1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRangeList.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/SHA1.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <memory> 80 #include <optional> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 namespace llvm { 100 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 101 } 102 103 extern bool WriteNewDbgInfoFormatToBitcode; 104 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 105 106 namespace { 107 108 /// These are manifest constants used by the bitcode writer. They do not need to 109 /// be kept in sync with the reader, but need to be consistent within this file. 110 enum { 111 // VALUE_SYMTAB_BLOCK abbrev id's. 112 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 113 VST_ENTRY_7_ABBREV, 114 VST_ENTRY_6_ABBREV, 115 VST_BBENTRY_6_ABBREV, 116 117 // CONSTANTS_BLOCK abbrev id's. 118 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 119 CONSTANTS_INTEGER_ABBREV, 120 CONSTANTS_CE_CAST_Abbrev, 121 CONSTANTS_NULL_Abbrev, 122 123 // FUNCTION_BLOCK abbrev id's. 124 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 125 FUNCTION_INST_UNOP_ABBREV, 126 FUNCTION_INST_UNOP_FLAGS_ABBREV, 127 FUNCTION_INST_BINOP_ABBREV, 128 FUNCTION_INST_BINOP_FLAGS_ABBREV, 129 FUNCTION_INST_CAST_ABBREV, 130 FUNCTION_INST_CAST_FLAGS_ABBREV, 131 FUNCTION_INST_RET_VOID_ABBREV, 132 FUNCTION_INST_RET_VAL_ABBREV, 133 FUNCTION_INST_UNREACHABLE_ABBREV, 134 FUNCTION_INST_GEP_ABBREV, 135 FUNCTION_DEBUG_RECORD_VALUE_ABBREV, 136 }; 137 138 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 139 /// file type. 140 class BitcodeWriterBase { 141 protected: 142 /// The stream created and owned by the client. 143 BitstreamWriter &Stream; 144 145 StringTableBuilder &StrtabBuilder; 146 147 public: 148 /// Constructs a BitcodeWriterBase object that writes to the provided 149 /// \p Stream. 150 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 151 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 152 153 protected: 154 void writeModuleVersion(); 155 }; 156 157 void BitcodeWriterBase::writeModuleVersion() { 158 // VERSION: [version#] 159 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 160 } 161 162 /// Base class to manage the module bitcode writing, currently subclassed for 163 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 164 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 165 protected: 166 /// The Module to write to bitcode. 167 const Module &M; 168 169 /// Enumerates ids for all values in the module. 170 ValueEnumerator VE; 171 172 /// Optional per-module index to write for ThinLTO. 173 const ModuleSummaryIndex *Index; 174 175 /// Map that holds the correspondence between GUIDs in the summary index, 176 /// that came from indirect call profiles, and a value id generated by this 177 /// class to use in the VST and summary block records. 178 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 179 180 /// Tracks the last value id recorded in the GUIDToValueMap. 181 unsigned GlobalValueId; 182 183 /// Saves the offset of the VSTOffset record that must eventually be 184 /// backpatched with the offset of the actual VST. 185 uint64_t VSTOffsetPlaceholder = 0; 186 187 public: 188 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 189 /// writing to the provided \p Buffer. 190 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 191 BitstreamWriter &Stream, 192 bool ShouldPreserveUseListOrder, 193 const ModuleSummaryIndex *Index) 194 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 195 VE(M, ShouldPreserveUseListOrder), Index(Index) { 196 // Assign ValueIds to any callee values in the index that came from 197 // indirect call profiles and were recorded as a GUID not a Value* 198 // (which would have been assigned an ID by the ValueEnumerator). 199 // The starting ValueId is just after the number of values in the 200 // ValueEnumerator, so that they can be emitted in the VST. 201 GlobalValueId = VE.getValues().size(); 202 if (!Index) 203 return; 204 for (const auto &GUIDSummaryLists : *Index) 205 // Examine all summaries for this GUID. 206 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 207 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) { 208 // For each call in the function summary, see if the call 209 // is to a GUID (which means it is for an indirect call, 210 // otherwise we would have a Value for it). If so, synthesize 211 // a value id. 212 for (auto &CallEdge : FS->calls()) 213 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 214 assignValueId(CallEdge.first.getGUID()); 215 216 // For each referenced variables in the function summary, see if the 217 // variable is represented by a GUID (as opposed to a symbol to 218 // declarations or definitions in the module). If so, synthesize a 219 // value id. 220 for (auto &RefEdge : FS->refs()) 221 if (!RefEdge.haveGVs() || !RefEdge.getValue()) 222 assignValueId(RefEdge.getGUID()); 223 } 224 } 225 226 protected: 227 void writePerModuleGlobalValueSummary(); 228 229 private: 230 void writePerModuleFunctionSummaryRecord( 231 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 232 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 233 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 234 void writeModuleLevelReferences(const GlobalVariable &V, 235 SmallVector<uint64_t, 64> &NameVals, 236 unsigned FSModRefsAbbrev, 237 unsigned FSModVTableRefsAbbrev); 238 239 void assignValueId(GlobalValue::GUID ValGUID) { 240 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 241 } 242 243 unsigned getValueId(GlobalValue::GUID ValGUID) { 244 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 245 // Expect that any GUID value had a value Id assigned by an 246 // earlier call to assignValueId. 247 assert(VMI != GUIDToValueIdMap.end() && 248 "GUID does not have assigned value Id"); 249 return VMI->second; 250 } 251 252 // Helper to get the valueId for the type of value recorded in VI. 253 unsigned getValueId(ValueInfo VI) { 254 if (!VI.haveGVs() || !VI.getValue()) 255 return getValueId(VI.getGUID()); 256 return VE.getValueID(VI.getValue()); 257 } 258 259 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 260 }; 261 262 /// Class to manage the bitcode writing for a module. 263 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 264 /// True if a module hash record should be written. 265 bool GenerateHash; 266 267 /// If non-null, when GenerateHash is true, the resulting hash is written 268 /// into ModHash. 269 ModuleHash *ModHash; 270 271 SHA1 Hasher; 272 273 /// The start bit of the identification block. 274 uint64_t BitcodeStartBit; 275 276 public: 277 /// Constructs a ModuleBitcodeWriter object for the given Module, 278 /// writing to the provided \p Buffer. 279 ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 280 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 281 const ModuleSummaryIndex *Index, bool GenerateHash, 282 ModuleHash *ModHash = nullptr) 283 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 284 ShouldPreserveUseListOrder, Index), 285 GenerateHash(GenerateHash), ModHash(ModHash), 286 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 287 288 /// Emit the current module to the bitstream. 289 void write(); 290 291 private: 292 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 293 294 size_t addToStrtab(StringRef Str); 295 296 void writeAttributeGroupTable(); 297 void writeAttributeTable(); 298 void writeTypeTable(); 299 void writeComdats(); 300 void writeValueSymbolTableForwardDecl(); 301 void writeModuleInfo(); 302 void writeValueAsMetadata(const ValueAsMetadata *MD, 303 SmallVectorImpl<uint64_t> &Record); 304 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 unsigned createDILocationAbbrev(); 307 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned &Abbrev); 309 unsigned createGenericDINodeAbbrev(); 310 void writeGenericDINode(const GenericDINode *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 312 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 313 unsigned Abbrev); 314 void writeDIGenericSubrange(const DIGenericSubrange *N, 315 SmallVectorImpl<uint64_t> &Record, 316 unsigned Abbrev); 317 void writeDIEnumerator(const DIEnumerator *N, 318 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 319 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIStringType(const DIStringType *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDIDerivedType(const DIDerivedType *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDICompositeType(const DICompositeType *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDISubroutineType(const DISubroutineType *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDICompileUnit(const DICompileUnit *N, 333 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 334 void writeDISubprogram(const DISubprogram *N, 335 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 336 void writeDILexicalBlock(const DILexicalBlock *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDICommonBlock(const DICommonBlock *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 350 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 355 SmallVectorImpl<uint64_t> &Record, 356 unsigned Abbrev); 357 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIGlobalVariable(const DIGlobalVariable *N, 361 SmallVectorImpl<uint64_t> &Record, 362 unsigned Abbrev); 363 void writeDILocalVariable(const DILocalVariable *N, 364 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 365 void writeDILabel(const DILabel *N, 366 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 367 void writeDIExpression(const DIExpression *N, 368 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 369 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 370 SmallVectorImpl<uint64_t> &Record, 371 unsigned Abbrev); 372 void writeDIObjCProperty(const DIObjCProperty *N, 373 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 374 void writeDIImportedEntity(const DIImportedEntity *N, 375 SmallVectorImpl<uint64_t> &Record, 376 unsigned Abbrev); 377 unsigned createNamedMetadataAbbrev(); 378 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 379 unsigned createMetadataStringsAbbrev(); 380 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 381 SmallVectorImpl<uint64_t> &Record); 382 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 383 SmallVectorImpl<uint64_t> &Record, 384 std::vector<unsigned> *MDAbbrevs = nullptr, 385 std::vector<uint64_t> *IndexPos = nullptr); 386 void writeModuleMetadata(); 387 void writeFunctionMetadata(const Function &F); 388 void writeFunctionMetadataAttachment(const Function &F); 389 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 390 const GlobalObject &GO); 391 void writeModuleMetadataKinds(); 392 void writeOperandBundleTags(); 393 void writeSyncScopeNames(); 394 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 395 void writeModuleConstants(); 396 bool pushValueAndType(const Value *V, unsigned InstID, 397 SmallVectorImpl<unsigned> &Vals); 398 void writeOperandBundles(const CallBase &CB, unsigned InstID); 399 void pushValue(const Value *V, unsigned InstID, 400 SmallVectorImpl<unsigned> &Vals); 401 void pushValueSigned(const Value *V, unsigned InstID, 402 SmallVectorImpl<uint64_t> &Vals); 403 void writeInstruction(const Instruction &I, unsigned InstID, 404 SmallVectorImpl<unsigned> &Vals); 405 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 406 void writeGlobalValueSymbolTable( 407 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 408 void writeUseList(UseListOrder &&Order); 409 void writeUseListBlock(const Function *F); 410 void 411 writeFunction(const Function &F, 412 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 413 void writeBlockInfo(); 414 void writeModuleHash(StringRef View); 415 416 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 417 return unsigned(SSID); 418 } 419 420 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 421 }; 422 423 /// Class to manage the bitcode writing for a combined index. 424 class IndexBitcodeWriter : public BitcodeWriterBase { 425 /// The combined index to write to bitcode. 426 const ModuleSummaryIndex &Index; 427 428 /// When writing combined summaries, provides the set of global value 429 /// summaries for which the value (function, function alias, etc) should be 430 /// imported as a declaration. 431 const GVSummaryPtrSet *DecSummaries = nullptr; 432 433 /// When writing a subset of the index for distributed backends, client 434 /// provides a map of modules to the corresponding GUIDs/summaries to write. 435 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex; 436 437 /// Map that holds the correspondence between the GUID used in the combined 438 /// index and a value id generated by this class to use in references. 439 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 440 441 // The stack ids used by this index, which will be a subset of those in 442 // the full index in the case of distributed indexes. 443 std::vector<uint64_t> StackIds; 444 445 // Keep a map of the stack id indices used by records being written for this 446 // index to the index of the corresponding stack id in the above StackIds 447 // vector. Ensures we write each referenced stack id once. 448 DenseMap<unsigned, unsigned> StackIdIndicesToIndex; 449 450 /// Tracks the last value id recorded in the GUIDToValueMap. 451 unsigned GlobalValueId = 0; 452 453 /// Tracks the assignment of module paths in the module path string table to 454 /// an id assigned for use in summary references to the module path. 455 DenseMap<StringRef, uint64_t> ModuleIdMap; 456 457 public: 458 /// Constructs a IndexBitcodeWriter object for the given combined index, 459 /// writing to the provided \p Buffer. When writing a subset of the index 460 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 461 /// If provided, \p DecSummaries specifies the set of summaries for which 462 /// the corresponding functions or aliased functions should be imported as a 463 /// declaration (but not definition) for each module. 464 IndexBitcodeWriter( 465 BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 466 const ModuleSummaryIndex &Index, 467 const GVSummaryPtrSet *DecSummaries = nullptr, 468 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr) 469 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 470 DecSummaries(DecSummaries), 471 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 472 473 // See if the StackIdIndex was already added to the StackId map and 474 // vector. If not, record it. 475 auto RecordStackIdReference = [&](unsigned StackIdIndex) { 476 // If the StackIdIndex is not yet in the map, the below insert ensures 477 // that it will point to the new StackIds vector entry we push to just 478 // below. 479 auto Inserted = 480 StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()}); 481 if (Inserted.second) 482 StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex)); 483 }; 484 485 // Assign unique value ids to all summaries to be written, for use 486 // in writing out the call graph edges. Save the mapping from GUID 487 // to the new global value id to use when writing those edges, which 488 // are currently saved in the index in terms of GUID. 489 forEachSummary([&](GVInfo I, bool IsAliasee) { 490 GUIDToValueIdMap[I.first] = ++GlobalValueId; 491 if (IsAliasee) 492 return; 493 auto *FS = dyn_cast<FunctionSummary>(I.second); 494 if (!FS) 495 return; 496 // Record all stack id indices actually used in the summary entries being 497 // written, so that we can compact them in the case of distributed ThinLTO 498 // indexes. 499 for (auto &CI : FS->callsites()) { 500 // If the stack id list is empty, this callsite info was synthesized for 501 // a missing tail call frame. Ensure that the callee's GUID gets a value 502 // id. Normally we only generate these for defined summaries, which in 503 // the case of distributed ThinLTO is only the functions already defined 504 // in the module or that we want to import. We don't bother to include 505 // all the callee symbols as they aren't normally needed in the backend. 506 // However, for the synthesized callsite infos we do need the callee 507 // GUID in the backend so that we can correlate the identified callee 508 // with this callsite info (which for non-tail calls is done by the 509 // ordering of the callsite infos and verified via stack ids). 510 if (CI.StackIdIndices.empty()) { 511 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 512 continue; 513 } 514 for (auto Idx : CI.StackIdIndices) 515 RecordStackIdReference(Idx); 516 } 517 for (auto &AI : FS->allocs()) 518 for (auto &MIB : AI.MIBs) 519 for (auto Idx : MIB.StackIdIndices) 520 RecordStackIdReference(Idx); 521 }); 522 } 523 524 /// The below iterator returns the GUID and associated summary. 525 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 526 527 /// Calls the callback for each value GUID and summary to be written to 528 /// bitcode. This hides the details of whether they are being pulled from the 529 /// entire index or just those in a provided ModuleToSummariesForIndex map. 530 template<typename Functor> 531 void forEachSummary(Functor Callback) { 532 if (ModuleToSummariesForIndex) { 533 for (auto &M : *ModuleToSummariesForIndex) 534 for (auto &Summary : M.second) { 535 Callback(Summary, false); 536 // Ensure aliasee is handled, e.g. for assigning a valueId, 537 // even if we are not importing the aliasee directly (the 538 // imported alias will contain a copy of aliasee). 539 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 540 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 541 } 542 } else { 543 for (auto &Summaries : Index) 544 for (auto &Summary : Summaries.second.SummaryList) 545 Callback({Summaries.first, Summary.get()}, false); 546 } 547 } 548 549 /// Calls the callback for each entry in the modulePaths StringMap that 550 /// should be written to the module path string table. This hides the details 551 /// of whether they are being pulled from the entire index or just those in a 552 /// provided ModuleToSummariesForIndex map. 553 template <typename Functor> void forEachModule(Functor Callback) { 554 if (ModuleToSummariesForIndex) { 555 for (const auto &M : *ModuleToSummariesForIndex) { 556 const auto &MPI = Index.modulePaths().find(M.first); 557 if (MPI == Index.modulePaths().end()) { 558 // This should only happen if the bitcode file was empty, in which 559 // case we shouldn't be importing (the ModuleToSummariesForIndex 560 // would only include the module we are writing and index for). 561 assert(ModuleToSummariesForIndex->size() == 1); 562 continue; 563 } 564 Callback(*MPI); 565 } 566 } else { 567 // Since StringMap iteration order isn't guaranteed, order by path string 568 // first. 569 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 570 // map lookup. 571 std::vector<StringRef> ModulePaths; 572 for (auto &[ModPath, _] : Index.modulePaths()) 573 ModulePaths.push_back(ModPath); 574 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 575 for (auto &ModPath : ModulePaths) 576 Callback(*Index.modulePaths().find(ModPath)); 577 } 578 } 579 580 /// Main entry point for writing a combined index to bitcode. 581 void write(); 582 583 private: 584 void writeModStrings(); 585 void writeCombinedGlobalValueSummary(); 586 587 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 588 auto VMI = GUIDToValueIdMap.find(ValGUID); 589 if (VMI == GUIDToValueIdMap.end()) 590 return std::nullopt; 591 return VMI->second; 592 } 593 594 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 595 }; 596 597 } // end anonymous namespace 598 599 static unsigned getEncodedCastOpcode(unsigned Opcode) { 600 switch (Opcode) { 601 default: llvm_unreachable("Unknown cast instruction!"); 602 case Instruction::Trunc : return bitc::CAST_TRUNC; 603 case Instruction::ZExt : return bitc::CAST_ZEXT; 604 case Instruction::SExt : return bitc::CAST_SEXT; 605 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 606 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 607 case Instruction::UIToFP : return bitc::CAST_UITOFP; 608 case Instruction::SIToFP : return bitc::CAST_SITOFP; 609 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 610 case Instruction::FPExt : return bitc::CAST_FPEXT; 611 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 612 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 613 case Instruction::BitCast : return bitc::CAST_BITCAST; 614 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 615 } 616 } 617 618 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 619 switch (Opcode) { 620 default: llvm_unreachable("Unknown binary instruction!"); 621 case Instruction::FNeg: return bitc::UNOP_FNEG; 622 } 623 } 624 625 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 626 switch (Opcode) { 627 default: llvm_unreachable("Unknown binary instruction!"); 628 case Instruction::Add: 629 case Instruction::FAdd: return bitc::BINOP_ADD; 630 case Instruction::Sub: 631 case Instruction::FSub: return bitc::BINOP_SUB; 632 case Instruction::Mul: 633 case Instruction::FMul: return bitc::BINOP_MUL; 634 case Instruction::UDiv: return bitc::BINOP_UDIV; 635 case Instruction::FDiv: 636 case Instruction::SDiv: return bitc::BINOP_SDIV; 637 case Instruction::URem: return bitc::BINOP_UREM; 638 case Instruction::FRem: 639 case Instruction::SRem: return bitc::BINOP_SREM; 640 case Instruction::Shl: return bitc::BINOP_SHL; 641 case Instruction::LShr: return bitc::BINOP_LSHR; 642 case Instruction::AShr: return bitc::BINOP_ASHR; 643 case Instruction::And: return bitc::BINOP_AND; 644 case Instruction::Or: return bitc::BINOP_OR; 645 case Instruction::Xor: return bitc::BINOP_XOR; 646 } 647 } 648 649 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 650 switch (Op) { 651 default: llvm_unreachable("Unknown RMW operation!"); 652 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 653 case AtomicRMWInst::Add: return bitc::RMW_ADD; 654 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 655 case AtomicRMWInst::And: return bitc::RMW_AND; 656 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 657 case AtomicRMWInst::Or: return bitc::RMW_OR; 658 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 659 case AtomicRMWInst::Max: return bitc::RMW_MAX; 660 case AtomicRMWInst::Min: return bitc::RMW_MIN; 661 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 662 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 663 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 664 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 665 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 666 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 667 case AtomicRMWInst::UIncWrap: 668 return bitc::RMW_UINC_WRAP; 669 case AtomicRMWInst::UDecWrap: 670 return bitc::RMW_UDEC_WRAP; 671 case AtomicRMWInst::USubCond: 672 return bitc::RMW_USUB_COND; 673 case AtomicRMWInst::USubSat: 674 return bitc::RMW_USUB_SAT; 675 } 676 } 677 678 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 679 switch (Ordering) { 680 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 681 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 682 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 683 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 684 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 685 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 686 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 687 } 688 llvm_unreachable("Invalid ordering"); 689 } 690 691 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 692 StringRef Str, unsigned AbbrevToUse) { 693 SmallVector<unsigned, 64> Vals; 694 695 // Code: [strchar x N] 696 for (char C : Str) { 697 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 698 AbbrevToUse = 0; 699 Vals.push_back(C); 700 } 701 702 // Emit the finished record. 