1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/Program.h" 34 #include "llvm/Support/SHA1.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cctype> 37 #include <map> 38 using namespace llvm; 39 40 namespace { 41 42 cl::opt<unsigned> 43 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 44 cl::desc("Number of metadatas above which we emit an index " 45 "to enable lazy-loading")); 46 /// These are manifest constants used by the bitcode writer. They do not need to 47 /// be kept in sync with the reader, but need to be consistent within this file. 48 enum { 49 // VALUE_SYMTAB_BLOCK abbrev id's. 50 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 VST_ENTRY_7_ABBREV, 52 VST_ENTRY_6_ABBREV, 53 VST_BBENTRY_6_ABBREV, 54 55 // CONSTANTS_BLOCK abbrev id's. 56 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 57 CONSTANTS_INTEGER_ABBREV, 58 CONSTANTS_CE_CAST_Abbrev, 59 CONSTANTS_NULL_Abbrev, 60 61 // FUNCTION_BLOCK abbrev id's. 62 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 63 FUNCTION_INST_BINOP_ABBREV, 64 FUNCTION_INST_BINOP_FLAGS_ABBREV, 65 FUNCTION_INST_CAST_ABBREV, 66 FUNCTION_INST_RET_VOID_ABBREV, 67 FUNCTION_INST_RET_VAL_ABBREV, 68 FUNCTION_INST_UNREACHABLE_ABBREV, 69 FUNCTION_INST_GEP_ABBREV, 70 }; 71 72 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 73 /// file type. 74 class BitcodeWriterBase { 75 protected: 76 /// The stream created and owned by the client. 77 BitstreamWriter &Stream; 78 79 /// Saves the offset of the VSTOffset record that must eventually be 80 /// backpatched with the offset of the actual VST. 81 uint64_t VSTOffsetPlaceholder = 0; 82 83 public: 84 /// Constructs a BitcodeWriterBase object that writes to the provided 85 /// \p Stream. 86 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 87 88 protected: 89 bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; } 90 void writeValueSymbolTableForwardDecl(); 91 void writeBitcodeHeader(); 92 }; 93 94 /// Class to manage the bitcode writing for a module. 95 class ModuleBitcodeWriter : public BitcodeWriterBase { 96 /// Pointer to the buffer allocated by caller for bitcode writing. 97 const SmallVectorImpl<char> &Buffer; 98 99 /// The Module to write to bitcode. 100 const Module &M; 101 102 /// Enumerates ids for all values in the module. 103 ValueEnumerator VE; 104 105 /// Optional per-module index to write for ThinLTO. 106 const ModuleSummaryIndex *Index; 107 108 /// True if a module hash record should be written. 109 bool GenerateHash; 110 111 /// The start bit of the identification block. 112 uint64_t BitcodeStartBit; 113 114 /// Map that holds the correspondence between GUIDs in the summary index, 115 /// that came from indirect call profiles, and a value id generated by this 116 /// class to use in the VST and summary block records. 117 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 118 119 /// Tracks the last value id recorded in the GUIDToValueMap. 120 unsigned GlobalValueId; 121 122 public: 123 /// Constructs a ModuleBitcodeWriter object for the given Module, 124 /// writing to the provided \p Buffer. 125 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 126 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 127 const ModuleSummaryIndex *Index, bool GenerateHash) 128 : BitcodeWriterBase(Stream), Buffer(Buffer), M(*M), 129 VE(*M, ShouldPreserveUseListOrder), Index(Index), 130 GenerateHash(GenerateHash), BitcodeStartBit(Stream.GetCurrentBitNo()) { 131 // Assign ValueIds to any callee values in the index that came from 132 // indirect call profiles and were recorded as a GUID not a Value* 133 // (which would have been assigned an ID by the ValueEnumerator). 134 // The starting ValueId is just after the number of values in the 135 // ValueEnumerator, so that they can be emitted in the VST. 136 GlobalValueId = VE.getValues().size(); 137 if (!Index) 138 return; 139 for (const auto &GUIDSummaryLists : *Index) 140 // Examine all summaries for this GUID. 141 for (auto &Summary : GUIDSummaryLists.second) 142 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 143 // For each call in the function summary, see if the call 144 // is to a GUID (which means it is for an indirect call, 145 // otherwise we would have a Value for it). If so, synthesize 146 // a value id. 147 for (auto &CallEdge : FS->calls()) 148 if (CallEdge.first.isGUID()) 149 assignValueId(CallEdge.first.getGUID()); 150 } 151 152 /// Emit the current module to the bitstream. 153 void write(); 154 155 private: 156 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 157 158 void writeAttributeGroupTable(); 159 void writeAttributeTable(); 160 void writeTypeTable(); 161 void writeComdats(); 162 void writeModuleInfo(); 163 void writeValueAsMetadata(const ValueAsMetadata *MD, 164 SmallVectorImpl<uint64_t> &Record); 165 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 166 unsigned Abbrev); 167 unsigned createDILocationAbbrev(); 168 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 169 unsigned &Abbrev); 170 unsigned createGenericDINodeAbbrev(); 171 void writeGenericDINode(const GenericDINode *N, 172 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 173 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 174 unsigned Abbrev); 175 void writeDIEnumerator(const DIEnumerator *N, 176 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 177 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 178 unsigned Abbrev); 179 void writeDIDerivedType(const DIDerivedType *N, 180 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 181 void writeDICompositeType(const DICompositeType *N, 182 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 183 void writeDISubroutineType(const DISubroutineType *N, 184 SmallVectorImpl<uint64_t> &Record, 185 unsigned Abbrev); 186 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 187 unsigned Abbrev); 188 void writeDICompileUnit(const DICompileUnit *N, 189 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 190 void writeDISubprogram(const DISubprogram *N, 191 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 192 void writeDILexicalBlock(const DILexicalBlock *N, 193 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 194 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 195 SmallVectorImpl<uint64_t> &Record, 196 unsigned Abbrev); 197 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 198 unsigned Abbrev); 199 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 200 unsigned Abbrev); 201 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 202 unsigned Abbrev); 203 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 206 SmallVectorImpl<uint64_t> &Record, 207 unsigned Abbrev); 208 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 209 SmallVectorImpl<uint64_t> &Record, 210 unsigned Abbrev); 211 void writeDIGlobalVariable(const DIGlobalVariable *N, 212 SmallVectorImpl<uint64_t> &Record, 213 unsigned Abbrev); 214 void writeDILocalVariable(const DILocalVariable *N, 215 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 216 void writeDIExpression(const DIExpression *N, 217 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 218 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 219 SmallVectorImpl<uint64_t> &Record, 220 unsigned Abbrev); 221 void writeDIObjCProperty(const DIObjCProperty *N, 222 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 223 void writeDIImportedEntity(const DIImportedEntity *N, 224 SmallVectorImpl<uint64_t> &Record, 225 unsigned Abbrev); 226 unsigned createNamedMetadataAbbrev(); 227 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 228 unsigned createMetadataStringsAbbrev(); 229 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 230 SmallVectorImpl<uint64_t> &Record); 231 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 232 SmallVectorImpl<uint64_t> &Record, 233 std::vector<unsigned> *MDAbbrevs = nullptr, 234 std::vector<uint64_t> *IndexPos = nullptr); 235 void writeModuleMetadata(); 236 void writeFunctionMetadata(const Function &F); 237 void writeFunctionMetadataAttachment(const Function &F); 238 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 239 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 240 const GlobalObject &GO); 241 void writeModuleMetadataKinds(); 242 void writeOperandBundleTags(); 243 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 244 void writeModuleConstants(); 245 bool pushValueAndType(const Value *V, unsigned InstID, 246 SmallVectorImpl<unsigned> &Vals); 247 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 248 void pushValue(const Value *V, unsigned InstID, 249 SmallVectorImpl<unsigned> &Vals); 250 void pushValueSigned(const Value *V, unsigned InstID, 251 SmallVectorImpl<uint64_t> &Vals); 252 void writeInstruction(const Instruction &I, unsigned InstID, 253 SmallVectorImpl<unsigned> &Vals); 254 void writeValueSymbolTable( 255 const ValueSymbolTable &VST, bool IsModuleLevel = false, 256 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr); 257 void writeUseList(UseListOrder &&Order); 258 void writeUseListBlock(const Function *F); 259 void 260 writeFunction(const Function &F, 261 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 262 void writeBlockInfo(); 263 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 264 GlobalValueSummary *Summary, 265 unsigned ValueID, 266 unsigned FSCallsAbbrev, 267 unsigned FSCallsProfileAbbrev, 268 const Function &F); 269 void writeModuleLevelReferences(const GlobalVariable &V, 270 SmallVector<uint64_t, 64> &NameVals, 271 unsigned FSModRefsAbbrev); 272 void writePerModuleGlobalValueSummary(); 273 void writeModuleHash(size_t BlockStartPos); 274 275 void assignValueId(GlobalValue::GUID ValGUID) { 276 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 277 } 278 unsigned getValueId(GlobalValue::GUID ValGUID) { 279 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 280 // Expect that any GUID value had a value Id assigned by an 281 // earlier call to assignValueId. 282 assert(VMI != GUIDToValueIdMap.end() && 283 "GUID does not have assigned value Id"); 284 return VMI->second; 285 } 286 // Helper to get the valueId for the type of value recorded in VI. 287 unsigned getValueId(ValueInfo VI) { 288 if (VI.isGUID()) 289 return getValueId(VI.getGUID()); 290 return VE.getValueID(VI.getValue()); 291 } 292 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 293 }; 294 295 /// Class to manage the bitcode writing for a combined index. 296 class IndexBitcodeWriter : public BitcodeWriterBase { 297 /// The combined index to write to bitcode. 298 const ModuleSummaryIndex &Index; 299 300 /// When writing a subset of the index for distributed backends, client 301 /// provides a map of modules to the corresponding GUIDs/summaries to write. 302 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 303 304 /// Map that holds the correspondence between the GUID used in the combined 305 /// index and a value id generated by this class to use in references. 306 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 307 308 /// Tracks the last value id recorded in the GUIDToValueMap. 309 unsigned GlobalValueId = 0; 310 311 public: 312 /// Constructs a IndexBitcodeWriter object for the given combined index, 313 /// writing to the provided \p Buffer. When writing a subset of the index 314 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 315 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 316 const std::map<std::string, GVSummaryMapTy> 317 *ModuleToSummariesForIndex = nullptr) 318 : BitcodeWriterBase(Stream), Index(Index), 319 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 320 // Assign unique value ids to all summaries to be written, for use 321 // in writing out the call graph edges. Save the mapping from GUID 322 // to the new global value id to use when writing those edges, which 323 // are currently saved in the index in terms of GUID. 324 for (const auto &I : *this) 325 GUIDToValueIdMap[I.first] = ++GlobalValueId; 326 } 327 328 /// The below iterator returns the GUID and associated summary. 329 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 330 331 /// Iterator over the value GUID and summaries to be written to bitcode, 332 /// hides the details of whether they are being pulled from the entire 333 /// index or just those in a provided ModuleToSummariesForIndex map. 334 class iterator 335 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 336 GVInfo> { 337 /// Enables access to parent class. 338 const IndexBitcodeWriter &Writer; 339 340 // Iterators used when writing only those summaries in a provided 341 // ModuleToSummariesForIndex map: 342 343 /// Points to the last element in outer ModuleToSummariesForIndex map. 344 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack; 345 /// Iterator on outer ModuleToSummariesForIndex map. 346 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter; 347 /// Iterator on an inner global variable summary map. 348 GVSummaryMapTy::const_iterator ModuleGVSummariesIter; 349 350 // Iterators used when writing all summaries in the index: 351 352 /// Points to the last element in the Index outer GlobalValueMap. 353 const_gvsummary_iterator IndexSummariesBack; 354 /// Iterator on outer GlobalValueMap. 355 const_gvsummary_iterator IndexSummariesIter; 356 /// Iterator on an inner GlobalValueSummaryList. 357 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 358 359 public: 360 /// Construct iterator from parent \p Writer and indicate if we are 361 /// constructing the end iterator. 362 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 363 // Set up the appropriate set of iterators given whether we are writing 364 // the full index or just a subset. 365 // Can't setup the Back or inner iterators if the corresponding map 366 // is empty. This will be handled specially in operator== as well. 367 if (Writer.ModuleToSummariesForIndex && 368 !Writer.ModuleToSummariesForIndex->empty()) { 369 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 370 std::next(ModuleSummariesBack) != 371 Writer.ModuleToSummariesForIndex->end(); 372 ModuleSummariesBack++) 373 ; 374 ModuleSummariesIter = !IsAtEnd 375 ? Writer.ModuleToSummariesForIndex->begin() 376 : ModuleSummariesBack; 377 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 378 : ModuleSummariesBack->second.end(); 379 } else if (!Writer.ModuleToSummariesForIndex && 380 Writer.Index.begin() != Writer.Index.end()) { 381 for (IndexSummariesBack = Writer.Index.begin(); 382 std::next(IndexSummariesBack) != Writer.Index.end(); 383 IndexSummariesBack++) 384 ; 385 IndexSummariesIter = 386 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 387 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 388 : IndexSummariesBack->second.end(); 389 } 390 } 391 392 /// Increment the appropriate set of iterators. 393 iterator &operator++() { 394 // First the inner iterator is incremented, then if it is at the end 395 // and there are more outer iterations to go, the inner is reset to 396 // the start of the next inner list. 397 if (Writer.ModuleToSummariesForIndex) { 398 ++ModuleGVSummariesIter; 399 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 400 ModuleSummariesIter != ModuleSummariesBack) { 401 ++ModuleSummariesIter; 402 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 403 } 404 } else { 405 ++IndexGVSummariesIter; 406 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 407 IndexSummariesIter != IndexSummariesBack) { 408 ++IndexSummariesIter; 409 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 410 } 411 } 412 return *this; 413 } 414 415 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 416 /// outer and inner iterator positions. 417 GVInfo operator*() { 418 if (Writer.ModuleToSummariesForIndex) 419 return std::make_pair(ModuleGVSummariesIter->first, 420 ModuleGVSummariesIter->second); 421 return std::make_pair(IndexSummariesIter->first, 422 IndexGVSummariesIter->get()); 423 } 424 425 /// Checks if the iterators are equal, with special handling for empty 426 /// indexes. 427 bool operator==(const iterator &RHS) const { 428 if (Writer.ModuleToSummariesForIndex) { 429 // First ensure that both are writing the same subset. 430 if (Writer.ModuleToSummariesForIndex != 431 RHS.Writer.ModuleToSummariesForIndex) 432 return false; 433 // Already determined above that maps are the same, so if one is 434 // empty, they both are. 435 if (Writer.ModuleToSummariesForIndex->empty()) 436 return true; 437 // Ensure the ModuleGVSummariesIter are iterating over the same 438 // container before checking them below. 439 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 440 return false; 441 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 442 } 443 // First ensure RHS also writing the full index, and that both are 444 // writing the same full index. 445 if (RHS.Writer.ModuleToSummariesForIndex || 446 &Writer.Index != &RHS.Writer.Index) 447 return false; 448 // Already determined above that maps are the same, so if one is 449 // empty, they both are. 450 if (Writer.Index.begin() == Writer.Index.end()) 451 return true; 452 // Ensure the IndexGVSummariesIter are iterating over the same 453 // container before checking them below. 454 if (IndexSummariesIter != RHS.IndexSummariesIter) 455 return false; 456 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 457 } 458 }; 459 460 /// Obtain the start iterator over the summaries to be written. 461 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 462 /// Obtain the end iterator over the summaries to be written. 463 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 464 465 /// Main entry point for writing a combined index to bitcode. 