1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/SHA1.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Utils/ModuleUtils.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <memory> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 99 100 namespace { 101 102 /// These are manifest constants used by the bitcode writer. They do not need to 103 /// be kept in sync with the reader, but need to be consistent within this file. 104 enum { 105 // VALUE_SYMTAB_BLOCK abbrev id's. 106 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 107 VST_ENTRY_7_ABBREV, 108 VST_ENTRY_6_ABBREV, 109 VST_BBENTRY_6_ABBREV, 110 111 // CONSTANTS_BLOCK abbrev id's. 112 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 113 CONSTANTS_INTEGER_ABBREV, 114 CONSTANTS_CE_CAST_Abbrev, 115 CONSTANTS_NULL_Abbrev, 116 117 // FUNCTION_BLOCK abbrev id's. 118 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 119 FUNCTION_INST_UNOP_ABBREV, 120 FUNCTION_INST_UNOP_FLAGS_ABBREV, 121 FUNCTION_INST_BINOP_ABBREV, 122 FUNCTION_INST_BINOP_FLAGS_ABBREV, 123 FUNCTION_INST_CAST_ABBREV, 124 FUNCTION_INST_RET_VOID_ABBREV, 125 FUNCTION_INST_RET_VAL_ABBREV, 126 FUNCTION_INST_UNREACHABLE_ABBREV, 127 FUNCTION_INST_GEP_ABBREV, 128 }; 129 130 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 131 /// file type. 132 class BitcodeWriterBase { 133 protected: 134 /// The stream created and owned by the client. 135 BitstreamWriter &Stream; 136 137 StringTableBuilder &StrtabBuilder; 138 139 public: 140 /// Constructs a BitcodeWriterBase object that writes to the provided 141 /// \p Stream. 142 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 143 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 144 145 protected: 146 void writeModuleVersion(); 147 }; 148 149 void BitcodeWriterBase::writeModuleVersion() { 150 // VERSION: [version#] 151 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 152 } 153 154 /// Base class to manage the module bitcode writing, currently subclassed for 155 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 156 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 157 protected: 158 /// The Module to write to bitcode. 159 const Module &M; 160 161 /// Enumerates ids for all values in the module. 162 ValueEnumerator VE; 163 164 /// Optional per-module index to write for ThinLTO. 165 const ModuleSummaryIndex *Index; 166 167 /// Map that holds the correspondence between GUIDs in the summary index, 168 /// that came from indirect call profiles, and a value id generated by this 169 /// class to use in the VST and summary block records. 170 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 171 172 /// Tracks the last value id recorded in the GUIDToValueMap. 173 unsigned GlobalValueId; 174 175 /// Saves the offset of the VSTOffset record that must eventually be 176 /// backpatched with the offset of the actual VST. 177 uint64_t VSTOffsetPlaceholder = 0; 178 179 public: 180 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 181 /// writing to the provided \p Buffer. 182 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 183 BitstreamWriter &Stream, 184 bool ShouldPreserveUseListOrder, 185 const ModuleSummaryIndex *Index) 186 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 187 VE(M, ShouldPreserveUseListOrder), Index(Index) { 188 // Assign ValueIds to any callee values in the index that came from 189 // indirect call profiles and were recorded as a GUID not a Value* 190 // (which would have been assigned an ID by the ValueEnumerator). 191 // The starting ValueId is just after the number of values in the 192 // ValueEnumerator, so that they can be emitted in the VST. 193 GlobalValueId = VE.getValues().size(); 194 if (!Index) 195 return; 196 for (const auto &GUIDSummaryLists : *Index) 197 // Examine all summaries for this GUID. 198 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 199 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 200 // For each call in the function summary, see if the call 201 // is to a GUID (which means it is for an indirect call, 202 // otherwise we would have a Value for it). If so, synthesize 203 // a value id. 204 for (auto &CallEdge : FS->calls()) 205 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 206 assignValueId(CallEdge.first.getGUID()); 207 } 208 209 protected: 210 void writePerModuleGlobalValueSummary(); 211 212 private: 213 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 214 GlobalValueSummary *Summary, 215 unsigned ValueID, 216 unsigned FSCallsAbbrev, 217 unsigned FSCallsProfileAbbrev, 218 const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIGenericSubrange(const DIGenericSubrange *N, 304 SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDIEnumerator(const DIEnumerator *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIStringType(const DIStringType *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDIDerivedType(const DIDerivedType *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDICompositeType(const DICompositeType *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDISubroutineType(const DISubroutineType *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICompileUnit(const DICompileUnit *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDISubprogram(const DISubprogram *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDILexicalBlock(const DILexicalBlock *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDICommonBlock(const DICommonBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDIGlobalVariable(const DIGlobalVariable *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDILocalVariable(const DILocalVariable *N, 352 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 353 void writeDILabel(const DILabel *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDIExpression(const DIExpression *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIObjCProperty(const DIObjCProperty *N, 361 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 362 void writeDIImportedEntity(const DIImportedEntity *N, 363 SmallVectorImpl<uint64_t> &Record, 364 unsigned Abbrev); 365 unsigned createNamedMetadataAbbrev(); 366 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 367 unsigned createMetadataStringsAbbrev(); 368 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 369 SmallVectorImpl<uint64_t> &Record); 370 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 371 SmallVectorImpl<uint64_t> &Record, 372 std::vector<unsigned> *MDAbbrevs = nullptr, 373 std::vector<uint64_t> *IndexPos = nullptr); 374 void writeModuleMetadata(); 375 void writeFunctionMetadata(const Function &F); 376 void writeFunctionMetadataAttachment(const Function &F); 377 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 378 const GlobalObject &GO); 379 void writeModuleMetadataKinds(); 380 void writeOperandBundleTags(); 381 void writeSyncScopeNames(); 382 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 383 void writeModuleConstants(); 384 bool pushValueAndType(const Value *V, unsigned InstID, 385 SmallVectorImpl<unsigned> &Vals); 386 void writeOperandBundles(const CallBase &CB, unsigned InstID); 387 void pushValue(const Value *V, unsigned InstID, 388 SmallVectorImpl<unsigned> &Vals); 389 void pushValueSigned(const Value *V, unsigned InstID, 390 SmallVectorImpl<uint64_t> &Vals); 391 void writeInstruction(const Instruction &I, unsigned InstID, 392 SmallVectorImpl<unsigned> &Vals); 393 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 394 void writeGlobalValueSymbolTable( 395 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 396 void writeUseList(UseListOrder &&Order); 397 void writeUseListBlock(const Function *F); 398 void 399 writeFunction(const Function &F, 400 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 401 void writeBlockInfo(); 402 void writeModuleHash(size_t BlockStartPos); 403 404 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 405 return unsigned(SSID); 406 } 407 408 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 409 }; 410 411 /// Class to manage the bitcode writing for a combined index. 412 class IndexBitcodeWriter : public BitcodeWriterBase { 413 /// The combined index to write to bitcode. 414 const ModuleSummaryIndex &Index; 415 416 /// When writing a subset of the index for distributed backends, client 417 /// provides a map of modules to the corresponding GUIDs/summaries to write. 418 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 419 420 /// Map that holds the correspondence between the GUID used in the combined 421 /// index and a value id generated by this class to use in references. 422 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 423 424 /// Tracks the last value id recorded in the GUIDToValueMap. 425 unsigned GlobalValueId = 0; 426 427 public: 428 /// Constructs a IndexBitcodeWriter object for the given combined index, 429 /// writing to the provided \p Buffer. When writing a subset of the index 430 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 431 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 432 const ModuleSummaryIndex &Index, 433 const std::map<std::string, GVSummaryMapTy> 434 *ModuleToSummariesForIndex = nullptr) 435 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 436 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 437 // Assign unique value ids to all summaries to be written, for use 438 // in writing out the call graph edges. Save the mapping from GUID 439 // to the new global value id to use when writing those edges, which 440 // are currently saved in the index in terms of GUID. 441 forEachSummary([&](GVInfo I, bool) { 442 GUIDToValueIdMap[I.first] = ++GlobalValueId; 443 }); 444 } 445 446 /// The below iterator returns the GUID and associated summary. 447 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 448 449 /// Calls the callback for each value GUID and summary to be written to 450 /// bitcode. This hides the details of whether they are being pulled from the 451 /// entire index or just those in a provided ModuleToSummariesForIndex map. 452 template<typename Functor> 453 void forEachSummary(Functor Callback) { 454 if (ModuleToSummariesForIndex) { 455 for (auto &M : *ModuleToSummariesForIndex) 456 for (auto &Summary : M.second) { 457 Callback(Summary, false); 458 // Ensure aliasee is handled, e.g. for assigning a valueId, 459 // even if we are not importing the aliasee directly (the 460 // imported alias will contain a copy of aliasee). 461 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 462 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 463 } 464 } else { 465 for (auto &Summaries : Index) 466 for (auto &Summary : Summaries.second.SummaryList) 467 Callback({Summaries.first, Summary.get()}, false); 468 } 469 } 470 471 /// Calls the callback for each entry in the modulePaths StringMap that 472 /// should be written to the module path string table. This hides the details 473 /// of whether they are being pulled from the entire index or just those in a 474 /// provided ModuleToSummariesForIndex map. 475 template <typename Functor> void forEachModule(Functor Callback) { 476 if (ModuleToSummariesForIndex) { 477 for (const auto &M : *ModuleToSummariesForIndex) { 478 const auto &MPI = Index.modulePaths().find(M.first); 479 if (MPI == Index.modulePaths().end()) { 480 // This should only happen if the bitcode file was empty, in which 481 // case we shouldn't be importing (the ModuleToSummariesForIndex 482 // would only include the module we are writing and index for). 483 assert(ModuleToSummariesForIndex->size() == 1); 484 continue; 485 } 486 Callback(*MPI); 487 } 488 } else { 489 for (const auto &MPSE : Index.modulePaths()) 490 Callback(MPSE); 491 } 492 } 493 494 /// Main entry point for writing a combined index to bitcode. 495 void write(); 496 497 private: 498 void writeModStrings(); 499 void writeCombinedGlobalValueSummary(); 500 501 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 502 auto VMI = GUIDToValueIdMap.find(ValGUID); 503 if (VMI == GUIDToValueIdMap.end()) 504 return None; 505 return VMI->second; 506 } 507 508 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 509 }; 510 511 } // end anonymous namespace 512 513 static unsigned getEncodedCastOpcode(unsigned Opcode) { 514 switch (Opcode) { 515 default: llvm_unreachable("Unknown cast instruction!"); 516 case Instruction::Trunc : return bitc::CAST_TRUNC; 517 case Instruction::ZExt : return bitc::CAST_ZEXT; 518 case Instruction::SExt : return bitc::CAST_SEXT; 519 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 520 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 521 case Instruction::UIToFP : return bitc::CAST_UITOFP; 522 case Instruction::SIToFP : return bitc::CAST_SITOFP; 523 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 524 case Instruction::FPExt : return bitc::CAST_FPEXT; 525 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 526 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 527 case Instruction::BitCast : return bitc::CAST_BITCAST; 528 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 529 } 530 } 531 532 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 533 switch (Opcode) { 534 default: llvm_unreachable("Unknown binary instruction!"); 535 case Instruction::FNeg: return bitc::UNOP_FNEG; 536 } 537 } 538 539 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 540 switch (Opcode) { 541 default: llvm_unreachable("Unknown binary instruction!"); 542 case Instruction::Add: 543 case Instruction::FAdd: return bitc::BINOP_ADD; 544 case Instruction::Sub: 545 case Instruction::FSub: return bitc::BINOP_SUB; 546 case Instruction::Mul: 547 case Instruction::FMul: return bitc::BINOP_MUL; 548 case Instruction::UDiv: return bitc::BINOP_UDIV; 549 case Instruction::FDiv: 550 case Instruction::SDiv: return bitc::BINOP_SDIV; 551 case Instruction::URem: return bitc::BINOP_UREM; 552 case Instruction::FRem: 553 case Instruction::SRem: return bitc::BINOP_SREM; 554 case Instruction::Shl: return bitc::BINOP_SHL; 555 case Instruction::LShr: return bitc::BINOP_LSHR; 556 case Instruction::AShr: return bitc::BINOP_ASHR; 557 case Instruction::And: return bitc::BINOP_AND; 558 case Instruction::Or: return bitc::BINOP_OR; 559 case Instruction::Xor: return bitc::BINOP_XOR; 560 } 561 } 562 563 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 564 switch (Op) { 565 default: llvm_unreachable("Unknown RMW operation!"); 566 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 567 case AtomicRMWInst::Add: return bitc::RMW_ADD; 568 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 569 case AtomicRMWInst::And: return bitc::RMW_AND; 570 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 571 case AtomicRMWInst::Or: return bitc::RMW_OR; 572 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 573 case AtomicRMWInst::Max: return bitc::RMW_MAX; 574 case AtomicRMWInst::Min: return bitc::RMW_MIN; 575 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 576 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 577 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 578 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 579 } 580 } 581 582 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 583 switch (Ordering) { 584 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 585 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 586 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 587 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 588 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 589 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 590 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 591 } 592 llvm_unreachable("Invalid ordering"); 593 } 594 595 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 596 StringRef Str, unsigned AbbrevToUse) { 597 SmallVector<unsigned, 64> Vals; 598 599 // Code: [strchar x N] 600 for (char C : Str) { 601 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 602 AbbrevToUse = 0; 603 Vals.push_back(C); 604 } 605 606 // Emit the finished record. 607 Stream.EmitRecord(Code, Vals, AbbrevToUse); 608 } 609 610 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 611 switch (Kind) { 612 case Attribute::Alignment: 613 return bitc::ATTR_KIND_ALIGNMENT; 614 case Attribute::AllocSize: 615 return bitc::ATTR_KIND_ALLOC_SIZE; 616 case Attribute::AlwaysInline: 617 return bitc::ATTR_KIND_ALWAYS_INLINE; 618 case Attribute::ArgMemOnly: 619 return bitc::ATTR_KIND_ARGMEMONLY; 620 case Attribute::Builtin: 621 return bitc::ATTR_KIND_BUILTIN; 622 case Attribute::ByVal: 623 return bitc::ATTR_KIND_BY_VAL; 624 case Attribute::Convergent: 625 return bitc::ATTR_KIND_CONVERGENT; 626 case Attribute::InAlloca: 627 return bitc::ATTR_KIND_IN_ALLOCA; 628 case Attribute::Cold: 629 return bitc::ATTR_KIND_COLD; 630 case Attribute::DisableSanitizerInstrumentation: 631 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 632 case Attribute::Hot: 633 return bitc::ATTR_KIND_HOT; 634 case Attribute::ElementType: 635 return bitc::ATTR_KIND_ELEMENTTYPE; 636 case Attribute::InaccessibleMemOnly: 637 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 638 case Attribute::InaccessibleMemOrArgMemOnly: 639 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 640 case Attribute::InlineHint: 641 return bitc::ATTR_KIND_INLINE_HINT; 642 case Attribute::InReg: 643 return bitc::ATTR_KIND_IN_REG; 644 case Attribute::JumpTable: 645 return bitc::ATTR_KIND_JUMP_TABLE; 646 case Attribute::MinSize: 647 return bitc::ATTR_KIND_MIN_SIZE; 648 case Attribute::Naked: 649 return bitc::ATTR_KIND_NAKED; 650 case Attribute::Nest: 651 return bitc::ATTR_KIND_NEST; 652 case Attribute::NoAlias: 653 return bitc::ATTR_KIND_NO_ALIAS; 654 case Attribute::NoBuiltin: 655 return bitc::ATTR_KIND_NO_BUILTIN; 656 case Attribute::NoCallback: 657 return bitc::ATTR_KIND_NO_CALLBACK; 658 case Attribute::NoCapture: 659 return bitc::ATTR_KIND_NO_CAPTURE; 660 case Attribute::NoDuplicate: 661 return bitc::ATTR_KIND_NO_DUPLICATE; 662 case Attribute::NoFree: 663 return bitc::ATTR_KIND_NOFREE; 664 case Attribute::NoImplicitFloat: 665 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 666 case Attribute::NoInline: 667 return bitc::ATTR_KIND_NO_INLINE; 668 case Attribute::NoRecurse: 669 return bitc::ATTR_KIND_NO_RECURSE; 670 case Attribute::NoMerge: 671 return bitc::ATTR_KIND_NO_MERGE; 672 case Attribute::NonLazyBind: 673 return bitc::ATTR_KIND_NON_LAZY_BIND; 674 case Attribute::NonNull: 675 return bitc::ATTR_KIND_NON_NULL; 676 case Attribute::Dereferenceable: 677 return bitc::ATTR_KIND_DEREFERENCEABLE; 678 case Attribute::DereferenceableOrNull: 679 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 680 case Attribute::NoRedZone: 681 return bitc::ATTR_KIND_NO_RED_ZONE; 682 case Attribute::NoReturn: 683 return bitc::ATTR_KIND_NO_RETURN; 684 case Attribute::NoSync: 685 return bitc::ATTR_KIND_NOSYNC; 686 case Attribute::NoCfCheck: 687 return bitc::ATTR_KIND_NOCF_CHECK; 688 case Attribute::NoProfile: 689 return bitc::ATTR_KIND_NO_PROFILE; 690 case Attribute::NoUnwind: 691 return bitc::ATTR_KIND_NO_UNWIND; 692 case Attribute::NoSanitizeCoverage: 693 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 694 case Attribute::NullPointerIsValid: 695 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 696 case Attribute::OptForFuzzing: 697 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 698 case Attribute::OptimizeForSize: 699 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 700 case Attribute::OptimizeNone: 701 return bitc::ATTR_KIND_OPTIMIZE_NONE; 702 case Attribute::ReadNone: 703 return bitc::ATTR_KIND_READ_NONE; 704 case Attribute::ReadOnly: 705 return bitc::ATTR_KIND_READ_ONLY; 706 case Attribute::Returned: 707 return bitc::ATTR_KIND_RETURNED; 708 case Attribute::ReturnsTwice: 709 return bitc::ATTR_KIND_RETURNS_TWICE; 710 case Attribute::SExt: 711 return bitc::ATTR_KIND_S_EXT; 712 case Attribute::Speculatable: 713 return bitc::ATTR_KIND_SPECULATABLE; 714 case Attribute::StackAlignment: 715 return bitc::ATTR_KIND_STACK_ALIGNMENT; 716 case Attribute::StackProtect: 717 return bitc::ATTR_KIND_STACK_PROTECT; 718 case Attribute::StackProtectReq: 719 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 720 case Attribute::StackProtectStrong: 721 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 722 case Attribute::SafeStack: 723 return bitc::ATTR_KIND_SAFESTACK; 724 case Attribute::ShadowCallStack: 725 return bitc::ATTR_KIND_SHADOWCALLSTACK; 726 case Attribute::StrictFP: 727 return bitc::ATTR_KIND_STRICT_FP; 728 case Attribute::StructRet: 729 return bitc::ATTR_KIND_STRUCT_RET; 730 case Attribute::SanitizeAddress: 731 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 732 case Attribute::SanitizeHWAddress: 733 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 734 case Attribute::SanitizeThread: 735 return bitc::ATTR_KIND_SANITIZE_THREAD; 736 case Attribute::SanitizeMemory: 737 return bitc::ATTR_KIND_SANITIZE_MEMORY; 738 case Attribute::SpeculativeLoadHardening: 739 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 740 case Attribute::SwiftError: 741 return bitc::ATTR_KIND_SWIFT_ERROR; 742 case Attribute::SwiftSelf: 743 return bitc::ATTR_KIND_SWIFT_SELF; 744 case Attribute::SwiftAsync: 745 return bitc::ATTR_KIND_SWIFT_ASYNC; 746 case Attribute::UWTable: 747 return bitc::ATTR_KIND_UW_TABLE; 748 case Attribute::VScaleRange: 749 return bitc::ATTR_KIND_VSCALE_RANGE; 750 case Attribute::WillReturn: 751 return bitc::ATTR_KIND_WILLRETURN; 752 case Attribute::WriteOnly: 753 return bitc::ATTR_KIND_WRITEONLY; 754 case Attribute::ZExt: 755 return bitc::ATTR_KIND_Z_EXT; 756 case Attribute::ImmArg: 757 return bitc::ATTR_KIND_IMMARG; 758 case Attribute::SanitizeMemTag: 759 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 760 case Attribute::Preallocated: 761 return bitc::ATTR_KIND_PREALLOCATED; 762 case Attribute::NoUndef: 763 return bitc::ATTR_KIND_NOUNDEF; 764 case Attribute::ByRef: 765 return bitc::ATTR_KIND_BYREF; 766 case Attribute::MustProgress: 767 return bitc::ATTR_KIND_MUSTPROGRESS; 768 case Attribute::EndAttrKinds: 769 llvm_unreachable("Can not encode end-attribute kinds marker."); 770 case Attribute::None: 771 llvm_unreachable("Can not encode none-attribute."); 772 case Attribute::EmptyKey: 773 case Attribute::TombstoneKey: 774 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 775 } 776 777 llvm_unreachable("Trying to encode unknown attribute"); 778 } 779 780 void ModuleBitcodeWriter::writeAttributeGroupTable() { 781 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 782 VE.getAttributeGroups(); 783 if (AttrGrps.empty()) return; 784 785 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 786 787 SmallVector<uint64_t, 64> Record; 788 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 789 unsigned AttrListIndex = Pair.first; 790 AttributeSet AS = Pair.second; 791 Record.push_back(VE.getAttributeGroupID(Pair)); 792 Record.push_back(AttrListIndex); 793 794 for (Attribute Attr : AS) { 795 if (Attr.isEnumAttribute()) { 796 Record.push_back(0); 797 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 798 } else if (Attr.isIntAttribute()) { 799 Record.push_back(1); 800 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 801 Record.push_back(Attr.getValueAsInt()); 802 } else if (Attr.isStringAttribute()) { 803 StringRef Kind = Attr.getKindAsString(); 804 StringRef Val = Attr.getValueAsString(); 805 806 Record.push_back(Val.empty() ? 