1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/ParameterAttributes.h" 23 #include "llvm/TypeSymbolTable.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/Support/MathExtras.h" 26 using namespace llvm; 27 28 /// These are manifest constants used by the bitcode writer. They do not need to 29 /// be kept in sync with the reader, but need to be consistent within this file. 30 enum { 31 CurVersion = 0, 32 33 // VALUE_SYMTAB_BLOCK abbrev id's. 34 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 35 VST_ENTRY_7_ABBREV 36 37 }; 38 39 40 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 41 switch (Opcode) { 42 default: assert(0 && "Unknown cast instruction!"); 43 case Instruction::Trunc : return bitc::CAST_TRUNC; 44 case Instruction::ZExt : return bitc::CAST_ZEXT; 45 case Instruction::SExt : return bitc::CAST_SEXT; 46 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 47 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 48 case Instruction::UIToFP : return bitc::CAST_UITOFP; 49 case Instruction::SIToFP : return bitc::CAST_SITOFP; 50 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 51 case Instruction::FPExt : return bitc::CAST_FPEXT; 52 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 53 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 54 case Instruction::BitCast : return bitc::CAST_BITCAST; 55 } 56 } 57 58 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 59 switch (Opcode) { 60 default: assert(0 && "Unknown binary instruction!"); 61 case Instruction::Add: return bitc::BINOP_ADD; 62 case Instruction::Sub: return bitc::BINOP_SUB; 63 case Instruction::Mul: return bitc::BINOP_MUL; 64 case Instruction::UDiv: return bitc::BINOP_UDIV; 65 case Instruction::FDiv: 66 case Instruction::SDiv: return bitc::BINOP_SDIV; 67 case Instruction::URem: return bitc::BINOP_UREM; 68 case Instruction::FRem: 69 case Instruction::SRem: return bitc::BINOP_SREM; 70 case Instruction::Shl: return bitc::BINOP_SHL; 71 case Instruction::LShr: return bitc::BINOP_LSHR; 72 case Instruction::AShr: return bitc::BINOP_ASHR; 73 case Instruction::And: return bitc::BINOP_AND; 74 case Instruction::Or: return bitc::BINOP_OR; 75 case Instruction::Xor: return bitc::BINOP_XOR; 76 } 77 } 78 79 80 81 static void WriteStringRecord(unsigned Code, const std::string &Str, 82 unsigned AbbrevToUse, BitstreamWriter &Stream) { 83 SmallVector<unsigned, 64> Vals; 84 85 // Code: [strchar x N] 86 for (unsigned i = 0, e = Str.size(); i != e; ++i) 87 Vals.push_back(Str[i]); 88 89 // Emit the finished record. 90 Stream.EmitRecord(Code, Vals, AbbrevToUse); 91 } 92 93 // Emit information about parameter attributes. 94 static void WriteParamAttrTable(const ValueEnumerator &VE, 95 BitstreamWriter &Stream) { 96 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs(); 97 if (Attrs.empty()) return; 98 99 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 100 101 SmallVector<uint64_t, 64> Record; 102 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 103 const ParamAttrsList *A = Attrs[i]; 104 for (unsigned op = 0, e = A->size(); op != e; ++op) { 105 Record.push_back(A->getParamIndex(op)); 106 Record.push_back(A->getParamAttrsAtIndex(op)); 107 } 108 109 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 110 Record.clear(); 111 } 112 113 Stream.ExitBlock(); 114 } 115 116 /// WriteTypeTable - Write out the type table for a module. 117 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 118 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 119 120 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 121 SmallVector<uint64_t, 64> TypeVals; 122 123 // FIXME: Set up abbrevs now that we know the width of the type fields, etc. 124 125 // Emit an entry count so the reader can reserve space. 