1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/Program.h" 34 #include "llvm/Support/SHA1.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cctype> 37 #include <map> 38 using namespace llvm; 39 40 namespace { 41 42 cl::opt<unsigned> 43 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 44 cl::desc("Number of metadatas above which we emit an index " 45 "to enable lazy-loading")); 46 /// These are manifest constants used by the bitcode writer. They do not need to 47 /// be kept in sync with the reader, but need to be consistent within this file. 48 enum { 49 // VALUE_SYMTAB_BLOCK abbrev id's. 50 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 VST_ENTRY_7_ABBREV, 52 VST_ENTRY_6_ABBREV, 53 VST_BBENTRY_6_ABBREV, 54 55 // CONSTANTS_BLOCK abbrev id's. 56 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 57 CONSTANTS_INTEGER_ABBREV, 58 CONSTANTS_CE_CAST_Abbrev, 59 CONSTANTS_NULL_Abbrev, 60 61 // FUNCTION_BLOCK abbrev id's. 62 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 63 FUNCTION_INST_BINOP_ABBREV, 64 FUNCTION_INST_BINOP_FLAGS_ABBREV, 65 FUNCTION_INST_CAST_ABBREV, 66 FUNCTION_INST_RET_VOID_ABBREV, 67 FUNCTION_INST_RET_VAL_ABBREV, 68 FUNCTION_INST_UNREACHABLE_ABBREV, 69 FUNCTION_INST_GEP_ABBREV, 70 }; 71 72 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 73 /// file type. 74 class BitcodeWriterBase { 75 protected: 76 /// The stream created and owned by the client. 77 BitstreamWriter &Stream; 78 79 /// Saves the offset of the VSTOffset record that must eventually be 80 /// backpatched with the offset of the actual VST. 81 uint64_t VSTOffsetPlaceholder = 0; 82 83 public: 84 /// Constructs a BitcodeWriterBase object that writes to the provided 85 /// \p Stream. 86 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 87 88 protected: 89 bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; } 90 void writeValueSymbolTableForwardDecl(); 91 void writeBitcodeHeader(); 92 }; 93 94 /// Class to manage the bitcode writing for a module. 95 class ModuleBitcodeWriter : public BitcodeWriterBase { 96 /// Pointer to the buffer allocated by caller for bitcode writing. 97 const SmallVectorImpl<char> &Buffer; 98 99 /// The Module to write to bitcode. 100 const Module &M; 101 102 /// Enumerates ids for all values in the module. 103 ValueEnumerator VE; 104 105 /// Optional per-module index to write for ThinLTO. 106 const ModuleSummaryIndex *Index; 107 108 /// True if a module hash record should be written. 109 bool GenerateHash; 110 111 /// The start bit of the identification block. 112 uint64_t BitcodeStartBit; 113 114 /// Map that holds the correspondence between GUIDs in the summary index, 115 /// that came from indirect call profiles, and a value id generated by this 116 /// class to use in the VST and summary block records. 117 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 118 119 /// Tracks the last value id recorded in the GUIDToValueMap. 120 unsigned GlobalValueId; 121 122 public: 123 /// Constructs a ModuleBitcodeWriter object for the given Module, 124 /// writing to the provided \p Buffer. 125 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 126 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 127 const ModuleSummaryIndex *Index, bool GenerateHash) 128 : BitcodeWriterBase(Stream), Buffer(Buffer), M(*M), 129 VE(*M, ShouldPreserveUseListOrder), Index(Index), 130 GenerateHash(GenerateHash), BitcodeStartBit(Stream.GetCurrentBitNo()) { 131 // Assign ValueIds to any callee values in the index that came from 132 // indirect call profiles and were recorded as a GUID not a Value* 133 // (which would have been assigned an ID by the ValueEnumerator). 134 // The starting ValueId is just after the number of values in the 135 // ValueEnumerator, so that they can be emitted in the VST. 136 GlobalValueId = VE.getValues().size(); 137 if (!Index) 138 return; 139 for (const auto &GUIDSummaryLists : *Index) 140 // Examine all summaries for this GUID. 141 for (auto &Summary : GUIDSummaryLists.second) 142 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 143 // For each call in the function summary, see if the call 144 // is to a GUID (which means it is for an indirect call, 145 // otherwise we would have a Value for it). If so, synthesize 146 // a value id. 147 for (auto &CallEdge : FS->calls()) 148 if (CallEdge.first.isGUID()) 149 assignValueId(CallEdge.first.getGUID()); 150 } 151 152 /// Emit the current module to the bitstream. 153 void write(); 154 155 private: 156 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 157 158 void writeAttributeGroupTable(); 159 void writeAttributeTable(); 160 void writeTypeTable(); 161 void writeComdats(); 162 void writeModuleInfo(); 163 void writeValueAsMetadata(const ValueAsMetadata *MD, 164 SmallVectorImpl<uint64_t> &Record); 165 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 166 unsigned Abbrev); 167 unsigned createDILocationAbbrev(); 168 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 169 unsigned &Abbrev); 170 unsigned createGenericDINodeAbbrev(); 171 void writeGenericDINode(const GenericDINode *N, 172 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 173 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 174 unsigned Abbrev); 175 void writeDIEnumerator(const DIEnumerator *N, 176 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 177 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 178 unsigned Abbrev); 179 void writeDIDerivedType(const DIDerivedType *N, 180 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 181 void writeDICompositeType(const DICompositeType *N, 182 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 183 void writeDISubroutineType(const DISubroutineType *N, 184 SmallVectorImpl<uint64_t> &Record, 185 unsigned Abbrev); 186 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 187 unsigned Abbrev); 188 void writeDICompileUnit(const DICompileUnit *N, 189 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 190 void writeDISubprogram(const DISubprogram *N, 191 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 192 void writeDILexicalBlock(const DILexicalBlock *N, 193 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 194 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 195 SmallVectorImpl<uint64_t> &Record, 196 unsigned Abbrev); 197 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 198 unsigned Abbrev); 199 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 200 unsigned Abbrev); 201 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 202 unsigned Abbrev); 203 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 206 SmallVectorImpl<uint64_t> &Record, 207 unsigned Abbrev); 208 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 209 SmallVectorImpl<uint64_t> &Record, 210 unsigned Abbrev); 211 void writeDIGlobalVariable(const DIGlobalVariable *N, 212 SmallVectorImpl<uint64_t> &Record, 213 unsigned Abbrev); 214 void writeDILocalVariable(const DILocalVariable *N, 215 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 216 void writeDIExpression(const DIExpression *N, 217 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 218 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 219 SmallVectorImpl<uint64_t> &Record, 220 unsigned Abbrev); 221 void writeDIObjCProperty(const DIObjCProperty *N, 222 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 223 void writeDIImportedEntity(const DIImportedEntity *N, 224 SmallVectorImpl<uint64_t> &Record, 225 unsigned Abbrev); 226 unsigned createNamedMetadataAbbrev(); 227 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 228 unsigned createMetadataStringsAbbrev(); 229 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 230 SmallVectorImpl<uint64_t> &Record); 231 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 232 SmallVectorImpl<uint64_t> &Record, 233 std::vector<unsigned> *MDAbbrevs = nullptr, 234 std::vector<uint64_t> *IndexPos = nullptr); 235 void writeModuleMetadata(); 236 void writeFunctionMetadata(const Function &F); 237 void writeFunctionMetadataAttachment(const Function &F); 238 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 239 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 240 const GlobalObject &GO); 241 void writeModuleMetadataKinds(); 242 void writeOperandBundleTags(); 243 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 244 void writeModuleConstants(); 245 bool pushValueAndType(const Value *V, unsigned InstID, 246 SmallVectorImpl<unsigned> &Vals); 247 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 248 void pushValue(const Value *V, unsigned InstID, 249 SmallVectorImpl<unsigned> &Vals); 250 void pushValueSigned(const Value *V, unsigned InstID, 251 SmallVectorImpl<uint64_t> &Vals); 252 void writeInstruction(const Instruction &I, unsigned InstID, 253 SmallVectorImpl<unsigned> &Vals); 254 void writeValueSymbolTable( 255 const ValueSymbolTable &VST, bool IsModuleLevel = false, 256 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr); 257 void writeUseList(UseListOrder &&Order); 258 void writeUseListBlock(const Function *F); 259 void 260 writeFunction(const Function &F, 261 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 262 void writeBlockInfo(); 263 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 264 GlobalValueSummary *Summary, 265 unsigned ValueID, 266 unsigned FSCallsAbbrev, 267 unsigned FSCallsProfileAbbrev, 268 const Function &F); 269 void writeModuleLevelReferences(const GlobalVariable &V, 270 SmallVector<uint64_t, 64> &NameVals, 271 unsigned FSModRefsAbbrev); 272 void writePerModuleGlobalValueSummary(); 273 void writeModuleHash(size_t BlockStartPos); 274 275 void assignValueId(GlobalValue::GUID ValGUID) { 276 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 277 } 278 unsigned getValueId(GlobalValue::GUID ValGUID) { 279 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 280 // Expect that any GUID value had a value Id assigned by an 281 // earlier call to assignValueId. 282 assert(VMI != GUIDToValueIdMap.end() && 283 "GUID does not have assigned value Id"); 284 return VMI->second; 285 } 286 // Helper to get the valueId for the type of value recorded in VI. 287 unsigned getValueId(ValueInfo VI) { 288 if (VI.isGUID()) 289 return getValueId(VI.getGUID()); 290 return VE.getValueID(VI.getValue()); 291 } 292 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 293 }; 294 295 /// Class to manage the bitcode writing for a combined index. 296 class IndexBitcodeWriter : public BitcodeWriterBase { 297 /// The combined index to write to bitcode. 298 const ModuleSummaryIndex &Index; 299 300 /// When writing a subset of the index for distributed backends, client 301 /// provides a map of modules to the corresponding GUIDs/summaries to write. 302 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 303 304 /// Map that holds the correspondence between the GUID used in the combined 305 /// index and a value id generated by this class to use in references. 306 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 307 308 /// Tracks the last value id recorded in the GUIDToValueMap. 309 unsigned GlobalValueId = 0; 310 311 public: 312 /// Constructs a IndexBitcodeWriter object for the given combined index, 313 /// writing to the provided \p Buffer. When writing a subset of the index 314 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 315 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 316 const std::map<std::string, GVSummaryMapTy> 317 *ModuleToSummariesForIndex = nullptr) 318 : BitcodeWriterBase(Stream), Index(Index), 319 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 320 // Assign unique value ids to all summaries to be written, for use 321 // in writing out the call graph edges. Save the mapping from GUID 322 // to the new global value id to use when writing those edges, which 323 // are currently saved in the index in terms of GUID. 324 for (const auto &I : *this) 325 GUIDToValueIdMap[I.first] = ++GlobalValueId; 326 } 327 328 /// The below iterator returns the GUID and associated summary. 