3 : 4); 807 Record.append(Kind.begin(), Kind.end()); 808 Record.push_back(0); 809 if (!Val.empty()) { 810 Record.append(Val.begin(), Val.end()); 811 Record.push_back(0); 812 } 813 } else { 814 assert(Attr.isTypeAttribute()); 815 Type *Ty = Attr.getValueAsType(); 816 Record.push_back(Ty ? 6 : 5); 817 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 818 if (Ty) 819 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 820 } 821 } 822 823 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 824 Record.clear(); 825 } 826 827 Stream.ExitBlock(); 828 } 829 830 void ModuleBitcodeWriter::writeAttributeTable() { 831 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 832 if (Attrs.empty()) return; 833 834 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 835 836 SmallVector<uint64_t, 64> Record; 837 for (const AttributeList &AL : Attrs) { 838 for (unsigned i : AL.indexes()) { 839 AttributeSet AS = AL.getAttributes(i); 840 if (AS.hasAttributes()) 841 Record.push_back(VE.getAttributeGroupID({i, AS})); 842 } 843 844 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 845 Record.clear(); 846 } 847 848 Stream.ExitBlock(); 849 } 850 851 /// WriteTypeTable - Write out the type table for a module. 852 void ModuleBitcodeWriter::writeTypeTable() { 853 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 854 855 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 856 SmallVector<uint64_t, 64> TypeVals; 857 858 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 859 860 // Abbrev for TYPE_CODE_POINTER. 861 auto Abbv = std::make_shared<BitCodeAbbrev>(); 862 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 864 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 865 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 866 867 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 868 Abbv = std::make_shared<BitCodeAbbrev>(); 869 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 870 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 871 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 872 873 // Abbrev for TYPE_CODE_FUNCTION. 874 Abbv = std::make_shared<BitCodeAbbrev>(); 875 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 879 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 880 881 // Abbrev for TYPE_CODE_STRUCT_ANON. 882 Abbv = std::make_shared<BitCodeAbbrev>(); 883 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 887 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 888 889 // Abbrev for TYPE_CODE_STRUCT_NAME. 890 Abbv = std::make_shared<BitCodeAbbrev>(); 891 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 894 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 895 896 // Abbrev for TYPE_CODE_STRUCT_NAMED. 897 Abbv = std::make_shared<BitCodeAbbrev>(); 898 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 902 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 903 904 // Abbrev for TYPE_CODE_ARRAY. 905 Abbv = std::make_shared<BitCodeAbbrev>(); 906 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 909 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 910 911 // Emit an entry count so the reader can reserve space. 912 TypeVals.push_back(TypeList.size()); 913 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 914 TypeVals.clear(); 915 916 // Loop over all of the types, emitting each in turn. 917 for (Type *T : TypeList) { 918 int AbbrevToUse = 0; 919 unsigned Code = 0; 920 921 switch (T->getTypeID()) { 922 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 923 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 924 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 925 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 926 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 927 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 928 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 929 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 930 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 931 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 932 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 933 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 934 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 935 case Type::IntegerTyID: 936 // INTEGER: [width] 937 Code = bitc::TYPE_CODE_INTEGER; 938 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 939 break; 940 case Type::PointerTyID: { 941 PointerType *PTy = cast<PointerType>(T); 942 unsigned AddressSpace = PTy->getAddressSpace(); 943 if (PTy->isOpaque()) { 944 // OPAQUE_POINTER: [address space] 945 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 946 TypeVals.push_back(AddressSpace); 947 if (AddressSpace == 0) 948 AbbrevToUse = OpaquePtrAbbrev; 949 } else { 950 // POINTER: [pointee type, address space] 951 Code = bitc::TYPE_CODE_POINTER; 952 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 953 TypeVals.push_back(AddressSpace); 954 if (AddressSpace == 0) 955 AbbrevToUse = PtrAbbrev; 956 } 957 break; 958 } 959 case Type::FunctionTyID: { 960 FunctionType *FT = cast<FunctionType>(T); 961 // FUNCTION: [isvararg, retty, paramty x N] 962 Code = bitc::TYPE_CODE_FUNCTION; 963 TypeVals.push_back(FT->isVarArg()); 964 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 965 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 966 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 967 AbbrevToUse = FunctionAbbrev; 968 break; 969 } 970 case Type::StructTyID: { 971 StructType *ST = cast<StructType>(T); 972 // STRUCT: [ispacked, eltty x N] 973 TypeVals.push_back(ST->isPacked()); 974 // Output all of the element types. 975 for (Type *ET : ST->elements()) 976 TypeVals.push_back(VE.getTypeID(ET)); 977 978 if (ST->isLiteral()) { 979 Code = bitc::TYPE_CODE_STRUCT_ANON; 980 AbbrevToUse = StructAnonAbbrev; 981 } else { 982 if (ST->isOpaque()) { 983 Code = bitc::TYPE_CODE_OPAQUE; 984 } else { 985 Code = bitc::TYPE_CODE_STRUCT_NAMED; 986 AbbrevToUse = StructNamedAbbrev; 987 } 988 989 // Emit the name if it is present. 990 if (!ST->getName().empty()) 991 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 992 StructNameAbbrev); 993 } 994 break; 995 } 996 case Type::ArrayTyID: { 997 ArrayType *AT = cast<ArrayType>(T); 998 // ARRAY: [numelts, eltty] 999 Code = bitc::TYPE_CODE_ARRAY; 1000 TypeVals.push_back(AT->getNumElements()); 1001 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1002 AbbrevToUse = ArrayAbbrev; 1003 break; 1004 } 1005 case Type::FixedVectorTyID: 1006 case Type::ScalableVectorTyID: { 1007 VectorType *VT = cast<VectorType>(T); 1008 // VECTOR [numelts, eltty] or 1009 // [numelts, eltty, scalable] 1010 Code = bitc::TYPE_CODE_VECTOR; 1011 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1012 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1013 if (isa<ScalableVectorType>(VT)) 1014 TypeVals.push_back(true); 1015 break; 1016 } 1017 } 1018 1019 // Emit the finished record. 1020 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1021 TypeVals.clear(); 1022 } 1023 1024 Stream.ExitBlock(); 1025 } 1026 1027 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1028 switch (Linkage) { 1029 case GlobalValue::ExternalLinkage: 1030 return 0; 1031 case GlobalValue::WeakAnyLinkage: 1032 return 16; 1033 case GlobalValue::AppendingLinkage: 1034 return 2; 1035 case GlobalValue::InternalLinkage: 1036 return 3; 1037 case GlobalValue::LinkOnceAnyLinkage: 1038 return 18; 1039 case GlobalValue::ExternalWeakLinkage: 1040 return 7; 1041 case GlobalValue::CommonLinkage: 1042 return 8; 1043 case GlobalValue::PrivateLinkage: 1044 return 9; 1045 case GlobalValue::WeakODRLinkage: 1046 return 17; 1047 case GlobalValue::LinkOnceODRLinkage: 1048 return 19; 1049 case GlobalValue::AvailableExternallyLinkage: 1050 return 12; 1051 } 1052 llvm_unreachable("Invalid linkage"); 1053 } 1054 1055 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1056 return getEncodedLinkage(GV.getLinkage()); 1057 } 1058 1059 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1060 uint64_t RawFlags = 0; 1061 RawFlags |= Flags.ReadNone; 1062 RawFlags |= (Flags.ReadOnly << 1); 1063 RawFlags |= (Flags.NoRecurse << 2); 1064 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1065 RawFlags |= (Flags.NoInline << 4); 1066 RawFlags |= (Flags.AlwaysInline << 5); 1067 RawFlags |= (Flags.NoUnwind << 6); 1068 RawFlags |= (Flags.MayThrow << 7); 1069 RawFlags |= (Flags.HasUnknownCall << 8); 1070 RawFlags |= (Flags.MustBeUnreachable << 9); 1071 return RawFlags; 1072 } 1073 1074 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1075 // in BitcodeReader.cpp. 1076 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1077 uint64_t RawFlags = 0; 1078 1079 RawFlags |= Flags.NotEligibleToImport; // bool 1080 RawFlags |= (Flags.Live << 1); 1081 RawFlags |= (Flags.DSOLocal << 2); 1082 RawFlags |= (Flags.CanAutoHide << 3); 1083 1084 // Linkage don't need to be remapped at that time for the summary. Any future 1085 // change to the getEncodedLinkage() function will need to be taken into 1086 // account here as well. 1087 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1088 1089 RawFlags |= (Flags.Visibility << 8); // 2 bits 1090 1091 return RawFlags; 1092 } 1093 1094 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1095 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1096 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1097 return RawFlags; 1098 } 1099 1100 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1101 switch (GV.getVisibility()) { 1102 case GlobalValue::DefaultVisibility: return 0; 1103 case GlobalValue::HiddenVisibility: return 1; 1104 case GlobalValue::ProtectedVisibility: return 2; 1105 } 1106 llvm_unreachable("Invalid visibility"); 1107 } 1108 1109 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1110 switch (GV.getDLLStorageClass()) { 1111 case GlobalValue::DefaultStorageClass: return 0; 1112 case GlobalValue::DLLImportStorageClass: return 1; 1113 case GlobalValue::DLLExportStorageClass: return 2; 1114 } 1115 llvm_unreachable("Invalid DLL storage class"); 1116 } 1117 1118 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1119 switch (GV.getThreadLocalMode()) { 1120 case GlobalVariable::NotThreadLocal: return 0; 1121 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1122 case GlobalVariable::LocalDynamicTLSModel: return 2; 1123 case GlobalVariable::InitialExecTLSModel: return 3; 1124 case GlobalVariable::LocalExecTLSModel: return 4; 1125 } 1126 llvm_unreachable("Invalid TLS model"); 1127 } 1128 1129 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1130 switch (C.getSelectionKind()) { 1131 case Comdat::Any: 1132 return bitc::COMDAT_SELECTION_KIND_ANY; 1133 case Comdat::ExactMatch: 1134 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1135 case Comdat::Largest: 1136 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1137 case Comdat::NoDeduplicate: 1138 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1139 case Comdat::SameSize: 1140 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1141 } 1142 llvm_unreachable("Invalid selection kind"); 1143 } 1144 1145 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1146 switch (GV.getUnnamedAddr()) { 1147 case GlobalValue::UnnamedAddr::None: return 0; 1148 case GlobalValue::UnnamedAddr::Local: return 2; 1149 case GlobalValue::UnnamedAddr::Global: return 1; 1150 } 1151 llvm_unreachable("Invalid unnamed_addr"); 1152 } 1153 1154 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1155 if (GenerateHash) 1156 Hasher.update(Str); 1157 return StrtabBuilder.add(Str); 1158 } 1159 1160 void ModuleBitcodeWriter::writeComdats() { 1161 SmallVector<unsigned, 64> Vals; 1162 for (const Comdat *C : VE.getComdats()) { 1163 // COMDAT: [strtab offset, strtab size, selection_kind] 1164 Vals.push_back(addToStrtab(C->getName())); 1165 Vals.push_back(C->getName().size()); 1166 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1167 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1168 Vals.clear(); 1169 } 1170 } 1171 1172 /// Write a record that will eventually hold the word offset of the 1173 /// module-level VST. For now the offset is 0, which will be backpatched 1174 /// after the real VST is written. Saves the bit offset to backpatch. 1175 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1176 // Write a placeholder value in for the offset of the real VST, 1177 // which is written after the function blocks so that it can include 1178 // the offset of each function. The placeholder offset will be 1179 // updated when the real VST is written. 1180 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1181 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1182 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1183 // hold the real VST offset. Must use fixed instead of VBR as we don't 1184 // know how many VBR chunks to reserve ahead of time. 1185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1186 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1187 1188 // Emit the placeholder 1189 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1190 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1191 1192 // Compute and save the bit offset to the placeholder, which will be 1193 // patched when the real VST is written. We can simply subtract the 32-bit 1194 // fixed size from the current bit number to get the location to backpatch. 1195 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1196 } 1197 1198 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1199 1200 /// Determine the encoding to use for the given string name and length. 1201 static StringEncoding getStringEncoding(StringRef Str) { 1202 bool isChar6 = true; 1203 for (char C : Str) { 1204 if (isChar6) 1205 isChar6 = BitCodeAbbrevOp::isChar6(C); 1206 if ((unsigned char)C & 128) 1207 // don't bother scanning the rest. 1208 return SE_Fixed8; 1209 } 1210 if (isChar6) 1211 return SE_Char6; 1212 return SE_Fixed7; 1213 } 1214 1215 /// Emit top-level description of module, including target triple, inline asm, 1216 /// descriptors for global variables, and function prototype info. 1217 /// Returns the bit offset to backpatch with the location of the real VST. 1218 void ModuleBitcodeWriter::writeModuleInfo() { 1219 // Emit various pieces of data attached to a module. 1220 if (!M.getTargetTriple().empty()) 1221 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1222 0 /*TODO*/); 1223 const std::string &DL = M.getDataLayoutStr(); 1224 if (!DL.empty()) 1225 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1226 if (!M.getModuleInlineAsm().empty()) 1227 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1228 0 /*TODO*/); 1229 1230 // Emit information about sections and GC, computing how many there are. Also 1231 // compute the maximum alignment value. 1232 std::map<std::string, unsigned> SectionMap; 1233 std::map<std::string, unsigned> GCMap; 1234 MaybeAlign MaxAlignment; 1235 unsigned MaxGlobalType = 0; 1236 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1237 if (A) 1238 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1239 }; 1240 for (const GlobalVariable &GV : M.globals()) { 1241 UpdateMaxAlignment(GV.getAlign()); 1242 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1243 if (GV.hasSection()) { 1244 // Give section names unique ID's. 1245 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1246 if (!Entry) { 1247 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1248 0 /*TODO*/); 1249 Entry = SectionMap.size(); 1250 } 1251 } 1252 } 1253 for (const Function &F : M) { 1254 UpdateMaxAlignment(F.getAlign()); 1255 if (F.hasSection()) { 1256 // Give section names unique ID's. 1257 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1258 if (!Entry) { 1259 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1260 0 /*TODO*/); 1261 Entry = SectionMap.size(); 1262 } 1263 } 1264 if (F.hasGC()) { 1265 // Same for GC names. 1266 unsigned &Entry = GCMap[F.getGC()]; 1267 if (!Entry) { 1268 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1269 0 /*TODO*/); 1270 Entry = GCMap.size(); 1271 } 1272 } 1273 } 1274 1275 // Emit abbrev for globals, now that we know # sections and max alignment. 1276 unsigned SimpleGVarAbbrev = 0; 1277 if (!M.global_empty()) { 1278 // Add an abbrev for common globals with no visibility or thread localness. 1279 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1280 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1284 Log2_32_Ceil(MaxGlobalType+1))); 1285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1286 //| explicitType << 1 1287 //| constant 1288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1290 if (!MaxAlignment) // Alignment. 1291 Abbv->Add(BitCodeAbbrevOp(0)); 1292 else { 1293 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1295 Log2_32_Ceil(MaxEncAlignment+1))); 1296 } 1297 if (SectionMap.empty()) // Section. 1298 Abbv->Add(BitCodeAbbrevOp(0)); 1299 else 1300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1301 Log2_32_Ceil(SectionMap.size()+1))); 1302 // Don't bother emitting vis + thread local. 1303 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1304 } 1305 1306 SmallVector<unsigned, 64> Vals; 1307 // Emit the module's source file name. 1308 { 1309 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1310 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1311 if (Bits == SE_Char6) 1312 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1313 else if (Bits == SE_Fixed7) 1314 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1315 1316 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1317 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1318 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1320 Abbv->Add(AbbrevOpToUse); 1321 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1322 1323 for (const auto P : M.getSourceFileName()) 1324 Vals.push_back((unsigned char)P); 1325 1326 // Emit the finished record. 1327 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1328 Vals.clear(); 1329 } 1330 1331 // Emit the global variable information. 1332 for (const GlobalVariable &GV : M.globals()) { 1333 unsigned AbbrevToUse = 0; 1334 1335 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1336 // linkage, alignment, section, visibility, threadlocal, 1337 // unnamed_addr, externally_initialized, dllstorageclass, 1338 // comdat, attributes, DSO_Local] 1339 Vals.push_back(addToStrtab(GV.getName())); 1340 Vals.push_back(GV.getName().size()); 1341 Vals.push_back(VE.getTypeID(GV.getValueType())); 1342 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1343 Vals.push_back(GV.isDeclaration() ? 