1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/Program.h" 34 #include "llvm/Support/SHA1.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cctype> 37 #include <map> 38 using namespace llvm; 39 40 namespace { 41 42 cl::opt<unsigned> 43 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 44 cl::desc("Number of metadatas above which we emit an index " 45 "to enable lazy-loading")); 46 /// These are manifest constants used by the bitcode writer. They do not need to 47 /// be kept in sync with the reader, but need to be consistent within this file. 48 enum { 49 // VALUE_SYMTAB_BLOCK abbrev id's. 50 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 VST_ENTRY_7_ABBREV, 52 VST_ENTRY_6_ABBREV, 53 VST_BBENTRY_6_ABBREV, 54 55 // CONSTANTS_BLOCK abbrev id's. 56 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 57 CONSTANTS_INTEGER_ABBREV, 58 CONSTANTS_CE_CAST_Abbrev, 59 CONSTANTS_NULL_Abbrev, 60 61 // FUNCTION_BLOCK abbrev id's. 62 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 63 FUNCTION_INST_BINOP_ABBREV, 64 FUNCTION_INST_BINOP_FLAGS_ABBREV, 65 FUNCTION_INST_CAST_ABBREV, 66 FUNCTION_INST_RET_VOID_ABBREV, 67 FUNCTION_INST_RET_VAL_ABBREV, 68 FUNCTION_INST_UNREACHABLE_ABBREV, 69 FUNCTION_INST_GEP_ABBREV, 70 }; 71 72 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 73 /// file type. 74 class BitcodeWriterBase { 75 protected: 76 /// The stream created and owned by the client. 77 BitstreamWriter &Stream; 78 79 /// Saves the offset of the VSTOffset record that must eventually be 80 /// backpatched with the offset of the actual VST. 81 uint64_t VSTOffsetPlaceholder = 0; 82 83 public: 84 /// Constructs a BitcodeWriterBase object that writes to the provided 85 /// \p Stream. 86 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 87 88 protected: 89 bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; } 90 void writeValueSymbolTableForwardDecl(); 91 void writeBitcodeHeader(); 92 }; 93 94 /// Class to manage the bitcode writing for a module. 95 class ModuleBitcodeWriter : public BitcodeWriterBase { 96 /// Pointer to the buffer allocated by caller for bitcode writing. 97 const SmallVectorImpl<char> &Buffer; 98 99 /// The Module to write to bitcode. 100 const Module &M; 101 102 /// Enumerates ids for all values in the module. 103 ValueEnumerator VE; 104 105 /// Optional per-module index to write for ThinLTO. 106 const ModuleSummaryIndex *Index; 107 108 /// True if a module hash record should be written. 109 bool GenerateHash; 110 111 /// The start bit of the identification block. 112 uint64_t BitcodeStartBit; 113 114 /// Map that holds the correspondence between GUIDs in the summary index, 115 /// that came from indirect call profiles, and a value id generated by this 116 /// class to use in the VST and summary block records. 117 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 118 119 /// Tracks the last value id recorded in the GUIDToValueMap. 120 unsigned GlobalValueId; 121 122 public: 123 /// Constructs a ModuleBitcodeWriter object for the given Module, 124 /// writing to the provided \p Buffer. 125 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 126 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 127 const ModuleSummaryIndex *Index, bool GenerateHash) 128 : BitcodeWriterBase(Stream), Buffer(Buffer), M(*M), 129 VE(*M, ShouldPreserveUseListOrder), Index(Index), 130 GenerateHash(GenerateHash), BitcodeStartBit(Stream.GetCurrentBitNo()) { 131 // Assign ValueIds to any callee values in the index that came from 132 // indirect call profiles and were recorded as a GUID not a Value* 133 // (which would have been assigned an ID by the ValueEnumerator). 134 // The starting ValueId is just after the number of values in the 135 // ValueEnumerator, so that they can be emitted in the VST. 136 GlobalValueId = VE.getValues().size(); 137 if (!Index) 138 return; 139 for (const auto &GUIDSummaryLists : *Index) 140 // Examine all summaries for this GUID. 141 for (auto &Summary : GUIDSummaryLists.second) 142 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 143 // For each call in the function summary, see if the call 144 // is to a GUID (which means it is for an indirect call, 145 // otherwise we would have a Value for it). If so, synthesize 146 // a value id. 147 for (auto &CallEdge : FS->calls()) 148 if (CallEdge.first.isGUID()) 149 assignValueId(CallEdge.first.getGUID()); 150 } 151 152 /// Emit the current module to the bitstream. 153 void write(); 154 155 private: 156 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 157 158 void writeAttributeGroupTable(); 159 void writeAttributeTable(); 160 void writeTypeTable(); 161 void writeComdats(); 162 void writeModuleInfo(); 163 void writeValueAsMetadata(const ValueAsMetadata *MD, 164 SmallVectorImpl<uint64_t> &Record); 165 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 166 unsigned Abbrev); 167 unsigned createDILocationAbbrev(); 168 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 169 unsigned &Abbrev); 170 unsigned createGenericDINodeAbbrev(); 171 void writeGenericDINode(const GenericDINode *N, 172 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 173 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 174 unsigned Abbrev); 175 void writeDIEnumerator(const DIEnumerator *N, 176 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 177 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 178 unsigned Abbrev); 179 void writeDIDerivedType(const DIDerivedType *N, 180 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 181 void writeDICompositeType(const DICompositeType *N, 182 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 183 void writeDISubroutineType(const DISubroutineType *N, 184 SmallVectorImpl<uint64_t> &Record, 185 unsigned Abbrev); 186 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 187 unsigned Abbrev); 188 void writeDICompileUnit(const DICompileUnit *N, 189 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 190 void writeDISubprogram(const DISubprogram *N, 191 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 192 void writeDILexicalBlock(const DILexicalBlock *N, 193 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 194 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 195 SmallVectorImpl<uint64_t> &Record, 196 unsigned Abbrev); 197 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 198 unsigned Abbrev); 199 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 200 unsigned Abbrev); 201 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 202 unsigned Abbrev); 203 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 206 SmallVectorImpl<uint64_t> &Record, 207 unsigned Abbrev); 208 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 209 SmallVectorImpl<uint64_t> &Record, 210 unsigned Abbrev); 211 void writeDIGlobalVariable(const DIGlobalVariable *N, 212 SmallVectorImpl<uint64_t> &Record, 213 unsigned Abbrev); 214 void writeDILocalVariable(const DILocalVariable *N, 215 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 216 void writeDIExpression(const DIExpression *N, 217 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 218 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 219 SmallVectorImpl<uint64_t> &Record, 220 unsigned Abbrev); 221 void writeDIObjCProperty(const DIObjCProperty *N, 222 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 223 void writeDIImportedEntity(const DIImportedEntity *N, 224 SmallVectorImpl<uint64_t> &Record, 225 unsigned Abbrev); 226 unsigned createNamedMetadataAbbrev(); 227 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 228 unsigned createMetadataStringsAbbrev(); 229 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 230 SmallVectorImpl<uint64_t> &Record); 231 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 232 SmallVectorImpl<uint64_t> &Record, 233 std::vector<unsigned> *MDAbbrevs = nullptr, 234 std::vector<uint64_t> *IndexPos = nullptr); 235 void writeModuleMetadata(); 236 void writeFunctionMetadata(const Function &F); 237 void writeFunctionMetadataAttachment(const Function &F); 238 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 239 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 240 const GlobalObject &GO); 241 void writeModuleMetadataKinds(); 242 void writeOperandBundleTags(); 243 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 244 void writeModuleConstants(); 245 bool pushValueAndType(const Value *V, unsigned InstID, 246 SmallVectorImpl<unsigned> &Vals); 247 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 248 void pushValue(const Value *V, unsigned InstID, 249 SmallVectorImpl<unsigned> &Vals); 250 void pushValueSigned(const Value *V, unsigned InstID, 251 SmallVectorImpl<uint64_t> &Vals); 252 void writeInstruction(const Instruction &I, unsigned InstID, 253 SmallVectorImpl<unsigned> &Vals); 254 void writeValueSymbolTable( 255 const ValueSymbolTable &VST, bool IsModuleLevel = false, 256 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr); 257 void writeUseList(UseListOrder &&Order); 258 void writeUseListBlock(const Function *F); 259 void 260 writeFunction(const Function &F, 261 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 262 void writeBlockInfo(); 263 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 264 GlobalValueSummary *Summary, 265 unsigned ValueID, 266 unsigned FSCallsAbbrev, 267 unsigned FSCallsProfileAbbrev, 268 const Function &F); 269 void writeModuleLevelReferences(const GlobalVariable &V, 270 SmallVector<uint64_t, 64> &NameVals, 271 unsigned FSModRefsAbbrev); 272 void writePerModuleGlobalValueSummary(); 273 void writeModuleHash(size_t BlockStartPos); 274 275 void assignValueId(GlobalValue::GUID ValGUID) { 276 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 277 } 278 unsigned getValueId(GlobalValue::GUID ValGUID) { 279 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 280 // Expect that any GUID value had a value Id assigned by an 281 // earlier call to assignValueId. 282 assert(VMI != GUIDToValueIdMap.end() && 283 "GUID does not have assigned value Id"); 284 return VMI->second; 285 } 286 // Helper to get the valueId for the type of value recorded in VI. 287 unsigned getValueId(ValueInfo VI) { 288 if (VI.isGUID()) 289 return getValueId(VI.getGUID()); 290 return VE.getValueID(VI.getValue()); 291 } 292 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 293 }; 294 295 /// Class to manage the bitcode writing for a combined index. 296 class IndexBitcodeWriter : public BitcodeWriterBase { 297 /// The combined index to write to bitcode. 298 const ModuleSummaryIndex &Index; 299 300 /// When writing a subset of the index for distributed backends, client 301 /// provides a map of modules to the corresponding GUIDs/summaries to write. 302 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 303 304 /// Map that holds the correspondence between the GUID used in the combined 305 /// index and a value id generated by this class to use in references. 306 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 307 308 /// Tracks the last value id recorded in the GUIDToValueMap. 309 unsigned GlobalValueId = 0; 310 311 public: 312 /// Constructs a IndexBitcodeWriter object for the given combined index, 313 /// writing to the provided \p Buffer. When writing a subset of the index 314 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 315 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 316 const std::map<std::string, GVSummaryMapTy> 317 *ModuleToSummariesForIndex = nullptr) 318 : BitcodeWriterBase(Stream), Index(Index), 319 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 320 // Assign unique value ids to all summaries to be written, for use 321 // in writing out the call graph edges. Save the mapping from GUID 322 // to the new global value id to use when writing those edges, which 323 // are currently saved in the index in terms of GUID. 324 for (const auto &I : *this) 325 GUIDToValueIdMap[I.first] = ++GlobalValueId; 326 } 327 328 /// The below iterator returns the GUID and associated summary. 329 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 330 331 /// Iterator over the value GUID and summaries to be written to bitcode, 332 /// hides the details of whether they are being pulled from the entire 333 /// index or just those in a provided ModuleToSummariesForIndex map. 334 class iterator 335 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 336 GVInfo> { 337 /// Enables access to parent class. 338 const IndexBitcodeWriter &Writer; 339 340 // Iterators used when writing only those summaries in a provided 341 // ModuleToSummariesForIndex map: 342 343 /// Points to the last element in outer ModuleToSummariesForIndex map. 344 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack; 345 /// Iterator on outer ModuleToSummariesForIndex map. 346 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter; 347 /// Iterator on an inner global variable summary map. 348 GVSummaryMapTy::const_iterator ModuleGVSummariesIter; 349 350 // Iterators used when writing all summaries in the index: 351 352 /// Points to the last element in the Index outer GlobalValueMap. 353 const_gvsummary_iterator IndexSummariesBack; 354 /// Iterator on outer GlobalValueMap. 355 const_gvsummary_iterator IndexSummariesIter; 356 /// Iterator on an inner GlobalValueSummaryList. 357 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 358 359 public: 360 /// Construct iterator from parent \p Writer and indicate if we are 361 /// constructing the end iterator. 362 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 363 // Set up the appropriate set of iterators given whether we are writing 364 // the full index or just a subset. 365 // Can't setup the Back or inner iterators if the corresponding map 366 // is empty. This will be handled specially in operator== as well. 367 if (Writer.ModuleToSummariesForIndex && 368 !Writer.ModuleToSummariesForIndex->empty()) { 369 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 370 std::next(ModuleSummariesBack) != 371 Writer.ModuleToSummariesForIndex->end(); 372 ModuleSummariesBack++) 373 ; 374 ModuleSummariesIter = !IsAtEnd 375 ? Writer.ModuleToSummariesForIndex->begin() 376 : ModuleSummariesBack; 377 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 378 : ModuleSummariesBack->second.end(); 379 } else if (!Writer.ModuleToSummariesForIndex && 380 Writer.Index.begin() != Writer.Index.end()) { 381 for (IndexSummariesBack = Writer.Index.begin(); 382 std::next(IndexSummariesBack) != Writer.Index.end(); 383 IndexSummariesBack++) 384 ; 385 IndexSummariesIter = 386 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 387 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 388 : IndexSummariesBack->second.end(); 389 } 390 } 391 392 /// Increment the appropriate set of iterators. 393 iterator &operator++() { 394 // First the inner iterator is incremented, then if it is at the end 395 // and there are more outer iterations to go, the inner is reset to 396 // the start of the next inner list. 397 if (Writer.ModuleToSummariesForIndex) { 398 ++ModuleGVSummariesIter; 399 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 400 ModuleSummariesIter != ModuleSummariesBack) { 401 ++ModuleSummariesIter; 402 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 403 } 404 } else { 405 ++IndexGVSummariesIter; 406 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 407 IndexSummariesIter != IndexSummariesBack) { 408 ++IndexSummariesIter; 409 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 410 } 411 } 412 return *this; 413 } 414 415 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 416 /// outer and inner iterator positions. 417 GVInfo operator*() { 418 if (Writer.ModuleToSummariesForIndex) 419 return std::make_pair(ModuleGVSummariesIter->first, 420 ModuleGVSummariesIter->second); 421 return std::make_pair(IndexSummariesIter->first, 422 IndexGVSummariesIter->get()); 423 } 424 425 /// Checks if the iterators are equal, with special handling for empty 426 /// indexes. 427 bool operator==(const iterator &RHS) const { 428 if (Writer.ModuleToSummariesForIndex) { 429 // First ensure that both are writing the same subset. 430 if (Writer.ModuleToSummariesForIndex != 431 RHS.Writer.ModuleToSummariesForIndex) 432 return false; 433 // Already determined above that maps are the same, so if one is 434 // empty, they both are. 435 if (Writer.ModuleToSummariesForIndex->empty()) 436 return true; 437 // Ensure the ModuleGVSummariesIter are iterating over the same 438 // container before checking them below. 439 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 440 return false; 441 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 442 } 443 // First ensure RHS also writing the full index, and that both are 444 // writing the same full index. 445 if (RHS.Writer.ModuleToSummariesForIndex || 446 &Writer.Index != &RHS.Writer.Index) 447 return false; 448 // Already determined above that maps are the same, so if one is 449 // empty, they both are. 450 if (Writer.Index.begin() == Writer.Index.end()) 451 return true; 452 // Ensure the IndexGVSummariesIter are iterating over the same 453 // container before checking them below. 454 if (IndexSummariesIter != RHS.IndexSummariesIter) 455 return false; 456 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 457 } 458 }; 459 460 /// Obtain the start iterator over the summaries to be written. 461 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 462 /// Obtain the end iterator over the summaries to be written. 463 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 464 465 /// Main entry point for writing a combined index to bitcode. 