466 void write(); 467 468 private: 469 void writeIndex(); 470 void writeModStrings(); 471 void writeCombinedValueSymbolTable(); 472 void writeCombinedGlobalValueSummary(); 473 474 /// Indicates whether the provided \p ModulePath should be written into 475 /// the module string table, e.g. if full index written or if it is in 476 /// the provided subset. 477 bool doIncludeModule(StringRef ModulePath) { 478 return !ModuleToSummariesForIndex || 479 ModuleToSummariesForIndex->count(ModulePath); 480 } 481 482 bool hasValueId(GlobalValue::GUID ValGUID) { 483 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 484 return VMI != GUIDToValueIdMap.end(); 485 } 486 unsigned getValueId(GlobalValue::GUID ValGUID) { 487 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 488 // If this GUID doesn't have an entry, assign one. 489 if (VMI == GUIDToValueIdMap.end()) { 490 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 491 return GlobalValueId; 492 } else { 493 return VMI->second; 494 } 495 } 496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 497 }; 498 } // end anonymous namespace 499 500 static unsigned getEncodedCastOpcode(unsigned Opcode) { 501 switch (Opcode) { 502 default: llvm_unreachable("Unknown cast instruction!"); 503 case Instruction::Trunc : return bitc::CAST_TRUNC; 504 case Instruction::ZExt : return bitc::CAST_ZEXT; 505 case Instruction::SExt : return bitc::CAST_SEXT; 506 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 507 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 508 case Instruction::UIToFP : return bitc::CAST_UITOFP; 509 case Instruction::SIToFP : return bitc::CAST_SITOFP; 510 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 511 case Instruction::FPExt : return bitc::CAST_FPEXT; 512 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 513 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 514 case Instruction::BitCast : return bitc::CAST_BITCAST; 515 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 516 } 517 } 518 519 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 520 switch (Opcode) { 521 default: llvm_unreachable("Unknown binary instruction!"); 522 case Instruction::Add: 523 case Instruction::FAdd: return bitc::BINOP_ADD; 524 case Instruction::Sub: 525 case Instruction::FSub: return bitc::BINOP_SUB; 526 case Instruction::Mul: 527 case Instruction::FMul: return bitc::BINOP_MUL; 528 case Instruction::UDiv: return bitc::BINOP_UDIV; 529 case Instruction::FDiv: 530 case Instruction::SDiv: return bitc::BINOP_SDIV; 531 case Instruction::URem: return bitc::BINOP_UREM; 532 case Instruction::FRem: 533 case Instruction::SRem: return bitc::BINOP_SREM; 534 case Instruction::Shl: return bitc::BINOP_SHL; 535 case Instruction::LShr: return bitc::BINOP_LSHR; 536 case Instruction::AShr: return bitc::BINOP_ASHR; 537 case Instruction::And: return bitc::BINOP_AND; 538 case Instruction::Or: return bitc::BINOP_OR; 539 case Instruction::Xor: return bitc::BINOP_XOR; 540 } 541 } 542 543 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 544 switch (Op) { 545 default: llvm_unreachable("Unknown RMW operation!"); 546 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 547 case AtomicRMWInst::Add: return bitc::RMW_ADD; 548 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 549 case AtomicRMWInst::And: return bitc::RMW_AND; 550 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 551 case AtomicRMWInst::Or: return bitc::RMW_OR; 552 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 553 case AtomicRMWInst::Max: return bitc::RMW_MAX; 554 case AtomicRMWInst::Min: return bitc::RMW_MIN; 555 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 556 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 557 } 558 } 559 560 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 561 switch (Ordering) { 562 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 563 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 564 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 565 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 566 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 567 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 568 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 569 } 570 llvm_unreachable("Invalid ordering"); 571 } 572 573 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 574 switch (SynchScope) { 575 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 576 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 577 } 578 llvm_unreachable("Invalid synch scope"); 579 } 580 581 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 582 StringRef Str, unsigned AbbrevToUse) { 583 SmallVector<unsigned, 64> Vals; 584 585 // Code: [strchar x N] 586 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 587 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 588 AbbrevToUse = 0; 589 Vals.push_back(Str[i]); 590 } 591 592 // Emit the finished record. 593 Stream.EmitRecord(Code, Vals, AbbrevToUse); 594 } 595 596 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 597 switch (Kind) { 598 case Attribute::Alignment: 599 return bitc::ATTR_KIND_ALIGNMENT; 600 case Attribute::AllocSize: 601 return bitc::ATTR_KIND_ALLOC_SIZE; 602 case Attribute::AlwaysInline: 603 return bitc::ATTR_KIND_ALWAYS_INLINE; 604 case Attribute::ArgMemOnly: 605 return bitc::ATTR_KIND_ARGMEMONLY; 606 case Attribute::Builtin: 607 return bitc::ATTR_KIND_BUILTIN; 608 case Attribute::ByVal: 609 return bitc::ATTR_KIND_BY_VAL; 610 case Attribute::Convergent: 611 return bitc::ATTR_KIND_CONVERGENT; 612 case Attribute::InAlloca: 613 return bitc::ATTR_KIND_IN_ALLOCA; 614 case Attribute::Cold: 615 return bitc::ATTR_KIND_COLD; 616 case Attribute::InaccessibleMemOnly: 617 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 618 case Attribute::InaccessibleMemOrArgMemOnly: 619 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 620 case Attribute::InlineHint: 621 return bitc::ATTR_KIND_INLINE_HINT; 622 case Attribute::InReg: 623 return bitc::ATTR_KIND_IN_REG; 624 case Attribute::JumpTable: 625 return bitc::ATTR_KIND_JUMP_TABLE; 626 case Attribute::MinSize: 627 return bitc::ATTR_KIND_MIN_SIZE; 628 case Attribute::Naked: 629 return bitc::ATTR_KIND_NAKED; 630 case Attribute::Nest: 631 return bitc::ATTR_KIND_NEST; 632 case Attribute::NoAlias: 633 return bitc::ATTR_KIND_NO_ALIAS; 634 case Attribute::NoBuiltin: 635 return bitc::ATTR_KIND_NO_BUILTIN; 636 case Attribute::NoCapture: 637 return bitc::ATTR_KIND_NO_CAPTURE; 638 case Attribute::NoDuplicate: 639 return bitc::ATTR_KIND_NO_DUPLICATE; 640 case Attribute::NoImplicitFloat: 641 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 642 case Attribute::NoInline: 643 return bitc::ATTR_KIND_NO_INLINE; 644 case Attribute::NoRecurse: 645 return bitc::ATTR_KIND_NO_RECURSE; 646 case Attribute::NonLazyBind: 647 return bitc::ATTR_KIND_NON_LAZY_BIND; 648 case Attribute::NonNull: 649 return bitc::ATTR_KIND_NON_NULL; 650 case Attribute::Dereferenceable: 651 return bitc::ATTR_KIND_DEREFERENCEABLE; 652 case Attribute::DereferenceableOrNull: 653 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 654 case Attribute::NoRedZone: 655 return bitc::ATTR_KIND_NO_RED_ZONE; 656 case Attribute::NoReturn: 657 return bitc::ATTR_KIND_NO_RETURN; 658 case Attribute::NoUnwind: 659 return bitc::ATTR_KIND_NO_UNWIND; 660 case Attribute::OptimizeForSize: 661 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 662 case Attribute::OptimizeNone: 663 return bitc::ATTR_KIND_OPTIMIZE_NONE; 664 case Attribute::ReadNone: 665 return bitc::ATTR_KIND_READ_NONE; 666 case Attribute::ReadOnly: 667 return bitc::ATTR_KIND_READ_ONLY; 668 case Attribute::Returned: 669 return bitc::ATTR_KIND_RETURNED; 670 case Attribute::ReturnsTwice: 671 return bitc::ATTR_KIND_RETURNS_TWICE; 672 case Attribute::SExt: 673 return bitc::ATTR_KIND_S_EXT; 674 case Attribute::StackAlignment: 675 return bitc::ATTR_KIND_STACK_ALIGNMENT; 676 case Attribute::StackProtect: 677 return bitc::ATTR_KIND_STACK_PROTECT; 678 case Attribute::StackProtectReq: 679 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 680 case Attribute::StackProtectStrong: 681 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 682 case Attribute::SafeStack: 683 return bitc::ATTR_KIND_SAFESTACK; 684 case Attribute::StructRet: 685 return bitc::ATTR_KIND_STRUCT_RET; 686 case Attribute::SanitizeAddress: 687 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 688 case Attribute::SanitizeThread: 689 return bitc::ATTR_KIND_SANITIZE_THREAD; 690 case Attribute::SanitizeMemory: 691 return bitc::ATTR_KIND_SANITIZE_MEMORY; 692 case Attribute::SwiftError: 693 return bitc::ATTR_KIND_SWIFT_ERROR; 694 case Attribute::SwiftSelf: 695 return bitc::ATTR_KIND_SWIFT_SELF; 696 case Attribute::UWTable: 697 return bitc::ATTR_KIND_UW_TABLE; 698 case Attribute::WriteOnly: 699 return bitc::ATTR_KIND_WRITEONLY; 700 case Attribute::ZExt: 701 return bitc::ATTR_KIND_Z_EXT; 702 case Attribute::EndAttrKinds: 703 llvm_unreachable("Can not encode end-attribute kinds marker."); 704 case Attribute::None: 705 llvm_unreachable("Can not encode none-attribute."); 706 } 707 708 llvm_unreachable("Trying to encode unknown attribute"); 709 } 710 711 void ModuleBitcodeWriter::writeAttributeGroupTable() { 712 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 713 if (AttrGrps.empty()) return; 714 715 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 716 717 SmallVector<uint64_t, 64> Record; 718 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 719 AttributeSet AS = AttrGrps[i]; 720 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 721 AttributeSet A = AS.getSlotAttributes(i); 722 723 Record.push_back(VE.getAttributeGroupID(A)); 724 Record.push_back(AS.getSlotIndex(i)); 725 726 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 727 I != E; ++I) { 728 Attribute Attr = *I; 729 if (Attr.isEnumAttribute()) { 730 Record.push_back(0); 731 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 732 } else if (Attr.isIntAttribute()) { 733 Record.push_back(1); 734 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 735 Record.push_back(Attr.getValueAsInt()); 736 } else { 737 StringRef Kind = Attr.getKindAsString(); 738 StringRef Val = Attr.getValueAsString(); 739 740 Record.push_back(Val.empty() ? 3 : 4); 741 Record.append(Kind.begin(), Kind.end()); 742 Record.push_back(0); 743 if (!Val.empty()) { 744 Record.append(Val.begin(), Val.end()); 745 Record.push_back(0); 746 } 747 } 748 } 749 750 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 751 Record.clear(); 752 } 753 } 754 755 Stream.ExitBlock(); 756 } 757 758 void ModuleBitcodeWriter::writeAttributeTable() { 759 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 760 if (Attrs.empty()) return; 761 762 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 763 764 SmallVector<uint64_t, 64> Record; 765 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 766 const AttributeSet &A = Attrs[i]; 767 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 768 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 769 770 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 771 Record.clear(); 772 } 773 774 Stream.ExitBlock(); 775 } 776 777 /// WriteTypeTable - Write out the type table for a module. 778 void ModuleBitcodeWriter::writeTypeTable() { 779 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 780 781 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 782 SmallVector<uint64_t, 64> TypeVals; 783 784 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 785 786 // Abbrev for TYPE_CODE_POINTER. 787 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 788 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 790 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 791 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 792 793 // Abbrev for TYPE_CODE_FUNCTION. 794 Abbv = new BitCodeAbbrev(); 795 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 799 800 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 801 802 // Abbrev for TYPE_CODE_STRUCT_ANON. 803 Abbv = new BitCodeAbbrev(); 804 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 808 809 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 810 811 // Abbrev for TYPE_CODE_STRUCT_NAME. 812 Abbv = new BitCodeAbbrev(); 813 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 816 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 817 818 // Abbrev for TYPE_CODE_STRUCT_NAMED. 819 Abbv = new BitCodeAbbrev(); 820 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 824 825 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 826 827 // Abbrev for TYPE_CODE_ARRAY. 828 Abbv = new BitCodeAbbrev(); 829 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 832 833 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 834 835 // Emit an entry count so the reader can reserve space. 836 TypeVals.push_back(TypeList.size()); 837 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 838 TypeVals.clear(); 839 840 // Loop over all of the types, emitting each in turn. 841 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 842 Type *T = TypeList[i]; 843 int AbbrevToUse = 0; 844 unsigned Code = 0; 845 846 switch (T->getTypeID()) { 847 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 848 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 849 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 850 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 851 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 852 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 853 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 854 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 855 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 856 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 857 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 858 case Type::IntegerTyID: 859 // INTEGER: [width] 860 Code = bitc::TYPE_CODE_INTEGER; 861 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 862 break; 863 case Type::PointerTyID: { 864 PointerType *PTy = cast<PointerType>(T); 865 // POINTER: [pointee type, address space] 866 Code = bitc::TYPE_CODE_POINTER; 867 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 868 unsigned AddressSpace = PTy->getAddressSpace(); 869 TypeVals.push_back(AddressSpace); 870 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 871 break; 872 } 873 case Type::FunctionTyID: { 874 FunctionType *FT = cast<FunctionType>(T); 875 // FUNCTION: [isvararg, retty, paramty x N] 876 Code = bitc::TYPE_CODE_FUNCTION; 877 TypeVals.push_back(FT->isVarArg()); 878 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 879 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 880 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 881 AbbrevToUse = FunctionAbbrev; 882 break; 883 } 884 case Type::StructTyID: { 885 StructType *ST = cast<StructType>(T); 886 // STRUCT: [ispacked, eltty x N] 887 TypeVals.push_back(ST->isPacked()); 888 // Output all of the element types. 889 for (StructType::element_iterator I = ST->element_begin(), 890 E = ST->element_end(); I != E; ++I) 891 TypeVals.push_back(VE.getTypeID(*I)); 892 893 if (ST->isLiteral()) { 894 Code = bitc::TYPE_CODE_STRUCT_ANON; 895 AbbrevToUse = StructAnonAbbrev; 896 } else { 897 if (ST->isOpaque()) { 898 Code = bitc::TYPE_CODE_OPAQUE; 899 } else { 900 Code = bitc::TYPE_CODE_STRUCT_NAMED; 901 AbbrevToUse = StructNamedAbbrev; 902 } 903 904 // Emit the name if it is present. 905 if (!ST->getName().empty()) 906 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 907 StructNameAbbrev); 908 } 909 break; 910 } 911 case Type::ArrayTyID: { 912 ArrayType *AT = cast<ArrayType>(T); 913 // ARRAY: [numelts, eltty] 914 Code = bitc::TYPE_CODE_ARRAY; 915 TypeVals.push_back(AT->getNumElements()); 916 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 917 AbbrevToUse = ArrayAbbrev; 918 break; 919 } 920 case Type::VectorTyID: { 921 VectorType *VT = cast<VectorType>(T); 922 // VECTOR [numelts, eltty] 923 Code = bitc::TYPE_CODE_VECTOR; 924 TypeVals.push_back(VT->getNumElements()); 925 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 926 break; 927 } 928 } 929 930 // Emit the finished record. 