0 : 1344 (VE.getValueID(GV.getInitializer()) + 1)); 1345 Vals.push_back(getEncodedLinkage(GV)); 1346 Vals.push_back(getEncodedAlign(GV.getAlign())); 1347 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1348 : 0); 1349 if (GV.isThreadLocal() || 1350 GV.getVisibility() != GlobalValue::DefaultVisibility || 1351 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1352 GV.isExternallyInitialized() || 1353 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1354 GV.hasComdat() || 1355 GV.hasAttributes() || 1356 GV.isDSOLocal() || 1357 GV.hasPartition()) { 1358 Vals.push_back(getEncodedVisibility(GV)); 1359 Vals.push_back(getEncodedThreadLocalMode(GV)); 1360 Vals.push_back(getEncodedUnnamedAddr(GV)); 1361 Vals.push_back(GV.isExternallyInitialized()); 1362 Vals.push_back(getEncodedDLLStorageClass(GV)); 1363 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1364 1365 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1366 Vals.push_back(VE.getAttributeListID(AL)); 1367 1368 Vals.push_back(GV.isDSOLocal()); 1369 Vals.push_back(addToStrtab(GV.getPartition())); 1370 Vals.push_back(GV.getPartition().size()); 1371 } else { 1372 AbbrevToUse = SimpleGVarAbbrev; 1373 } 1374 1375 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1376 Vals.clear(); 1377 } 1378 1379 // Emit the function proto information. 1380 for (const Function &F : M) { 1381 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1382 // linkage, paramattrs, alignment, section, visibility, gc, 1383 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1384 // prefixdata, personalityfn, DSO_Local, addrspace] 1385 Vals.push_back(addToStrtab(F.getName())); 1386 Vals.push_back(F.getName().size()); 1387 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1388 Vals.push_back(F.getCallingConv()); 1389 Vals.push_back(F.isDeclaration()); 1390 Vals.push_back(getEncodedLinkage(F)); 1391 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1392 Vals.push_back(getEncodedAlign(F.getAlign())); 1393 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1394 : 0); 1395 Vals.push_back(getEncodedVisibility(F)); 1396 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1397 Vals.push_back(getEncodedUnnamedAddr(F)); 1398 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1399 : 0); 1400 Vals.push_back(getEncodedDLLStorageClass(F)); 1401 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1402 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1403 : 0); 1404 Vals.push_back( 1405 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1406 1407 Vals.push_back(F.isDSOLocal()); 1408 Vals.push_back(F.getAddressSpace()); 1409 Vals.push_back(addToStrtab(F.getPartition())); 1410 Vals.push_back(F.getPartition().size()); 1411 1412 unsigned AbbrevToUse = 0; 1413 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1414 Vals.clear(); 1415 } 1416 1417 // Emit the alias information. 1418 for (const GlobalAlias &A : M.aliases()) { 1419 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1420 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1421 // DSO_Local] 1422 Vals.push_back(addToStrtab(A.getName())); 1423 Vals.push_back(A.getName().size()); 1424 Vals.push_back(VE.getTypeID(A.getValueType())); 1425 Vals.push_back(A.getType()->getAddressSpace()); 1426 Vals.push_back(VE.getValueID(A.getAliasee())); 1427 Vals.push_back(getEncodedLinkage(A)); 1428 Vals.push_back(getEncodedVisibility(A)); 1429 Vals.push_back(getEncodedDLLStorageClass(A)); 1430 Vals.push_back(getEncodedThreadLocalMode(A)); 1431 Vals.push_back(getEncodedUnnamedAddr(A)); 1432 Vals.push_back(A.isDSOLocal()); 1433 Vals.push_back(addToStrtab(A.getPartition())); 1434 Vals.push_back(A.getPartition().size()); 1435 1436 unsigned AbbrevToUse = 0; 1437 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1438 Vals.clear(); 1439 } 1440 1441 // Emit the ifunc information. 1442 for (const GlobalIFunc &I : M.ifuncs()) { 1443 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1444 // val#, linkage, visibility, DSO_Local] 1445 Vals.push_back(addToStrtab(I.getName())); 1446 Vals.push_back(I.getName().size()); 1447 Vals.push_back(VE.getTypeID(I.getValueType())); 1448 Vals.push_back(I.getType()->getAddressSpace()); 1449 Vals.push_back(VE.getValueID(I.getResolver())); 1450 Vals.push_back(getEncodedLinkage(I)); 1451 Vals.push_back(getEncodedVisibility(I)); 1452 Vals.push_back(I.isDSOLocal()); 1453 Vals.push_back(addToStrtab(I.getPartition())); 1454 Vals.push_back(I.getPartition().size()); 1455 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1456 Vals.clear(); 1457 } 1458 1459 writeValueSymbolTableForwardDecl(); 1460 } 1461 1462 static uint64_t getOptimizationFlags(const Value *V) { 1463 uint64_t Flags = 0; 1464 1465 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1466 if (OBO->hasNoSignedWrap()) 1467 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1468 if (OBO->hasNoUnsignedWrap()) 1469 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1470 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1471 if (PEO->isExact()) 1472 Flags |= 1 << bitc::PEO_EXACT; 1473 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1474 if (FPMO->hasAllowReassoc()) 1475 Flags |= bitc::AllowReassoc; 1476 if (FPMO->hasNoNaNs()) 1477 Flags |= bitc::NoNaNs; 1478 if (FPMO->hasNoInfs()) 1479 Flags |= bitc::NoInfs; 1480 if (FPMO->hasNoSignedZeros()) 1481 Flags |= bitc::NoSignedZeros; 1482 if (FPMO->hasAllowReciprocal()) 1483 Flags |= bitc::AllowReciprocal; 1484 if (FPMO->hasAllowContract()) 1485 Flags |= bitc::AllowContract; 1486 if (FPMO->hasApproxFunc()) 1487 Flags |= bitc::ApproxFunc; 1488 } 1489 1490 return Flags; 1491 } 1492 1493 void ModuleBitcodeWriter::writeValueAsMetadata( 1494 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1495 // Mimic an MDNode with a value as one operand. 1496 Value *V = MD->getValue(); 1497 Record.push_back(VE.getTypeID(V->getType())); 1498 Record.push_back(VE.getValueID(V)); 1499 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1500 Record.clear(); 1501 } 1502 1503 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1504 SmallVectorImpl<uint64_t> &Record, 1505 unsigned Abbrev) { 1506 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1507 Metadata *MD = N->getOperand(i); 1508 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1509 "Unexpected function-local metadata"); 1510 Record.push_back(VE.getMetadataOrNullID(MD)); 1511 } 1512 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1513 : bitc::METADATA_NODE, 1514 Record, Abbrev); 1515 Record.clear(); 1516 } 1517 1518 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1519 // Assume the column is usually under 128, and always output the inlined-at 1520 // location (it's never more expensive than building an array size 1). 1521 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1522 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1529 return Stream.EmitAbbrev(std::move(Abbv)); 1530 } 1531 1532 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1533 SmallVectorImpl<uint64_t> &Record, 1534 unsigned &Abbrev) { 1535 if (!Abbrev) 1536 Abbrev = createDILocationAbbrev(); 1537 1538 Record.push_back(N->isDistinct()); 1539 Record.push_back(N->getLine()); 1540 Record.push_back(N->getColumn()); 1541 Record.push_back(VE.getMetadataID(N->getScope())); 1542 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1543 Record.push_back(N->isImplicitCode()); 1544 1545 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1546 Record.clear(); 1547 } 1548 1549 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1550 // Assume the column is usually under 128, and always output the inlined-at 1551 // location (it's never more expensive than building an array size 1). 1552 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1553 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1560 return Stream.EmitAbbrev(std::move(Abbv)); 1561 } 1562 1563 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1564 SmallVectorImpl<uint64_t> &Record, 1565 unsigned &Abbrev) { 1566 if (!Abbrev) 1567 Abbrev = createGenericDINodeAbbrev(); 1568 1569 Record.push_back(N->isDistinct()); 1570 Record.push_back(N->getTag()); 1571 Record.push_back(0); // Per-tag version field; unused for now. 1572 1573 for (auto &I : N->operands()) 1574 Record.push_back(VE.getMetadataOrNullID(I)); 1575 1576 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1577 Record.clear(); 1578 } 1579 1580 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1581 SmallVectorImpl<uint64_t> &Record, 1582 unsigned Abbrev) { 1583 const uint64_t Version = 2 << 1; 1584 Record.push_back((uint64_t)N->isDistinct() | Version); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1587 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1588 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1589 1590 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1591 Record.clear(); 1592 } 1593 1594 void ModuleBitcodeWriter::writeDIGenericSubrange( 1595 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1596 unsigned Abbrev) { 1597 Record.push_back((uint64_t)N->isDistinct()); 1598 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1600 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1601 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1602 1603 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1604 Record.clear(); 1605 } 1606 1607 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1608 if ((int64_t)V >= 0) 1609 Vals.push_back(V << 1); 1610 else 1611 Vals.push_back((-V << 1) | 1); 1612 } 1613 1614 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1615 // We have an arbitrary precision integer value to write whose 1616 // bit width is > 64. However, in canonical unsigned integer 1617 // format it is likely that the high bits are going to be zero. 1618 // So, we only write the number of active words. 1619 unsigned NumWords = A.getActiveWords(); 1620 const uint64_t *RawData = A.getRawData(); 1621 for (unsigned i = 0; i < NumWords; i++) 1622 emitSignedInt64(Vals, RawData[i]); 1623 } 1624 1625 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1626 SmallVectorImpl<uint64_t> &Record, 1627 unsigned Abbrev) { 1628 const uint64_t IsBigInt = 1 << 2; 1629 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1630 Record.push_back(N->getValue().getBitWidth()); 1631 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1632 emitWideAPInt(Record, N->getValue()); 1633 1634 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1635 Record.clear(); 1636 } 1637 1638 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1639 SmallVectorImpl<uint64_t> &Record, 1640 unsigned Abbrev) { 1641 Record.push_back(N->isDistinct()); 1642 Record.push_back(N->getTag()); 1643 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1644 Record.push_back(N->getSizeInBits()); 1645 Record.push_back(N->getAlignInBits()); 1646 Record.push_back(N->getEncoding()); 1647 Record.push_back(N->getFlags()); 1648 1649 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1650 Record.clear(); 1651 } 1652 1653 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1654 SmallVectorImpl<uint64_t> &Record, 1655 unsigned Abbrev) { 1656 Record.push_back(N->isDistinct()); 1657 Record.push_back(N->getTag()); 1658 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1659 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1660 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1662 Record.push_back(N->getSizeInBits()); 1663 Record.push_back(N->getAlignInBits()); 1664 Record.push_back(N->getEncoding()); 1665 1666 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1667 Record.clear(); 1668 } 1669 1670 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1671 SmallVectorImpl<uint64_t> &Record, 1672 unsigned Abbrev) { 1673 Record.push_back(N->isDistinct()); 1674 Record.push_back(N->getTag()); 1675 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1677 Record.push_back(N->getLine()); 1678 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1679 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1680 Record.push_back(N->getSizeInBits()); 1681 Record.push_back(N->getAlignInBits()); 1682 Record.push_back(N->getOffsetInBits()); 1683 Record.push_back(N->getFlags()); 1684 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1685 1686 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1687 // that there is no DWARF address space associated with DIDerivedType. 1688 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1689 Record.push_back(*DWARFAddressSpace + 1); 1690 else 1691 Record.push_back(0); 1692 1693 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1694 1695 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1696 Record.clear(); 1697 } 1698 1699 void ModuleBitcodeWriter::writeDICompositeType( 1700 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1701 unsigned Abbrev) { 1702 const unsigned IsNotUsedInOldTypeRef = 0x2; 1703 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1704 Record.push_back(N->getTag()); 1705 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1706 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1707 Record.push_back(N->getLine()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1710 Record.push_back(N->getSizeInBits()); 1711 Record.push_back(N->getAlignInBits()); 1712 Record.push_back(N->getOffsetInBits()); 1713 Record.push_back(N->getFlags()); 1714 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1715 Record.push_back(N->getRuntimeLang()); 1716 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1717 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1725 1726 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1727 Record.clear(); 1728 } 1729 1730 void ModuleBitcodeWriter::writeDISubroutineType( 1731 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1732 unsigned Abbrev) { 1733 const unsigned HasNoOldTypeRefs = 0x2; 1734 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1735 Record.push_back(N->getFlags()); 1736 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1737 Record.push_back(N->getCC()); 1738 1739 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1740 Record.clear(); 1741 } 1742 1743 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1744 SmallVectorImpl<uint64_t> &Record, 1745 unsigned Abbrev) { 1746 Record.push_back(N->isDistinct()); 1747 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1749 if (N->getRawChecksum()) { 1750 Record.push_back(N->getRawChecksum()->Kind); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1752 } else { 1753 // Maintain backwards compatibility with the old internal representation of 1754 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1755 Record.push_back(0); 1756 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1757 } 1758 auto Source = N->getRawSource(); 1759 if (Source) 1760 Record.push_back(VE.getMetadataOrNullID(*Source)); 1761 1762 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1763 Record.clear(); 1764 } 1765 1766 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1767 SmallVectorImpl<uint64_t> &Record, 1768 unsigned Abbrev) { 1769 assert(N->isDistinct() && "Expected distinct compile units"); 1770 Record.push_back(/* IsDistinct */ true); 1771 Record.push_back(N->getSourceLanguage()); 1772 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1773 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1774 Record.push_back(N->isOptimized()); 1775 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1776 Record.push_back(N->getRuntimeVersion()); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1778 Record.push_back(N->getEmissionKind()); 1779 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1781 Record.push_back(/* subprograms */ 0); 1782 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1783 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1784 Record.push_back(N->getDWOId()); 1785 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1786 Record.push_back(N->getSplitDebugInlining()); 1787 Record.push_back(N->getDebugInfoForProfiling()); 1788 Record.push_back((unsigned)N->getNameTableKind()); 1789 Record.push_back(N->getRangesBaseAddress()); 1790 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1791 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1792 1793 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1794 Record.clear(); 1795 } 1796 1797 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1798 SmallVectorImpl<uint64_t> &Record, 1799 unsigned Abbrev) { 1800 const uint64_t HasUnitFlag = 1 << 1; 1801 const uint64_t HasSPFlagsFlag = 1 << 2; 1802 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1803 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1804 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1805 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1806 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1807 Record.push_back(N->getLine()); 1808 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1809 Record.push_back(N->getScopeLine()); 1810 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1811 Record.push_back(N->getSPFlags()); 1812 Record.push_back(N->getVirtualIndex()); 1813 Record.push_back(N->getFlags()); 1814 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1817 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1818 Record.push_back(N->getThisAdjustment()); 1819 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1820 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1821 1822 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1823 Record.clear(); 1824 } 1825 1826 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1827 SmallVectorImpl<uint64_t> &Record, 1828 unsigned Abbrev) { 1829 Record.push_back(N->isDistinct()); 1830 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1831 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1832 Record.push_back(N->getLine()); 1833 Record.push_back(N->getColumn()); 1834 1835 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1836 Record.clear(); 1837 } 1838 1839 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1840 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1841 unsigned Abbrev) { 1842 Record.push_back(N->isDistinct()); 1843 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1844 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1845 Record.push_back(N->getDiscriminator()); 1846 1847 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1848 Record.clear(); 1849 } 1850 1851 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1852 SmallVectorImpl<uint64_t> &Record, 1853 unsigned Abbrev) { 1854 Record.push_back(N->isDistinct()); 1855 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1857 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1858 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1859 Record.push_back(N->getLineNo()); 1860 1861 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1862 Record.clear(); 1863 } 1864 1865 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1866 SmallVectorImpl<uint64_t> &Record, 1867 unsigned Abbrev) { 1868 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1869 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1870 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1871 1872 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1873 Record.clear(); 1874 } 1875 1876 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1877 SmallVectorImpl<uint64_t> &Record, 1878 unsigned Abbrev) { 1879 Record.push_back(N->isDistinct()); 1880 Record.push_back(N->getMacinfoType()); 1881 Record.push_back(N->getLine()); 1882 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1883 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1884 1885 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1886 Record.clear(); 1887 } 1888 1889 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1890 SmallVectorImpl<uint64_t> &Record, 1891 unsigned Abbrev) { 1892 Record.push_back(N->isDistinct()); 1893 Record.push_back(N->getMacinfoType()); 1894 Record.push_back(N->getLine()); 1895 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1896 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1897 1898 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1899 Record.clear(); 1900 } 1901 1902 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1903 SmallVectorImpl<uint64_t> &Record, 1904 unsigned Abbrev) { 1905 Record.reserve(N->getArgs().size()); 1906 for (ValueAsMetadata *MD : N->getArgs()) 1907 Record.push_back(VE.getMetadataID(MD)); 1908 1909 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1910 Record.clear(); 1911 } 1912 1913 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1914 SmallVectorImpl<uint64_t> &Record, 1915 unsigned Abbrev) { 1916 Record.push_back(N->isDistinct()); 1917 for (auto &I : N->operands()) 1918 Record.push_back(VE.getMetadataOrNullID(I)); 1919 Record.push_back(N->getLineNo()); 1920 Record.push_back(N->getIsDecl()); 1921 1922 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1923 Record.clear(); 1924 } 1925 1926 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1927 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1928 unsigned Abbrev) { 1929 Record.push_back(N->isDistinct()); 1930 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1931 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1932 Record.push_back(N->isDefault()); 1933 1934 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1935 Record.clear(); 1936 } 1937 1938 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1939 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1940 unsigned Abbrev) { 1941 Record.push_back(N->isDistinct()); 1942 Record.push_back(N->getTag()); 1943 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1944 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1945 Record.push_back(N->isDefault()); 1946 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1947 1948 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1949 Record.clear(); 1950 } 1951 1952 void ModuleBitcodeWriter::writeDIGlobalVariable( 1953 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1954 unsigned Abbrev) { 1955 const uint64_t Version = 2 << 1; 1956 Record.push_back((uint64_t)N->isDistinct() | Version); 1957 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1958 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1959 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1960 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1961 Record.push_back(N->getLine()); 1962 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1963 Record.push_back(N->isLocalToUnit()); 1964 Record.push_back(N->isDefinition()); 1965 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1966 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1967 Record.push_back(N->getAlignInBits()); 1968 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1969 1970 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1971 Record.clear(); 1972 } 1973 1974 void ModuleBitcodeWriter::writeDILocalVariable( 1975 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1976 unsigned Abbrev) { 1977 // In order to support all possible bitcode formats in BitcodeReader we need 1978 // to distinguish the following cases: 1979 // 1) Record has no artificial tag (Record[1]), 1980 // has no obsolete inlinedAt field (Record[9]). 