329 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 330 331 /// Iterator over the value GUID and summaries to be written to bitcode, 332 /// hides the details of whether they are being pulled from the entire 333 /// index or just those in a provided ModuleToSummariesForIndex map. 334 class iterator 335 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 336 GVInfo> { 337 /// Enables access to parent class. 338 const IndexBitcodeWriter &Writer; 339 340 // Iterators used when writing only those summaries in a provided 341 // ModuleToSummariesForIndex map: 342 343 /// Points to the last element in outer ModuleToSummariesForIndex map. 344 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack; 345 /// Iterator on outer ModuleToSummariesForIndex map. 346 std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter; 347 /// Iterator on an inner global variable summary map. 348 GVSummaryMapTy::const_iterator ModuleGVSummariesIter; 349 350 // Iterators used when writing all summaries in the index: 351 352 /// Points to the last element in the Index outer GlobalValueMap. 353 const_gvsummary_iterator IndexSummariesBack; 354 /// Iterator on outer GlobalValueMap. 355 const_gvsummary_iterator IndexSummariesIter; 356 /// Iterator on an inner GlobalValueSummaryList. 357 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 358 359 public: 360 /// Construct iterator from parent \p Writer and indicate if we are 361 /// constructing the end iterator. 362 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 363 // Set up the appropriate set of iterators given whether we are writing 364 // the full index or just a subset. 365 // Can't setup the Back or inner iterators if the corresponding map 366 // is empty. This will be handled specially in operator== as well. 367 if (Writer.ModuleToSummariesForIndex && 368 !Writer.ModuleToSummariesForIndex->empty()) { 369 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 370 std::next(ModuleSummariesBack) != 371 Writer.ModuleToSummariesForIndex->end(); 372 ModuleSummariesBack++) 373 ; 374 ModuleSummariesIter = !IsAtEnd 375 ? Writer.ModuleToSummariesForIndex->begin() 376 : ModuleSummariesBack; 377 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 378 : ModuleSummariesBack->second.end(); 379 } else if (!Writer.ModuleToSummariesForIndex && 380 Writer.Index.begin() != Writer.Index.end()) { 381 for (IndexSummariesBack = Writer.Index.begin(); 382 std::next(IndexSummariesBack) != Writer.Index.end(); 383 IndexSummariesBack++) 384 ; 385 IndexSummariesIter = 386 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 387 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 388 : IndexSummariesBack->second.end(); 389 } 390 } 391 392 /// Increment the appropriate set of iterators. 393 iterator &operator++() { 394 // First the inner iterator is incremented, then if it is at the end 395 // and there are more outer iterations to go, the inner is reset to 396 // the start of the next inner list. 397 if (Writer.ModuleToSummariesForIndex) { 398 ++ModuleGVSummariesIter; 399 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 400 ModuleSummariesIter != ModuleSummariesBack) { 401 ++ModuleSummariesIter; 402 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 403 } 404 } else { 405 ++IndexGVSummariesIter; 406 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 407 IndexSummariesIter != IndexSummariesBack) { 408 ++IndexSummariesIter; 409 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 410 } 411 } 412 return *this; 413 } 414 415 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 416 /// outer and inner iterator positions. 417 GVInfo operator*() { 418 if (Writer.ModuleToSummariesForIndex) 419 return std::make_pair(ModuleGVSummariesIter->first, 420 ModuleGVSummariesIter->second); 421 return std::make_pair(IndexSummariesIter->first, 422 IndexGVSummariesIter->get()); 423 } 424 425 /// Checks if the iterators are equal, with special handling for empty 426 /// indexes. 427 bool operator==(const iterator &RHS) const { 428 if (Writer.ModuleToSummariesForIndex) { 429 // First ensure that both are writing the same subset. 430 if (Writer.ModuleToSummariesForIndex != 431 RHS.Writer.ModuleToSummariesForIndex) 432 return false; 433 // Already determined above that maps are the same, so if one is 434 // empty, they both are. 435 if (Writer.ModuleToSummariesForIndex->empty()) 436 return true; 437 // Ensure the ModuleGVSummariesIter are iterating over the same 438 // container before checking them below. 439 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 440 return false; 441 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 442 } 443 // First ensure RHS also writing the full index, and that both are 444 // writing the same full index. 445 if (RHS.Writer.ModuleToSummariesForIndex || 446 &Writer.Index != &RHS.Writer.Index) 447 return false; 448 // Already determined above that maps are the same, so if one is 449 // empty, they both are. 450 if (Writer.Index.begin() == Writer.Index.end()) 451 return true; 452 // Ensure the IndexGVSummariesIter are iterating over the same 453 // container before checking them below. 454 if (IndexSummariesIter != RHS.IndexSummariesIter) 455 return false; 456 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 457 } 458 }; 459 460 /// Obtain the start iterator over the summaries to be written. 461 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 462 /// Obtain the end iterator over the summaries to be written. 463 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 464 465 /// Main entry point for writing a combined index to bitcode. 466 void write(); 467 468 private: 469 void writeIndex(); 470 void writeModStrings(); 471 void writeCombinedValueSymbolTable(); 472 void writeCombinedGlobalValueSummary(); 473 474 /// Indicates whether the provided \p ModulePath should be written into 475 /// the module string table, e.g. if full index written or if it is in 476 /// the provided subset. 477 bool doIncludeModule(StringRef ModulePath) { 478 return !ModuleToSummariesForIndex || 479 ModuleToSummariesForIndex->count(ModulePath); 480 } 481 482 bool hasValueId(GlobalValue::GUID ValGUID) { 483 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 484 return VMI != GUIDToValueIdMap.end(); 485 } 486 unsigned getValueId(GlobalValue::GUID ValGUID) { 487 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 488 // If this GUID doesn't have an entry, assign one. 489 if (VMI == GUIDToValueIdMap.end()) { 490 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 491 return GlobalValueId; 492 } else { 493 return VMI->second; 494 } 495 } 496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 497 }; 498 } // end anonymous namespace 499 500 static unsigned getEncodedCastOpcode(unsigned Opcode) { 501 switch (Opcode) { 502 default: llvm_unreachable("Unknown cast instruction!"); 503 case Instruction::Trunc : return bitc::CAST_TRUNC; 504 case Instruction::ZExt : return bitc::CAST_ZEXT; 505 case Instruction::SExt : return bitc::CAST_SEXT; 506 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 507 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 508 case Instruction::UIToFP : return bitc::CAST_UITOFP; 509 case Instruction::SIToFP : return bitc::CAST_SITOFP; 510 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 511 case Instruction::FPExt : return bitc::CAST_FPEXT; 512 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 513 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 514 case Instruction::BitCast : return bitc::CAST_BITCAST; 515 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 516 } 517 } 518 519 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 520 switch (Opcode) { 521 default: llvm_unreachable("Unknown binary instruction!"); 522 case Instruction::Add: 523 case Instruction::FAdd: return bitc::BINOP_ADD; 524 case Instruction::Sub: 525 case Instruction::FSub: return bitc::BINOP_SUB; 526 case Instruction::Mul: 527 case Instruction::FMul: return bitc::BINOP_MUL; 528 case Instruction::UDiv: return bitc::BINOP_UDIV; 529 case Instruction::FDiv: 530 case Instruction::SDiv: return bitc::BINOP_SDIV; 531 case Instruction::URem: return bitc::BINOP_UREM; 532 case Instruction::FRem: 533 case Instruction::SRem: return bitc::BINOP_SREM; 534 case Instruction::Shl: return bitc::BINOP_SHL; 535 case Instruction::LShr: return bitc::BINOP_LSHR; 536 case Instruction::AShr: return bitc::BINOP_ASHR; 537 case Instruction::And: return bitc::BINOP_AND; 538 case Instruction::Or: return bitc::BINOP_OR; 539 case Instruction::Xor: return bitc::BINOP_XOR; 540 } 541 } 542 543 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 544 switch (Op) { 545 default: llvm_unreachable("Unknown RMW operation!"); 546 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 547 case AtomicRMWInst::Add: return bitc::RMW_ADD; 548 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 549 case AtomicRMWInst::And: return bitc::RMW_AND; 550 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 551 case AtomicRMWInst::Or: return bitc::RMW_OR; 552 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 553 case AtomicRMWInst::Max: return bitc::RMW_MAX; 554 case AtomicRMWInst::Min: return bitc::RMW_MIN; 555 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 556 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 557 } 558 } 559 560 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 561 switch (Ordering) { 562 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 563 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 564 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 565 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 566 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 567 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 568 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 569 } 570 llvm_unreachable("Invalid ordering"); 571 } 572 573 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 574 switch (SynchScope) { 575 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 576 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 577 } 578 llvm_unreachable("Invalid synch scope"); 579 } 580 581 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 582 StringRef Str, unsigned AbbrevToUse) { 583 SmallVector<unsigned, 64> Vals; 584 585 // Code: [strchar x N] 586 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 587 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 588 AbbrevToUse = 0; 589 Vals.push_back(Str[i]); 590 } 591 592 // Emit the finished record. 