126 TypeVals.push_back(TypeList.size()); 127 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 128 TypeVals.clear(); 129 130 // Loop over all of the types, emitting each in turn. 131 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 132 const Type *T = TypeList[i].first; 133 int AbbrevToUse = 0; 134 unsigned Code = 0; 135 136 switch (T->getTypeID()) { 137 case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID. 138 default: assert(0 && "Unknown type!"); 139 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 140 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 141 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 142 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 143 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 144 case Type::IntegerTyID: 145 // INTEGER: [width] 146 Code = bitc::TYPE_CODE_INTEGER; 147 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 148 break; 149 case Type::PointerTyID: 150 // POINTER: [pointee type] 151 Code = bitc::TYPE_CODE_POINTER; 152 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType())); 153 break; 154 155 case Type::FunctionTyID: { 156 const FunctionType *FT = cast<FunctionType>(T); 157 // FUNCTION: [isvararg, attrid, #pararms, paramty x N] 158 Code = bitc::TYPE_CODE_FUNCTION; 159 TypeVals.push_back(FT->isVarArg()); 160 TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs())); 161 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 162 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 163 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 164 break; 165 } 166 case Type::StructTyID: { 167 const StructType *ST = cast<StructType>(T); 168 // STRUCT: [ispacked, #elts, eltty x N] 169 Code = bitc::TYPE_CODE_STRUCT; 170 TypeVals.push_back(ST->isPacked()); 171 // Output all of the element types. 172 for (StructType::element_iterator I = ST->element_begin(), 173 E = ST->element_end(); I != E; ++I) 174 TypeVals.push_back(VE.getTypeID(*I)); 175 break; 176 } 177 case Type::ArrayTyID: { 178 const ArrayType *AT = cast<ArrayType>(T); 179 // ARRAY: [numelts, eltty] 180 Code = bitc::TYPE_CODE_ARRAY; 181 TypeVals.push_back(AT->getNumElements()); 182 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 183 break; 184 } 185 case Type::VectorTyID: { 186 const VectorType *VT = cast<VectorType>(T); 187 // VECTOR [numelts, eltty] 188 Code = bitc::TYPE_CODE_VECTOR; 189 TypeVals.push_back(VT->getNumElements()); 190 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 191 break; 192 } 193 } 194 195 // Emit the finished record. 196 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 197 TypeVals.clear(); 198 } 199 200 Stream.ExitBlock(); 201 } 202 203 static unsigned getEncodedLinkage(const GlobalValue *GV) { 204 switch (GV->getLinkage()) { 205 default: assert(0 && "Invalid linkage!"); 206 case GlobalValue::ExternalLinkage: return 0; 207 case GlobalValue::WeakLinkage: return 1; 208 case GlobalValue::AppendingLinkage: return 2; 209 case GlobalValue::InternalLinkage: return 3; 210 case GlobalValue::LinkOnceLinkage: return 4; 211 case GlobalValue::DLLImportLinkage: return 5; 212 case GlobalValue::DLLExportLinkage: return 6; 213 case GlobalValue::ExternalWeakLinkage: return 7; 214 } 215 } 216 217 static unsigned getEncodedVisibility(const GlobalValue *GV) { 218 switch (GV->getVisibility()) { 219 default: assert(0 && "Invalid visibility!"); 220 case GlobalValue::DefaultVisibility: return 0; 221 case GlobalValue::HiddenVisibility: return 1; 222 case GlobalValue::ProtectedVisibility: return 2; 223 } 224 } 225 226 // Emit top-level description of module, including target triple, inline asm, 227 // descriptors for global variables, and function prototype info. 228 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 229 BitstreamWriter &Stream) { 230 // Emit the list of dependent libraries for the Module. 231 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 232 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 233 234 // Emit various pieces of data attached to a module. 235 if (!M->getTargetTriple().empty()) 236 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 237 0/*TODO*/, Stream); 238 if (!M->getDataLayout().empty()) 239 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 240 0/*TODO*/, Stream); 241 if (!M->getModuleInlineAsm().empty()) 242 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 243 0/*TODO*/, Stream); 244 245 // Emit information about sections, computing how many there are. Also 246 // compute the maximum alignment value. 