1981 // In this case Record size will be 8, HasAlignment flag is false. 1982 // 2) Record has artificial tag (Record[1]), 1983 // has no obsolete inlignedAt field (Record[9]). 1984 // In this case Record size will be 9, HasAlignment flag is false. 1985 // 3) Record has both artificial tag (Record[1]) and 1986 // obsolete inlignedAt field (Record[9]). 1987 // In this case Record size will be 10, HasAlignment flag is false. 1988 // 4) Record has neither artificial tag, nor inlignedAt field, but 1989 // HasAlignment flag is true and Record[8] contains alignment value. 1990 const uint64_t HasAlignmentFlag = 1 << 1; 1991 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1992 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1993 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1994 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1995 Record.push_back(N->getLine()); 1996 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1997 Record.push_back(N->getArg()); 1998 Record.push_back(N->getFlags()); 1999 Record.push_back(N->getAlignInBits()); 2000 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2001 2002 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2003 Record.clear(); 2004 } 2005 2006 void ModuleBitcodeWriter::writeDILabel( 2007 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2008 unsigned Abbrev) { 2009 Record.push_back((uint64_t)N->isDistinct()); 2010 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2011 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2012 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2013 Record.push_back(N->getLine()); 2014 2015 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2016 Record.clear(); 2017 } 2018 2019 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2020 SmallVectorImpl<uint64_t> &Record, 2021 unsigned Abbrev) { 2022 Record.reserve(N->getElements().size() + 1); 2023 const uint64_t Version = 3 << 1; 2024 Record.push_back((uint64_t)N->isDistinct() | Version); 2025 Record.append(N->elements_begin(), N->elements_end()); 2026 2027 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2028 Record.clear(); 2029 } 2030 2031 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2032 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2033 unsigned Abbrev) { 2034 Record.push_back(N->isDistinct()); 2035 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2036 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2037 2038 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2039 Record.clear(); 2040 } 2041 2042 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2043 SmallVectorImpl<uint64_t> &Record, 2044 unsigned Abbrev) { 2045 Record.push_back(N->isDistinct()); 2046 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2047 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2048 Record.push_back(N->getLine()); 2049 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2050 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2051 Record.push_back(N->getAttributes()); 2052 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2053 2054 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2055 Record.clear(); 2056 } 2057 2058 void ModuleBitcodeWriter::writeDIImportedEntity( 2059 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2060 unsigned Abbrev) { 2061 Record.push_back(N->isDistinct()); 2062 Record.push_back(N->getTag()); 2063 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2064 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2065 Record.push_back(N->getLine()); 2066 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2067 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2068 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2069 2070 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2071 Record.clear(); 2072 } 2073 2074 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2075 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2076 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2079 return Stream.EmitAbbrev(std::move(Abbv)); 2080 } 2081 2082 void ModuleBitcodeWriter::writeNamedMetadata( 2083 SmallVectorImpl<uint64_t> &Record) { 2084 if (M.named_metadata_empty()) 2085 return; 2086 2087 unsigned Abbrev = createNamedMetadataAbbrev(); 2088 for (const NamedMDNode &NMD : M.named_metadata()) { 2089 // Write name. 2090 StringRef Str = NMD.getName(); 2091 Record.append(Str.bytes_begin(), Str.bytes_end()); 2092 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2093 Record.clear(); 2094 2095 // Write named metadata operands. 2096 for (const MDNode *N : NMD.operands()) 2097 Record.push_back(VE.getMetadataID(N)); 2098 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2099 Record.clear(); 2100 } 2101 } 2102 2103 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2104 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2105 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2109 return Stream.EmitAbbrev(std::move(Abbv)); 2110 } 2111 2112 /// Write out a record for MDString. 2113 /// 2114 /// All the metadata strings in a metadata block are emitted in a single 2115 /// record. The sizes and strings themselves are shoved into a blob. 2116 void ModuleBitcodeWriter::writeMetadataStrings( 2117 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2118 if (Strings.empty()) 2119 return; 2120 2121 // Start the record with the number of strings. 2122 Record.push_back(bitc::METADATA_STRINGS); 2123 Record.push_back(Strings.size()); 2124 2125 // Emit the sizes of the strings in the blob. 2126 SmallString<256> Blob; 2127 { 2128 BitstreamWriter W(Blob); 2129 for (const Metadata *MD : Strings) 2130 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2131 W.FlushToWord(); 2132 } 2133 2134 // Add the offset to the strings to the record. 2135 Record.push_back(Blob.size()); 2136 2137 // Add the strings to the blob. 2138 for (const Metadata *MD : Strings) 2139 Blob.append(cast<MDString>(MD)->getString()); 2140 2141 // Emit the final record. 2142 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2143 Record.clear(); 2144 } 2145 2146 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2147 enum MetadataAbbrev : unsigned { 2148 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2149 #include "llvm/IR/Metadata.def" 2150 LastPlusOne 2151 }; 2152 2153 void ModuleBitcodeWriter::writeMetadataRecords( 2154 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2155 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2156 if (MDs.empty()) 2157 return; 2158 2159 // Initialize MDNode abbreviations. 2160 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2161 #include "llvm/IR/Metadata.def" 2162 2163 for (const Metadata *MD : MDs) { 2164 if (IndexPos) 2165 IndexPos->push_back(Stream.GetCurrentBitNo()); 2166 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2167 assert(N->isResolved() && "Expected forward references to be resolved"); 2168 2169 switch (N->getMetadataID()) { 2170 default: 2171 llvm_unreachable("Invalid MDNode subclass"); 2172 #define HANDLE_MDNODE_LEAF(CLASS) \ 2173 case Metadata::CLASS##Kind: \ 2174 if (MDAbbrevs) \ 2175 write##CLASS(cast<CLASS>(N), Record, \ 2176 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2177 else \ 2178 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2179 continue; 2180 #include "llvm/IR/Metadata.def" 2181 } 2182 } 2183 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2184 } 2185 } 2186 2187 void ModuleBitcodeWriter::writeModuleMetadata() { 2188 if (!VE.hasMDs() && M.named_metadata_empty()) 2189 return; 2190 2191 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2192 SmallVector<uint64_t, 64> Record; 2193 2194 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2195 // block and load any metadata. 2196 std::vector<unsigned> MDAbbrevs; 2197 2198 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2199 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2200 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2201 createGenericDINodeAbbrev(); 2202 2203 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2204 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2207 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2208 2209 Abbv = std::make_shared<BitCodeAbbrev>(); 2210 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2213 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2214 2215 // Emit MDStrings together upfront. 2216 writeMetadataStrings(VE.getMDStrings(), Record); 2217 2218 // We only emit an index for the metadata record if we have more than a given 2219 // (naive) threshold of metadatas, otherwise it is not worth it. 2220 if (VE.getNonMDStrings().size() > IndexThreshold) { 2221 // Write a placeholder value in for the offset of the metadata index, 2222 // which is written after the records, so that it can include 2223 // the offset of each entry. The placeholder offset will be 2224 // updated after all records are emitted. 2225 uint64_t Vals[] = {0, 0}; 2226 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2227 } 2228 2229 // Compute and save the bit offset to the current position, which will be 2230 // patched when we emit the index later. We can simply subtract the 64-bit 2231 // fixed size from the current bit number to get the location to backpatch. 2232 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2233 2234 // This index will contain the bitpos for each individual record. 2235 std::vector<uint64_t> IndexPos; 2236 IndexPos.reserve(VE.getNonMDStrings().size()); 2237 2238 // Write all the records 2239 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2240 2241 if (VE.getNonMDStrings().size() > IndexThreshold) { 2242 // Now that we have emitted all the records we will emit the index. But 2243 // first 2244 // backpatch the forward reference so that the reader can skip the records 2245 // efficiently. 2246 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2247 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2248 2249 // Delta encode the index. 2250 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2251 for (auto &Elt : IndexPos) { 2252 auto EltDelta = Elt - PreviousValue; 2253 PreviousValue = Elt; 2254 Elt = EltDelta; 2255 } 2256 // Emit the index record. 2257 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2258 IndexPos.clear(); 2259 } 2260 2261 // Write the named metadata now. 2262 writeNamedMetadata(Record); 2263 2264 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2265 SmallVector<uint64_t, 4> Record; 2266 Record.push_back(VE.getValueID(&GO)); 2267 pushGlobalMetadataAttachment(Record, GO); 2268 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2269 }; 2270 for (const Function &F : M) 2271 if (F.isDeclaration() && F.hasMetadata()) 2272 AddDeclAttachedMetadata(F); 2273 // FIXME: Only store metadata for declarations here, and move data for global 2274 // variable definitions to a separate block (PR28134). 2275 for (const GlobalVariable &GV : M.globals()) 2276 if (GV.hasMetadata()) 2277 AddDeclAttachedMetadata(GV); 2278 2279 Stream.ExitBlock(); 2280 } 2281 2282 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2283 if (!VE.hasMDs()) 2284 return; 2285 2286 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2287 SmallVector<uint64_t, 64> Record; 2288 writeMetadataStrings(VE.getMDStrings(), Record); 2289 writeMetadataRecords(VE.getNonMDStrings(), Record); 2290 Stream.ExitBlock(); 2291 } 2292 2293 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2294 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2295 // [n x [id, mdnode]] 2296 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2297 GO.getAllMetadata(MDs); 2298 for (const auto &I : MDs) { 2299 Record.push_back(I.first); 2300 Record.push_back(VE.getMetadataID(I.second)); 2301 } 2302 } 2303 2304 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2305 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2306 2307 SmallVector<uint64_t, 64> Record; 2308 2309 if (F.hasMetadata()) { 2310 pushGlobalMetadataAttachment(Record, F); 2311 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2312 Record.clear(); 2313 } 2314 2315 // Write metadata attachments 2316 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2317 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2318 for (const BasicBlock &BB : F) 2319 for (const Instruction &I : BB) { 2320 MDs.clear(); 2321 I.getAllMetadataOtherThanDebugLoc(MDs); 2322 2323 // If no metadata, ignore instruction. 2324 if (MDs.empty()) continue; 2325 2326 Record.push_back(VE.getInstructionID(&I)); 2327 2328 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2329 Record.push_back(MDs[i].first); 2330 Record.push_back(VE.getMetadataID(MDs[i].second)); 2331 } 2332 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2333 Record.clear(); 2334 } 2335 2336 Stream.ExitBlock(); 2337 } 2338 2339 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2340 SmallVector<uint64_t, 64> Record; 2341 2342 // Write metadata kinds 2343 // METADATA_KIND - [n x [id, name]] 2344 SmallVector<StringRef, 8> Names; 2345 M.getMDKindNames(Names); 2346 2347 if (Names.empty()) return; 2348 2349 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2350 2351 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2352 Record.push_back(MDKindID); 2353 StringRef KName = Names[MDKindID]; 2354 Record.append(KName.begin(), KName.end()); 2355 2356 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2357 Record.clear(); 2358 } 2359 2360 Stream.ExitBlock(); 2361 } 2362 2363 void ModuleBitcodeWriter::writeOperandBundleTags() { 2364 // Write metadata kinds 2365 // 2366 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2367 // 2368 // OPERAND_BUNDLE_TAG - [strchr x N] 2369 2370 SmallVector<StringRef, 8> Tags; 2371 M.getOperandBundleTags(Tags); 2372 2373 if (Tags.empty()) 2374 return; 2375 2376 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2377 2378 SmallVector<uint64_t, 64> Record; 2379 2380 for (auto Tag : Tags) { 2381 Record.append(Tag.begin(), Tag.end()); 2382 2383 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2384 Record.clear(); 2385 } 2386 2387 Stream.ExitBlock(); 2388 } 2389 2390 void ModuleBitcodeWriter::writeSyncScopeNames() { 2391 SmallVector<StringRef, 8> SSNs; 2392 M.getContext().getSyncScopeNames(SSNs); 2393 if (SSNs.empty()) 2394 return; 2395 2396 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2397 2398 SmallVector<uint64_t, 64> Record; 2399 for (auto SSN : SSNs) { 2400 Record.append(SSN.begin(), SSN.end()); 2401 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2402 Record.clear(); 2403 } 2404 2405 Stream.ExitBlock(); 2406 } 2407 2408 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2409 bool isGlobal) { 2410 if (FirstVal == LastVal) return; 2411 2412 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2413 2414 unsigned AggregateAbbrev = 0; 2415 unsigned String8Abbrev = 0; 2416 unsigned CString7Abbrev = 0; 2417 unsigned CString6Abbrev = 0; 2418 // If this is a constant pool for the module, emit module-specific abbrevs. 2419 if (isGlobal) { 2420 // Abbrev for CST_CODE_AGGREGATE. 2421 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2422 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2425 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2426 2427 // Abbrev for CST_CODE_STRING. 2428 Abbv = std::make_shared<BitCodeAbbrev>(); 2429 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2432 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2433 // Abbrev for CST_CODE_CSTRING. 2434 Abbv = std::make_shared<BitCodeAbbrev>(); 2435 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2438 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2439 // Abbrev for CST_CODE_CSTRING. 2440 Abbv = std::make_shared<BitCodeAbbrev>(); 2441 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2444 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2445 } 2446 2447 SmallVector<uint64_t, 64> Record; 2448 2449 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2450 Type *LastTy = nullptr; 2451 for (unsigned i = FirstVal; i != LastVal; ++i) { 2452 const Value *V = Vals[i].first; 2453 // If we need to switch types, do so now. 2454 if (V->getType() != LastTy) { 2455 LastTy = V->getType(); 2456 Record.push_back(VE.getTypeID(LastTy)); 2457 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2458 CONSTANTS_SETTYPE_ABBREV); 2459 Record.clear(); 2460 } 2461 2462 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2463 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2464 Record.push_back( 2465 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2466 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2467 2468 // Add the asm string. 2469 const std::string &AsmStr = IA->getAsmString(); 2470 Record.push_back(AsmStr.size()); 2471 Record.append(AsmStr.begin(), AsmStr.end()); 2472 2473 // Add the constraint string. 2474 const std::string &ConstraintStr = IA->getConstraintString(); 2475 Record.push_back(ConstraintStr.size()); 2476 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2477 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2478 Record.clear(); 2479 continue; 2480 } 2481 const Constant *C = cast<Constant>(V); 2482 unsigned Code = -1U; 2483 unsigned AbbrevToUse = 0; 2484 if (C->isNullValue()) { 2485 Code = bitc::CST_CODE_NULL; 2486 } else if (isa<PoisonValue>(C)) { 2487 Code = bitc::CST_CODE_POISON; 2488 } else if (isa<UndefValue>(C)) { 2489 Code = bitc::CST_CODE_UNDEF; 2490 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2491 if (IV->getBitWidth() <= 64) { 2492 uint64_t V = IV->getSExtValue(); 2493 emitSignedInt64(Record, V); 2494 Code = bitc::CST_CODE_INTEGER; 2495 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2496 } else { // Wide integers, > 64 bits in size. 2497 emitWideAPInt(Record, IV->getValue()); 2498 Code = bitc::CST_CODE_WIDE_INTEGER; 2499 } 2500 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2501 Code = bitc::CST_CODE_FLOAT; 2502 Type *Ty = CFP->getType(); 2503 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2504 Ty->isDoubleTy()) { 2505 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2506 } else if (Ty->isX86_FP80Ty()) { 2507 // api needed to prevent premature destruction 2508 // bits are not in the same order as a normal i80 APInt, compensate. 2509 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2510 const uint64_t *p = api.getRawData(); 2511 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2512 Record.push_back(p[0] & 0xffffLL); 2513 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2514 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2515 const uint64_t *p = api.getRawData(); 2516 Record.push_back(p[0]); 2517 Record.push_back(p[1]); 2518 } else { 2519 assert(0 && "Unknown FP type!"); 2520 } 2521 } else if (isa<ConstantDataSequential>(C) && 2522 cast<ConstantDataSequential>(C)->isString()) { 2523 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2524 // Emit constant strings specially. 2525 unsigned NumElts = Str->getNumElements(); 2526 // If this is a null-terminated string, use the denser CSTRING encoding. 2527 if (Str->isCString()) { 2528 Code = bitc::CST_CODE_CSTRING; 2529 --NumElts; // Don't encode the null, which isn't allowed by char6. 