593 Stream.EmitRecord(Code, Vals, AbbrevToUse); 594 } 595 596 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 597 switch (Kind) { 598 case Attribute::Alignment: 599 return bitc::ATTR_KIND_ALIGNMENT; 600 case Attribute::AllocSize: 601 return bitc::ATTR_KIND_ALLOC_SIZE; 602 case Attribute::AlwaysInline: 603 return bitc::ATTR_KIND_ALWAYS_INLINE; 604 case Attribute::ArgMemOnly: 605 return bitc::ATTR_KIND_ARGMEMONLY; 606 case Attribute::Builtin: 607 return bitc::ATTR_KIND_BUILTIN; 608 case Attribute::ByVal: 609 return bitc::ATTR_KIND_BY_VAL; 610 case Attribute::Convergent: 611 return bitc::ATTR_KIND_CONVERGENT; 612 case Attribute::InAlloca: 613 return bitc::ATTR_KIND_IN_ALLOCA; 614 case Attribute::Cold: 615 return bitc::ATTR_KIND_COLD; 616 case Attribute::InaccessibleMemOnly: 617 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 618 case Attribute::InaccessibleMemOrArgMemOnly: 619 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 620 case Attribute::InlineHint: 621 return bitc::ATTR_KIND_INLINE_HINT; 622 case Attribute::InReg: 623 return bitc::ATTR_KIND_IN_REG; 624 case Attribute::JumpTable: 625 return bitc::ATTR_KIND_JUMP_TABLE; 626 case Attribute::MinSize: 627 return bitc::ATTR_KIND_MIN_SIZE; 628 case Attribute::Naked: 629 return bitc::ATTR_KIND_NAKED; 630 case Attribute::Nest: 631 return bitc::ATTR_KIND_NEST; 632 case Attribute::NoAlias: 633 return bitc::ATTR_KIND_NO_ALIAS; 634 case Attribute::NoBuiltin: 635 return bitc::ATTR_KIND_NO_BUILTIN; 636 case Attribute::NoCapture: 637 return bitc::ATTR_KIND_NO_CAPTURE; 638 case Attribute::NoDuplicate: 639 return bitc::ATTR_KIND_NO_DUPLICATE; 640 case Attribute::NoImplicitFloat: 641 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 642 case Attribute::NoInline: 643 return bitc::ATTR_KIND_NO_INLINE; 644 case Attribute::NoRecurse: 645 return bitc::ATTR_KIND_NO_RECURSE; 646 case Attribute::NonLazyBind: 647 return bitc::ATTR_KIND_NON_LAZY_BIND; 648 case Attribute::NonNull: 649 return bitc::ATTR_KIND_NON_NULL; 650 case Attribute::Dereferenceable: 651 return bitc::ATTR_KIND_DEREFERENCEABLE; 652 case Attribute::DereferenceableOrNull: 653 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 654 case Attribute::NoRedZone: 655 return bitc::ATTR_KIND_NO_RED_ZONE; 656 case Attribute::NoReturn: 657 return bitc::ATTR_KIND_NO_RETURN; 658 case Attribute::NoUnwind: 659 return bitc::ATTR_KIND_NO_UNWIND; 660 case Attribute::OptimizeForSize: 661 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 662 case Attribute::OptimizeNone: 663 return bitc::ATTR_KIND_OPTIMIZE_NONE; 664 case Attribute::ReadNone: 665 return bitc::ATTR_KIND_READ_NONE; 666 case Attribute::ReadOnly: 667 return bitc::ATTR_KIND_READ_ONLY; 668 case Attribute::Returned: 669 return bitc::ATTR_KIND_RETURNED; 670 case Attribute::ReturnsTwice: 671 return bitc::ATTR_KIND_RETURNS_TWICE; 672 case Attribute::SExt: 673 return bitc::ATTR_KIND_S_EXT; 674 case Attribute::StackAlignment: 675 return bitc::ATTR_KIND_STACK_ALIGNMENT; 676 case Attribute::StackProtect: 677 return bitc::ATTR_KIND_STACK_PROTECT; 678 case Attribute::StackProtectReq: 679 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 680 case Attribute::StackProtectStrong: 681 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 682 case Attribute::SafeStack: 683 return bitc::ATTR_KIND_SAFESTACK; 684 case Attribute::StructRet: 685 return bitc::ATTR_KIND_STRUCT_RET; 686 case Attribute::SanitizeAddress: 687 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 688 case Attribute::SanitizeThread: 689 return bitc::ATTR_KIND_SANITIZE_THREAD; 690 case Attribute::SanitizeMemory: 691 return bitc::ATTR_KIND_SANITIZE_MEMORY; 692 case Attribute::SwiftError: 693 return bitc::ATTR_KIND_SWIFT_ERROR; 694 case Attribute::SwiftSelf: 695 return bitc::ATTR_KIND_SWIFT_SELF; 696 case Attribute::UWTable: 697 return bitc::ATTR_KIND_UW_TABLE; 698 case Attribute::WriteOnly: 699 return bitc::ATTR_KIND_WRITEONLY; 700 case Attribute::ZExt: 701 return bitc::ATTR_KIND_Z_EXT; 702 case Attribute::EndAttrKinds: 703 llvm_unreachable("Can not encode end-attribute kinds marker."); 704 case Attribute::None: 705 llvm_unreachable("Can not encode none-attribute."); 706 } 707 708 llvm_unreachable("Trying to encode unknown attribute"); 709 } 710 711 void ModuleBitcodeWriter::writeAttributeGroupTable() { 712 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 713 if (AttrGrps.empty()) return; 714 715 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 716 717 SmallVector<uint64_t, 64> Record; 718 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 719 AttributeSet AS = AttrGrps[i]; 720 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 721 AttributeSet A = AS.getSlotAttributes(i); 722 723 Record.push_back(VE.getAttributeGroupID(A)); 724 Record.push_back(AS.getSlotIndex(i)); 725 726 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 727 I != E; ++I) { 728 Attribute Attr = *I; 729 if (Attr.isEnumAttribute()) { 730 Record.push_back(0); 731 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 732 } else if (Attr.isIntAttribute()) { 733 Record.push_back(1); 734 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 735 Record.push_back(Attr.getValueAsInt()); 736 } else { 737 StringRef Kind = Attr.getKindAsString(); 738 StringRef Val = Attr.getValueAsString(); 739 740 Record.push_back(Val.empty() ? 3 : 4); 741 Record.append(Kind.begin(), Kind.end()); 742 Record.push_back(0); 743 if (!Val.empty()) { 744 Record.append(Val.begin(), Val.end()); 745 Record.push_back(0); 746 } 747 } 748 } 749 750 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 751 Record.clear(); 752 } 753 } 754 755 Stream.ExitBlock(); 756 } 757 758 void ModuleBitcodeWriter::writeAttributeTable() { 759 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 760 if (Attrs.empty()) return; 761 762 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 763 764 SmallVector<uint64_t, 64> Record; 765 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 766 const AttributeSet &A = Attrs[i]; 767 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 768 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 769 770 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 771 Record.clear(); 772 } 773 774 Stream.ExitBlock(); 775 } 776 777 /// WriteTypeTable - Write out the type table for a module. 778 void ModuleBitcodeWriter::writeTypeTable() { 779 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 780 781 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 782 SmallVector<uint64_t, 64> TypeVals; 783 784 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 785 786 // Abbrev for TYPE_CODE_POINTER. 787 auto Abbv = std::make_shared<BitCodeAbbrev>(); 788 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 790 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 791 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 792 793 // Abbrev for TYPE_CODE_FUNCTION. 794 Abbv = std::make_shared<BitCodeAbbrev>(); 795 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 799 800 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 801 802 // Abbrev for TYPE_CODE_STRUCT_ANON. 803 Abbv = std::make_shared<BitCodeAbbrev>(); 804 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 808 809 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 810 811 // Abbrev for TYPE_CODE_STRUCT_NAME. 812 Abbv = std::make_shared<BitCodeAbbrev>(); 813 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 816 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 817 818 // Abbrev for TYPE_CODE_STRUCT_NAMED. 819 Abbv = std::make_shared<BitCodeAbbrev>(); 820 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 824 825 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 826 827 // Abbrev for TYPE_CODE_ARRAY. 828 Abbv = std::make_shared<BitCodeAbbrev>(); 829 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 832 833 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 834 835 // Emit an entry count so the reader can reserve space. 836 TypeVals.push_back(TypeList.size()); 837 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 838 TypeVals.clear(); 839 840 // Loop over all of the types, emitting each in turn. 841 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 842 Type *T = TypeList[i]; 843 int AbbrevToUse = 0; 844 unsigned Code = 0; 845 846 switch (T->getTypeID()) { 847 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 848 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 849 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 850 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 851 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 852 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 853 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 854 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 855 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 856 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 857 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 858 case Type::IntegerTyID: 859 // INTEGER: [width] 860 Code = bitc::TYPE_CODE_INTEGER; 861 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 862 break; 863 case Type::PointerTyID: { 864 PointerType *PTy = cast<PointerType>(T); 865 // POINTER: [pointee type, address space] 866 Code = bitc::TYPE_CODE_POINTER; 867 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 868 unsigned AddressSpace = PTy->getAddressSpace(); 869 TypeVals.push_back(AddressSpace); 870 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 871 break; 872 } 873 case Type::FunctionTyID: { 874 FunctionType *FT = cast<FunctionType>(T); 875 // FUNCTION: [isvararg, retty, paramty x N] 876 Code = bitc::TYPE_CODE_FUNCTION; 877 TypeVals.push_back(FT->isVarArg()); 878 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 879 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 880 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 881 AbbrevToUse = FunctionAbbrev; 882 break; 883 } 884 case Type::StructTyID: { 885 StructType *ST = cast<StructType>(T); 886 // STRUCT: [ispacked, eltty x N] 887 TypeVals.push_back(ST->isPacked()); 888 // Output all of the element types. 889 for (StructType::element_iterator I = ST->element_begin(), 890 E = ST->element_end(); I != E; ++I) 891 TypeVals.push_back(VE.getTypeID(*I)); 892 893 if (ST->isLiteral()) { 894 Code = bitc::TYPE_CODE_STRUCT_ANON; 895 AbbrevToUse = StructAnonAbbrev; 896 } else { 897 if (ST->isOpaque()) { 898 Code = bitc::TYPE_CODE_OPAQUE; 899 } else { 900 Code = bitc::TYPE_CODE_STRUCT_NAMED; 901 AbbrevToUse = StructNamedAbbrev; 902 } 903 904 // Emit the name if it is present. 905 if (!ST->getName().empty()) 906 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 907 StructNameAbbrev); 908 } 909 break; 910 } 911 case Type::ArrayTyID: { 912 ArrayType *AT = cast<ArrayType>(T); 913 // ARRAY: [numelts, eltty] 914 Code = bitc::TYPE_CODE_ARRAY; 915 TypeVals.push_back(AT->getNumElements()); 916 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 917 AbbrevToUse = ArrayAbbrev; 918 break; 919 } 920 case Type::VectorTyID: { 921 VectorType *VT = cast<VectorType>(T); 922 // VECTOR [numelts, eltty] 923 Code = bitc::TYPE_CODE_VECTOR; 924 TypeVals.push_back(VT->getNumElements()); 925 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 926 break; 927 } 928 } 929 930 // Emit the finished record. 