247 std::map<std::string, unsigned> SectionMap; 248 unsigned MaxAlignment = 0; 249 unsigned MaxGlobalType = 0; 250 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 251 GV != E; ++GV) { 252 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 253 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 254 255 if (!GV->hasSection()) continue; 256 // Give section names unique ID's. 257 unsigned &Entry = SectionMap[GV->getSection()]; 258 if (Entry != 0) continue; 259 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 260 0/*TODO*/, Stream); 261 Entry = SectionMap.size(); 262 } 263 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 264 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 265 if (!F->hasSection()) continue; 266 // Give section names unique ID's. 267 unsigned &Entry = SectionMap[F->getSection()]; 268 if (Entry != 0) continue; 269 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 270 0/*TODO*/, Stream); 271 Entry = SectionMap.size(); 272 } 273 274 // Emit abbrev for globals, now that we know # sections and max alignment. 275 unsigned SimpleGVarAbbrev = 0; 276 if (!M->global_empty()) { 277 // Add an abbrev for common globals with no visibility or thread localness. 278 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 279 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 281 Log2_32_Ceil(MaxGlobalType+1))); 282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 285 if (MaxAlignment == 0) // Alignment. 286 Abbv->Add(BitCodeAbbrevOp(0)); 287 else { 288 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 290 Log2_32_Ceil(MaxEncAlignment+1))); 291 } 292 if (SectionMap.empty()) // Section. 293 Abbv->Add(BitCodeAbbrevOp(0)); 294 else 295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 296 Log2_32_Ceil(SectionMap.size()+1))); 297 // Don't bother emitting vis + thread local. 298 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 299 } 300 301 // Emit the global variable information. 302 SmallVector<unsigned, 64> Vals; 303 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 304 GV != E; ++GV) { 305 unsigned AbbrevToUse = 0; 306 307 // GLOBALVAR: [type, isconst, initid, 308 // linkage, alignment, section, visibility, threadlocal] 309 Vals.push_back(VE.getTypeID(GV->getType())); 310 Vals.push_back(GV->isConstant()); 311 Vals.push_back(GV->isDeclaration() ? 0 : 312 (VE.getValueID(GV->getInitializer()) + 1)); 313 Vals.push_back(getEncodedLinkage(GV)); 314 Vals.push_back(Log2_32(GV->getAlignment())+1); 315 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 316 if (GV->isThreadLocal() || 317 GV->getVisibility() != GlobalValue::DefaultVisibility) { 318 Vals.push_back(getEncodedVisibility(GV)); 319 Vals.push_back(GV->isThreadLocal()); 320 } else { 321 AbbrevToUse = SimpleGVarAbbrev; 322 } 323 324 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 325 Vals.clear(); 326 } 327 328 // Emit the function proto information. 329 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 330 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section, 331 // visibility] 332 Vals.push_back(VE.getTypeID(F->getType())); 333 Vals.push_back(F->getCallingConv()); 334 Vals.push_back(F->isDeclaration()); 335 Vals.push_back(getEncodedLinkage(F)); 336 Vals.push_back(Log2_32(F->getAlignment())+1); 337 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 338 Vals.push_back(getEncodedVisibility(F)); 339 340 unsigned AbbrevToUse = 0; 341 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 342 Vals.clear(); 343 } 344 345 346 // Emit the alias information. 