466 void write(); 467 468 private: 469 void writeIndex(); 470 void writeModStrings(); 471 void writeCombinedValueSymbolTable(); 472 void writeCombinedGlobalValueSummary(); 473 474 /// Indicates whether the provided \p ModulePath should be written into 475 /// the module string table, e.g. if full index written or if it is in 476 /// the provided subset. 477 bool doIncludeModule(StringRef ModulePath) { 478 return !ModuleToSummariesForIndex || 479 ModuleToSummariesForIndex->count(ModulePath); 480 } 481 482 bool hasValueId(GlobalValue::GUID ValGUID) { 483 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 484 return VMI != GUIDToValueIdMap.end(); 485 } 486 unsigned getValueId(GlobalValue::GUID ValGUID) { 487 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 488 // If this GUID doesn't have an entry, assign one. 489 if (VMI == GUIDToValueIdMap.end()) { 490 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 491 return GlobalValueId; 492 } else { 493 return VMI->second; 494 } 495 } 496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 497 }; 498 } // end anonymous namespace 499 500 static unsigned getEncodedCastOpcode(unsigned Opcode) { 501 switch (Opcode) { 502 default: llvm_unreachable("Unknown cast instruction!"); 503 case Instruction::Trunc : return bitc::CAST_TRUNC; 504 case Instruction::ZExt : return bitc::CAST_ZEXT; 505 case Instruction::SExt : return bitc::CAST_SEXT; 506 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 507 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 508 case Instruction::UIToFP : return bitc::CAST_UITOFP; 509 case Instruction::SIToFP : return bitc::CAST_SITOFP; 510 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 511 case Instruction::FPExt : return bitc::CAST_FPEXT; 512 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 513 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 514 case Instruction::BitCast : return bitc::CAST_BITCAST; 515 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 516 } 517 } 518 519 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 520 switch (Opcode) { 521 default: llvm_unreachable("Unknown binary instruction!"); 522 case Instruction::Add: 523 case Instruction::FAdd: return bitc::BINOP_ADD; 524 case Instruction::Sub: 525 case Instruction::FSub: return bitc::BINOP_SUB; 526 case Instruction::Mul: 527 case Instruction::FMul: return bitc::BINOP_MUL; 528 case Instruction::UDiv: return bitc::BINOP_UDIV; 529 case Instruction::FDiv: 530 case Instruction::SDiv: return bitc::BINOP_SDIV; 531 case Instruction::URem: return bitc::BINOP_UREM; 532 case Instruction::FRem: 533 case Instruction::SRem: return bitc::BINOP_SREM; 534 case Instruction::Shl: return bitc::BINOP_SHL; 535 case Instruction::LShr: return bitc::BINOP_LSHR; 536 case Instruction::AShr: return bitc::BINOP_ASHR; 537 case Instruction::And: return bitc::BINOP_AND; 538 case Instruction::Or: return bitc::BINOP_OR; 539 case Instruction::Xor: return bitc::BINOP_XOR; 540 } 541 } 542 543 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 544 switch (Op) { 545 default: llvm_unreachable("Unknown RMW operation!"); 546 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 547 case AtomicRMWInst::Add: return bitc::RMW_ADD; 548 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 549 case AtomicRMWInst::And: return bitc::RMW_AND; 550 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 551 case AtomicRMWInst::Or: return bitc::RMW_OR; 552 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 553 case AtomicRMWInst::Max: return bitc::RMW_MAX; 554 case AtomicRMWInst::Min: return bitc::RMW_MIN; 555 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 556 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 557 } 558 } 559 560 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 561 switch (Ordering) { 562 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 563 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 564 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 565 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 566 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 567 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 568 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 569 } 570 llvm_unreachable("Invalid ordering"); 571 } 572 573 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 574 switch (SynchScope) { 575 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 576 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 577 } 578 llvm_unreachable("Invalid synch scope"); 579 } 580 581 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 582 StringRef Str, unsigned AbbrevToUse) { 583 SmallVector<unsigned, 64> Vals; 584 585 // Code: [strchar x N] 586 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 587 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 588 AbbrevToUse = 0; 589 Vals.push_back(Str[i]); 590 } 591 592 // Emit the finished record. 593 Stream.EmitRecord(Code, Vals, AbbrevToUse); 594 } 595 596 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 597 switch (Kind) { 598 case Attribute::Alignment: 599 return bitc::ATTR_KIND_ALIGNMENT; 600 case Attribute::AllocSize: 601 return bitc::ATTR_KIND_ALLOC_SIZE; 602 case Attribute::AlwaysInline: 603 return bitc::ATTR_KIND_ALWAYS_INLINE; 604 case Attribute::ArgMemOnly: 605 return bitc::ATTR_KIND_ARGMEMONLY; 606 case Attribute::Builtin: 607 return bitc::ATTR_KIND_BUILTIN; 608 case Attribute::ByVal: 609 return bitc::ATTR_KIND_BY_VAL; 610 case Attribute::Convergent: 611 return bitc::ATTR_KIND_CONVERGENT; 612 case Attribute::InAlloca: 613 return bitc::ATTR_KIND_IN_ALLOCA; 614 case Attribute::Cold: 615 return bitc::ATTR_KIND_COLD; 616 case Attribute::InaccessibleMemOnly: 617 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 618 case Attribute::InaccessibleMemOrArgMemOnly: 619 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 620 case Attribute::InlineHint: 621 return bitc::ATTR_KIND_INLINE_HINT; 622 case Attribute::InReg: 623 return bitc::ATTR_KIND_IN_REG; 624 case Attribute::JumpTable: 625 return bitc::ATTR_KIND_JUMP_TABLE; 626 case Attribute::MinSize: 627 return bitc::ATTR_KIND_MIN_SIZE; 628 case Attribute::Naked: 629 return bitc::ATTR_KIND_NAKED; 630 case Attribute::Nest: 631 return bitc::ATTR_KIND_NEST; 632 case Attribute::NoAlias: 633 return bitc::ATTR_KIND_NO_ALIAS; 634 case Attribute::NoBuiltin: 635 return bitc::ATTR_KIND_NO_BUILTIN; 636 case Attribute::NoCapture: 637 return bitc::ATTR_KIND_NO_CAPTURE; 638 case Attribute::NoDuplicate: 639 return bitc::ATTR_KIND_NO_DUPLICATE; 640 case Attribute::NoImplicitFloat: 641 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 642 case Attribute::NoInline: 643 return bitc::ATTR_KIND_NO_INLINE; 644 case Attribute::NoRecurse: 645 return bitc::ATTR_KIND_NO_RECURSE; 646 case Attribute::NonLazyBind: 647 return bitc::ATTR_KIND_NON_LAZY_BIND; 648 case Attribute::NonNull: 649 return bitc::ATTR_KIND_NON_NULL; 650 case Attribute::Dereferenceable: 651 return bitc::ATTR_KIND_DEREFERENCEABLE; 652 case Attribute::DereferenceableOrNull: 653 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 654 case Attribute::NoRedZone: 655 return bitc::ATTR_KIND_NO_RED_ZONE; 656 case Attribute::NoReturn: 657 return bitc::ATTR_KIND_NO_RETURN; 658 case Attribute::NoUnwind: 659 return bitc::ATTR_KIND_NO_UNWIND; 660 case Attribute::OptimizeForSize: 661 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 662 case Attribute::OptimizeNone: 663 return bitc::ATTR_KIND_OPTIMIZE_NONE; 664 case Attribute::ReadNone: 665 return bitc::ATTR_KIND_READ_NONE; 666 case Attribute::ReadOnly: 667 return bitc::ATTR_KIND_READ_ONLY; 668 case Attribute::Returned: 669 return bitc::ATTR_KIND_RETURNED; 670 case Attribute::ReturnsTwice: 671 return bitc::ATTR_KIND_RETURNS_TWICE; 672 case Attribute::SExt: 673 return bitc::ATTR_KIND_S_EXT; 674 case Attribute::StackAlignment: 675 return bitc::ATTR_KIND_STACK_ALIGNMENT; 676 case Attribute::StackProtect: 677 return bitc::ATTR_KIND_STACK_PROTECT; 678 case Attribute::StackProtectReq: 679 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 680 case Attribute::StackProtectStrong: 681 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 682 case Attribute::SafeStack: 683 return bitc::ATTR_KIND_SAFESTACK; 684 case Attribute::StructRet: 685 return bitc::ATTR_KIND_STRUCT_RET; 686 case Attribute::SanitizeAddress: 687 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 688 case Attribute::SanitizeThread: 689 return bitc::ATTR_KIND_SANITIZE_THREAD; 690 case Attribute::SanitizeMemory: 691 return bitc::ATTR_KIND_SANITIZE_MEMORY; 692 case Attribute::SwiftError: 693 return bitc::ATTR_KIND_SWIFT_ERROR; 694 case Attribute::SwiftSelf: 695 return bitc::ATTR_KIND_SWIFT_SELF; 696 case Attribute::UWTable: 697 return bitc::ATTR_KIND_UW_TABLE; 698 case Attribute::WriteOnly: 699 return bitc::ATTR_KIND_WRITEONLY; 700 case Attribute::ZExt: 701 return bitc::ATTR_KIND_Z_EXT; 702 case Attribute::EndAttrKinds: 703 llvm_unreachable("Can not encode end-attribute kinds marker."); 704 case Attribute::None: 705 llvm_unreachable("Can not encode none-attribute."); 706 } 707 708 llvm_unreachable("Trying to encode unknown attribute"); 709 } 710 711 void ModuleBitcodeWriter::writeAttributeGroupTable() { 712 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 713 if (AttrGrps.empty()) return; 714 715 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 716 717 SmallVector<uint64_t, 64> Record; 718 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 719 AttributeSet AS = AttrGrps[i]; 720 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 721 AttributeSet A = AS.getSlotAttributes(i); 722 723 Record.push_back(VE.getAttributeGroupID(A)); 724 Record.push_back(AS.getSlotIndex(i)); 725 726 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 727 I != E; ++I) { 728 Attribute Attr = *I; 729 if (Attr.isEnumAttribute()) { 730 Record.push_back(0); 731 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 732 } else if (Attr.isIntAttribute()) { 733 Record.push_back(1); 734 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 735 Record.push_back(Attr.getValueAsInt()); 736 } else { 737 StringRef Kind = Attr.getKindAsString(); 738 StringRef Val = Attr.getValueAsString(); 739 740 Record.push_back(Val.empty() ? 3 : 4); 741 Record.append(Kind.begin(), Kind.end()); 742 Record.push_back(0); 743 if (!Val.empty()) { 744 Record.append(Val.begin(), Val.end()); 745 Record.push_back(0); 746 } 747 } 748 } 749 750 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 751 Record.clear(); 752 } 753 } 754 755 Stream.ExitBlock(); 756 } 757 758 void ModuleBitcodeWriter::writeAttributeTable() { 759 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 760 if (Attrs.empty()) return; 761 762 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 763 764 SmallVector<uint64_t, 64> Record; 765 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 766 const AttributeSet &A = Attrs[i]; 767 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 768 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 769 770 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 771 Record.clear(); 772 } 773 774 Stream.ExitBlock(); 775 } 776 777 /// WriteTypeTable - Write out the type table for a module. 778 void ModuleBitcodeWriter::writeTypeTable() { 779 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 780 781 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 782 SmallVector<uint64_t, 64> TypeVals; 783 784 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 785 786 // Abbrev for TYPE_CODE_POINTER. 787 auto Abbv = std::make_shared<BitCodeAbbrev>(); 788 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 790 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 791 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 792 793 // Abbrev for TYPE_CODE_FUNCTION. 794 Abbv = std::make_shared<BitCodeAbbrev>(); 795 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 799 800 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 801 802 // Abbrev for TYPE_CODE_STRUCT_ANON. 803 Abbv = std::make_shared<BitCodeAbbrev>(); 804 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 808 809 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 810 811 // Abbrev for TYPE_CODE_STRUCT_NAME. 812 Abbv = std::make_shared<BitCodeAbbrev>(); 813 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 816 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 817 818 // Abbrev for TYPE_CODE_STRUCT_NAMED. 819 Abbv = std::make_shared<BitCodeAbbrev>(); 820 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 824 825 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 826 827 // Abbrev for TYPE_CODE_ARRAY. 828 Abbv = std::make_shared<BitCodeAbbrev>(); 829 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 832 833 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 834 835 // Emit an entry count so the reader can reserve space. 836 TypeVals.push_back(TypeList.size()); 837 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 838 TypeVals.clear(); 839 840 // Loop over all of the types, emitting each in turn. 841 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 842 Type *T = TypeList[i]; 843 int AbbrevToUse = 0; 844 unsigned Code = 0; 845 846 switch (T->getTypeID()) { 847 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 848 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 849 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 850 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 851 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 852 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 853 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 854 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 855 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 856 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 857 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 858 case Type::IntegerTyID: 859 // INTEGER: [width] 860 Code = bitc::TYPE_CODE_INTEGER; 861 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 862 break; 863 case Type::PointerTyID: { 864 PointerType *PTy = cast<PointerType>(T); 865 // POINTER: [pointee type, address space] 866 Code = bitc::TYPE_CODE_POINTER; 867 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 868 unsigned AddressSpace = PTy->getAddressSpace(); 869 TypeVals.push_back(AddressSpace); 870 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 871 break; 872 } 873 case Type::FunctionTyID: { 874 FunctionType *FT = cast<FunctionType>(T); 875 // FUNCTION: [isvararg, retty, paramty x N] 876 Code = bitc::TYPE_CODE_FUNCTION; 877 TypeVals.push_back(FT->isVarArg()); 878 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 879 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 880 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 881 AbbrevToUse = FunctionAbbrev; 882 break; 883 } 884 case Type::StructTyID: { 885 StructType *ST = cast<StructType>(T); 886 // STRUCT: [ispacked, eltty x N] 887 TypeVals.push_back(ST->isPacked()); 888 // Output all of the element types. 889 for (StructType::element_iterator I = ST->element_begin(), 890 E = ST->element_end(); I != E; ++I) 891 TypeVals.push_back(VE.getTypeID(*I)); 892 893 if (ST->isLiteral()) { 894 Code = bitc::TYPE_CODE_STRUCT_ANON; 895 AbbrevToUse = StructAnonAbbrev; 896 } else { 897 if (ST->isOpaque()) { 898 Code = bitc::TYPE_CODE_OPAQUE; 899 } else { 900 Code = bitc::TYPE_CODE_STRUCT_NAMED; 901 AbbrevToUse = StructNamedAbbrev; 902 } 903 904 // Emit the name if it is present. 905 if (!ST->getName().empty()) 906 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 907 StructNameAbbrev); 908 } 909 break; 910 } 911 case Type::ArrayTyID: { 912 ArrayType *AT = cast<ArrayType>(T); 913 // ARRAY: [numelts, eltty] 914 Code = bitc::TYPE_CODE_ARRAY; 915 TypeVals.push_back(AT->getNumElements()); 916 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 917 AbbrevToUse = ArrayAbbrev; 918 break; 919 } 920 case Type::VectorTyID: { 921 VectorType *VT = cast<VectorType>(T); 922 // VECTOR [numelts, eltty] 923 Code = bitc::TYPE_CODE_VECTOR; 924 TypeVals.push_back(VT->getNumElements()); 925 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 926 break; 927 } 928 } 929 930 // Emit the finished record. 