931 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 932 TypeVals.clear(); 933 } 934 935 Stream.ExitBlock(); 936 } 937 938 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 939 switch (Linkage) { 940 case GlobalValue::ExternalLinkage: 941 return 0; 942 case GlobalValue::WeakAnyLinkage: 943 return 16; 944 case GlobalValue::AppendingLinkage: 945 return 2; 946 case GlobalValue::InternalLinkage: 947 return 3; 948 case GlobalValue::LinkOnceAnyLinkage: 949 return 18; 950 case GlobalValue::ExternalWeakLinkage: 951 return 7; 952 case GlobalValue::CommonLinkage: 953 return 8; 954 case GlobalValue::PrivateLinkage: 955 return 9; 956 case GlobalValue::WeakODRLinkage: 957 return 17; 958 case GlobalValue::LinkOnceODRLinkage: 959 return 19; 960 case GlobalValue::AvailableExternallyLinkage: 961 return 12; 962 } 963 llvm_unreachable("Invalid linkage"); 964 } 965 966 static unsigned getEncodedLinkage(const GlobalValue &GV) { 967 return getEncodedLinkage(GV.getLinkage()); 968 } 969 970 // Decode the flags for GlobalValue in the summary 971 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 972 uint64_t RawFlags = 0; 973 974 RawFlags |= Flags.NotEligibleToImport; // bool 975 RawFlags |= (Flags.LiveRoot << 1); 976 // Linkage don't need to be remapped at that time for the summary. Any future 977 // change to the getEncodedLinkage() function will need to be taken into 978 // account here as well. 979 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 980 981 return RawFlags; 982 } 983 984 static unsigned getEncodedVisibility(const GlobalValue &GV) { 985 switch (GV.getVisibility()) { 986 case GlobalValue::DefaultVisibility: return 0; 987 case GlobalValue::HiddenVisibility: return 1; 988 case GlobalValue::ProtectedVisibility: return 2; 989 } 990 llvm_unreachable("Invalid visibility"); 991 } 992 993 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 994 switch (GV.getDLLStorageClass()) { 995 case GlobalValue::DefaultStorageClass: return 0; 996 case GlobalValue::DLLImportStorageClass: return 1; 997 case GlobalValue::DLLExportStorageClass: return 2; 998 } 999 llvm_unreachable("Invalid DLL storage class"); 1000 } 1001 1002 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1003 switch (GV.getThreadLocalMode()) { 1004 case GlobalVariable::NotThreadLocal: return 0; 1005 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1006 case GlobalVariable::LocalDynamicTLSModel: return 2; 1007 case GlobalVariable::InitialExecTLSModel: return 3; 1008 case GlobalVariable::LocalExecTLSModel: return 4; 1009 } 1010 llvm_unreachable("Invalid TLS model"); 1011 } 1012 1013 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1014 switch (C.getSelectionKind()) { 1015 case Comdat::Any: 1016 return bitc::COMDAT_SELECTION_KIND_ANY; 1017 case Comdat::ExactMatch: 1018 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1019 case Comdat::Largest: 1020 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1021 case Comdat::NoDuplicates: 1022 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1023 case Comdat::SameSize: 1024 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1025 } 1026 llvm_unreachable("Invalid selection kind"); 1027 } 1028 1029 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1030 switch (GV.getUnnamedAddr()) { 1031 case GlobalValue::UnnamedAddr::None: return 0; 1032 case GlobalValue::UnnamedAddr::Local: return 2; 1033 case GlobalValue::UnnamedAddr::Global: return 1; 1034 } 1035 llvm_unreachable("Invalid unnamed_addr"); 1036 } 1037 1038 void ModuleBitcodeWriter::writeComdats() { 1039 SmallVector<unsigned, 64> Vals; 1040 for (const Comdat *C : VE.getComdats()) { 1041 // COMDAT: [selection_kind, name] 1042 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1043 size_t Size = C->getName().size(); 1044 assert(isUInt<32>(Size)); 1045 Vals.push_back(Size); 1046 for (char Chr : C->getName()) 1047 Vals.push_back((unsigned char)Chr); 1048 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1049 Vals.clear(); 1050 } 1051 } 1052 1053 /// Write a record that will eventually hold the word offset of the 1054 /// module-level VST. For now the offset is 0, which will be backpatched 1055 /// after the real VST is written. Saves the bit offset to backpatch. 1056 void BitcodeWriterBase::writeValueSymbolTableForwardDecl() { 1057 // Write a placeholder value in for the offset of the real VST, 1058 // which is written after the function blocks so that it can include 1059 // the offset of each function. The placeholder offset will be 1060 // updated when the real VST is written. 1061 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1062 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1063 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1064 // hold the real VST offset. Must use fixed instead of VBR as we don't 1065 // know how many VBR chunks to reserve ahead of time. 1066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1067 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1068 1069 // Emit the placeholder 1070 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1071 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1072 1073 // Compute and save the bit offset to the placeholder, which will be 1074 // patched when the real VST is written. We can simply subtract the 32-bit 1075 // fixed size from the current bit number to get the location to backpatch. 1076 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1077 } 1078 1079 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1080 1081 /// Determine the encoding to use for the given string name and length. 1082 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1083 bool isChar6 = true; 1084 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1085 if (isChar6) 1086 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1087 if ((unsigned char)*C & 128) 1088 // don't bother scanning the rest. 1089 return SE_Fixed8; 1090 } 1091 if (isChar6) 1092 return SE_Char6; 1093 else 1094 return SE_Fixed7; 1095 } 1096 1097 /// Emit top-level description of module, including target triple, inline asm, 1098 /// descriptors for global variables, and function prototype info. 1099 /// Returns the bit offset to backpatch with the location of the real VST. 1100 void ModuleBitcodeWriter::writeModuleInfo() { 1101 // Emit various pieces of data attached to a module. 1102 if (!M.getTargetTriple().empty()) 1103 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1104 0 /*TODO*/); 1105 const std::string &DL = M.getDataLayoutStr(); 1106 if (!DL.empty()) 1107 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1108 if (!M.getModuleInlineAsm().empty()) 1109 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1110 0 /*TODO*/); 1111 1112 // Emit information about sections and GC, computing how many there are. Also 1113 // compute the maximum alignment value. 1114 std::map<std::string, unsigned> SectionMap; 1115 std::map<std::string, unsigned> GCMap; 1116 unsigned MaxAlignment = 0; 1117 unsigned MaxGlobalType = 0; 1118 for (const GlobalValue &GV : M.globals()) { 1119 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1120 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1121 if (GV.hasSection()) { 1122 // Give section names unique ID's. 1123 unsigned &Entry = SectionMap[GV.getSection()]; 1124 if (!Entry) { 1125 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1126 0 /*TODO*/); 1127 Entry = SectionMap.size(); 1128 } 1129 } 1130 } 1131 for (const Function &F : M) { 1132 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1133 if (F.hasSection()) { 1134 // Give section names unique ID's. 1135 unsigned &Entry = SectionMap[F.getSection()]; 1136 if (!Entry) { 1137 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1138 0 /*TODO*/); 1139 Entry = SectionMap.size(); 1140 } 1141 } 1142 if (F.hasGC()) { 1143 // Same for GC names. 1144 unsigned &Entry = GCMap[F.getGC()]; 1145 if (!Entry) { 1146 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1147 0 /*TODO*/); 1148 Entry = GCMap.size(); 1149 } 1150 } 1151 } 1152 1153 // Emit abbrev for globals, now that we know # sections and max alignment. 1154 unsigned SimpleGVarAbbrev = 0; 1155 if (!M.global_empty()) { 1156 // Add an abbrev for common globals with no visibility or thread localness. 1157 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1158 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1160 Log2_32_Ceil(MaxGlobalType+1))); 1161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1162 //| explicitType << 1 1163 //| constant 1164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1166 if (MaxAlignment == 0) // Alignment. 1167 Abbv->Add(BitCodeAbbrevOp(0)); 1168 else { 1169 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1171 Log2_32_Ceil(MaxEncAlignment+1))); 1172 } 1173 if (SectionMap.empty()) // Section. 1174 Abbv->Add(BitCodeAbbrevOp(0)); 1175 else 1176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1177 Log2_32_Ceil(SectionMap.size()+1))); 1178 // Don't bother emitting vis + thread local. 1179 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1180 } 1181 1182 // Emit the global variable information. 1183 SmallVector<unsigned, 64> Vals; 1184 for (const GlobalVariable &GV : M.globals()) { 1185 unsigned AbbrevToUse = 0; 1186 1187 // GLOBALVAR: [type, isconst, initid, 1188 // linkage, alignment, section, visibility, threadlocal, 1189 // unnamed_addr, externally_initialized, dllstorageclass, 1190 // comdat] 1191 Vals.push_back(VE.getTypeID(GV.getValueType())); 1192 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1193 Vals.push_back(GV.isDeclaration() ? 0 : 1194 (VE.getValueID(GV.getInitializer()) + 1)); 1195 Vals.push_back(getEncodedLinkage(GV)); 1196 Vals.push_back(Log2_32(GV.getAlignment())+1); 1197 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1198 if (GV.isThreadLocal() || 1199 GV.getVisibility() != GlobalValue::DefaultVisibility || 1200 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1201 GV.isExternallyInitialized() || 1202 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1203 GV.hasComdat()) { 1204 Vals.push_back(getEncodedVisibility(GV)); 1205 Vals.push_back(getEncodedThreadLocalMode(GV)); 1206 Vals.push_back(getEncodedUnnamedAddr(GV)); 1207 Vals.push_back(GV.isExternallyInitialized()); 1208 Vals.push_back(getEncodedDLLStorageClass(GV)); 1209 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1210 } else { 1211 AbbrevToUse = SimpleGVarAbbrev; 1212 } 1213 1214 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1215 Vals.clear(); 1216 } 1217 1218 // Emit the function proto information. 1219 for (const Function &F : M) { 1220 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1221 // section, visibility, gc, unnamed_addr, prologuedata, 1222 // dllstorageclass, comdat, prefixdata, personalityfn] 1223 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1224 Vals.push_back(F.getCallingConv()); 1225 Vals.push_back(F.isDeclaration()); 1226 Vals.push_back(getEncodedLinkage(F)); 1227 Vals.push_back(VE.getAttributeID(F.getAttributes())); 1228 Vals.push_back(Log2_32(F.getAlignment())+1); 1229 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1230 Vals.push_back(getEncodedVisibility(F)); 1231 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1232 Vals.push_back(getEncodedUnnamedAddr(F)); 1233 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1234 : 0); 1235 Vals.push_back(getEncodedDLLStorageClass(F)); 1236 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1237 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1238 : 0); 1239 Vals.push_back( 1240 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1241 1242 unsigned AbbrevToUse = 0; 1243 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1244 Vals.clear(); 1245 } 1246 1247 // Emit the alias information. 1248 for (const GlobalAlias &A : M.aliases()) { 1249 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass, 1250 // threadlocal, unnamed_addr] 1251 Vals.push_back(VE.getTypeID(A.getValueType())); 1252 Vals.push_back(A.getType()->getAddressSpace()); 1253 Vals.push_back(VE.getValueID(A.getAliasee())); 1254 Vals.push_back(getEncodedLinkage(A)); 1255 Vals.push_back(getEncodedVisibility(A)); 1256 Vals.push_back(getEncodedDLLStorageClass(A)); 1257 Vals.push_back(getEncodedThreadLocalMode(A)); 1258 Vals.push_back(getEncodedUnnamedAddr(A)); 1259 unsigned AbbrevToUse = 0; 1260 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1261 Vals.clear(); 1262 } 1263 1264 // Emit the ifunc information. 