2530 } else { 2531 Code = bitc::CST_CODE_STRING; 2532 AbbrevToUse = String8Abbrev; 2533 } 2534 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2535 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2536 for (unsigned i = 0; i != NumElts; ++i) { 2537 unsigned char V = Str->getElementAsInteger(i); 2538 Record.push_back(V); 2539 isCStr7 &= (V & 128) == 0; 2540 if (isCStrChar6) 2541 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2542 } 2543 2544 if (isCStrChar6) 2545 AbbrevToUse = CString6Abbrev; 2546 else if (isCStr7) 2547 AbbrevToUse = CString7Abbrev; 2548 } else if (const ConstantDataSequential *CDS = 2549 dyn_cast<ConstantDataSequential>(C)) { 2550 Code = bitc::CST_CODE_DATA; 2551 Type *EltTy = CDS->getElementType(); 2552 if (isa<IntegerType>(EltTy)) { 2553 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2554 Record.push_back(CDS->getElementAsInteger(i)); 2555 } else { 2556 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2557 Record.push_back( 2558 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2559 } 2560 } else if (isa<ConstantAggregate>(C)) { 2561 Code = bitc::CST_CODE_AGGREGATE; 2562 for (const Value *Op : C->operands()) 2563 Record.push_back(VE.getValueID(Op)); 2564 AbbrevToUse = AggregateAbbrev; 2565 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2566 switch (CE->getOpcode()) { 2567 default: 2568 if (Instruction::isCast(CE->getOpcode())) { 2569 Code = bitc::CST_CODE_CE_CAST; 2570 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2571 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2572 Record.push_back(VE.getValueID(C->getOperand(0))); 2573 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2574 } else { 2575 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2576 Code = bitc::CST_CODE_CE_BINOP; 2577 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2578 Record.push_back(VE.getValueID(C->getOperand(0))); 2579 Record.push_back(VE.getValueID(C->getOperand(1))); 2580 uint64_t Flags = getOptimizationFlags(CE); 2581 if (Flags != 0) 2582 Record.push_back(Flags); 2583 } 2584 break; 2585 case Instruction::FNeg: { 2586 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2587 Code = bitc::CST_CODE_CE_UNOP; 2588 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2589 Record.push_back(VE.getValueID(C->getOperand(0))); 2590 uint64_t Flags = getOptimizationFlags(CE); 2591 if (Flags != 0) 2592 Record.push_back(Flags); 2593 break; 2594 } 2595 case Instruction::GetElementPtr: { 2596 Code = bitc::CST_CODE_CE_GEP; 2597 const auto *GO = cast<GEPOperator>(C); 2598 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2599 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2600 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2601 Record.push_back((*Idx << 1) | GO->isInBounds()); 2602 } else if (GO->isInBounds()) 2603 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2604 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2605 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2606 Record.push_back(VE.getValueID(C->getOperand(i))); 2607 } 2608 break; 2609 } 2610 case Instruction::Select: 2611 Code = bitc::CST_CODE_CE_SELECT; 2612 Record.push_back(VE.getValueID(C->getOperand(0))); 2613 Record.push_back(VE.getValueID(C->getOperand(1))); 2614 Record.push_back(VE.getValueID(C->getOperand(2))); 2615 break; 2616 case Instruction::ExtractElement: 2617 Code = bitc::CST_CODE_CE_EXTRACTELT; 2618 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2619 Record.push_back(VE.getValueID(C->getOperand(0))); 2620 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2621 Record.push_back(VE.getValueID(C->getOperand(1))); 2622 break; 2623 case Instruction::InsertElement: 2624 Code = bitc::CST_CODE_CE_INSERTELT; 2625 Record.push_back(VE.getValueID(C->getOperand(0))); 2626 Record.push_back(VE.getValueID(C->getOperand(1))); 2627 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2628 Record.push_back(VE.getValueID(C->getOperand(2))); 2629 break; 2630 case Instruction::ShuffleVector: 2631 // If the return type and argument types are the same, this is a 2632 // standard shufflevector instruction. If the types are different, 2633 // then the shuffle is widening or truncating the input vectors, and 2634 // the argument type must also be encoded. 2635 if (C->getType() == C->getOperand(0)->getType()) { 2636 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2637 } else { 2638 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2639 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2640 } 2641 Record.push_back(VE.getValueID(C->getOperand(0))); 2642 Record.push_back(VE.getValueID(C->getOperand(1))); 2643 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2644 break; 2645 case Instruction::ICmp: 2646 case Instruction::FCmp: 2647 Code = bitc::CST_CODE_CE_CMP; 2648 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2649 Record.push_back(VE.getValueID(C->getOperand(0))); 2650 Record.push_back(VE.getValueID(C->getOperand(1))); 2651 Record.push_back(CE->getPredicate()); 2652 break; 2653 } 2654 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2655 Code = bitc::CST_CODE_BLOCKADDRESS; 2656 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2657 Record.push_back(VE.getValueID(BA->getFunction())); 2658 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2659 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2660 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2661 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2662 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2663 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2664 Code = bitc::CST_CODE_NO_CFI_VALUE; 2665 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2666 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2667 } else { 2668 #ifndef NDEBUG 2669 C->dump(); 2670 #endif 2671 llvm_unreachable("Unknown constant!"); 2672 } 2673 Stream.EmitRecord(Code, Record, AbbrevToUse); 2674 Record.clear(); 2675 } 2676 2677 Stream.ExitBlock(); 2678 } 2679 2680 void ModuleBitcodeWriter::writeModuleConstants() { 2681 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2682 2683 // Find the first constant to emit, which is the first non-globalvalue value. 2684 // We know globalvalues have been emitted by WriteModuleInfo. 2685 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2686 if (!isa<GlobalValue>(Vals[i].first)) { 2687 writeConstants(i, Vals.size(), true); 2688 return; 2689 } 2690 } 2691 } 2692 2693 /// pushValueAndType - The file has to encode both the value and type id for 2694 /// many values, because we need to know what type to create for forward 2695 /// references. However, most operands are not forward references, so this type 2696 /// field is not needed. 2697 /// 2698 /// This function adds V's value ID to Vals. If the value ID is higher than the 2699 /// instruction ID, then it is a forward reference, and it also includes the 2700 /// type ID. The value ID that is written is encoded relative to the InstID. 2701 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2702 SmallVectorImpl<unsigned> &Vals) { 2703 unsigned ValID = VE.getValueID(V); 2704 // Make encoding relative to the InstID. 2705 Vals.push_back(InstID - ValID); 2706 if (ValID >= InstID) { 2707 Vals.push_back(VE.getTypeID(V->getType())); 2708 return true; 2709 } 2710 return false; 2711 } 2712 2713 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2714 unsigned InstID) { 2715 SmallVector<unsigned, 64> Record; 2716 LLVMContext &C = CS.getContext(); 2717 2718 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2719 const auto &Bundle = CS.getOperandBundleAt(i); 2720 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2721 2722 for (auto &Input : Bundle.Inputs) 2723 pushValueAndType(Input, InstID, Record); 2724 2725 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2726 Record.clear(); 2727 } 2728 } 2729 2730 /// pushValue - Like pushValueAndType, but where the type of the value is 2731 /// omitted (perhaps it was already encoded in an earlier operand). 2732 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2733 SmallVectorImpl<unsigned> &Vals) { 2734 unsigned ValID = VE.getValueID(V); 2735 Vals.push_back(InstID - ValID); 2736 } 2737 2738 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2739 SmallVectorImpl<uint64_t> &Vals) { 2740 unsigned ValID = VE.getValueID(V); 2741 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2742 emitSignedInt64(Vals, diff); 2743 } 2744 2745 /// WriteInstruction - Emit an instruction to the specified stream. 2746 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2747 unsigned InstID, 2748 SmallVectorImpl<unsigned> &Vals) { 2749 unsigned Code = 0; 2750 unsigned AbbrevToUse = 0; 2751 VE.setInstructionID(&I); 2752 switch (I.getOpcode()) { 2753 default: 2754 if (Instruction::isCast(I.getOpcode())) { 2755 Code = bitc::FUNC_CODE_INST_CAST; 2756 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2757 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2758 Vals.push_back(VE.getTypeID(I.getType())); 2759 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2760 } else { 2761 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2762 Code = bitc::FUNC_CODE_INST_BINOP; 2763 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2764 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2765 pushValue(I.getOperand(1), InstID, Vals); 2766 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2767 uint64_t Flags = getOptimizationFlags(&I); 2768 if (Flags != 0) { 2769 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2770 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2771 Vals.push_back(Flags); 2772 } 2773 } 2774 break; 2775 case Instruction::FNeg: { 2776 Code = bitc::FUNC_CODE_INST_UNOP; 2777 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2778 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2779 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2780 uint64_t Flags = getOptimizationFlags(&I); 2781 if (Flags != 0) { 2782 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2783 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2784 Vals.push_back(Flags); 2785 } 2786 break; 2787 } 2788 case Instruction::GetElementPtr: { 2789 Code = bitc::FUNC_CODE_INST_GEP; 2790 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2791 auto &GEPInst = cast<GetElementPtrInst>(I); 2792 Vals.push_back(GEPInst.isInBounds()); 2793 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2794 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2795 pushValueAndType(I.getOperand(i), InstID, Vals); 2796 break; 2797 } 2798 case Instruction::ExtractValue: { 2799 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2800 pushValueAndType(I.getOperand(0), InstID, Vals); 2801 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2802 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2803 break; 2804 } 2805 case Instruction::InsertValue: { 2806 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2807 pushValueAndType(I.getOperand(0), InstID, Vals); 2808 pushValueAndType(I.getOperand(1), InstID, Vals); 2809 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2810 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2811 break; 2812 } 2813 case Instruction::Select: { 2814 Code = bitc::FUNC_CODE_INST_VSELECT; 2815 pushValueAndType(I.getOperand(1), InstID, Vals); 2816 pushValue(I.getOperand(2), InstID, Vals); 2817 pushValueAndType(I.getOperand(0), InstID, Vals); 2818 uint64_t Flags = getOptimizationFlags(&I); 2819 if (Flags != 0) 2820 Vals.push_back(Flags); 2821 break; 2822 } 2823 case Instruction::ExtractElement: 2824 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2825 pushValueAndType(I.getOperand(0), InstID, Vals); 2826 pushValueAndType(I.getOperand(1), InstID, Vals); 2827 break; 2828 case Instruction::InsertElement: 2829 Code = bitc::FUNC_CODE_INST_INSERTELT; 2830 pushValueAndType(I.getOperand(0), InstID, Vals); 2831 pushValue(I.getOperand(1), InstID, Vals); 2832 pushValueAndType(I.getOperand(2), InstID, Vals); 2833 break; 2834 case Instruction::ShuffleVector: 2835 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2836 pushValueAndType(I.getOperand(0), InstID, Vals); 2837 pushValue(I.getOperand(1), InstID, Vals); 2838 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2839 Vals); 2840 break; 2841 case Instruction::ICmp: 2842 case Instruction::FCmp: { 2843 // compare returning Int1Ty or vector of Int1Ty 2844 Code = bitc::FUNC_CODE_INST_CMP2; 2845 pushValueAndType(I.getOperand(0), InstID, Vals); 2846 pushValue(I.getOperand(1), InstID, Vals); 2847 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2848 uint64_t Flags = getOptimizationFlags(&I); 2849 if (Flags != 0) 2850 Vals.push_back(Flags); 2851 break; 2852 } 2853 2854 case Instruction::Ret: 2855 { 2856 Code = bitc::FUNC_CODE_INST_RET; 2857 unsigned NumOperands = I.getNumOperands(); 2858 if (NumOperands == 0) 2859 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2860 else if (NumOperands == 1) { 2861 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2862 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2863 } else { 2864 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2865 pushValueAndType(I.getOperand(i), InstID, Vals); 2866 } 2867 } 2868 break; 2869 case Instruction::Br: 2870 { 2871 Code = bitc::FUNC_CODE_INST_BR; 2872 const BranchInst &II = cast<BranchInst>(I); 2873 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2874 if (II.isConditional()) { 2875 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2876 pushValue(II.getCondition(), InstID, Vals); 2877 } 2878 } 2879 break; 2880 case Instruction::Switch: 2881 { 2882 Code = bitc::FUNC_CODE_INST_SWITCH; 2883 const SwitchInst &SI = cast<SwitchInst>(I); 2884 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2885 pushValue(SI.getCondition(), InstID, Vals); 2886 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2887 for (auto Case : SI.cases()) { 2888 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2889 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2890 } 2891 } 2892 break; 2893 case Instruction::IndirectBr: 2894 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2895 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2896 // Encode the address operand as relative, but not the basic blocks. 2897 pushValue(I.getOperand(0), InstID, Vals); 2898 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2899 Vals.push_back(VE.getValueID(I.getOperand(i))); 2900 break; 2901 2902 case Instruction::Invoke: { 2903 const InvokeInst *II = cast<InvokeInst>(&I); 2904 const Value *Callee = II->getCalledOperand(); 2905 FunctionType *FTy = II->getFunctionType(); 2906 2907 if (II->hasOperandBundles()) 2908 writeOperandBundles(*II, InstID); 2909 2910 Code = bitc::FUNC_CODE_INST_INVOKE; 2911 2912 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2913 Vals.push_back(II->getCallingConv() | 1 << 13); 2914 Vals.push_back(VE.getValueID(II->getNormalDest())); 2915 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2916 Vals.push_back(VE.getTypeID(FTy)); 2917 pushValueAndType(Callee, InstID, Vals); 2918 2919 // Emit value #'s for the fixed parameters. 2920 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2921 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2922 2923 // Emit type/value pairs for varargs params. 2924 if (FTy->isVarArg()) { 2925 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2926 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2927 } 2928 break; 2929 } 2930 case Instruction::Resume: 2931 Code = bitc::FUNC_CODE_INST_RESUME; 2932 pushValueAndType(I.getOperand(0), InstID, Vals); 2933 break; 2934 case Instruction::CleanupRet: { 2935 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2936 const auto &CRI = cast<CleanupReturnInst>(I); 2937 pushValue(CRI.getCleanupPad(), InstID, Vals); 2938 if (CRI.hasUnwindDest()) 2939 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2940 break; 2941 } 2942 case Instruction::CatchRet: { 2943 Code = bitc::FUNC_CODE_INST_CATCHRET; 2944 const auto &CRI = cast<CatchReturnInst>(I); 2945 pushValue(CRI.getCatchPad(), InstID, Vals); 2946 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2947 break; 2948 } 2949 case Instruction::CleanupPad: 2950 case Instruction::CatchPad: { 2951 const auto &FuncletPad = cast<FuncletPadInst>(I); 2952 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2953 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2954 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2955 2956 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2957 Vals.push_back(NumArgOperands); 2958 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2959 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2960 break; 2961 } 2962 case Instruction::CatchSwitch: { 2963 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2964 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2965 2966 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2967 2968 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2969 Vals.push_back(NumHandlers); 2970 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2971 Vals.push_back(VE.getValueID(CatchPadBB)); 2972 2973 if (CatchSwitch.hasUnwindDest()) 2974 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2975 break; 2976 } 2977 case Instruction::CallBr: { 2978 const CallBrInst *CBI = cast<CallBrInst>(&I); 2979 const Value *Callee = CBI->getCalledOperand(); 2980 FunctionType *FTy = CBI->getFunctionType(); 2981 2982 if (CBI->hasOperandBundles()) 2983 writeOperandBundles(*CBI, InstID); 2984 2985 Code = bitc::FUNC_CODE_INST_CALLBR; 2986 2987 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2988 2989 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2990 1 << bitc::CALL_EXPLICIT_TYPE); 2991 2992 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2993 Vals.push_back(CBI->getNumIndirectDests()); 2994 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2995 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2996 2997 Vals.push_back(VE.getTypeID(FTy)); 2998 pushValueAndType(Callee, InstID, Vals); 2999 3000 // Emit value #'s for the fixed parameters. 3001 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3002 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3003 3004 // Emit type/value pairs for varargs params. 3005 if (FTy->isVarArg()) { 3006 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3007 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3008 } 3009 break; 3010 } 3011 case Instruction::Unreachable: 3012 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3013 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3014 break; 3015 3016 case Instruction::PHI: { 3017 const PHINode &PN = cast<PHINode>(I); 3018 Code = bitc::FUNC_CODE_INST_PHI; 3019 // With the newer instruction encoding, forward references could give 3020 // negative valued IDs. This is most common for PHIs, so we use 3021 // signed VBRs. 3022 SmallVector<uint64_t, 128> Vals64; 3023 Vals64.push_back(VE.getTypeID(PN.getType())); 3024 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3025 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3026 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3027 } 3028 3029 uint64_t Flags = getOptimizationFlags(&I); 3030 if (Flags != 0) 3031 Vals64.push_back(Flags); 3032 3033 // Emit a Vals64 vector and exit. 3034 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3035 Vals64.clear(); 3036 return; 3037 } 3038 3039 case Instruction::LandingPad: { 3040 const LandingPadInst &LP = cast<LandingPadInst>(I); 3041 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3042 Vals.push_back(VE.getTypeID(LP.getType())); 3043 Vals.push_back(LP.isCleanup()); 3044 Vals.push_back(LP.getNumClauses()); 3045 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3046 if (LP.isCatch(I)) 3047 Vals.push_back(LandingPadInst::Catch); 3048 else 3049 Vals.push_back(LandingPadInst::Filter); 3050 pushValueAndType(LP.getClause(I), InstID, Vals); 3051 } 3052 break; 3053 } 3054 3055 case Instruction::Alloca: { 3056 Code = bitc::FUNC_CODE_INST_ALLOCA; 3057 const AllocaInst &AI = cast<AllocaInst>(I); 3058 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3059 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3060 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3061 using APV = AllocaPackedValues; 3062 unsigned Record = 0; 3063 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3064 Bitfield::set<APV::AlignLower>( 3065 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3066 Bitfield::set<APV::AlignUpper>(Record, 3067 EncodedAlign >> APV::AlignLower::Bits); 3068 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3069 Bitfield::set<APV::ExplicitType>(Record, true); 3070 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3071 Vals.push_back(Record); 3072 break; 3073 } 3074 3075 case Instruction::Load: 3076 if (cast<LoadInst>(I).isAtomic()) { 3077 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3078 pushValueAndType(I.getOperand(0), InstID, Vals); 3079 } else { 3080 Code = bitc::FUNC_CODE_INST_LOAD; 3081 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3082 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3083 } 3084 Vals.push_back(VE.getTypeID(I.getType())); 3085 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3086 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3087 if (cast<LoadInst>(I).isAtomic()) { 3088 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3089 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3090 } 3091 break; 3092 case Instruction::Store: 3093 if (cast<StoreInst>(I).isAtomic()) 3094 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3095 else 3096 Code = bitc::FUNC_CODE_INST_STORE; 3097 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3098 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3099 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3100 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3101 if (cast<StoreInst>(I).isAtomic()) { 3102 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3103 Vals.push_back( 3104 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3105 } 3106 break; 3107 case Instruction::AtomicCmpXchg: 3108 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3109 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3110 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3111 pushValue(I.getOperand(2), InstID, Vals); // newval. 