); 2853 } 2854 Stream.ExitBlock(); 2855 } 2856 2857 /// Emit a function body to the module stream. 2858 void ModuleBitcodeWriter::writeFunction( 2859 const Function &F, 2860 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2861 // Save the bitcode index of the start of this function block for recording 2862 // in the VST. 2863 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2864 2865 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2866 VE.incorporateFunction(F); 2867 2868 SmallVector<unsigned, 64> Vals; 2869 2870 // Emit the number of basic blocks, so the reader can create them ahead of 2871 // time. 2872 Vals.push_back(VE.getBasicBlocks().size()); 2873 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2874 Vals.clear(); 2875 2876 // If there are function-local constants, emit them now. 2877 unsigned CstStart, CstEnd; 2878 VE.getFunctionConstantRange(CstStart, CstEnd); 2879 writeConstants(CstStart, CstEnd, false); 2880 2881 // If there is function-local metadata, emit it now. 2882 writeFunctionMetadata(F); 2883 2884 // Keep a running idea of what the instruction ID is. 2885 unsigned InstID = CstEnd; 2886 2887 bool NeedsMetadataAttachment = F.hasMetadata(); 2888 2889 DILocation *LastDL = nullptr; 2890 // Finally, emit all the instructions, in order. 2891 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2892 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2893 I != E; ++I) { 2894 writeInstruction(*I, InstID, Vals); 2895 2896 if (!I->getType()->isVoidTy()) 2897 ++InstID; 2898 2899 // If the instruction has metadata, write a metadata attachment later. 2900 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2901 2902 // If the instruction has a debug location, emit it. 2903 DILocation *DL = I->getDebugLoc(); 2904 if (!DL) 2905 continue; 2906 2907 if (DL == LastDL) { 2908 // Just repeat the same debug loc as last time. 2909 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2910 continue; 2911 } 2912 2913 Vals.push_back(DL->getLine()); 2914 Vals.push_back(DL->getColumn()); 2915 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2916 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2917 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2918 Vals.clear(); 2919 2920 LastDL = DL; 2921 } 2922 2923 // Emit names for all the instructions etc. 2924 if (auto *Symtab = F.getValueSymbolTable()) 2925 writeFunctionLevelValueSymbolTable(*Symtab); 2926 2927 if (NeedsMetadataAttachment) 2928 writeFunctionMetadataAttachment(F); 2929 if (VE.shouldPreserveUseListOrder()) 2930 writeUseListBlock(&F); 2931 VE.purgeFunction(); 2932 Stream.ExitBlock(); 2933 } 2934 2935 // Emit blockinfo, which defines the standard abbreviations etc. 2936 void ModuleBitcodeWriter::writeBlockInfo() { 2937 // We only want to emit block info records for blocks that have multiple 2938 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2939 // Other blocks can define their abbrevs inline. 2940 Stream.EnterBlockInfoBlock(); 2941 2942 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2943 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2948 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2949 VST_ENTRY_8_ABBREV) 2950 llvm_unreachable("Unexpected abbrev ordering!"); 2951 } 2952 2953 { // 7-bit fixed width VST_CODE_ENTRY strings. 2954 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2955 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2959 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2960 VST_ENTRY_7_ABBREV) 2961 llvm_unreachable("Unexpected abbrev ordering!"); 2962 } 2963 { // 6-bit char6 VST_CODE_ENTRY strings. 2964 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2965 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2969 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2970 VST_ENTRY_6_ABBREV) 2971 llvm_unreachable("Unexpected abbrev ordering!"); 2972 } 2973 { // 6-bit char6 VST_CODE_BBENTRY strings. 2974 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2975 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2979 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2980 VST_BBENTRY_6_ABBREV) 2981 llvm_unreachable("Unexpected abbrev ordering!"); 2982 } 2983 2984 2985 2986 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2987 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2988 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2990 VE.computeBitsRequiredForTypeIndicies())); 2991 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 2992 CONSTANTS_SETTYPE_ABBREV) 2993 llvm_unreachable("Unexpected abbrev ordering!"); 2994 } 2995 2996 { // INTEGER abbrev for CONSTANTS_BLOCK. 