1265 for (const GlobalIFunc &I : M.ifuncs()) { 1266 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 1267 Vals.push_back(VE.getTypeID(I.getValueType())); 1268 Vals.push_back(I.getType()->getAddressSpace()); 1269 Vals.push_back(VE.getValueID(I.getResolver())); 1270 Vals.push_back(getEncodedLinkage(I)); 1271 Vals.push_back(getEncodedVisibility(I)); 1272 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1273 Vals.clear(); 1274 } 1275 1276 // Emit the module's source file name. 1277 { 1278 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1279 M.getSourceFileName().size()); 1280 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1281 if (Bits == SE_Char6) 1282 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1283 else if (Bits == SE_Fixed7) 1284 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1285 1286 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1287 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1288 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1290 Abbv->Add(AbbrevOpToUse); 1291 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1292 1293 for (const auto P : M.getSourceFileName()) 1294 Vals.push_back((unsigned char)P); 1295 1296 // Emit the finished record. 1297 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1298 Vals.clear(); 1299 } 1300 1301 // If we have a VST, write the VSTOFFSET record placeholder. 1302 if (M.getValueSymbolTable().empty()) 1303 return; 1304 writeValueSymbolTableForwardDecl(); 1305 } 1306 1307 static uint64_t getOptimizationFlags(const Value *V) { 1308 uint64_t Flags = 0; 1309 1310 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1311 if (OBO->hasNoSignedWrap()) 1312 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1313 if (OBO->hasNoUnsignedWrap()) 1314 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1315 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1316 if (PEO->isExact()) 1317 Flags |= 1 << bitc::PEO_EXACT; 1318 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1319 if (FPMO->hasUnsafeAlgebra()) 1320 Flags |= FastMathFlags::UnsafeAlgebra; 1321 if (FPMO->hasNoNaNs()) 1322 Flags |= FastMathFlags::NoNaNs; 1323 if (FPMO->hasNoInfs()) 1324 Flags |= FastMathFlags::NoInfs; 1325 if (FPMO->hasNoSignedZeros()) 1326 Flags |= FastMathFlags::NoSignedZeros; 1327 if (FPMO->hasAllowReciprocal()) 1328 Flags |= FastMathFlags::AllowReciprocal; 1329 } 1330 1331 return Flags; 1332 } 1333 1334 void ModuleBitcodeWriter::writeValueAsMetadata( 1335 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1336 // Mimic an MDNode with a value as one operand. 1337 Value *V = MD->getValue(); 1338 Record.push_back(VE.getTypeID(V->getType())); 1339 Record.push_back(VE.getValueID(V)); 1340 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1341 Record.clear(); 1342 } 1343 1344 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1345 SmallVectorImpl<uint64_t> &Record, 1346 unsigned Abbrev) { 1347 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1348 Metadata *MD = N->getOperand(i); 1349 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1350 "Unexpected function-local metadata"); 1351 Record.push_back(VE.getMetadataOrNullID(MD)); 1352 } 1353 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1354 : bitc::METADATA_NODE, 1355 Record, Abbrev); 1356 Record.clear(); 1357 } 1358 1359 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1360 // Assume the column is usually under 128, and always output the inlined-at 1361 // location (it's never more expensive than building an array size 1). 1362 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1363 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1369 return Stream.EmitAbbrev(std::move(Abbv)); 1370 } 1371 1372 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1373 SmallVectorImpl<uint64_t> &Record, 1374 unsigned &Abbrev) { 1375 if (!Abbrev) 1376 Abbrev = createDILocationAbbrev(); 1377 1378 Record.push_back(N->isDistinct()); 1379 Record.push_back(N->getLine()); 1380 Record.push_back(N->getColumn()); 1381 Record.push_back(VE.getMetadataID(N->getScope())); 1382 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1383 1384 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1385 Record.clear(); 1386 } 1387 1388 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1389 // Assume the column is usually under 128, and always output the inlined-at 1390 // location (it's never more expensive than building an array size 1). 1391 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1392 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1399 return Stream.EmitAbbrev(std::move(Abbv)); 1400 } 1401 1402 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1403 SmallVectorImpl<uint64_t> &Record, 1404 unsigned &Abbrev) { 1405 if (!Abbrev) 1406 Abbrev = createGenericDINodeAbbrev(); 1407 1408 Record.push_back(N->isDistinct()); 1409 Record.push_back(N->getTag()); 1410 Record.push_back(0); // Per-tag version field; unused for now. 1411 1412 for (auto &I : N->operands()) 1413 Record.push_back(VE.getMetadataOrNullID(I)); 1414 1415 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1416 Record.clear(); 1417 } 1418 1419 static uint64_t rotateSign(int64_t I) { 1420 uint64_t U = I; 1421 return I < 0 ? ~(U << 1) : U << 1; 1422 } 1423 1424 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1425 SmallVectorImpl<uint64_t> &Record, 1426 unsigned Abbrev) { 1427 Record.push_back(N->isDistinct()); 1428 Record.push_back(N->getCount()); 1429 Record.push_back(rotateSign(N->getLowerBound())); 1430 1431 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1432 Record.clear(); 1433 } 1434 1435 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1436 SmallVectorImpl<uint64_t> &Record, 1437 unsigned Abbrev) { 1438 Record.push_back(N->isDistinct()); 1439 Record.push_back(rotateSign(N->getValue())); 1440 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1441 1442 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1443 Record.clear(); 1444 } 1445 1446 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1447 SmallVectorImpl<uint64_t> &Record, 1448 unsigned Abbrev) { 1449 Record.push_back(N->isDistinct()); 1450 Record.push_back(N->getTag()); 1451 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1452 Record.push_back(N->getSizeInBits()); 1453 Record.push_back(N->getAlignInBits()); 1454 Record.push_back(N->getEncoding()); 1455 1456 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1457 Record.clear(); 1458 } 1459 1460 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1461 SmallVectorImpl<uint64_t> &Record, 1462 unsigned Abbrev) { 1463 Record.push_back(N->isDistinct()); 1464 Record.push_back(N->getTag()); 1465 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1466 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1467 Record.push_back(N->getLine()); 1468 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1469 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1470 Record.push_back(N->getSizeInBits()); 1471 Record.push_back(N->getAlignInBits()); 1472 Record.push_back(N->getOffsetInBits()); 1473 Record.push_back(N->getFlags()); 1474 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1475 1476 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1477 // that there is no DWARF address space associated with DIDerivedType. 1478 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1479 Record.push_back(*DWARFAddressSpace + 1); 1480 else 1481 Record.push_back(0); 1482 1483 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1484 Record.clear(); 1485 } 1486 1487 void ModuleBitcodeWriter::writeDICompositeType( 1488 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1489 unsigned Abbrev) { 1490 const unsigned IsNotUsedInOldTypeRef = 0x2; 1491 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1492 Record.push_back(N->getTag()); 1493 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1494 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1495 Record.push_back(N->getLine()); 1496 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1497 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1498 Record.push_back(N->getSizeInBits()); 1499 Record.push_back(N->getAlignInBits()); 1500 Record.push_back(N->getOffsetInBits()); 1501 Record.push_back(N->getFlags()); 1502 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1503 Record.push_back(N->getRuntimeLang()); 1504 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1505 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1506 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1507 1508 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1509 Record.clear(); 1510 } 1511 1512 void ModuleBitcodeWriter::writeDISubroutineType( 1513 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1514 unsigned Abbrev) { 1515 const unsigned HasNoOldTypeRefs = 0x2; 1516 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1517 Record.push_back(N->getFlags()); 1518 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1519 Record.push_back(N->getCC()); 1520 1521 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1522 Record.clear(); 1523 } 1524 1525 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1526 SmallVectorImpl<uint64_t> &Record, 1527 unsigned Abbrev) { 1528 Record.push_back(N->isDistinct()); 1529 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1530 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1531 Record.push_back(N->getChecksumKind()); 1532 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1533 1534 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1535 Record.clear(); 1536 } 1537 1538 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1539 SmallVectorImpl<uint64_t> &Record, 1540 unsigned Abbrev) { 1541 assert(N->isDistinct() && "Expected distinct compile units"); 1542 Record.push_back(/* IsDistinct */ true); 1543 Record.push_back(N->getSourceLanguage()); 1544 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1545 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1546 Record.push_back(N->isOptimized()); 1547 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1548 Record.push_back(N->getRuntimeVersion()); 1549 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1550 Record.push_back(N->getEmissionKind()); 1551 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1552 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1553 Record.push_back(/* subprograms */ 0); 1554 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1555 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1556 Record.push_back(N->getDWOId()); 1557 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1558 Record.push_back(N->getSplitDebugInlining()); 1559 Record.push_back(N->getDebugInfoForProfiling()); 1560 1561 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1562 Record.clear(); 1563 } 1564 1565 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1566 SmallVectorImpl<uint64_t> &Record, 1567 unsigned Abbrev) { 1568 uint64_t HasUnitFlag = 1 << 1; 1569 Record.push_back(N->isDistinct() | HasUnitFlag); 1570 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1571 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1572 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1573 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1574 Record.push_back(N->getLine()); 1575 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1576 Record.push_back(N->isLocalToUnit()); 1577 Record.push_back(N->isDefinition()); 1578 Record.push_back(N->getScopeLine()); 1579 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1580 Record.push_back(N->getVirtuality()); 1581 Record.push_back(N->getVirtualIndex()); 1582 