3112 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3113 Vals.push_back( 3114 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3115 Vals.push_back( 3116 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3117 Vals.push_back( 3118 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3119 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3120 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3121 break; 3122 case Instruction::AtomicRMW: 3123 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3124 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3125 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3126 Vals.push_back( 3127 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3128 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3129 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3130 Vals.push_back( 3131 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3132 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3133 break; 3134 case Instruction::Fence: 3135 Code = bitc::FUNC_CODE_INST_FENCE; 3136 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3137 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3138 break; 3139 case Instruction::Call: { 3140 const CallInst &CI = cast<CallInst>(I); 3141 FunctionType *FTy = CI.getFunctionType(); 3142 3143 if (CI.hasOperandBundles()) 3144 writeOperandBundles(CI, InstID); 3145 3146 Code = bitc::FUNC_CODE_INST_CALL; 3147 3148 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3149 3150 unsigned Flags = getOptimizationFlags(&I); 3151 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3152 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3153 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3154 1 << bitc::CALL_EXPLICIT_TYPE | 3155 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3156 unsigned(Flags != 0) << bitc::CALL_FMF); 3157 if (Flags != 0) 3158 Vals.push_back(Flags); 3159 3160 Vals.push_back(VE.getTypeID(FTy)); 3161 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3162 3163 // Emit value #'s for the fixed parameters. 3164 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3165 // Check for labels (can happen with asm labels). 3166 if (FTy->getParamType(i)->isLabelTy()) 3167 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3168 else 3169 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3170 } 3171 3172 // Emit type/value pairs for varargs params. 3173 if (FTy->isVarArg()) { 3174 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3175 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3176 } 3177 break; 3178 } 3179 case Instruction::VAArg: 3180 Code = bitc::FUNC_CODE_INST_VAARG; 3181 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3182 pushValue(I.getOperand(0), InstID, Vals); // valist. 3183 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3184 break; 3185 case Instruction::Freeze: 3186 Code = bitc::FUNC_CODE_INST_FREEZE; 3187 pushValueAndType(I.getOperand(0), InstID, Vals); 3188 break; 3189 } 3190 3191 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3192 Vals.clear(); 3193 } 3194 3195 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3196 /// to allow clients to efficiently find the function body. 3197 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3198 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3199 // Get the offset of the VST we are writing, and backpatch it into 3200 // the VST forward declaration record. 3201 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3202 // The BitcodeStartBit was the stream offset of the identification block. 3203 VSTOffset -= bitcodeStartBit(); 3204 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3205 // Note that we add 1 here because the offset is relative to one word 3206 // before the start of the identification block, which was historically 3207 // always the start of the regular bitcode header. 3208 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3209 3210 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3211 3212 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3213 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3216 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3217 3218 for (const Function &F : M) { 3219 uint64_t Record[2]; 3220 3221 if (F.isDeclaration()) 3222 continue; 3223 3224 Record[0] = VE.getValueID(&F); 3225 3226 // Save the word offset of the function (from the start of the 3227 // actual bitcode written to the stream). 3228 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3229 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3230 // Note that we add 1 here because the offset is relative to one word 3231 // before the start of the identification block, which was historically 3232 // always the start of the regular bitcode header. 3233 Record[1] = BitcodeIndex / 32 + 1; 3234 3235 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3236 } 3237 3238 Stream.ExitBlock(); 3239 } 3240 3241 /// Emit names for arguments, instructions and basic blocks in a function. 3242 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3243 const ValueSymbolTable &VST) { 3244 if (VST.empty()) 3245 return; 3246 3247 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3248 3249 // FIXME: Set up the abbrev, we know how many values there are! 3250 // FIXME: We know if the type names can use 7-bit ascii. 3251 SmallVector<uint64_t, 64> NameVals; 3252 3253 for (const ValueName &Name : VST) { 3254 // Figure out the encoding to use for the name. 3255 StringEncoding Bits = getStringEncoding(Name.getKey()); 3256 3257 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3258 NameVals.push_back(VE.getValueID(Name.getValue())); 3259 3260 // VST_CODE_ENTRY: [valueid, namechar x N] 3261 // VST_CODE_BBENTRY: [bbid, namechar x N] 3262 unsigned Code; 3263 if (isa<BasicBlock>(Name.getValue())) { 3264 Code = bitc::VST_CODE_BBENTRY; 3265 if (Bits == SE_Char6) 3266 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3267 } else { 3268 Code = bitc::VST_CODE_ENTRY; 3269 if (Bits == SE_Char6) 3270 AbbrevToUse = VST_ENTRY_6_ABBREV; 3271 else if (Bits == SE_Fixed7) 3272 AbbrevToUse = VST_ENTRY_7_ABBREV; 3273 } 3274 3275 for (const auto P : Name.getKey()) 3276 NameVals.push_back((unsigned char)P); 3277 3278 // Emit the finished record. 3279 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3280 NameVals.clear(); 3281 } 3282 3283 Stream.ExitBlock(); 3284 } 3285 3286 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3287 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3288 unsigned Code; 3289 if (isa<BasicBlock>(Order.V)) 3290 Code = bitc::USELIST_CODE_BB; 3291 else 3292 Code = bitc::USELIST_CODE_DEFAULT; 3293 3294 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3295 Record.push_back(VE.getValueID(Order.V)); 3296 Stream.EmitRecord(Code, Record); 3297 } 3298 3299 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3300 assert(VE.shouldPreserveUseListOrder() && 3301 "Expected to be preserving use-list order"); 3302 3303 auto hasMore = [&]() { 3304 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3305 }; 3306 if (!hasMore()) 3307 // Nothing to do. 3308 return; 3309 3310 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3311 while (hasMore()) { 3312 writeUseList(std::move(VE.UseListOrders.back())); 3313 VE.UseListOrders.pop_back(); 3314 } 3315 Stream.ExitBlock(); 3316 } 3317 3318 /// Emit a function body to the module stream. 3319 void ModuleBitcodeWriter::writeFunction( 3320 const Function &F, 3321 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3322 // Save the bitcode index of the start of this function block for recording 3323 // in the VST. 3324 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3325 3326 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3327 VE.incorporateFunction(F); 3328 3329 SmallVector<unsigned, 64> Vals; 3330 3331 // Emit the number of basic blocks, so the reader can create them ahead of 3332 // time. 3333 Vals.push_back(VE.getBasicBlocks().size()); 3334 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3335 Vals.clear(); 3336 3337 // If there are function-local constants, emit them now. 3338 unsigned CstStart, CstEnd; 3339 VE.getFunctionConstantRange(CstStart, CstEnd); 3340 writeConstants(CstStart, CstEnd, false); 3341 3342 // If there is function-local metadata, emit it now. 3343 writeFunctionMetadata(F); 3344 3345 // Keep a running idea of what the instruction ID is. 3346 unsigned InstID = CstEnd; 3347 3348 bool NeedsMetadataAttachment = F.hasMetadata(); 3349 3350 DILocation *LastDL = nullptr; 3351 // Finally, emit all the instructions, in order. 3352 for (const BasicBlock &BB : F) 3353 for (const Instruction &I : BB) { 3354 writeInstruction(I, InstID, Vals); 3355 3356 if (!I.getType()->isVoidTy()) 3357 ++InstID; 3358 3359 // If the instruction has metadata, write a metadata attachment later. 3360 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3361 3362 // If the instruction has a debug location, emit it. 3363 DILocation *DL = I.getDebugLoc(); 3364 if (!DL) 3365 continue; 3366 3367 if (DL == LastDL) { 3368 // Just repeat the same debug loc as last time. 3369 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3370 continue; 3371 } 3372 3373 Vals.push_back(DL->getLine()); 3374 Vals.push_back(DL->getColumn()); 3375 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3376 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3377 Vals.push_back(DL->isImplicitCode()); 3378 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3379 Vals.clear(); 3380 3381 LastDL = DL; 3382 } 3383 3384 // Emit names for all the instructions etc. 3385 if (auto *Symtab = F.getValueSymbolTable()) 3386 writeFunctionLevelValueSymbolTable(*Symtab); 3387 3388 if (NeedsMetadataAttachment) 3389 writeFunctionMetadataAttachment(F); 3390 if (VE.shouldPreserveUseListOrder()) 3391 writeUseListBlock(&F); 3392 VE.purgeFunction(); 3393 Stream.ExitBlock(); 3394 } 3395 3396 // Emit blockinfo, which defines the standard abbreviations etc. 3397 void ModuleBitcodeWriter::writeBlockInfo() { 3398 // We only want to emit block info records for blocks that have multiple 3399 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3400 // Other blocks can define their abbrevs inline. 3401 Stream.EnterBlockInfoBlock(); 3402 3403 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3404 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3409 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3410 VST_ENTRY_8_ABBREV) 3411 llvm_unreachable("Unexpected abbrev ordering!"); 3412 } 3413 3414 { // 7-bit fixed width VST_CODE_ENTRY strings. 3415 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3416 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3420 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3421 VST_ENTRY_7_ABBREV) 3422 llvm_unreachable("Unexpected abbrev ordering!"); 3423 } 3424 { // 6-bit char6 VST_CODE_ENTRY strings. 3425 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3426 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3430 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3431 VST_ENTRY_6_ABBREV) 3432 llvm_unreachable("Unexpected abbrev ordering!"); 3433 } 3434 { // 6-bit char6 VST_CODE_BBENTRY strings. 3435 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3436 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3440 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3441 VST_BBENTRY_6_ABBREV) 3442 llvm_unreachable("Unexpected abbrev ordering!"); 3443 } 3444 3445 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3446 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3447 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3449 VE.computeBitsRequiredForTypeIndicies())); 3450 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3451 CONSTANTS_SETTYPE_ABBREV) 3452 llvm_unreachable("Unexpected abbrev ordering!"); 3453 } 3454 3455 { // INTEGER abbrev for CONSTANTS_BLOCK. 3456 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3457 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3459 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3460 CONSTANTS_INTEGER_ABBREV) 3461 llvm_unreachable("Unexpected abbrev ordering!"); 3462 } 3463 3464 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3465 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3466 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3469 VE.computeBitsRequiredForTypeIndicies())); 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3471 3472 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3473 CONSTANTS_CE_CAST_Abbrev) 3474 llvm_unreachable("Unexpected abbrev ordering!"); 3475 } 3476 { // NULL abbrev for CONSTANTS_BLOCK. 3477 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3478 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3479 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3480 CONSTANTS_NULL_Abbrev) 3481 llvm_unreachable("Unexpected abbrev ordering!"); 3482 } 3483 3484 // FIXME: This should only use space for first class types! 3485 3486 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3487 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3488 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3491 VE.computeBitsRequiredForTypeIndicies())); 3492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3494 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3495 FUNCTION_INST_LOAD_ABBREV) 3496 llvm_unreachable("Unexpected abbrev ordering!"); 3497 } 3498 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3499 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3500 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3503 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3504 FUNCTION_INST_UNOP_ABBREV) 3505 llvm_unreachable("Unexpected abbrev ordering!"); 3506 } 3507 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3508 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3509 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3513 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3514 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3515 llvm_unreachable("Unexpected abbrev ordering!"); 3516 } 3517 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3518 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3519 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3523 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3524 FUNCTION_INST_BINOP_ABBREV) 3525 llvm_unreachable("Unexpected abbrev ordering!"); 3526 } 3527 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3528 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3529 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3534 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3535 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3536 llvm_unreachable("Unexpected abbrev ordering!"); 3537 } 3538 { // INST_CAST abbrev for FUNCTION_BLOCK. 3539 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3540 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3543 VE.computeBitsRequiredForTypeIndicies())); 3544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3545 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3546 FUNCTION_INST_CAST_ABBREV) 3547 llvm_unreachable("Unexpected abbrev ordering!"); 3548 } 3549 3550 { // INST_RET abbrev for FUNCTION_BLOCK. 3551 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3552 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3553 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3554 FUNCTION_INST_RET_VOID_ABBREV) 3555 llvm_unreachable("Unexpected abbrev ordering!"); 3556 } 3557 { // INST_RET abbrev for FUNCTION_BLOCK. 3558 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3559 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3561 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3562 FUNCTION_INST_RET_VAL_ABBREV) 3563 llvm_unreachable("Unexpected abbrev ordering!"); 3564 } 3565 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3566 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3567 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3568 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3569 FUNCTION_INST_UNREACHABLE_ABBREV) 3570 llvm_unreachable("Unexpected abbrev ordering!"); 3571 } 3572 { 3573 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3574 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3577 Log2_32_Ceil(VE.getTypes().size() + 1))); 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3580 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3581 FUNCTION_INST_GEP_ABBREV) 3582 llvm_unreachable("Unexpected abbrev ordering!"); 3583 } 3584 3585 Stream.ExitBlock(); 3586 } 3587 3588 /// Write the module path strings, currently only used when generating 3589 /// a combined index file. 3590 void IndexBitcodeWriter::writeModStrings() { 3591 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3592 3593 // TODO: See which abbrev sizes we actually need to emit 3594 3595 // 8-bit fixed-width MST_ENTRY strings. 3596 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3597 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3601 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3602 3603 // 7-bit fixed width MST_ENTRY strings. 3604 Abbv = std::make_shared<BitCodeAbbrev>(); 3605 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3609 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3610 3611 // 6-bit char6 MST_ENTRY strings. 3612 Abbv = std::make_shared<BitCodeAbbrev>(); 3613 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3617 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3618 3619 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3620 Abbv = std::make_shared<BitCodeAbbrev>(); 3621 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3627 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3628 3629 SmallVector<unsigned, 64> Vals; 3630 forEachModule( 3631 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3632 StringRef Key = MPSE.getKey(); 3633 const auto &Value = MPSE.getValue(); 3634 StringEncoding Bits = getStringEncoding(Key); 3635 unsigned AbbrevToUse = Abbrev8Bit; 3636 if (Bits == SE_Char6) 3637 AbbrevToUse = Abbrev6Bit; 3638 else if (Bits == SE_Fixed7) 3639 AbbrevToUse = Abbrev7Bit; 3640 3641 Vals.push_back(Value.first); 3642 Vals.append(Key.begin(), Key.end()); 3643 3644 // Emit the finished record. 3645 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3646 3647 // Emit an optional hash for the module now 3648 const auto &Hash = Value.second; 3649 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3650 Vals.assign(Hash.begin(), Hash.end()); 3651 // Emit the hash record. 3652 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3653 } 3654 3655 Vals.clear(); 3656 }); 3657 Stream.ExitBlock(); 3658 } 3659 3660 /// Write the function type metadata related records that need to appear before 3661 /// a function summary entry (whether per-module or combined). 3662 template <typename Fn> 3663 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3664 FunctionSummary *FS, 3665 Fn GetValueID) { 3666 if (!FS->type_tests().empty()) 3667 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3668 3669 SmallVector<uint64_t, 64> Record; 3670 3671 auto WriteVFuncIdVec = [&](uint64_t Ty, 3672 ArrayRef<FunctionSummary::VFuncId> VFs) { 3673 if (VFs.empty()) 3674 return; 3675 Record.clear(); 3676 for (auto &VF : VFs) { 3677 Record.push_back(VF.GUID); 3678 Record.push_back(VF.Offset); 3679 } 3680 Stream.EmitRecord(Ty, Record); 3681 }; 3682 3683 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3684 FS->type_test_assume_vcalls()); 3685 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3686 FS->type_checked_load_vcalls()); 3687 3688 auto WriteConstVCallVec = [&](uint64_t Ty, 3689 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3690 for (auto &VC : VCs) { 3691 Record.clear(); 3692 Record.push_back(VC.VFunc.GUID); 3693 Record.push_back(VC.VFunc.Offset); 3694 llvm::append_range(Record, VC.Args); 3695 Stream.EmitRecord(Ty, Record); 3696 } 3697 }; 3698 3699 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3700 FS->type_test_assume_const_vcalls()); 3701 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3702 FS->type_checked_load_const_vcalls()); 3703 3704 auto WriteRange = [&](ConstantRange Range) { 3705 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3706 assert(Range.getLower().getNumWords() == 1); 3707 assert(Range.getUpper().getNumWords() == 1); 3708 emitSignedInt64(Record, *Range.getLower().getRawData()); 3709 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3710 }; 3711 3712 if (!FS->paramAccesses().empty()) { 3713 Record.clear(); 3714 for (auto &Arg : FS->paramAccesses()) { 3715 size_t UndoSize = Record.size(); 3716 Record.push_back(Arg.ParamNo); 3717 WriteRange(Arg.Use); 3718 Record.push_back(Arg.Calls.size()); 3719 for (auto &Call : Arg.Calls) { 3720 Record.push_back(Call.ParamNo); 3721 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3722 if (!ValueID) { 3723 // If ValueID is unknown we can't drop just this call, we must drop 3724 // entire parameter. 3725 Record.resize(UndoSize); 3726 break; 3727 } 3728 Record.push_back(*ValueID); 3729 WriteRange(Call.Offsets); 3730 } 3731 } 3732 if (!Record.empty()) 3733 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3734 } 3735 } 3736 3737 /// Collect type IDs from type tests used by function. 