703 Stream.EmitRecord(Code, Vals, AbbrevToUse); 704 } 705 706 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 707 switch (Kind) { 708 case Attribute::Alignment: 709 return bitc::ATTR_KIND_ALIGNMENT; 710 case Attribute::AllocAlign: 711 return bitc::ATTR_KIND_ALLOC_ALIGN; 712 case Attribute::AllocSize: 713 return bitc::ATTR_KIND_ALLOC_SIZE; 714 case Attribute::AlwaysInline: 715 return bitc::ATTR_KIND_ALWAYS_INLINE; 716 case Attribute::Builtin: 717 return bitc::ATTR_KIND_BUILTIN; 718 case Attribute::ByVal: 719 return bitc::ATTR_KIND_BY_VAL; 720 case Attribute::Convergent: 721 return bitc::ATTR_KIND_CONVERGENT; 722 case Attribute::InAlloca: 723 return bitc::ATTR_KIND_IN_ALLOCA; 724 case Attribute::Cold: 725 return bitc::ATTR_KIND_COLD; 726 case Attribute::DisableSanitizerInstrumentation: 727 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 728 case Attribute::FnRetThunkExtern: 729 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 730 case Attribute::Hot: 731 return bitc::ATTR_KIND_HOT; 732 case Attribute::ElementType: 733 return bitc::ATTR_KIND_ELEMENTTYPE; 734 case Attribute::HybridPatchable: 735 return bitc::ATTR_KIND_HYBRID_PATCHABLE; 736 case Attribute::InlineHint: 737 return bitc::ATTR_KIND_INLINE_HINT; 738 case Attribute::InReg: 739 return bitc::ATTR_KIND_IN_REG; 740 case Attribute::JumpTable: 741 return bitc::ATTR_KIND_JUMP_TABLE; 742 case Attribute::MinSize: 743 return bitc::ATTR_KIND_MIN_SIZE; 744 case Attribute::AllocatedPointer: 745 return bitc::ATTR_KIND_ALLOCATED_POINTER; 746 case Attribute::AllocKind: 747 return bitc::ATTR_KIND_ALLOC_KIND; 748 case Attribute::Memory: 749 return bitc::ATTR_KIND_MEMORY; 750 case Attribute::NoFPClass: 751 return bitc::ATTR_KIND_NOFPCLASS; 752 case Attribute::Naked: 753 return bitc::ATTR_KIND_NAKED; 754 case Attribute::Nest: 755 return bitc::ATTR_KIND_NEST; 756 case Attribute::NoAlias: 757 return bitc::ATTR_KIND_NO_ALIAS; 758 case Attribute::NoBuiltin: 759 return bitc::ATTR_KIND_NO_BUILTIN; 760 case Attribute::NoCallback: 761 return bitc::ATTR_KIND_NO_CALLBACK; 762 case Attribute::NoCapture: 763 return bitc::ATTR_KIND_NO_CAPTURE; 764 case Attribute::NoDuplicate: 765 return bitc::ATTR_KIND_NO_DUPLICATE; 766 case Attribute::NoFree: 767 return bitc::ATTR_KIND_NOFREE; 768 case Attribute::NoImplicitFloat: 769 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 770 case Attribute::NoInline: 771 return bitc::ATTR_KIND_NO_INLINE; 772 case Attribute::NoRecurse: 773 return bitc::ATTR_KIND_NO_RECURSE; 774 case Attribute::NoMerge: 775 return bitc::ATTR_KIND_NO_MERGE; 776 case Attribute::NonLazyBind: 777 return bitc::ATTR_KIND_NON_LAZY_BIND; 778 case Attribute::NonNull: 779 return bitc::ATTR_KIND_NON_NULL; 780 case Attribute::Dereferenceable: 781 return bitc::ATTR_KIND_DEREFERENCEABLE; 782 case Attribute::DereferenceableOrNull: 783 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 784 case Attribute::NoRedZone: 785 return bitc::ATTR_KIND_NO_RED_ZONE; 786 case Attribute::NoReturn: 787 return bitc::ATTR_KIND_NO_RETURN; 788 case Attribute::NoSync: 789 return bitc::ATTR_KIND_NOSYNC; 790 case Attribute::NoCfCheck: 791 return bitc::ATTR_KIND_NOCF_CHECK; 792 case Attribute::NoProfile: 793 return bitc::ATTR_KIND_NO_PROFILE; 794 case Attribute::SkipProfile: 795 return bitc::ATTR_KIND_SKIP_PROFILE; 796 case Attribute::NoUnwind: 797 return bitc::ATTR_KIND_NO_UNWIND; 798 case Attribute::NoSanitizeBounds: 799 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 800 case Attribute::NoSanitizeCoverage: 801 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 802 case Attribute::NullPointerIsValid: 803 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 804 case Attribute::OptimizeForDebugging: 805 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 806 case Attribute::OptForFuzzing: 807 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 808 case Attribute::OptimizeForSize: 809 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 810 case Attribute::OptimizeNone: 811 return bitc::ATTR_KIND_OPTIMIZE_NONE; 812 case Attribute::ReadNone: 813 return bitc::ATTR_KIND_READ_NONE; 814 case Attribute::ReadOnly: 815 return bitc::ATTR_KIND_READ_ONLY; 816 case Attribute::Returned: 817 return bitc::ATTR_KIND_RETURNED; 818 case Attribute::ReturnsTwice: 819 return bitc::ATTR_KIND_RETURNS_TWICE; 820 case Attribute::SExt: 821 return bitc::ATTR_KIND_S_EXT; 822 case Attribute::Speculatable: 823 return bitc::ATTR_KIND_SPECULATABLE; 824 case Attribute::StackAlignment: 825 return bitc::ATTR_KIND_STACK_ALIGNMENT; 826 case Attribute::StackProtect: 827 return bitc::ATTR_KIND_STACK_PROTECT; 828 case Attribute::StackProtectReq: 829 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 830 case Attribute::StackProtectStrong: 831 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 832 case Attribute::SafeStack: 833 return bitc::ATTR_KIND_SAFESTACK; 834 case Attribute::ShadowCallStack: 835 return bitc::ATTR_KIND_SHADOWCALLSTACK; 836 case Attribute::StrictFP: 837 return bitc::ATTR_KIND_STRICT_FP; 838 case Attribute::StructRet: 839 return bitc::ATTR_KIND_STRUCT_RET; 840 case Attribute::SanitizeAddress: 841 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 842 case Attribute::SanitizeHWAddress: 843 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 844 case Attribute::SanitizeThread: 845 return bitc::ATTR_KIND_SANITIZE_THREAD; 846 case Attribute::SanitizeMemory: 847 return bitc::ATTR_KIND_SANITIZE_MEMORY; 848 case Attribute::SanitizeNumericalStability: 849 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY; 850 case Attribute::SanitizeRealtime: 851 return bitc::ATTR_KIND_SANITIZE_REALTIME; 852 case Attribute::SpeculativeLoadHardening: 853 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 854 case Attribute::SwiftError: 855 return bitc::ATTR_KIND_SWIFT_ERROR; 856 case Attribute::SwiftSelf: 857 return bitc::ATTR_KIND_SWIFT_SELF; 858 case Attribute::SwiftAsync: 859 return bitc::ATTR_KIND_SWIFT_ASYNC; 860 case Attribute::UWTable: 861 return bitc::ATTR_KIND_UW_TABLE; 862 case Attribute::VScaleRange: 863 return bitc::ATTR_KIND_VSCALE_RANGE; 864 case Attribute::WillReturn: 865 return bitc::ATTR_KIND_WILLRETURN; 866 case Attribute::WriteOnly: 867 return bitc::ATTR_KIND_WRITEONLY; 868 case Attribute::ZExt: 869 return bitc::ATTR_KIND_Z_EXT; 870 case Attribute::ImmArg: 871 return bitc::ATTR_KIND_IMMARG; 872 case Attribute::SanitizeMemTag: 873 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 874 case Attribute::Preallocated: 875 return bitc::ATTR_KIND_PREALLOCATED; 876 case Attribute::NoUndef: 877 return bitc::ATTR_KIND_NOUNDEF; 878 case Attribute::ByRef: 879 return bitc::ATTR_KIND_BYREF; 880 case Attribute::MustProgress: 881 return bitc::ATTR_KIND_MUSTPROGRESS; 882 case Attribute::PresplitCoroutine: 883 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 884 case Attribute::Writable: 885 return bitc::ATTR_KIND_WRITABLE; 886 case Attribute::CoroDestroyOnlyWhenComplete: 887 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 888 case Attribute::DeadOnUnwind: 889 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 890 case Attribute::Range: 891 return bitc::ATTR_KIND_RANGE; 892 case Attribute::Initializes: 893 return bitc::ATTR_KIND_INITIALIZES; 894 case Attribute::EndAttrKinds: 895 llvm_unreachable("Can not encode end-attribute kinds marker."); 896 case Attribute::None: 897 llvm_unreachable("Can not encode none-attribute."); 898 case Attribute::EmptyKey: 899 case Attribute::TombstoneKey: 900 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 901 } 902 903 llvm_unreachable("Trying to encode unknown attribute"); 904 } 905 906 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 907 if ((int64_t)V >= 0) 908 Vals.push_back(V << 1); 909 else 910 Vals.push_back((-V << 1) | 1); 911 } 912 913 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 914 // We have an arbitrary precision integer value to write whose 915 // bit width is > 64. However, in canonical unsigned integer 916 // format it is likely that the high bits are going to be zero. 917 // So, we only write the number of active words. 918 unsigned NumWords = A.getActiveWords(); 919 const uint64_t *RawData = A.getRawData(); 920 for (unsigned i = 0; i < NumWords; i++) 921 emitSignedInt64(Vals, RawData[i]); 922 } 923 924 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 925 const ConstantRange &CR, bool EmitBitWidth) { 926 unsigned BitWidth = CR.getBitWidth(); 927 if (EmitBitWidth) 928 Record.push_back(BitWidth); 929 if (BitWidth > 64) { 930 Record.push_back(CR.getLower().getActiveWords() | 931 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 932 emitWideAPInt(Record, CR.getLower()); 933 emitWideAPInt(Record, CR.getUpper()); 934 } else { 935 emitSignedInt64(Record, CR.getLower().getSExtValue()); 936 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 937 } 938 } 939 940 void ModuleBitcodeWriter::writeAttributeGroupTable() { 941 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 942 VE.getAttributeGroups(); 943 if (AttrGrps.empty()) return; 944 945 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 946 947 SmallVector<uint64_t, 64> Record; 948 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 949 unsigned AttrListIndex = Pair.first; 950 AttributeSet AS = Pair.second; 951 Record.push_back(VE.getAttributeGroupID(Pair)); 952 Record.push_back(AttrListIndex); 953 954 for (Attribute Attr : AS) { 955 if (Attr.isEnumAttribute()) { 956 Record.push_back(0); 957 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 958 } else if (Attr.isIntAttribute()) { 959 Record.push_back(1); 960 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 961 Record.push_back(Attr.getValueAsInt()); 962 } else if (Attr.isStringAttribute()) { 963 StringRef Kind = Attr.getKindAsString(); 964 StringRef Val = Attr.getValueAsString(); 965 966 Record.push_back(Val.empty() ? 3 : 4); 967 Record.append(Kind.begin(), Kind.end()); 968 Record.push_back(0); 969 if (!Val.empty()) { 970 Record.append(Val.begin(), Val.end()); 971 Record.push_back(0); 972 } 973 } else if (Attr.isTypeAttribute()) { 974 Type *Ty = Attr.getValueAsType(); 975 Record.push_back(Ty ? 6 : 5); 976 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 977 if (Ty) 978 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 979 } else if (Attr.isConstantRangeAttribute()) { 980 Record.push_back(7); 981 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 982 emitConstantRange(Record, Attr.getValueAsConstantRange(), 983 /*EmitBitWidth=*/true); 984 } else { 985 assert(Attr.isConstantRangeListAttribute()); 986 Record.push_back(8); 987 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 988 ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList(); 989 Record.push_back(Val.size()); 990 Record.push_back(Val[0].getBitWidth()); 991 for (auto &CR : Val) 992 emitConstantRange(Record, CR, /*EmitBitWidth=*/false); 993 } 994 } 995 996 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 997 Record.clear(); 998 } 999 1000 Stream.ExitBlock(); 1001 } 1002 1003 void ModuleBitcodeWriter::writeAttributeTable() { 1004 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 1005 if (Attrs.empty()) return; 1006 1007 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 1008 1009 SmallVector<uint64_t, 64> Record; 1010 for (const AttributeList &AL : Attrs) { 1011 for (unsigned i : AL.indexes()) { 1012 AttributeSet AS = AL.getAttributes(i); 1013 if (AS.hasAttributes()) 1014 Record.push_back(VE.getAttributeGroupID({i, AS})); 1015 } 1016 1017 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 1018 Record.clear(); 1019 } 1020 1021 Stream.ExitBlock(); 1022 } 1023 1024 /// WriteTypeTable - Write out the type table for a module. 1025 void ModuleBitcodeWriter::writeTypeTable() { 1026 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 1027 1028 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 1029 SmallVector<uint64_t, 64> TypeVals; 1030 1031 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); 1032 1033 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 1034 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1035 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 1036 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 1037 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1038 1039 // Abbrev for TYPE_CODE_FUNCTION. 1040 Abbv = std::make_shared<BitCodeAbbrev>(); 1041 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 1042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 1043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1045 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1046 1047 // Abbrev for TYPE_CODE_STRUCT_ANON. 1048 Abbv = std::make_shared<BitCodeAbbrev>(); 1049 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 1050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1053 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1054 1055 // Abbrev for TYPE_CODE_STRUCT_NAME. 1056 Abbv = std::make_shared<BitCodeAbbrev>(); 1057 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1060 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1061 1062 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1063 Abbv = std::make_shared<BitCodeAbbrev>(); 1064 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1068 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1069 1070 // Abbrev for TYPE_CODE_ARRAY. 1071 Abbv = std::make_shared<BitCodeAbbrev>(); 1072 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1075 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1076 1077 // Emit an entry count so the reader can reserve space. 1078 TypeVals.push_back(TypeList.size()); 1079 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1080 TypeVals.clear(); 1081 1082 // Loop over all of the types, emitting each in turn. 1083 for (Type *T : TypeList) { 1084 int AbbrevToUse = 0; 1085 unsigned Code = 0; 1086 1087 switch (T->getTypeID()) { 1088 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1089 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1090 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1091 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1092 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1093 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1094 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1095 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1096 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1097 case Type::MetadataTyID: 1098 Code = bitc::TYPE_CODE_METADATA; 1099 break; 1100 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1101 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1102 case Type::IntegerTyID: 1103 // INTEGER: [width] 1104 Code = bitc::TYPE_CODE_INTEGER; 1105 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1106 break; 1107 case Type::PointerTyID: { 1108 PointerType *PTy = cast<PointerType>(T); 1109 unsigned AddressSpace = PTy->getAddressSpace(); 1110 // OPAQUE_POINTER: [address space] 1111 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1112 TypeVals.push_back(AddressSpace); 1113 if (AddressSpace == 0) 1114 AbbrevToUse = OpaquePtrAbbrev; 1115 break; 1116 } 1117 case Type::FunctionTyID: { 1118 FunctionType *FT = cast<FunctionType>(T); 1119 // FUNCTION: [isvararg, retty, paramty x N] 1120 Code = bitc::TYPE_CODE_FUNCTION; 1121 TypeVals.push_back(FT->isVarArg()); 1122 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1123 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1124 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1125 AbbrevToUse = FunctionAbbrev; 1126 break; 1127 } 1128 case Type::StructTyID: { 1129 StructType *ST = cast<StructType>(T); 1130 // STRUCT: [ispacked, eltty x N] 1131 TypeVals.push_back(ST->isPacked()); 1132 // Output all of the element types. 1133 for (Type *ET : ST->elements()) 1134 TypeVals.push_back(VE.getTypeID(ET)); 1135 1136 if (ST->isLiteral()) { 1137 Code = bitc::TYPE_CODE_STRUCT_ANON; 1138 AbbrevToUse = StructAnonAbbrev; 1139 } else { 1140 if (ST->isOpaque()) { 1141 Code = bitc::TYPE_CODE_OPAQUE; 1142 } else { 1143 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1144 AbbrevToUse = StructNamedAbbrev; 1145 } 1146 1147 // Emit the name if it is present. 1148 if (!ST->getName().empty()) 1149 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1150 StructNameAbbrev); 1151 } 1152 break; 1153 } 1154 case Type::ArrayTyID: { 1155 ArrayType *AT = cast<ArrayType>(T); 1156 // ARRAY: [numelts, eltty] 1157 Code = bitc::TYPE_CODE_ARRAY; 1158 TypeVals.push_back(AT->getNumElements()); 1159 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1160 AbbrevToUse = ArrayAbbrev; 1161 break; 1162 } 1163 case Type::FixedVectorTyID: 1164 case Type::ScalableVectorTyID: { 1165 VectorType *VT = cast<VectorType>(T); 1166 // VECTOR [numelts, eltty] or 1167 // [numelts, eltty, scalable] 1168 Code = bitc::TYPE_CODE_VECTOR; 1169 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1170 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1171 if (isa<ScalableVectorType>(VT)) 1172 TypeVals.push_back(true); 1173 break; 1174 } 1175 case Type::TargetExtTyID: { 1176 TargetExtType *TET = cast<TargetExtType>(T); 1177 Code = bitc::TYPE_CODE_TARGET_TYPE; 1178 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1179 StructNameAbbrev); 1180 TypeVals.push_back(TET->getNumTypeParameters()); 1181 for (Type *InnerTy : TET->type_params()) 1182 TypeVals.push_back(VE.getTypeID(InnerTy)); 1183 for (unsigned IntParam : TET->int_params()) 1184 TypeVals.push_back(IntParam); 1185 break; 1186 } 1187 case Type::TypedPointerTyID: 1188 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1189 } 1190 1191 // Emit the finished record. 1192 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1193 TypeVals.clear(); 1194 } 1195 1196 Stream.ExitBlock(); 1197 } 1198 1199 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1200 switch (Linkage) { 1201 case GlobalValue::ExternalLinkage: 1202 return 0; 1203 case GlobalValue::WeakAnyLinkage: 1204 return 16; 1205 case GlobalValue::AppendingLinkage: 1206 return 2; 1207 case GlobalValue::InternalLinkage: 1208 return 3; 1209 case GlobalValue::LinkOnceAnyLinkage: 1210 return 18; 1211 case GlobalValue::ExternalWeakLinkage: 1212 return 7; 1213 case GlobalValue::CommonLinkage: 1214 return 8; 1215 case GlobalValue::PrivateLinkage: 1216 return 9; 1217 case GlobalValue::WeakODRLinkage: 1218 return 17; 1219 case GlobalValue::LinkOnceODRLinkage: 1220 return 19; 1221 case GlobalValue::AvailableExternallyLinkage: 1222 return 12; 1223 } 1224 llvm_unreachable("Invalid linkage"); 1225 } 1226 1227 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1228 return getEncodedLinkage(GV.getLinkage()); 1229 } 1230 1231 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1232 uint64_t RawFlags = 0; 1233 RawFlags |= Flags.ReadNone; 1234 RawFlags |= (Flags.ReadOnly << 1); 1235 RawFlags |= (Flags.NoRecurse << 2); 1236 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1237 RawFlags |= (Flags.NoInline << 4); 1238 RawFlags |= (Flags.AlwaysInline << 5); 1239 RawFlags |= (Flags.NoUnwind << 6); 1240 RawFlags |= (Flags.MayThrow << 7); 1241 RawFlags |= (Flags.HasUnknownCall << 8); 1242 RawFlags |= (Flags.MustBeUnreachable << 9); 1243 return RawFlags; 1244 } 1245 1246 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1247 // in BitcodeReader.cpp. 1248 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags, 1249 bool ImportAsDecl = false) { 1250 uint64_t RawFlags = 0; 1251 1252 RawFlags |= Flags.NotEligibleToImport; // bool 1253 RawFlags |= (Flags.Live << 1); 1254 RawFlags |= (Flags.DSOLocal << 2); 1255 RawFlags |= (Flags.CanAutoHide << 3); 1256 1257 // Linkage don't need to be remapped at that time for the summary. Any future 1258 // change to the getEncodedLinkage() function will need to be taken into 1259 // account here as well. 1260 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1261 1262 RawFlags |= (Flags.Visibility << 8); // 2 bits 1263 1264 unsigned ImportType = Flags.ImportType | ImportAsDecl; 1265 RawFlags |= (ImportType << 10); // 1 bit 1266 1267 return RawFlags; 1268 } 1269 1270 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1271 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1272 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1273 return RawFlags; 1274 } 1275 1276 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1277 uint64_t RawFlags = 0; 1278 1279 RawFlags |= CI.Hotness; // 3 bits 1280 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1281 1282 return RawFlags; 1283 } 1284 1285 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1286 uint64_t RawFlags = 0; 1287 1288 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1289 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1290 1291 return RawFlags; 1292 } 1293 1294 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1295 switch (GV.getVisibility()) { 1296 case GlobalValue::DefaultVisibility: return 0; 1297 case GlobalValue::HiddenVisibility: return 1; 1298 case GlobalValue::ProtectedVisibility: return 2; 1299 } 1300 llvm_unreachable("Invalid visibility"); 1301 } 1302 1303 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1304 switch (GV.getDLLStorageClass()) { 1305 case GlobalValue::DefaultStorageClass: return 0; 1306 case GlobalValue::DLLImportStorageClass: return 1; 1307 case GlobalValue::DLLExportStorageClass: return 2; 1308 } 1309 llvm_unreachable("Invalid DLL storage class"); 1310 } 1311 1312 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1313 switch (GV.getThreadLocalMode()) { 1314 case GlobalVariable::NotThreadLocal: return 0; 1315 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1316 case GlobalVariable::LocalDynamicTLSModel: return 2; 1317 case GlobalVariable::InitialExecTLSModel: return 3; 1318 case GlobalVariable::LocalExecTLSModel: return 4; 1319 } 1320 llvm_unreachable("Invalid TLS model"); 1321 } 1322 1323 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1324 switch (C.getSelectionKind()) { 1325 case Comdat::Any: 1326 return bitc::COMDAT_SELECTION_KIND_ANY; 1327 case Comdat::ExactMatch: 1328 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1329 case Comdat::Largest: 1330 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1331 case Comdat::NoDeduplicate: 1332 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1333 case Comdat::SameSize: 1334 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1335 } 1336 llvm_unreachable("Invalid selection kind"); 1337 } 1338 1339 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1340 switch (GV.getUnnamedAddr()) { 1341 case GlobalValue::UnnamedAddr::None: return 0; 1342 case GlobalValue::UnnamedAddr::Local: return 2; 1343 case GlobalValue::UnnamedAddr::Global: return 1; 1344 } 1345 llvm_unreachable("Invalid unnamed_addr"); 1346 } 1347 1348 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1349 if (GenerateHash) 1350 Hasher.update(Str); 1351 return StrtabBuilder.add(Str); 1352 } 1353 1354 void ModuleBitcodeWriter::writeComdats() { 1355 SmallVector<unsigned, 64> Vals; 1356 for (const Comdat *C : VE.getComdats()) { 1357 // COMDAT: [strtab offset, strtab size, selection_kind] 1358 Vals.push_back(addToStrtab(C->getName())); 1359 Vals.push_back(C->getName().size()); 1360 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1361 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1362 Vals.clear(); 1363 } 1364 } 1365 1366 /// Write a record that will eventually hold the word offset of the 1367 /// module-level VST. For now the offset is 0, which will be backpatched 1368 /// after the real VST is written. Saves the bit offset to backpatch. 1369 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1370 // Write a placeholder value in for the offset of the real VST, 1371 // which is written after the function blocks so that it can include 1372 // the offset of each function. The placeholder offset will be 1373 // updated when the real VST is written. 1374 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1375 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1376 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1377 // hold the real VST offset. Must use fixed instead of VBR as we don't 1378 // know how many VBR chunks to reserve ahead of time. 1379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1380 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1381 1382 // Emit the placeholder 1383 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1384 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1385 1386 // Compute and save the bit offset to the placeholder, which will be 1387 // patched when the real VST is written. We can simply subtract the 32-bit 1388 // fixed size from the current bit number to get the location to backpatch. 1389 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1390 } 1391 1392 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1393 1394 /// Determine the encoding to use for the given string name and length. 