2997 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2998 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3000 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3001 CONSTANTS_INTEGER_ABBREV) 3002 llvm_unreachable("Unexpected abbrev ordering!"); 3003 } 3004 3005 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3006 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3007 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3010 VE.computeBitsRequiredForTypeIndicies())); 3011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3012 3013 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3014 CONSTANTS_CE_CAST_Abbrev) 3015 llvm_unreachable("Unexpected abbrev ordering!"); 3016 } 3017 { // NULL abbrev for CONSTANTS_BLOCK. 3018 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3019 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3020 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3021 CONSTANTS_NULL_Abbrev) 3022 llvm_unreachable("Unexpected abbrev ordering!"); 3023 } 3024 3025 // FIXME: This should only use space for first class types! 3026 3027 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3028 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3029 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3032 VE.computeBitsRequiredForTypeIndicies())); 3033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3035 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3036 FUNCTION_INST_LOAD_ABBREV) 3037 llvm_unreachable("Unexpected abbrev ordering!"); 3038 } 3039 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3040 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3041 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3045 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3046 FUNCTION_INST_BINOP_ABBREV) 3047 llvm_unreachable("Unexpected abbrev ordering!"); 3048 } 3049 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3050 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3051 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3056 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3057 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3058 llvm_unreachable("Unexpected abbrev ordering!"); 3059 } 3060 { // INST_CAST abbrev for FUNCTION_BLOCK. 3061 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3062 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3065 VE.computeBitsRequiredForTypeIndicies())); 3066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3067 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3068 FUNCTION_INST_CAST_ABBREV) 3069 llvm_unreachable("Unexpected abbrev ordering!"); 3070 } 3071 3072 { // INST_RET abbrev for FUNCTION_BLOCK. 3073 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3074 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3075 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3076 FUNCTION_INST_RET_VOID_ABBREV) 3077 llvm_unreachable("Unexpected abbrev ordering!"); 3078 } 3079 { // INST_RET abbrev for FUNCTION_BLOCK. 3080 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3081 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3083 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3084 FUNCTION_INST_RET_VAL_ABBREV) 3085 llvm_unreachable("Unexpected abbrev ordering!"); 3086 } 3087 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3088 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3089 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3090 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3091 FUNCTION_INST_UNREACHABLE_ABBREV) 3092 llvm_unreachable("Unexpected abbrev ordering!"); 3093 } 3094 { 3095 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3096 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3099 Log2_32_Ceil(VE.getTypes().size() + 1))); 3100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3102 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3103 FUNCTION_INST_GEP_ABBREV) 3104 llvm_unreachable("Unexpected abbrev ordering!"); 3105 } 3106 3107 Stream.ExitBlock(); 3108 } 3109 3110 /// Write the module path strings, currently only used when generating 3111 /// a combined index file. 3112 void IndexBitcodeWriter::writeModStrings() { 3113 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3114 3115 // TODO: See which abbrev sizes we actually need to emit 3116 3117 // 8-bit fixed-width MST_ENTRY strings. 3118 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3119 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3123 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3124 3125 // 7-bit fixed width MST_ENTRY strings. 3126 Abbv = std::make_shared<BitCodeAbbrev>(); 3127 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3131 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3132 3133 // 6-bit char6 MST_ENTRY strings. 