Record.push_back(N->getFlags()); 1583 Record.push_back(N->isOptimized()); 1584 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1587 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1588 Record.push_back(N->getThisAdjustment()); 1589 1590 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1591 Record.clear(); 1592 } 1593 1594 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1595 SmallVectorImpl<uint64_t> &Record, 1596 unsigned Abbrev) { 1597 Record.push_back(N->isDistinct()); 1598 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1600 Record.push_back(N->getLine()); 1601 Record.push_back(N->getColumn()); 1602 1603 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1604 Record.clear(); 1605 } 1606 1607 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1608 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1609 unsigned Abbrev) { 1610 Record.push_back(N->isDistinct()); 1611 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1612 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1613 Record.push_back(N->getDiscriminator()); 1614 1615 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1616 Record.clear(); 1617 } 1618 1619 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1620 SmallVectorImpl<uint64_t> &Record, 1621 unsigned Abbrev) { 1622 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1623 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1624 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1625 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1626 Record.push_back(N->getLine()); 1627 1628 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1629 Record.clear(); 1630 } 1631 1632 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1633 SmallVectorImpl<uint64_t> &Record, 1634 unsigned Abbrev) { 1635 Record.push_back(N->isDistinct()); 1636 Record.push_back(N->getMacinfoType()); 1637 Record.push_back(N->getLine()); 1638 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1639 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1640 1641 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1642 Record.clear(); 1643 } 1644 1645 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1646 SmallVectorImpl<uint64_t> &Record, 1647 unsigned Abbrev) { 1648 Record.push_back(N->isDistinct()); 1649 Record.push_back(N->getMacinfoType()); 1650 Record.push_back(N->getLine()); 1651 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1652 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1653 1654 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1655 Record.clear(); 1656 } 1657 1658 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1659 SmallVectorImpl<uint64_t> &Record, 1660 unsigned Abbrev) { 1661 Record.push_back(N->isDistinct()); 1662 for (auto &I : N->operands()) 1663 Record.push_back(VE.getMetadataOrNullID(I)); 1664 1665 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1666 Record.clear(); 1667 } 1668 1669 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1670 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1671 unsigned Abbrev) { 1672 Record.push_back(N->isDistinct()); 1673 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1674 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1675 1676 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1677 Record.clear(); 1678 } 1679 1680 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1681 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1682 unsigned Abbrev) { 1683 Record.push_back(N->isDistinct()); 1684 Record.push_back(N->getTag()); 1685 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1686 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1687 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1688 1689 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1690 Record.clear(); 1691 } 1692 1693 void ModuleBitcodeWriter::writeDIGlobalVariable( 1694 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1695 unsigned Abbrev) { 1696 const uint64_t Version = 1 << 1; 1697 Record.push_back((uint64_t)N->isDistinct() | Version); 1698 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1699 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1700 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1701 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1702 Record.push_back(N->getLine()); 1703 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1704 Record.push_back(N->isLocalToUnit()); 1705 Record.push_back(N->isDefinition()); 1706 Record.push_back(/* expr */ 0); 1707 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1708 Record.push_back(N->getAlignInBits()); 1709 1710 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1711 Record.clear(); 1712 } 1713 1714 void ModuleBitcodeWriter::writeDILocalVariable( 1715 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1716 unsigned Abbrev) { 1717 // In order to support all possible bitcode formats in BitcodeReader we need 1718 // to distinguish the following cases: 1719 // 1) Record has no artificial tag (Record[1]), 1720 // has no obsolete inlinedAt field (Record[9]). 1721 // In this case Record size will be 8, HasAlignment flag is false. 1722 // 2) Record has artificial tag (Record[1]), 1723 // has no obsolete inlignedAt field (Record[9]). 1724 // In this case Record size will be 9, HasAlignment flag is false. 1725 // 3) Record has both artificial tag (Record[1]) and 1726 // obsolete inlignedAt field (Record[9]). 1727 // In this case Record size will be 10, HasAlignment flag is false. 1728 // 4) Record has neither artificial tag, nor inlignedAt field, but 1729 // HasAlignment flag is true and Record[8] contains alignment value. 1730 const uint64_t HasAlignmentFlag = 1 << 1; 1731 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1732 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1733 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1734 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1735 Record.push_back(N->getLine()); 1736 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1737 Record.push_back(N->getArg()); 1738 Record.push_back(N->getFlags()); 1739 Record.push_back(N->getAlignInBits()); 1740 1741 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1742 Record.clear(); 1743 } 1744 1745 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1746 SmallVectorImpl<uint64_t> &Record, 1747 unsigned Abbrev) { 1748 Record.reserve(N->getElements().size() + 1); 1749 1750 const uint64_t HasOpFragmentFlag = 1 << 1; 1751 Record.push_back((uint64_t)N->isDistinct() | HasOpFragmentFlag); 1752 Record.append(N->elements_begin(), N->elements_end()); 1753 1754 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1755 Record.clear(); 1756 } 1757 1758 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1759 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1760 unsigned Abbrev) { 1761 Record.push_back(N->isDistinct()); 1762 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1763 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1764 1765 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1766 Record.clear(); 1767 } 1768 1769 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1770 SmallVectorImpl<uint64_t> &Record, 1771 unsigned Abbrev) { 1772 Record.push_back(N->isDistinct()); 1773 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1774 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1775 Record.push_back(N->getLine()); 1776 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1778 Record.push_back(N->getAttributes()); 1779 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1780 1781 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1782 Record.clear(); 1783 } 1784 1785 void ModuleBitcodeWriter::writeDIImportedEntity( 1786 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1787 unsigned Abbrev) { 1788 Record.push_back(N->isDistinct()); 1789 Record.push_back(N->getTag()); 1790 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1791 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1792 Record.push_back(N->getLine()); 1793 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1794 1795 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1796 Record.clear(); 1797 } 1798 1799 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1800 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1801 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1804 return Stream.EmitAbbrev(std::move(Abbv)); 1805 } 1806 1807 void ModuleBitcodeWriter::writeNamedMetadata( 1808 SmallVectorImpl<uint64_t> &Record) { 1809 if (M.named_metadata_empty()) 1810 return; 1811 1812 unsigned Abbrev = createNamedMetadataAbbrev(); 1813 for (const NamedMDNode &NMD : M.named_metadata()) { 1814 // Write name. 1815 StringRef Str = NMD.getName(); 1816 Record.append(Str.bytes_begin(), Str.bytes_end()); 1817 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1818 Record.clear(); 1819 1820 // Write named metadata operands. 1821 for (const MDNode *N : NMD.operands()) 1822 Record.push_back(VE.getMetadataID(N)); 1823 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1824 Record.clear(); 1825 } 1826 } 1827 1828 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1829 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1830 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1834 return Stream.EmitAbbrev(std::move(Abbv)); 1835 } 1836 1837 /// Write out a record for MDString. 1838 /// 1839 /// All the metadata strings in a metadata block are emitted in a single 1840 /// record. The sizes and strings themselves are shoved into a blob. 1841 void ModuleBitcodeWriter::writeMetadataStrings( 1842 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1843 if (Strings.empty()) 1844 return; 1845 1846 // Start the record with the number of strings. 1847 Record.push_back(bitc::METADATA_STRINGS); 1848 Record.push_back(Strings.size()); 1849 1850 // Emit the sizes of the strings in the blob. 1851 SmallString<256> Blob; 1852 { 1853 BitstreamWriter W(Blob); 1854 for (const Metadata *MD : Strings) 1855 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1856 W.FlushToWord(); 1857 } 1858 1859 // Add the offset to the strings to the record. 1860 Record.push_back(Blob.size()); 1861 1862 // Add the strings to the blob. 1863 for (const Metadata *MD : Strings) 1864 Blob.append(cast<MDString>(MD)->getString()); 1865 1866 // Emit the final record. 1867 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1868 Record.clear(); 1869 } 1870 1871 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1872 enum MetadataAbbrev : unsigned { 1873 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1874 #include "llvm/IR/Metadata.def" 1875 LastPlusOne 1876 }; 1877 1878 void ModuleBitcodeWriter::writeMetadataRecords( 1879 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1880 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1881 if (MDs.empty()) 1882 return; 1883 1884 // Initialize MDNode abbreviations. 1885 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1886 #include "llvm/IR/Metadata.def" 1887 1888 for (const Metadata *MD : MDs) { 1889 if (IndexPos) 1890 IndexPos->push_back(Stream.GetCurrentBitNo()); 1891 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1892 assert(N->isResolved() && "Expected forward references to be resolved"); 1893 1894 switch (N->getMetadataID()) { 1895 default: 1896 llvm_unreachable("Invalid MDNode subclass"); 1897 #define HANDLE_MDNODE_LEAF(CLASS) \ 1898 case Metadata::CLASS##Kind: \ 1899 if (MDAbbrevs) \ 1900 write##CLASS(cast<CLASS>(N), Record, \ 1901 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1902 else \ 1903 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1904 continue; 1905 #include "llvm/IR/Metadata.def" 1906 } 1907 } 1908 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1909 } 1910 } 1911 1912 void ModuleBitcodeWriter::writeModuleMetadata() { 1913 if (!VE.hasMDs() && M.named_metadata_empty()) 1914 return; 1915 1916 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1917 SmallVector<uint64_t, 64> Record; 1918 1919 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1920 // block and load any metadata. 