931 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 932 TypeVals.clear(); 933 } 934 935 Stream.ExitBlock(); 936 } 937 938 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 939 switch (Linkage) { 940 case GlobalValue::ExternalLinkage: 941 return 0; 942 case GlobalValue::WeakAnyLinkage: 943 return 16; 944 case GlobalValue::AppendingLinkage: 945 return 2; 946 case GlobalValue::InternalLinkage: 947 return 3; 948 case GlobalValue::LinkOnceAnyLinkage: 949 return 18; 950 case GlobalValue::ExternalWeakLinkage: 951 return 7; 952 case GlobalValue::CommonLinkage: 953 return 8; 954 case GlobalValue::PrivateLinkage: 955 return 9; 956 case GlobalValue::WeakODRLinkage: 957 return 17; 958 case GlobalValue::LinkOnceODRLinkage: 959 return 19; 960 case GlobalValue::AvailableExternallyLinkage: 961 return 12; 962 } 963 llvm_unreachable("Invalid linkage"); 964 } 965 966 static unsigned getEncodedLinkage(const GlobalValue &GV) { 967 return getEncodedLinkage(GV.getLinkage()); 968 } 969 970 // Decode the flags for GlobalValue in the summary 971 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 972 uint64_t RawFlags = 0; 973 974 RawFlags |= Flags.NoRename; // bool 975 RawFlags |= (Flags.IsNotViableToInline << 1); 976 RawFlags |= (Flags.HasInlineAsmMaybeReferencingInternal << 2); 977 // Linkage don't need to be remapped at that time for the summary. Any future 978 // change to the getEncodedLinkage() function will need to be taken into 979 // account here as well. 980 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 981 982 return RawFlags; 983 } 984 985 static unsigned getEncodedVisibility(const GlobalValue &GV) { 986 switch (GV.getVisibility()) { 987 case GlobalValue::DefaultVisibility: return 0; 988 case GlobalValue::HiddenVisibility: return 1; 989 case GlobalValue::ProtectedVisibility: return 2; 990 } 991 llvm_unreachable("Invalid visibility"); 992 } 993 994 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 995 switch (GV.getDLLStorageClass()) { 996 case GlobalValue::DefaultStorageClass: return 0; 997 case GlobalValue::DLLImportStorageClass: return 1; 998 case GlobalValue::DLLExportStorageClass: return 2; 999 } 1000 llvm_unreachable("Invalid DLL storage class"); 1001 } 1002 1003 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1004 switch (GV.getThreadLocalMode()) { 1005 case GlobalVariable::NotThreadLocal: return 0; 1006 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1007 case GlobalVariable::LocalDynamicTLSModel: return 2; 1008 case GlobalVariable::InitialExecTLSModel: return 3; 1009 case GlobalVariable::LocalExecTLSModel: return 4; 1010 } 1011 llvm_unreachable("Invalid TLS model"); 1012 } 1013 1014 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1015 switch (C.getSelectionKind()) { 1016 case Comdat::Any: 1017 return bitc::COMDAT_SELECTION_KIND_ANY; 1018 case Comdat::ExactMatch: 1019 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1020 case Comdat::Largest: 1021 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1022 case Comdat::NoDuplicates: 1023 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1024 case Comdat::SameSize: 1025 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1026 } 1027 llvm_unreachable("Invalid selection kind"); 1028 } 1029 1030 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1031 switch (GV.getUnnamedAddr()) { 1032 case GlobalValue::UnnamedAddr::None: return 0; 1033 case GlobalValue::UnnamedAddr::Local: return 2; 1034 case GlobalValue::UnnamedAddr::Global: return 1; 1035 } 1036 llvm_unreachable("Invalid unnamed_addr"); 1037 } 1038 1039 void ModuleBitcodeWriter::writeComdats() { 1040 SmallVector<unsigned, 64> Vals; 1041 for (const Comdat *C : VE.getComdats()) { 1042 // COMDAT: [selection_kind, name] 1043 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1044 size_t Size = C->getName().size(); 1045 assert(isUInt<32>(Size)); 1046 Vals.push_back(Size); 1047 for (char Chr : C->getName()) 1048 Vals.push_back((unsigned char)Chr); 1049 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1050 Vals.clear(); 1051 } 1052 } 1053 1054 /// Write a record that will eventually hold the word offset of the 1055 /// module-level VST. For now the offset is 0, which will be backpatched 1056 /// after the real VST is written. Saves the bit offset to backpatch. 1057 void BitcodeWriterBase::writeValueSymbolTableForwardDecl() { 1058 // Write a placeholder value in for the offset of the real VST, 1059 // which is written after the function blocks so that it can include 1060 // the offset of each function. The placeholder offset will be 1061 // updated when the real VST is written. 1062 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1063 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1064 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1065 // hold the real VST offset. Must use fixed instead of VBR as we don't 1066 // know how many VBR chunks to reserve ahead of time. 1067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1068 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 1069 1070 // Emit the placeholder 1071 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1072 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1073 1074 // Compute and save the bit offset to the placeholder, which will be 1075 // patched when the real VST is written. We can simply subtract the 32-bit 1076 // fixed size from the current bit number to get the location to backpatch. 1077 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1078 } 1079 1080 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1081 1082 /// Determine the encoding to use for the given string name and length. 1083 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1084 bool isChar6 = true; 1085 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1086 if (isChar6) 1087 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1088 if ((unsigned char)*C & 128) 1089 // don't bother scanning the rest. 1090 return SE_Fixed8; 1091 } 1092 if (isChar6) 1093 return SE_Char6; 1094 else 1095 return SE_Fixed7; 1096 } 1097 1098 /// Emit top-level description of module, including target triple, inline asm, 1099 /// descriptors for global variables, and function prototype info. 1100 /// Returns the bit offset to backpatch with the location of the real VST. 1101 void ModuleBitcodeWriter::writeModuleInfo() { 1102 // Emit various pieces of data attached to a module. 1103 if (!M.getTargetTriple().empty()) 1104 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1105 0 /*TODO*/); 1106 const std::string &DL = M.getDataLayoutStr(); 1107 if (!DL.empty()) 1108 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1109 if (!M.getModuleInlineAsm().empty()) 1110 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1111 0 /*TODO*/); 1112 1113 // Emit information about sections and GC, computing how many there are. Also 1114 // compute the maximum alignment value. 1115 std::map<std::string, unsigned> SectionMap; 1116 std::map<std::string, unsigned> GCMap; 1117 unsigned MaxAlignment = 0; 1118 unsigned MaxGlobalType = 0; 1119 for (const GlobalValue &GV : M.globals()) { 1120 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1121 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1122 if (GV.hasSection()) { 1123 // Give section names unique ID's. 1124 unsigned &Entry = SectionMap[GV.getSection()]; 1125 if (!Entry) { 1126 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1127 0 /*TODO*/); 1128 Entry = SectionMap.size(); 1129 } 1130 } 1131 } 1132 for (const Function &F : M) { 1133 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1134 if (F.hasSection()) { 1135 // Give section names unique ID's. 1136 unsigned &Entry = SectionMap[F.getSection()]; 1137 if (!Entry) { 1138 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1139 0 /*TODO*/); 1140 Entry = SectionMap.size(); 1141 } 1142 } 1143 if (F.hasGC()) { 1144 // Same for GC names. 1145 unsigned &Entry = GCMap[F.getGC()]; 1146 if (!Entry) { 1147 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1148 0 /*TODO*/); 1149 Entry = GCMap.size(); 1150 } 1151 } 1152 } 1153 1154 // Emit abbrev for globals, now that we know # sections and max alignment. 1155 unsigned SimpleGVarAbbrev = 0; 1156 if (!M.global_empty()) { 1157 // Add an abbrev for common globals with no visibility or thread localness. 1158 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1159 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1161 Log2_32_Ceil(MaxGlobalType+1))); 1162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1163 //| explicitType << 1 1164 //| constant 1165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1167 if (MaxAlignment == 0) // Alignment. 1168 Abbv->Add(BitCodeAbbrevOp(0)); 1169 else { 1170 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1172 Log2_32_Ceil(MaxEncAlignment+1))); 1173 } 1174 if (SectionMap.empty()) // Section. 1175 Abbv->Add(BitCodeAbbrevOp(0)); 1176 else 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1178 Log2_32_Ceil(SectionMap.size()+1))); 1179 // Don't bother emitting vis + thread local. 1180 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 1181 } 1182 1183 // Emit the global variable information. 1184 SmallVector<unsigned, 64> Vals; 1185 for (const GlobalVariable &GV : M.globals()) { 1186 unsigned AbbrevToUse = 0; 1187 1188 // GLOBALVAR: [type, isconst, initid, 1189 // linkage, alignment, section, visibility, threadlocal, 1190 // unnamed_addr, externally_initialized, dllstorageclass, 1191 // comdat] 1192 Vals.push_back(VE.getTypeID(GV.getValueType())); 1193 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1194 Vals.push_back(GV.isDeclaration() ? 0 : 1195 (VE.getValueID(GV.getInitializer()) + 1)); 1196 Vals.push_back(getEncodedLinkage(GV)); 1197 Vals.push_back(Log2_32(GV.getAlignment())+1); 1198 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1199 if (GV.isThreadLocal() || 1200 GV.getVisibility() != GlobalValue::DefaultVisibility || 1201 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1202 GV.isExternallyInitialized() || 1203 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1204 GV.hasComdat()) { 1205 Vals.push_back(getEncodedVisibility(GV)); 1206 Vals.push_back(getEncodedThreadLocalMode(GV)); 1207 Vals.push_back(getEncodedUnnamedAddr(GV)); 1208 Vals.push_back(GV.isExternallyInitialized()); 1209 Vals.push_back(getEncodedDLLStorageClass(GV)); 1210 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1211 } else { 1212 AbbrevToUse = SimpleGVarAbbrev; 1213 } 1214 1215 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1216 Vals.clear(); 1217 } 1218 1219 // Emit the function proto information. 1220 for (const Function &F : M) { 1221 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1222 // section, visibility, gc, unnamed_addr, prologuedata, 1223 // dllstorageclass, comdat, prefixdata, personalityfn] 1224 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1225 Vals.push_back(F.getCallingConv()); 1226 Vals.push_back(F.isDeclaration()); 1227 Vals.push_back(getEncodedLinkage(F)); 1228 Vals.push_back(VE.getAttributeID(F.getAttributes())); 1229 Vals.push_back(Log2_32(F.getAlignment())+1); 1230 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1231 Vals.push_back(getEncodedVisibility(F)); 1232 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1233 Vals.push_back(getEncodedUnnamedAddr(F)); 1234 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1235 : 0); 1236 Vals.push_back(getEncodedDLLStorageClass(F)); 1237 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1238 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1239 : 0); 1240 Vals.push_back( 1241 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1242 1243 unsigned AbbrevToUse = 0; 1244 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1245 Vals.clear(); 1246 } 1247 1248 // Emit the alias information. 1249 for (const GlobalAlias &A : M.aliases()) { 1250 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass, 1251 // threadlocal, unnamed_addr] 1252 Vals.push_back(VE.getTypeID(A.getValueType())); 1253 Vals.push_back(A.getType()->getAddressSpace()); 1254 Vals.push_back(VE.getValueID(A.getAliasee())); 1255 Vals.push_back(getEncodedLinkage(A)); 1256 Vals.push_back(getEncodedVisibility(A)); 1257 Vals.push_back(getEncodedDLLStorageClass(A)); 1258 Vals.push_back(getEncodedThreadLocalMode(A)); 1259 Vals.push_back(getEncodedUnnamedAddr(A)); 1260 unsigned AbbrevToUse = 0; 1261 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1262 Vals.clear(); 1263 } 1264 1265 // Emit the ifunc information. 1266 for (const GlobalIFunc &I : M.ifuncs()) { 1267 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 1268 Vals.push_back(VE.getTypeID(I.getValueType())); 1269 Vals.push_back(I.getType()->getAddressSpace()); 1270 Vals.push_back(VE.getValueID(I.getResolver())); 1271 Vals.push_back(getEncodedLinkage(I)); 1272 Vals.push_back(getEncodedVisibility(I)); 1273 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1274 Vals.clear(); 1275 } 1276 1277 // Emit the module's source file name. 1278 { 1279 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1280 M.getSourceFileName().size()); 1281 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1282 if (Bits == SE_Char6) 1283 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1284 else if (Bits == SE_Fixed7) 1285 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1286 1287 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1288 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1289 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1291 Abbv->Add(AbbrevOpToUse); 1292 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 1293 1294 for (const auto P : M.getSourceFileName()) 1295 Vals.push_back((unsigned char)P); 1296 1297 // Emit the finished record. 1298 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1299 Vals.clear(); 1300 } 1301 1302 // If we have a VST, write the VSTOFFSET record placeholder. 1303 if (M.getValueSymbolTable().empty()) 1304 return; 1305 writeValueSymbolTableForwardDecl(); 1306 } 1307 1308 static uint64_t getOptimizationFlags(const Value *V) { 1309 uint64_t Flags = 0; 1310 1311 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1312 if (OBO->hasNoSignedWrap()) 1313 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1314 if (OBO->hasNoUnsignedWrap()) 1315 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1316 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1317 if (PEO->isExact()) 1318 Flags |= 1 << bitc::PEO_EXACT; 1319 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1320 if (FPMO->hasUnsafeAlgebra()) 1321 Flags |= FastMathFlags::UnsafeAlgebra; 1322 if (FPMO->hasNoNaNs()) 1323 Flags |= FastMathFlags::NoNaNs; 1324 if (FPMO->hasNoInfs()) 1325 Flags |= FastMathFlags::NoInfs; 1326 if (FPMO->hasNoSignedZeros()) 1327 Flags |= FastMathFlags::NoSignedZeros; 1328 if (FPMO->hasAllowReciprocal()) 1329 Flags |= FastMathFlags::AllowReciprocal; 1330 } 1331 1332 return Flags; 1333 } 1334 1335 void ModuleBitcodeWriter::writeValueAsMetadata( 1336 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1337 // Mimic an MDNode with a value as one operand. 1338 Value *V = MD->getValue(); 1339 Record.push_back(VE.getTypeID(V->getType())); 1340 Record.push_back(VE.getValueID(V)); 1341 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1342 Record.clear(); 1343 } 1344 1345 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1346 SmallVectorImpl<uint64_t> &Record, 1347 unsigned Abbrev) { 1348 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1349 Metadata *MD = N->getOperand(i); 1350 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1351 "Unexpected function-local metadata"); 1352 Record.push_back(VE.getMetadataOrNullID(MD)); 1353 } 1354 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1355 : bitc::METADATA_NODE, 1356 Record, Abbrev); 1357 Record.clear(); 1358 } 1359 1360 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1361 // Assume the column is usually under 128, and always output the inlined-at 1362 // location (it's never more expensive than building an array size 1). 1363 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1364 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1370 return Stream.EmitAbbrev(Abbv); 1371 } 1372 1373 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1374 SmallVectorImpl<uint64_t> &Record, 1375 unsigned &Abbrev) { 1376 if (!Abbrev) 1377 Abbrev = createDILocationAbbrev(); 1378 1379 Record.push_back(N->isDistinct()); 1380 Record.push_back(N->getLine()); 1381 Record.push_back(N->getColumn()); 1382 Record.push_back(VE.getMetadataID(N->getScope())); 1383 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1384 1385 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1386 Record.clear(); 1387 } 1388 1389 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1390 // Assume the column is usually under 128, and always output the inlined-at 1391 // location (it's never more expensive than building an array size 1). 