3134 Abbv = std::make_shared<BitCodeAbbrev>(); 3135 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3139 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3140 3141 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3142 Abbv = std::make_shared<BitCodeAbbrev>(); 3143 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3149 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3150 3151 SmallVector<unsigned, 64> Vals; 3152 for (const auto &MPSE : Index.modulePaths()) { 3153 if (!doIncludeModule(MPSE.getKey())) 3154 continue; 3155 StringEncoding Bits = 3156 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3157 unsigned AbbrevToUse = Abbrev8Bit; 3158 if (Bits == SE_Char6) 3159 AbbrevToUse = Abbrev6Bit; 3160 else if (Bits == SE_Fixed7) 3161 AbbrevToUse = Abbrev7Bit; 3162 3163 Vals.push_back(MPSE.getValue().first); 3164 3165 for (const auto P : MPSE.getKey()) 3166 Vals.push_back((unsigned char)P); 3167 3168 // Emit the finished record. 3169 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3170 3171 Vals.clear(); 3172 // Emit an optional hash for the module now 3173 auto &Hash = MPSE.getValue().second; 3174 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3175 for (auto Val : Hash) { 3176 if (Val) 3177 AllZero = false; 3178 Vals.push_back(Val); 3179 } 3180 if (!AllZero) { 3181 // Emit the hash record. 3182 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3183 } 3184 3185 Vals.clear(); 3186 } 3187 Stream.ExitBlock(); 3188 } 3189 3190 /// Write the function type metadata related records that need to appear before 3191 /// a function summary entry (whether per-module or combined). 3192 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3193 FunctionSummary *FS) { 3194 if (!FS->type_tests().empty()) 3195 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3196 3197 SmallVector<uint64_t, 64> Record; 3198 3199 auto WriteVFuncIdVec = [&](uint64_t Ty, 3200 ArrayRef<FunctionSummary::VFuncId> VFs) { 3201 if (VFs.empty()) 3202 return; 3203 Record.clear(); 3204 for (auto &VF : VFs) { 3205 Record.push_back(VF.GUID); 3206 Record.push_back(VF.Offset); 3207 } 3208 Stream.EmitRecord(Ty, Record); 3209 }; 3210 3211 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3212 FS->type_test_assume_vcalls()); 3213 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3214 FS->type_checked_load_vcalls()); 3215 3216 auto WriteConstVCallVec = [&](uint64_t Ty, 3217 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3218 for (auto &VC : VCs) { 3219 Record.clear(); 3220 Record.push_back(VC.VFunc.GUID); 3221 Record.push_back(VC.VFunc.Offset); 3222 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3223 Stream.EmitRecord(Ty, Record); 3224 } 3225 }; 3226 3227 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3228 FS->type_test_assume_const_vcalls()); 3229 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3230 FS->type_checked_load_const_vcalls()); 3231 } 3232 3233 // Helper to emit a single function summary record. 3234 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3235 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3236 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3237 const Function &F) { 3238 NameVals.push_back(ValueID); 3239 3240 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3241 writeFunctionTypeMetadataRecords(Stream, FS); 3242 3243 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3244 NameVals.push_back(FS->instCount()); 3245 NameVals.push_back(FS->refs().size()); 3246 3247 for (auto &RI : FS->refs()) 3248 NameVals.push_back(VE.getValueID(RI.getValue())); 3249 3250 bool HasProfileData = F.getEntryCount().hasValue(); 3251 for (auto &ECI : FS->calls()) { 3252 NameVals.push_back(getValueId(ECI.first)); 3253 if (HasProfileData) 3254 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3255 } 3256 3257 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3258 unsigned Code = 3259 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3260 3261 // Emit the finished record. 3262 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3263 NameVals.clear(); 3264 } 3265 3266 // Collect the global value references in the given variable's initializer, 3267 // and emit them in a summary record. 3268 void ModuleBitcodeWriter::writeModuleLevelReferences( 3269 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3270 unsigned FSModRefsAbbrev) { 3271 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3272 if (!VI || VI.getSummaryList().empty()) { 3273 // Only declarations should not have a summary (a declaration might however 3274 // have a summary if the def was in module level asm). 3275 assert(V.isDeclaration()); 3276 return; 3277 } 3278 auto *Summary = VI.getSummaryList()[0].get(); 3279 NameVals.push_back(VE.getValueID(&V)); 3280 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3281 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3282 3283 unsigned SizeBeforeRefs = NameVals.size(); 3284 for (auto &RI : VS->refs()) 3285 NameVals.push_back(VE.getValueID(RI.getValue())); 3286 // Sort the refs for determinism output, the vector returned by FS->refs() has 3287 // been initialized from a DenseSet. 