1395 static StringEncoding getStringEncoding(StringRef Str) { 1396 bool isChar6 = true; 1397 for (char C : Str) { 1398 if (isChar6) 1399 isChar6 = BitCodeAbbrevOp::isChar6(C); 1400 if ((unsigned char)C & 128) 1401 // don't bother scanning the rest. 1402 return SE_Fixed8; 1403 } 1404 if (isChar6) 1405 return SE_Char6; 1406 return SE_Fixed7; 1407 } 1408 1409 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1410 "Sanitizer Metadata is too large for naive serialization."); 1411 static unsigned 1412 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1413 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1414 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1415 } 1416 1417 /// Emit top-level description of module, including target triple, inline asm, 1418 /// descriptors for global variables, and function prototype info. 1419 /// Returns the bit offset to backpatch with the location of the real VST. 1420 void ModuleBitcodeWriter::writeModuleInfo() { 1421 // Emit various pieces of data attached to a module. 1422 if (!M.getTargetTriple().empty()) 1423 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1424 0 /*TODO*/); 1425 const std::string &DL = M.getDataLayoutStr(); 1426 if (!DL.empty()) 1427 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1428 if (!M.getModuleInlineAsm().empty()) 1429 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1430 0 /*TODO*/); 1431 1432 // Emit information about sections and GC, computing how many there are. Also 1433 // compute the maximum alignment value. 1434 std::map<std::string, unsigned> SectionMap; 1435 std::map<std::string, unsigned> GCMap; 1436 MaybeAlign MaxAlignment; 1437 unsigned MaxGlobalType = 0; 1438 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1439 if (A) 1440 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1441 }; 1442 for (const GlobalVariable &GV : M.globals()) { 1443 UpdateMaxAlignment(GV.getAlign()); 1444 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1445 if (GV.hasSection()) { 1446 // Give section names unique ID's. 1447 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1448 if (!Entry) { 1449 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1450 0 /*TODO*/); 1451 Entry = SectionMap.size(); 1452 } 1453 } 1454 } 1455 for (const Function &F : M) { 1456 UpdateMaxAlignment(F.getAlign()); 1457 if (F.hasSection()) { 1458 // Give section names unique ID's. 1459 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1460 if (!Entry) { 1461 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1462 0 /*TODO*/); 1463 Entry = SectionMap.size(); 1464 } 1465 } 1466 if (F.hasGC()) { 1467 // Same for GC names. 1468 unsigned &Entry = GCMap[F.getGC()]; 1469 if (!Entry) { 1470 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1471 0 /*TODO*/); 1472 Entry = GCMap.size(); 1473 } 1474 } 1475 } 1476 1477 // Emit abbrev for globals, now that we know # sections and max alignment. 1478 unsigned SimpleGVarAbbrev = 0; 1479 if (!M.global_empty()) { 1480 // Add an abbrev for common globals with no visibility or thread localness. 1481 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1482 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1486 Log2_32_Ceil(MaxGlobalType+1))); 1487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1488 //| explicitType << 1 1489 //| constant 1490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1492 if (!MaxAlignment) // Alignment. 1493 Abbv->Add(BitCodeAbbrevOp(0)); 1494 else { 1495 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1497 Log2_32_Ceil(MaxEncAlignment+1))); 1498 } 1499 if (SectionMap.empty()) // Section. 1500 Abbv->Add(BitCodeAbbrevOp(0)); 1501 else 1502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1503 Log2_32_Ceil(SectionMap.size()+1))); 1504 // Don't bother emitting vis + thread local. 1505 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1506 } 1507 1508 SmallVector<unsigned, 64> Vals; 1509 // Emit the module's source file name. 1510 { 1511 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1512 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1513 if (Bits == SE_Char6) 1514 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1515 else if (Bits == SE_Fixed7) 1516 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1517 1518 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1519 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1520 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1522 Abbv->Add(AbbrevOpToUse); 1523 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1524 1525 for (const auto P : M.getSourceFileName()) 1526 Vals.push_back((unsigned char)P); 1527 1528 // Emit the finished record. 1529 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1530 Vals.clear(); 1531 } 1532 1533 // Emit the global variable information. 1534 for (const GlobalVariable &GV : M.globals()) { 1535 unsigned AbbrevToUse = 0; 1536 1537 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1538 // linkage, alignment, section, visibility, threadlocal, 1539 // unnamed_addr, externally_initialized, dllstorageclass, 1540 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1541 Vals.push_back(addToStrtab(GV.getName())); 1542 Vals.push_back(GV.getName().size()); 1543 Vals.push_back(VE.getTypeID(GV.getValueType())); 1544 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1545 Vals.push_back(GV.isDeclaration() ? 0 : 1546 (VE.getValueID(GV.getInitializer()) + 1)); 1547 Vals.push_back(getEncodedLinkage(GV)); 1548 Vals.push_back(getEncodedAlign(GV.getAlign())); 1549 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1550 : 0); 1551 if (GV.isThreadLocal() || 1552 GV.getVisibility() != GlobalValue::DefaultVisibility || 1553 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1554 GV.isExternallyInitialized() || 1555 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1556 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1557 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1558 Vals.push_back(getEncodedVisibility(GV)); 1559 Vals.push_back(getEncodedThreadLocalMode(GV)); 1560 Vals.push_back(getEncodedUnnamedAddr(GV)); 1561 Vals.push_back(GV.isExternallyInitialized()); 1562 Vals.push_back(getEncodedDLLStorageClass(GV)); 1563 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1564 1565 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1566 Vals.push_back(VE.getAttributeListID(AL)); 1567 1568 Vals.push_back(GV.isDSOLocal()); 1569 Vals.push_back(addToStrtab(GV.getPartition())); 1570 Vals.push_back(GV.getPartition().size()); 1571 1572 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1573 GV.getSanitizerMetadata()) 1574 : 0)); 1575 Vals.push_back(GV.getCodeModelRaw()); 1576 } else { 1577 AbbrevToUse = SimpleGVarAbbrev; 1578 } 1579 1580 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1581 Vals.clear(); 1582 } 1583 1584 // Emit the function proto information. 1585 for (const Function &F : M) { 1586 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1587 // linkage, paramattrs, alignment, section, visibility, gc, 1588 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1589 // prefixdata, personalityfn, DSO_Local, addrspace] 1590 Vals.push_back(addToStrtab(F.getName())); 1591 Vals.push_back(F.getName().size()); 1592 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1593 Vals.push_back(F.getCallingConv()); 1594 Vals.push_back(F.isDeclaration()); 1595 Vals.push_back(getEncodedLinkage(F)); 1596 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1597 Vals.push_back(getEncodedAlign(F.getAlign())); 1598 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1599 : 0); 1600 Vals.push_back(getEncodedVisibility(F)); 1601 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1602 Vals.push_back(getEncodedUnnamedAddr(F)); 1603 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1604 : 0); 1605 Vals.push_back(getEncodedDLLStorageClass(F)); 1606 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1607 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1608 : 0); 1609 Vals.push_back( 1610 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1611 1612 Vals.push_back(F.isDSOLocal()); 1613 Vals.push_back(F.getAddressSpace()); 1614 Vals.push_back(addToStrtab(F.getPartition())); 1615 Vals.push_back(F.getPartition().size()); 1616 1617 unsigned AbbrevToUse = 0; 1618 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1619 Vals.clear(); 1620 } 1621 1622 // Emit the alias information. 1623 for (const GlobalAlias &A : M.aliases()) { 1624 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1625 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1626 // DSO_Local] 1627 Vals.push_back(addToStrtab(A.getName())); 1628 Vals.push_back(A.getName().size()); 1629 Vals.push_back(VE.getTypeID(A.getValueType())); 1630 Vals.push_back(A.getType()->getAddressSpace()); 1631 Vals.push_back(VE.getValueID(A.getAliasee())); 1632 Vals.push_back(getEncodedLinkage(A)); 1633 Vals.push_back(getEncodedVisibility(A)); 1634 Vals.push_back(getEncodedDLLStorageClass(A)); 1635 Vals.push_back(getEncodedThreadLocalMode(A)); 1636 Vals.push_back(getEncodedUnnamedAddr(A)); 1637 Vals.push_back(A.isDSOLocal()); 1638 Vals.push_back(addToStrtab(A.getPartition())); 1639 Vals.push_back(A.getPartition().size()); 1640 1641 unsigned AbbrevToUse = 0; 1642 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1643 Vals.clear(); 1644 } 1645 1646 // Emit the ifunc information. 1647 for (const GlobalIFunc &I : M.ifuncs()) { 1648 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1649 // val#, linkage, visibility, DSO_Local] 1650 Vals.push_back(addToStrtab(I.getName())); 1651 Vals.push_back(I.getName().size()); 1652 Vals.push_back(VE.getTypeID(I.getValueType())); 1653 Vals.push_back(I.getType()->getAddressSpace()); 1654 Vals.push_back(VE.getValueID(I.getResolver())); 1655 Vals.push_back(getEncodedLinkage(I)); 1656 Vals.push_back(getEncodedVisibility(I)); 1657 Vals.push_back(I.isDSOLocal()); 1658 Vals.push_back(addToStrtab(I.getPartition())); 1659 Vals.push_back(I.getPartition().size()); 1660 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1661 Vals.clear(); 1662 } 1663 1664 writeValueSymbolTableForwardDecl(); 1665 } 1666 1667 static uint64_t getOptimizationFlags(const Value *V) { 1668 uint64_t Flags = 0; 1669 1670 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1671 if (OBO->hasNoSignedWrap()) 1672 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1673 if (OBO->hasNoUnsignedWrap()) 1674 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1675 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1676 if (PEO->isExact()) 1677 Flags |= 1 << bitc::PEO_EXACT; 1678 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1679 if (PDI->isDisjoint()) 1680 Flags |= 1 << bitc::PDI_DISJOINT; 1681 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1682 if (FPMO->hasAllowReassoc()) 1683 Flags |= bitc::AllowReassoc; 1684 if (FPMO->hasNoNaNs()) 1685 Flags |= bitc::NoNaNs; 1686 if (FPMO->hasNoInfs()) 1687 Flags |= bitc::NoInfs; 1688 if (FPMO->hasNoSignedZeros()) 1689 Flags |= bitc::NoSignedZeros; 1690 if (FPMO->hasAllowReciprocal()) 1691 Flags |= bitc::AllowReciprocal; 1692 if (FPMO->hasAllowContract()) 1693 Flags |= bitc::AllowContract; 1694 if (FPMO->hasApproxFunc()) 1695 Flags |= bitc::ApproxFunc; 1696 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1697 if (NNI->hasNonNeg()) 1698 Flags |= 1 << bitc::PNNI_NON_NEG; 1699 } else if (const auto *TI = dyn_cast<TruncInst>(V)) { 1700 if (TI->hasNoSignedWrap()) 1701 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; 1702 if (TI->hasNoUnsignedWrap()) 1703 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; 1704 } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) { 1705 if (GEP->isInBounds()) 1706 Flags |= 1 << bitc::GEP_INBOUNDS; 1707 if (GEP->hasNoUnsignedSignedWrap()) 1708 Flags |= 1 << bitc::GEP_NUSW; 1709 if (GEP->hasNoUnsignedWrap()) 1710 Flags |= 1 << bitc::GEP_NUW; 1711 } 1712 1713 return Flags; 1714 } 1715 1716 void ModuleBitcodeWriter::writeValueAsMetadata( 1717 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1718 // Mimic an MDNode with a value as one operand. 1719 Value *V = MD->getValue(); 1720 Record.push_back(VE.getTypeID(V->getType())); 1721 Record.push_back(VE.getValueID(V)); 1722 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1723 Record.clear(); 1724 } 1725 1726 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1727 SmallVectorImpl<uint64_t> &Record, 1728 unsigned Abbrev) { 1729 for (const MDOperand &MDO : N->operands()) { 1730 Metadata *MD = MDO; 1731 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1732 "Unexpected function-local metadata"); 1733 Record.push_back(VE.getMetadataOrNullID(MD)); 1734 } 1735 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1736 : bitc::METADATA_NODE, 1737 Record, Abbrev); 1738 Record.clear(); 1739 } 1740 1741 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1742 // Assume the column is usually under 128, and always output the inlined-at 1743 // location (it's never more expensive than building an array size 1). 1744 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1745 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1752 return Stream.EmitAbbrev(std::move(Abbv)); 1753 } 1754 1755 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1756 SmallVectorImpl<uint64_t> &Record, 1757 unsigned &Abbrev) { 1758 if (!Abbrev) 1759 Abbrev = createDILocationAbbrev(); 1760 1761 Record.push_back(N->isDistinct()); 1762 Record.push_back(N->getLine()); 1763 Record.push_back(N->getColumn()); 1764 Record.push_back(VE.getMetadataID(N->getScope())); 1765 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1766 Record.push_back(N->isImplicitCode()); 1767 1768 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1769 Record.clear(); 1770 } 1771 1772 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1773 // Assume the column is usually under 128, and always output the inlined-at 1774 // location (it's never more expensive than building an array size 1). 1775 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1776 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1783 return Stream.EmitAbbrev(std::move(Abbv)); 1784 } 1785 1786 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1787 SmallVectorImpl<uint64_t> &Record, 1788 unsigned &Abbrev) { 1789 if (!Abbrev) 1790 Abbrev = createGenericDINodeAbbrev(); 1791 1792 Record.push_back(N->isDistinct()); 1793 Record.push_back(N->getTag()); 1794 Record.push_back(0); // Per-tag version field; unused for now. 1795 1796 for (auto &I : N->operands()) 1797 Record.push_back(VE.getMetadataOrNullID(I)); 1798 1799 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1800 Record.clear(); 1801 } 1802 1803 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1804 SmallVectorImpl<uint64_t> &Record, 1805 unsigned Abbrev) { 1806 const uint64_t Version = 2 << 1; 1807 Record.push_back((uint64_t)N->isDistinct() | Version); 1808 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1809 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1810 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1811 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1812 1813 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1814 Record.clear(); 1815 } 1816 1817 void ModuleBitcodeWriter::writeDIGenericSubrange( 1818 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1819 unsigned Abbrev) { 1820 Record.push_back((uint64_t)N->isDistinct()); 1821 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1822 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1823 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1824 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1825 1826 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1827 Record.clear(); 1828 } 1829 1830 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1831 SmallVectorImpl<uint64_t> &Record, 1832 unsigned Abbrev) { 1833 const uint64_t IsBigInt = 1 << 2; 1834 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1835 Record.push_back(N->getValue().getBitWidth()); 1836 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1837 emitWideAPInt(Record, N->getValue()); 1838 1839 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1840 Record.clear(); 1841 } 1842 1843 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1844 SmallVectorImpl<uint64_t> &Record, 1845 unsigned Abbrev) { 1846 Record.push_back(N->isDistinct()); 1847 Record.push_back(N->getTag()); 1848 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1849 Record.push_back(N->getSizeInBits()); 1850 Record.push_back(N->getAlignInBits()); 1851 Record.push_back(N->getEncoding()); 1852 Record.push_back(N->getFlags()); 1853 1854 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1855 Record.clear(); 1856 } 1857 1858 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1859 SmallVectorImpl<uint64_t> &Record, 1860 unsigned Abbrev) { 1861 Record.push_back(N->isDistinct()); 1862 Record.push_back(N->getTag()); 1863 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1864 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1865 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1866 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1867 Record.push_back(N->getSizeInBits()); 1868 Record.push_back(N->getAlignInBits()); 1869 Record.push_back(N->getEncoding()); 1870 1871 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1872 Record.clear(); 1873 } 1874 1875 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1876 SmallVectorImpl<uint64_t> &Record, 1877 unsigned Abbrev) { 1878 Record.push_back(N->isDistinct()); 1879 Record.push_back(N->getTag()); 1880 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1881 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1882 Record.push_back(N->getLine()); 1883 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1884 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1885 Record.push_back(N->getSizeInBits()); 1886 Record.push_back(N->getAlignInBits()); 1887 Record.push_back(N->getOffsetInBits()); 1888 Record.push_back(N->getFlags()); 1889 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1890 1891 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1892 // that there is no DWARF address space associated with DIDerivedType. 1893 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1894 Record.push_back(*DWARFAddressSpace + 1); 1895 else 1896 Record.push_back(0); 1897 1898 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1899 1900 if (auto PtrAuthData = N->getPtrAuthData()) 1901 Record.push_back(PtrAuthData->RawData); 1902 else 1903 Record.push_back(0); 1904 1905 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1906 Record.clear(); 1907 } 1908 1909 void ModuleBitcodeWriter::writeDICompositeType( 1910 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1911 unsigned Abbrev) { 1912 const unsigned IsNotUsedInOldTypeRef = 0x2; 1913 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1914 Record.push_back(N->getTag()); 1915 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1916 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1917 Record.push_back(N->getLine()); 1918 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1919 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1920 Record.push_back(N->getSizeInBits()); 1921 Record.push_back(N->getAlignInBits()); 1922 Record.push_back(N->getOffsetInBits()); 1923 Record.push_back(N->getFlags()); 1924 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1925 Record.push_back(N->getRuntimeLang()); 1926 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1927 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1928 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1929 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1930 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1931 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1932 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1933 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1934 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1935 1936 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1937 Record.clear(); 1938 } 1939 1940 void ModuleBitcodeWriter::writeDISubroutineType( 1941 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1942 unsigned Abbrev) { 1943 const unsigned HasNoOldTypeRefs = 0x2; 1944 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1945 Record.push_back(N->getFlags()); 1946 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1947 Record.push_back(N->getCC()); 1948 1949 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1950 Record.clear(); 1951 } 1952 1953 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1954 SmallVectorImpl<uint64_t> &Record, 1955 unsigned Abbrev) { 1956 Record.push_back(N->isDistinct()); 1957 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1958 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1959 if (N->getRawChecksum()) { 1960 Record.push_back(N->getRawChecksum()->Kind); 1961 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1962 } else { 1963 // Maintain backwards compatibility with the old internal representation of 1964 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1965 Record.push_back(0); 1966 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1967 } 1968 auto Source = N->getRawSource(); 1969 if (Source) 1970 Record.push_back(VE.getMetadataOrNullID(Source)); 1971 1972 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1973 Record.clear(); 1974 } 1975 1976 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1977 SmallVectorImpl<uint64_t> &Record, 1978 unsigned Abbrev) { 1979 assert(N->isDistinct() && "Expected distinct compile units"); 1980 Record.push_back(/* IsDistinct */ true); 1981 Record.push_back(N->getSourceLanguage()); 1982 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1983 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1984 Record.push_back(N->isOptimized()); 1985 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1986 Record.push_back(N->getRuntimeVersion()); 1987 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1988 Record.push_back(N->getEmissionKind()); 1989 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1990 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1991 Record.push_back(/* subprograms */ 0); 1992 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1993 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1994 Record.push_back(N->getDWOId()); 1995 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1996 Record.push_back(N->getSplitDebugInlining()); 1997 Record.push_back(N->getDebugInfoForProfiling()); 1998 Record.push_back((unsigned)N->getNameTableKind()); 1999 Record.push_back(N->getRangesBaseAddress()); 2000 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 2001 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 2002 2003 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 2004 Record.clear(); 2005 } 2006 2007 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 2008 SmallVectorImpl<uint64_t> &Record, 2009 unsigned Abbrev) { 2010 const uint64_t HasUnitFlag = 1 << 1; 2011 const uint64_t HasSPFlagsFlag = 1 << 2; 2012 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 2013 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2014 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2015 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2016 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2017 Record.push_back(N->getLine()); 2018 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2019 Record.push_back(N->getScopeLine()); 2020 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 2021 Record.push_back(N->getSPFlags()); 2022 Record.push_back(N->getVirtualIndex()); 2023 Record.push_back(N->getFlags()); 2024 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 2025 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 2026 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 2027 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 2028 Record.push_back(N->getThisAdjustment()); 2029 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 2030 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2031 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 2032 2033 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 2034 Record.clear(); 2035 } 2036 2037 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 2038 SmallVectorImpl<uint64_t> &Record, 2039 unsigned Abbrev) { 2040 Record.push_back(N->isDistinct()); 2041 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2042 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2043 Record.push_back(N->getLine()); 2044 Record.push_back(N->getColumn()); 2045 2046 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 2047 Record.clear(); 2048 } 2049 2050 void