1392 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1393 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1400 return Stream.EmitAbbrev(Abbv); 1401 } 1402 1403 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1404 SmallVectorImpl<uint64_t> &Record, 1405 unsigned &Abbrev) { 1406 if (!Abbrev) 1407 Abbrev = createGenericDINodeAbbrev(); 1408 1409 Record.push_back(N->isDistinct()); 1410 Record.push_back(N->getTag()); 1411 Record.push_back(0); // Per-tag version field; unused for now. 1412 1413 for (auto &I : N->operands()) 1414 Record.push_back(VE.getMetadataOrNullID(I)); 1415 1416 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1417 Record.clear(); 1418 } 1419 1420 static uint64_t rotateSign(int64_t I) { 1421 uint64_t U = I; 1422 return I < 0 ? ~(U << 1) : U << 1; 1423 } 1424 1425 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1426 SmallVectorImpl<uint64_t> &Record, 1427 unsigned Abbrev) { 1428 Record.push_back(N->isDistinct()); 1429 Record.push_back(N->getCount()); 1430 Record.push_back(rotateSign(N->getLowerBound())); 1431 1432 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1433 Record.clear(); 1434 } 1435 1436 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1437 SmallVectorImpl<uint64_t> &Record, 1438 unsigned Abbrev) { 1439 Record.push_back(N->isDistinct()); 1440 Record.push_back(rotateSign(N->getValue())); 1441 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1442 1443 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1444 Record.clear(); 1445 } 1446 1447 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1448 SmallVectorImpl<uint64_t> &Record, 1449 unsigned Abbrev) { 1450 Record.push_back(N->isDistinct()); 1451 Record.push_back(N->getTag()); 1452 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1453 Record.push_back(N->getSizeInBits()); 1454 Record.push_back(N->getAlignInBits()); 1455 Record.push_back(N->getEncoding()); 1456 1457 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1458 Record.clear(); 1459 } 1460 1461 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1462 SmallVectorImpl<uint64_t> &Record, 1463 unsigned Abbrev) { 1464 Record.push_back(N->isDistinct()); 1465 Record.push_back(N->getTag()); 1466 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1467 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1468 Record.push_back(N->getLine()); 1469 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1470 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1471 Record.push_back(N->getSizeInBits()); 1472 Record.push_back(N->getAlignInBits()); 1473 Record.push_back(N->getOffsetInBits()); 1474 Record.push_back(N->getFlags()); 1475 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1476 1477 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1478 Record.clear(); 1479 } 1480 1481 void ModuleBitcodeWriter::writeDICompositeType( 1482 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1483 unsigned Abbrev) { 1484 const unsigned IsNotUsedInOldTypeRef = 0x2; 1485 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1486 Record.push_back(N->getTag()); 1487 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1488 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1489 Record.push_back(N->getLine()); 1490 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1491 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1492 Record.push_back(N->getSizeInBits()); 1493 Record.push_back(N->getAlignInBits()); 1494 Record.push_back(N->getOffsetInBits()); 1495 Record.push_back(N->getFlags()); 1496 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1497 Record.push_back(N->getRuntimeLang()); 1498 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1499 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1500 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1501 1502 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1503 Record.clear(); 1504 } 1505 1506 void ModuleBitcodeWriter::writeDISubroutineType( 1507 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1508 unsigned Abbrev) { 1509 const unsigned HasNoOldTypeRefs = 0x2; 1510 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1511 Record.push_back(N->getFlags()); 1512 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1513 Record.push_back(N->getCC()); 1514 1515 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1516 Record.clear(); 1517 } 1518 1519 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1520 SmallVectorImpl<uint64_t> &Record, 1521 unsigned Abbrev) { 1522 Record.push_back(N->isDistinct()); 1523 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1524 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1525 Record.push_back(N->getChecksumKind()); 1526 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1527 1528 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1529 Record.clear(); 1530 } 1531 1532 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1533 SmallVectorImpl<uint64_t> &Record, 1534 unsigned Abbrev) { 1535 assert(N->isDistinct() && "Expected distinct compile units"); 1536 Record.push_back(/* IsDistinct */ true); 1537 Record.push_back(N->getSourceLanguage()); 1538 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1539 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1540 Record.push_back(N->isOptimized()); 1541 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1542 Record.push_back(N->getRuntimeVersion()); 1543 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1544 Record.push_back(N->getEmissionKind()); 1545 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1546 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1547 Record.push_back(/* subprograms */ 0); 1548 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1549 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1550 Record.push_back(N->getDWOId()); 1551 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1552 Record.push_back(N->getSplitDebugInlining()); 1553 1554 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1555 Record.clear(); 1556 } 1557 1558 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1559 SmallVectorImpl<uint64_t> &Record, 1560 unsigned Abbrev) { 1561 uint64_t HasUnitFlag = 1 << 1; 1562 Record.push_back(N->isDistinct() | HasUnitFlag); 1563 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1564 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1565 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1566 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1567 Record.push_back(N->getLine()); 1568 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1569 Record.push_back(N->isLocalToUnit()); 1570 Record.push_back(N->isDefinition()); 1571 Record.push_back(N->getScopeLine()); 1572 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1573 Record.push_back(N->getVirtuality()); 1574 Record.push_back(N->getVirtualIndex()); 1575 Record.push_back(N->getFlags()); 1576 Record.push_back(N->isOptimized()); 1577 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1578 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1579 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1580 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1581 Record.push_back(N->getThisAdjustment()); 1582 1583 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1584 Record.clear(); 1585 } 1586 1587 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1588 SmallVectorImpl<uint64_t> &Record, 1589 unsigned Abbrev) { 1590 Record.push_back(N->isDistinct()); 1591 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1593 Record.push_back(N->getLine()); 1594 Record.push_back(N->getColumn()); 1595 1596 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1597 Record.clear(); 1598 } 1599 1600 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1601 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1602 unsigned Abbrev) { 1603 Record.push_back(N->isDistinct()); 1604 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1605 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1606 Record.push_back(N->getDiscriminator()); 1607 1608 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1609 Record.clear(); 1610 } 1611 1612 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1613 SmallVectorImpl<uint64_t> &Record, 1614 unsigned Abbrev) { 1615 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1616 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1617 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1618 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1619 Record.push_back(N->getLine()); 1620 1621 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1622 Record.clear(); 1623 } 1624 1625 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1626 SmallVectorImpl<uint64_t> &Record, 1627 unsigned Abbrev) { 1628 Record.push_back(N->isDistinct()); 1629 Record.push_back(N->getMacinfoType()); 1630 Record.push_back(N->getLine()); 1631 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1632 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1633 1634 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1635 Record.clear(); 1636 } 1637 1638 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1639 SmallVectorImpl<uint64_t> &Record, 1640 unsigned Abbrev) { 1641 Record.push_back(N->isDistinct()); 1642 Record.push_back(N->getMacinfoType()); 1643 Record.push_back(N->getLine()); 1644 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1645 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1646 1647 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1648 Record.clear(); 1649 } 1650 1651 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1652 SmallVectorImpl<uint64_t> &Record, 1653 unsigned Abbrev) { 1654 Record.push_back(N->isDistinct()); 1655 for (auto &I : N->operands()) 1656 Record.push_back(VE.getMetadataOrNullID(I)); 1657 1658 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1659 Record.clear(); 1660 } 1661 1662 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1663 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1664 unsigned Abbrev) { 1665 Record.push_back(N->isDistinct()); 1666 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1667 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1668 1669 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1670 Record.clear(); 1671 } 1672 1673 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1674 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1675 unsigned Abbrev) { 1676 Record.push_back(N->isDistinct()); 1677 Record.push_back(N->getTag()); 1678 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1679 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1680 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1681 1682 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1683 Record.clear(); 1684 } 1685 1686 void ModuleBitcodeWriter::writeDIGlobalVariable( 1687 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1688 unsigned Abbrev) { 1689 const uint64_t Version = 1 << 1; 1690 Record.push_back((uint64_t)N->isDistinct() | Version); 1691 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1693 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1694 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1695 Record.push_back(N->getLine()); 1696 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1697 Record.push_back(N->isLocalToUnit()); 1698 Record.push_back(N->isDefinition()); 1699 Record.push_back(/* expr */ 0); 1700 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1701 Record.push_back(N->getAlignInBits()); 1702 1703 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1704 Record.clear(); 1705 } 1706 1707 void ModuleBitcodeWriter::writeDILocalVariable( 1708 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1709 unsigned Abbrev) { 1710 // In order to support all possible bitcode formats in BitcodeReader we need 1711 // to distinguish the following cases: 1712 // 1) Record has no artificial tag (Record[1]), 1713 // has no obsolete inlinedAt field (Record[9]). 1714 // In this case Record size will be 8, HasAlignment flag is false. 1715 // 2) Record has artificial tag (Record[1]), 1716 // has no obsolete inlignedAt field (Record[9]). 1717 // In this case Record size will be 9, HasAlignment flag is false. 1718 // 3) Record has both artificial tag (Record[1]) and 1719 // obsolete inlignedAt field (Record[9]). 1720 // In this case Record size will be 10, HasAlignment flag is false. 1721 // 4) Record has neither artificial tag, nor inlignedAt field, but 1722 // HasAlignment flag is true and Record[8] contains alignment value. 1723 const uint64_t HasAlignmentFlag = 1 << 1; 1724 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1725 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1726 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1727 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1728 Record.push_back(N->getLine()); 1729 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1730 Record.push_back(N->getArg()); 1731 Record.push_back(N->getFlags()); 1732 Record.push_back(N->getAlignInBits()); 1733 1734 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1735 Record.clear(); 1736 } 1737 1738 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1739 SmallVectorImpl<uint64_t> &Record, 1740 unsigned Abbrev) { 1741 Record.reserve(N->getElements().size() + 1); 1742 1743 const uint64_t HasOpFragmentFlag = 1 << 1; 1744 Record.push_back((uint64_t)N->isDistinct() | HasOpFragmentFlag); 1745 Record.append(N->elements_begin(), N->elements_end()); 1746 1747 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1748 Record.clear(); 1749 } 1750 1751 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1752 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1753 unsigned Abbrev) { 1754 Record.push_back(N->isDistinct()); 1755 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1756 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1757 1758 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1759 Record.clear(); 1760 } 1761 1762 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1763 SmallVectorImpl<uint64_t> &Record, 1764 unsigned Abbrev) { 1765 Record.push_back(N->isDistinct()); 1766 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1767 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1768 Record.push_back(N->getLine()); 1769 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1770 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1771 Record.push_back(N->getAttributes()); 1772 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1773 1774 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1775 Record.clear(); 1776 } 1777 1778 void ModuleBitcodeWriter::writeDIImportedEntity( 1779 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1780 unsigned Abbrev) { 1781 Record.push_back(N->isDistinct()); 1782 Record.push_back(N->getTag()); 1783 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1784 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1785 Record.push_back(N->getLine()); 1786 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1787 1788 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1789 Record.clear(); 1790 } 1791 1792 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1793 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1794 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1797 return Stream.EmitAbbrev(Abbv); 1798 } 1799 1800 void ModuleBitcodeWriter::writeNamedMetadata( 1801 SmallVectorImpl<uint64_t> &Record) { 1802 if (M.named_metadata_empty()) 1803 return; 1804 1805 unsigned Abbrev = createNamedMetadataAbbrev(); 1806 for (const NamedMDNode &NMD : M.named_metadata()) { 1807 // Write name. 1808 StringRef Str = NMD.getName(); 1809 Record.append(Str.bytes_begin(), Str.bytes_end()); 1810 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1811 Record.clear(); 1812 1813 // Write named metadata operands. 1814 for (const MDNode *N : NMD.operands()) 1815 Record.push_back(VE.getMetadataID(N)); 1816 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1817 Record.clear(); 1818 } 1819 } 1820 1821 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1822 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1823 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1827 return Stream.EmitAbbrev(Abbv); 1828 } 1829 1830 /// Write out a record for MDString. 1831 /// 1832 /// All the metadata strings in a metadata block are emitted in a single 1833 /// record. The sizes and strings themselves are shoved into a blob. 1834 void ModuleBitcodeWriter::writeMetadataStrings( 1835 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1836 if (Strings.empty()) 1837 return; 1838 1839 // Start the record with the number of strings. 1840 Record.push_back(bitc::METADATA_STRINGS); 1841 Record.push_back(Strings.size()); 1842 1843 // Emit the sizes of the strings in the blob. 1844 SmallString<256> Blob; 1845 { 1846 BitstreamWriter W(Blob); 1847 for (const Metadata *MD : Strings) 1848 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1849 W.FlushToWord(); 1850 } 1851 1852 // Add the offset to the strings to the record. 1853 Record.push_back(Blob.size()); 1854 1855 // Add the strings to the blob. 1856 for (const Metadata *MD : Strings) 1857 Blob.append(cast<MDString>(MD)->getString()); 1858 1859 // Emit the final record. 1860 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1861 Record.clear(); 1862 } 1863 1864 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1865 enum MetadataAbbrev : unsigned { 1866 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1867 #include "llvm/IR/Metadata.def" 1868 LastPlusOne 1869 }; 1870 1871 void ModuleBitcodeWriter::writeMetadataRecords( 1872 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1873 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1874 if (MDs.empty()) 1875 return; 1876 1877 // Initialize MDNode abbreviations. 1878 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1879 #include "llvm/IR/Metadata.def" 1880 1881 for (const Metadata *MD : MDs) { 1882 if (IndexPos) 1883 IndexPos->push_back(Stream.GetCurrentBitNo()); 1884 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1885 assert(N->isResolved() && "Expected forward references to be resolved"); 1886 1887 switch (N->getMetadataID()) { 1888 default: 1889 llvm_unreachable("Invalid MDNode subclass"); 1890 #define HANDLE_MDNODE_LEAF(CLASS) \ 1891 case Metadata::CLASS##Kind: \ 1892 if (MDAbbrevs) \ 1893 write##CLASS(cast<CLASS>(N), Record, \ 1894 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1895 else \ 1896 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1897 continue; 1898 #include "llvm/IR/Metadata.def" 1899 } 1900 } 1901 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1902 } 1903 } 1904 1905 void ModuleBitcodeWriter::writeModuleMetadata() { 1906 if (!VE.hasMDs() && M.named_metadata_empty()) 1907 return; 1908 1909 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1910 SmallVector<uint64_t, 64> Record; 1911 1912 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1913 // block and load any metadata. 1914 std::vector<unsigned> MDAbbrevs; 1915 1916 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1917 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1918 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1919 createGenericDINodeAbbrev(); 1920 1921 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1922 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1925 unsigned OffsetAbbrev = Stream.EmitAbbrev(Abbv); 1926 1927 Abbv = new BitCodeAbbrev(); 1928 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1931 unsigned IndexAbbrev = Stream.EmitAbbrev(Abbv); 1932 1933 // Emit MDStrings together upfront. 1934 writeMetadataStrings(VE.getMDStrings(), Record); 1935 1936 // We only emit an index for the metadata record if we have more than a given 1937 // (naive) threshold of metadatas, otherwise it is not worth it. 1938 if (VE.getNonMDStrings().size() > IndexThreshold) { 1939 // Write a placeholder value in for the offset of the metadata index, 1940 // which is written after the records, so that it can include 1941 // the offset of each entry. The placeholder offset will be 1942 // updated after all records are emitted. 