3288 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3289 3290 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3291 FSModRefsAbbrev); 3292 NameVals.clear(); 3293 } 3294 3295 // Current version for the summary. 3296 // This is bumped whenever we introduce changes in the way some record are 3297 // interpreted, like flags for instance. 3298 static const uint64_t INDEX_VERSION = 3; 3299 3300 /// Emit the per-module summary section alongside the rest of 3301 /// the module's bitcode. 3302 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3303 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3304 3305 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3306 3307 if (Index->begin() == Index->end()) { 3308 Stream.ExitBlock(); 3309 return; 3310 } 3311 3312 for (const auto &GVI : valueIds()) { 3313 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3314 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3315 } 3316 3317 // Abbrev for FS_PERMODULE. 3318 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3319 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3324 // numrefs x valueid, n x (valueid) 3325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3327 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3328 3329 // Abbrev for FS_PERMODULE_PROFILE. 3330 Abbv = std::make_shared<BitCodeAbbrev>(); 3331 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3336 // numrefs x valueid, n x (valueid, hotness) 3337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3339 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3340 3341 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3342 Abbv = std::make_shared<BitCodeAbbrev>(); 3343 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3348 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3349 3350 // Abbrev for FS_ALIAS. 3351 Abbv = std::make_shared<BitCodeAbbrev>(); 3352 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3356 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3357 3358 SmallVector<uint64_t, 64> NameVals; 3359 // Iterate over the list of functions instead of the Index to 3360 // ensure the ordering is stable. 3361 for (const Function &F : M) { 3362 // Summary emission does not support anonymous functions, they have to 3363 // renamed using the anonymous function renaming pass. 3364 if (!F.hasName()) 3365 report_fatal_error("Unexpected anonymous function when writing summary"); 3366 3367 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3368 if (!VI || VI.getSummaryList().empty()) { 3369 // Only declarations should not have a summary (a declaration might 3370 // however have a summary if the def was in module level asm). 3371 assert(F.isDeclaration()); 3372 continue; 3373 } 3374 auto *Summary = VI.getSummaryList()[0].get(); 3375 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3376 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3377 } 3378 3379 // Capture references from GlobalVariable initializers, which are outside 3380 // of a function scope. 3381 for (const GlobalVariable &G : M.globals()) 3382 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3383 3384 for (const GlobalAlias &A : M.aliases()) { 3385 auto *Aliasee = A.getBaseObject(); 3386 if (!Aliasee->hasName()) 3387 // Nameless function don't have an entry in the summary, skip it. 3388 continue; 3389 auto AliasId = VE.getValueID(&A); 3390 auto AliaseeId = VE.getValueID(Aliasee); 3391 NameVals.push_back(AliasId); 3392 auto *Summary = Index->getGlobalValueSummary(A); 3393 AliasSummary *AS = cast<AliasSummary>(Summary); 3394 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3395 NameVals.push_back(AliaseeId); 3396 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3397 NameVals.clear(); 3398 } 3399 3400 Stream.ExitBlock(); 3401 } 3402 3403 /// Emit the combined summary section into the combined index file. 3404 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3405 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3406 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3407 3408 for (const auto &GVI : valueIds()) { 3409 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3410 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3411 } 3412 3413 // Abbrev for FS_COMBINED. 3414 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3415 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3421 // numrefs x valueid, n x (valueid) 3422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3424 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3425 3426 // Abbrev for FS_COMBINED_PROFILE. 3427 Abbv = std::make_shared<BitCodeAbbrev>(); 3428 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3434 // numrefs x valueid, n x (valueid, hotness) 3435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3437 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3438 3439 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3440 Abbv = std::make_shared<BitCodeAbbrev>(); 3441 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3447 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3448 3449 // Abbrev for FS_COMBINED_ALIAS. 