ModuleBitcodeWriter::writeDILexicalBlockFile( 2051 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 2052 unsigned Abbrev) { 2053 Record.push_back(N->isDistinct()); 2054 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2055 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2056 Record.push_back(N->getDiscriminator()); 2057 2058 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 2059 Record.clear(); 2060 } 2061 2062 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 2063 SmallVectorImpl<uint64_t> &Record, 2064 unsigned Abbrev) { 2065 Record.push_back(N->isDistinct()); 2066 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2067 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 2068 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2069 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2070 Record.push_back(N->getLineNo()); 2071 2072 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 2073 Record.clear(); 2074 } 2075 2076 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2077 SmallVectorImpl<uint64_t> &Record, 2078 unsigned Abbrev) { 2079 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2080 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2081 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2082 2083 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2084 Record.clear(); 2085 } 2086 2087 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2088 SmallVectorImpl<uint64_t> &Record, 2089 unsigned Abbrev) { 2090 Record.push_back(N->isDistinct()); 2091 Record.push_back(N->getMacinfoType()); 2092 Record.push_back(N->getLine()); 2093 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2094 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2095 2096 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2097 Record.clear(); 2098 } 2099 2100 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2101 SmallVectorImpl<uint64_t> &Record, 2102 unsigned Abbrev) { 2103 Record.push_back(N->isDistinct()); 2104 Record.push_back(N->getMacinfoType()); 2105 Record.push_back(N->getLine()); 2106 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2107 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2108 2109 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2110 Record.clear(); 2111 } 2112 2113 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2114 SmallVectorImpl<uint64_t> &Record) { 2115 Record.reserve(N->getArgs().size()); 2116 for (ValueAsMetadata *MD : N->getArgs()) 2117 Record.push_back(VE.getMetadataID(MD)); 2118 2119 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2120 Record.clear(); 2121 } 2122 2123 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2124 SmallVectorImpl<uint64_t> &Record, 2125 unsigned Abbrev) { 2126 Record.push_back(N->isDistinct()); 2127 for (auto &I : N->operands()) 2128 Record.push_back(VE.getMetadataOrNullID(I)); 2129 Record.push_back(N->getLineNo()); 2130 Record.push_back(N->getIsDecl()); 2131 2132 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2133 Record.clear(); 2134 } 2135 2136 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2137 SmallVectorImpl<uint64_t> &Record, 2138 unsigned Abbrev) { 2139 // There are no arguments for this metadata type. 2140 Record.push_back(N->isDistinct()); 2141 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2142 Record.clear(); 2143 } 2144 2145 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2146 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2147 unsigned Abbrev) { 2148 Record.push_back(N->isDistinct()); 2149 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2150 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2151 Record.push_back(N->isDefault()); 2152 2153 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2154 Record.clear(); 2155 } 2156 2157 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2158 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2159 unsigned Abbrev) { 2160 Record.push_back(N->isDistinct()); 2161 Record.push_back(N->getTag()); 2162 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2163 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2164 Record.push_back(N->isDefault()); 2165 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2166 2167 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2168 Record.clear(); 2169 } 2170 2171 void ModuleBitcodeWriter::writeDIGlobalVariable( 2172 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2173 unsigned Abbrev) { 2174 const uint64_t Version = 2 << 1; 2175 Record.push_back((uint64_t)N->isDistinct() | Version); 2176 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2177 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2178 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2179 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2180 Record.push_back(N->getLine()); 2181 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2182 Record.push_back(N->isLocalToUnit()); 2183 Record.push_back(N->isDefinition()); 2184 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2185 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2186 Record.push_back(N->getAlignInBits()); 2187 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2188 2189 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2190 Record.clear(); 2191 } 2192 2193 void ModuleBitcodeWriter::writeDILocalVariable( 2194 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2195 unsigned Abbrev) { 2196 // In order to support all possible bitcode formats in BitcodeReader we need 2197 // to distinguish the following cases: 2198 // 1) Record has no artificial tag (Record[1]), 2199 // has no obsolete inlinedAt field (Record[9]). 2200 // In this case Record size will be 8, HasAlignment flag is false. 2201 // 2) Record has artificial tag (Record[1]), 2202 // has no obsolete inlignedAt field (Record[9]). 2203 // In this case Record size will be 9, HasAlignment flag is false. 2204 // 3) Record has both artificial tag (Record[1]) and 2205 // obsolete inlignedAt field (Record[9]). 2206 // In this case Record size will be 10, HasAlignment flag is false. 2207 // 4) Record has neither artificial tag, nor inlignedAt field, but 2208 // HasAlignment flag is true and Record[8] contains alignment value. 2209 const uint64_t HasAlignmentFlag = 1 << 1; 2210 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2211 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2212 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2213 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2214 Record.push_back(N->getLine()); 2215 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2216 Record.push_back(N->getArg()); 2217 Record.push_back(N->getFlags()); 2218 Record.push_back(N->getAlignInBits()); 2219 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2220 2221 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2222 Record.clear(); 2223 } 2224 2225 void ModuleBitcodeWriter::writeDILabel( 2226 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2227 unsigned Abbrev) { 2228 Record.push_back((uint64_t)N->isDistinct()); 2229 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2230 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2231 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2232 Record.push_back(N->getLine()); 2233 2234 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2235 Record.clear(); 2236 } 2237 2238 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2239 SmallVectorImpl<uint64_t> &Record, 2240 unsigned Abbrev) { 2241 Record.reserve(N->getElements().size() + 1); 2242 const uint64_t Version = 3 << 1; 2243 Record.push_back((uint64_t)N->isDistinct() | Version); 2244 Record.append(N->elements_begin(), N->elements_end()); 2245 2246 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2247 Record.clear(); 2248 } 2249 2250 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2251 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2252 unsigned Abbrev) { 2253 Record.push_back(N->isDistinct()); 2254 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2255 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2256 2257 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2258 Record.clear(); 2259 } 2260 2261 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2262 SmallVectorImpl<uint64_t> &Record, 2263 unsigned Abbrev) { 2264 Record.push_back(N->isDistinct()); 2265 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2266 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2267 Record.push_back(N->getLine()); 2268 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2269 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2270 Record.push_back(N->getAttributes()); 2271 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2272 2273 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2274 Record.clear(); 2275 } 2276 2277 void ModuleBitcodeWriter::writeDIImportedEntity( 2278 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2279 unsigned Abbrev) { 2280 Record.push_back(N->isDistinct()); 2281 Record.push_back(N->getTag()); 2282 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2283 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2284 Record.push_back(N->getLine()); 2285 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2286 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2287 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2288 2289 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2290 Record.clear(); 2291 } 2292 2293 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2294 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2295 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2298 return Stream.EmitAbbrev(std::move(Abbv)); 2299 } 2300 2301 void ModuleBitcodeWriter::writeNamedMetadata( 2302 SmallVectorImpl<uint64_t> &Record) { 2303 if (M.named_metadata_empty()) 2304 return; 2305 2306 unsigned Abbrev = createNamedMetadataAbbrev(); 2307 for (const NamedMDNode &NMD : M.named_metadata()) { 2308 // Write name. 2309 StringRef Str = NMD.getName(); 2310 Record.append(Str.bytes_begin(), Str.bytes_end()); 2311 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2312 Record.clear(); 2313 2314 // Write named metadata operands. 2315 for (const MDNode *N : NMD.operands()) 2316 Record.push_back(VE.getMetadataID(N)); 2317 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2318 Record.clear(); 2319 } 2320 } 2321 2322 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2323 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2324 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2328 return Stream.EmitAbbrev(std::move(Abbv)); 2329 } 2330 2331 /// Write out a record for MDString. 2332 /// 2333 /// All the metadata strings in a metadata block are emitted in a single 2334 /// record. The sizes and strings themselves are shoved into a blob. 2335 void ModuleBitcodeWriter::writeMetadataStrings( 2336 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2337 if (Strings.empty()) 2338 return; 2339 2340 // Start the record with the number of strings. 2341 Record.push_back(bitc::METADATA_STRINGS); 2342 Record.push_back(Strings.size()); 2343 2344 // Emit the sizes of the strings in the blob. 2345 SmallString<256> Blob; 2346 { 2347 BitstreamWriter W(Blob); 2348 for (const Metadata *MD : Strings) 2349 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2350 W.FlushToWord(); 2351 } 2352 2353 // Add the offset to the strings to the record. 2354 Record.push_back(Blob.size()); 2355 2356 // Add the strings to the blob. 2357 for (const Metadata *MD : Strings) 2358 Blob.append(cast<MDString>(MD)->getString()); 2359 2360 // Emit the final record. 2361 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2362 Record.clear(); 2363 } 2364 2365 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2366 enum MetadataAbbrev : unsigned { 2367 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2368 #include "llvm/IR/Metadata.def" 2369 LastPlusOne 2370 }; 2371 2372 void ModuleBitcodeWriter::writeMetadataRecords( 2373 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2374 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2375 if (MDs.empty()) 2376 return; 2377 2378 // Initialize MDNode abbreviations. 2379 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2380 #include "llvm/IR/Metadata.def" 2381 2382 for (const Metadata *MD : MDs) { 2383 if (IndexPos) 2384 IndexPos->push_back(Stream.GetCurrentBitNo()); 2385 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2386 assert(N->isResolved() && "Expected forward references to be resolved"); 2387 2388 switch (N->getMetadataID()) { 2389 default: 2390 llvm_unreachable("Invalid MDNode subclass"); 2391 #define HANDLE_MDNODE_LEAF(CLASS) \ 2392 case Metadata::CLASS##Kind: \ 2393 if (MDAbbrevs) \ 2394 write##CLASS(cast<CLASS>(N), Record, \ 2395 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2396 else \ 2397 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2398 continue; 2399 #include "llvm/IR/Metadata.def" 2400 } 2401 } 2402 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2403 writeDIArgList(AL, Record); 2404 continue; 2405 } 2406 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2407 } 2408 } 2409 2410 void ModuleBitcodeWriter::writeModuleMetadata() { 2411 if (!VE.hasMDs() && M.named_metadata_empty()) 2412 return; 2413 2414 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2415 SmallVector<uint64_t, 64> Record; 2416 2417 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2418 // block and load any metadata. 2419 std::vector<unsigned> MDAbbrevs; 2420 2421 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2422 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2423 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2424 createGenericDINodeAbbrev(); 2425 2426 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2427 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2430 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2431 2432 Abbv = std::make_shared<BitCodeAbbrev>(); 2433 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2436 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2437 2438 // Emit MDStrings together upfront. 2439 writeMetadataStrings(VE.getMDStrings(), Record); 2440 2441 // We only emit an index for the metadata record if we have more than a given 2442 // (naive) threshold of metadatas, otherwise it is not worth it. 2443 if (VE.getNonMDStrings().size() > IndexThreshold) { 2444 // Write a placeholder value in for the offset of the metadata index, 2445 // which is written after the records, so that it can include 2446 // the offset of each entry. The placeholder offset will be 2447 // updated after all records are emitted. 2448 uint64_t Vals[] = {0, 0}; 2449 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2450 } 2451 2452 // Compute and save the bit offset to the current position, which will be 2453 // patched when we emit the index later. We can simply subtract the 64-bit 2454 // fixed size from the current bit number to get the location to backpatch. 2455 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2456 2457 // This index will contain the bitpos for each individual record. 2458 std::vector<uint64_t> IndexPos; 2459 IndexPos.reserve(VE.getNonMDStrings().size()); 2460 2461 // Write all the records 2462 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2463 2464 if (VE.getNonMDStrings().size() > IndexThreshold) { 2465 // Now that we have emitted all the records we will emit the index. But 2466 // first 2467 // backpatch the forward reference so that the reader can skip the records 2468 // efficiently. 2469 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2470 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2471 2472 // Delta encode the index. 2473 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2474 for (auto &Elt : IndexPos) { 2475 auto EltDelta = Elt - PreviousValue; 2476 PreviousValue = Elt; 2477 Elt = EltDelta; 2478 } 2479 // Emit the index record. 2480 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2481 IndexPos.clear(); 2482 } 2483 2484 // Write the named metadata now. 2485 writeNamedMetadata(Record); 2486 2487 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2488 SmallVector<uint64_t, 4> Record; 2489 Record.push_back(VE.getValueID(&GO)); 2490 pushGlobalMetadataAttachment(Record, GO); 2491 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2492 }; 2493 for (const Function &F : M) 2494 if (F.isDeclaration() && F.hasMetadata()) 2495 AddDeclAttachedMetadata(F); 2496 // FIXME: Only store metadata for declarations here, and move data for global 2497 // variable definitions to a separate block (PR28134). 2498 for (const GlobalVariable &GV : M.globals()) 2499 if (GV.hasMetadata()) 2500 AddDeclAttachedMetadata(GV); 2501 2502 Stream.ExitBlock(); 2503 } 2504 2505 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2506 if (!VE.hasMDs()) 2507 return; 2508 2509 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2510 SmallVector<uint64_t, 64> Record; 2511 writeMetadataStrings(VE.getMDStrings(), Record); 2512 writeMetadataRecords(VE.getNonMDStrings(), Record); 2513 Stream.ExitBlock(); 2514 } 2515 2516 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2517 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2518 // [n x [id, mdnode]] 2519 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2520 GO.getAllMetadata(MDs); 2521 for (const auto &I : MDs) { 2522 Record.push_back(I.first); 2523 Record.push_back(VE.getMetadataID(I.second)); 2524 } 2525 } 2526 2527 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2528 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2529 2530 SmallVector<uint64_t, 64> Record; 2531 2532 if (F.hasMetadata()) { 2533 pushGlobalMetadataAttachment(Record, F); 2534 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2535 Record.clear(); 2536 } 2537 2538 // Write metadata attachments 2539 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2540 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2541 for (const BasicBlock &BB : F) 2542 for (const Instruction &I : BB) { 2543 MDs.clear(); 2544 I.getAllMetadataOtherThanDebugLoc(MDs); 2545 2546 // If no metadata, ignore instruction. 2547 if (MDs.empty()) continue; 2548 2549 Record.push_back(VE.getInstructionID(&I)); 2550 2551 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2552 Record.push_back(MDs[i].first); 2553 Record.push_back(VE.getMetadataID(MDs[i].second)); 2554 } 2555 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2556 Record.clear(); 2557 } 2558 2559 Stream.ExitBlock(); 2560 } 2561 2562 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2563 SmallVector<uint64_t, 64> Record; 2564 2565 // Write metadata kinds 2566 // METADATA_KIND - [n x [id, name]] 2567 SmallVector<StringRef, 8> Names; 2568 M.getMDKindNames(Names); 2569 2570 if (Names.empty()) return; 2571 2572 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2573 2574 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2575 Record.push_back(MDKindID); 2576 StringRef KName = Names[MDKindID]; 2577 Record.append(KName.begin(), KName.end()); 2578 2579 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2580 Record.clear(); 2581 } 2582 2583 Stream.ExitBlock(); 2584 } 2585 2586 void ModuleBitcodeWriter::writeOperandBundleTags() { 2587 // Write metadata kinds 2588 // 2589 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2590 // 2591 // OPERAND_BUNDLE_TAG - [strchr x N] 2592 2593 SmallVector<StringRef, 8> Tags; 2594 M.getOperandBundleTags(Tags); 2595 2596 if (Tags.empty()) 2597 return; 2598 2599 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2600 2601 SmallVector<uint64_t, 64> Record; 2602 2603 for (auto Tag : Tags) { 2604 Record.append(Tag.begin(), Tag.end()); 2605 2606 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2607 Record.clear(); 2608 } 2609 2610 Stream.ExitBlock(); 2611 } 2612 2613 void ModuleBitcodeWriter::writeSyncScopeNames() { 2614 SmallVector<StringRef, 8> SSNs; 2615 M.getContext().getSyncScopeNames(SSNs); 2616 if (SSNs.empty()) 2617 return; 2618 2619 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2620 2621 SmallVector<uint64_t, 64> Record; 2622 for (auto SSN : SSNs) { 2623 Record.append(SSN.begin(), SSN.end()); 2624 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2625 Record.clear(); 2626 } 2627 2628 Stream.ExitBlock(); 2629 } 2630 2631 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2632 bool isGlobal) { 2633 if (FirstVal == LastVal) return; 2634 2635 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2636 2637 unsigned AggregateAbbrev = 0; 2638 unsigned String8Abbrev = 0; 2639 unsigned CString7Abbrev = 0; 2640 unsigned CString6Abbrev = 0; 2641 // If this is a constant pool for the module, emit module-specific abbrevs. 2642 if (isGlobal) { 2643 // Abbrev for CST_CODE_AGGREGATE. 2644 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2645 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2648 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2649 2650 // Abbrev for CST_CODE_STRING. 2651 Abbv = std::make_shared<BitCodeAbbrev>(); 2652 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2655 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2656 // Abbrev for CST_CODE_CSTRING. 2657 Abbv = std::make_shared<BitCodeAbbrev>(); 2658 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2661 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2662 // Abbrev for CST_CODE_CSTRING. 2663 Abbv = std::make_shared<BitCodeAbbrev>(); 2664 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2667 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2668 } 2669 2670 SmallVector<uint64_t, 64> Record; 2671 2672 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2673 Type *LastTy = nullptr; 2674 for (unsigned i = FirstVal; i != LastVal; ++i) { 2675 const Value *V = Vals[i].first; 2676 // If we need to switch types, do so now. 2677 if (V->getType() != LastTy) { 2678 LastTy = V->getType(); 2679 Record.push_back(VE.getTypeID(LastTy)); 2680 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2681 CONSTANTS_SETTYPE_ABBREV); 2682 Record.clear(); 2683 } 2684 2685 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2686 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2687 Record.push_back( 2688 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2689 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2690 2691 // Add the asm string. 2692 const std::string &AsmStr = IA->getAsmString(); 2693 Record.push_back(AsmStr.size()); 2694 Record.append(AsmStr.begin(), AsmStr.end()); 2695 2696 // Add the constraint string. 2697 const std::string &ConstraintStr = IA->getConstraintString(); 2698 Record.push_back(ConstraintStr.size()); 2699 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2700 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2701 Record.clear(); 2702 continue; 2703 } 2704 const Constant *C = cast<Constant>(V); 2705 unsigned Code = -1U; 2706 unsigned AbbrevToUse = 0; 2707 if (C->isNullValue()) { 2708 Code = bitc::CST_CODE_NULL; 2709 } else if (isa<PoisonValue>(C)) { 2710 Code = bitc::CST_CODE_POISON; 2711 } else if (isa<UndefValue>(C)) { 2712 Code = bitc::CST_CODE_UNDEF; 2713 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2714 if (IV->getBitWidth() <= 64) { 2715 uint64_t V = IV->getSExtValue(); 2716 emitSignedInt64(Record, V); 2717 Code = bitc::CST_CODE_INTEGER; 2718 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2719 } else { // Wide integers, > 64 bits in size. 2720 emitWideAPInt(Record, IV->getValue()); 2721 Code = bitc::CST_CODE_WIDE_INTEGER; 2722 } 2723 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2724 Code = bitc::CST_CODE_FLOAT; 2725 Type *Ty = CFP->getType()->getScalarType(); 2726 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2727 Ty->isDoubleTy()) { 2728 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2729 } else if (Ty->isX86_FP80Ty()) { 2730 // api needed to prevent premature destruction 2731 // bits are not in the same order as a normal i80 APInt, compensate. 2732 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2733 const uint64_t *p = api.getRawData(); 2734 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2735 Record.push_back(p[0] & 0xffffLL); 2736 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2737 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2738 const uint64_t *p = api.getRawData(); 2739 Record.push_back(p[0]); 2740 Record.push_back(p[1]); 2741 } else { 2742 assert(0 && "Unknown FP type!"); 2743 } 2744 } else if (isa<ConstantDataSequential>(C) && 2745 cast<ConstantDataSequential>(C)->isString()) { 2746 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2747 // Emit constant strings specially. 