1943 uint64_t Vals[] = {0, 0}; 1944 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1945 } 1946 1947 // Compute and save the bit offset to the current position, which will be 1948 // patched when we emit the index later. We can simply subtract the 64-bit 1949 // fixed size from the current bit number to get the location to backpatch. 1950 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1951 1952 // This index will contain the bitpos for each individual record. 1953 std::vector<uint64_t> IndexPos; 1954 IndexPos.reserve(VE.getNonMDStrings().size()); 1955 1956 // Write all the records 1957 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1958 1959 if (VE.getNonMDStrings().size() > IndexThreshold) { 1960 // Now that we have emitted all the records we will emit the index. But 1961 // first 1962 // backpatch the forward reference so that the reader can skip the records 1963 // efficiently. 1964 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1965 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1966 1967 // Delta encode the index. 1968 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1969 for (auto &Elt : IndexPos) { 1970 auto EltDelta = Elt - PreviousValue; 1971 PreviousValue = Elt; 1972 Elt = EltDelta; 1973 } 1974 // Emit the index record. 1975 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1976 IndexPos.clear(); 1977 } 1978 1979 // Write the named metadata now. 1980 writeNamedMetadata(Record); 1981 1982 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1983 SmallVector<uint64_t, 4> Record; 1984 Record.push_back(VE.getValueID(&GO)); 1985 pushGlobalMetadataAttachment(Record, GO); 1986 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1987 }; 1988 for (const Function &F : M) 1989 if (F.isDeclaration() && F.hasMetadata()) 1990 AddDeclAttachedMetadata(F); 1991 // FIXME: Only store metadata for declarations here, and move data for global 1992 // variable definitions to a separate block (PR28134). 1993 for (const GlobalVariable &GV : M.globals()) 1994 if (GV.hasMetadata()) 1995 AddDeclAttachedMetadata(GV); 1996 1997 Stream.ExitBlock(); 1998 } 1999 2000 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2001 if (!VE.hasMDs()) 2002 return; 2003 2004 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2005 SmallVector<uint64_t, 64> Record; 2006 writeMetadataStrings(VE.getMDStrings(), Record); 2007 writeMetadataRecords(VE.getNonMDStrings(), Record); 2008 Stream.ExitBlock(); 2009 } 2010 2011 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2012 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2013 // [n x [id, mdnode]] 2014 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2015 GO.getAllMetadata(MDs); 2016 for (const auto &I : MDs) { 2017 Record.push_back(I.first); 2018 Record.push_back(VE.getMetadataID(I.second)); 2019 } 2020 } 2021 2022 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2023 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2024 2025 SmallVector<uint64_t, 64> Record; 2026 2027 if (F.hasMetadata()) { 2028 pushGlobalMetadataAttachment(Record, F); 2029 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2030 Record.clear(); 2031 } 2032 2033 // Write metadata attachments 2034 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2035 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2036 for (const BasicBlock &BB : F) 2037 for (const Instruction &I : BB) { 2038 MDs.clear(); 2039 I.getAllMetadataOtherThanDebugLoc(MDs); 2040 2041 // If no metadata, ignore instruction. 2042 if (MDs.empty()) continue; 2043 2044 Record.push_back(VE.getInstructionID(&I)); 2045 2046 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2047 Record.push_back(MDs[i].first); 2048 Record.push_back(VE.getMetadataID(MDs[i].second)); 2049 } 2050 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2051 Record.clear(); 2052 } 2053 2054 Stream.ExitBlock(); 2055 } 2056 2057 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2058 SmallVector<uint64_t, 64> Record; 2059 2060 // Write metadata kinds 2061 // METADATA_KIND - [n x [id, name]] 2062 SmallVector<StringRef, 8> Names; 2063 M.getMDKindNames(Names); 2064 2065 if (Names.empty()) return; 2066 2067 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2068 2069 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2070 Record.push_back(MDKindID); 2071 StringRef KName = Names[MDKindID]; 2072 Record.append(KName.begin(), KName.end()); 2073 2074 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2075 Record.clear(); 2076 } 2077 2078 Stream.ExitBlock(); 2079 } 2080 2081 void ModuleBitcodeWriter::writeOperandBundleTags() { 2082 // Write metadata kinds 2083 // 2084 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2085 // 2086 // OPERAND_BUNDLE_TAG - [strchr x N] 2087 2088 SmallVector<StringRef, 8> Tags; 2089 M.getOperandBundleTags(Tags); 2090 2091 if (Tags.empty()) 2092 return; 2093 2094 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2095 2096 SmallVector<uint64_t, 64> Record; 2097 2098 for (auto Tag : Tags) { 2099 Record.append(Tag.begin(), Tag.end()); 2100 2101 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2102 Record.clear(); 2103 } 2104 2105 Stream.ExitBlock(); 2106 } 2107 2108 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2109 if ((int64_t)V >= 0) 2110 Vals.push_back(V << 1); 2111 else 2112 Vals.push_back((-V << 1) | 1); 2113 } 2114 2115 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2116 bool isGlobal) { 2117 if (FirstVal == LastVal) return; 2118 2119 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2120 2121 unsigned AggregateAbbrev = 0; 2122 unsigned String8Abbrev = 0; 2123 unsigned CString7Abbrev = 0; 2124 unsigned CString6Abbrev = 0; 2125 // If this is a constant pool for the module, emit module-specific abbrevs. 2126 if (isGlobal) { 2127 // Abbrev for CST_CODE_AGGREGATE. 2128 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2129 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2132 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 2133 2134 // Abbrev for CST_CODE_STRING. 2135 Abbv = new BitCodeAbbrev(); 2136 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2139 String8Abbrev = Stream.EmitAbbrev(Abbv); 2140 // Abbrev for CST_CODE_CSTRING. 2141 Abbv = new BitCodeAbbrev(); 2142 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2145 CString7Abbrev = Stream.EmitAbbrev(Abbv); 2146 // Abbrev for CST_CODE_CSTRING. 2147 Abbv = new BitCodeAbbrev(); 2148 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2151 CString6Abbrev = Stream.EmitAbbrev(Abbv); 2152 } 2153 2154 SmallVector<uint64_t, 64> Record; 2155 2156 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2157 Type *LastTy = nullptr; 2158 for (unsigned i = FirstVal; i != LastVal; ++i) { 2159 const Value *V = Vals[i].first; 2160 // If we need to switch types, do so now. 2161 if (V->getType() != LastTy) { 2162 LastTy = V->getType(); 2163 Record.push_back(VE.getTypeID(LastTy)); 2164 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2165 CONSTANTS_SETTYPE_ABBREV); 2166 Record.clear(); 2167 } 2168 2169 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2170 Record.push_back(unsigned(IA->hasSideEffects()) | 2171 unsigned(IA->isAlignStack()) << 1 | 2172 unsigned(IA->getDialect()&1) << 2); 2173 2174 // Add the asm string. 2175 const std::string &AsmStr = IA->getAsmString(); 2176 Record.push_back(AsmStr.size()); 2177 Record.append(AsmStr.begin(), AsmStr.end()); 2178 2179 // Add the constraint string. 2180 const std::string &ConstraintStr = IA->getConstraintString(); 2181 Record.push_back(ConstraintStr.size()); 2182 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2183 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2184 Record.clear(); 2185 continue; 2186 } 2187 const Constant *C = cast<Constant>(V); 2188 unsigned Code = -1U; 2189 unsigned AbbrevToUse = 0; 2190 if (C->isNullValue()) { 2191 Code = bitc::CST_CODE_NULL; 2192 } else if (isa<UndefValue>(C)) { 2193 Code = bitc::CST_CODE_UNDEF; 2194 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2195 if (IV->getBitWidth() <= 64) { 2196 uint64_t V = IV->getSExtValue(); 2197 emitSignedInt64(Record, V); 2198 Code = bitc::CST_CODE_INTEGER; 2199 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2200 } else { // Wide integers, > 64 bits in size. 2201 // We have an arbitrary precision integer value to write whose 2202 // bit width is > 64. However, in canonical unsigned integer 2203 // format it is likely that the high bits are going to be zero. 2204 // So, we only write the number of active words. 2205 unsigned NWords = IV->getValue().getActiveWords(); 2206 const uint64_t *RawWords = IV->getValue().getRawData(); 2207 for (unsigned i = 0; i != NWords; ++i) { 2208 emitSignedInt64(Record, RawWords[i]); 2209 } 2210 Code = bitc::CST_CODE_WIDE_INTEGER; 2211 } 2212 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2213 Code = bitc::CST_CODE_FLOAT; 2214 Type *Ty = CFP->getType(); 2215 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2216 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2217 } else if (Ty->isX86_FP80Ty()) { 2218 // api needed to prevent premature destruction 2219 // bits are not in the same order as a normal i80 APInt, compensate. 2220 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2221 const uint64_t *p = api.getRawData(); 2222 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2223 Record.push_back(p[0] & 0xffffLL); 2224 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2225 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2226 const uint64_t *p = api.getRawData(); 2227 Record.push_back(p[0]); 2228 Record.push_back(p[1]); 2229 } else { 2230 assert (0 && "Unknown FP type!"); 2231 } 2232 } else if (isa<ConstantDataSequential>(C) && 2233 cast<ConstantDataSequential>(C)->isString()) { 2234 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2235 // Emit constant strings specially. 2236 unsigned NumElts = Str->getNumElements(); 2237 // If this is a null-terminated string, use the denser CSTRING encoding. 2238 if (Str->isCString()) { 2239 Code = bitc::CST_CODE_CSTRING; 2240 --NumElts; // Don't encode the null, which isn't allowed by char6. 2241 } else { 2242 Code = bitc::CST_CODE_STRING; 2243 AbbrevToUse = String8Abbrev; 2244 } 2245 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2246 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2247 for (unsigned i = 0; i != NumElts; ++i) { 2248 unsigned char V = Str->getElementAsInteger(i); 2249 Record.push_back(V); 2250 isCStr7 &= (V & 128) == 0; 2251 if (isCStrChar6) 2252 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2253 } 2254 2255 if (isCStrChar6) 2256 AbbrevToUse = CString6Abbrev; 2257 else if (isCStr7) 2258 AbbrevToUse = CString7Abbrev; 2259 } else if (const ConstantDataSequential *CDS = 2260 dyn_cast<ConstantDataSequential>(C)) { 2261 Code = bitc::CST_CODE_DATA; 2262 Type *EltTy = CDS->getType()->getElementType(); 2263 if (isa<IntegerType>(EltTy)) { 2264 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2265 Record.push_back(CDS->getElementAsInteger(i)); 2266 } else { 2267 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2268 Record.push_back( 2269 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2270 } 2271 } else if (isa<ConstantAggregate>(C)) { 2272 Code = bitc::CST_CODE_AGGREGATE; 2273 for (const Value *Op : C->operands()) 2274 Record.push_back(VE.getValueID(Op)); 2275 AbbrevToUse = AggregateAbbrev; 2276 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2277 switch (CE->getOpcode()) { 2278 default: 2279 if (Instruction::isCast(CE->getOpcode())) { 2280 Code = bitc::CST_CODE_CE_CAST; 2281 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2282 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2283 Record.push_back(VE.getValueID(C->getOperand(0))); 2284 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2285 } else { 2286 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2287 Code = bitc::CST_CODE_CE_BINOP; 2288 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2289 Record.push_back(VE.getValueID(C->getOperand(0))); 2290 Record.push_back(VE.getValueID(C->getOperand(1))); 2291 uint64_t Flags = getOptimizationFlags(CE); 2292 if (Flags != 0) 2293 Record.push_back(Flags); 2294 } 2295 break; 2296 case Instruction::GetElementPtr: { 2297 Code = bitc::CST_CODE_CE_GEP; 2298 const auto *GO = cast<GEPOperator>(C); 2299 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2300 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2301 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2302 Record.push_back((*Idx << 1) | GO->isInBounds()); 2303 } else if (GO->isInBounds()) 2304 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2305 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2306 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2307 Record.push_back(VE.getValueID(C->getOperand(i))); 2308 } 2309 break; 2310 } 2311 case Instruction::Select: 2312 Code = bitc::CST_CODE_CE_SELECT; 2313 Record.push_back(VE.getValueID(C->getOperand(0))); 2314 Record.push_back(VE.getValueID(C->getOperand(1))); 2315 Record.push_back(VE.getValueID(C->getOperand(2))); 2316 break; 2317 case Instruction::ExtractElement: 2318 Code = bitc::CST_CODE_CE_EXTRACTELT; 2319 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2320 Record.push_back(VE.getValueID(C->getOperand(0))); 2321 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2322 Record.push_back(VE.getValueID(C->getOperand(1))); 2323 break; 2324 case Instruction::InsertElement: 2325 Code = bitc::CST_CODE_CE_INSERTELT; 2326 Record.push_back(VE.getValueID(C->getOperand(0))); 2327 Record.push_back(VE.getValueID(C->getOperand(1))); 2328 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2329 Record.push_back(VE.getValueID(C->getOperand(2))); 2330 break; 2331 case Instruction::ShuffleVector: 2332 // If the return type and argument types are the same, this is a 2333 // standard shufflevector instruction. If the types are different, 2334 // then the shuffle is widening or truncating the input vectors, and 2335 // the argument type must also be encoded. 2336 if (C->getType() == C->getOperand(0)->getType()) { 2337 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2338 } else { 2339 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2340 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2341 } 2342 Record.push_back(VE.getValueID(C->getOperand(0))); 2343 Record.push_back(VE.getValueID(C->getOperand(1))); 2344 Record.push_back(VE.getValueID(C->getOperand(2))); 2345 break; 2346 case Instruction::ICmp: 2347 case Instruction::FCmp: 2348 Code = bitc::CST_CODE_CE_CMP; 2349 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2350 Record.push_back(VE.getValueID(C->getOperand(0))); 2351 Record.push_back(VE.getValueID(C->getOperand(1))); 2352 Record.push_back(CE->getPredicate()); 2353 break; 2354 } 2355 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2356 Code = bitc::CST_CODE_BLOCKADDRESS; 2357 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2358 Record.push_back(VE.getValueID(BA->getFunction())); 2359 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2360 } else { 2361 #ifndef NDEBUG 2362 C->dump(); 2363 #endif 2364 llvm_unreachable("Unknown constant!"); 2365 } 2366 Stream.EmitRecord(Code, Record, AbbrevToUse); 2367 Record.clear(); 2368 } 2369 2370 Stream.ExitBlock(); 2371 } 2372 2373 void ModuleBitcodeWriter::writeModuleConstants() { 2374 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2375 2376 // Find the first constant to emit, which is the first non-globalvalue value. 2377 // We know globalvalues have been emitted by WriteModuleInfo. 2378 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2379 if (!isa<GlobalValue>(Vals[i].first)) { 2380 writeConstants(i, Vals.size(), true); 2381 return; 2382 } 2383 } 2384 } 2385 2386 /// pushValueAndType - The file has to encode both the value and type id for 2387 /// many values, because we need to know what type to create for forward 2388 /// references. However, most operands are not forward references, so this type 2389 /// field is not needed. 2390 /// 2391 /// This function adds V's value ID to Vals. If the value ID is higher than the 2392 /// instruction ID, then it is a forward reference, and it also includes the 2393 /// type ID. The value ID that is written is encoded relative to the InstID. 2394 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2395 SmallVectorImpl<unsigned> &Vals) { 2396 unsigned ValID = VE.getValueID(V); 2397 // Make encoding relative to the InstID. 2398 Vals.push_back(InstID - ValID); 2399 if (ValID >= InstID) { 2400 Vals.push_back(VE.getTypeID(V->getType())); 2401 return true; 2402 } 2403 return false; 2404 } 2405 2406 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2407 unsigned InstID) { 2408 SmallVector<unsigned, 64> Record; 2409 LLVMContext &C = CS.getInstruction()->getContext(); 2410 2411 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2412 const auto &Bundle = CS.getOperandBundleAt(i); 2413 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2414 2415 for (auto &Input : Bundle.Inputs) 2416 pushValueAndType(Input, InstID, Record); 2417 2418 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2419 Record.clear(); 2420 } 2421 } 2422 2423 /// pushValue - Like pushValueAndType, but where the type of the value is 2424 /// omitted (perhaps it was already encoded in an earlier operand). 2425 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2426 SmallVectorImpl<unsigned> &Vals) { 2427 unsigned ValID = VE.getValueID(V); 2428 Vals.push_back(InstID - ValID); 2429 } 2430 2431 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2432 SmallVectorImpl<uint64_t> &Vals) { 2433 unsigned ValID = VE.getValueID(V); 2434 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2435 emitSignedInt64(Vals, diff); 2436 } 2437 2438 /// WriteInstruction - Emit an instruction to the specified stream. 