3450 Abbv = std::make_shared<BitCodeAbbrev>(); 3451 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3456 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3457 3458 // The aliases are emitted as a post-pass, and will point to the value 3459 // id of the aliasee. Save them in a vector for post-processing. 3460 SmallVector<AliasSummary *, 64> Aliases; 3461 3462 // Save the value id for each summary for alias emission. 3463 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3464 3465 SmallVector<uint64_t, 64> NameVals; 3466 3467 // For local linkage, we also emit the original name separately 3468 // immediately after the record. 3469 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3470 if (!GlobalValue::isLocalLinkage(S.linkage())) 3471 return; 3472 NameVals.push_back(S.getOriginalName()); 3473 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3474 NameVals.clear(); 3475 }; 3476 3477 forEachSummary([&](GVInfo I) { 3478 GlobalValueSummary *S = I.second; 3479 assert(S); 3480 3481 auto ValueId = getValueId(I.first); 3482 assert(ValueId); 3483 SummaryToValueIdMap[S] = *ValueId; 3484 3485 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3486 // Will process aliases as a post-pass because the reader wants all 3487 // global to be loaded first. 3488 Aliases.push_back(AS); 3489 return; 3490 } 3491 3492 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3493 NameVals.push_back(*ValueId); 3494 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3495 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3496 for (auto &RI : VS->refs()) { 3497 auto RefValueId = getValueId(RI.getGUID()); 3498 if (!RefValueId) 3499 continue; 3500 NameVals.push_back(*RefValueId); 3501 } 3502 3503 // Emit the finished record. 3504 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3505 FSModRefsAbbrev); 3506 NameVals.clear(); 3507 MaybeEmitOriginalName(*S); 3508 return; 3509 } 3510 3511 auto *FS = cast<FunctionSummary>(S); 3512 writeFunctionTypeMetadataRecords(Stream, FS); 3513 3514 NameVals.push_back(*ValueId); 3515 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3516 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3517 NameVals.push_back(FS->instCount()); 3518 // Fill in below 3519 NameVals.push_back(0); 3520 3521 unsigned Count = 0; 3522 for (auto &RI : FS->refs()) { 3523 auto RefValueId = getValueId(RI.getGUID()); 3524 if (!RefValueId) 3525 continue; 3526 NameVals.push_back(*RefValueId); 3527 Count++; 3528 } 3529 NameVals[4] = Count; 3530 3531 bool HasProfileData = false; 3532 for (auto &EI : FS->calls()) { 3533 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3534 if (HasProfileData) 3535 break; 3536 } 3537 3538 for (auto &EI : FS->calls()) { 3539 // If this GUID doesn't have a value id, it doesn't have a function 3540 // summary and we don't need to record any calls to it. 3541 GlobalValue::GUID GUID = EI.first.getGUID(); 3542 auto CallValueId = getValueId(GUID); 3543 if (!CallValueId) { 3544 // For SamplePGO, the indirect call targets for local functions will 3545 // have its original name annotated in profile. We try to find the 3546 // corresponding PGOFuncName as the GUID. 3547 GUID = Index.getGUIDFromOriginalID(GUID); 3548 if (GUID == 0) 3549 continue; 3550 CallValueId = getValueId(GUID); 3551 if (!CallValueId) 3552 continue; 3553 } 3554 NameVals.push_back(*CallValueId); 3555 if (HasProfileData) 3556 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3557 } 3558 3559 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3560 unsigned Code = 3561 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3562 3563 // Emit the finished record. 3564 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3565 NameVals.clear(); 3566 MaybeEmitOriginalName(*S); 3567 }); 3568 3569 for (auto *AS : Aliases) { 3570 auto AliasValueId = SummaryToValueIdMap[AS]; 3571 assert(AliasValueId); 3572 NameVals.push_back(AliasValueId); 3573 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3574 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3575 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3576 assert(AliaseeValueId); 3577 NameVals.push_back(AliaseeValueId); 3578 3579 // Emit the finished record. 3580 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3581 NameVals.clear(); 3582 MaybeEmitOriginalName(*AS); 3583 } 3584 3585 Stream.ExitBlock(); 3586 } 3587 3588 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3589 /// current llvm version, and a record for the epoch number. 