2748 unsigned NumElts = Str->getNumElements(); 2749 // If this is a null-terminated string, use the denser CSTRING encoding. 2750 if (Str->isCString()) { 2751 Code = bitc::CST_CODE_CSTRING; 2752 --NumElts; // Don't encode the null, which isn't allowed by char6. 2753 } else { 2754 Code = bitc::CST_CODE_STRING; 2755 AbbrevToUse = String8Abbrev; 2756 } 2757 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2758 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2759 for (unsigned i = 0; i != NumElts; ++i) { 2760 unsigned char V = Str->getElementAsInteger(i); 2761 Record.push_back(V); 2762 isCStr7 &= (V & 128) == 0; 2763 if (isCStrChar6) 2764 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2765 } 2766 2767 if (isCStrChar6) 2768 AbbrevToUse = CString6Abbrev; 2769 else if (isCStr7) 2770 AbbrevToUse = CString7Abbrev; 2771 } else if (const ConstantDataSequential *CDS = 2772 dyn_cast<ConstantDataSequential>(C)) { 2773 Code = bitc::CST_CODE_DATA; 2774 Type *EltTy = CDS->getElementType(); 2775 if (isa<IntegerType>(EltTy)) { 2776 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2777 Record.push_back(CDS->getElementAsInteger(i)); 2778 } else { 2779 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2780 Record.push_back( 2781 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2782 } 2783 } else if (isa<ConstantAggregate>(C)) { 2784 Code = bitc::CST_CODE_AGGREGATE; 2785 for (const Value *Op : C->operands()) 2786 Record.push_back(VE.getValueID(Op)); 2787 AbbrevToUse = AggregateAbbrev; 2788 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2789 switch (CE->getOpcode()) { 2790 default: 2791 if (Instruction::isCast(CE->getOpcode())) { 2792 Code = bitc::CST_CODE_CE_CAST; 2793 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2794 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2795 Record.push_back(VE.getValueID(C->getOperand(0))); 2796 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2797 } else { 2798 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2799 Code = bitc::CST_CODE_CE_BINOP; 2800 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2801 Record.push_back(VE.getValueID(C->getOperand(0))); 2802 Record.push_back(VE.getValueID(C->getOperand(1))); 2803 uint64_t Flags = getOptimizationFlags(CE); 2804 if (Flags != 0) 2805 Record.push_back(Flags); 2806 } 2807 break; 2808 case Instruction::FNeg: { 2809 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2810 Code = bitc::CST_CODE_CE_UNOP; 2811 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2812 Record.push_back(VE.getValueID(C->getOperand(0))); 2813 uint64_t Flags = getOptimizationFlags(CE); 2814 if (Flags != 0) 2815 Record.push_back(Flags); 2816 break; 2817 } 2818 case Instruction::GetElementPtr: { 2819 Code = bitc::CST_CODE_CE_GEP; 2820 const auto *GO = cast<GEPOperator>(C); 2821 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2822 Record.push_back(getOptimizationFlags(GO)); 2823 if (std::optional<ConstantRange> Range = GO->getInRange()) { 2824 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; 2825 emitConstantRange(Record, *Range, /*EmitBitWidth=*/true); 2826 } 2827 for (const Value *Op : CE->operands()) { 2828 Record.push_back(VE.getTypeID(Op->getType())); 2829 Record.push_back(VE.getValueID(Op)); 2830 } 2831 break; 2832 } 2833 case Instruction::ExtractElement: 2834 Code = bitc::CST_CODE_CE_EXTRACTELT; 2835 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2836 Record.push_back(VE.getValueID(C->getOperand(0))); 2837 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2838 Record.push_back(VE.getValueID(C->getOperand(1))); 2839 break; 2840 case Instruction::InsertElement: 2841 Code = bitc::CST_CODE_CE_INSERTELT; 2842 Record.push_back(VE.getValueID(C->getOperand(0))); 2843 Record.push_back(VE.getValueID(C->getOperand(1))); 2844 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2845 Record.push_back(VE.getValueID(C->getOperand(2))); 2846 break; 2847 case Instruction::ShuffleVector: 2848 // If the return type and argument types are the same, this is a 2849 // standard shufflevector instruction. If the types are different, 2850 // then the shuffle is widening or truncating the input vectors, and 2851 // the argument type must also be encoded. 2852 if (C->getType() == C->getOperand(0)->getType()) { 2853 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2854 } else { 2855 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2856 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2857 } 2858 Record.push_back(VE.getValueID(C->getOperand(0))); 2859 Record.push_back(VE.getValueID(C->getOperand(1))); 2860 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2861 break; 2862 } 2863 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2864 Code = bitc::CST_CODE_BLOCKADDRESS; 2865 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2866 Record.push_back(VE.getValueID(BA->getFunction())); 2867 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2868 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2869 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2870 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2871 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2872 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2873 Code = bitc::CST_CODE_NO_CFI_VALUE; 2874 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2875 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2876 } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) { 2877 Code = bitc::CST_CODE_PTRAUTH; 2878 Record.push_back(VE.getValueID(CPA->getPointer())); 2879 Record.push_back(VE.getValueID(CPA->getKey())); 2880 Record.push_back(VE.getValueID(CPA->getDiscriminator())); 2881 Record.push_back(VE.getValueID(CPA->getAddrDiscriminator())); 2882 } else { 2883 #ifndef NDEBUG 2884 C->dump(); 2885 #endif 2886 llvm_unreachable("Unknown constant!"); 2887 } 2888 Stream.EmitRecord(Code, Record, AbbrevToUse); 2889 Record.clear(); 2890 } 2891 2892 Stream.ExitBlock(); 2893 } 2894 2895 void ModuleBitcodeWriter::writeModuleConstants() { 2896 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2897 2898 // Find the first constant to emit, which is the first non-globalvalue value. 2899 // We know globalvalues have been emitted by WriteModuleInfo. 2900 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2901 if (!isa<GlobalValue>(Vals[i].first)) { 2902 writeConstants(i, Vals.size(), true); 2903 return; 2904 } 2905 } 2906 } 2907 2908 /// pushValueAndType - The file has to encode both the value and type id for 2909 /// many values, because we need to know what type to create for forward 2910 /// references. However, most operands are not forward references, so this type 2911 /// field is not needed. 2912 /// 2913 /// This function adds V's value ID to Vals. If the value ID is higher than the 2914 /// instruction ID, then it is a forward reference, and it also includes the 2915 /// type ID. The value ID that is written is encoded relative to the InstID. 2916 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2917 SmallVectorImpl<unsigned> &Vals) { 2918 unsigned ValID = VE.getValueID(V); 2919 // Make encoding relative to the InstID. 2920 Vals.push_back(InstID - ValID); 2921 if (ValID >= InstID) { 2922 Vals.push_back(VE.getTypeID(V->getType())); 2923 return true; 2924 } 2925 return false; 2926 } 2927 2928 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2929 unsigned InstID) { 2930 SmallVector<unsigned, 64> Record; 2931 LLVMContext &C = CS.getContext(); 2932 2933 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2934 const auto &Bundle = CS.getOperandBundleAt(i); 2935 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2936 2937 for (auto &Input : Bundle.Inputs) 2938 pushValueAndType(Input, InstID, Record); 2939 2940 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2941 Record.clear(); 2942 } 2943 } 2944 2945 /// pushValue - Like pushValueAndType, but where the type of the value is 2946 /// omitted (perhaps it was already encoded in an earlier operand). 2947 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2948 SmallVectorImpl<unsigned> &Vals) { 2949 unsigned ValID = VE.getValueID(V); 2950 Vals.push_back(InstID - ValID); 2951 } 2952 2953 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2954 SmallVectorImpl<uint64_t> &Vals) { 2955 unsigned ValID = VE.getValueID(V); 2956 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2957 emitSignedInt64(Vals, diff); 2958 } 2959 2960 /// WriteInstruction - Emit an instruction to the specified stream. 2961 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2962 unsigned InstID, 2963 SmallVectorImpl<unsigned> &Vals) { 2964 unsigned Code = 0; 2965 unsigned AbbrevToUse = 0; 2966 VE.setInstructionID(&I); 2967 switch (I.getOpcode()) { 2968 default: 2969 if (Instruction::isCast(I.getOpcode())) { 2970 Code = bitc::FUNC_CODE_INST_CAST; 2971 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2972 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2973 Vals.push_back(VE.getTypeID(I.getType())); 2974 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2975 uint64_t Flags = getOptimizationFlags(&I); 2976 if (Flags != 0) { 2977 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2978 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2979 Vals.push_back(Flags); 2980 } 2981 } else { 2982 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2983 Code = bitc::FUNC_CODE_INST_BINOP; 2984 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2985 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2986 pushValue(I.getOperand(1), InstID, Vals); 2987 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2988 uint64_t Flags = getOptimizationFlags(&I); 2989 if (Flags != 0) { 2990 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2991 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2992 Vals.push_back(Flags); 2993 } 2994 } 2995 break; 2996 case Instruction::FNeg: { 2997 Code = bitc::FUNC_CODE_INST_UNOP; 2998 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2999 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 3000 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 3001 uint64_t Flags = getOptimizationFlags(&I); 3002 if (Flags != 0) { 3003 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 3004 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 3005 Vals.push_back(Flags); 3006 } 3007 break; 3008 } 3009 case Instruction::GetElementPtr: { 3010 Code = bitc::FUNC_CODE_INST_GEP; 3011 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 3012 auto &GEPInst = cast<GetElementPtrInst>(I); 3013 Vals.push_back(getOptimizationFlags(&I)); 3014 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 3015 for (const Value *Op : I.operands()) 3016 pushValueAndType(Op, InstID, Vals); 3017 break; 3018 } 3019 case Instruction::ExtractValue: { 3020 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 3021 pushValueAndType(I.getOperand(0), InstID, Vals); 3022 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 3023 Vals.append(EVI->idx_begin(), EVI->idx_end()); 3024 break; 3025 } 3026 case Instruction::InsertValue: { 3027 Code = bitc::FUNC_CODE_INST_INSERTVAL; 3028 pushValueAndType(I.getOperand(0), InstID, Vals); 3029 pushValueAndType(I.getOperand(1), InstID, Vals); 3030 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 3031 Vals.append(IVI->idx_begin(), IVI->idx_end()); 3032 break; 3033 } 3034 case Instruction::Select: { 3035 Code = bitc::FUNC_CODE_INST_VSELECT; 3036 pushValueAndType(I.getOperand(1), InstID, Vals); 3037 pushValue(I.getOperand(2), InstID, Vals); 3038 pushValueAndType(I.getOperand(0), InstID, Vals); 3039 uint64_t Flags = getOptimizationFlags(&I); 3040 if (Flags != 0) 3041 Vals.push_back(Flags); 3042 break; 3043 } 3044 case Instruction::ExtractElement: 3045 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 3046 pushValueAndType(I.getOperand(0), InstID, Vals); 3047 pushValueAndType(I.getOperand(1), InstID, Vals); 3048 break; 3049 case Instruction::InsertElement: 3050 Code = bitc::FUNC_CODE_INST_INSERTELT; 3051 pushValueAndType(I.getOperand(0), InstID, Vals); 3052 pushValue(I.getOperand(1), InstID, Vals); 3053 pushValueAndType(I.getOperand(2), InstID, Vals); 3054 break; 3055 case Instruction::ShuffleVector: 3056 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 3057 pushValueAndType(I.getOperand(0), InstID, Vals); 3058 pushValue(I.getOperand(1), InstID, Vals); 3059 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 3060 Vals); 3061 break; 3062 case Instruction::ICmp: 3063 case Instruction::FCmp: { 3064 // compare returning Int1Ty or vector of Int1Ty 3065 Code = bitc::FUNC_CODE_INST_CMP2; 3066 pushValueAndType(I.getOperand(0), InstID, Vals); 3067 pushValue(I.getOperand(1), InstID, Vals); 3068 Vals.push_back(cast<CmpInst>(I).getPredicate()); 3069 uint64_t Flags = getOptimizationFlags(&I); 3070 if (Flags != 0) 3071 Vals.push_back(Flags); 3072 break; 3073 } 3074 3075 case Instruction::Ret: 3076 { 3077 Code = bitc::FUNC_CODE_INST_RET; 3078 unsigned NumOperands = I.getNumOperands(); 3079 if (NumOperands == 0) 3080 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3081 else if (NumOperands == 1) { 3082 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3083 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3084 } else { 3085 for (const Value *Op : I.operands()) 3086 pushValueAndType(Op, InstID, Vals); 3087 } 3088 } 3089 break; 3090 case Instruction::Br: 3091 { 3092 Code = bitc::FUNC_CODE_INST_BR; 3093 const BranchInst &II = cast<BranchInst>(I); 3094 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3095 if (II.isConditional()) { 3096 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3097 pushValue(II.getCondition(), InstID, Vals); 3098 } 3099 } 3100 break; 3101 case Instruction::Switch: 3102 { 3103 Code = bitc::FUNC_CODE_INST_SWITCH; 3104 const SwitchInst &SI = cast<SwitchInst>(I); 3105 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3106 pushValue(SI.getCondition(), InstID, Vals); 3107 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3108 for (auto Case : SI.cases()) { 3109 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3110 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3111 } 3112 } 3113 break; 3114 case Instruction::IndirectBr: 3115 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3116 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3117 // Encode the address operand as relative, but not the basic blocks. 3118 pushValue(I.getOperand(0), InstID, Vals); 3119 for (const Value *Op : drop_begin(I.operands())) 3120 Vals.push_back(VE.getValueID(Op)); 3121 break; 3122 3123 case Instruction::Invoke: { 3124 const InvokeInst *II = cast<InvokeInst>(&I); 3125 const Value *Callee = II->getCalledOperand(); 3126 FunctionType *FTy = II->getFunctionType(); 3127 3128 if (II->hasOperandBundles()) 3129 writeOperandBundles(*II, InstID); 3130 3131 Code = bitc::FUNC_CODE_INST_INVOKE; 3132 3133 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3134 Vals.push_back(II->getCallingConv() | 1 << 13); 3135 Vals.push_back(VE.getValueID(II->getNormalDest())); 3136 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3137 Vals.push_back(VE.getTypeID(FTy)); 3138 pushValueAndType(Callee, InstID, Vals); 3139 3140 // Emit value #'s for the fixed parameters. 3141 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3142 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3143 3144 // Emit type/value pairs for varargs params. 3145 if (FTy->isVarArg()) { 3146 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3147 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3148 } 3149 break; 3150 } 3151 case Instruction::Resume: 3152 Code = bitc::FUNC_CODE_INST_RESUME; 3153 pushValueAndType(I.getOperand(0), InstID, Vals); 3154 break; 3155 case Instruction::CleanupRet: { 3156 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3157 const auto &CRI = cast<CleanupReturnInst>(I); 3158 pushValue(CRI.getCleanupPad(), InstID, Vals); 3159 if (CRI.hasUnwindDest()) 3160 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3161 break; 3162 } 3163 case Instruction::CatchRet: { 3164 Code = bitc::FUNC_CODE_INST_CATCHRET; 3165 const auto &CRI = cast<CatchReturnInst>(I); 3166 pushValue(CRI.getCatchPad(), InstID, Vals); 3167 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3168 break; 3169 } 3170 case Instruction::CleanupPad: 3171 case Instruction::CatchPad: { 3172 const auto &FuncletPad = cast<FuncletPadInst>(I); 3173 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3174 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3175 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3176 3177 unsigned NumArgOperands = FuncletPad.arg_size(); 3178 Vals.push_back(NumArgOperands); 3179 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3180 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3181 break; 3182 } 3183 case Instruction::CatchSwitch: { 3184 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3185 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3186 3187 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3188 3189 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3190 Vals.push_back(NumHandlers); 3191 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3192 Vals.push_back(VE.getValueID(CatchPadBB)); 3193 3194 if (CatchSwitch.hasUnwindDest()) 3195 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3196 break; 3197 } 3198 case Instruction::CallBr: { 3199 const CallBrInst *CBI = cast<CallBrInst>(&I); 3200 const Value *Callee = CBI->getCalledOperand(); 3201 FunctionType *FTy = CBI->getFunctionType(); 3202 3203 if (CBI->hasOperandBundles()) 3204 writeOperandBundles(*CBI, InstID); 3205 3206 Code = bitc::FUNC_CODE_INST_CALLBR; 3207 3208 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3209 3210 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3211 1 << bitc::CALL_EXPLICIT_TYPE); 3212 3213 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3214 Vals.push_back(CBI->getNumIndirectDests()); 3215 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3216 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3217 3218 Vals.push_back(VE.getTypeID(FTy)); 3219 pushValueAndType(Callee, InstID, Vals); 3220 3221 // Emit value #'s for the fixed parameters. 3222 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3223 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3224 3225 // Emit type/value pairs for varargs params. 3226 if (FTy->isVarArg()) { 3227 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3228 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3229 } 3230 break; 3231 } 3232 case Instruction::Unreachable: 3233 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3234 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3235 break; 3236 3237 case Instruction::PHI: { 3238 const PHINode &PN = cast<PHINode>(I); 3239 Code = bitc::FUNC_CODE_INST_PHI; 3240 // With the newer instruction encoding, forward references could give 3241 // negative valued IDs. This is most common for PHIs, so we use 3242 // signed VBRs. 3243 SmallVector<uint64_t, 128> Vals64; 3244 Vals64.push_back(VE.getTypeID(PN.getType())); 3245 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3246 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3247 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3248 } 3249 3250 uint64_t Flags = getOptimizationFlags(&I); 3251 if (Flags != 0) 3252 Vals64.push_back(Flags); 3253 3254 // Emit a Vals64 vector and exit. 3255 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3256 Vals64.clear(); 3257 return; 3258 } 3259 3260 case Instruction::LandingPad: { 3261 const LandingPadInst &LP = cast<LandingPadInst>(I); 3262 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3263 Vals.push_back(VE.getTypeID(LP.getType())); 3264 Vals.push_back(LP.isCleanup()); 3265 Vals.push_back(LP.getNumClauses()); 3266 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3267 if (LP.isCatch(I)) 3268 Vals.push_back(LandingPadInst::Catch); 3269 else 3270 Vals.push_back(LandingPadInst::Filter); 3271 pushValueAndType(LP.getClause(I), InstID, Vals); 3272 } 3273 break; 3274 } 3275 3276 case Instruction::Alloca: { 3277 Code = bitc::FUNC_CODE_INST_ALLOCA; 3278 const AllocaInst &AI = cast<AllocaInst>(I); 3279 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3280 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3281 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3282 using APV = AllocaPackedValues; 3283 unsigned Record = 0; 3284 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3285 Bitfield::set<APV::AlignLower>( 3286 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3287 Bitfield::set<APV::AlignUpper>(Record, 3288 EncodedAlign >> APV::AlignLower::Bits); 3289 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3290 Bitfield::set<APV::ExplicitType>(Record, true); 3291 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3292 Vals.push_back(Record); 3293 3294 unsigned AS = AI.getAddressSpace(); 3295 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3296 Vals.push_back(AS); 3297 break; 3298 } 3299 3300 case Instruction::Load: 3301 if (cast<LoadInst>(I).isAtomic()) { 3302 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3303 pushValueAndType(I.getOperand(0), InstID, Vals); 3304 } else { 3305 Code = bitc::FUNC_CODE_INST_LOAD; 3306 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3307 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3308 } 3309 Vals.push_back(VE.getTypeID(I.getType())); 3310 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3311 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3312 if (cast<LoadInst>(I).isAtomic()) { 3313 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3314 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3315 } 3316 break; 3317 case Instruction::Store: 3318 if (cast<StoreInst>(I).isAtomic()) 3319 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3320 else 3321 Code = bitc::FUNC_CODE_INST_STORE; 3322 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3323 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3324 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3325 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3326 if (cast<StoreInst>(I).isAtomic()) { 3327 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3328 Vals.push_back( 3329 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3330 } 3331 break; 3332 case Instruction::AtomicCmpXchg: 3333 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3334 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3335 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3336 pushValue(I.getOperand(2), InstID, Vals); // newval. 3337 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3338 Vals.push_back( 3339 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3340 Vals.push_back( 3341 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3342 Vals.push_back( 3343 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3344 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3345 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3346 break; 3347 case Instruction::AtomicRMW: 3348 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3349 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3350 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3351 Vals.push_back( 3352 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3353 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3354 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3355 Vals.push_back( 3356 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3357 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3358 break; 3359 case Instruction::Fence: 3360 Code = bitc::FUNC_CODE_INST_FENCE; 3361 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3362 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3363 break; 3364 case Instruction::Call: { 3365 const CallInst &CI = cast<CallInst>(I); 3366 FunctionType *FTy = CI.getFunctionType(); 3367 3368 if (CI.hasOperandBundles()) 3369 writeOperandBundles(CI, InstID); 3370 3371 Code = bitc::FUNC_CODE_INST_CALL; 3372 3373 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3374 3375 unsigned Flags = getOptimizationFlags(&I); 3376 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3377 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3378 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3379 1 << bitc::CALL_EXPLICIT_TYPE | 3380 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3381 unsigned(Flags != 0) << bitc::CALL_FMF); 3382 if (Flags != 0) 3383 Vals.push_back(Flags); 3384 3385 Vals.push_back(VE.getTypeID(FTy)); 3386 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3387 3388 // Emit value #'s for the fixed parameters. 