3738 static void 3739 getReferencedTypeIds(FunctionSummary *FS, 3740 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3741 if (!FS->type_tests().empty()) 3742 for (auto &TT : FS->type_tests()) 3743 ReferencedTypeIds.insert(TT); 3744 3745 auto GetReferencedTypesFromVFuncIdVec = 3746 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3747 for (auto &VF : VFs) 3748 ReferencedTypeIds.insert(VF.GUID); 3749 }; 3750 3751 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3752 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3753 3754 auto GetReferencedTypesFromConstVCallVec = 3755 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3756 for (auto &VC : VCs) 3757 ReferencedTypeIds.insert(VC.VFunc.GUID); 3758 }; 3759 3760 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3761 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3762 } 3763 3764 static void writeWholeProgramDevirtResolutionByArg( 3765 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3766 const WholeProgramDevirtResolution::ByArg &ByArg) { 3767 NameVals.push_back(args.size()); 3768 llvm::append_range(NameVals, args); 3769 3770 NameVals.push_back(ByArg.TheKind); 3771 NameVals.push_back(ByArg.Info); 3772 NameVals.push_back(ByArg.Byte); 3773 NameVals.push_back(ByArg.Bit); 3774 } 3775 3776 static void writeWholeProgramDevirtResolution( 3777 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3778 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3779 NameVals.push_back(Id); 3780 3781 NameVals.push_back(Wpd.TheKind); 3782 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3783 NameVals.push_back(Wpd.SingleImplName.size()); 3784 3785 NameVals.push_back(Wpd.ResByArg.size()); 3786 for (auto &A : Wpd.ResByArg) 3787 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3788 } 3789 3790 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3791 StringTableBuilder &StrtabBuilder, 3792 const std::string &Id, 3793 const TypeIdSummary &Summary) { 3794 NameVals.push_back(StrtabBuilder.add(Id)); 3795 NameVals.push_back(Id.size()); 3796 3797 NameVals.push_back(Summary.TTRes.TheKind); 3798 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3799 NameVals.push_back(Summary.TTRes.AlignLog2); 3800 NameVals.push_back(Summary.TTRes.SizeM1); 3801 NameVals.push_back(Summary.TTRes.BitMask); 3802 NameVals.push_back(Summary.TTRes.InlineBits); 3803 3804 for (auto &W : Summary.WPDRes) 3805 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3806 W.second); 3807 } 3808 3809 static void writeTypeIdCompatibleVtableSummaryRecord( 3810 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3811 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3812 ValueEnumerator &VE) { 3813 NameVals.push_back(StrtabBuilder.add(Id)); 3814 NameVals.push_back(Id.size()); 3815 3816 for (auto &P : Summary) { 3817 NameVals.push_back(P.AddressPointOffset); 3818 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3819 } 3820 } 3821 3822 // Helper to emit a single function summary record. 3823 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3824 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3825 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3826 const Function &F) { 3827 NameVals.push_back(ValueID); 3828 3829 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3830 3831 writeFunctionTypeMetadataRecords( 3832 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3833 return {VE.getValueID(VI.getValue())}; 3834 }); 3835 3836 auto SpecialRefCnts = FS->specialRefCounts(); 3837 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3838 NameVals.push_back(FS->instCount()); 3839 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3840 NameVals.push_back(FS->refs().size()); 3841 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3842 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3843 3844 for (auto &RI : FS->refs()) 3845 NameVals.push_back(VE.getValueID(RI.getValue())); 3846 3847 bool HasProfileData = 3848 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3849 for (auto &ECI : FS->calls()) { 3850 NameVals.push_back(getValueId(ECI.first)); 3851 if (HasProfileData) 3852 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3853 else if (WriteRelBFToSummary) 3854 NameVals.push_back(ECI.second.RelBlockFreq); 3855 } 3856 3857 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3858 unsigned Code = 3859 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3860 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3861 : bitc::FS_PERMODULE)); 3862 3863 // Emit the finished record. 3864 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3865 NameVals.clear(); 3866 } 3867 3868 // Collect the global value references in the given variable's initializer, 3869 // and emit them in a summary record. 3870 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3871 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3872 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3873 auto VI = Index->getValueInfo(V.getGUID()); 3874 if (!VI || VI.getSummaryList().empty()) { 3875 // Only declarations should not have a summary (a declaration might however 3876 // have a summary if the def was in module level asm). 3877 assert(V.isDeclaration()); 3878 return; 3879 } 3880 auto *Summary = VI.getSummaryList()[0].get(); 3881 NameVals.push_back(VE.getValueID(&V)); 3882 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3883 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3884 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3885 3886 auto VTableFuncs = VS->vTableFuncs(); 3887 if (!VTableFuncs.empty()) 3888 NameVals.push_back(VS->refs().size()); 3889 3890 unsigned SizeBeforeRefs = NameVals.size(); 3891 for (auto &RI : VS->refs()) 3892 NameVals.push_back(VE.getValueID(RI.getValue())); 3893 // Sort the refs for determinism output, the vector returned by FS->refs() has 3894 // been initialized from a DenseSet. 3895 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3896 3897 if (VTableFuncs.empty()) 3898 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3899 FSModRefsAbbrev); 3900 else { 3901 // VTableFuncs pairs should already be sorted by offset. 3902 for (auto &P : VTableFuncs) { 3903 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3904 NameVals.push_back(P.VTableOffset); 3905 } 3906 3907 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3908 FSModVTableRefsAbbrev); 3909 } 3910 NameVals.clear(); 3911 } 3912 3913 /// Emit the per-module summary section alongside the rest of 3914 /// the module's bitcode. 3915 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3916 // By default we compile with ThinLTO if the module has a summary, but the 3917 // client can request full LTO with a module flag. 3918 bool IsThinLTO = true; 3919 if (auto *MD = 3920 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3921 IsThinLTO = MD->getZExtValue(); 3922 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3923 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3924 4); 3925 3926 Stream.EmitRecord( 3927 bitc::FS_VERSION, 3928 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3929 3930 // Write the index flags. 3931 uint64_t Flags = 0; 3932 // Bits 1-3 are set only in the combined index, skip them. 3933 if (Index->enableSplitLTOUnit()) 3934 Flags |= 0x8; 3935 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3936 3937 if (Index->begin() == Index->end()) { 3938 Stream.ExitBlock(); 3939 return; 3940 } 3941 3942 for (const auto &GVI : valueIds()) { 3943 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3944 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3945 } 3946 3947 // Abbrev for FS_PERMODULE_PROFILE. 3948 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3949 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3957 // numrefs x valueid, n x (valueid, hotness) 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3960 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3961 3962 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3963 Abbv = std::make_shared<BitCodeAbbrev>(); 3964 if (WriteRelBFToSummary) 3965 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3966 else 3967 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3975 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3978 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3979 3980 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3981 Abbv = std::make_shared<BitCodeAbbrev>(); 3982 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3987 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3988 3989 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3990 Abbv = std::make_shared<BitCodeAbbrev>(); 3991 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3995 // numrefs x valueid, n x (valueid , offset) 3996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3998 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3999 4000 // Abbrev for FS_ALIAS. 4001 Abbv = std::make_shared<BitCodeAbbrev>(); 4002 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4006 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4007 4008 // Abbrev for FS_TYPE_ID_METADATA 4009 Abbv = std::make_shared<BitCodeAbbrev>(); 4010 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4013 // n x (valueid , offset) 4014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4016 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4017 4018 SmallVector<uint64_t, 64> NameVals; 4019 // Iterate over the list of functions instead of the Index to 4020 // ensure the ordering is stable. 4021 for (const Function &F : M) { 4022 // Summary emission does not support anonymous functions, they have to 4023 // renamed using the anonymous function renaming pass. 4024 if (!F.hasName()) 4025 report_fatal_error("Unexpected anonymous function when writing summary"); 4026 4027 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4028 if (!VI || VI.getSummaryList().empty()) { 4029 // Only declarations should not have a summary (a declaration might 4030 // however have a summary if the def was in module level asm). 4031 assert(F.isDeclaration()); 4032 continue; 4033 } 4034 auto *Summary = VI.getSummaryList()[0].get(); 4035 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4036 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4037 } 4038 4039 // Capture references from GlobalVariable initializers, which are outside 4040 // of a function scope. 4041 for (const GlobalVariable &G : M.globals()) 4042 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4043 FSModVTableRefsAbbrev); 4044 4045 for (const GlobalAlias &A : M.aliases()) { 4046 auto *Aliasee = A.getAliaseeObject(); 4047 if (!Aliasee->hasName()) 4048 // Nameless function don't have an entry in the summary, skip it. 4049 continue; 4050 auto AliasId = VE.getValueID(&A); 4051 auto AliaseeId = VE.getValueID(Aliasee); 4052 NameVals.push_back(AliasId); 4053 auto *Summary = Index->getGlobalValueSummary(A); 4054 AliasSummary *AS = cast<AliasSummary>(Summary); 4055 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4056 NameVals.push_back(AliaseeId); 4057 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4058 NameVals.clear(); 4059 } 4060 4061 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4062 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4063 S.second, VE); 4064 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4065 TypeIdCompatibleVtableAbbrev); 4066 NameVals.clear(); 4067 } 4068 4069 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4070 ArrayRef<uint64_t>{Index->getBlockCount()}); 4071 4072 Stream.ExitBlock(); 4073 } 4074 4075 /// Emit the combined summary section into the combined index file. 4076 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4077 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4078 Stream.EmitRecord( 4079 bitc::FS_VERSION, 4080 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4081 4082 // Write the index flags. 4083 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4084 4085 for (const auto &GVI : valueIds()) { 4086 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4087 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4088 } 4089 4090 // Abbrev for FS_COMBINED. 4091 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4092 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4102 // numrefs x valueid, n x (valueid) 4103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4105 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4106 4107 // Abbrev for FS_COMBINED_PROFILE. 4108 Abbv = std::make_shared<BitCodeAbbrev>(); 4109 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4119 // numrefs x valueid, n x (valueid, hotness) 4120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4122 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4123 4124 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4125 Abbv = std::make_shared<BitCodeAbbrev>(); 4126 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4132 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4133 4134 // Abbrev for FS_COMBINED_ALIAS. 4135 Abbv = std::make_shared<BitCodeAbbrev>(); 4136 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4141 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4142 4143 // The aliases are emitted as a post-pass, and will point to the value 4144 // id of the aliasee. Save them in a vector for post-processing. 4145 SmallVector<AliasSummary *, 64> Aliases; 4146 4147 // Save the value id for each summary for alias emission. 4148 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4149 4150 SmallVector<uint64_t, 64> NameVals; 4151 4152 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4153 // with the type ids referenced by this index file. 4154 std::set<GlobalValue::GUID> ReferencedTypeIds; 4155 4156 // For local linkage, we also emit the original name separately 4157 // immediately after the record. 4158 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4159 // We don't need to emit the original name if we are writing the index for 4160 // distributed backends (in which case ModuleToSummariesForIndex is 4161 // non-null). The original name is only needed during the thin link, since 4162 // for SamplePGO the indirect call targets for local functions have 4163 // have the original name annotated in profile. 4164 // Continue to emit it when writing out the entire combined index, which is 4165 // used in testing the thin link via llvm-lto. 4166 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4167 return; 4168 NameVals.push_back(S.getOriginalName()); 4169 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4170 NameVals.clear(); 4171 }; 4172 4173 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4174 forEachSummary([&](GVInfo I, bool IsAliasee) { 4175 GlobalValueSummary *S = I.second; 4176 assert(S); 4177 DefOrUseGUIDs.insert(I.first); 4178 for (const ValueInfo &VI : S->refs()) 4179 DefOrUseGUIDs.insert(VI.getGUID()); 4180 4181 auto ValueId = getValueId(I.first); 4182 assert(ValueId); 4183 SummaryToValueIdMap[S] = *ValueId; 4184 4185 // If this is invoked for an aliasee, we want to record the above 4186 // mapping, but then not emit a summary entry (if the aliasee is 4187 // to be imported, we will invoke this separately with IsAliasee=false). 4188 if (IsAliasee) 4189 return; 4190 4191 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4192 // Will process aliases as a post-pass because the reader wants all 4193 // global to be loaded first. 4194 Aliases.push_back(AS); 4195 return; 4196 } 4197 4198 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4199 NameVals.push_back(*ValueId); 4200 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4201 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4202 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4203 for (auto &RI : VS->refs()) { 4204 auto RefValueId = getValueId(RI.getGUID()); 4205 if (!RefValueId) 4206 continue; 4207 NameVals.push_back(*RefValueId); 4208 } 4209 4210 // Emit the finished record. 4211 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4212 FSModRefsAbbrev); 4213 NameVals.clear(); 4214 MaybeEmitOriginalName(*S); 4215 return; 4216 } 4217 4218 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4219 return getValueId(VI.getGUID()); 4220 }; 4221 4222 auto *FS = cast<FunctionSummary>(S); 4223 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4224 getReferencedTypeIds(FS, ReferencedTypeIds); 4225 4226 NameVals.push_back(*ValueId); 4227 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4228 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4229 NameVals.push_back(FS->instCount()); 4230 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4231 NameVals.push_back(FS->entryCount()); 4232 4233 // Fill in below 4234 NameVals.push_back(0); // numrefs 4235 NameVals.push_back(0); // rorefcnt 4236 NameVals.push_back(0); // worefcnt 4237 4238 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4239 for (auto &RI : FS->refs()) { 4240 auto RefValueId = getValueId(RI.getGUID()); 4241 if (!RefValueId) 4242 continue; 4243 NameVals.push_back(*RefValueId); 4244 if (RI.isReadOnly()) 4245 RORefCnt++; 4246 else if (RI.isWriteOnly()) 4247 WORefCnt++; 4248 Count++; 4249 } 4250 NameVals[6] = Count; 4251 NameVals[7] = RORefCnt; 4252 NameVals[8] = WORefCnt; 4253 4254 bool HasProfileData = false; 4255 for (auto &EI : FS->calls()) { 4256 HasProfileData |= 4257 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4258 if (HasProfileData) 4259 break; 4260 } 4261 4262 for (auto &EI : FS->calls()) { 4263 // If this GUID doesn't have a value id, it doesn't have a function 4264 // summary and we don't need to record any calls to it. 4265 Optional<unsigned> CallValueId = GetValueId(EI.first); 4266 if (!CallValueId) 4267 continue; 4268 NameVals.push_back(*CallValueId); 4269 if (HasProfileData) 4270 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4271 } 4272 4273 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4274 unsigned Code = 4275 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4276 4277 // Emit the finished record. 4278 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4279 NameVals.clear(); 4280 MaybeEmitOriginalName(*S); 4281 }); 4282 4283 for (auto *AS : Aliases) { 4284 auto AliasValueId = SummaryToValueIdMap[AS]; 4285 assert(AliasValueId); 4286 NameVals.push_back(AliasValueId); 4287 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4288 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4289 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4290 assert(AliaseeValueId); 4291 NameVals.push_back(AliaseeValueId); 4292 4293 // Emit the finished record. 4294 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4295 NameVals.clear(); 4296 MaybeEmitOriginalName(*AS); 4297 4298 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4299 getReferencedTypeIds(FS, ReferencedTypeIds); 4300 } 4301 4302 if (!Index.cfiFunctionDefs().empty()) { 4303 for (auto &S : Index.cfiFunctionDefs()) { 4304 if (DefOrUseGUIDs.count( 4305 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4306 NameVals.push_back(StrtabBuilder.add(S)); 4307 NameVals.push_back(S.size()); 4308 } 4309 } 4310 if (!NameVals.empty()) { 4311 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4312 NameVals.clear(); 4313 } 4314 } 4315 4316 if (!Index.cfiFunctionDecls().empty()) { 4317 for (auto &S : Index.cfiFunctionDecls()) { 4318 if (DefOrUseGUIDs.count( 4319 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4320 NameVals.push_back(StrtabBuilder.add(S)); 4321 NameVals.push_back(S.size()); 4322 } 4323 } 4324 if (!NameVals.empty()) { 4325 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4326 NameVals.clear(); 4327 } 4328 } 4329 4330 // Walk the GUIDs that were referenced, and write the 4331 // corresponding type id records. 4332 for (auto &T : ReferencedTypeIds) { 4333 auto TidIter = Index.typeIds().equal_range(T); 4334 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4335 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4336 It->second.second); 4337 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4338 NameVals.clear(); 4339 } 4340 } 4341 4342 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4343 ArrayRef<uint64_t>{Index.getBlockCount()}); 4344 4345 Stream.ExitBlock(); 4346 } 4347 4348 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4349 /// current llvm version, and a record for the epoch number. 4350 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4351 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4352 4353 // Write the "user readable" string identifying the bitcode producer 4354 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4355 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4358 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4359 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4360 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4361 4362 // Write the epoch version 4363 Abbv = std::make_shared<BitCodeAbbrev>(); 4364 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4366 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4367 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4368 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4369 Stream.ExitBlock(); 4370 } 4371 4372 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4373 // Emit the module's hash. 4374 // MODULE_CODE_HASH: [5*i32] 4375 if (GenerateHash) { 4376 uint32_t Vals[5]; 4377 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4378 Buffer.size() - BlockStartPos)); 4379 StringRef Hash = Hasher.result(); 4380 for (int Pos = 0; Pos < 20; Pos += 4) { 4381 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4382 } 4383 4384 // Emit the finished record. 