347 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 348 AI != E; ++AI) { 349 Vals.push_back(VE.getTypeID(AI->getType())); 350 Vals.push_back(VE.getValueID(AI->getAliasee())); 351 Vals.push_back(getEncodedLinkage(AI)); 352 unsigned AbbrevToUse = 0; 353 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 354 Vals.clear(); 355 } 356 } 357 358 359 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 360 const ValueEnumerator &VE, 361 BitstreamWriter &Stream) { 362 if (FirstVal == LastVal) return; 363 364 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 2); 365 366 // FIXME: Install and use abbrevs to reduce size. Install them globally so 367 // they don't need to be reemitted for each function body. 368 369 SmallVector<uint64_t, 64> Record; 370 371 const ValueEnumerator::ValueList &Vals = VE.getValues(); 372 const Type *LastTy = 0; 373 for (unsigned i = FirstVal; i != LastVal; ++i) { 374 const Value *V = Vals[i].first; 375 // If we need to switch types, do so now. 376 if (V->getType() != LastTy) { 377 LastTy = V->getType(); 378 Record.push_back(VE.getTypeID(LastTy)); 379 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record); 380 Record.clear(); 381 } 382 383 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 384 assert(0 && IA && "FIXME: Inline asm writing unimp!"); 385 continue; 386 } 387 const Constant *C = cast<Constant>(V); 388 unsigned Code = -1U; 389 unsigned AbbrevToUse = 0; 390 if (C->isNullValue()) { 391 Code = bitc::CST_CODE_NULL; 392 } else if (isa<UndefValue>(C)) { 393 Code = bitc::CST_CODE_UNDEF; 394 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 395 if (IV->getBitWidth() <= 64) { 396 int64_t V = IV->getSExtValue(); 397 if (V >= 0) 398 Record.push_back(V << 1); 399 else 400 Record.push_back((-V << 1) | 1); 401 Code = bitc::CST_CODE_INTEGER; 402 } else { // Wide integers, > 64 bits in size. 403 // We have an arbitrary precision integer value to write whose 404 // bit width is > 64. However, in canonical unsigned integer 405 // format it is likely that the high bits are going to be zero. 406 // So, we only write the number of active words. 407 unsigned NWords = IV->getValue().getActiveWords(); 408 const uint64_t *RawWords = IV->getValue().getRawData(); 409 for (unsigned i = 0; i != NWords; ++i) { 410 int64_t V = RawWords[i]; 411 if (V >= 0) 412 Record.push_back(V << 1); 413 else 414 Record.push_back((-V << 1) | 1); 415 } 416 Code = bitc::CST_CODE_WIDE_INTEGER; 417 } 418 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 419 Code = bitc::CST_CODE_FLOAT; 420 if (CFP->getType() == Type::FloatTy) { 421 Record.push_back(FloatToBits((float)CFP->getValue())); 422 } else { 423 assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!"); 424 Record.push_back(DoubleToBits((double)CFP->getValue())); 425 } 426 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 427 isa<ConstantVector>(V)) { 428 Code = bitc::CST_CODE_AGGREGATE; 429 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 430 Record.push_back(VE.getValueID(C->getOperand(i))); 431 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 432 switch (CE->getOpcode()) { 433 default: 434 if (Instruction::isCast(CE->getOpcode())) { 435 Code = bitc::CST_CODE_CE_CAST; 436 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 437 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 438 Record.push_back(VE.getValueID(C->getOperand(0))); 439 } else { 440 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 441 Code = bitc::CST_CODE_CE_BINOP; 442 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 443 Record.push_back(VE.getValueID(C->getOperand(0))); 444 Record.push_back(VE.getValueID(C->getOperand(1))); 445 } 446 break; 447 case Instruction::GetElementPtr: 448 Code = bitc::CST_CODE_CE_GEP; 449 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 450 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 451 Record.push_back(VE.getValueID(C->getOperand(i))); 452 } 453 break; 454 case Instruction::Select: 455 Code = bitc::CST_CODE_CE_SELECT; 456 Record.push_back(VE.getValueID(C->getOperand(0))); 457 Record.push_back(VE.getValueID(C->getOperand(1))); 458 Record.push_back(VE.getValueID(C->getOperand(2))); 459 break; 460 case Instruction::ExtractElement: 461 Code = bitc::CST_CODE_CE_EXTRACTELT; 462 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 463 Record.push_back(VE.getValueID(C->getOperand(0))); 464 Record.push_back(VE.getValueID(C->getOperand(1))); 465 break; 466 case Instruction::InsertElement: 467 Code = bitc::CST_CODE_CE_INSERTELT; 468 Record.push_back(VE.getValueID(C->getOperand(0))); 469 