3389 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3390 // Check for labels (can happen with asm labels). 3391 if (FTy->getParamType(i)->isLabelTy()) 3392 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3393 else 3394 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3395 } 3396 3397 // Emit type/value pairs for varargs params. 3398 if (FTy->isVarArg()) { 3399 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3400 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3401 } 3402 break; 3403 } 3404 case Instruction::VAArg: 3405 Code = bitc::FUNC_CODE_INST_VAARG; 3406 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3407 pushValue(I.getOperand(0), InstID, Vals); // valist. 3408 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3409 break; 3410 case Instruction::Freeze: 3411 Code = bitc::FUNC_CODE_INST_FREEZE; 3412 pushValueAndType(I.getOperand(0), InstID, Vals); 3413 break; 3414 } 3415 3416 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3417 Vals.clear(); 3418 } 3419 3420 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3421 /// to allow clients to efficiently find the function body. 3422 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3423 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3424 // Get the offset of the VST we are writing, and backpatch it into 3425 // the VST forward declaration record. 3426 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3427 // The BitcodeStartBit was the stream offset of the identification block. 3428 VSTOffset -= bitcodeStartBit(); 3429 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3430 // Note that we add 1 here because the offset is relative to one word 3431 // before the start of the identification block, which was historically 3432 // always the start of the regular bitcode header. 3433 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3434 3435 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3436 3437 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3438 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3441 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3442 3443 for (const Function &F : M) { 3444 uint64_t Record[2]; 3445 3446 if (F.isDeclaration()) 3447 continue; 3448 3449 Record[0] = VE.getValueID(&F); 3450 3451 // Save the word offset of the function (from the start of the 3452 // actual bitcode written to the stream). 3453 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3454 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3455 // Note that we add 1 here because the offset is relative to one word 3456 // before the start of the identification block, which was historically 3457 // always the start of the regular bitcode header. 3458 Record[1] = BitcodeIndex / 32 + 1; 3459 3460 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3461 } 3462 3463 Stream.ExitBlock(); 3464 } 3465 3466 /// Emit names for arguments, instructions and basic blocks in a function. 3467 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3468 const ValueSymbolTable &VST) { 3469 if (VST.empty()) 3470 return; 3471 3472 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3473 3474 // FIXME: Set up the abbrev, we know how many values there are! 3475 // FIXME: We know if the type names can use 7-bit ascii. 3476 SmallVector<uint64_t, 64> NameVals; 3477 3478 for (const ValueName &Name : VST) { 3479 // Figure out the encoding to use for the name. 3480 StringEncoding Bits = getStringEncoding(Name.getKey()); 3481 3482 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3483 NameVals.push_back(VE.getValueID(Name.getValue())); 3484 3485 // VST_CODE_ENTRY: [valueid, namechar x N] 3486 // VST_CODE_BBENTRY: [bbid, namechar x N] 3487 unsigned Code; 3488 if (isa<BasicBlock>(Name.getValue())) { 3489 Code = bitc::VST_CODE_BBENTRY; 3490 if (Bits == SE_Char6) 3491 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3492 } else { 3493 Code = bitc::VST_CODE_ENTRY; 3494 if (Bits == SE_Char6) 3495 AbbrevToUse = VST_ENTRY_6_ABBREV; 3496 else if (Bits == SE_Fixed7) 3497 AbbrevToUse = VST_ENTRY_7_ABBREV; 3498 } 3499 3500 for (const auto P : Name.getKey()) 3501 NameVals.push_back((unsigned char)P); 3502 3503 // Emit the finished record. 3504 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3505 NameVals.clear(); 3506 } 3507 3508 Stream.ExitBlock(); 3509 } 3510 3511 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3512 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3513 unsigned Code; 3514 if (isa<BasicBlock>(Order.V)) 3515 Code = bitc::USELIST_CODE_BB; 3516 else 3517 Code = bitc::USELIST_CODE_DEFAULT; 3518 3519 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3520 Record.push_back(VE.getValueID(Order.V)); 3521 Stream.EmitRecord(Code, Record); 3522 } 3523 3524 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3525 assert(VE.shouldPreserveUseListOrder() && 3526 "Expected to be preserving use-list order"); 3527 3528 auto hasMore = [&]() { 3529 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3530 }; 3531 if (!hasMore()) 3532 // Nothing to do. 3533 return; 3534 3535 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3536 while (hasMore()) { 3537 writeUseList(std::move(VE.UseListOrders.back())); 3538 VE.UseListOrders.pop_back(); 3539 } 3540 Stream.ExitBlock(); 3541 } 3542 3543 /// Emit a function body to the module stream. 3544 void ModuleBitcodeWriter::writeFunction( 3545 const Function &F, 3546 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3547 // Save the bitcode index of the start of this function block for recording 3548 // in the VST. 3549 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3550 3551 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3552 VE.incorporateFunction(F); 3553 3554 SmallVector<unsigned, 64> Vals; 3555 3556 // Emit the number of basic blocks, so the reader can create them ahead of 3557 // time. 3558 Vals.push_back(VE.getBasicBlocks().size()); 3559 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3560 Vals.clear(); 3561 3562 // If there are function-local constants, emit them now. 3563 unsigned CstStart, CstEnd; 3564 VE.getFunctionConstantRange(CstStart, CstEnd); 3565 writeConstants(CstStart, CstEnd, false); 3566 3567 // If there is function-local metadata, emit it now. 3568 writeFunctionMetadata(F); 3569 3570 // Keep a running idea of what the instruction ID is. 3571 unsigned InstID = CstEnd; 3572 3573 bool NeedsMetadataAttachment = F.hasMetadata(); 3574 3575 DILocation *LastDL = nullptr; 3576 SmallSetVector<Function *, 4> BlockAddressUsers; 3577 3578 // Finally, emit all the instructions, in order. 3579 for (const BasicBlock &BB : F) { 3580 for (const Instruction &I : BB) { 3581 writeInstruction(I, InstID, Vals); 3582 3583 if (!I.getType()->isVoidTy()) 3584 ++InstID; 3585 3586 // If the instruction has metadata, write a metadata attachment later. 3587 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3588 3589 // If the instruction has a debug location, emit it. 3590 if (DILocation *DL = I.getDebugLoc()) { 3591 if (DL == LastDL) { 3592 // Just repeat the same debug loc as last time. 3593 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3594 } else { 3595 Vals.push_back(DL->getLine()); 3596 Vals.push_back(DL->getColumn()); 3597 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3598 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3599 Vals.push_back(DL->isImplicitCode()); 3600 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3601 Vals.clear(); 3602 LastDL = DL; 3603 } 3604 } 3605 3606 // If the instruction has DbgRecords attached to it, emit them. Note that 3607 // they come after the instruction so that it's easy to attach them again 3608 // when reading the bitcode, even though conceptually the debug locations 3609 // start "before" the instruction. 3610 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { 3611 /// Try to push the value only (unwrapped), otherwise push the 3612 /// metadata wrapped value. Returns true if the value was pushed 3613 /// without the ValueAsMetadata wrapper. 3614 auto PushValueOrMetadata = [&Vals, InstID, 3615 this](Metadata *RawLocation) { 3616 assert(RawLocation && 3617 "RawLocation unexpectedly null in DbgVariableRecord"); 3618 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) { 3619 SmallVector<unsigned, 2> ValAndType; 3620 // If the value is a fwd-ref the type is also pushed. We don't 3621 // want the type, so fwd-refs are kept wrapped (pushValueAndType 3622 // returns false if the value is pushed without type). 3623 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { 3624 Vals.push_back(ValAndType[0]); 3625 return true; 3626 } 3627 } 3628 // The metadata is a DIArgList, or ValueAsMetadata wrapping a 3629 // fwd-ref. Push the metadata ID. 3630 Vals.push_back(VE.getMetadataID(RawLocation)); 3631 return false; 3632 }; 3633 3634 // Write out non-instruction debug information attached to this 3635 // instruction. Write it after the instruction so that it's easy to 3636 // re-attach to the instruction reading the records in. 3637 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { 3638 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3639 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc())); 3640 Vals.push_back(VE.getMetadataID(DLR->getLabel())); 3641 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); 3642 Vals.clear(); 3643 continue; 3644 } 3645 3646 // First 3 fields are common to all kinds: 3647 // DILocation, DILocalVariable, DIExpression 3648 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 3649 // ..., LocationMetadata 3650 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 3651 // ..., Value 3652 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 3653 // ..., LocationMetadata 3654 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 3655 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 3656 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3657 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); 3658 Vals.push_back(VE.getMetadataID(DVR.getVariable())); 3659 Vals.push_back(VE.getMetadataID(DVR.getExpression())); 3660 if (DVR.isDbgValue()) { 3661 if (PushValueOrMetadata(DVR.getRawLocation())) 3662 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, 3663 FUNCTION_DEBUG_RECORD_VALUE_ABBREV); 3664 else 3665 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); 3666 } else if (DVR.isDbgDeclare()) { 3667 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3668 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); 3669 } else { 3670 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); 3671 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3672 Vals.push_back(VE.getMetadataID(DVR.getAssignID())); 3673 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); 3674 Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); 3675 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); 3676 } 3677 Vals.clear(); 3678 } 3679 } 3680 } 3681 3682 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3683 SmallVector<Value *> Worklist{BA}; 3684 SmallPtrSet<Value *, 8> Visited{BA}; 3685 while (!Worklist.empty()) { 3686 Value *V = Worklist.pop_back_val(); 3687 for (User *U : V->users()) { 3688 if (auto *I = dyn_cast<Instruction>(U)) { 3689 Function *P = I->getFunction(); 3690 if (P != &F) 3691 BlockAddressUsers.insert(P); 3692 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3693 Visited.insert(U).second) 3694 Worklist.push_back(U); 3695 } 3696 } 3697 } 3698 } 3699 3700 if (!BlockAddressUsers.empty()) { 3701 Vals.resize(BlockAddressUsers.size()); 3702 for (auto I : llvm::enumerate(BlockAddressUsers)) 3703 Vals[I.index()] = VE.getValueID(I.value()); 3704 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3705 Vals.clear(); 3706 } 3707 3708 // Emit names for all the instructions etc. 3709 if (auto *Symtab = F.getValueSymbolTable()) 3710 writeFunctionLevelValueSymbolTable(*Symtab); 3711 3712 if (NeedsMetadataAttachment) 3713 writeFunctionMetadataAttachment(F); 3714 if (VE.shouldPreserveUseListOrder()) 3715 writeUseListBlock(&F); 3716 VE.purgeFunction(); 3717 Stream.ExitBlock(); 3718 } 3719 3720 // Emit blockinfo, which defines the standard abbreviations etc. 3721 void ModuleBitcodeWriter::writeBlockInfo() { 3722 // We only want to emit block info records for blocks that have multiple 3723 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3724 // Other blocks can define their abbrevs inline. 3725 Stream.EnterBlockInfoBlock(); 3726 3727 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3728 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3733 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3734 VST_ENTRY_8_ABBREV) 3735 llvm_unreachable("Unexpected abbrev ordering!"); 3736 } 3737 3738 { // 7-bit fixed width VST_CODE_ENTRY strings. 3739 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3740 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3744 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3745 VST_ENTRY_7_ABBREV) 3746 llvm_unreachable("Unexpected abbrev ordering!"); 3747 } 3748 { // 6-bit char6 VST_CODE_ENTRY strings. 3749 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3750 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3754 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3755 VST_ENTRY_6_ABBREV) 3756 llvm_unreachable("Unexpected abbrev ordering!"); 3757 } 3758 { // 6-bit char6 VST_CODE_BBENTRY strings. 3759 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3760 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3764 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3765 VST_BBENTRY_6_ABBREV) 3766 llvm_unreachable("Unexpected abbrev ordering!"); 3767 } 3768 3769 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3770 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3771 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3773 VE.computeBitsRequiredForTypeIndices())); 3774 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3775 CONSTANTS_SETTYPE_ABBREV) 3776 llvm_unreachable("Unexpected abbrev ordering!"); 3777 } 3778 3779 { // INTEGER abbrev for CONSTANTS_BLOCK. 3780 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3781 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3783 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3784 CONSTANTS_INTEGER_ABBREV) 3785 llvm_unreachable("Unexpected abbrev ordering!"); 3786 } 3787 3788 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3789 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3790 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3793 VE.computeBitsRequiredForTypeIndices())); 3794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3795 3796 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3797 CONSTANTS_CE_CAST_Abbrev) 3798 llvm_unreachable("Unexpected abbrev ordering!"); 3799 } 3800 { // NULL abbrev for CONSTANTS_BLOCK. 3801 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3802 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3803 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3804 CONSTANTS_NULL_Abbrev) 3805 llvm_unreachable("Unexpected abbrev ordering!"); 3806 } 3807 3808 // FIXME: This should only use space for first class types! 3809 3810 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3811 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3812 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3815 VE.computeBitsRequiredForTypeIndices())); 3816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3818 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3819 FUNCTION_INST_LOAD_ABBREV) 3820 llvm_unreachable("Unexpected abbrev ordering!"); 3821 } 3822 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3823 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3824 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3827 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3828 FUNCTION_INST_UNOP_ABBREV) 3829 llvm_unreachable("Unexpected abbrev ordering!"); 3830 } 3831 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3832 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3833 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3837 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3838 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3839 llvm_unreachable("Unexpected abbrev ordering!"); 3840 } 3841 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3842 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3843 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3847 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3848 FUNCTION_INST_BINOP_ABBREV) 3849 llvm_unreachable("Unexpected abbrev ordering!"); 3850 } 3851 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3852 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3853 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3858 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3859 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3860 llvm_unreachable("Unexpected abbrev ordering!"); 3861 } 3862 { // INST_CAST abbrev for FUNCTION_BLOCK. 3863 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3864 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3867 VE.computeBitsRequiredForTypeIndices())); 3868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3869 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3870 FUNCTION_INST_CAST_ABBREV) 3871 llvm_unreachable("Unexpected abbrev ordering!"); 3872 } 3873 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3874 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3875 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3878 VE.computeBitsRequiredForTypeIndices())); 3879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3881 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3882 FUNCTION_INST_CAST_FLAGS_ABBREV) 3883 llvm_unreachable("Unexpected abbrev ordering!"); 3884 } 3885 3886 { // INST_RET abbrev for FUNCTION_BLOCK. 3887 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3888 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3889 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3890 FUNCTION_INST_RET_VOID_ABBREV) 3891 llvm_unreachable("Unexpected abbrev ordering!"); 3892 } 3893 { // INST_RET abbrev for FUNCTION_BLOCK. 3894 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3895 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3897 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3898 FUNCTION_INST_RET_VAL_ABBREV) 3899 llvm_unreachable("Unexpected abbrev ordering!"); 3900 } 3901 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3902 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3903 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3904 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3905 FUNCTION_INST_UNREACHABLE_ABBREV) 3906 llvm_unreachable("Unexpected abbrev ordering!"); 3907 } 3908 { 3909 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3910 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3913 Log2_32_Ceil(VE.getTypes().size() + 1))); 3914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3916 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3917 FUNCTION_INST_GEP_ABBREV) 3918 llvm_unreachable("Unexpected abbrev ordering!"); 3919 } 3920 { 3921 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3922 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc 3924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var 3925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr 3926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val 3927 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3928 FUNCTION_DEBUG_RECORD_VALUE_ABBREV) 3929 llvm_unreachable("Unexpected abbrev ordering! 1"); 3930 } 3931 Stream.ExitBlock(); 3932 } 3933 3934 /// Write the module path strings, currently only used when generating 3935 /// a combined index file. 3936 void IndexBitcodeWriter::writeModStrings() { 3937 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3938 3939 // TODO: See which abbrev sizes we actually need to emit 3940 3941 // 8-bit fixed-width MST_ENTRY strings. 3942 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3943 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3947 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3948 3949 // 7-bit fixed width MST_ENTRY strings. 3950 Abbv = std::make_shared<BitCodeAbbrev>(); 3951 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3955 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3956 3957 // 6-bit char6 MST_ENTRY strings. 3958 Abbv = std::make_shared<BitCodeAbbrev>(); 3959 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3963 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3964 3965 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3966 Abbv = std::make_shared<BitCodeAbbrev>(); 3967 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3973 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3974 3975 SmallVector<unsigned, 64> Vals; 3976 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3977 StringRef Key = MPSE.getKey(); 3978 const auto &Hash = MPSE.getValue(); 3979 StringEncoding Bits = getStringEncoding(Key); 3980 unsigned AbbrevToUse = Abbrev8Bit; 3981 if (Bits == SE_Char6) 3982 AbbrevToUse = Abbrev6Bit; 3983 else if (Bits == SE_Fixed7) 3984 AbbrevToUse = Abbrev7Bit; 3985 3986 auto ModuleId = ModuleIdMap.size(); 3987 ModuleIdMap[Key] = ModuleId; 3988 Vals.push_back(ModuleId); 3989 Vals.append(Key.begin(), Key.end()); 3990 3991 // Emit the finished record. 3992 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3993 3994 // Emit an optional hash for the module now 3995 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3996 Vals.assign(Hash.begin(), Hash.end()); 3997 // Emit the hash record. 3998 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3999 } 4000 4001 Vals.clear(); 4002 }); 4003 Stream.ExitBlock(); 4004 } 4005 4006 /// Write the function type metadata related records that need to appear before 4007 /// a function summary entry (whether per-module or combined). 4008 template <typename Fn> 4009 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 4010 FunctionSummary *FS, 4011 Fn GetValueID) { 4012 if (!FS->type_tests().empty()) 4013 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 4014 4015 SmallVector<uint64_t, 64> Record; 4016 4017 auto WriteVFuncIdVec = [&](uint64_t Ty, 4018 ArrayRef<FunctionSummary::VFuncId> VFs) { 4019 if (VFs.empty()) 4020 return; 4021 Record.clear(); 4022 for (auto &VF : VFs) { 4023 Record.push_back(VF.GUID); 4024 Record.push_back(VF.Offset); 4025 } 4026 Stream.EmitRecord(Ty, Record); 4027 }; 4028 4029 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 4030 FS->type_test_assume_vcalls()); 4031 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 4032 FS->type_checked_load_vcalls()); 4033 4034 auto WriteConstVCallVec = [&](uint64_t Ty, 4035 ArrayRef<FunctionSummary::ConstVCall> VCs) { 4036 for (auto &VC : VCs) { 4037 Record.clear(); 4038 Record.push_back(VC.VFunc.GUID); 4039 Record.push_back(VC.VFunc.Offset); 4040 llvm::append_range(Record, VC.Args); 4041 Stream.EmitRecord(Ty, Record); 4042 } 4043 }; 4044 4045 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 4046 FS->type_test_assume_const_vcalls()); 4047 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 4048 FS->type_checked_load_const_vcalls()); 4049 4050 auto WriteRange = [&](ConstantRange Range) { 4051 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 4052 assert(Range.getLower().getNumWords() == 1); 4053 assert(Range.getUpper().getNumWords() == 1); 4054 emitSignedInt64(Record, *Range.getLower().getRawData()); 4055 emitSignedInt64(Record, *Range.getUpper().getRawData()); 4056 }; 4057 4058 if (!FS->paramAccesses().empty()) { 4059 Record.clear(); 4060 for (auto &Arg : FS->paramAccesses()) { 4061 size_t UndoSize = Record.size(); 4062 Record.push_back(Arg.ParamNo); 4063 WriteRange(Arg.Use); 4064 Record.push_back(Arg.Calls.size()); 4065 for (auto &Call : Arg.Calls) { 4066 Record.push_back(Call.ParamNo); 4067 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 4068 if (!ValueID) { 4069 // If ValueID is unknown we can't drop just this call, we must drop 4070 // entire parameter. 