3590 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3591 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3592 3593 // Write the "user readable" string identifying the bitcode producer 3594 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3595 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3598 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3599 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3600 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3601 3602 // Write the epoch version 3603 Abbv = std::make_shared<BitCodeAbbrev>(); 3604 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3606 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3607 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3608 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3609 Stream.ExitBlock(); 3610 } 3611 3612 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3613 // Emit the module's hash. 3614 // MODULE_CODE_HASH: [5*i32] 3615 if (GenerateHash) { 3616 SHA1 Hasher; 3617 uint32_t Vals[5]; 3618 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3619 Buffer.size() - BlockStartPos)); 3620 StringRef Hash = Hasher.result(); 3621 for (int Pos = 0; Pos < 20; Pos += 4) { 3622 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3623 } 3624 3625 // Emit the finished record. 3626 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3627 3628 if (ModHash) 3629 // Save the written hash value. 3630 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3631 } else if (ModHash) 3632 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3633 } 3634 3635 void ModuleBitcodeWriter::write() { 3636 writeIdentificationBlock(Stream); 3637 3638 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3639 size_t BlockStartPos = Buffer.size(); 3640 3641 writeModuleVersion(); 3642 3643 // Emit blockinfo, which defines the standard abbreviations etc. 3644 writeBlockInfo(); 3645 3646 // Emit information about attribute groups. 3647 writeAttributeGroupTable(); 3648 3649 // Emit information about parameter attributes. 3650 writeAttributeTable(); 3651 3652 // Emit information describing all of the types in the module. 3653 writeTypeTable(); 3654 3655 writeComdats(); 3656 3657 // Emit top-level description of module, including target triple, inline asm, 3658 // descriptors for global variables, and function prototype info. 3659 writeModuleInfo(); 3660 3661 // Emit constants. 3662 writeModuleConstants(); 3663 3664 // Emit metadata kind names. 3665 writeModuleMetadataKinds(); 3666 3667 // Emit metadata. 3668 writeModuleMetadata(); 3669 3670 // Emit module-level use-lists. 3671 if (VE.shouldPreserveUseListOrder()) 3672 writeUseListBlock(nullptr); 3673 3674 writeOperandBundleTags(); 3675 3676 // Emit function bodies. 3677 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3678 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3679 if (!F->isDeclaration()) 3680 writeFunction(*F, FunctionToBitcodeIndex); 3681 3682 // Need to write after the above call to WriteFunction which populates 3683 // the summary information in the index. 3684 if (Index) 3685 writePerModuleGlobalValueSummary(); 3686 3687 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3688 3689 writeModuleHash(BlockStartPos); 3690 3691 Stream.ExitBlock(); 3692 } 3693 3694 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3695 uint32_t &Position) { 3696 support::endian::write32le(&Buffer[Position], Value); 3697 Position += 4; 3698 } 3699 3700 /// If generating a bc file on darwin, we have to emit a 3701 /// header and trailer to make it compatible with the system archiver. To do 3702 /// this we emit the following header, and then emit a trailer that pads the 3703 /// file out to be a multiple of 16 bytes. 3704 /// 3705 /// struct bc_header { 3706 /// uint32_t Magic; // 0x0B17C0DE 3707 /// uint32_t Version; // Version, currently always 0. 3708 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3709 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3710 /// uint32_t CPUType; // CPU specifier. 3711 /// ... potentially more later ... 3712 /// }; 3713 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3714 const Triple &TT) { 3715 unsigned CPUType = ~0U; 3716 3717 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3718 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3719 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3720 // specific constants here because they are implicitly part of the Darwin ABI. 3721 enum { 3722 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3723 DARWIN_CPU_TYPE_X86 = 7, 3724 DARWIN_CPU_TYPE_ARM = 12, 3725 DARWIN_CPU_TYPE_POWERPC = 18 3726 }; 3727 3728 Triple::ArchType Arch = TT.getArch(); 3729 if (Arch == Triple::x86_64) 3730 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3731 else if (Arch == Triple::x86) 3732 CPUType = DARWIN_CPU_TYPE_X86; 3733 else if (Arch == Triple::ppc) 3734 CPUType = DARWIN_CPU_TYPE_POWERPC; 3735 else if (Arch == Triple::ppc64) 3736 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3737 else if (Arch == Triple::arm || Arch == Triple::thumb) 3738 CPUType = DARWIN_CPU_TYPE_ARM; 3739 3740 // Traditional Bitcode starts after header. 