Record.push_back(VE.getValueID(C->getOperand(1))); 470 Record.push_back(VE.getValueID(C->getOperand(2))); 471 break; 472 case Instruction::ShuffleVector: 473 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 474 Record.push_back(VE.getValueID(C->getOperand(0))); 475 Record.push_back(VE.getValueID(C->getOperand(1))); 476 Record.push_back(VE.getValueID(C->getOperand(2))); 477 break; 478 case Instruction::ICmp: 479 case Instruction::FCmp: 480 Code = bitc::CST_CODE_CE_CMP; 481 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 482 Record.push_back(VE.getValueID(C->getOperand(0))); 483 Record.push_back(VE.getValueID(C->getOperand(1))); 484 Record.push_back(CE->getPredicate()); 485 break; 486 } 487 } else { 488 assert(0 && "Unknown constant!"); 489 } 490 Stream.EmitRecord(Code, Record, AbbrevToUse); 491 Record.clear(); 492 } 493 494 Stream.ExitBlock(); 495 } 496 497 static void WriteModuleConstants(const ValueEnumerator &VE, 498 BitstreamWriter &Stream) { 499 const ValueEnumerator::ValueList &Vals = VE.getValues(); 500 501 // Find the first constant to emit, which is the first non-globalvalue value. 502 // We know globalvalues have been emitted by WriteModuleInfo. 503 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 504 if (!isa<GlobalValue>(Vals[i].first)) { 505 WriteConstants(i, Vals.size(), VE, Stream); 506 return; 507 } 508 } 509 } 510 511 /// WriteInstruction - Emit an instruction to the specified stream. 512 static void WriteInstruction(const Instruction &I, ValueEnumerator &VE, 513 BitstreamWriter &Stream, 514 SmallVector<unsigned, 64> &Vals) { 515 unsigned Code = 0; 516 unsigned AbbrevToUse = 0; 517 switch (I.getOpcode()) { 518 default: 519 if (Instruction::isCast(I.getOpcode())) { 520 Code = bitc::FUNC_CODE_INST_CAST; 521 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 522 Vals.push_back(VE.getTypeID(I.getType())); 523 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 524 Vals.push_back(VE.getValueID(I.getOperand(0))); 525 } else { 526 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 527 Code = bitc::FUNC_CODE_INST_BINOP; 528 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 529 Vals.push_back(VE.getTypeID(I.getType())); 530 Vals.push_back(VE.getValueID(I.getOperand(0))); 531 Vals.push_back(VE.getValueID(I.getOperand(1))); 532 } 533 break; 534 535 case Instruction::GetElementPtr: 536 Code = bitc::FUNC_CODE_INST_GEP; 537 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 538 Vals.push_back(VE.getTypeID(I.getOperand(i)->getType())); 539 Vals.push_back(VE.getValueID(I.getOperand(i))); 540 } 541 break; 542 case Instruction::Select: 543 Code = bitc::FUNC_CODE_INST_SELECT; 544 Vals.push_back(VE.getTypeID(I.getType())); 545 Vals.push_back(VE.getValueID(I.getOperand(0))); 546 Vals.push_back(VE.getValueID(I.getOperand(1))); 547 Vals.push_back(VE.getValueID(I.getOperand(2))); 548 break; 549 case Instruction::ExtractElement: 550 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 551 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 552 Vals.push_back(VE.getValueID(I.getOperand(0))); 553 Vals.push_back(VE.getValueID(I.getOperand(1))); 554 break; 555 case Instruction::InsertElement: 556 Code = bitc::FUNC_CODE_INST_INSERTELT; 557 Vals.push_back(VE.getTypeID(I.getType())); 558 Vals.push_back(VE.getValueID(I.getOperand(0))); 559 Vals.push_back(VE.getValueID(I.getOperand(1))); 560 Vals.push_back(VE.getValueID(I.getOperand(2))); 561 break; 562 case Instruction::ShuffleVector: 563 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 564 Vals.push_back(VE.getTypeID(I.getType())); 565 Vals.push_back(VE.getValueID(I.getOperand(0))); 566 Vals.push_back(VE.getValueID(I.getOperand(1))); 567 Vals.push_back(VE.getValueID(I.getOperand(2))); 568 break; 569 case Instruction::ICmp: 570 case Instruction::FCmp: 571 Code = bitc::FUNC_CODE_INST_CMP; 572 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 573 Vals.push_back(VE.getValueID(I.getOperand(0))); 574 Vals.push_back(VE.getValueID(I.getOperand(1))); 575 Vals.push_back(cast<CmpInst>(I).getPredicate()); 576 break; 577 578 case Instruction::Ret: 579 Code = bitc::FUNC_CODE_INST_RET; 580 if (I.getNumOperands()) { 581 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 582 Vals.push_back(VE.getValueID(I.getOperand(0))); 583 } 584 break; 585 case Instruction::Br: 586 Code = bitc::FUNC_CODE_INST_BR; 587 Vals.push_back(VE.getValueID(I.getOperand(0))); 588 if (cast<BranchInst>(I).isConditional()) { 589 Vals.push_back(VE.getValueID(I.getOperand(1))); 590 Vals.push_back(VE.getValueID(I.getOperand(2))); 591 } 592 break; 593 case Instruction::Switch: 594 Code = bitc::FUNC_CODE_INST_SWITCH; 595 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 596 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 597 Vals.push_back(VE.getValueID(I.getOperand(i))); 598 break; 599 case Instruction::Invoke: { 600 Code = bitc::FUNC_CODE_INST_INVOKE; 601 Vals.push_back(cast<InvokeInst>(I).getCallingConv()); 602 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 603 Vals.push_back(VE.getValueID(I.getOperand(0))); // callee 604 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal 605 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind 606 607 // Emit value #'s for the fixed parameters. 608 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 609 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 610 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 611 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 612 613 // Emit type/value pairs for varargs params. 614 if (FTy->isVarArg()) { 615 unsigned NumVarargs = I.getNumOperands()-3-FTy->getNumParams(); 616 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 617 i != e; ++i) { 618 Vals.push_back(VE.getTypeID(I.getOperand(i)->getType())); 619 Vals.push_back(VE.getValueID(I.getOperand(i))); 620 } 621 } 622 break; 623 } 624 case Instruction::Unwind: 625 Code = bitc::FUNC_CODE_INST_UNWIND; 626 break; 627 case Instruction::Unreachable: 628 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 629 break; 630 631 case Instruction::PHI: 632 Code = bitc::FUNC_CODE_INST_PHI; 633 Vals.push_back(VE.getTypeID(I.getType())); 634 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 635 Vals.push_back(VE.getValueID(I.getOperand(i))); 636 break; 637 638 case Instruction::Malloc: 639 Code = bitc::FUNC_CODE_INST_MALLOC; 640 Vals.push_back(VE.getTypeID(I.getType())); 641 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 642 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 643 break; 644 645 case Instruction::Free: 646 Code = bitc::FUNC_CODE_INST_FREE; 647 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 648 Vals.push_back(VE.getValueID(I.getOperand(0))); 649 break; 650 651 case Instruction::Alloca: 652 Code = bitc::FUNC_CODE_INST_ALLOCA; 653 Vals.push_back(VE.getTypeID(I.getType())); 654 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 655 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 656 break; 657 658 case Instruction::Load: 659 Code = bitc::FUNC_CODE_INST_LOAD; 660 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 661 Vals.push_back(VE.getValueID(I.getOperand(0))); // ptr. 662 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 663 Vals.push_back(cast<LoadInst>(I).isVolatile()); 664 break; 665 case Instruction::Store: 666 Code = bitc::FUNC_CODE_INST_STORE; 667 Vals.push_back(VE.getTypeID(I.getOperand(1)->getType())); // Pointer 668 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 669 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr. 670 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 671 Vals.push_back(cast<StoreInst>(I).isVolatile()); 672 break; 673 case Instruction::Call: { 674 Code = bitc::FUNC_CODE_INST_CALL; 675 Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) | 676 cast<CallInst>(I).isTailCall()); 677 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 678 Vals.push_back(VE.getValueID(I.getOperand(0))); // callee 679 680 // Emit value #'s for the fixed parameters. 681 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 682 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 683 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 684 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 685 686 // Emit type/value pairs for varargs params. 