4071 Record.resize(UndoSize); 4072 break; 4073 } 4074 Record.push_back(*ValueID); 4075 WriteRange(Call.Offsets); 4076 } 4077 } 4078 if (!Record.empty()) 4079 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 4080 } 4081 } 4082 4083 /// Collect type IDs from type tests used by function. 4084 static void 4085 getReferencedTypeIds(FunctionSummary *FS, 4086 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 4087 if (!FS->type_tests().empty()) 4088 for (auto &TT : FS->type_tests()) 4089 ReferencedTypeIds.insert(TT); 4090 4091 auto GetReferencedTypesFromVFuncIdVec = 4092 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 4093 for (auto &VF : VFs) 4094 ReferencedTypeIds.insert(VF.GUID); 4095 }; 4096 4097 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 4098 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 4099 4100 auto GetReferencedTypesFromConstVCallVec = 4101 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 4102 for (auto &VC : VCs) 4103 ReferencedTypeIds.insert(VC.VFunc.GUID); 4104 }; 4105 4106 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 4107 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 4108 } 4109 4110 static void writeWholeProgramDevirtResolutionByArg( 4111 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 4112 const WholeProgramDevirtResolution::ByArg &ByArg) { 4113 NameVals.push_back(args.size()); 4114 llvm::append_range(NameVals, args); 4115 4116 NameVals.push_back(ByArg.TheKind); 4117 NameVals.push_back(ByArg.Info); 4118 NameVals.push_back(ByArg.Byte); 4119 NameVals.push_back(ByArg.Bit); 4120 } 4121 4122 static void writeWholeProgramDevirtResolution( 4123 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4124 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 4125 NameVals.push_back(Id); 4126 4127 NameVals.push_back(Wpd.TheKind); 4128 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 4129 NameVals.push_back(Wpd.SingleImplName.size()); 4130 4131 NameVals.push_back(Wpd.ResByArg.size()); 4132 for (auto &A : Wpd.ResByArg) 4133 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 4134 } 4135 4136 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 4137 StringTableBuilder &StrtabBuilder, 4138 const std::string &Id, 4139 const TypeIdSummary &Summary) { 4140 NameVals.push_back(StrtabBuilder.add(Id)); 4141 NameVals.push_back(Id.size()); 4142 4143 NameVals.push_back(Summary.TTRes.TheKind); 4144 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 4145 NameVals.push_back(Summary.TTRes.AlignLog2); 4146 NameVals.push_back(Summary.TTRes.SizeM1); 4147 NameVals.push_back(Summary.TTRes.BitMask); 4148 NameVals.push_back(Summary.TTRes.InlineBits); 4149 4150 for (auto &W : Summary.WPDRes) 4151 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 4152 W.second); 4153 } 4154 4155 static void writeTypeIdCompatibleVtableSummaryRecord( 4156 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4157 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 4158 ValueEnumerator &VE) { 4159 NameVals.push_back(StrtabBuilder.add(Id)); 4160 NameVals.push_back(Id.size()); 4161 4162 for (auto &P : Summary) { 4163 NameVals.push_back(P.AddressPointOffset); 4164 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4165 } 4166 } 4167 4168 static void writeFunctionHeapProfileRecords( 4169 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4170 unsigned AllocAbbrev, bool PerModule, 4171 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4172 std::function<unsigned(unsigned)> GetStackIndex) { 4173 SmallVector<uint64_t> Record; 4174 4175 for (auto &CI : FS->callsites()) { 4176 Record.clear(); 4177 // Per module callsite clones should always have a single entry of 4178 // value 0. 4179 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4180 Record.push_back(GetValueID(CI.Callee)); 4181 if (!PerModule) { 4182 Record.push_back(CI.StackIdIndices.size()); 4183 Record.push_back(CI.Clones.size()); 4184 } 4185 for (auto Id : CI.StackIdIndices) 4186 Record.push_back(GetStackIndex(Id)); 4187 if (!PerModule) { 4188 for (auto V : CI.Clones) 4189 Record.push_back(V); 4190 } 4191 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4192 : bitc::FS_COMBINED_CALLSITE_INFO, 4193 Record, CallsiteAbbrev); 4194 } 4195 4196 for (auto &AI : FS->allocs()) { 4197 Record.clear(); 4198 // Per module alloc versions should always have a single entry of 4199 // value 0. 4200 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4201 Record.push_back(AI.MIBs.size()); 4202 if (!PerModule) 4203 Record.push_back(AI.Versions.size()); 4204 for (auto &MIB : AI.MIBs) { 4205 Record.push_back((uint8_t)MIB.AllocType); 4206 Record.push_back(MIB.StackIdIndices.size()); 4207 for (auto Id : MIB.StackIdIndices) 4208 Record.push_back(GetStackIndex(Id)); 4209 } 4210 if (!PerModule) { 4211 for (auto V : AI.Versions) 4212 Record.push_back(V); 4213 } 4214 assert(AI.TotalSizes.empty() || AI.TotalSizes.size() == AI.MIBs.size()); 4215 if (!AI.TotalSizes.empty()) { 4216 for (auto Size : AI.TotalSizes) 4217 Record.push_back(Size); 4218 } 4219 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4220 : bitc::FS_COMBINED_ALLOC_INFO, 4221 Record, AllocAbbrev); 4222 } 4223 } 4224 4225 // Helper to emit a single function summary record. 4226 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4227 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4228 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4229 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4230 unsigned AllocAbbrev, const Function &F) { 4231 NameVals.push_back(ValueID); 4232 4233 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4234 4235 writeFunctionTypeMetadataRecords( 4236 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4237 return {VE.getValueID(VI.getValue())}; 4238 }); 4239 4240 writeFunctionHeapProfileRecords( 4241 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4242 /*PerModule*/ true, 4243 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4244 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4245 4246 auto SpecialRefCnts = FS->specialRefCounts(); 4247 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4248 NameVals.push_back(FS->instCount()); 4249 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4250 NameVals.push_back(FS->refs().size()); 4251 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4252 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4253 4254 for (auto &RI : FS->refs()) 4255 NameVals.push_back(getValueId(RI)); 4256 4257 const bool UseRelBFRecord = 4258 WriteRelBFToSummary && !F.hasProfileData() && 4259 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4260 for (auto &ECI : FS->calls()) { 4261 NameVals.push_back(getValueId(ECI.first)); 4262 if (UseRelBFRecord) 4263 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4264 else 4265 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4266 } 4267 4268 unsigned FSAbbrev = 4269 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4270 unsigned Code = 4271 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4272 4273 // Emit the finished record. 4274 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4275 NameVals.clear(); 4276 } 4277 4278 // Collect the global value references in the given variable's initializer, 4279 // and emit them in a summary record. 4280 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4281 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4282 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4283 auto VI = Index->getValueInfo(V.getGUID()); 4284 if (!VI || VI.getSummaryList().empty()) { 4285 // Only declarations should not have a summary (a declaration might however 4286 // have a summary if the def was in module level asm). 4287 assert(V.isDeclaration()); 4288 return; 4289 } 4290 auto *Summary = VI.getSummaryList()[0].get(); 4291 NameVals.push_back(VE.getValueID(&V)); 4292 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4293 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4294 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4295 4296 auto VTableFuncs = VS->vTableFuncs(); 4297 if (!VTableFuncs.empty()) 4298 NameVals.push_back(VS->refs().size()); 4299 4300 unsigned SizeBeforeRefs = NameVals.size(); 4301 for (auto &RI : VS->refs()) 4302 NameVals.push_back(VE.getValueID(RI.getValue())); 4303 // Sort the refs for determinism output, the vector returned by FS->refs() has 4304 // been initialized from a DenseSet. 4305 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4306 4307 if (VTableFuncs.empty()) 4308 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4309 FSModRefsAbbrev); 4310 else { 4311 // VTableFuncs pairs should already be sorted by offset. 4312 for (auto &P : VTableFuncs) { 4313 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4314 NameVals.push_back(P.VTableOffset); 4315 } 4316 4317 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4318 FSModVTableRefsAbbrev); 4319 } 4320 NameVals.clear(); 4321 } 4322 4323 /// Emit the per-module summary section alongside the rest of 4324 /// the module's bitcode. 4325 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4326 // By default we compile with ThinLTO if the module has a summary, but the 4327 // client can request full LTO with a module flag. 4328 bool IsThinLTO = true; 4329 if (auto *MD = 4330 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4331 IsThinLTO = MD->getZExtValue(); 4332 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4333 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4334 4); 4335 4336 Stream.EmitRecord( 4337 bitc::FS_VERSION, 4338 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4339 4340 // Write the index flags. 4341 uint64_t Flags = 0; 4342 // Bits 1-3 are set only in the combined index, skip them. 4343 if (Index->enableSplitLTOUnit()) 4344 Flags |= 0x8; 4345 if (Index->hasUnifiedLTO()) 4346 Flags |= 0x200; 4347 4348 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4349 4350 if (Index->begin() == Index->end()) { 4351 Stream.ExitBlock(); 4352 return; 4353 } 4354 4355 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4356 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4358 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4361 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4362 4363 for (const auto &GVI : valueIds()) { 4364 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4365 ArrayRef<uint32_t>{GVI.second, 4366 static_cast<uint32_t>(GVI.first >> 32), 4367 static_cast<uint32_t>(GVI.first)}, 4368 ValueGuidAbbrev); 4369 } 4370 4371 if (!Index->stackIds().empty()) { 4372 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4373 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4374 // numids x stackid 4375 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4376 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4377 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4378 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4379 } 4380 4381 // Abbrev for FS_PERMODULE_PROFILE. 4382 Abbv = std::make_shared<BitCodeAbbrev>(); 4383 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4391 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4394 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4395 4396 // Abbrev for FS_PERMODULE_RELBF. 4397 Abbv = std::make_shared<BitCodeAbbrev>(); 4398 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4406 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4409 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4410 4411 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4412 Abbv = std::make_shared<BitCodeAbbrev>(); 4413 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4418 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4419 4420 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4421 Abbv = std::make_shared<BitCodeAbbrev>(); 4422 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4426 // numrefs x valueid, n x (valueid , offset) 4427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4429 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4430 4431 // Abbrev for FS_ALIAS. 4432 Abbv = std::make_shared<BitCodeAbbrev>(); 4433 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4437 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4438 4439 // Abbrev for FS_TYPE_ID_METADATA 4440 Abbv = std::make_shared<BitCodeAbbrev>(); 4441 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4444 // n x (valueid , offset) 4445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4447 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4448 4449 Abbv = std::make_shared<BitCodeAbbrev>(); 4450 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4452 // n x stackidindex 4453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4455 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4456 4457 Abbv = std::make_shared<BitCodeAbbrev>(); 4458 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4460 // n x (alloc type, numstackids, numstackids x stackidindex) 4461 // optional: nummib x total size 4462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4464 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4465 4466 SmallVector<uint64_t, 64> NameVals; 4467 // Iterate over the list of functions instead of the Index to 4468 // ensure the ordering is stable. 4469 for (const Function &F : M) { 4470 // Summary emission does not support anonymous functions, they have to 4471 // renamed using the anonymous function renaming pass. 4472 if (!F.hasName()) 4473 report_fatal_error("Unexpected anonymous function when writing summary"); 4474 4475 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4476 if (!VI || VI.getSummaryList().empty()) { 4477 // Only declarations should not have a summary (a declaration might 4478 // however have a summary if the def was in module level asm). 4479 assert(F.isDeclaration()); 4480 continue; 4481 } 4482 auto *Summary = VI.getSummaryList()[0].get(); 4483 writePerModuleFunctionSummaryRecord( 4484 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4485 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F); 4486 } 4487 4488 // Capture references from GlobalVariable initializers, which are outside 4489 // of a function scope. 4490 for (const GlobalVariable &G : M.globals()) 4491 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4492 FSModVTableRefsAbbrev); 4493 4494 for (const GlobalAlias &A : M.aliases()) { 4495 auto *Aliasee = A.getAliaseeObject(); 4496 // Skip ifunc and nameless functions which don't have an entry in the 4497 // summary. 4498 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4499 continue; 4500 auto AliasId = VE.getValueID(&A); 4501 auto AliaseeId = VE.getValueID(Aliasee); 4502 NameVals.push_back(AliasId); 4503 auto *Summary = Index->getGlobalValueSummary(A); 4504 AliasSummary *AS = cast<AliasSummary>(Summary); 4505 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4506 NameVals.push_back(AliaseeId); 4507 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4508 NameVals.clear(); 4509 } 4510 4511 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4512 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4513 S.second, VE); 4514 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4515 TypeIdCompatibleVtableAbbrev); 4516 NameVals.clear(); 4517 } 4518 4519 if (Index->getBlockCount()) 4520 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4521 ArrayRef<uint64_t>{Index->getBlockCount()}); 4522 4523 Stream.ExitBlock(); 4524 } 4525 4526 /// Emit the combined summary section into the combined index file. 4527 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4528 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4529 Stream.EmitRecord( 4530 bitc::FS_VERSION, 4531 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4532 4533 // Write the index flags. 4534 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4535 4536 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4537 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4539 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4542 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4543 4544 for (const auto &GVI : valueIds()) { 4545 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4546 ArrayRef<uint32_t>{GVI.second, 4547 static_cast<uint32_t>(GVI.first >> 32), 4548 static_cast<uint32_t>(GVI.first)}, 4549 ValueGuidAbbrev); 4550 } 4551 4552 // Write the stack ids used by this index, which will be a subset of those in 4553 // the full index in the case of distributed indexes. 4554 if (!StackIds.empty()) { 4555 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4556 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4557 // numids x stackid 4558 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4559 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4560 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4561 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4562 } 4563 4564 // Abbrev for FS_COMBINED_PROFILE. 4565 Abbv = std::make_shared<BitCodeAbbrev>(); 4566 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4576 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4579 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4580 4581 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4582 Abbv = std::make_shared<BitCodeAbbrev>(); 4583 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4589 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4590 4591 // Abbrev for FS_COMBINED_ALIAS. 4592 Abbv = std::make_shared<BitCodeAbbrev>(); 4593 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4598 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4599 4600 Abbv = std::make_shared<BitCodeAbbrev>(); 4601 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4605 // numstackindices x stackidindex, numver x version 4606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4608 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4609 4610 Abbv = std::make_shared<BitCodeAbbrev>(); 4611 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4614 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4615 // numver x version 4616 // optional: nummib x total size 4617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4619 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4620 4621 auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool { 4622 if (DecSummaries == nullptr) 4623 return false; 4624 return DecSummaries->count(GVS); 4625 }; 4626 4627 // The aliases are emitted as a post-pass, and will point to the value 4628 // id of the aliasee. Save them in a vector for post-processing. 4629 SmallVector<AliasSummary *, 64> Aliases; 4630 4631 // Save the value id for each summary for alias emission. 4632 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4633 4634 SmallVector<uint64_t, 64> NameVals; 4635 4636 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4637 // with the type ids referenced by this index file. 4638 std::set<GlobalValue::GUID> ReferencedTypeIds; 4639 4640 // For local linkage, we also emit the original name separately 4641 // immediately after the record. 4642 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4643 // We don't need to emit the original name if we are writing the index for 4644 // distributed backends (in which case ModuleToSummariesForIndex is 4645 // non-null). The original name is only needed during the thin link, since 4646 // for SamplePGO the indirect call targets for local functions have 4647 // have the original name annotated in profile. 4648 // Continue to emit it when writing out the entire combined index, which is 4649 // used in testing the thin link via llvm-lto. 4650 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4651 return; 4652 NameVals.push_back(S.getOriginalName()); 4653 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4654 NameVals.clear(); 4655 }; 4656 4657 DenseSet<GlobalValue::GUID> DefOrUseGUIDs; 4658 forEachSummary([&](GVInfo I, bool IsAliasee) { 4659 GlobalValueSummary *S = I.second; 4660 assert(S); 4661 DefOrUseGUIDs.insert(I.first); 4662 for (const ValueInfo &VI : S->refs()) 4663 DefOrUseGUIDs.insert(VI.getGUID()); 4664 4665 auto ValueId = getValueId(I.first); 4666 assert(ValueId); 4667 SummaryToValueIdMap[S] = *ValueId; 4668 4669 // If this is invoked for an aliasee, we want to record the above 4670 // mapping, but then not emit a summary entry (if the aliasee is 4671 // to be imported, we will invoke this separately with IsAliasee=false). 4672 if (IsAliasee) 4673 return; 4674 4675 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4676 // Will process aliases as a post-pass because the reader wants all 4677 // global to be loaded first. 4678 Aliases.push_back(AS); 4679 return; 4680 } 4681 4682 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4683 NameVals.push_back(*ValueId); 4684 assert(ModuleIdMap.count(VS->modulePath())); 4685 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4686 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4687 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4688 for (auto &RI : VS->refs()) { 4689 auto RefValueId = getValueId(RI.getGUID()); 4690 if (!RefValueId) 4691 continue; 4692 NameVals.push_back(*RefValueId); 4693 } 4694 4695 // Emit the finished record. 4696 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4697 FSModRefsAbbrev); 4698 NameVals.clear(); 4699 MaybeEmitOriginalName(*S); 4700 return; 4701 } 4702 4703 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4704 if (!VI) 4705 return std::nullopt; 4706 return getValueId(VI.getGUID()); 4707 }; 4708 4709 auto *FS = cast<FunctionSummary>(S); 4710 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4711 getReferencedTypeIds(FS, ReferencedTypeIds); 4712 4713 writeFunctionHeapProfileRecords( 4714 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4715 /*PerModule*/ false, 4716 /*GetValueId*/ 4717 [&](const ValueInfo &VI) -> unsigned { 4718 std::optional<unsigned> ValueID = GetValueId(VI); 4719 // This can happen in shared index files for distributed ThinLTO if 4720 // the callee function summary is not included. Record 0 which we 4721 // will have to deal with conservatively when doing any kind of 4722 // validation in the ThinLTO backends. 4723 if (!ValueID) 4724 return 0; 4725 return *ValueID; 4726 }, 4727 /*GetStackIndex*/ 4728 [&](unsigned I) { 4729 // Get the corresponding index into the list of StackIds actually 4730 // being written for this combined index (which may be a subset in 4731 // the case of distributed indexes). 4732 assert(StackIdIndicesToIndex.contains(I)); 4733 return StackIdIndicesToIndex[I]; 4734 }); 4735 4736 NameVals.push_back(*ValueId); 4737 assert(ModuleIdMap.count(FS->modulePath())); 4738 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4739 NameVals.push_back( 4740 getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS))); 4741 NameVals.push_back(FS->instCount()); 4742 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4743 NameVals.push_back(FS->entryCount()); 4744 4745 // Fill in below 4746 NameVals.push_back(0); // numrefs 4747 NameVals.push_back(0); // rorefcnt 4748 NameVals.push_back(0); // worefcnt 4749 4750 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4751 for (auto &RI : FS->refs()) { 4752 auto RefValueId = getValueId(RI.getGUID()); 4753 if (!RefValueId) 4754 continue; 4755 NameVals.push_back(*RefValueId); 4756 if (RI.isReadOnly()) 4757 RORefCnt++; 4758 else if (RI.isWriteOnly()) 4759 WORefCnt++; 4760 Count++; 4761 } 4762 NameVals[6] = Count; 4763 NameVals[7] = RORefCnt; 4764 NameVals[8] = WORefCnt; 4765 4766 for (auto &EI : FS->calls()) { 4767 // If this GUID doesn't have a value id, it doesn't have a function 4768 // summary and we don't need to record any calls to it. 4769 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4770 if (!CallValueId) 4771 continue; 4772 NameVals.push_back(*CallValueId); 4773 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4774 } 4775 4776 // Emit the finished record. 4777 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 4778 FSCallsProfileAbbrev); 4779 NameVals.clear(); 4780 MaybeEmitOriginalName(*S); 4781 }); 4782 4783 for (auto *AS : Aliases) { 4784 auto AliasValueId = SummaryToValueIdMap[AS]; 4785 assert(AliasValueId); 4786 NameVals.push_back(AliasValueId); 4787 assert(ModuleIdMap.count(AS->modulePath())); 4788 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4789 NameVals.push_back( 4790 getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS))); 4791 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4792 assert(AliaseeValueId); 4793 NameVals.push_back(AliaseeValueId); 4794 4795 // Emit the finished record. 