1921 std::vector<unsigned> MDAbbrevs; 1922 1923 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1924 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1925 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1926 createGenericDINodeAbbrev(); 1927 1928 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1929 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1932 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1933 1934 Abbv = std::make_shared<BitCodeAbbrev>(); 1935 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1938 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1939 1940 // Emit MDStrings together upfront. 1941 writeMetadataStrings(VE.getMDStrings(), Record); 1942 1943 // We only emit an index for the metadata record if we have more than a given 1944 // (naive) threshold of metadatas, otherwise it is not worth it. 1945 if (VE.getNonMDStrings().size() > IndexThreshold) { 1946 // Write a placeholder value in for the offset of the metadata index, 1947 // which is written after the records, so that it can include 1948 // the offset of each entry. The placeholder offset will be 1949 // updated after all records are emitted. 1950 uint64_t Vals[] = {0, 0}; 1951 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1952 } 1953 1954 // Compute and save the bit offset to the current position, which will be 1955 // patched when we emit the index later. We can simply subtract the 64-bit 1956 // fixed size from the current bit number to get the location to backpatch. 1957 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1958 1959 // This index will contain the bitpos for each individual record. 1960 std::vector<uint64_t> IndexPos; 1961 IndexPos.reserve(VE.getNonMDStrings().size()); 1962 1963 // Write all the records 1964 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1965 1966 if (VE.getNonMDStrings().size() > IndexThreshold) { 1967 // Now that we have emitted all the records we will emit the index. But 1968 // first 1969 // backpatch the forward reference so that the reader can skip the records 1970 // efficiently. 1971 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1972 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1973 1974 // Delta encode the index. 1975 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1976 for (auto &Elt : IndexPos) { 1977 auto EltDelta = Elt - PreviousValue; 1978 PreviousValue = Elt; 1979 Elt = EltDelta; 1980 } 1981 // Emit the index record. 1982 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1983 IndexPos.clear(); 1984 } 1985 1986 // Write the named metadata now. 1987 writeNamedMetadata(Record); 1988 1989 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1990 SmallVector<uint64_t, 4> Record; 1991 Record.push_back(VE.getValueID(&GO)); 1992 pushGlobalMetadataAttachment(Record, GO); 1993 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1994 }; 1995 for (const Function &F : M) 1996 if (F.isDeclaration() && F.hasMetadata()) 1997 AddDeclAttachedMetadata(F); 1998 // FIXME: Only store metadata for declarations here, and move data for global 1999 // variable definitions to a separate block (PR28134). 2000 for (const GlobalVariable &GV : M.globals()) 2001 if (GV.hasMetadata()) 2002 AddDeclAttachedMetadata(GV); 2003 2004 Stream.ExitBlock(); 2005 } 2006 2007 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2008 if (!VE.hasMDs()) 2009 return; 2010 2011 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2012 SmallVector<uint64_t, 64> Record; 2013 writeMetadataStrings(VE.getMDStrings(), Record); 2014 writeMetadataRecords(VE.getNonMDStrings(), Record); 2015 Stream.ExitBlock(); 2016 } 2017 2018 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2019 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2020 // [n x [id, mdnode]] 2021 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2022 GO.getAllMetadata(MDs); 2023 for (const auto &I : MDs) { 2024 Record.push_back(I.first); 2025 Record.push_back(VE.getMetadataID(I.second)); 2026 } 2027 } 2028 2029 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2030 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2031 2032 SmallVector<uint64_t, 64> Record; 2033 2034 if (F.hasMetadata()) { 2035 pushGlobalMetadataAttachment(Record, F); 2036 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2037 Record.clear(); 2038 } 2039 2040 // Write metadata attachments 2041 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2042 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2043 for (const BasicBlock &BB : F) 2044 for (const Instruction &I : BB) { 2045 MDs.clear(); 2046 I.getAllMetadataOtherThanDebugLoc(MDs); 2047 2048 // If no metadata, ignore instruction. 2049 if (MDs.empty()) continue; 2050 2051 Record.push_back(VE.getInstructionID(&I)); 2052 2053 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2054 Record.push_back(MDs[i].first); 2055 Record.push_back(VE.getMetadataID(MDs[i].second)); 2056 } 2057 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2058 Record.clear(); 2059 } 2060 2061 Stream.ExitBlock(); 2062 } 2063 2064 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2065 SmallVector<uint64_t, 64> Record; 2066 2067 // Write metadata kinds 2068 // METADATA_KIND - [n x [id, name]] 2069 SmallVector<StringRef, 8> Names; 2070 M.getMDKindNames(Names); 2071 2072 if (Names.empty()) return; 2073 2074 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2075 2076 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2077 Record.push_back(MDKindID); 2078 StringRef KName = Names[MDKindID]; 2079 Record.append(KName.begin(), KName.end()); 2080 2081 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2082 Record.clear(); 2083 } 2084 2085 Stream.ExitBlock(); 2086 } 2087 2088 void ModuleBitcodeWriter::writeOperandBundleTags() { 2089 // Write metadata kinds 2090 // 2091 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2092 // 2093 // OPERAND_BUNDLE_TAG - [strchr x N] 2094 2095 SmallVector<StringRef, 8> Tags; 2096 M.getOperandBundleTags(Tags); 2097 2098 if (Tags.empty()) 2099 return; 2100 2101 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2102 2103 SmallVector<uint64_t, 64> Record; 2104 2105 for (auto Tag : Tags) { 2106 Record.append(Tag.begin(), Tag.end()); 2107 2108 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2109 Record.clear(); 2110 } 2111 2112 Stream.ExitBlock(); 2113 } 2114 2115 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2116 if ((int64_t)V >= 0) 2117 Vals.push_back(V << 1); 2118 else 2119 Vals.push_back((-V << 1) | 1); 2120 } 2121 2122 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2123 bool isGlobal) { 2124 if (FirstVal == LastVal) return; 2125 2126 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2127 2128 unsigned AggregateAbbrev = 0; 2129 unsigned String8Abbrev = 0; 2130 unsigned CString7Abbrev = 0; 2131 unsigned CString6Abbrev = 0; 2132 // If this is a constant pool for the module, emit module-specific abbrevs. 2133 if (isGlobal) { 2134 // Abbrev for CST_CODE_AGGREGATE. 2135 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2136 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2139 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2140 2141 // Abbrev for CST_CODE_STRING. 2142 Abbv = std::make_shared<BitCodeAbbrev>(); 2143 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2146 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2147 // Abbrev for CST_CODE_CSTRING. 2148 Abbv = std::make_shared<BitCodeAbbrev>(); 2149 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2152 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2153 // Abbrev for CST_CODE_CSTRING. 2154 Abbv = std::make_shared<BitCodeAbbrev>(); 2155 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2158 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2159 } 2160 2161 SmallVector<uint64_t, 64> Record; 2162 2163 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2164 Type *LastTy = nullptr; 2165 for (unsigned i = FirstVal; i != LastVal; ++i) { 2166 const Value *V = Vals[i].first; 2167 // If we need to switch types, do so now. 2168 if (V->getType() != LastTy) { 2169 LastTy = V->getType(); 2170 Record.push_back(VE.getTypeID(LastTy)); 2171 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2172 CONSTANTS_SETTYPE_ABBREV); 2173 Record.clear(); 2174 } 2175 2176 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2177 Record.push_back(unsigned(IA->hasSideEffects()) | 2178 unsigned(IA->isAlignStack()) << 1 | 2179 unsigned(IA->getDialect()&1) << 2); 2180 2181 // Add the asm string. 2182 const std::string &AsmStr = IA->getAsmString(); 2183 Record.push_back(AsmStr.size()); 2184 Record.append(AsmStr.begin(), AsmStr.end()); 2185 2186 // Add the constraint string. 2187 const std::string &ConstraintStr = IA->getConstraintString(); 2188 Record.push_back(ConstraintStr.size()); 2189 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2190 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2191 Record.clear(); 2192 continue; 2193 } 2194 const Constant *C = cast<Constant>(V); 2195 unsigned Code = -1U; 2196 unsigned AbbrevToUse = 0; 2197 if (C->isNullValue()) { 2198 Code = bitc::CST_CODE_NULL; 2199 } else if (isa<UndefValue>(C)) { 2200 Code = bitc::CST_CODE_UNDEF; 2201 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2202 if (IV->getBitWidth() <= 64) { 2203 uint64_t V = IV->getSExtValue(); 2204 emitSignedInt64(Record, V); 2205 Code = bitc::CST_CODE_INTEGER; 2206 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2207 } else { // Wide integers, > 64 bits in size. 2208 // We have an arbitrary precision integer value to write whose 2209 // bit width is > 64. However, in canonical unsigned integer 2210 // format it is likely that the high bits are going to be zero. 2211 // So, we only write the number of active words. 2212 unsigned NWords = IV->getValue().getActiveWords(); 2213 const uint64_t *RawWords = IV->getValue().getRawData(); 2214 for (unsigned i = 0; i != NWords; ++i) { 2215 emitSignedInt64(Record, RawWords[i]); 2216 } 2217 Code = bitc::CST_CODE_WIDE_INTEGER; 2218 } 2219 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2220 Code = bitc::CST_CODE_FLOAT; 2221 Type *Ty = CFP->getType(); 2222 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2223 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2224 } else if (Ty->isX86_FP80Ty()) { 2225 // api needed to prevent premature destruction 2226 // bits are not in the same order as a normal i80 APInt, compensate. 2227 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2228 const uint64_t *p = api.getRawData(); 2229 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2230 Record.push_back(p[0] & 0xffffLL); 2231 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2232 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2233 const uint64_t *p = api.getRawData(); 2234 Record.push_back(p[0]); 2235 Record.push_back(p[1]); 2236 } else { 2237 assert (0 && "Unknown FP type!"); 2238 } 2239 } else if (isa<ConstantDataSequential>(C) && 2240 cast<ConstantDataSequential>(C)->isString()) { 2241 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2242 // Emit constant strings specially. 