931 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 932 TypeVals.clear(); 933 } 934 935 Stream.ExitBlock(); 936 } 937 938 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 939 switch (Linkage) { 940 case GlobalValue::ExternalLinkage: 941 return 0; 942 case GlobalValue::WeakAnyLinkage: 943 return 16; 944 case GlobalValue::AppendingLinkage: 945 return 2; 946 case GlobalValue::InternalLinkage: 947 return 3; 948 case GlobalValue::LinkOnceAnyLinkage: 949 return 18; 950 case GlobalValue::ExternalWeakLinkage: 951 return 7; 952 case GlobalValue::CommonLinkage: 953 return 8; 954 case GlobalValue::PrivateLinkage: 955 return 9; 956 case GlobalValue::WeakODRLinkage: 957 return 17; 958 case GlobalValue::LinkOnceODRLinkage: 959 return 19; 960 case GlobalValue::AvailableExternallyLinkage: 961 return 12; 962 } 963 llvm_unreachable("Invalid linkage"); 964 } 965 966 static unsigned getEncodedLinkage(const GlobalValue &GV) { 967 return getEncodedLinkage(GV.getLinkage()); 968 } 969 970 // Decode the flags for GlobalValue in the summary 971 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 972 uint64_t RawFlags = 0; 973 974 RawFlags |= Flags.NotEligibleToImport; // bool 975 // Linkage don't need to be remapped at that time for the summary. Any future 976 // change to the getEncodedLinkage() function will need to be taken into 977 // account here as well. 978 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 979 980 return RawFlags; 981 } 982 983 static unsigned getEncodedVisibility(const GlobalValue &GV) { 984 switch (GV.getVisibility()) { 985 case GlobalValue::DefaultVisibility: return 0; 986 case GlobalValue::HiddenVisibility: return 1; 987 case GlobalValue::ProtectedVisibility: return 2; 988 } 989 llvm_unreachable("Invalid visibility"); 990 } 991 992 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 993 switch (GV.getDLLStorageClass()) { 994 case GlobalValue::DefaultStorageClass: return 0; 995 case GlobalValue::DLLImportStorageClass: return 1; 996 case GlobalValue::DLLExportStorageClass: return 2; 997 } 998 llvm_unreachable("Invalid DLL storage class"); 999 } 1000 1001 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1002 switch (GV.getThreadLocalMode()) { 1003 case GlobalVariable::NotThreadLocal: return 0; 1004 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1005 case GlobalVariable::LocalDynamicTLSModel: return 2; 1006 case GlobalVariable::InitialExecTLSModel: return 3; 1007 case GlobalVariable::LocalExecTLSModel: return 4; 1008 } 1009 llvm_unreachable("Invalid TLS model"); 1010 } 1011 1012 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1013 switch (C.getSelectionKind()) { 1014 case Comdat::Any: 1015 return bitc::COMDAT_SELECTION_KIND_ANY; 1016 case Comdat::ExactMatch: 1017 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1018 case Comdat::Largest: 1019 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1020 case Comdat::NoDuplicates: 1021 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1022 case Comdat::SameSize: 1023 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1024 } 1025 llvm_unreachable("Invalid selection kind"); 1026 } 1027 1028 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1029 switch (GV.getUnnamedAddr()) { 1030 case GlobalValue::UnnamedAddr::None: return 0; 1031 case GlobalValue::UnnamedAddr::Local: return 2; 1032 case GlobalValue::UnnamedAddr::Global: return 1; 1033 } 1034 llvm_unreachable("Invalid unnamed_addr"); 1035 } 1036 1037 void ModuleBitcodeWriter::writeComdats() { 1038 SmallVector<unsigned, 64> Vals; 1039 for (const Comdat *C : VE.getComdats()) { 1040 // COMDAT: [selection_kind, name] 1041 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1042 size_t Size = C->getName().size(); 1043 assert(isUInt<32>(Size)); 1044 Vals.push_back(Size); 1045 for (char Chr : C->getName()) 1046 Vals.push_back((unsigned char)Chr); 1047 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1048 Vals.clear(); 1049 } 1050 } 1051 1052 /// Write a record that will eventually hold the word offset of the 1053 /// module-level VST. For now the offset is 0, which will be backpatched 1054 /// after the real VST is written. Saves the bit offset to backpatch. 1055 void BitcodeWriterBase::writeValueSymbolTableForwardDecl() { 1056 // Write a placeholder value in for the offset of the real VST, 1057 // which is written after the function blocks so that it can include 1058 // the offset of each function. The placeholder offset will be 1059 // updated when the real VST is written. 1060 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1061 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1062 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1063 // hold the real VST offset. Must use fixed instead of VBR as we don't 1064 // know how many VBR chunks to reserve ahead of time. 1065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1066 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1067 1068 // Emit the placeholder 1069 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1070 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1071 1072 // Compute and save the bit offset to the placeholder, which will be 1073 // patched when the real VST is written. We can simply subtract the 32-bit 1074 // fixed size from the current bit number to get the location to backpatch. 1075 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1076 } 1077 1078 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1079 1080 /// Determine the encoding to use for the given string name and length. 1081 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1082 bool isChar6 = true; 1083 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1084 if (isChar6) 1085 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1086 if ((unsigned char)*C & 128) 1087 // don't bother scanning the rest. 1088 return SE_Fixed8; 1089 } 1090 if (isChar6) 1091 return SE_Char6; 1092 else 1093 return SE_Fixed7; 1094 } 1095 1096 /// Emit top-level description of module, including target triple, inline asm, 1097 /// descriptors for global variables, and function prototype info. 1098 /// Returns the bit offset to backpatch with the location of the real VST. 1099 void ModuleBitcodeWriter::writeModuleInfo() { 1100 // Emit various pieces of data attached to a module. 1101 if (!M.getTargetTriple().empty()) 1102 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1103 0 /*TODO*/); 1104 const std::string &DL = M.getDataLayoutStr(); 1105 if (!DL.empty()) 1106 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1107 if (!M.getModuleInlineAsm().empty()) 1108 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1109 0 /*TODO*/); 1110 1111 // Emit information about sections and GC, computing how many there are. Also 1112 // compute the maximum alignment value. 1113 std::map<std::string, unsigned> SectionMap; 1114 std::map<std::string, unsigned> GCMap; 1115 unsigned MaxAlignment = 0; 1116 unsigned MaxGlobalType = 0; 1117 for (const GlobalValue &GV : M.globals()) { 1118 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1119 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1120 if (GV.hasSection()) { 1121 // Give section names unique ID's. 1122 unsigned &Entry = SectionMap[GV.getSection()]; 1123 if (!Entry) { 1124 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1125 0 /*TODO*/); 1126 Entry = SectionMap.size(); 1127 } 1128 } 1129 } 1130 for (const Function &F : M) { 1131 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1132 if (F.hasSection()) { 1133 // Give section names unique ID's. 1134 unsigned &Entry = SectionMap[F.getSection()]; 1135 if (!Entry) { 1136 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1137 0 /*TODO*/); 1138 Entry = SectionMap.size(); 1139 } 1140 } 1141 if (F.hasGC()) { 1142 // Same for GC names. 1143 unsigned &Entry = GCMap[F.getGC()]; 1144 if (!Entry) { 1145 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1146 0 /*TODO*/); 1147 Entry = GCMap.size(); 1148 } 1149 } 1150 } 1151 1152 // Emit abbrev for globals, now that we know # sections and max alignment. 1153 unsigned SimpleGVarAbbrev = 0; 1154 if (!M.global_empty()) { 1155 // Add an abbrev for common globals with no visibility or thread localness. 1156 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1157 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1159 Log2_32_Ceil(MaxGlobalType+1))); 1160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1161 //| explicitType << 1 1162 //| constant 1163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1165 if (MaxAlignment == 0) // Alignment. 1166 Abbv->Add(BitCodeAbbrevOp(0)); 1167 else { 1168 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1170 Log2_32_Ceil(MaxEncAlignment+1))); 1171 } 1172 if (SectionMap.empty()) // Section. 1173 Abbv->Add(BitCodeAbbrevOp(0)); 1174 else 1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1176 Log2_32_Ceil(SectionMap.size()+1))); 1177 // Don't bother emitting vis + thread local. 1178 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1179 } 1180 1181 // Emit the global variable information. 1182 SmallVector<unsigned, 64> Vals; 1183 for (const GlobalVariable &GV : M.globals()) { 1184 unsigned AbbrevToUse = 0; 1185 1186 // GLOBALVAR: [type, isconst, initid, 1187 // linkage, alignment, section, visibility, threadlocal, 1188 // unnamed_addr, externally_initialized, dllstorageclass, 1189 // comdat] 1190 Vals.push_back(VE.getTypeID(GV.getValueType())); 1191 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1192 Vals.push_back(GV.isDeclaration() ? 0 : 1193 (VE.getValueID(GV.getInitializer()) + 1)); 1194 Vals.push_back(getEncodedLinkage(GV)); 1195 Vals.push_back(Log2_32(GV.getAlignment())+1); 1196 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1197 if (GV.isThreadLocal() || 1198 GV.getVisibility() != GlobalValue::DefaultVisibility || 1199 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1200 GV.isExternallyInitialized() || 1201 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1202 GV.hasComdat()) { 1203 Vals.push_back(getEncodedVisibility(GV)); 1204 Vals.push_back(getEncodedThreadLocalMode(GV)); 1205 Vals.push_back(getEncodedUnnamedAddr(GV)); 1206 Vals.push_back(GV.isExternallyInitialized()); 1207 Vals.push_back(getEncodedDLLStorageClass(GV)); 1208 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1209 } else { 1210 AbbrevToUse = SimpleGVarAbbrev; 1211 } 1212 1213 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1214 Vals.clear(); 1215 } 1216 1217 // Emit the function proto information. 1218 for (const Function &F : M) { 1219 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1220 // section, visibility, gc, unnamed_addr, prologuedata, 1221 // dllstorageclass, comdat, prefixdata, personalityfn] 1222 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1223 Vals.push_back(F.getCallingConv()); 1224 Vals.push_back(F.isDeclaration()); 1225 Vals.push_back(getEncodedLinkage(F)); 1226 Vals.push_back(VE.getAttributeID(F.getAttributes())); 1227 Vals.push_back(Log2_32(F.getAlignment())+1); 1228 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1229 Vals.push_back(getEncodedVisibility(F)); 1230 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1231 Vals.push_back(getEncodedUnnamedAddr(F)); 1232 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1233 : 0); 1234 Vals.push_back(getEncodedDLLStorageClass(F)); 1235 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1236 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1237 : 0); 1238 Vals.push_back( 1239 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1240 1241 unsigned AbbrevToUse = 0; 1242 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1243 Vals.clear(); 1244 } 1245 1246 // Emit the alias information. 1247 for (const GlobalAlias &A : M.aliases()) { 1248 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass, 1249 // threadlocal, unnamed_addr] 1250 Vals.push_back(VE.getTypeID(A.getValueType())); 1251 Vals.push_back(A.getType()->getAddressSpace()); 1252 Vals.push_back(VE.getValueID(A.getAliasee())); 1253 Vals.push_back(getEncodedLinkage(A)); 1254 Vals.push_back(getEncodedVisibility(A)); 1255 Vals.push_back(getEncodedDLLStorageClass(A)); 1256 Vals.push_back(getEncodedThreadLocalMode(A)); 1257 Vals.push_back(getEncodedUnnamedAddr(A)); 1258 unsigned AbbrevToUse = 0; 1259 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1260 Vals.clear(); 1261 } 1262 1263 // Emit the ifunc information. 1264 for (const GlobalIFunc &I : M.ifuncs()) { 1265 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 1266 Vals.push_back(VE.getTypeID(I.getValueType())); 1267 Vals.push_back(I.getType()->getAddressSpace()); 1268 Vals.push_back(VE.getValueID(I.getResolver())); 1269 Vals.push_back(getEncodedLinkage(I)); 1270 Vals.push_back(getEncodedVisibility(I)); 1271 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1272 Vals.clear(); 1273 } 1274 1275 // Emit the module's source file name. 1276 { 1277 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1278 M.getSourceFileName().size()); 1279 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1280 if (Bits == SE_Char6) 1281 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1282 else if (Bits == SE_Fixed7) 1283 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1284 1285 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1286 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1287 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1289 Abbv->Add(AbbrevOpToUse); 1290 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1291 1292 for (const auto P : M.getSourceFileName()) 1293 Vals.push_back((unsigned char)P); 1294 1295 // Emit the finished record. 1296 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1297 Vals.clear(); 1298 } 1299 1300 // If we have a VST, write the VSTOFFSET record placeholder. 1301 if (M.getValueSymbolTable().empty()) 1302 return; 1303 writeValueSymbolTableForwardDecl(); 1304 } 1305 1306 static uint64_t getOptimizationFlags(const Value *V) { 1307 uint64_t Flags = 0; 1308 1309 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1310 if (OBO->hasNoSignedWrap()) 1311 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1312 if (OBO->hasNoUnsignedWrap()) 1313 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1314 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1315 if (PEO->isExact()) 1316 Flags |= 1 << bitc::PEO_EXACT; 1317 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1318 if (FPMO->hasUnsafeAlgebra()) 1319 Flags |= FastMathFlags::UnsafeAlgebra; 1320 if (FPMO->hasNoNaNs()) 1321 Flags |= FastMathFlags::NoNaNs; 1322 if (FPMO->hasNoInfs()) 1323 Flags |= FastMathFlags::NoInfs; 1324 if (FPMO->hasNoSignedZeros()) 1325 Flags |= FastMathFlags::NoSignedZeros; 1326 if (FPMO->hasAllowReciprocal()) 1327 Flags |= FastMathFlags::AllowReciprocal; 1328 } 1329 1330 return Flags; 1331 } 1332 1333 void ModuleBitcodeWriter::writeValueAsMetadata( 1334 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1335 // Mimic an MDNode with a value as one operand. 1336 Value *V = MD->getValue(); 1337 Record.push_back(VE.getTypeID(V->getType())); 1338 Record.push_back(VE.getValueID(V)); 1339 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1340 Record.clear(); 1341 } 1342 1343 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1344 SmallVectorImpl<uint64_t> &Record, 1345 unsigned Abbrev) { 1346 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1347 Metadata *MD = N->getOperand(i); 1348 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1349 "Unexpected function-local metadata"); 1350 Record.push_back(VE.getMetadataOrNullID(MD)); 1351 } 1352 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1353 : bitc::METADATA_NODE, 1354 Record, Abbrev); 1355 Record.clear(); 1356 } 1357 1358 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1359 // Assume the column is usually under 128, and always output the inlined-at 1360 // location (it's never more expensive than building an array size 1). 1361 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1362 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1368 return Stream.EmitAbbrev(std::move(Abbv)); 1369 } 1370 1371 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1372 SmallVectorImpl<uint64_t> &Record, 1373 unsigned &Abbrev) { 1374 if (!Abbrev) 1375 Abbrev = createDILocationAbbrev(); 1376 1377 Record.push_back(N->isDistinct()); 1378 Record.push_back(N->getLine()); 1379 Record.push_back(N->getColumn()); 1380 Record.push_back(VE.getMetadataID(N->getScope())); 1381 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1382 1383 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1384 Record.clear(); 1385 } 1386 1387 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1388 // Assume the column is usually under 128, and always output the inlined-at 1389 // location (it's never more expensive than building an array size 1). 