4796 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4797 NameVals.clear(); 4798 MaybeEmitOriginalName(*AS); 4799 4800 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4801 getReferencedTypeIds(FS, ReferencedTypeIds); 4802 } 4803 4804 if (!Index.cfiFunctionDefs().empty()) { 4805 for (auto &S : Index.cfiFunctionDefs()) { 4806 if (DefOrUseGUIDs.contains( 4807 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4808 NameVals.push_back(StrtabBuilder.add(S)); 4809 NameVals.push_back(S.size()); 4810 } 4811 } 4812 if (!NameVals.empty()) { 4813 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4814 NameVals.clear(); 4815 } 4816 } 4817 4818 if (!Index.cfiFunctionDecls().empty()) { 4819 for (auto &S : Index.cfiFunctionDecls()) { 4820 if (DefOrUseGUIDs.contains( 4821 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4822 NameVals.push_back(StrtabBuilder.add(S)); 4823 NameVals.push_back(S.size()); 4824 } 4825 } 4826 if (!NameVals.empty()) { 4827 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4828 NameVals.clear(); 4829 } 4830 } 4831 4832 // Walk the GUIDs that were referenced, and write the 4833 // corresponding type id records. 4834 for (auto &T : ReferencedTypeIds) { 4835 auto TidIter = Index.typeIds().equal_range(T); 4836 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) { 4837 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, TypeIdPair.first, 4838 TypeIdPair.second); 4839 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4840 NameVals.clear(); 4841 } 4842 } 4843 4844 if (Index.getBlockCount()) 4845 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4846 ArrayRef<uint64_t>{Index.getBlockCount()}); 4847 4848 Stream.ExitBlock(); 4849 } 4850 4851 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4852 /// current llvm version, and a record for the epoch number. 4853 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4854 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4855 4856 // Write the "user readable" string identifying the bitcode producer 4857 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4858 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4861 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4862 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4863 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4864 4865 // Write the epoch version 4866 Abbv = std::make_shared<BitCodeAbbrev>(); 4867 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4869 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4870 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4871 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4872 Stream.ExitBlock(); 4873 } 4874 4875 void ModuleBitcodeWriter::writeModuleHash(StringRef View) { 4876 // Emit the module's hash. 4877 // MODULE_CODE_HASH: [5*i32] 4878 if (GenerateHash) { 4879 uint32_t Vals[5]; 4880 Hasher.update(ArrayRef<uint8_t>( 4881 reinterpret_cast<const uint8_t *>(View.data()), View.size())); 4882 std::array<uint8_t, 20> Hash = Hasher.result(); 4883 for (int Pos = 0; Pos < 20; Pos += 4) { 4884 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4885 } 4886 4887 // Emit the finished record. 4888 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4889 4890 if (ModHash) 4891 // Save the written hash value. 4892 llvm::copy(Vals, std::begin(*ModHash)); 4893 } 4894 } 4895 4896 void ModuleBitcodeWriter::write() { 4897 writeIdentificationBlock(Stream); 4898 4899 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4900 // We will want to write the module hash at this point. Block any flushing so 4901 // we can have access to the whole underlying data later. 4902 Stream.markAndBlockFlushing(); 4903 4904 writeModuleVersion(); 4905 4906 // Emit blockinfo, which defines the standard abbreviations etc. 4907 writeBlockInfo(); 4908 4909 // Emit information describing all of the types in the module. 4910 writeTypeTable(); 4911 4912 // Emit information about attribute groups. 4913 writeAttributeGroupTable(); 4914 4915 // Emit information about parameter attributes. 4916 writeAttributeTable(); 4917 4918 writeComdats(); 4919 4920 // Emit top-level description of module, including target triple, inline asm, 4921 // descriptors for global variables, and function prototype info. 4922 writeModuleInfo(); 4923 4924 // Emit constants. 4925 writeModuleConstants(); 4926 4927 // Emit metadata kind names. 4928 writeModuleMetadataKinds(); 4929 4930 // Emit metadata. 4931 writeModuleMetadata(); 4932 4933 // Emit module-level use-lists. 4934 if (VE.shouldPreserveUseListOrder()) 4935 writeUseListBlock(nullptr); 4936 4937 writeOperandBundleTags(); 4938 writeSyncScopeNames(); 4939 4940 // Emit function bodies. 4941 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4942 for (const Function &F : M) 4943 if (!F.isDeclaration()) 4944 writeFunction(F, FunctionToBitcodeIndex); 4945 4946 // Need to write after the above call to WriteFunction which populates 4947 // the summary information in the index. 4948 if (Index) 4949 writePerModuleGlobalValueSummary(); 4950 4951 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4952 4953 writeModuleHash(Stream.getMarkedBufferAndResumeFlushing()); 4954 4955 Stream.ExitBlock(); 4956 } 4957 4958 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4959 uint32_t &Position) { 4960 support::endian::write32le(&Buffer[Position], Value); 4961 Position += 4; 4962 } 4963 4964 /// If generating a bc file on darwin, we have to emit a 4965 /// header and trailer to make it compatible with the system archiver. To do 4966 /// this we emit the following header, and then emit a trailer that pads the 4967 /// file out to be a multiple of 16 bytes. 4968 /// 4969 /// struct bc_header { 4970 /// uint32_t Magic; // 0x0B17C0DE 4971 /// uint32_t Version; // Version, currently always 0. 4972 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4973 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4974 /// uint32_t CPUType; // CPU specifier. 4975 /// ... potentially more later ... 4976 /// }; 4977 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4978 const Triple &TT) { 4979 unsigned CPUType = ~0U; 4980 4981 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4982 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4983 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4984 // specific constants here because they are implicitly part of the Darwin ABI. 4985 enum { 4986 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4987 DARWIN_CPU_TYPE_X86 = 7, 4988 DARWIN_CPU_TYPE_ARM = 12, 4989 DARWIN_CPU_TYPE_POWERPC = 18 4990 }; 4991 4992 Triple::ArchType Arch = TT.getArch(); 4993 if (Arch == Triple::x86_64) 4994 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4995 else if (Arch == Triple::x86) 4996 CPUType = DARWIN_CPU_TYPE_X86; 4997 else if (Arch == Triple::ppc) 4998 CPUType = DARWIN_CPU_TYPE_POWERPC; 4999 else if (Arch == Triple::ppc64) 5000 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 5001 else if (Arch == Triple::arm || Arch == Triple::thumb) 5002 CPUType = DARWIN_CPU_TYPE_ARM; 5003 5004 // Traditional Bitcode starts after header. 5005 assert(Buffer.size() >= BWH_HeaderSize && 5006 "Expected header size to be reserved"); 5007 unsigned BCOffset = BWH_HeaderSize; 5008 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 5009 5010 // Write the magic and version. 5011 unsigned Position = 0; 5012 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 5013 writeInt32ToBuffer(0, Buffer, Position); // Version. 5014 writeInt32ToBuffer(BCOffset, Buffer, Position); 5015 writeInt32ToBuffer(BCSize, Buffer, Position); 5016 writeInt32ToBuffer(CPUType, Buffer, Position); 5017 5018 // If the file is not a multiple of 16 bytes, insert dummy padding. 5019 while (Buffer.size() & 15) 5020 Buffer.push_back(0); 5021 } 5022 5023 /// Helper to write the header common to all bitcode files. 5024 static void writeBitcodeHeader(BitstreamWriter &Stream) { 5025 // Emit the file header. 5026 Stream.Emit((unsigned)'B', 8); 5027 Stream.Emit((unsigned)'C', 8); 5028 Stream.Emit(0x0, 4); 5029 Stream.Emit(0xC, 4); 5030 Stream.Emit(0xE, 4); 5031 Stream.Emit(0xD, 4); 5032 } 5033 5034 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 5035 : Stream(new BitstreamWriter(Buffer)) { 5036 writeBitcodeHeader(*Stream); 5037 } 5038 5039 BitcodeWriter::BitcodeWriter(raw_ostream &FS) 5040 : Stream(new BitstreamWriter(FS, FlushThreshold)) { 5041 writeBitcodeHeader(*Stream); 5042 } 5043 5044 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 5045 5046 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 5047 Stream->EnterSubblock(Block, 3); 5048 5049 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5050 Abbv->Add(BitCodeAbbrevOp(Record)); 5051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 5052 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 5053 5054 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 5055 5056 Stream->ExitBlock(); 5057 } 5058 5059 void BitcodeWriter::writeSymtab() { 5060 assert(!WroteStrtab && !WroteSymtab); 5061 5062 // If any module has module-level inline asm, we will require a registered asm 5063 // parser for the target so that we can create an accurate symbol table for 5064 // the module. 5065 for (Module *M : Mods) { 5066 if (M->getModuleInlineAsm().empty()) 5067 continue; 5068 5069 std::string Err; 5070 const Triple TT(M->getTargetTriple()); 5071 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 5072 if (!T || !T->hasMCAsmParser()) 5073 return; 5074 } 5075 5076 WroteSymtab = true; 5077 SmallVector<char, 0> Symtab; 5078 // The irsymtab::build function may be unable to create a symbol table if the 5079 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 5080 // table is not required for correctness, but we still want to be able to 5081 // write malformed modules to bitcode files, so swallow the error. 5082 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 5083 consumeError(std::move(E)); 5084 return; 5085 } 5086 5087 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 5088 {Symtab.data(), Symtab.size()}); 5089 } 5090 5091 void BitcodeWriter::writeStrtab() { 5092 assert(!WroteStrtab); 5093 5094 std::vector<char> Strtab; 5095 StrtabBuilder.finalizeInOrder(); 5096 Strtab.resize(StrtabBuilder.getSize()); 5097 StrtabBuilder.write((uint8_t *)Strtab.data()); 5098 5099 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 5100 {Strtab.data(), Strtab.size()}); 5101 5102 WroteStrtab = true; 5103 } 5104 5105 void BitcodeWriter::copyStrtab(StringRef Strtab) { 5106 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 5107 WroteStrtab = true; 5108 } 5109 5110 void BitcodeWriter::writeModule(const Module &M, 5111 bool ShouldPreserveUseListOrder, 5112 const ModuleSummaryIndex *Index, 5113 bool GenerateHash, ModuleHash *ModHash) { 5114 assert(!WroteStrtab); 5115 5116 // The Mods vector is used by irsymtab::build, which requires non-const 5117 // Modules in case it needs to materialize metadata. But the bitcode writer 5118 // requires that the module is materialized, so we can cast to non-const here, 5119 // after checking that it is in fact materialized. 5120 assert(M.isMaterialized()); 5121 Mods.push_back(const_cast<Module *>(&M)); 5122 5123 ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream, 5124 ShouldPreserveUseListOrder, Index, 5125 GenerateHash, ModHash); 5126 ModuleWriter.write(); 5127 } 5128 5129 void BitcodeWriter::writeIndex( 5130 const ModuleSummaryIndex *Index, 5131 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5132 const GVSummaryPtrSet *DecSummaries) { 5133 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries, 5134 ModuleToSummariesForIndex); 5135 IndexWriter.write(); 5136 } 5137 5138 /// Write the specified module to the specified output stream. 5139 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 5140 bool ShouldPreserveUseListOrder, 5141 const ModuleSummaryIndex *Index, 5142 bool GenerateHash, ModuleHash *ModHash) { 5143 auto Write = [&](BitcodeWriter &Writer) { 5144 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 5145 ModHash); 5146 Writer.writeSymtab(); 5147 Writer.writeStrtab(); 5148 }; 5149 Triple TT(M.getTargetTriple()); 5150 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) { 5151 // If this is darwin or another generic macho target, reserve space for the 5152 // header. Note that the header is computed *after* the output is known, so 5153 // we currently explicitly use a buffer, write to it, and then subsequently 5154 // flush to Out. 5155 SmallVector<char, 0> Buffer; 5156 Buffer.reserve(256 * 1024); 5157 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 5158 BitcodeWriter Writer(Buffer); 5159 Write(Writer); 5160 emitDarwinBCHeaderAndTrailer(Buffer, TT); 5161 Out.write(Buffer.data(), Buffer.size()); 5162 } else { 5163 BitcodeWriter Writer(Out); 5164 Write(Writer); 5165 } 5166 } 5167 5168 void IndexBitcodeWriter::write() { 5169 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5170 5171 writeModuleVersion(); 5172 5173 // Write the module paths in the combined index. 5174 writeModStrings(); 5175 5176 // Write the summary combined index records. 5177 writeCombinedGlobalValueSummary(); 5178 5179 Stream.ExitBlock(); 5180 } 5181 5182 // Write the specified module summary index to the given raw output stream, 5183 // where it will be written in a new bitcode block. This is used when 5184 // writing the combined index file for ThinLTO. When writing a subset of the 5185 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 5186 void llvm::writeIndexToFile( 5187 const ModuleSummaryIndex &Index, raw_ostream &Out, 5188 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5189 const GVSummaryPtrSet *DecSummaries) { 5190 SmallVector<char, 0> Buffer; 5191 Buffer.reserve(256 * 1024); 5192 5193 BitcodeWriter Writer(Buffer); 5194 Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries); 5195 Writer.writeStrtab(); 5196 5197 Out.write((char *)&Buffer.front(), Buffer.size()); 5198 } 5199 5200 namespace { 5201 5202 /// Class to manage the bitcode writing for a thin link bitcode file. 5203 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5204 /// ModHash is for use in ThinLTO incremental build, generated while writing 5205 /// the module bitcode file. 5206 const ModuleHash *ModHash; 5207 5208 public: 5209 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5210 BitstreamWriter &Stream, 5211 const ModuleSummaryIndex &Index, 5212 const ModuleHash &ModHash) 5213 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5214 /*ShouldPreserveUseListOrder=*/false, &Index), 5215 ModHash(&ModHash) {} 5216 5217 void write(); 5218 5219 private: 5220 void writeSimplifiedModuleInfo(); 5221 }; 5222 5223 } // end anonymous namespace 5224 5225 // This function writes a simpilified module info for thin link bitcode file. 5226 // It only contains the source file name along with the name(the offset and 5227 // size in strtab) and linkage for global values. For the global value info 5228 // entry, in order to keep linkage at offset 5, there are three zeros used 5229 // as padding. 5230 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5231 SmallVector<unsigned, 64> Vals; 5232 // Emit the module's source file name. 5233 { 5234 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5235 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5236 if (Bits == SE_Char6) 5237 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5238 else if (Bits == SE_Fixed7) 5239 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5240 5241 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5242 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5243 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5245 Abbv->Add(AbbrevOpToUse); 5246 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5247 5248 for (const auto P : M.getSourceFileName()) 5249 Vals.push_back((unsigned char)P); 5250 5251 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5252 Vals.clear(); 5253 } 5254 5255 // Emit the global variable information. 5256 for (const GlobalVariable &GV : M.globals()) { 5257 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5258 Vals.push_back(StrtabBuilder.add(GV.getName())); 5259 Vals.push_back(GV.getName().size()); 5260 Vals.push_back(0); 5261 Vals.push_back(0); 5262 Vals.push_back(0); 5263 Vals.push_back(getEncodedLinkage(GV)); 5264 5265 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5266 Vals.clear(); 5267 } 5268 5269 // Emit the function proto information. 5270 for (const Function &F : M) { 5271 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5272 Vals.push_back(StrtabBuilder.add(F.getName())); 5273 Vals.push_back(F.getName().size()); 5274 Vals.push_back(0); 5275 Vals.push_back(0); 5276 Vals.push_back(0); 5277 Vals.push_back(getEncodedLinkage(F)); 5278 5279 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5280 Vals.clear(); 5281 } 5282 5283 // Emit the alias information. 5284 for (const GlobalAlias &A : M.aliases()) { 5285 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5286 Vals.push_back(StrtabBuilder.add(A.getName())); 5287 Vals.push_back(A.getName().size()); 5288 Vals.push_back(0); 5289 Vals.push_back(0); 5290 Vals.push_back(0); 5291 Vals.push_back(getEncodedLinkage(A)); 5292 5293 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5294 Vals.clear(); 5295 } 5296 5297 // Emit the ifunc information. 5298 for (const GlobalIFunc &I : M.ifuncs()) { 5299 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5300 Vals.push_back(StrtabBuilder.add(I.getName())); 5301 Vals.push_back(I.getName().size()); 5302 Vals.push_back(0); 5303 Vals.push_back(0); 5304 Vals.push_back(0); 5305 Vals.push_back(getEncodedLinkage(I)); 5306 5307 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5308 Vals.clear(); 5309 } 5310 } 5311 5312 void ThinLinkBitcodeWriter::write() { 5313 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5314 5315 writeModuleVersion(); 5316 5317 writeSimplifiedModuleInfo(); 5318 5319 writePerModuleGlobalValueSummary(); 5320 5321 // Write module hash. 5322 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5323 5324 Stream.ExitBlock(); 5325 } 5326 5327 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5328 const ModuleSummaryIndex &Index, 5329 const ModuleHash &ModHash) { 5330 assert(!WroteStrtab); 5331 5332 // The Mods vector is used by irsymtab::build, which requires non-const 5333 // Modules in case it needs to materialize metadata. But the bitcode writer 5334 // requires that the module is materialized, so we can cast to non-const here, 5335 // after checking that it is in fact materialized. 5336 assert(M.isMaterialized()); 5337 Mods.push_back(const_cast<Module *>(&M)); 5338 5339 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5340 ModHash); 5341 ThinLinkWriter.write(); 5342 } 5343 5344 // Write the specified thin link bitcode file to the given raw output stream, 5345 // where it will be written in a new bitcode block. This is used when 5346 // writing the per-module index file for ThinLTO. 5347 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5348 const ModuleSummaryIndex &Index, 5349 const ModuleHash &ModHash) { 5350 SmallVector<char, 0> Buffer; 5351 Buffer.reserve(256 * 1024); 5352 5353 BitcodeWriter Writer(Buffer); 5354 Writer.writeThinLinkBitcode(M, Index, ModHash); 5355 Writer.writeSymtab(); 5356 Writer.writeStrtab(); 5357 5358 Out.write((char *)&Buffer.front(), Buffer.size()); 5359 } 5360 5361 static const char *getSectionNameForBitcode(const Triple &T) { 5362 switch (T.getObjectFormat()) { 5363 case Triple::MachO: 5364 return "__LLVM,__bitcode"; 5365 case Triple::COFF: 5366 case Triple::ELF: 5367 case Triple::Wasm: 5368 case Triple::UnknownObjectFormat: 5369 return ".llvmbc"; 5370 case Triple::GOFF: 5371 llvm_unreachable("GOFF is not yet implemented"); 5372 break; 5373 case Triple::SPIRV: 5374 if (T.getVendor() == Triple::AMD) 5375 return ".llvmbc"; 5376 llvm_unreachable("SPIRV is not yet implemented"); 5377 break; 5378 case Triple::XCOFF: 5379 llvm_unreachable("XCOFF is not yet implemented"); 5380 break; 5381 case Triple::DXContainer: 5382 llvm_unreachable("DXContainer is not yet implemented"); 5383 break; 5384 } 5385 llvm_unreachable("Unimplemented ObjectFormatType"); 5386 } 5387 5388 static const char *getSectionNameForCommandline(const Triple &T) { 5389 switch (T.getObjectFormat()) { 5390 case Triple::MachO: 5391 return "__LLVM,__cmdline"; 5392 case Triple::COFF: 5393 case Triple::ELF: 5394 case Triple::Wasm: 5395 case Triple::UnknownObjectFormat: 5396 return ".llvmcmd"; 5397 case Triple::GOFF: 5398 llvm_unreachable("GOFF is not yet implemented"); 5399 break; 5400 case Triple::SPIRV: 5401 if (T.getVendor() == Triple::AMD) 5402 return ".llvmcmd"; 5403 llvm_unreachable("SPIRV is not yet implemented"); 5404 break; 5405 case Triple::XCOFF: 5406 llvm_unreachable("XCOFF is not yet implemented"); 5407 break; 5408 case Triple::DXContainer: 5409 llvm_unreachable("DXC is not yet implemented"); 5410 break; 5411 } 5412 llvm_unreachable("Unimplemented ObjectFormatType"); 5413 } 5414 5415 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5416 bool EmbedBitcode, bool EmbedCmdline, 5417 const std::vector<uint8_t> &CmdArgs) { 5418 // Save llvm.compiler.used and remove it. 5419 SmallVector<Constant *, 2> UsedArray; 5420 SmallVector<GlobalValue *, 4> UsedGlobals; 5421 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5422 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5423 for (auto *GV : UsedGlobals) { 5424 if (GV->getName() != "llvm.embedded.module" && 5425 GV->getName() != "llvm.cmdline") 5426 UsedArray.push_back( 5427 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5428 } 5429 if (Used) 5430 Used->eraseFromParent(); 5431 5432 // Embed the bitcode for the llvm module. 5433 std::string Data; 5434 ArrayRef<uint8_t> ModuleData; 5435 Triple T(M.getTargetTriple()); 5436 5437 if (EmbedBitcode) { 5438 if (Buf.getBufferSize() == 0 || 5439 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5440 (const unsigned char *)Buf.getBufferEnd())) { 5441 // If the input is LLVM Assembly, bitcode is produced by serializing 5442 // the module. Use-lists order need to be preserved in this case. 5443 llvm::raw_string_ostream OS(Data); 5444 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5445 ModuleData = 5446 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5447 } else 5448 // If the input is LLVM bitcode, write the input byte stream directly. 5449 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5450 Buf.getBufferSize()); 5451 } 5452 llvm::Constant *ModuleConstant = 5453 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5454 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5455 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5456 ModuleConstant); 5457 GV->setSection(getSectionNameForBitcode(T)); 5458 // Set alignment to 1 to prevent padding between two contributions from input 5459 // sections after linking. 5460 GV->setAlignment(Align(1)); 5461 UsedArray.push_back( 5462 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5463 if (llvm::GlobalVariable *Old = 5464 M.getGlobalVariable("llvm.embedded.module", true)) { 5465 assert(Old->hasZeroLiveUses() && 5466 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5467 GV->takeName(Old); 5468 Old->eraseFromParent(); 5469 } else { 5470 GV->setName("llvm.embedded.module"); 5471 } 5472 5473 // Skip if only bitcode needs to be embedded. 5474 if (EmbedCmdline) { 5475 // Embed command-line options. 5476 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5477 CmdArgs.size()); 5478 llvm::Constant *CmdConstant = 5479 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5480 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5481 llvm::GlobalValue::PrivateLinkage, 5482 CmdConstant); 5483 GV->setSection(getSectionNameForCommandline(T)); 5484 GV->setAlignment(Align(1)); 5485 UsedArray.push_back( 5486 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5487 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5488 assert(Old->hasZeroLiveUses() && 5489 "llvm.cmdline can only be used once in llvm.compiler.used"); 5490 GV->takeName(Old); 5491 Old->eraseFromParent(); 5492 } else { 5493 GV->setName("llvm.cmdline"); 5494 } 5495 } 5496 5497 if (UsedArray.empty()) 5498 return; 5499 5500 // Recreate llvm.compiler.used. 5501 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5502 auto *NewUsed = new GlobalVariable( 5503 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5504 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5505 NewUsed->setSection("llvm.metadata"); 5506 } 5507