687 if (FTy->isVarArg()) { 688 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 689 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 690 i != e; ++i) { 691 Vals.push_back(VE.getTypeID(I.getOperand(i)->getType())); 692 Vals.push_back(VE.getValueID(I.getOperand(i))); 693 } 694 } 695 break; 696 } 697 case Instruction::VAArg: 698 Code = bitc::FUNC_CODE_INST_VAARG; 699 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 700 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 701 Vals.push_back(VE.getTypeID(I.getType())); // restype. 702 break; 703 } 704 705 Stream.EmitRecord(Code, Vals, AbbrevToUse); 706 Vals.clear(); 707 } 708 709 // Emit names for globals/functions etc. 710 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 711 const ValueEnumerator &VE, 712 BitstreamWriter &Stream) { 713 if (VST.empty()) return; 714 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 3); 715 716 { // 8-bit fixed width VST_ENTRY strings. 717 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 718 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 722 if (Stream.EmitAbbrev(Abbv) != VST_ENTRY_8_ABBREV) 723 assert(0 && "Unexpected abbrev ordering!"); 724 } 725 726 { // 7-bit fixed width VST_ENTRY strings. 727 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 728 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 732 if (Stream.EmitAbbrev(Abbv) != VST_ENTRY_7_ABBREV) 733 assert(0 && "Unexpected abbrev ordering!"); 734 } 735 736 737 // FIXME: Set up the abbrev, we know how many values there are! 738 // FIXME: We know if the type names can use 7-bit ascii. 739 SmallVector<unsigned, 64> NameVals; 740 741 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 742 SI != SE; ++SI) { 743 744 const ValueName &Name = *SI; 745 746 // Figure out the encoding to use for the name. 747 bool is7Bit = true; 748 for (unsigned i = 0, e = Name.getKeyLength(); i != e; ++i) 749 if ((unsigned char)Name.getKeyData()[i] & 128) { 750 is7Bit = false; 751 break; 752 } 753 754 755 unsigned AbbrevToUse = 0; 756 757 // VST_ENTRY: [valueid, namelen, namechar x N] 758 // VST_BBENTRY: [bbid, namelen, namechar x N] 759 unsigned Code; 760 if (isa<BasicBlock>(SI->getValue())) { 761 Code = bitc::VST_CODE_BBENTRY; 762 } else { 763 Code = bitc::VST_CODE_ENTRY; 764 AbbrevToUse = is7Bit ? VST_ENTRY_7_ABBREV : VST_ENTRY_8_ABBREV; 765 } 766 767 NameVals.push_back(VE.getValueID(SI->getValue())); 768 for (const char *P = Name.getKeyData(), 769 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 770 NameVals.push_back((unsigned char)*P); 771 772 // Emit the finished record. 773 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 774 NameVals.clear(); 775 } 776 Stream.ExitBlock(); 777 } 778 779 /// WriteFunction - Emit a function body to the module stream. 780 static void WriteFunction(const Function &F, ValueEnumerator &VE, 781 BitstreamWriter &Stream) { 782 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 3); 783 VE.incorporateFunction(F); 784 785 SmallVector<unsigned, 64> Vals; 786 787 // Emit the number of basic blocks, so the reader can create them ahead of 788 // time. 789 Vals.push_back(VE.getBasicBlocks().size()); 790 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 791 Vals.clear(); 792 793 // FIXME: Function attributes? 794 795 // If there are function-local constants, emit them now. 796 unsigned CstStart, CstEnd; 797 VE.getFunctionConstantRange(CstStart, CstEnd); 798 WriteConstants(CstStart, CstEnd, VE, Stream); 799 800 // Finally, emit all the instructions, in order. 801 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 802 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 803 WriteInstruction(*I, VE, Stream, Vals); 804 805 // Emit names for all the instructions etc. 806 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 807 808 VE.purgeFunction(); 809 Stream.ExitBlock(); 810 } 811 812 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 813 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 814 const ValueEnumerator &VE, 815 BitstreamWriter &Stream) { 816 if (TST.empty()) return; 817 818 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 819 820 // FIXME: Set up the abbrev, we know how many types there are! 821 // FIXME: We know if the type names can use 7-bit ascii. 