2439 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2440 unsigned InstID, 2441 SmallVectorImpl<unsigned> &Vals) { 2442 unsigned Code = 0; 2443 unsigned AbbrevToUse = 0; 2444 VE.setInstructionID(&I); 2445 switch (I.getOpcode()) { 2446 default: 2447 if (Instruction::isCast(I.getOpcode())) { 2448 Code = bitc::FUNC_CODE_INST_CAST; 2449 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2450 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2451 Vals.push_back(VE.getTypeID(I.getType())); 2452 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2453 } else { 2454 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2455 Code = bitc::FUNC_CODE_INST_BINOP; 2456 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2457 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2458 pushValue(I.getOperand(1), InstID, Vals); 2459 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2460 uint64_t Flags = getOptimizationFlags(&I); 2461 if (Flags != 0) { 2462 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2463 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2464 Vals.push_back(Flags); 2465 } 2466 } 2467 break; 2468 2469 case Instruction::GetElementPtr: { 2470 Code = bitc::FUNC_CODE_INST_GEP; 2471 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2472 auto &GEPInst = cast<GetElementPtrInst>(I); 2473 Vals.push_back(GEPInst.isInBounds()); 2474 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2475 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2476 pushValueAndType(I.getOperand(i), InstID, Vals); 2477 break; 2478 } 2479 case Instruction::ExtractValue: { 2480 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2481 pushValueAndType(I.getOperand(0), InstID, Vals); 2482 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2483 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2484 break; 2485 } 2486 case Instruction::InsertValue: { 2487 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2488 pushValueAndType(I.getOperand(0), InstID, Vals); 2489 pushValueAndType(I.getOperand(1), InstID, Vals); 2490 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2491 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2492 break; 2493 } 2494 case Instruction::Select: 2495 Code = bitc::FUNC_CODE_INST_VSELECT; 2496 pushValueAndType(I.getOperand(1), InstID, Vals); 2497 pushValue(I.getOperand(2), InstID, Vals); 2498 pushValueAndType(I.getOperand(0), InstID, Vals); 2499 break; 2500 case Instruction::ExtractElement: 2501 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2502 pushValueAndType(I.getOperand(0), InstID, Vals); 2503 pushValueAndType(I.getOperand(1), InstID, Vals); 2504 break; 2505 case Instruction::InsertElement: 2506 Code = bitc::FUNC_CODE_INST_INSERTELT; 2507 pushValueAndType(I.getOperand(0), InstID, Vals); 2508 pushValue(I.getOperand(1), InstID, Vals); 2509 pushValueAndType(I.getOperand(2), InstID, Vals); 2510 break; 2511 case Instruction::ShuffleVector: 2512 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2513 pushValueAndType(I.getOperand(0), InstID, Vals); 2514 pushValue(I.getOperand(1), InstID, Vals); 2515 pushValue(I.getOperand(2), InstID, Vals); 2516 break; 2517 case Instruction::ICmp: 2518 case Instruction::FCmp: { 2519 // compare returning Int1Ty or vector of Int1Ty 2520 Code = bitc::FUNC_CODE_INST_CMP2; 2521 pushValueAndType(I.getOperand(0), InstID, Vals); 2522 pushValue(I.getOperand(1), InstID, Vals); 2523 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2524 uint64_t Flags = getOptimizationFlags(&I); 2525 if (Flags != 0) 2526 Vals.push_back(Flags); 2527 break; 2528 } 2529 2530 case Instruction::Ret: 2531 { 2532 Code = bitc::FUNC_CODE_INST_RET; 2533 unsigned NumOperands = I.getNumOperands(); 2534 if (NumOperands == 0) 2535 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2536 else if (NumOperands == 1) { 2537 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2538 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2539 } else { 2540 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2541 pushValueAndType(I.getOperand(i), InstID, Vals); 2542 } 2543 } 2544 break; 2545 case Instruction::Br: 2546 { 2547 Code = bitc::FUNC_CODE_INST_BR; 2548 const BranchInst &II = cast<BranchInst>(I); 2549 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2550 if (II.isConditional()) { 2551 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2552 pushValue(II.getCondition(), InstID, Vals); 2553 } 2554 } 2555 break; 2556 case Instruction::Switch: 2557 { 2558 Code = bitc::FUNC_CODE_INST_SWITCH; 2559 const SwitchInst &SI = cast<SwitchInst>(I); 2560 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2561 pushValue(SI.getCondition(), InstID, Vals); 2562 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2563 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2564 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2565 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2566 } 2567 } 2568 break; 2569 case Instruction::IndirectBr: 2570 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2571 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2572 // Encode the address operand as relative, but not the basic blocks. 2573 pushValue(I.getOperand(0), InstID, Vals); 2574 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2575 Vals.push_back(VE.getValueID(I.getOperand(i))); 2576 break; 2577 2578 case Instruction::Invoke: { 2579 const InvokeInst *II = cast<InvokeInst>(&I); 2580 const Value *Callee = II->getCalledValue(); 2581 FunctionType *FTy = II->getFunctionType(); 2582 2583 if (II->hasOperandBundles()) 2584 writeOperandBundles(II, InstID); 2585 2586 Code = bitc::FUNC_CODE_INST_INVOKE; 2587 2588 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2589 Vals.push_back(II->getCallingConv() | 1 << 13); 2590 Vals.push_back(VE.getValueID(II->getNormalDest())); 2591 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2592 Vals.push_back(VE.getTypeID(FTy)); 2593 pushValueAndType(Callee, InstID, Vals); 2594 2595 // Emit value #'s for the fixed parameters. 2596 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2597 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2598 2599 // Emit type/value pairs for varargs params. 2600 if (FTy->isVarArg()) { 2601 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2602 i != e; ++i) 2603 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2604 } 2605 break; 2606 } 2607 case Instruction::Resume: 2608 Code = bitc::FUNC_CODE_INST_RESUME; 2609 pushValueAndType(I.getOperand(0), InstID, Vals); 2610 break; 2611 case Instruction::CleanupRet: { 2612 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2613 const auto &CRI = cast<CleanupReturnInst>(I); 2614 pushValue(CRI.getCleanupPad(), InstID, Vals); 2615 if (CRI.hasUnwindDest()) 2616 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2617 break; 2618 } 2619 case Instruction::CatchRet: { 2620 Code = bitc::FUNC_CODE_INST_CATCHRET; 2621 const auto &CRI = cast<CatchReturnInst>(I); 2622 pushValue(CRI.getCatchPad(), InstID, Vals); 2623 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2624 break; 2625 } 2626 case Instruction::CleanupPad: 2627 case Instruction::CatchPad: { 2628 const auto &FuncletPad = cast<FuncletPadInst>(I); 2629 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2630 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2631 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2632 2633 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2634 Vals.push_back(NumArgOperands); 2635 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2636 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2637 break; 2638 } 2639 case Instruction::CatchSwitch: { 2640 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2641 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2642 2643 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2644 2645 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2646 Vals.push_back(NumHandlers); 2647 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2648 Vals.push_back(VE.getValueID(CatchPadBB)); 2649 2650 if (CatchSwitch.hasUnwindDest()) 2651 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2652 break; 2653 } 2654 case Instruction::Unreachable: 2655 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2656 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2657 break; 2658 2659 case Instruction::PHI: { 2660 const PHINode &PN = cast<PHINode>(I); 2661 Code = bitc::FUNC_CODE_INST_PHI; 2662 // With the newer instruction encoding, forward references could give 2663 // negative valued IDs. This is most common for PHIs, so we use 2664 // signed VBRs. 2665 SmallVector<uint64_t, 128> Vals64; 2666 Vals64.push_back(VE.getTypeID(PN.getType())); 2667 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2668 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2669 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2670 } 2671 // Emit a Vals64 vector and exit. 2672 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2673 Vals64.clear(); 2674 return; 2675 } 2676 2677 case Instruction::LandingPad: { 2678 const LandingPadInst &LP = cast<LandingPadInst>(I); 2679 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2680 Vals.push_back(VE.getTypeID(LP.getType())); 2681 Vals.push_back(LP.isCleanup()); 2682 Vals.push_back(LP.getNumClauses()); 2683 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2684 if (LP.isCatch(I)) 2685 Vals.push_back(LandingPadInst::Catch); 2686 else 2687 Vals.push_back(LandingPadInst::Filter); 2688 pushValueAndType(LP.getClause(I), InstID, Vals); 2689 } 2690 break; 2691 } 2692 2693 case Instruction::Alloca: { 2694 Code = bitc::FUNC_CODE_INST_ALLOCA; 2695 const AllocaInst &AI = cast<AllocaInst>(I); 2696 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2697 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2698 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2699 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2700 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2701 "not enough bits for maximum alignment"); 2702 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2703 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2704 AlignRecord |= 1 << 6; 2705 AlignRecord |= AI.isSwiftError() << 7; 2706 Vals.push_back(AlignRecord); 2707 break; 2708 } 2709 2710 case Instruction::Load: 2711 if (cast<LoadInst>(I).isAtomic()) { 2712 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2713 pushValueAndType(I.getOperand(0), InstID, Vals); 2714 } else { 2715 Code = bitc::FUNC_CODE_INST_LOAD; 2716 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2717 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2718 } 2719 Vals.push_back(VE.getTypeID(I.getType())); 2720 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2721 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2722 if (cast<LoadInst>(I).isAtomic()) { 2723 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2724 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2725 } 2726 break; 2727 case Instruction::Store: 2728 if (cast<StoreInst>(I).isAtomic()) 2729 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2730 else 2731 Code = bitc::FUNC_CODE_INST_STORE; 2732 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2733 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2734 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2735 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2736 if (cast<StoreInst>(I).isAtomic()) { 2737 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2738 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2739 } 2740 break; 2741 case Instruction::AtomicCmpXchg: 2742 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2743 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2744 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2745 pushValue(I.getOperand(2), InstID, Vals); // newval. 2746 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2747 Vals.push_back( 2748 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2749 Vals.push_back( 2750 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2751 Vals.push_back( 2752 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2753 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2754 break; 2755 case Instruction::AtomicRMW: 2756 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2757 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2758 pushValue(I.getOperand(1), InstID, Vals); // val. 2759 Vals.push_back( 2760 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2761 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2762 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2763 Vals.push_back( 2764 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2765 break; 2766 case Instruction::Fence: 2767 Code = bitc::FUNC_CODE_INST_FENCE; 2768 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2769 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2770 break; 2771 case Instruction::Call: { 2772 const CallInst &CI = cast<CallInst>(I); 2773 FunctionType *FTy = CI.getFunctionType(); 2774 2775 if (CI.hasOperandBundles()) 2776 writeOperandBundles(&CI, InstID); 2777 2778 Code = bitc::FUNC_CODE_INST_CALL; 2779 2780 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2781 2782 unsigned Flags = getOptimizationFlags(&I); 2783 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2784 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2785 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2786 1 << bitc::CALL_EXPLICIT_TYPE | 2787 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2788 unsigned(Flags != 0) << bitc::CALL_FMF); 2789 if (Flags != 0) 2790 Vals.push_back(Flags); 2791 2792 Vals.push_back(VE.getTypeID(FTy)); 2793 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2794 2795 // Emit value #'s for the fixed parameters. 2796 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2797 // Check for labels (can happen with asm labels). 2798 if (FTy->getParamType(i)->isLabelTy()) 2799 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2800 else 2801 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2802 } 2803 2804 // Emit type/value pairs for varargs params. 2805 if (FTy->isVarArg()) { 2806 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2807 i != e; ++i) 2808 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2809 } 2810 break; 2811 } 2812 case Instruction::VAArg: 2813 Code = bitc::FUNC_CODE_INST_VAARG; 2814 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2815 pushValue(I.getOperand(0), InstID, Vals); // valist. 2816 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2817 break; 2818 } 2819 2820 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2821 Vals.clear(); 2822 } 2823 2824 /// Emit names for globals/functions etc. \p IsModuleLevel is true when 2825 /// we are writing the module-level VST, where we are including a function 2826 /// bitcode index and need to backpatch the VST forward declaration record. 2827 void ModuleBitcodeWriter::writeValueSymbolTable( 2828 const ValueSymbolTable &VST, bool IsModuleLevel, 2829 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) { 2830 if (VST.empty()) { 2831 // writeValueSymbolTableForwardDecl should have returned early as 2832 // well. Ensure this handling remains in sync by asserting that 2833 // the placeholder offset is not set. 2834 assert(!IsModuleLevel || !hasVSTOffsetPlaceholder()); 2835 return; 2836 } 2837 2838 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2839 // Get the offset of the VST we are writing, and backpatch it into 2840 // the VST forward declaration record. 2841 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2842 // The BitcodeStartBit was the stream offset of the identification block. 2843 VSTOffset -= bitcodeStartBit(); 2844 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2845 // Note that we add 1 here because the offset is relative to one word 2846 // before the start of the identification block, which was historically 2847 // always the start of the regular bitcode header. 2848 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2849 } 2850 2851 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2852 2853 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2854 // records, which are not used in the per-function VSTs. 2855 unsigned FnEntry8BitAbbrev; 2856 unsigned FnEntry7BitAbbrev; 2857 unsigned FnEntry6BitAbbrev; 2858 unsigned GUIDEntryAbbrev; 2859 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2860 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2861 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2862 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2867 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2868 2869 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2870 Abbv = new BitCodeAbbrev(); 2871 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2876 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2877 2878 // 6-bit char6 VST_CODE_FNENTRY function strings. 2879 Abbv = new BitCodeAbbrev(); 2880 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2885 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2886 2887 // FIXME: Change the name of this record as it is now used by 2888 // the per-module index as well. 2889 Abbv = new BitCodeAbbrev(); 2890 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2893 GUIDEntryAbbrev = Stream.EmitAbbrev(Abbv); 2894 } 2895 2896 // FIXME: Set up the abbrev, we know how many values there are! 2897 // FIXME: We know if the type names can use 7-bit ascii. 2898 SmallVector<uint64_t, 64> NameVals; 2899 2900 for (const ValueName &Name : VST) { 2901 // Figure out the encoding to use for the name. 2902 StringEncoding Bits = 2903 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2904 2905 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2906 NameVals.push_back(VE.getValueID(Name.getValue())); 2907 2908 Function *F = dyn_cast<Function>(Name.getValue()); 2909 if (!F) { 2910 // If value is an alias, need to get the aliased base object to 2911 // see if it is a function. 