1390 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1391 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1398 return Stream.EmitAbbrev(std::move(Abbv)); 1399 } 1400 1401 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1402 SmallVectorImpl<uint64_t> &Record, 1403 unsigned &Abbrev) { 1404 if (!Abbrev) 1405 Abbrev = createGenericDINodeAbbrev(); 1406 1407 Record.push_back(N->isDistinct()); 1408 Record.push_back(N->getTag()); 1409 Record.push_back(0); // Per-tag version field; unused for now. 1410 1411 for (auto &I : N->operands()) 1412 Record.push_back(VE.getMetadataOrNullID(I)); 1413 1414 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1415 Record.clear(); 1416 } 1417 1418 static uint64_t rotateSign(int64_t I) { 1419 uint64_t U = I; 1420 return I < 0 ? ~(U << 1) : U << 1; 1421 } 1422 1423 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1424 SmallVectorImpl<uint64_t> &Record, 1425 unsigned Abbrev) { 1426 Record.push_back(N->isDistinct()); 1427 Record.push_back(N->getCount()); 1428 Record.push_back(rotateSign(N->getLowerBound())); 1429 1430 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1431 Record.clear(); 1432 } 1433 1434 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1435 SmallVectorImpl<uint64_t> &Record, 1436 unsigned Abbrev) { 1437 Record.push_back(N->isDistinct()); 1438 Record.push_back(rotateSign(N->getValue())); 1439 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1440 1441 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1442 Record.clear(); 1443 } 1444 1445 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1446 SmallVectorImpl<uint64_t> &Record, 1447 unsigned Abbrev) { 1448 Record.push_back(N->isDistinct()); 1449 Record.push_back(N->getTag()); 1450 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1451 Record.push_back(N->getSizeInBits()); 1452 Record.push_back(N->getAlignInBits()); 1453 Record.push_back(N->getEncoding()); 1454 1455 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1456 Record.clear(); 1457 } 1458 1459 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1460 SmallVectorImpl<uint64_t> &Record, 1461 unsigned Abbrev) { 1462 Record.push_back(N->isDistinct()); 1463 Record.push_back(N->getTag()); 1464 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1465 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1466 Record.push_back(N->getLine()); 1467 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1468 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1469 Record.push_back(N->getSizeInBits()); 1470 Record.push_back(N->getAlignInBits()); 1471 Record.push_back(N->getOffsetInBits()); 1472 Record.push_back(N->getFlags()); 1473 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1474 1475 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1476 Record.clear(); 1477 } 1478 1479 void ModuleBitcodeWriter::writeDICompositeType( 1480 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1481 unsigned Abbrev) { 1482 const unsigned IsNotUsedInOldTypeRef = 0x2; 1483 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1484 Record.push_back(N->getTag()); 1485 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1486 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1487 Record.push_back(N->getLine()); 1488 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1489 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1490 Record.push_back(N->getSizeInBits()); 1491 Record.push_back(N->getAlignInBits()); 1492 Record.push_back(N->getOffsetInBits()); 1493 Record.push_back(N->getFlags()); 1494 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1495 Record.push_back(N->getRuntimeLang()); 1496 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1497 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1498 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1499 1500 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1501 Record.clear(); 1502 } 1503 1504 void ModuleBitcodeWriter::writeDISubroutineType( 1505 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1506 unsigned Abbrev) { 1507 const unsigned HasNoOldTypeRefs = 0x2; 1508 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1509 Record.push_back(N->getFlags()); 1510 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1511 Record.push_back(N->getCC()); 1512 1513 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1514 Record.clear(); 1515 } 1516 1517 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1518 SmallVectorImpl<uint64_t> &Record, 1519 unsigned Abbrev) { 1520 Record.push_back(N->isDistinct()); 1521 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1522 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1523 Record.push_back(N->getChecksumKind()); 1524 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1525 1526 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1527 Record.clear(); 1528 } 1529 1530 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1531 SmallVectorImpl<uint64_t> &Record, 1532 unsigned Abbrev) { 1533 assert(N->isDistinct() && "Expected distinct compile units"); 1534 Record.push_back(/* IsDistinct */ true); 1535 Record.push_back(N->getSourceLanguage()); 1536 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1537 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1538 Record.push_back(N->isOptimized()); 1539 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1540 Record.push_back(N->getRuntimeVersion()); 1541 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1542 Record.push_back(N->getEmissionKind()); 1543 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1544 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1545 Record.push_back(/* subprograms */ 0); 1546 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1547 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1548 Record.push_back(N->getDWOId()); 1549 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1550 Record.push_back(N->getSplitDebugInlining()); 1551 1552 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1553 Record.clear(); 1554 } 1555 1556 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1557 SmallVectorImpl<uint64_t> &Record, 1558 unsigned Abbrev) { 1559 uint64_t HasUnitFlag = 1 << 1; 1560 Record.push_back(N->isDistinct() | HasUnitFlag); 1561 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1562 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1563 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1564 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1565 Record.push_back(N->getLine()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1567 Record.push_back(N->isLocalToUnit()); 1568 Record.push_back(N->isDefinition()); 1569 Record.push_back(N->getScopeLine()); 1570 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1571 Record.push_back(N->getVirtuality()); 1572 Record.push_back(N->getVirtualIndex()); 1573 Record.push_back(N->getFlags()); 1574 Record.push_back(N->isOptimized()); 1575 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1576 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1577 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1578 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1579 Record.push_back(N->getThisAdjustment()); 1580 1581 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1582 Record.clear(); 1583 } 1584 1585 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1586 SmallVectorImpl<uint64_t> &Record, 1587 unsigned Abbrev) { 1588 Record.push_back(N->isDistinct()); 1589 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1590 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1591 Record.push_back(N->getLine()); 1592 Record.push_back(N->getColumn()); 1593 1594 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1595 Record.clear(); 1596 } 1597 1598 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1599 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1600 unsigned Abbrev) { 1601 Record.push_back(N->isDistinct()); 1602 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1603 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1604 Record.push_back(N->getDiscriminator()); 1605 1606 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1607 Record.clear(); 1608 } 1609 1610 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1611 SmallVectorImpl<uint64_t> &Record, 1612 unsigned Abbrev) { 1613 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1614 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1615 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1616 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1617 Record.push_back(N->getLine()); 1618 1619 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1620 Record.clear(); 1621 } 1622 1623 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1624 SmallVectorImpl<uint64_t> &Record, 1625 unsigned Abbrev) { 1626 Record.push_back(N->isDistinct()); 1627 Record.push_back(N->getMacinfoType()); 1628 Record.push_back(N->getLine()); 1629 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1630 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1631 1632 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1633 Record.clear(); 1634 } 1635 1636 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1637 SmallVectorImpl<uint64_t> &Record, 1638 unsigned Abbrev) { 1639 Record.push_back(N->isDistinct()); 1640 Record.push_back(N->getMacinfoType()); 1641 Record.push_back(N->getLine()); 1642 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1643 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1644 1645 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1646 Record.clear(); 1647 } 1648 1649 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1650 SmallVectorImpl<uint64_t> &Record, 1651 unsigned Abbrev) { 1652 Record.push_back(N->isDistinct()); 1653 for (auto &I : N->operands()) 1654 Record.push_back(VE.getMetadataOrNullID(I)); 1655 1656 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1657 Record.clear(); 1658 } 1659 1660 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1661 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1662 unsigned Abbrev) { 1663 Record.push_back(N->isDistinct()); 1664 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1665 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1666 1667 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1668 Record.clear(); 1669 } 1670 1671 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1672 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1673 unsigned Abbrev) { 1674 Record.push_back(N->isDistinct()); 1675 Record.push_back(N->getTag()); 1676 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1677 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1678 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1679 1680 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1681 Record.clear(); 1682 } 1683 1684 void ModuleBitcodeWriter::writeDIGlobalVariable( 1685 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1686 unsigned Abbrev) { 1687 const uint64_t Version = 1 << 1; 1688 Record.push_back((uint64_t)N->isDistinct() | Version); 1689 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1690 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1691 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1693 Record.push_back(N->getLine()); 1694 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1695 Record.push_back(N->isLocalToUnit()); 1696 Record.push_back(N->isDefinition()); 1697 Record.push_back(/* expr */ 0); 1698 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1699 Record.push_back(N->getAlignInBits()); 1700 1701 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1702 Record.clear(); 1703 } 1704 1705 void ModuleBitcodeWriter::writeDILocalVariable( 1706 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1707 unsigned Abbrev) { 1708 // In order to support all possible bitcode formats in BitcodeReader we need 1709 // to distinguish the following cases: 1710 // 1) Record has no artificial tag (Record[1]), 1711 // has no obsolete inlinedAt field (Record[9]). 1712 // In this case Record size will be 8, HasAlignment flag is false. 1713 // 2) Record has artificial tag (Record[1]), 1714 // has no obsolete inlignedAt field (Record[9]). 1715 // In this case Record size will be 9, HasAlignment flag is false. 1716 // 3) Record has both artificial tag (Record[1]) and 1717 // obsolete inlignedAt field (Record[9]). 1718 // In this case Record size will be 10, HasAlignment flag is false. 1719 // 4) Record has neither artificial tag, nor inlignedAt field, but 1720 // HasAlignment flag is true and Record[8] contains alignment value. 1721 const uint64_t HasAlignmentFlag = 1 << 1; 1722 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1723 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1726 Record.push_back(N->getLine()); 1727 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1728 Record.push_back(N->getArg()); 1729 Record.push_back(N->getFlags()); 1730 Record.push_back(N->getAlignInBits()); 1731 1732 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1733 Record.clear(); 1734 } 1735 1736 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1737 SmallVectorImpl<uint64_t> &Record, 1738 unsigned Abbrev) { 1739 Record.reserve(N->getElements().size() + 1); 1740 1741 const uint64_t HasOpFragmentFlag = 1 << 1; 1742 Record.push_back((uint64_t)N->isDistinct() | HasOpFragmentFlag); 1743 Record.append(N->elements_begin(), N->elements_end()); 1744 1745 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1746 Record.clear(); 1747 } 1748 1749 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1750 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1751 unsigned Abbrev) { 1752 Record.push_back(N->isDistinct()); 1753 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1754 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1755 1756 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1757 Record.clear(); 1758 } 1759 1760 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1761 SmallVectorImpl<uint64_t> &Record, 1762 unsigned Abbrev) { 1763 Record.push_back(N->isDistinct()); 1764 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1765 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1766 Record.push_back(N->getLine()); 1767 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1768 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1769 Record.push_back(N->getAttributes()); 1770 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1771 1772 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1773 Record.clear(); 1774 } 1775 1776 void ModuleBitcodeWriter::writeDIImportedEntity( 1777 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1778 unsigned Abbrev) { 1779 Record.push_back(N->isDistinct()); 1780 Record.push_back(N->getTag()); 1781 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1782 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1783 Record.push_back(N->getLine()); 1784 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1785 1786 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1787 Record.clear(); 1788 } 1789 1790 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1791 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1792 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1795 return Stream.EmitAbbrev(std::move(Abbv)); 1796 } 1797 1798 void ModuleBitcodeWriter::writeNamedMetadata( 1799 SmallVectorImpl<uint64_t> &Record) { 1800 if (M.named_metadata_empty()) 1801 return; 1802 1803 unsigned Abbrev = createNamedMetadataAbbrev(); 1804 for (const NamedMDNode &NMD : M.named_metadata()) { 1805 // Write name. 1806 StringRef Str = NMD.getName(); 1807 Record.append(Str.bytes_begin(), Str.bytes_end()); 1808 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1809 Record.clear(); 1810 1811 // Write named metadata operands. 1812 for (const MDNode *N : NMD.operands()) 1813 Record.push_back(VE.getMetadataID(N)); 1814 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1815 Record.clear(); 1816 } 1817 } 1818 1819 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1820 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1821 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1825 return Stream.EmitAbbrev(std::move(Abbv)); 1826 } 1827 1828 /// Write out a record for MDString. 1829 /// 1830 /// All the metadata strings in a metadata block are emitted in a single 1831 /// record. The sizes and strings themselves are shoved into a blob. 1832 void ModuleBitcodeWriter::writeMetadataStrings( 1833 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1834 if (Strings.empty()) 1835 return; 1836 1837 // Start the record with the number of strings. 1838 Record.push_back(bitc::METADATA_STRINGS); 1839 Record.push_back(Strings.size()); 1840 1841 // Emit the sizes of the strings in the blob. 1842 SmallString<256> Blob; 1843 { 1844 BitstreamWriter W(Blob); 1845 for (const Metadata *MD : Strings) 1846 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1847 W.FlushToWord(); 1848 } 1849 1850 // Add the offset to the strings to the record. 1851 Record.push_back(Blob.size()); 1852 1853 // Add the strings to the blob. 1854 for (const Metadata *MD : Strings) 1855 Blob.append(cast<MDString>(MD)->getString()); 1856 1857 // Emit the final record. 1858 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1859 Record.clear(); 1860 } 1861 1862 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1863 enum MetadataAbbrev : unsigned { 1864 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1865 #include "llvm/IR/Metadata.def" 1866 LastPlusOne 1867 }; 1868 1869 void ModuleBitcodeWriter::writeMetadataRecords( 1870 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1871 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1872 if (MDs.empty()) 1873 return; 1874 1875 // Initialize MDNode abbreviations. 1876 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1877 #include "llvm/IR/Metadata.def" 1878 1879 for (const Metadata *MD : MDs) { 1880 if (IndexPos) 1881 IndexPos->push_back(Stream.GetCurrentBitNo()); 1882 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1883 assert(N->isResolved() && "Expected forward references to be resolved"); 1884 1885 switch (N->getMetadataID()) { 1886 default: 1887 llvm_unreachable("Invalid MDNode subclass"); 1888 #define HANDLE_MDNODE_LEAF(CLASS) \ 1889 case Metadata::CLASS##Kind: \ 1890 if (MDAbbrevs) \ 1891 write##CLASS(cast<CLASS>(N), Record, \ 1892 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1893 else \ 1894 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1895 continue; 1896 #include "llvm/IR/Metadata.def" 1897 } 1898 } 1899 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1900 } 1901 } 1902 1903 void ModuleBitcodeWriter::writeModuleMetadata() { 1904 if (!VE.hasMDs() && M.named_metadata_empty()) 1905 return; 1906 1907 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1908 SmallVector<uint64_t, 64> Record; 1909 1910 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1911 // block and load any metadata. 1912 std::vector<unsigned> MDAbbrevs; 1913 1914 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1915 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1916 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1917 createGenericDINodeAbbrev(); 1918 1919 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1920 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1923 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1924 1925 Abbv = std::make_shared<BitCodeAbbrev>(); 1926 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1929 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1930 1931 // Emit MDStrings together upfront. 1932 writeMetadataStrings(VE.getMDStrings(), Record); 1933 1934 // We only emit an index for the metadata record if we have more than a given 1935 // (naive) threshold of metadatas, otherwise it is not worth it. 1936 if (VE.getNonMDStrings().size() > IndexThreshold) { 1937 // Write a placeholder value in for the offset of the metadata index, 1938 // which is written after the records, so that it can include 1939 // the offset of each entry. The placeholder offset will be 1940 // updated after all records are emitted. 1941 uint64_t Vals[] = {0, 0}; 1942 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1943 } 1944 1945 // Compute and save the bit offset to the current position, which will be 1946 // patched when we emit the index later. We can simply subtract the 64-bit 1947 // fixed size from the current bit number to get the location to backpatch. 