822 823 SmallVector<unsigned, 64> NameVals; 824 825 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 826 TI != TE; ++TI) { 827 unsigned AbbrevToUse = 0; 828 829 // TST_ENTRY: [typeid, namelen, namechar x N] 830 NameVals.push_back(VE.getTypeID(TI->second)); 831 832 const std::string &Str = TI->first; 833 for (unsigned i = 0, e = Str.size(); i != e; ++i) 834 NameVals.push_back(Str[i]); 835 836 // Emit the finished record. 837 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, AbbrevToUse); 838 NameVals.clear(); 839 } 840 841 Stream.ExitBlock(); 842 } 843 844 845 /// WriteModule - Emit the specified module to the bitstream. 846 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 847 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 848 849 // Emit the version number if it is non-zero. 850 if (CurVersion) { 851 SmallVector<unsigned, 1> Vals; 852 Vals.push_back(CurVersion); 853 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 854 } 855 856 // Analyze the module, enumerating globals, functions, etc. 857 ValueEnumerator VE(M); 858 859 // Emit information about parameter attributes. 860 WriteParamAttrTable(VE, Stream); 861 862 // Emit information describing all of the types in the module. 863 WriteTypeTable(VE, Stream); 864 865 // Emit top-level description of module, including target triple, inline asm, 866 // descriptors for global variables, and function prototype info. 867 WriteModuleInfo(M, VE, Stream); 868 869 // Emit constants. 870 WriteModuleConstants(VE, Stream); 871 872 // If we have any aggregate values in the value table, purge them - these can 873 // only be used to initialize global variables. Doing so makes the value 874 // namespace smaller for code in functions. 875 int NumNonAggregates = VE.PurgeAggregateValues(); 876 if (NumNonAggregates != -1) { 877 SmallVector<unsigned, 1> Vals; 878 Vals.push_back(NumNonAggregates); 879 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 880 } 881 882 // Emit function bodies. 883 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 884 if (!I->isDeclaration()) 885 WriteFunction(*I, VE, Stream); 886 887 // Emit the type symbol table information. 888 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 889 890 // Emit names for globals/functions etc. 891 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 892 893 Stream.ExitBlock(); 894 } 895 896 // Emit blockinfo, which defines the standard abbreviations etc. 897 static void WriteBlockInfo(BitstreamWriter &Stream) { 898 // We only want to emit block info records for blocks that have multiple 899 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 900 // blocks can defined their abbrevs inline. 901 Stream.EnterSubblock(bitc::BLOCKINFO_BLOCK_ID, 2); 902 903 #if 0 904 // Configure TYPE_SYMTAB_BLOCK's. 905 906 // Add an abbrev for VST_ENTRY where the characters each fit in 7 bits. 907 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 908 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8); // Value ID 910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 911 912 xxx = Stream.EmitAbbrev(Abbv); 913 #endif 914 Stream.ExitBlock(); 915 } 916 917 918 /// WriteBitcodeToFile - Write the specified module to the specified output 919 /// stream. 920 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 921 std::vector<unsigned char> Buffer; 922 BitstreamWriter Stream(Buffer); 923 924 Buffer.reserve(256*1024); 925 926 // Emit the file header. 927 Stream.Emit((unsigned)'B', 8); 928 Stream.Emit((unsigned)'C', 8); 929 Stream.Emit(0x0, 4); 930 Stream.Emit(0xC, 4); 931 Stream.Emit(0xE, 4); 932 Stream.Emit(0xD, 4); 933 934 // Emit blockinfo, which defines the standard abbreviations etc. 935 WriteBlockInfo(Stream); 936 937 // Emit the module. 938 WriteModule(M, Stream); 939 940 // Write the generated bitstream to "Out". 941 Out.write((char*)&Buffer.front(), Buffer.size()); 942 } 943