2912 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2913 if (GA && GA->getBaseObject()) 2914 F = dyn_cast<Function>(GA->getBaseObject()); 2915 } 2916 2917 // VST_CODE_ENTRY: [valueid, namechar x N] 2918 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2919 // VST_CODE_BBENTRY: [bbid, namechar x N] 2920 unsigned Code; 2921 if (isa<BasicBlock>(Name.getValue())) { 2922 Code = bitc::VST_CODE_BBENTRY; 2923 if (Bits == SE_Char6) 2924 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2925 } else if (F && !F->isDeclaration()) { 2926 // Must be the module-level VST, where we pass in the Index and 2927 // have a VSTOffsetPlaceholder. The function-level VST should not 2928 // contain any Function symbols. 2929 assert(FunctionToBitcodeIndex); 2930 assert(hasVSTOffsetPlaceholder()); 2931 2932 // Save the word offset of the function (from the start of the 2933 // actual bitcode written to the stream). 2934 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit(); 2935 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2936 // Note that we add 1 here because the offset is relative to one word 2937 // before the start of the identification block, which was historically 2938 // always the start of the regular bitcode header. 2939 NameVals.push_back(BitcodeIndex / 32 + 1); 2940 2941 Code = bitc::VST_CODE_FNENTRY; 2942 AbbrevToUse = FnEntry8BitAbbrev; 2943 if (Bits == SE_Char6) 2944 AbbrevToUse = FnEntry6BitAbbrev; 2945 else if (Bits == SE_Fixed7) 2946 AbbrevToUse = FnEntry7BitAbbrev; 2947 } else { 2948 Code = bitc::VST_CODE_ENTRY; 2949 if (Bits == SE_Char6) 2950 AbbrevToUse = VST_ENTRY_6_ABBREV; 2951 else if (Bits == SE_Fixed7) 2952 AbbrevToUse = VST_ENTRY_7_ABBREV; 2953 } 2954 2955 for (const auto P : Name.getKey()) 2956 NameVals.push_back((unsigned char)P); 2957 2958 // Emit the finished record. 2959 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2960 NameVals.clear(); 2961 } 2962 // Emit any GUID valueIDs created for indirect call edges into the 2963 // module-level VST. 2964 if (IsModuleLevel && hasVSTOffsetPlaceholder()) 2965 for (const auto &GI : valueIds()) { 2966 NameVals.push_back(GI.second); 2967 NameVals.push_back(GI.first); 2968 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, 2969 GUIDEntryAbbrev); 2970 NameVals.clear(); 2971 } 2972 Stream.ExitBlock(); 2973 } 2974 2975 /// Emit function names and summary offsets for the combined index 2976 /// used by ThinLTO. 2977 void IndexBitcodeWriter::writeCombinedValueSymbolTable() { 2978 assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder"); 2979 // Get the offset of the VST we are writing, and backpatch it into 2980 // the VST forward declaration record. 2981 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2982 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2983 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2984 2985 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2986 2987 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2988 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2991 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2992 2993 SmallVector<uint64_t, 64> NameVals; 2994 for (const auto &GVI : valueIds()) { 2995 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2996 NameVals.push_back(GVI.second); 2997 NameVals.push_back(GVI.first); 2998 2999 // Emit the finished record. 3000 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 3001 NameVals.clear(); 3002 } 3003 Stream.ExitBlock(); 3004 } 3005 3006 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3007 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3008 unsigned Code; 3009 if (isa<BasicBlock>(Order.V)) 3010 Code = bitc::USELIST_CODE_BB; 3011 else 3012 Code = bitc::USELIST_CODE_DEFAULT; 3013 3014 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3015 Record.push_back(VE.getValueID(Order.V)); 3016 Stream.EmitRecord(Code, Record); 3017 } 3018 3019 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3020 assert(VE.shouldPreserveUseListOrder() && 3021 "Expected to be preserving use-list order"); 3022 3023 auto hasMore = [&]() { 3024 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3025 }; 3026 if (!hasMore()) 3027 // Nothing to do. 3028 return; 3029 3030 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3031 while (hasMore()) { 3032 writeUseList(std::move(VE.UseListOrders.back())); 3033 VE.UseListOrders.pop_back(); 3034 } 3035 Stream.ExitBlock(); 3036 } 3037 3038 /// Emit a function body to the module stream. 3039 void ModuleBitcodeWriter::writeFunction( 3040 const Function &F, 3041 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3042 // Save the bitcode index of the start of this function block for recording 3043 // in the VST. 3044 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3045 3046 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3047 VE.incorporateFunction(F); 3048 3049 SmallVector<unsigned, 64> Vals; 3050 3051 // Emit the number of basic blocks, so the reader can create them ahead of 3052 // time. 3053 Vals.push_back(VE.getBasicBlocks().size()); 3054 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3055 Vals.clear(); 3056 3057 // If there are function-local constants, emit them now. 3058 unsigned CstStart, CstEnd; 3059 VE.getFunctionConstantRange(CstStart, CstEnd); 3060 writeConstants(CstStart, CstEnd, false); 3061 3062 // If there is function-local metadata, emit it now. 3063 writeFunctionMetadata(F); 3064 3065 // Keep a running idea of what the instruction ID is. 3066 unsigned InstID = CstEnd; 3067 3068 bool NeedsMetadataAttachment = F.hasMetadata(); 3069 3070 DILocation *LastDL = nullptr; 3071 // Finally, emit all the instructions, in order. 3072 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3073 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3074 I != E; ++I) { 3075 writeInstruction(*I, InstID, Vals); 3076 3077 if (!I->getType()->isVoidTy()) 3078 ++InstID; 3079 3080 // If the instruction has metadata, write a metadata attachment later. 3081 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3082 3083 // If the instruction has a debug location, emit it. 3084 DILocation *DL = I->getDebugLoc(); 3085 if (!DL) 3086 continue; 3087 3088 if (DL == LastDL) { 3089 // Just repeat the same debug loc as last time. 3090 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3091 continue; 3092 } 3093 3094 Vals.push_back(DL->getLine()); 3095 Vals.push_back(DL->getColumn()); 3096 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3097 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3098 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3099 Vals.clear(); 3100 3101 LastDL = DL; 3102 } 3103 3104 // Emit names for all the instructions etc. 3105 if (auto *Symtab = F.getValueSymbolTable()) 3106 writeValueSymbolTable(*Symtab); 3107 3108 if (NeedsMetadataAttachment) 3109 writeFunctionMetadataAttachment(F); 3110 if (VE.shouldPreserveUseListOrder()) 3111 writeUseListBlock(&F); 3112 VE.purgeFunction(); 3113 Stream.ExitBlock(); 3114 } 3115 3116 // Emit blockinfo, which defines the standard abbreviations etc. 3117 void ModuleBitcodeWriter::writeBlockInfo() { 3118 // We only want to emit block info records for blocks that have multiple 3119 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3120 // Other blocks can define their abbrevs inline. 3121 Stream.EnterBlockInfoBlock(); 3122 3123 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3124 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3129 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3130 VST_ENTRY_8_ABBREV) 3131 llvm_unreachable("Unexpected abbrev ordering!"); 3132 } 3133 3134 { // 7-bit fixed width VST_CODE_ENTRY strings. 3135 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3136 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3140 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3141 VST_ENTRY_7_ABBREV) 3142 llvm_unreachable("Unexpected abbrev ordering!"); 3143 } 3144 { // 6-bit char6 VST_CODE_ENTRY strings. 3145 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3146 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3150 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3151 VST_ENTRY_6_ABBREV) 3152 llvm_unreachable("Unexpected abbrev ordering!"); 3153 } 3154 { // 6-bit char6 VST_CODE_BBENTRY strings. 3155 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3156 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3160 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3161 VST_BBENTRY_6_ABBREV) 3162 llvm_unreachable("Unexpected abbrev ordering!"); 3163 } 3164 3165 3166 3167 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3168 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3169 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3171 VE.computeBitsRequiredForTypeIndicies())); 3172 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3173 CONSTANTS_SETTYPE_ABBREV) 3174 llvm_unreachable("Unexpected abbrev ordering!"); 3175 } 3176 3177 { // INTEGER abbrev for CONSTANTS_BLOCK. 3178 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3179 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3181 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3182 CONSTANTS_INTEGER_ABBREV) 3183 llvm_unreachable("Unexpected abbrev ordering!"); 3184 } 3185 3186 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3187 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3188 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3191 VE.computeBitsRequiredForTypeIndicies())); 3192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3193 3194 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3195 CONSTANTS_CE_CAST_Abbrev) 3196 llvm_unreachable("Unexpected abbrev ordering!"); 3197 } 3198 { // NULL abbrev for CONSTANTS_BLOCK. 3199 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3200 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3201 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3202 CONSTANTS_NULL_Abbrev) 3203 llvm_unreachable("Unexpected abbrev ordering!"); 3204 } 3205 3206 // FIXME: This should only use space for first class types! 3207 3208 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3209 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3210 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3213 VE.computeBitsRequiredForTypeIndicies())); 3214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3216 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3217 FUNCTION_INST_LOAD_ABBREV) 3218 llvm_unreachable("Unexpected abbrev ordering!"); 3219 } 3220 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3221 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3222 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3226 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3227 FUNCTION_INST_BINOP_ABBREV) 3228 llvm_unreachable("Unexpected abbrev ordering!"); 3229 } 3230 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3231 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3232 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3237 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3238 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3239 llvm_unreachable("Unexpected abbrev ordering!"); 3240 } 3241 { // INST_CAST abbrev for FUNCTION_BLOCK. 3242 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3243 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3246 VE.computeBitsRequiredForTypeIndicies())); 3247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3248 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3249 FUNCTION_INST_CAST_ABBREV) 3250 llvm_unreachable("Unexpected abbrev ordering!"); 3251 } 3252 3253 { // INST_RET abbrev for FUNCTION_BLOCK. 3254 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3255 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3256 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3257 FUNCTION_INST_RET_VOID_ABBREV) 3258 llvm_unreachable("Unexpected abbrev ordering!"); 3259 } 3260 { // INST_RET abbrev for FUNCTION_BLOCK. 3261 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3262 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3264 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3265 FUNCTION_INST_RET_VAL_ABBREV) 3266 llvm_unreachable("Unexpected abbrev ordering!"); 3267 } 3268 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3269 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3270 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3271 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3272 FUNCTION_INST_UNREACHABLE_ABBREV) 3273 llvm_unreachable("Unexpected abbrev ordering!"); 3274 } 3275 { 3276 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3277 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3280 Log2_32_Ceil(VE.getTypes().size() + 1))); 3281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3283 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3284 FUNCTION_INST_GEP_ABBREV) 3285 llvm_unreachable("Unexpected abbrev ordering!"); 3286 } 3287 3288 Stream.ExitBlock(); 3289 } 3290 3291 /// Write the module path strings, currently only used when generating 3292 /// a combined index file. 3293 void IndexBitcodeWriter::writeModStrings() { 3294 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3295 3296 // TODO: See which abbrev sizes we actually need to emit 3297 3298 // 8-bit fixed-width MST_ENTRY strings. 3299 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3300 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3304 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 3305 3306 // 7-bit fixed width MST_ENTRY strings. 3307 Abbv = new BitCodeAbbrev(); 3308 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3312 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 3313 3314 // 6-bit char6 MST_ENTRY strings. 3315 Abbv = new BitCodeAbbrev(); 3316 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3320 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 3321 3322 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3323 Abbv = new BitCodeAbbrev(); 3324 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3330 unsigned AbbrevHash = Stream.EmitAbbrev(Abbv); 3331 3332 SmallVector<unsigned, 64> Vals; 3333 for (const auto &MPSE : Index.modulePaths()) { 3334 if (!doIncludeModule(MPSE.getKey())) 3335 continue; 3336 StringEncoding Bits = 3337 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3338 unsigned AbbrevToUse = Abbrev8Bit; 3339 if (Bits == SE_Char6) 3340 AbbrevToUse = Abbrev6Bit; 3341 else if (Bits == SE_Fixed7) 3342 AbbrevToUse = Abbrev7Bit; 3343 3344 Vals.push_back(MPSE.getValue().first); 3345 3346 for (const auto P : MPSE.getKey()) 3347 Vals.push_back((unsigned char)P); 3348 3349 // Emit the finished record. 3350 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3351 3352 Vals.clear(); 3353 // Emit an optional hash for the module now 3354 auto &Hash = MPSE.getValue().second; 3355 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3356 for (auto Val : Hash) { 3357 if (Val) 3358 AllZero = false; 3359 Vals.push_back(Val); 3360 } 3361 if (!AllZero) { 3362 // Emit the hash record. 3363 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3364 } 3365 3366 Vals.clear(); 3367 } 3368 Stream.ExitBlock(); 3369 } 3370 3371 // Helper to emit a single function summary record. 3372 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3373 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3374 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3375 const Function &F) { 3376 NameVals.push_back(ValueID); 3377 3378 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3379 if (!FS->type_tests().empty()) 3380 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3381 3382 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3383 NameVals.push_back(FS->instCount()); 3384 NameVals.push_back(FS->refs().size()); 3385 3386 for (auto &RI : FS->refs()) 3387 NameVals.push_back(VE.getValueID(RI.getValue())); 3388 3389 bool HasProfileData = F.getEntryCount().hasValue(); 3390 for (auto &ECI : FS->calls()) { 3391 NameVals.push_back(getValueId(ECI.first)); 3392 if (HasProfileData) 3393 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3394 } 3395 3396 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3397 unsigned Code = 3398 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3399 3400 // Emit the finished record. 3401 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3402 NameVals.clear(); 3403 } 3404 3405 // Collect the global value references in the given variable's initializer, 3406 // and emit them in a summary record. 3407 void ModuleBitcodeWriter::writeModuleLevelReferences( 3408 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3409 unsigned FSModRefsAbbrev) { 3410 auto Summaries = 3411 Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName())); 3412 if (Summaries == Index->end()) { 3413 // Only declarations should not have a summary (a declaration might however 3414 // have a summary if the def was in module level asm). 3415 assert(V.isDeclaration()); 3416 return; 3417 } 3418 auto *Summary = Summaries->second.front().get(); 3419 NameVals.push_back(VE.getValueID(&V)); 3420 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3421 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3422 3423 unsigned SizeBeforeRefs = NameVals.size(); 3424 for (auto &RI : VS->refs()) 3425 NameVals.push_back(VE.getValueID(RI.getValue())); 3426 // Sort the refs for determinism output, the vector returned by FS->refs() has 3427 // been initialized from a DenseSet. 