1948 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1949 1950 // This index will contain the bitpos for each individual record. 1951 std::vector<uint64_t> IndexPos; 1952 IndexPos.reserve(VE.getNonMDStrings().size()); 1953 1954 // Write all the records 1955 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1956 1957 if (VE.getNonMDStrings().size() > IndexThreshold) { 1958 // Now that we have emitted all the records we will emit the index. But 1959 // first 1960 // backpatch the forward reference so that the reader can skip the records 1961 // efficiently. 1962 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1963 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1964 1965 // Delta encode the index. 1966 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1967 for (auto &Elt : IndexPos) { 1968 auto EltDelta = Elt - PreviousValue; 1969 PreviousValue = Elt; 1970 Elt = EltDelta; 1971 } 1972 // Emit the index record. 1973 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1974 IndexPos.clear(); 1975 } 1976 1977 // Write the named metadata now. 1978 writeNamedMetadata(Record); 1979 1980 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1981 SmallVector<uint64_t, 4> Record; 1982 Record.push_back(VE.getValueID(&GO)); 1983 pushGlobalMetadataAttachment(Record, GO); 1984 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1985 }; 1986 for (const Function &F : M) 1987 if (F.isDeclaration() && F.hasMetadata()) 1988 AddDeclAttachedMetadata(F); 1989 // FIXME: Only store metadata for declarations here, and move data for global 1990 // variable definitions to a separate block (PR28134). 1991 for (const GlobalVariable &GV : M.globals()) 1992 if (GV.hasMetadata()) 1993 AddDeclAttachedMetadata(GV); 1994 1995 Stream.ExitBlock(); 1996 } 1997 1998 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1999 if (!VE.hasMDs()) 2000 return; 2001 2002 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2003 SmallVector<uint64_t, 64> Record; 2004 writeMetadataStrings(VE.getMDStrings(), Record); 2005 writeMetadataRecords(VE.getNonMDStrings(), Record); 2006 Stream.ExitBlock(); 2007 } 2008 2009 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2010 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2011 // [n x [id, mdnode]] 2012 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2013 GO.getAllMetadata(MDs); 2014 for (const auto &I : MDs) { 2015 Record.push_back(I.first); 2016 Record.push_back(VE.getMetadataID(I.second)); 2017 } 2018 } 2019 2020 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2021 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2022 2023 SmallVector<uint64_t, 64> Record; 2024 2025 if (F.hasMetadata()) { 2026 pushGlobalMetadataAttachment(Record, F); 2027 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2028 Record.clear(); 2029 } 2030 2031 // Write metadata attachments 2032 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2033 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2034 for (const BasicBlock &BB : F) 2035 for (const Instruction &I : BB) { 2036 MDs.clear(); 2037 I.getAllMetadataOtherThanDebugLoc(MDs); 2038 2039 // If no metadata, ignore instruction. 2040 if (MDs.empty()) continue; 2041 2042 Record.push_back(VE.getInstructionID(&I)); 2043 2044 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2045 Record.push_back(MDs[i].first); 2046 Record.push_back(VE.getMetadataID(MDs[i].second)); 2047 } 2048 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2049 Record.clear(); 2050 } 2051 2052 Stream.ExitBlock(); 2053 } 2054 2055 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2056 SmallVector<uint64_t, 64> Record; 2057 2058 // Write metadata kinds 2059 // METADATA_KIND - [n x [id, name]] 2060 SmallVector<StringRef, 8> Names; 2061 M.getMDKindNames(Names); 2062 2063 if (Names.empty()) return; 2064 2065 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2066 2067 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2068 Record.push_back(MDKindID); 2069 StringRef KName = Names[MDKindID]; 2070 Record.append(KName.begin(), KName.end()); 2071 2072 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2073 Record.clear(); 2074 } 2075 2076 Stream.ExitBlock(); 2077 } 2078 2079 void ModuleBitcodeWriter::writeOperandBundleTags() { 2080 // Write metadata kinds 2081 // 2082 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2083 // 2084 // OPERAND_BUNDLE_TAG - [strchr x N] 2085 2086 SmallVector<StringRef, 8> Tags; 2087 M.getOperandBundleTags(Tags); 2088 2089 if (Tags.empty()) 2090 return; 2091 2092 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2093 2094 SmallVector<uint64_t, 64> Record; 2095 2096 for (auto Tag : Tags) { 2097 Record.append(Tag.begin(), Tag.end()); 2098 2099 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2100 Record.clear(); 2101 } 2102 2103 Stream.ExitBlock(); 2104 } 2105 2106 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2107 if ((int64_t)V >= 0) 2108 Vals.push_back(V << 1); 2109 else 2110 Vals.push_back((-V << 1) | 1); 2111 } 2112 2113 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2114 bool isGlobal) { 2115 if (FirstVal == LastVal) return; 2116 2117 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2118 2119 unsigned AggregateAbbrev = 0; 2120 unsigned String8Abbrev = 0; 2121 unsigned CString7Abbrev = 0; 2122 unsigned CString6Abbrev = 0; 2123 // If this is a constant pool for the module, emit module-specific abbrevs. 2124 if (isGlobal) { 2125 // Abbrev for CST_CODE_AGGREGATE. 2126 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2127 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2130 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2131 2132 // Abbrev for CST_CODE_STRING. 2133 Abbv = std::make_shared<BitCodeAbbrev>(); 2134 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2137 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2138 // Abbrev for CST_CODE_CSTRING. 2139 Abbv = std::make_shared<BitCodeAbbrev>(); 2140 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2143 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2144 // Abbrev for CST_CODE_CSTRING. 2145 Abbv = std::make_shared<BitCodeAbbrev>(); 2146 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2149 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2150 } 2151 2152 SmallVector<uint64_t, 64> Record; 2153 2154 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2155 Type *LastTy = nullptr; 2156 for (unsigned i = FirstVal; i != LastVal; ++i) { 2157 const Value *V = Vals[i].first; 2158 // If we need to switch types, do so now. 2159 if (V->getType() != LastTy) { 2160 LastTy = V->getType(); 2161 Record.push_back(VE.getTypeID(LastTy)); 2162 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2163 CONSTANTS_SETTYPE_ABBREV); 2164 Record.clear(); 2165 } 2166 2167 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2168 Record.push_back(unsigned(IA->hasSideEffects()) | 2169 unsigned(IA->isAlignStack()) << 1 | 2170 unsigned(IA->getDialect()&1) << 2); 2171 2172 // Add the asm string. 2173 const std::string &AsmStr = IA->getAsmString(); 2174 Record.push_back(AsmStr.size()); 2175 Record.append(AsmStr.begin(), AsmStr.end()); 2176 2177 // Add the constraint string. 2178 const std::string &ConstraintStr = IA->getConstraintString(); 2179 Record.push_back(ConstraintStr.size()); 2180 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2181 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2182 Record.clear(); 2183 continue; 2184 } 2185 const Constant *C = cast<Constant>(V); 2186 unsigned Code = -1U; 2187 unsigned AbbrevToUse = 0; 2188 if (C->isNullValue()) { 2189 Code = bitc::CST_CODE_NULL; 2190 } else if (isa<UndefValue>(C)) { 2191 Code = bitc::CST_CODE_UNDEF; 2192 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2193 if (IV->getBitWidth() <= 64) { 2194 uint64_t V = IV->getSExtValue(); 2195 emitSignedInt64(Record, V); 2196 Code = bitc::CST_CODE_INTEGER; 2197 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2198 } else { // Wide integers, > 64 bits in size. 2199 // We have an arbitrary precision integer value to write whose 2200 // bit width is > 64. However, in canonical unsigned integer 2201 // format it is likely that the high bits are going to be zero. 2202 // So, we only write the number of active words. 2203 unsigned NWords = IV->getValue().getActiveWords(); 2204 const uint64_t *RawWords = IV->getValue().getRawData(); 2205 for (unsigned i = 0; i != NWords; ++i) { 2206 emitSignedInt64(Record, RawWords[i]); 2207 } 2208 Code = bitc::CST_CODE_WIDE_INTEGER; 2209 } 2210 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2211 Code = bitc::CST_CODE_FLOAT; 2212 Type *Ty = CFP->getType(); 2213 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2214 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2215 } else if (Ty->isX86_FP80Ty()) { 2216 // api needed to prevent premature destruction 2217 // bits are not in the same order as a normal i80 APInt, compensate. 2218 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2219 const uint64_t *p = api.getRawData(); 2220 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2221 Record.push_back(p[0] & 0xffffLL); 2222 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2223 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2224 const uint64_t *p = api.getRawData(); 2225 Record.push_back(p[0]); 2226 Record.push_back(p[1]); 2227 } else { 2228 assert (0 && "Unknown FP type!"); 2229 } 2230 } else if (isa<ConstantDataSequential>(C) && 2231 cast<ConstantDataSequential>(C)->isString()) { 2232 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2233 // Emit constant strings specially. 2234 unsigned NumElts = Str->getNumElements(); 2235 // If this is a null-terminated string, use the denser CSTRING encoding. 2236 if (Str->isCString()) { 2237 Code = bitc::CST_CODE_CSTRING; 2238 --NumElts; // Don't encode the null, which isn't allowed by char6. 2239 } else { 2240 Code = bitc::CST_CODE_STRING; 2241 AbbrevToUse = String8Abbrev; 2242 } 2243 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2244 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2245 for (unsigned i = 0; i != NumElts; ++i) { 2246 unsigned char V = Str->getElementAsInteger(i); 2247 Record.push_back(V); 2248 isCStr7 &= (V & 128) == 0; 2249 if (isCStrChar6) 2250 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2251 } 2252 2253 if (isCStrChar6) 2254 AbbrevToUse = CString6Abbrev; 2255 else if (isCStr7) 2256 AbbrevToUse = CString7Abbrev; 2257 } else if (const ConstantDataSequential *CDS = 2258 dyn_cast<ConstantDataSequential>(C)) { 2259 Code = bitc::CST_CODE_DATA; 2260 Type *EltTy = CDS->getType()->getElementType(); 2261 if (isa<IntegerType>(EltTy)) { 2262 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2263 Record.push_back(CDS->getElementAsInteger(i)); 2264 } else { 2265 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2266 Record.push_back( 2267 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2268 } 2269 } else if (isa<ConstantAggregate>(C)) { 2270 Code = bitc::CST_CODE_AGGREGATE; 2271 for (const Value *Op : C->operands()) 2272 Record.push_back(VE.getValueID(Op)); 2273 AbbrevToUse = AggregateAbbrev; 2274 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2275 switch (CE->getOpcode()) { 2276 default: 2277 if (Instruction::isCast(CE->getOpcode())) { 2278 Code = bitc::CST_CODE_CE_CAST; 2279 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2280 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2281 Record.push_back(VE.getValueID(C->getOperand(0))); 2282 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2283 } else { 2284 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2285 Code = bitc::CST_CODE_CE_BINOP; 2286 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2287 Record.push_back(VE.getValueID(C->getOperand(0))); 2288 Record.push_back(VE.getValueID(C->getOperand(1))); 2289 uint64_t Flags = getOptimizationFlags(CE); 2290 if (Flags != 0) 2291 Record.push_back(Flags); 2292 } 2293 break; 2294 case Instruction::GetElementPtr: { 2295 Code = bitc::CST_CODE_CE_GEP; 2296 const auto *GO = cast<GEPOperator>(C); 2297 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2298 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2299 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2300 Record.push_back((*Idx << 1) | GO->isInBounds()); 2301 } else if (GO->isInBounds()) 2302 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2303 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2304 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2305 Record.push_back(VE.getValueID(C->getOperand(i))); 2306 } 2307 break; 2308 } 2309 case Instruction::Select: 2310 Code = bitc::CST_CODE_CE_SELECT; 2311 Record.push_back(VE.getValueID(C->getOperand(0))); 2312 Record.push_back(VE.getValueID(C->getOperand(1))); 2313 Record.push_back(VE.getValueID(C->getOperand(2))); 2314 break; 2315 case Instruction::ExtractElement: 2316 Code = bitc::CST_CODE_CE_EXTRACTELT; 2317 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2318 Record.push_back(VE.getValueID(C->getOperand(0))); 2319 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2320 Record.push_back(VE.getValueID(C->getOperand(1))); 2321 break; 2322 case Instruction::InsertElement: 2323 Code = bitc::CST_CODE_CE_INSERTELT; 2324 Record.push_back(VE.getValueID(C->getOperand(0))); 2325 Record.push_back(VE.getValueID(C->getOperand(1))); 2326 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2327 Record.push_back(VE.getValueID(C->getOperand(2))); 2328 break; 2329 case Instruction::ShuffleVector: 2330 // If the return type and argument types are the same, this is a 2331 // standard shufflevector instruction. If the types are different, 2332 // then the shuffle is widening or truncating the input vectors, and 2333 // the argument type must also be encoded. 2334 if (C->getType() == C->getOperand(0)->getType()) { 2335 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2336 } else { 2337 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2338 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2339 } 2340 Record.push_back(VE.getValueID(C->getOperand(0))); 2341 Record.push_back(VE.getValueID(C->getOperand(1))); 2342 Record.push_back(VE.getValueID(C->getOperand(2))); 2343 break; 2344 case Instruction::ICmp: 2345 case Instruction::FCmp: 2346 Code = bitc::CST_CODE_CE_CMP; 2347 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2348 Record.push_back(VE.getValueID(C->getOperand(0))); 2349 Record.push_back(VE.getValueID(C->getOperand(1))); 2350 Record.push_back(CE->getPredicate()); 2351 break; 2352 } 2353 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2354 Code = bitc::CST_CODE_BLOCKADDRESS; 2355 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2356 Record.push_back(VE.getValueID(BA->getFunction())); 2357 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2358 } else { 2359 #ifndef NDEBUG 2360 C->dump(); 2361 #endif 2362 llvm_unreachable("Unknown constant!"); 2363 } 2364 Stream.EmitRecord(Code, Record, AbbrevToUse); 2365 Record.clear(); 2366 } 2367 2368 Stream.ExitBlock(); 2369 } 2370 2371 void ModuleBitcodeWriter::writeModuleConstants() { 2372 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2373 2374 // Find the first constant to emit, which is the first non-globalvalue value. 2375 // We know globalvalues have been emitted by WriteModuleInfo. 2376 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2377 if (!isa<GlobalValue>(Vals[i].first)) { 2378 writeConstants(i, Vals.size(), true); 2379 return; 2380 } 2381 } 2382 } 2383 2384 /// pushValueAndType - The file has to encode both the value and type id for 2385 /// many values, because we need to know what type to create for forward 2386 /// references. However, most operands are not forward references, so this type 2387 /// field is not needed. 2388 /// 2389 /// This function adds V's value ID to Vals. If the value ID is higher than the 2390 /// instruction ID, then it is a forward reference, and it also includes the 2391 /// type ID. The value ID that is written is encoded relative to the InstID. 2392 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2393 SmallVectorImpl<unsigned> &Vals) { 2394 unsigned ValID = VE.getValueID(V); 2395 // Make encoding relative to the InstID. 2396 Vals.push_back(InstID - ValID); 2397 if (ValID >= InstID) { 2398 Vals.push_back(VE.getTypeID(V->getType())); 2399 return true; 2400 } 2401 return false; 2402 } 2403 2404 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2405 unsigned InstID) { 2406 SmallVector<unsigned, 64> Record; 2407 LLVMContext &C = CS.getInstruction()->getContext(); 2408 2409 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2410 const auto &Bundle = CS.getOperandBundleAt(i); 2411 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2412 2413 for (auto &Input : Bundle.Inputs) 2414 pushValueAndType(Input, InstID, Record); 2415 2416 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2417 Record.clear(); 2418 } 2419 } 2420 2421 /// pushValue - Like pushValueAndType, but where the type of the value is 2422 /// omitted (perhaps it was already encoded in an earlier operand). 2423 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2424 SmallVectorImpl<unsigned> &Vals) { 2425 unsigned ValID = VE.getValueID(V); 2426 Vals.push_back(InstID - ValID); 2427 } 2428 2429 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2430 SmallVectorImpl<uint64_t> &Vals) { 2431 unsigned ValID = VE.getValueID(V); 2432 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2433 emitSignedInt64(Vals, diff); 2434 } 2435 2436 /// WriteInstruction - Emit an instruction to the specified stream. 