4385 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4386 4387 if (ModHash) 4388 // Save the written hash value. 4389 llvm::copy(Vals, std::begin(*ModHash)); 4390 } 4391 } 4392 4393 void ModuleBitcodeWriter::write() { 4394 writeIdentificationBlock(Stream); 4395 4396 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4397 size_t BlockStartPos = Buffer.size(); 4398 4399 writeModuleVersion(); 4400 4401 // Emit blockinfo, which defines the standard abbreviations etc. 4402 writeBlockInfo(); 4403 4404 // Emit information describing all of the types in the module. 4405 writeTypeTable(); 4406 4407 // Emit information about attribute groups. 4408 writeAttributeGroupTable(); 4409 4410 // Emit information about parameter attributes. 4411 writeAttributeTable(); 4412 4413 writeComdats(); 4414 4415 // Emit top-level description of module, including target triple, inline asm, 4416 // descriptors for global variables, and function prototype info. 4417 writeModuleInfo(); 4418 4419 // Emit constants. 4420 writeModuleConstants(); 4421 4422 // Emit metadata kind names. 4423 writeModuleMetadataKinds(); 4424 4425 // Emit metadata. 4426 writeModuleMetadata(); 4427 4428 // Emit module-level use-lists. 4429 if (VE.shouldPreserveUseListOrder()) 4430 writeUseListBlock(nullptr); 4431 4432 writeOperandBundleTags(); 4433 writeSyncScopeNames(); 4434 4435 // Emit function bodies. 4436 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4437 for (const Function &F : M) 4438 if (!F.isDeclaration()) 4439 writeFunction(F, FunctionToBitcodeIndex); 4440 4441 // Need to write after the above call to WriteFunction which populates 4442 // the summary information in the index. 4443 if (Index) 4444 writePerModuleGlobalValueSummary(); 4445 4446 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4447 4448 writeModuleHash(BlockStartPos); 4449 4450 Stream.ExitBlock(); 4451 } 4452 4453 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4454 uint32_t &Position) { 4455 support::endian::write32le(&Buffer[Position], Value); 4456 Position += 4; 4457 } 4458 4459 /// If generating a bc file on darwin, we have to emit a 4460 /// header and trailer to make it compatible with the system archiver. To do 4461 /// this we emit the following header, and then emit a trailer that pads the 4462 /// file out to be a multiple of 16 bytes. 4463 /// 4464 /// struct bc_header { 4465 /// uint32_t Magic; // 0x0B17C0DE 4466 /// uint32_t Version; // Version, currently always 0. 4467 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4468 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4469 /// uint32_t CPUType; // CPU specifier. 4470 /// ... potentially more later ... 4471 /// }; 4472 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4473 const Triple &TT) { 4474 unsigned CPUType = ~0U; 4475 4476 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4477 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4478 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4479 // specific constants here because they are implicitly part of the Darwin ABI. 4480 enum { 4481 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4482 DARWIN_CPU_TYPE_X86 = 7, 4483 DARWIN_CPU_TYPE_ARM = 12, 4484 DARWIN_CPU_TYPE_POWERPC = 18 4485 }; 4486 4487 Triple::ArchType Arch = TT.getArch(); 4488 if (Arch == Triple::x86_64) 4489 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4490 else if (Arch == Triple::x86) 4491 CPUType = DARWIN_CPU_TYPE_X86; 4492 else if (Arch == Triple::ppc) 4493 CPUType = DARWIN_CPU_TYPE_POWERPC; 4494 else if (Arch == Triple::ppc64) 4495 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4496 else if (Arch == Triple::arm || Arch == Triple::thumb) 4497 CPUType = DARWIN_CPU_TYPE_ARM; 4498 4499 // Traditional Bitcode starts after header. 4500 assert(Buffer.size() >= BWH_HeaderSize && 4501 "Expected header size to be reserved"); 4502 unsigned BCOffset = BWH_HeaderSize; 4503 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4504 4505 // Write the magic and version. 4506 unsigned Position = 0; 4507 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4508 writeInt32ToBuffer(0, Buffer, Position); // Version. 4509 writeInt32ToBuffer(BCOffset, Buffer, Position); 4510 writeInt32ToBuffer(BCSize, Buffer, Position); 4511 writeInt32ToBuffer(CPUType, Buffer, Position); 4512 4513 // If the file is not a multiple of 16 bytes, insert dummy padding. 4514 while (Buffer.size() & 15) 4515 Buffer.push_back(0); 4516 } 4517 4518 /// Helper to write the header common to all bitcode files. 4519 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4520 // Emit the file header. 4521 Stream.Emit((unsigned)'B', 8); 4522 Stream.Emit((unsigned)'C', 8); 4523 Stream.Emit(0x0, 4); 4524 Stream.Emit(0xC, 4); 4525 Stream.Emit(0xE, 4); 4526 Stream.Emit(0xD, 4); 4527 } 4528 4529 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4530 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4531 writeBitcodeHeader(*Stream); 4532 } 4533 4534 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4535 4536 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4537 Stream->EnterSubblock(Block, 3); 4538 4539 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4540 Abbv->Add(BitCodeAbbrevOp(Record)); 4541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4542 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4543 4544 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4545 4546 Stream->ExitBlock(); 4547 } 4548 4549 void BitcodeWriter::writeSymtab() { 4550 assert(!WroteStrtab && !WroteSymtab); 4551 4552 // If any module has module-level inline asm, we will require a registered asm 4553 // parser for the target so that we can create an accurate symbol table for 4554 // the module. 4555 for (Module *M : Mods) { 4556 if (M->getModuleInlineAsm().empty()) 4557 continue; 4558 4559 std::string Err; 4560 const Triple TT(M->getTargetTriple()); 4561 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4562 if (!T || !T->hasMCAsmParser()) 4563 return; 4564 } 4565 4566 WroteSymtab = true; 4567 SmallVector<char, 0> Symtab; 4568 // The irsymtab::build function may be unable to create a symbol table if the 4569 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4570 // table is not required for correctness, but we still want to be able to 4571 // write malformed modules to bitcode files, so swallow the error. 4572 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4573 consumeError(std::move(E)); 4574 return; 4575 } 4576 4577 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4578 {Symtab.data(), Symtab.size()}); 4579 } 4580 4581 void BitcodeWriter::writeStrtab() { 4582 assert(!WroteStrtab); 4583 4584 std::vector<char> Strtab; 4585 StrtabBuilder.finalizeInOrder(); 4586 Strtab.resize(StrtabBuilder.getSize()); 4587 StrtabBuilder.write((uint8_t *)Strtab.data()); 4588 4589 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4590 {Strtab.data(), Strtab.size()}); 4591 4592 WroteStrtab = true; 4593 } 4594 4595 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4596 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4597 WroteStrtab = true; 4598 } 4599 4600 void BitcodeWriter::writeModule(const Module &M, 4601 bool ShouldPreserveUseListOrder, 4602 const ModuleSummaryIndex *Index, 4603 bool GenerateHash, ModuleHash *ModHash) { 4604 assert(!WroteStrtab); 4605 4606 // The Mods vector is used by irsymtab::build, which requires non-const 4607 // Modules in case it needs to materialize metadata. But the bitcode writer 4608 // requires that the module is materialized, so we can cast to non-const here, 4609 // after checking that it is in fact materialized. 4610 assert(M.isMaterialized()); 4611 Mods.push_back(const_cast<Module *>(&M)); 4612 4613 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4614 ShouldPreserveUseListOrder, Index, 4615 GenerateHash, ModHash); 4616 ModuleWriter.write(); 4617 } 4618 4619 void BitcodeWriter::writeIndex( 4620 const ModuleSummaryIndex *Index, 4621 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4622 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4623 ModuleToSummariesForIndex); 4624 IndexWriter.write(); 4625 } 4626 4627 /// Write the specified module to the specified output stream. 4628 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4629 bool ShouldPreserveUseListOrder, 4630 const ModuleSummaryIndex *Index, 4631 bool GenerateHash, ModuleHash *ModHash) { 4632 SmallVector<char, 0> Buffer; 4633 Buffer.reserve(256*1024); 4634 4635 // If this is darwin or another generic macho target, reserve space for the 4636 // header. 4637 Triple TT(M.getTargetTriple()); 4638 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4639 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4640 4641 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4642 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4643 ModHash); 4644 Writer.writeSymtab(); 4645 Writer.writeStrtab(); 4646 4647 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4648 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4649 4650 // Write the generated bitstream to "Out". 4651 if (!Buffer.empty()) 4652 Out.write((char *)&Buffer.front(), Buffer.size()); 4653 } 4654 4655 void IndexBitcodeWriter::write() { 4656 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4657 4658 writeModuleVersion(); 4659 4660 // Write the module paths in the combined index. 4661 writeModStrings(); 4662 4663 // Write the summary combined index records. 4664 writeCombinedGlobalValueSummary(); 4665 4666 Stream.ExitBlock(); 4667 } 4668 4669 // Write the specified module summary index to the given raw output stream, 4670 // where it will be written in a new bitcode block. This is used when 4671 // writing the combined index file for ThinLTO. When writing a subset of the 4672 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4673 void llvm::WriteIndexToFile( 4674 const ModuleSummaryIndex &Index, raw_ostream &Out, 4675 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4676 SmallVector<char, 0> Buffer; 4677 Buffer.reserve(256 * 1024); 4678 4679 BitcodeWriter Writer(Buffer); 4680 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4681 Writer.writeStrtab(); 4682 4683 Out.write((char *)&Buffer.front(), Buffer.size()); 4684 } 4685 4686 namespace { 4687 4688 /// Class to manage the bitcode writing for a thin link bitcode file. 4689 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4690 /// ModHash is for use in ThinLTO incremental build, generated while writing 4691 /// the module bitcode file. 4692 const ModuleHash *ModHash; 4693 4694 public: 4695 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4696 BitstreamWriter &Stream, 4697 const ModuleSummaryIndex &Index, 4698 const ModuleHash &ModHash) 4699 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4700 /*ShouldPreserveUseListOrder=*/false, &Index), 4701 ModHash(&ModHash) {} 4702 4703 void write(); 4704 4705 private: 4706 void writeSimplifiedModuleInfo(); 4707 }; 4708 4709 } // end anonymous namespace 4710 4711 // This function writes a simpilified module info for thin link bitcode file. 4712 // It only contains the source file name along with the name(the offset and 4713 // size in strtab) and linkage for global values. For the global value info 4714 // entry, in order to keep linkage at offset 5, there are three zeros used 4715 // as padding. 4716 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4717 SmallVector<unsigned, 64> Vals; 4718 // Emit the module's source file name. 4719 { 4720 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4721 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4722 if (Bits == SE_Char6) 4723 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4724 else if (Bits == SE_Fixed7) 4725 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4726 4727 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4728 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4729 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4731 Abbv->Add(AbbrevOpToUse); 4732 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4733 4734 for (const auto P : M.getSourceFileName()) 4735 Vals.push_back((unsigned char)P); 4736 4737 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4738 Vals.clear(); 4739 } 4740 4741 // Emit the global variable information. 4742 for (const GlobalVariable &GV : M.globals()) { 4743 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4744 Vals.push_back(StrtabBuilder.add(GV.getName())); 4745 Vals.push_back(GV.getName().size()); 4746 Vals.push_back(0); 4747 Vals.push_back(0); 4748 Vals.push_back(0); 4749 Vals.push_back(getEncodedLinkage(GV)); 4750 4751 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4752 Vals.clear(); 4753 } 4754 4755 // Emit the function proto information. 4756 for (const Function &F : M) { 4757 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4758 Vals.push_back(StrtabBuilder.add(F.getName())); 4759 Vals.push_back(F.getName().size()); 4760 Vals.push_back(0); 4761 Vals.push_back(0); 4762 Vals.push_back(0); 4763 Vals.push_back(getEncodedLinkage(F)); 4764 4765 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4766 Vals.clear(); 4767 } 4768 4769 // Emit the alias information. 4770 for (const GlobalAlias &A : M.aliases()) { 4771 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4772 Vals.push_back(StrtabBuilder.add(A.getName())); 4773 Vals.push_back(A.getName().size()); 4774 Vals.push_back(0); 4775 Vals.push_back(0); 4776 Vals.push_back(0); 4777 Vals.push_back(getEncodedLinkage(A)); 4778 4779 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4780 Vals.clear(); 4781 } 4782 4783 // Emit the ifunc information. 4784 for (const GlobalIFunc &I : M.ifuncs()) { 4785 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4786 Vals.push_back(StrtabBuilder.add(I.getName())); 4787 Vals.push_back(I.getName().size()); 4788 Vals.push_back(0); 4789 Vals.push_back(0); 4790 Vals.push_back(0); 4791 Vals.push_back(getEncodedLinkage(I)); 4792 4793 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4794 Vals.clear(); 4795 } 4796 } 4797 4798 void ThinLinkBitcodeWriter::write() { 4799 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4800 4801 writeModuleVersion(); 4802 4803 writeSimplifiedModuleInfo(); 4804 4805 writePerModuleGlobalValueSummary(); 4806 4807 // Write module hash. 4808 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4809 4810 Stream.ExitBlock(); 4811 } 4812 4813 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4814 const ModuleSummaryIndex &Index, 4815 const ModuleHash &ModHash) { 4816 assert(!WroteStrtab); 4817 4818 // The Mods vector is used by irsymtab::build, which requires non-const 4819 // Modules in case it needs to materialize metadata. But the bitcode writer 4820 // requires that the module is materialized, so we can cast to non-const here, 4821 // after checking that it is in fact materialized. 4822 assert(M.isMaterialized()); 4823 Mods.push_back(const_cast<Module *>(&M)); 4824 4825 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4826 ModHash); 4827 ThinLinkWriter.write(); 4828 } 4829 4830 // Write the specified thin link bitcode file to the given raw output stream, 4831 // where it will be written in a new bitcode block. This is used when 4832 // writing the per-module index file for ThinLTO. 4833 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4834 const ModuleSummaryIndex &Index, 4835 const ModuleHash &ModHash) { 4836 SmallVector<char, 0> Buffer; 4837 Buffer.reserve(256 * 1024); 4838 4839 BitcodeWriter Writer(Buffer); 4840 Writer.writeThinLinkBitcode(M, Index, ModHash); 4841 Writer.writeSymtab(); 4842 Writer.writeStrtab(); 4843 4844 Out.write((char *)&Buffer.front(), Buffer.size()); 4845 } 4846 4847 static const char *getSectionNameForBitcode(const Triple &T) { 4848 switch (T.getObjectFormat()) { 4849 case Triple::MachO: 4850 return "__LLVM,__bitcode"; 4851 case Triple::COFF: 4852 case Triple::ELF: 4853 case Triple::Wasm: 4854 case Triple::UnknownObjectFormat: 4855 return ".llvmbc"; 4856 case Triple::GOFF: 4857 llvm_unreachable("GOFF is not yet implemented"); 4858 break; 4859 case Triple::XCOFF: 4860 llvm_unreachable("XCOFF is not yet implemented"); 4861 break; 4862 } 4863 llvm_unreachable("Unimplemented ObjectFormatType"); 4864 } 4865 4866 static const char *getSectionNameForCommandline(const Triple &T) { 4867 switch (T.getObjectFormat()) { 4868 case Triple::MachO: 4869 return "__LLVM,__cmdline"; 4870 case Triple::COFF: 4871 case Triple::ELF: 4872 case Triple::Wasm: 4873 case Triple::UnknownObjectFormat: 4874 return ".llvmcmd"; 4875 case Triple::GOFF: 4876 llvm_unreachable("GOFF is not yet implemented"); 4877 break; 4878 case Triple::XCOFF: 4879 llvm_unreachable("XCOFF is not yet implemented"); 4880 break; 4881 } 4882 llvm_unreachable("Unimplemented ObjectFormatType"); 4883 } 4884 4885 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4886 bool EmbedBitcode, bool EmbedCmdline, 4887 const std::vector<uint8_t> &CmdArgs) { 4888 // Save llvm.compiler.used and remove it. 4889 SmallVector<Constant *, 2> UsedArray; 4890 SmallVector<GlobalValue *, 4> UsedGlobals; 4891 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4892 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4893 for (auto *GV : UsedGlobals) { 4894 if (GV->getName() != "llvm.embedded.module" && 4895 GV->getName() != "llvm.cmdline") 4896 UsedArray.push_back( 4897 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4898 } 4899 if (Used) 4900 Used->eraseFromParent(); 4901 4902 // Embed the bitcode for the llvm module. 4903 std::string Data; 4904 ArrayRef<uint8_t> ModuleData; 4905 Triple T(M.getTargetTriple()); 4906 4907 if (EmbedBitcode) { 4908 if (Buf.getBufferSize() == 0 || 4909 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4910 (const unsigned char *)Buf.getBufferEnd())) { 4911 // If the input is LLVM Assembly, bitcode is produced by serializing 4912 // the module. Use-lists order need to be preserved in this case. 4913 llvm::raw_string_ostream OS(Data); 4914 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4915 ModuleData = 4916 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4917 } else 4918 // If the input is LLVM bitcode, write the input byte stream directly. 4919 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4920 Buf.getBufferSize()); 4921 } 4922 llvm::Constant *ModuleConstant = 4923 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4924 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4925 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4926 ModuleConstant); 4927 GV->setSection(getSectionNameForBitcode(T)); 4928 // Set alignment to 1 to prevent padding between two contributions from input 4929 // sections after linking. 4930 GV->setAlignment(Align(1)); 4931 UsedArray.push_back( 4932 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4933 if (llvm::GlobalVariable *Old = 4934 M.getGlobalVariable("llvm.embedded.module", true)) { 4935 assert(Old->hasOneUse() && 4936 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4937 GV->takeName(Old); 4938 Old->eraseFromParent(); 4939 } else { 4940 GV->setName("llvm.embedded.module"); 4941 } 4942 4943 // Skip if only bitcode needs to be embedded. 4944 if (EmbedCmdline) { 4945 // Embed command-line options. 4946 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4947 CmdArgs.size()); 4948 llvm::Constant *CmdConstant = 4949 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4950 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4951 llvm::GlobalValue::PrivateLinkage, 4952 CmdConstant); 4953 GV->setSection(getSectionNameForCommandline(T)); 4954 GV->setAlignment(Align(1)); 4955 UsedArray.push_back( 4956 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4957 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4958 assert(Old->hasOneUse() && 4959 "llvm.cmdline can only be used once in llvm.compiler.used"); 4960 GV->takeName(Old); 4961 Old->eraseFromParent(); 4962 } else { 4963 GV->setName("llvm.cmdline"); 4964 } 4965 } 4966 4967 if (UsedArray.empty()) 4968 return; 4969 4970 // Recreate llvm.compiler.used. 4971 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4972 auto *NewUsed = new GlobalVariable( 4973 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4974 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4975 NewUsed->setSection("llvm.metadata"); 4976 } 4977 4978 void llvm::EmbedBufferInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4979 StringRef SectionName) { 4980 ArrayRef<char> ModuleData = 4981 ArrayRef<char>(Buf.getBufferStart(), Buf.getBufferSize()); 4982 4983 // Embed the buffer into the module. 4984 llvm::Constant *ModuleConstant = 4985 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4986 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4987 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4988 ModuleConstant, "llvm.embedded.object"); 4989 GV->setSection(SectionName); 4990 4991 appendToCompilerUsed(M, GV); 4992 } 4993