3741 assert(Buffer.size() >= BWH_HeaderSize && 3742 "Expected header size to be reserved"); 3743 unsigned BCOffset = BWH_HeaderSize; 3744 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3745 3746 // Write the magic and version. 3747 unsigned Position = 0; 3748 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3749 writeInt32ToBuffer(0, Buffer, Position); // Version. 3750 writeInt32ToBuffer(BCOffset, Buffer, Position); 3751 writeInt32ToBuffer(BCSize, Buffer, Position); 3752 writeInt32ToBuffer(CPUType, Buffer, Position); 3753 3754 // If the file is not a multiple of 16 bytes, insert dummy padding. 3755 while (Buffer.size() & 15) 3756 Buffer.push_back(0); 3757 } 3758 3759 /// Helper to write the header common to all bitcode files. 3760 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3761 // Emit the file header. 3762 Stream.Emit((unsigned)'B', 8); 3763 Stream.Emit((unsigned)'C', 8); 3764 Stream.Emit(0x0, 4); 3765 Stream.Emit(0xC, 4); 3766 Stream.Emit(0xE, 4); 3767 Stream.Emit(0xD, 4); 3768 } 3769 3770 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3771 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3772 writeBitcodeHeader(*Stream); 3773 } 3774 3775 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3776 3777 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3778 Stream->EnterSubblock(Block, 3); 3779 3780 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3781 Abbv->Add(BitCodeAbbrevOp(Record)); 3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3783 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3784 3785 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3786 3787 Stream->ExitBlock(); 3788 } 3789 3790 void BitcodeWriter::writeStrtab() { 3791 assert(!WroteStrtab); 3792 3793 std::vector<char> Strtab; 3794 StrtabBuilder.finalizeInOrder(); 3795 Strtab.resize(StrtabBuilder.getSize()); 3796 StrtabBuilder.write((uint8_t *)Strtab.data()); 3797 3798 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3799 {Strtab.data(), Strtab.size()}); 3800 3801 WroteStrtab = true; 3802 } 3803 3804 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3805 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3806 WroteStrtab = true; 3807 } 3808 3809 void BitcodeWriter::writeModule(const Module *M, 3810 bool ShouldPreserveUseListOrder, 3811 const ModuleSummaryIndex *Index, 3812 bool GenerateHash, ModuleHash *ModHash) { 3813 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3814 ShouldPreserveUseListOrder, Index, 3815 GenerateHash, ModHash); 3816 ModuleWriter.write(); 3817 } 3818 3819 /// WriteBitcodeToFile - Write the specified module to the specified output 3820 /// stream. 3821 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3822 bool ShouldPreserveUseListOrder, 3823 const ModuleSummaryIndex *Index, 3824 bool GenerateHash, ModuleHash *ModHash) { 3825 SmallVector<char, 0> Buffer; 3826 Buffer.reserve(256*1024); 3827 3828 // If this is darwin or another generic macho target, reserve space for the 3829 // header. 3830 Triple TT(M->getTargetTriple()); 3831 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3832 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3833 3834 BitcodeWriter Writer(Buffer); 3835 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3836 ModHash); 3837 Writer.writeStrtab(); 3838 3839 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3840 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3841 3842 // Write the generated bitstream to "Out". 3843 Out.write((char*)&Buffer.front(), Buffer.size()); 3844 } 3845 3846 void IndexBitcodeWriter::write() { 3847 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3848 3849 writeModuleVersion(); 3850 3851 // Write the module paths in the combined index. 3852 writeModStrings(); 3853 3854 // Write the summary combined index records. 3855 writeCombinedGlobalValueSummary(); 3856 3857 Stream.ExitBlock(); 3858 } 3859 3860 // Write the specified module summary index to the given raw output stream, 3861 // where it will be written in a new bitcode block. This is used when 3862 // writing the combined index file for ThinLTO. When writing a subset of the 3863 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3864 void llvm::WriteIndexToFile( 3865 const ModuleSummaryIndex &Index, raw_ostream &Out, 3866 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3867 SmallVector<char, 0> Buffer; 3868 Buffer.reserve(256 * 1024); 3869 3870 BitstreamWriter Stream(Buffer); 3871 writeBitcodeHeader(Stream); 3872 3873 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 3874 IndexWriter.write(); 3875 3876 Out.write((char *)&Buffer.front(), Buffer.size()); 3877 } 3878