2437 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2438 unsigned InstID, 2439 SmallVectorImpl<unsigned> &Vals) { 2440 unsigned Code = 0; 2441 unsigned AbbrevToUse = 0; 2442 VE.setInstructionID(&I); 2443 switch (I.getOpcode()) { 2444 default: 2445 if (Instruction::isCast(I.getOpcode())) { 2446 Code = bitc::FUNC_CODE_INST_CAST; 2447 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2448 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2449 Vals.push_back(VE.getTypeID(I.getType())); 2450 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2451 } else { 2452 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2453 Code = bitc::FUNC_CODE_INST_BINOP; 2454 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2455 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2456 pushValue(I.getOperand(1), InstID, Vals); 2457 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2458 uint64_t Flags = getOptimizationFlags(&I); 2459 if (Flags != 0) { 2460 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2461 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2462 Vals.push_back(Flags); 2463 } 2464 } 2465 break; 2466 2467 case Instruction::GetElementPtr: { 2468 Code = bitc::FUNC_CODE_INST_GEP; 2469 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2470 auto &GEPInst = cast<GetElementPtrInst>(I); 2471 Vals.push_back(GEPInst.isInBounds()); 2472 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2473 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2474 pushValueAndType(I.getOperand(i), InstID, Vals); 2475 break; 2476 } 2477 case Instruction::ExtractValue: { 2478 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2479 pushValueAndType(I.getOperand(0), InstID, Vals); 2480 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2481 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2482 break; 2483 } 2484 case Instruction::InsertValue: { 2485 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2486 pushValueAndType(I.getOperand(0), InstID, Vals); 2487 pushValueAndType(I.getOperand(1), InstID, Vals); 2488 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2489 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2490 break; 2491 } 2492 case Instruction::Select: 2493 Code = bitc::FUNC_CODE_INST_VSELECT; 2494 pushValueAndType(I.getOperand(1), InstID, Vals); 2495 pushValue(I.getOperand(2), InstID, Vals); 2496 pushValueAndType(I.getOperand(0), InstID, Vals); 2497 break; 2498 case Instruction::ExtractElement: 2499 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2500 pushValueAndType(I.getOperand(0), InstID, Vals); 2501 pushValueAndType(I.getOperand(1), InstID, Vals); 2502 break; 2503 case Instruction::InsertElement: 2504 Code = bitc::FUNC_CODE_INST_INSERTELT; 2505 pushValueAndType(I.getOperand(0), InstID, Vals); 2506 pushValue(I.getOperand(1), InstID, Vals); 2507 pushValueAndType(I.getOperand(2), InstID, Vals); 2508 break; 2509 case Instruction::ShuffleVector: 2510 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2511 pushValueAndType(I.getOperand(0), InstID, Vals); 2512 pushValue(I.getOperand(1), InstID, Vals); 2513 pushValue(I.getOperand(2), InstID, Vals); 2514 break; 2515 case Instruction::ICmp: 2516 case Instruction::FCmp: { 2517 // compare returning Int1Ty or vector of Int1Ty 2518 Code = bitc::FUNC_CODE_INST_CMP2; 2519 pushValueAndType(I.getOperand(0), InstID, Vals); 2520 pushValue(I.getOperand(1), InstID, Vals); 2521 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2522 uint64_t Flags = getOptimizationFlags(&I); 2523 if (Flags != 0) 2524 Vals.push_back(Flags); 2525 break; 2526 } 2527 2528 case Instruction::Ret: 2529 { 2530 Code = bitc::FUNC_CODE_INST_RET; 2531 unsigned NumOperands = I.getNumOperands(); 2532 if (NumOperands == 0) 2533 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2534 else if (NumOperands == 1) { 2535 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2536 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2537 } else { 2538 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2539 pushValueAndType(I.getOperand(i), InstID, Vals); 2540 } 2541 } 2542 break; 2543 case Instruction::Br: 2544 { 2545 Code = bitc::FUNC_CODE_INST_BR; 2546 const BranchInst &II = cast<BranchInst>(I); 2547 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2548 if (II.isConditional()) { 2549 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2550 pushValue(II.getCondition(), InstID, Vals); 2551 } 2552 } 2553 break; 2554 case Instruction::Switch: 2555 { 2556 Code = bitc::FUNC_CODE_INST_SWITCH; 2557 const SwitchInst &SI = cast<SwitchInst>(I); 2558 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2559 pushValue(SI.getCondition(), InstID, Vals); 2560 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2561 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2562 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2563 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2564 } 2565 } 2566 break; 2567 case Instruction::IndirectBr: 2568 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2569 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2570 // Encode the address operand as relative, but not the basic blocks. 2571 pushValue(I.getOperand(0), InstID, Vals); 2572 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2573 Vals.push_back(VE.getValueID(I.getOperand(i))); 2574 break; 2575 2576 case Instruction::Invoke: { 2577 const InvokeInst *II = cast<InvokeInst>(&I); 2578 const Value *Callee = II->getCalledValue(); 2579 FunctionType *FTy = II->getFunctionType(); 2580 2581 if (II->hasOperandBundles()) 2582 writeOperandBundles(II, InstID); 2583 2584 Code = bitc::FUNC_CODE_INST_INVOKE; 2585 2586 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2587 Vals.push_back(II->getCallingConv() | 1 << 13); 2588 Vals.push_back(VE.getValueID(II->getNormalDest())); 2589 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2590 Vals.push_back(VE.getTypeID(FTy)); 2591 pushValueAndType(Callee, InstID, Vals); 2592 2593 // Emit value #'s for the fixed parameters. 2594 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2595 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2596 2597 // Emit type/value pairs for varargs params. 2598 if (FTy->isVarArg()) { 2599 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2600 i != e; ++i) 2601 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2602 } 2603 break; 2604 } 2605 case Instruction::Resume: 2606 Code = bitc::FUNC_CODE_INST_RESUME; 2607 pushValueAndType(I.getOperand(0), InstID, Vals); 2608 break; 2609 case Instruction::CleanupRet: { 2610 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2611 const auto &CRI = cast<CleanupReturnInst>(I); 2612 pushValue(CRI.getCleanupPad(), InstID, Vals); 2613 if (CRI.hasUnwindDest()) 2614 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2615 break; 2616 } 2617 case Instruction::CatchRet: { 2618 Code = bitc::FUNC_CODE_INST_CATCHRET; 2619 const auto &CRI = cast<CatchReturnInst>(I); 2620 pushValue(CRI.getCatchPad(), InstID, Vals); 2621 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2622 break; 2623 } 2624 case Instruction::CleanupPad: 2625 case Instruction::CatchPad: { 2626 const auto &FuncletPad = cast<FuncletPadInst>(I); 2627 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2628 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2629 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2630 2631 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2632 Vals.push_back(NumArgOperands); 2633 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2634 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2635 break; 2636 } 2637 case Instruction::CatchSwitch: { 2638 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2639 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2640 2641 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2642 2643 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2644 Vals.push_back(NumHandlers); 2645 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2646 Vals.push_back(VE.getValueID(CatchPadBB)); 2647 2648 if (CatchSwitch.hasUnwindDest()) 2649 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2650 break; 2651 } 2652 case Instruction::Unreachable: 2653 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2654 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2655 break; 2656 2657 case Instruction::PHI: { 2658 const PHINode &PN = cast<PHINode>(I); 2659 Code = bitc::FUNC_CODE_INST_PHI; 2660 // With the newer instruction encoding, forward references could give 2661 // negative valued IDs. This is most common for PHIs, so we use 2662 // signed VBRs. 2663 SmallVector<uint64_t, 128> Vals64; 2664 Vals64.push_back(VE.getTypeID(PN.getType())); 2665 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2666 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2667 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2668 } 2669 // Emit a Vals64 vector and exit. 2670 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2671 Vals64.clear(); 2672 return; 2673 } 2674 2675 case Instruction::LandingPad: { 2676 const LandingPadInst &LP = cast<LandingPadInst>(I); 2677 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2678 Vals.push_back(VE.getTypeID(LP.getType())); 2679 Vals.push_back(LP.isCleanup()); 2680 Vals.push_back(LP.getNumClauses()); 2681 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2682 if (LP.isCatch(I)) 2683 Vals.push_back(LandingPadInst::Catch); 2684 else 2685 Vals.push_back(LandingPadInst::Filter); 2686 pushValueAndType(LP.getClause(I), InstID, Vals); 2687 } 2688 break; 2689 } 2690 2691 case Instruction::Alloca: { 2692 Code = bitc::FUNC_CODE_INST_ALLOCA; 2693 const AllocaInst &AI = cast<AllocaInst>(I); 2694 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2695 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2696 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2697 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2698 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2699 "not enough bits for maximum alignment"); 2700 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2701 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2702 AlignRecord |= 1 << 6; 2703 AlignRecord |= AI.isSwiftError() << 7; 2704 Vals.push_back(AlignRecord); 2705 break; 2706 } 2707 2708 case Instruction::Load: 2709 if (cast<LoadInst>(I).isAtomic()) { 2710 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2711 pushValueAndType(I.getOperand(0), InstID, Vals); 2712 } else { 2713 Code = bitc::FUNC_CODE_INST_LOAD; 2714 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2715 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2716 } 2717 Vals.push_back(VE.getTypeID(I.getType())); 2718 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2719 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2720 if (cast<LoadInst>(I).isAtomic()) { 2721 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2722 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2723 } 2724 break; 2725 case Instruction::Store: 2726 if (cast<StoreInst>(I).isAtomic()) 2727 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2728 else 2729 Code = bitc::FUNC_CODE_INST_STORE; 2730 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2731 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2732 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2733 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2734 if (cast<StoreInst>(I).isAtomic()) { 2735 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2736 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2737 } 2738 break; 2739 case Instruction::AtomicCmpXchg: 2740 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2741 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2742 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2743 pushValue(I.getOperand(2), InstID, Vals); // newval. 2744 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2745 Vals.push_back( 2746 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2747 Vals.push_back( 2748 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2749 Vals.push_back( 2750 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2751 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2752 break; 2753 case Instruction::AtomicRMW: 2754 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2755 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2756 pushValue(I.getOperand(1), InstID, Vals); // val. 2757 Vals.push_back( 2758 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2759 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2760 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2761 Vals.push_back( 2762 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2763 break; 2764 case Instruction::Fence: 2765 Code = bitc::FUNC_CODE_INST_FENCE; 2766 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2767 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2768 break; 2769 case Instruction::Call: { 2770 const CallInst &CI = cast<CallInst>(I); 2771 FunctionType *FTy = CI.getFunctionType(); 2772 2773 if (CI.hasOperandBundles()) 2774 writeOperandBundles(&CI, InstID); 2775 2776 Code = bitc::FUNC_CODE_INST_CALL; 2777 2778 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2779 2780 unsigned Flags = getOptimizationFlags(&I); 2781 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2782 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2783 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2784 1 << bitc::CALL_EXPLICIT_TYPE | 2785 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2786 unsigned(Flags != 0) << bitc::CALL_FMF); 2787 if (Flags != 0) 2788 Vals.push_back(Flags); 2789 2790 Vals.push_back(VE.getTypeID(FTy)); 2791 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2792 2793 // Emit value #'s for the fixed parameters. 2794 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2795 // Check for labels (can happen with asm labels). 2796 if (FTy->getParamType(i)->isLabelTy()) 2797 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2798 else 2799 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2800 } 2801 2802 // Emit type/value pairs for varargs params. 2803 if (FTy->isVarArg()) { 2804 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2805 i != e; ++i) 2806 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2807 } 2808 break; 2809 } 2810 case Instruction::VAArg: 2811 Code = bitc::FUNC_CODE_INST_VAARG; 2812 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2813 pushValue(I.getOperand(0), InstID, Vals); // valist. 2814 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2815 break; 2816 } 2817 2818 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2819 Vals.clear(); 2820 } 2821 2822 /// Emit names for globals/functions etc. \p IsModuleLevel is true when 2823 /// we are writing the module-level VST, where we are including a function 2824 /// bitcode index and need to backpatch the VST forward declaration record. 2825 void ModuleBitcodeWriter::writeValueSymbolTable( 2826 const ValueSymbolTable &VST, bool IsModuleLevel, 2827 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) { 2828 if (VST.empty()) { 2829 // writeValueSymbolTableForwardDecl should have returned early as 2830 // well. Ensure this handling remains in sync by asserting that 2831 // the placeholder offset is not set. 2832 assert(!IsModuleLevel || !hasVSTOffsetPlaceholder()); 2833 return; 2834 } 2835 2836 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2837 // Get the offset of the VST we are writing, and backpatch it into 2838 // the VST forward declaration record. 2839 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2840 // The BitcodeStartBit was the stream offset of the identification block. 2841 VSTOffset -= bitcodeStartBit(); 2842 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2843 // Note that we add 1 here because the offset is relative to one word 2844 // before the start of the identification block, which was historically 2845 // always the start of the regular bitcode header. 2846 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2847 } 2848 2849 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2850 2851 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2852 // records, which are not used in the per-function VSTs. 2853 unsigned FnEntry8BitAbbrev; 2854 unsigned FnEntry7BitAbbrev; 2855 unsigned FnEntry6BitAbbrev; 2856 unsigned GUIDEntryAbbrev; 2857 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2858 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2859 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2860 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2865 FnEntry8BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2866 2867 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2868 Abbv = std::make_shared<BitCodeAbbrev>(); 2869 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2874 FnEntry7BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2875 2876 // 6-bit char6 VST_CODE_FNENTRY function strings. 2877 Abbv = std::make_shared<BitCodeAbbrev>(); 2878 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2883 FnEntry6BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2884 2885 // FIXME: Change the name of this record as it is now used by 2886 // the per-module index as well. 2887 Abbv = std::make_shared<BitCodeAbbrev>(); 2888 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2891 GUIDEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2892 } 2893 2894 // FIXME: Set up the abbrev, we know how many values there are! 2895 // FIXME: We know if the type names can use 7-bit ascii. 2896 SmallVector<uint64_t, 64> NameVals; 2897 2898 for (const ValueName &Name : VST) { 2899 // Figure out the encoding to use for the name. 2900 StringEncoding Bits = 2901 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2902 2903 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2904 NameVals.push_back(VE.getValueID(Name.getValue())); 2905 2906 Function *F = dyn_cast<Function>(Name.getValue()); 2907 if (!F) { 2908 // If value is an alias, need to get the aliased base object to 2909 // see if it is a function. 