3428 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3429 3430 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3431 FSModRefsAbbrev); 3432 NameVals.clear(); 3433 } 3434 3435 // Current version for the summary. 3436 // This is bumped whenever we introduce changes in the way some record are 3437 // interpreted, like flags for instance. 3438 static const uint64_t INDEX_VERSION = 2; 3439 3440 /// Emit the per-module summary section alongside the rest of 3441 /// the module's bitcode. 3442 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3443 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3444 3445 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3446 3447 if (Index->begin() == Index->end()) { 3448 Stream.ExitBlock(); 3449 return; 3450 } 3451 3452 // Abbrev for FS_PERMODULE. 3453 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3454 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3459 // numrefs x valueid, n x (valueid) 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3462 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3463 3464 // Abbrev for FS_PERMODULE_PROFILE. 3465 Abbv = new BitCodeAbbrev(); 3466 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3471 // numrefs x valueid, n x (valueid, hotness) 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3474 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3475 3476 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3477 Abbv = new BitCodeAbbrev(); 3478 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3483 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3484 3485 // Abbrev for FS_ALIAS. 3486 Abbv = new BitCodeAbbrev(); 3487 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3491 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 3492 3493 SmallVector<uint64_t, 64> NameVals; 3494 // Iterate over the list of functions instead of the Index to 3495 // ensure the ordering is stable. 3496 for (const Function &F : M) { 3497 // Summary emission does not support anonymous functions, they have to 3498 // renamed using the anonymous function renaming pass. 3499 if (!F.hasName()) 3500 report_fatal_error("Unexpected anonymous function when writing summary"); 3501 3502 auto Summaries = 3503 Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName())); 3504 if (Summaries == Index->end()) { 3505 // Only declarations should not have a summary (a declaration might 3506 // however have a summary if the def was in module level asm). 3507 assert(F.isDeclaration()); 3508 continue; 3509 } 3510 auto *Summary = Summaries->second.front().get(); 3511 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3512 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3513 } 3514 3515 // Capture references from GlobalVariable initializers, which are outside 3516 // of a function scope. 3517 for (const GlobalVariable &G : M.globals()) 3518 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3519 3520 for (const GlobalAlias &A : M.aliases()) { 3521 auto *Aliasee = A.getBaseObject(); 3522 if (!Aliasee->hasName()) 3523 // Nameless function don't have an entry in the summary, skip it. 3524 continue; 3525 auto AliasId = VE.getValueID(&A); 3526 auto AliaseeId = VE.getValueID(Aliasee); 3527 NameVals.push_back(AliasId); 3528 auto *Summary = Index->getGlobalValueSummary(A); 3529 AliasSummary *AS = cast<AliasSummary>(Summary); 3530 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3531 NameVals.push_back(AliaseeId); 3532 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3533 NameVals.clear(); 3534 } 3535 3536 Stream.ExitBlock(); 3537 } 3538 3539 /// Emit the combined summary section into the combined index file. 3540 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3541 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3542 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3543 3544 // Abbrev for FS_COMBINED. 3545 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3546 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3552 // numrefs x valueid, n x (valueid) 3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3555 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3556 3557 // Abbrev for FS_COMBINED_PROFILE. 3558 Abbv = new BitCodeAbbrev(); 3559 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3565 // numrefs x valueid, n x (valueid, hotness) 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3568 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3569 3570 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3571 Abbv = new BitCodeAbbrev(); 3572 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3578 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3579 3580 // Abbrev for FS_COMBINED_ALIAS. 3581 Abbv = new BitCodeAbbrev(); 3582 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3587 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 3588 3589 // The aliases are emitted as a post-pass, and will point to the value 3590 // id of the aliasee. Save them in a vector for post-processing. 3591 SmallVector<AliasSummary *, 64> Aliases; 3592 3593 // Save the value id for each summary for alias emission. 3594 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3595 3596 SmallVector<uint64_t, 64> NameVals; 3597 3598 // For local linkage, we also emit the original name separately 3599 // immediately after the record. 3600 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3601 if (!GlobalValue::isLocalLinkage(S.linkage())) 3602 return; 3603 NameVals.push_back(S.getOriginalName()); 3604 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3605 NameVals.clear(); 3606 }; 3607 3608 for (const auto &I : *this) { 3609 GlobalValueSummary *S = I.second; 3610 assert(S); 3611 3612 assert(hasValueId(I.first)); 3613 unsigned ValueId = getValueId(I.first); 3614 SummaryToValueIdMap[S] = ValueId; 3615 3616 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3617 // Will process aliases as a post-pass because the reader wants all 3618 // global to be loaded first. 3619 Aliases.push_back(AS); 3620 continue; 3621 } 3622 3623 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3624 NameVals.push_back(ValueId); 3625 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3626 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3627 for (auto &RI : VS->refs()) { 3628 NameVals.push_back(getValueId(RI.getGUID())); 3629 } 3630 3631 // Emit the finished record. 3632 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3633 FSModRefsAbbrev); 3634 NameVals.clear(); 3635 MaybeEmitOriginalName(*S); 3636 continue; 3637 } 3638 3639 auto *FS = cast<FunctionSummary>(S); 3640 if (!FS->type_tests().empty()) 3641 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3642 3643 NameVals.push_back(ValueId); 3644 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3645 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3646 NameVals.push_back(FS->instCount()); 3647 NameVals.push_back(FS->refs().size()); 3648 3649 for (auto &RI : FS->refs()) { 3650 NameVals.push_back(getValueId(RI.getGUID())); 3651 } 3652 3653 bool HasProfileData = false; 3654 for (auto &EI : FS->calls()) { 3655 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3656 if (HasProfileData) 3657 break; 3658 } 3659 3660 for (auto &EI : FS->calls()) { 3661 // If this GUID doesn't have a value id, it doesn't have a function 3662 // summary and we don't need to record any calls to it. 3663 if (!hasValueId(EI.first.getGUID())) 3664 continue; 3665 NameVals.push_back(getValueId(EI.first.getGUID())); 3666 if (HasProfileData) 3667 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3668 } 3669 3670 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3671 unsigned Code = 3672 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3673 3674 // Emit the finished record. 3675 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3676 NameVals.clear(); 3677 MaybeEmitOriginalName(*S); 3678 } 3679 3680 for (auto *AS : Aliases) { 3681 auto AliasValueId = SummaryToValueIdMap[AS]; 3682 assert(AliasValueId); 3683 NameVals.push_back(AliasValueId); 3684 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3685 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3686 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3687 assert(AliaseeValueId); 3688 NameVals.push_back(AliaseeValueId); 3689 3690 // Emit the finished record. 3691 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3692 NameVals.clear(); 3693 MaybeEmitOriginalName(*AS); 3694 } 3695 3696 Stream.ExitBlock(); 3697 } 3698 3699 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3700 /// current llvm version, and a record for the epoch number. 3701 void writeIdentificationBlock(BitstreamWriter &Stream) { 3702 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3703 3704 // Write the "user readable" string identifying the bitcode producer 3705 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3706 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3709 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3710 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3711 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3712 3713 // Write the epoch version 3714 Abbv = new BitCodeAbbrev(); 3715 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3717 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3718 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3719 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3720 Stream.ExitBlock(); 3721 } 3722 3723 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3724 // Emit the module's hash. 3725 // MODULE_CODE_HASH: [5*i32] 3726 SHA1 Hasher; 3727 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3728 Buffer.size() - BlockStartPos)); 3729 StringRef Hash = Hasher.result(); 3730 uint32_t Vals[5]; 3731 for (int Pos = 0; Pos < 20; Pos += 4) { 3732 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3733 } 3734 3735 // Emit the finished record. 3736 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3737 } 3738 3739 void ModuleBitcodeWriter::write() { 3740 writeIdentificationBlock(Stream); 3741 3742 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3743 size_t BlockStartPos = Buffer.size(); 3744 3745 SmallVector<unsigned, 1> Vals; 3746 unsigned CurVersion = 1; 3747 Vals.push_back(CurVersion); 3748 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3749 3750 // Emit blockinfo, which defines the standard abbreviations etc. 3751 writeBlockInfo(); 3752 3753 // Emit information about attribute groups. 3754 writeAttributeGroupTable(); 3755 3756 // Emit information about parameter attributes. 3757 writeAttributeTable(); 3758 3759 // Emit information describing all of the types in the module. 3760 writeTypeTable(); 3761 3762 writeComdats(); 3763 3764 // Emit top-level description of module, including target triple, inline asm, 3765 // descriptors for global variables, and function prototype info. 3766 writeModuleInfo(); 3767 3768 // Emit constants. 3769 writeModuleConstants(); 3770 3771 // Emit metadata kind names. 3772 writeModuleMetadataKinds(); 3773 3774 // Emit metadata. 3775 writeModuleMetadata(); 3776 3777 // Emit module-level use-lists. 3778 if (VE.shouldPreserveUseListOrder()) 3779 writeUseListBlock(nullptr); 3780 3781 writeOperandBundleTags(); 3782 3783 // Emit function bodies. 3784 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3785 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3786 if (!F->isDeclaration()) 3787 writeFunction(*F, FunctionToBitcodeIndex); 3788 3789 // Need to write after the above call to WriteFunction which populates 3790 // the summary information in the index. 3791 if (Index) 3792 writePerModuleGlobalValueSummary(); 3793 3794 writeValueSymbolTable(M.getValueSymbolTable(), 3795 /* IsModuleLevel */ true, &FunctionToBitcodeIndex); 3796 3797 if (GenerateHash) { 3798 writeModuleHash(BlockStartPos); 3799 } 3800 3801 Stream.ExitBlock(); 3802 } 3803 3804 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3805 uint32_t &Position) { 3806 support::endian::write32le(&Buffer[Position], Value); 3807 Position += 4; 3808 } 3809 3810 /// If generating a bc file on darwin, we have to emit a 3811 /// header and trailer to make it compatible with the system archiver. To do 3812 /// this we emit the following header, and then emit a trailer that pads the 3813 /// file out to be a multiple of 16 bytes. 3814 /// 3815 /// struct bc_header { 3816 /// uint32_t Magic; // 0x0B17C0DE 3817 /// uint32_t Version; // Version, currently always 0. 3818 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3819 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3820 /// uint32_t CPUType; // CPU specifier. 3821 /// ... potentially more later ... 3822 /// }; 3823 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3824 const Triple &TT) { 3825 unsigned CPUType = ~0U; 3826 3827 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3828 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3829 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3830 // specific constants here because they are implicitly part of the Darwin ABI. 3831 enum { 3832 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3833 DARWIN_CPU_TYPE_X86 = 7, 3834 DARWIN_CPU_TYPE_ARM = 12, 3835 DARWIN_CPU_TYPE_POWERPC = 18 3836 }; 3837 3838 Triple::ArchType Arch = TT.getArch(); 3839 if (Arch == Triple::x86_64) 3840 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3841 else if (Arch == Triple::x86) 3842 CPUType = DARWIN_CPU_TYPE_X86; 3843 else if (Arch == Triple::ppc) 3844 CPUType = DARWIN_CPU_TYPE_POWERPC; 3845 else if (Arch == Triple::ppc64) 3846 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3847 else if (Arch == Triple::arm || Arch == Triple::thumb) 3848 CPUType = DARWIN_CPU_TYPE_ARM; 3849 3850 // Traditional Bitcode starts after header. 3851 assert(Buffer.size() >= BWH_HeaderSize && 3852 "Expected header size to be reserved"); 3853 unsigned BCOffset = BWH_HeaderSize; 3854 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3855 3856 // Write the magic and version. 3857 unsigned Position = 0; 3858 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3859 writeInt32ToBuffer(0, Buffer, Position); // Version. 3860 writeInt32ToBuffer(BCOffset, Buffer, Position); 3861 writeInt32ToBuffer(BCSize, Buffer, Position); 3862 writeInt32ToBuffer(CPUType, Buffer, Position); 3863 3864 // If the file is not a multiple of 16 bytes, insert dummy padding. 3865 while (Buffer.size() & 15) 3866 Buffer.push_back(0); 3867 } 3868 3869 /// Helper to write the header common to all bitcode files. 3870 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3871 // Emit the file header. 3872 Stream.Emit((unsigned)'B', 8); 3873 Stream.Emit((unsigned)'C', 8); 3874 Stream.Emit(0x0, 4); 3875 Stream.Emit(0xC, 4); 3876 Stream.Emit(0xE, 4); 3877 Stream.Emit(0xD, 4); 3878 } 3879 3880 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3881 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3882 writeBitcodeHeader(*Stream); 3883 } 3884 3885 BitcodeWriter::~BitcodeWriter() = default; 3886 3887 void BitcodeWriter::writeModule(const Module *M, 3888 bool ShouldPreserveUseListOrder, 3889 const ModuleSummaryIndex *Index, 3890 bool GenerateHash) { 3891 ModuleBitcodeWriter ModuleWriter( 3892 M, Buffer, *Stream, ShouldPreserveUseListOrder, Index, GenerateHash); 3893 ModuleWriter.write(); 3894 } 3895 3896 /// WriteBitcodeToFile - Write the specified module to the specified output 3897 /// stream. 3898 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3899 bool ShouldPreserveUseListOrder, 3900 const ModuleSummaryIndex *Index, 3901 bool GenerateHash) { 3902 SmallVector<char, 0> Buffer; 3903 Buffer.reserve(256*1024); 3904 3905 // If this is darwin or another generic macho target, reserve space for the 3906 // header. 3907 Triple TT(M->getTargetTriple()); 3908 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3909 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3910 3911 BitcodeWriter Writer(Buffer); 3912 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash); 3913 3914 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3915 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3916 3917 // Write the generated bitstream to "Out". 3918 Out.write((char*)&Buffer.front(), Buffer.size()); 3919 } 3920 3921 void IndexBitcodeWriter::write() { 3922 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3923 3924 SmallVector<unsigned, 1> Vals; 3925 unsigned CurVersion = 1; 3926 Vals.push_back(CurVersion); 3927 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3928 3929 // If we have a VST, write the VSTOFFSET record placeholder. 3930 writeValueSymbolTableForwardDecl(); 3931 3932 // Write the module paths in the combined index. 3933 writeModStrings(); 3934 3935 // Write the summary combined index records. 3936 writeCombinedGlobalValueSummary(); 3937 3938 // Need a special VST writer for the combined index (we don't have a 3939 // real VST and real values when this is invoked). 3940 writeCombinedValueSymbolTable(); 3941 3942 Stream.ExitBlock(); 3943 } 3944 3945 // Write the specified module summary index to the given raw output stream, 3946 // where it will be written in a new bitcode block. This is used when 3947 // writing the combined index file for ThinLTO. When writing a subset of the 3948 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3949 void llvm::WriteIndexToFile( 3950 const ModuleSummaryIndex &Index, raw_ostream &Out, 3951 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3952 SmallVector<char, 0> Buffer; 3953 Buffer.reserve(256 * 1024); 3954 3955 BitstreamWriter Stream(Buffer); 3956 writeBitcodeHeader(Stream); 3957 3958 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 3959 IndexWriter.write(); 3960 3961 Out.write((char *)&Buffer.front(), Buffer.size()); 3962 } 3963