2910 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2911 if (GA && GA->getBaseObject()) 2912 F = dyn_cast<Function>(GA->getBaseObject()); 2913 } 2914 2915 // VST_CODE_ENTRY: [valueid, namechar x N] 2916 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2917 // VST_CODE_BBENTRY: [bbid, namechar x N] 2918 unsigned Code; 2919 if (isa<BasicBlock>(Name.getValue())) { 2920 Code = bitc::VST_CODE_BBENTRY; 2921 if (Bits == SE_Char6) 2922 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2923 } else if (F && !F->isDeclaration()) { 2924 // Must be the module-level VST, where we pass in the Index and 2925 // have a VSTOffsetPlaceholder. The function-level VST should not 2926 // contain any Function symbols. 2927 assert(FunctionToBitcodeIndex); 2928 assert(hasVSTOffsetPlaceholder()); 2929 2930 // Save the word offset of the function (from the start of the 2931 // actual bitcode written to the stream). 2932 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit(); 2933 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2934 // Note that we add 1 here because the offset is relative to one word 2935 // before the start of the identification block, which was historically 2936 // always the start of the regular bitcode header. 2937 NameVals.push_back(BitcodeIndex / 32 + 1); 2938 2939 Code = bitc::VST_CODE_FNENTRY; 2940 AbbrevToUse = FnEntry8BitAbbrev; 2941 if (Bits == SE_Char6) 2942 AbbrevToUse = FnEntry6BitAbbrev; 2943 else if (Bits == SE_Fixed7) 2944 AbbrevToUse = FnEntry7BitAbbrev; 2945 } else { 2946 Code = bitc::VST_CODE_ENTRY; 2947 if (Bits == SE_Char6) 2948 AbbrevToUse = VST_ENTRY_6_ABBREV; 2949 else if (Bits == SE_Fixed7) 2950 AbbrevToUse = VST_ENTRY_7_ABBREV; 2951 } 2952 2953 for (const auto P : Name.getKey()) 2954 NameVals.push_back((unsigned char)P); 2955 2956 // Emit the finished record. 2957 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2958 NameVals.clear(); 2959 } 2960 // Emit any GUID valueIDs created for indirect call edges into the 2961 // module-level VST. 2962 if (IsModuleLevel && hasVSTOffsetPlaceholder()) 2963 for (const auto &GI : valueIds()) { 2964 NameVals.push_back(GI.second); 2965 NameVals.push_back(GI.first); 2966 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, 2967 GUIDEntryAbbrev); 2968 NameVals.clear(); 2969 } 2970 Stream.ExitBlock(); 2971 } 2972 2973 /// Emit function names and summary offsets for the combined index 2974 /// used by ThinLTO. 2975 void IndexBitcodeWriter::writeCombinedValueSymbolTable() { 2976 assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder"); 2977 // Get the offset of the VST we are writing, and backpatch it into 2978 // the VST forward declaration record. 2979 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2980 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2981 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2982 2983 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2984 2985 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2986 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2989 unsigned EntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2990 2991 SmallVector<uint64_t, 64> NameVals; 2992 for (const auto &GVI : valueIds()) { 2993 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2994 NameVals.push_back(GVI.second); 2995 NameVals.push_back(GVI.first); 2996 2997 // Emit the finished record. 2998 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2999 NameVals.clear(); 3000 } 3001 Stream.ExitBlock(); 3002 } 3003 3004 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3005 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3006 unsigned Code; 3007 if (isa<BasicBlock>(Order.V)) 3008 Code = bitc::USELIST_CODE_BB; 3009 else 3010 Code = bitc::USELIST_CODE_DEFAULT; 3011 3012 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3013 Record.push_back(VE.getValueID(Order.V)); 3014 Stream.EmitRecord(Code, Record); 3015 } 3016 3017 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3018 assert(VE.shouldPreserveUseListOrder() && 3019 "Expected to be preserving use-list order"); 3020 3021 auto hasMore = [&]() { 3022 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3023 }; 3024 if (!hasMore()) 3025 // Nothing to do. 3026 return; 3027 3028 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3029 while (hasMore()) { 3030 writeUseList(std::move(VE.UseListOrders.back())); 3031 VE.UseListOrders.pop_back(); 3032 } 3033 Stream.ExitBlock(); 3034 } 3035 3036 /// Emit a function body to the module stream. 3037 void ModuleBitcodeWriter::writeFunction( 3038 const Function &F, 3039 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3040 // Save the bitcode index of the start of this function block for recording 3041 // in the VST. 3042 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3043 3044 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3045 VE.incorporateFunction(F); 3046 3047 SmallVector<unsigned, 64> Vals; 3048 3049 // Emit the number of basic blocks, so the reader can create them ahead of 3050 // time. 3051 Vals.push_back(VE.getBasicBlocks().size()); 3052 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3053 Vals.clear(); 3054 3055 // If there are function-local constants, emit them now. 3056 unsigned CstStart, CstEnd; 3057 VE.getFunctionConstantRange(CstStart, CstEnd); 3058 writeConstants(CstStart, CstEnd, false); 3059 3060 // If there is function-local metadata, emit it now. 3061 writeFunctionMetadata(F); 3062 3063 // Keep a running idea of what the instruction ID is. 3064 unsigned InstID = CstEnd; 3065 3066 bool NeedsMetadataAttachment = F.hasMetadata(); 3067 3068 DILocation *LastDL = nullptr; 3069 // Finally, emit all the instructions, in order. 3070 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3071 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3072 I != E; ++I) { 3073 writeInstruction(*I, InstID, Vals); 3074 3075 if (!I->getType()->isVoidTy()) 3076 ++InstID; 3077 3078 // If the instruction has metadata, write a metadata attachment later. 3079 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3080 3081 // If the instruction has a debug location, emit it. 3082 DILocation *DL = I->getDebugLoc(); 3083 if (!DL) 3084 continue; 3085 3086 if (DL == LastDL) { 3087 // Just repeat the same debug loc as last time. 3088 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3089 continue; 3090 } 3091 3092 Vals.push_back(DL->getLine()); 3093 Vals.push_back(DL->getColumn()); 3094 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3095 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3096 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3097 Vals.clear(); 3098 3099 LastDL = DL; 3100 } 3101 3102 // Emit names for all the instructions etc. 3103 if (auto *Symtab = F.getValueSymbolTable()) 3104 writeValueSymbolTable(*Symtab); 3105 3106 if (NeedsMetadataAttachment) 3107 writeFunctionMetadataAttachment(F); 3108 if (VE.shouldPreserveUseListOrder()) 3109 writeUseListBlock(&F); 3110 VE.purgeFunction(); 3111 Stream.ExitBlock(); 3112 } 3113 3114 // Emit blockinfo, which defines the standard abbreviations etc. 3115 void ModuleBitcodeWriter::writeBlockInfo() { 3116 // We only want to emit block info records for blocks that have multiple 3117 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3118 // Other blocks can define their abbrevs inline. 3119 Stream.EnterBlockInfoBlock(); 3120 3121 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3122 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3127 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3128 VST_ENTRY_8_ABBREV) 3129 llvm_unreachable("Unexpected abbrev ordering!"); 3130 } 3131 3132 { // 7-bit fixed width VST_CODE_ENTRY strings. 3133 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3134 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3138 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3139 VST_ENTRY_7_ABBREV) 3140 llvm_unreachable("Unexpected abbrev ordering!"); 3141 } 3142 { // 6-bit char6 VST_CODE_ENTRY strings. 3143 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3144 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3148 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3149 VST_ENTRY_6_ABBREV) 3150 llvm_unreachable("Unexpected abbrev ordering!"); 3151 } 3152 { // 6-bit char6 VST_CODE_BBENTRY strings. 3153 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3154 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3158 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3159 VST_BBENTRY_6_ABBREV) 3160 llvm_unreachable("Unexpected abbrev ordering!"); 3161 } 3162 3163 3164 3165 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3166 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3167 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3169 VE.computeBitsRequiredForTypeIndicies())); 3170 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3171 CONSTANTS_SETTYPE_ABBREV) 3172 llvm_unreachable("Unexpected abbrev ordering!"); 3173 } 3174 3175 { // INTEGER abbrev for CONSTANTS_BLOCK. 3176 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3177 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3179 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3180 CONSTANTS_INTEGER_ABBREV) 3181 llvm_unreachable("Unexpected abbrev ordering!"); 3182 } 3183 3184 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3185 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3186 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3189 VE.computeBitsRequiredForTypeIndicies())); 3190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3191 3192 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3193 CONSTANTS_CE_CAST_Abbrev) 3194 llvm_unreachable("Unexpected abbrev ordering!"); 3195 } 3196 { // NULL abbrev for CONSTANTS_BLOCK. 3197 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3198 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3199 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3200 CONSTANTS_NULL_Abbrev) 3201 llvm_unreachable("Unexpected abbrev ordering!"); 3202 } 3203 3204 // FIXME: This should only use space for first class types! 3205 3206 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3207 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3208 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3211 VE.computeBitsRequiredForTypeIndicies())); 3212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3214 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3215 FUNCTION_INST_LOAD_ABBREV) 3216 llvm_unreachable("Unexpected abbrev ordering!"); 3217 } 3218 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3219 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3220 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3224 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3225 FUNCTION_INST_BINOP_ABBREV) 3226 llvm_unreachable("Unexpected abbrev ordering!"); 3227 } 3228 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3229 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3230 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3235 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3236 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3237 llvm_unreachable("Unexpected abbrev ordering!"); 3238 } 3239 { // INST_CAST abbrev for FUNCTION_BLOCK. 3240 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3241 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3244 VE.computeBitsRequiredForTypeIndicies())); 3245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3246 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3247 FUNCTION_INST_CAST_ABBREV) 3248 llvm_unreachable("Unexpected abbrev ordering!"); 3249 } 3250 3251 { // INST_RET abbrev for FUNCTION_BLOCK. 3252 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3253 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3254 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3255 FUNCTION_INST_RET_VOID_ABBREV) 3256 llvm_unreachable("Unexpected abbrev ordering!"); 3257 } 3258 { // INST_RET abbrev for FUNCTION_BLOCK. 3259 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3260 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3262 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3263 FUNCTION_INST_RET_VAL_ABBREV) 3264 llvm_unreachable("Unexpected abbrev ordering!"); 3265 } 3266 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3267 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3268 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3269 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3270 FUNCTION_INST_UNREACHABLE_ABBREV) 3271 llvm_unreachable("Unexpected abbrev ordering!"); 3272 } 3273 { 3274 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3275 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3278 Log2_32_Ceil(VE.getTypes().size() + 1))); 3279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3281 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3282 FUNCTION_INST_GEP_ABBREV) 3283 llvm_unreachable("Unexpected abbrev ordering!"); 3284 } 3285 3286 Stream.ExitBlock(); 3287 } 3288 3289 /// Write the module path strings, currently only used when generating 3290 /// a combined index file. 3291 void IndexBitcodeWriter::writeModStrings() { 3292 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3293 3294 // TODO: See which abbrev sizes we actually need to emit 3295 3296 // 8-bit fixed-width MST_ENTRY strings. 3297 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3298 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3302 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3303 3304 // 7-bit fixed width MST_ENTRY strings. 3305 Abbv = std::make_shared<BitCodeAbbrev>(); 3306 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3310 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3311 3312 // 6-bit char6 MST_ENTRY strings. 3313 Abbv = std::make_shared<BitCodeAbbrev>(); 3314 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3318 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3319 3320 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3321 Abbv = std::make_shared<BitCodeAbbrev>(); 3322 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3328 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3329 3330 SmallVector<unsigned, 64> Vals; 3331 for (const auto &MPSE : Index.modulePaths()) { 3332 if (!doIncludeModule(MPSE.getKey())) 3333 continue; 3334 StringEncoding Bits = 3335 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3336 unsigned AbbrevToUse = Abbrev8Bit; 3337 if (Bits == SE_Char6) 3338 AbbrevToUse = Abbrev6Bit; 3339 else if (Bits == SE_Fixed7) 3340 AbbrevToUse = Abbrev7Bit; 3341 3342 Vals.push_back(MPSE.getValue().first); 3343 3344 for (const auto P : MPSE.getKey()) 3345 Vals.push_back((unsigned char)P); 3346 3347 // Emit the finished record. 3348 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3349 3350 Vals.clear(); 3351 // Emit an optional hash for the module now 3352 auto &Hash = MPSE.getValue().second; 3353 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3354 for (auto Val : Hash) { 3355 if (Val) 3356 AllZero = false; 3357 Vals.push_back(Val); 3358 } 3359 if (!AllZero) { 3360 // Emit the hash record. 3361 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3362 } 3363 3364 Vals.clear(); 3365 } 3366 Stream.ExitBlock(); 3367 } 3368 3369 // Helper to emit a single function summary record. 3370 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3371 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3372 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3373 const Function &F) { 3374 NameVals.push_back(ValueID); 3375 3376 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3377 if (!FS->type_tests().empty()) 3378 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3379 3380 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3381 NameVals.push_back(FS->instCount()); 3382 NameVals.push_back(FS->refs().size()); 3383 3384 for (auto &RI : FS->refs()) 3385 NameVals.push_back(VE.getValueID(RI.getValue())); 3386 3387 bool HasProfileData = F.getEntryCount().hasValue(); 3388 for (auto &ECI : FS->calls()) { 3389 NameVals.push_back(getValueId(ECI.first)); 3390 if (HasProfileData) 3391 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3392 } 3393 3394 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3395 unsigned Code = 3396 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3397 3398 // Emit the finished record. 3399 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3400 NameVals.clear(); 3401 } 3402 3403 // Collect the global value references in the given variable's initializer, 3404 // and emit them in a summary record. 3405 void ModuleBitcodeWriter::writeModuleLevelReferences( 3406 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3407 unsigned FSModRefsAbbrev) { 3408 auto Summaries = 3409 Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName())); 3410 if (Summaries == Index->end()) { 3411 // Only declarations should not have a summary (a declaration might however 3412 // have a summary if the def was in module level asm). 3413 assert(V.isDeclaration()); 3414 return; 3415 } 3416 auto *Summary = Summaries->second.front().get(); 3417 NameVals.push_back(VE.getValueID(&V)); 3418 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3419 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3420 3421 unsigned SizeBeforeRefs = NameVals.size(); 3422 for (auto &RI : VS->refs()) 3423 NameVals.push_back(VE.getValueID(RI.getValue())); 3424 // Sort the refs for determinism output, the vector returned by FS->refs() has 3425 // been initialized from a DenseSet. 3426 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3427 3428 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3429 FSModRefsAbbrev); 3430 NameVals.clear(); 3431 } 3432 3433 // Current version for the summary. 3434 // This is bumped whenever we introduce changes in the way some record are 3435 // interpreted, like flags for instance. 3436 static const uint64_t INDEX_VERSION = 3; 3437 3438 /// Emit the per-module summary section alongside the rest of 3439 /// the module's bitcode. 3440 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3441 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3442 3443 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3444 3445 if (Index->begin() == Index->end()) { 3446 Stream.ExitBlock(); 3447 return; 3448 } 3449 3450 // Abbrev for FS_PERMODULE. 3451 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3452 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3457 // numrefs x valueid, n x (valueid) 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3460 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3461 3462 // Abbrev for FS_PERMODULE_PROFILE. 3463 Abbv = std::make_shared<BitCodeAbbrev>(); 3464 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3469 // numrefs x valueid, n x (valueid, hotness) 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3472 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3473 3474 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3475 Abbv = std::make_shared<BitCodeAbbrev>(); 3476 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3481 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3482 3483 // Abbrev for FS_ALIAS. 3484 Abbv = std::make_shared<BitCodeAbbrev>(); 3485 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3489 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3490 3491 SmallVector<uint64_t, 64> NameVals; 3492 // Iterate over the list of functions instead of the Index to 3493 // ensure the ordering is stable. 3494 for (const Function &F : M) { 3495 // Summary emission does not support anonymous functions, they have to 3496 // renamed using the anonymous function renaming pass. 3497 if (!F.hasName()) 3498 report_fatal_error("Unexpected anonymous function when writing summary"); 3499 3500 auto Summaries = 3501 Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName())); 3502 if (Summaries == Index->end()) { 3503 // Only declarations should not have a summary (a declaration might 3504 // however have a summary if the def was in module level asm). 3505 assert(F.isDeclaration()); 3506 continue; 3507 } 3508 auto *Summary = Summaries->second.front().get(); 3509 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3510 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3511 } 3512 3513 // Capture references from GlobalVariable initializers, which are outside 3514 // of a function scope. 3515 for (const GlobalVariable &G : M.globals()) 3516 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3517 3518 for (const GlobalAlias &A : M.aliases()) { 3519 auto *Aliasee = A.getBaseObject(); 3520 if (!Aliasee->hasName()) 3521 // Nameless function don't have an entry in the summary, skip it. 3522 continue; 3523 auto AliasId = VE.getValueID(&A); 3524 auto AliaseeId = VE.getValueID(Aliasee); 3525 NameVals.push_back(AliasId); 3526 auto *Summary = Index->getGlobalValueSummary(A); 3527 AliasSummary *AS = cast<AliasSummary>(Summary); 3528 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3529 NameVals.push_back(AliaseeId); 3530 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3531 NameVals.clear(); 3532 } 3533 3534 Stream.ExitBlock(); 3535 } 3536 3537 /// Emit the combined summary section into the combined index file. 3538 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3539 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3540 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3541 3542 // Abbrev for FS_COMBINED. 3543 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3544 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3550 // numrefs x valueid, n x (valueid) 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3553 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3554 3555 // Abbrev for FS_COMBINED_PROFILE. 3556 Abbv = std::make_shared<BitCodeAbbrev>(); 3557 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3563 // numrefs x valueid, n x (valueid, hotness) 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3566 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3567 3568 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3569 Abbv = std::make_shared<BitCodeAbbrev>(); 3570 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3576 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3577 3578 // Abbrev for FS_COMBINED_ALIAS. 3579 Abbv = std::make_shared<BitCodeAbbrev>(); 3580 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3585 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3586 3587 // The aliases are emitted as a post-pass, and will point to the value 3588 // id of the aliasee. Save them in a vector for post-processing. 3589 SmallVector<AliasSummary *, 64> Aliases; 3590 3591 // Save the value id for each summary for alias emission. 3592 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3593 3594 SmallVector<uint64_t, 64> NameVals; 3595 3596 // For local linkage, we also emit the original name separately 3597 // immediately after the record. 3598 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3599 if (!GlobalValue::isLocalLinkage(S.linkage())) 3600 return; 3601 NameVals.push_back(S.getOriginalName()); 3602 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3603 NameVals.clear(); 3604 }; 3605 3606 for (const auto &I : *this) { 3607 GlobalValueSummary *S = I.second; 3608 assert(S); 3609 3610 assert(hasValueId(I.first)); 3611 unsigned ValueId = getValueId(I.first); 3612 SummaryToValueIdMap[S] = ValueId; 3613 3614 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3615 // Will process aliases as a post-pass because the reader wants all 3616 // global to be loaded first. 3617 Aliases.push_back(AS); 3618 continue; 3619 } 3620 3621 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3622 NameVals.push_back(ValueId); 3623 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3624 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3625 for (auto &RI : VS->refs()) { 3626 NameVals.push_back(getValueId(RI.getGUID())); 3627 } 3628 3629 // Emit the finished record. 3630 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3631 FSModRefsAbbrev); 3632 NameVals.clear(); 3633 MaybeEmitOriginalName(*S); 3634 continue; 3635 } 3636 3637 auto *FS = cast<FunctionSummary>(S); 3638 if (!FS->type_tests().empty()) 3639 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3640 3641 NameVals.push_back(ValueId); 3642 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3643 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3644 NameVals.push_back(FS->instCount()); 3645 NameVals.push_back(FS->refs().size()); 3646 3647 for (auto &RI : FS->refs()) { 3648 NameVals.push_back(getValueId(RI.getGUID())); 3649 } 3650 3651 bool HasProfileData = false; 3652 for (auto &EI : FS->calls()) { 3653 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3654 if (HasProfileData) 3655 break; 3656 } 3657 3658 for (auto &EI : FS->calls()) { 3659 // If this GUID doesn't have a value id, it doesn't have a function 3660 // summary and we don't need to record any calls to it. 3661 if (!hasValueId(EI.first.getGUID())) 3662 continue; 3663 NameVals.push_back(getValueId(EI.first.getGUID())); 3664 if (HasProfileData) 3665 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3666 } 3667 3668 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3669 unsigned Code = 3670 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3671 3672 // Emit the finished record. 3673 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3674 NameVals.clear(); 3675 MaybeEmitOriginalName(*S); 3676 } 3677 3678 for (auto *AS : Aliases) { 3679 auto AliasValueId = SummaryToValueIdMap[AS]; 3680 assert(AliasValueId); 3681 NameVals.push_back(AliasValueId); 3682 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3683 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3684 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3685 assert(AliaseeValueId); 3686 NameVals.push_back(AliaseeValueId); 3687 3688 // Emit the finished record. 3689 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3690 NameVals.clear(); 3691 MaybeEmitOriginalName(*AS); 3692 } 3693 3694 Stream.ExitBlock(); 3695 } 3696 3697 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3698 /// current llvm version, and a record for the epoch number. 3699 void writeIdentificationBlock(BitstreamWriter &Stream) { 3700 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3701 3702 // Write the "user readable" string identifying the bitcode producer 3703 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3704 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3707 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3708 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3709 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3710 3711 // Write the epoch version 3712 Abbv = std::make_shared<BitCodeAbbrev>(); 3713 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3715 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3716 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3717 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3718 Stream.ExitBlock(); 3719 } 3720 3721 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3722 // Emit the module's hash. 3723 // MODULE_CODE_HASH: [5*i32] 3724 SHA1 Hasher; 3725 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3726 Buffer.size() - BlockStartPos)); 3727 StringRef Hash = Hasher.result(); 3728 uint32_t Vals[5]; 3729 for (int Pos = 0; Pos < 20; Pos += 4) { 3730 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3731 } 3732 3733 // Emit the finished record. 3734 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3735 } 3736 3737 void ModuleBitcodeWriter::write() { 3738 writeIdentificationBlock(Stream); 3739 3740 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3741 size_t BlockStartPos = Buffer.size(); 3742 3743 SmallVector<unsigned, 1> Vals; 3744 unsigned CurVersion = 1; 3745 Vals.push_back(CurVersion); 3746 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3747 3748 // Emit blockinfo, which defines the standard abbreviations etc. 3749 writeBlockInfo(); 3750 3751 // Emit information about attribute groups. 3752 writeAttributeGroupTable(); 3753 3754 // Emit information about parameter attributes. 3755 writeAttributeTable(); 3756 3757 // Emit information describing all of the types in the module. 3758 writeTypeTable(); 3759 3760 writeComdats(); 3761 3762 // Emit top-level description of module, including target triple, inline asm, 3763 // descriptors for global variables, and function prototype info. 3764 writeModuleInfo(); 3765 3766 // Emit constants. 3767 writeModuleConstants(); 3768 3769 // Emit metadata kind names. 3770 writeModuleMetadataKinds(); 3771 3772 // Emit metadata. 3773 writeModuleMetadata(); 3774 3775 // Emit module-level use-lists. 3776 if (VE.shouldPreserveUseListOrder()) 3777 writeUseListBlock(nullptr); 3778 3779 writeOperandBundleTags(); 3780 3781 // Emit function bodies. 3782 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3783 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3784 if (!F->isDeclaration()) 3785 writeFunction(*F, FunctionToBitcodeIndex); 3786 3787 // Need to write after the above call to WriteFunction which populates 3788 // the summary information in the index. 3789 if (Index) 3790 writePerModuleGlobalValueSummary(); 3791 3792 writeValueSymbolTable(M.getValueSymbolTable(), 3793 /* IsModuleLevel */ true, &FunctionToBitcodeIndex); 3794 3795 if (GenerateHash) { 3796 writeModuleHash(BlockStartPos); 3797 } 3798 3799 Stream.ExitBlock(); 3800 } 3801 3802 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3803 uint32_t &Position) { 3804 support::endian::write32le(&Buffer[Position], Value); 3805 Position += 4; 3806 } 3807 3808 /// If generating a bc file on darwin, we have to emit a 3809 /// header and trailer to make it compatible with the system archiver. To do 3810 /// this we emit the following header, and then emit a trailer that pads the 3811 /// file out to be a multiple of 16 bytes. 3812 /// 3813 /// struct bc_header { 3814 /// uint32_t Magic; // 0x0B17C0DE 3815 /// uint32_t Version; // Version, currently always 0. 3816 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3817 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3818 /// uint32_t CPUType; // CPU specifier. 3819 /// ... potentially more later ... 3820 /// }; 3821 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3822 const Triple &TT) { 3823 unsigned CPUType = ~0U; 3824 3825 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3826 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3827 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3828 // specific constants here because they are implicitly part of the Darwin ABI. 3829 enum { 3830 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3831 DARWIN_CPU_TYPE_X86 = 7, 3832 DARWIN_CPU_TYPE_ARM = 12, 3833 DARWIN_CPU_TYPE_POWERPC = 18 3834 }; 3835 3836 Triple::ArchType Arch = TT.getArch(); 3837 if (Arch == Triple::x86_64) 3838 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3839 else if (Arch == Triple::x86) 3840 CPUType = DARWIN_CPU_TYPE_X86; 3841 else if (Arch == Triple::ppc) 3842 CPUType = DARWIN_CPU_TYPE_POWERPC; 3843 else if (Arch == Triple::ppc64) 3844 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3845 else if (Arch == Triple::arm || Arch == Triple::thumb) 3846 CPUType = DARWIN_CPU_TYPE_ARM; 3847 3848 // Traditional Bitcode starts after header. 3849 assert(Buffer.size() >= BWH_HeaderSize && 3850 "Expected header size to be reserved"); 3851 unsigned BCOffset = BWH_HeaderSize; 3852 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3853 3854 // Write the magic and version. 3855 unsigned Position = 0; 3856 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3857 writeInt32ToBuffer(0, Buffer, Position); // Version. 3858 writeInt32ToBuffer(BCOffset, Buffer, Position); 3859 writeInt32ToBuffer(BCSize, Buffer, Position); 3860 writeInt32ToBuffer(CPUType, Buffer, Position); 3861 3862 // If the file is not a multiple of 16 bytes, insert dummy padding. 3863 while (Buffer.size() & 15) 3864 Buffer.push_back(0); 3865 } 3866 3867 /// Helper to write the header common to all bitcode files. 3868 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3869 // Emit the file header. 3870 Stream.Emit((unsigned)'B', 8); 3871 Stream.Emit((unsigned)'C', 8); 3872 Stream.Emit(0x0, 4); 3873 Stream.Emit(0xC, 4); 3874 Stream.Emit(0xE, 4); 3875 Stream.Emit(0xD, 4); 3876 } 3877 3878 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3879 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3880 writeBitcodeHeader(*Stream); 3881 } 3882 3883 BitcodeWriter::~BitcodeWriter() = default; 3884 3885 void BitcodeWriter::writeModule(const Module *M, 3886 bool ShouldPreserveUseListOrder, 3887 const ModuleSummaryIndex *Index, 3888 bool GenerateHash) { 3889 ModuleBitcodeWriter ModuleWriter( 3890 M, Buffer, *Stream, ShouldPreserveUseListOrder, Index, GenerateHash); 3891 ModuleWriter.write(); 3892 } 3893 3894 /// WriteBitcodeToFile - Write the specified module to the specified output 3895 /// stream. 3896 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3897 bool ShouldPreserveUseListOrder, 3898 const ModuleSummaryIndex *Index, 3899 bool GenerateHash) { 3900 SmallVector<char, 0> Buffer; 3901 Buffer.reserve(256*1024); 3902 3903 // If this is darwin or another generic macho target, reserve space for the 3904 // header. 3905 Triple TT(M->getTargetTriple()); 3906 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3907 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3908 3909 BitcodeWriter Writer(Buffer); 3910 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash); 3911 3912 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3913 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3914 3915 // Write the generated bitstream to "Out". 3916 Out.write((char*)&Buffer.front(), Buffer.size()); 3917 } 3918 3919 void IndexBitcodeWriter::write() { 3920 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3921 3922 SmallVector<unsigned, 1> Vals; 3923 unsigned CurVersion = 1; 3924 Vals.push_back(CurVersion); 3925 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3926 3927 // If we have a VST, write the VSTOFFSET record placeholder. 3928 writeValueSymbolTableForwardDecl(); 3929 3930 // Write the module paths in the combined index. 3931 writeModStrings(); 3932 3933 // Write the summary combined index records. 3934 writeCombinedGlobalValueSummary(); 3935 3936 // Need a special VST writer for the combined index (we don't have a 3937 // real VST and real values when this is invoked). 3938 writeCombinedValueSymbolTable(); 3939 3940 Stream.ExitBlock(); 3941 } 3942 3943 // Write the specified module summary index to the given raw output stream, 3944 // where it will be written in a new bitcode block. This is used when 3945 // writing the combined index file for ThinLTO. When writing a subset of the 3946 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3947 void llvm::WriteIndexToFile( 3948 const ModuleSummaryIndex &Index, raw_ostream &Out, 3949 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3950 SmallVector<char, 0> Buffer; 3951 Buffer.reserve(256 * 1024); 3952 3953 BitstreamWriter Stream(Buffer); 3954 writeBitcodeHeader(Stream); 3955 3956 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 3957 IndexWriter.write(); 3958 3959 Out.write((char *)&Buffer.front(), Buffer.size()); 3960 } 3961