2243 unsigned NumElts = Str->getNumElements(); 2244 // If this is a null-terminated string, use the denser CSTRING encoding. 2245 if (Str->isCString()) { 2246 Code = bitc::CST_CODE_CSTRING; 2247 --NumElts; // Don't encode the null, which isn't allowed by char6. 2248 } else { 2249 Code = bitc::CST_CODE_STRING; 2250 AbbrevToUse = String8Abbrev; 2251 } 2252 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2253 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2254 for (unsigned i = 0; i != NumElts; ++i) { 2255 unsigned char V = Str->getElementAsInteger(i); 2256 Record.push_back(V); 2257 isCStr7 &= (V & 128) == 0; 2258 if (isCStrChar6) 2259 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2260 } 2261 2262 if (isCStrChar6) 2263 AbbrevToUse = CString6Abbrev; 2264 else if (isCStr7) 2265 AbbrevToUse = CString7Abbrev; 2266 } else if (const ConstantDataSequential *CDS = 2267 dyn_cast<ConstantDataSequential>(C)) { 2268 Code = bitc::CST_CODE_DATA; 2269 Type *EltTy = CDS->getType()->getElementType(); 2270 if (isa<IntegerType>(EltTy)) { 2271 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2272 Record.push_back(CDS->getElementAsInteger(i)); 2273 } else { 2274 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2275 Record.push_back( 2276 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2277 } 2278 } else if (isa<ConstantAggregate>(C)) { 2279 Code = bitc::CST_CODE_AGGREGATE; 2280 for (const Value *Op : C->operands()) 2281 Record.push_back(VE.getValueID(Op)); 2282 AbbrevToUse = AggregateAbbrev; 2283 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2284 switch (CE->getOpcode()) { 2285 default: 2286 if (Instruction::isCast(CE->getOpcode())) { 2287 Code = bitc::CST_CODE_CE_CAST; 2288 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2289 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2290 Record.push_back(VE.getValueID(C->getOperand(0))); 2291 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2292 } else { 2293 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2294 Code = bitc::CST_CODE_CE_BINOP; 2295 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2296 Record.push_back(VE.getValueID(C->getOperand(0))); 2297 Record.push_back(VE.getValueID(C->getOperand(1))); 2298 uint64_t Flags = getOptimizationFlags(CE); 2299 if (Flags != 0) 2300 Record.push_back(Flags); 2301 } 2302 break; 2303 case Instruction::GetElementPtr: { 2304 Code = bitc::CST_CODE_CE_GEP; 2305 const auto *GO = cast<GEPOperator>(C); 2306 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2307 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2308 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2309 Record.push_back((*Idx << 1) | GO->isInBounds()); 2310 } else if (GO->isInBounds()) 2311 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2312 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2313 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2314 Record.push_back(VE.getValueID(C->getOperand(i))); 2315 } 2316 break; 2317 } 2318 case Instruction::Select: 2319 Code = bitc::CST_CODE_CE_SELECT; 2320 Record.push_back(VE.getValueID(C->getOperand(0))); 2321 Record.push_back(VE.getValueID(C->getOperand(1))); 2322 Record.push_back(VE.getValueID(C->getOperand(2))); 2323 break; 2324 case Instruction::ExtractElement: 2325 Code = bitc::CST_CODE_CE_EXTRACTELT; 2326 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2327 Record.push_back(VE.getValueID(C->getOperand(0))); 2328 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2329 Record.push_back(VE.getValueID(C->getOperand(1))); 2330 break; 2331 case Instruction::InsertElement: 2332 Code = bitc::CST_CODE_CE_INSERTELT; 2333 Record.push_back(VE.getValueID(C->getOperand(0))); 2334 Record.push_back(VE.getValueID(C->getOperand(1))); 2335 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2336 Record.push_back(VE.getValueID(C->getOperand(2))); 2337 break; 2338 case Instruction::ShuffleVector: 2339 // If the return type and argument types are the same, this is a 2340 // standard shufflevector instruction. If the types are different, 2341 // then the shuffle is widening or truncating the input vectors, and 2342 // the argument type must also be encoded. 2343 if (C->getType() == C->getOperand(0)->getType()) { 2344 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2345 } else { 2346 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2347 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2348 } 2349 Record.push_back(VE.getValueID(C->getOperand(0))); 2350 Record.push_back(VE.getValueID(C->getOperand(1))); 2351 Record.push_back(VE.getValueID(C->getOperand(2))); 2352 break; 2353 case Instruction::ICmp: 2354 case Instruction::FCmp: 2355 Code = bitc::CST_CODE_CE_CMP; 2356 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2357 Record.push_back(VE.getValueID(C->getOperand(0))); 2358 Record.push_back(VE.getValueID(C->getOperand(1))); 2359 Record.push_back(CE->getPredicate()); 2360 break; 2361 } 2362 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2363 Code = bitc::CST_CODE_BLOCKADDRESS; 2364 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2365 Record.push_back(VE.getValueID(BA->getFunction())); 2366 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2367 } else { 2368 #ifndef NDEBUG 2369 C->dump(); 2370 #endif 2371 llvm_unreachable("Unknown constant!"); 2372 } 2373 Stream.EmitRecord(Code, Record, AbbrevToUse); 2374 Record.clear(); 2375 } 2376 2377 Stream.ExitBlock(); 2378 } 2379 2380 void ModuleBitcodeWriter::writeModuleConstants() { 2381 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2382 2383 // Find the first constant to emit, which is the first non-globalvalue value. 2384 // We know globalvalues have been emitted by WriteModuleInfo. 2385 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2386 if (!isa<GlobalValue>(Vals[i].first)) { 2387 writeConstants(i, Vals.size(), true); 2388 return; 2389 } 2390 } 2391 } 2392 2393 /// pushValueAndType - The file has to encode both the value and type id for 2394 /// many values, because we need to know what type to create for forward 2395 /// references. However, most operands are not forward references, so this type 2396 /// field is not needed. 2397 /// 2398 /// This function adds V's value ID to Vals. If the value ID is higher than the 2399 /// instruction ID, then it is a forward reference, and it also includes the 2400 /// type ID. The value ID that is written is encoded relative to the InstID. 2401 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2402 SmallVectorImpl<unsigned> &Vals) { 2403 unsigned ValID = VE.getValueID(V); 2404 // Make encoding relative to the InstID. 2405 Vals.push_back(InstID - ValID); 2406 if (ValID >= InstID) { 2407 Vals.push_back(VE.getTypeID(V->getType())); 2408 return true; 2409 } 2410 return false; 2411 } 2412 2413 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2414 unsigned InstID) { 2415 SmallVector<unsigned, 64> Record; 2416 LLVMContext &C = CS.getInstruction()->getContext(); 2417 2418 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2419 const auto &Bundle = CS.getOperandBundleAt(i); 2420 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2421 2422 for (auto &Input : Bundle.Inputs) 2423 pushValueAndType(Input, InstID, Record); 2424 2425 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2426 Record.clear(); 2427 } 2428 } 2429 2430 /// pushValue - Like pushValueAndType, but where the type of the value is 2431 /// omitted (perhaps it was already encoded in an earlier operand). 2432 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2433 SmallVectorImpl<unsigned> &Vals) { 2434 unsigned ValID = VE.getValueID(V); 2435 Vals.push_back(InstID - ValID); 2436 } 2437 2438 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2439 SmallVectorImpl<uint64_t> &Vals) { 2440 unsigned ValID = VE.getValueID(V); 2441 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2442 emitSignedInt64(Vals, diff); 2443 } 2444 2445 /// WriteInstruction - Emit an instruction to the specified stream. 2446 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2447 unsigned InstID, 2448 SmallVectorImpl<unsigned> &Vals) { 2449 unsigned Code = 0; 2450 unsigned AbbrevToUse = 0; 2451 VE.setInstructionID(&I); 2452 switch (I.getOpcode()) { 2453 default: 2454 if (Instruction::isCast(I.getOpcode())) { 2455 Code = bitc::FUNC_CODE_INST_CAST; 2456 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2457 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2458 Vals.push_back(VE.getTypeID(I.getType())); 2459 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2460 } else { 2461 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2462 Code = bitc::FUNC_CODE_INST_BINOP; 2463 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2464 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2465 pushValue(I.getOperand(1), InstID, Vals); 2466 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2467 uint64_t Flags = getOptimizationFlags(&I); 2468 if (Flags != 0) { 2469 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2470 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2471 Vals.push_back(Flags); 2472 } 2473 } 2474 break; 2475 2476 case Instruction::GetElementPtr: { 2477 Code = bitc::FUNC_CODE_INST_GEP; 2478 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2479 auto &GEPInst = cast<GetElementPtrInst>(I); 2480 Vals.push_back(GEPInst.isInBounds()); 2481 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2482 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2483 pushValueAndType(I.getOperand(i), InstID, Vals); 2484 break; 2485 } 2486 case Instruction::ExtractValue: { 2487 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2488 pushValueAndType(I.getOperand(0), InstID, Vals); 2489 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2490 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2491 break; 2492 } 2493 case Instruction::InsertValue: { 2494 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2495 pushValueAndType(I.getOperand(0), InstID, Vals); 2496 pushValueAndType(I.getOperand(1), InstID, Vals); 2497 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2498 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2499 break; 2500 } 2501 case Instruction::Select: 2502 Code = bitc::FUNC_CODE_INST_VSELECT; 2503 pushValueAndType(I.getOperand(1), InstID, Vals); 2504 pushValue(I.getOperand(2), InstID, Vals); 2505 pushValueAndType(I.getOperand(0), InstID, Vals); 2506 break; 2507 case Instruction::ExtractElement: 2508 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2509 pushValueAndType(I.getOperand(0), InstID, Vals); 2510 pushValueAndType(I.getOperand(1), InstID, Vals); 2511 break; 2512 case Instruction::InsertElement: 2513 Code = bitc::FUNC_CODE_INST_INSERTELT; 2514 pushValueAndType(I.getOperand(0), InstID, Vals); 2515 pushValue(I.getOperand(1), InstID, Vals); 2516 pushValueAndType(I.getOperand(2), InstID, Vals); 2517 break; 2518 case Instruction::ShuffleVector: 2519 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2520 pushValueAndType(I.getOperand(0), InstID, Vals); 2521 pushValue(I.getOperand(1), InstID, Vals); 2522 pushValue(I.getOperand(2), InstID, Vals); 2523 break; 2524 case Instruction::ICmp: 2525 case Instruction::FCmp: { 2526 // compare returning Int1Ty or vector of Int1Ty 2527 Code = bitc::FUNC_CODE_INST_CMP2; 2528 pushValueAndType(I.getOperand(0), InstID, Vals); 2529 pushValue(I.getOperand(1), InstID, Vals); 2530 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2531 uint64_t Flags = getOptimizationFlags(&I); 2532 if (Flags != 0) 2533 Vals.push_back(Flags); 2534 break; 2535 } 2536 2537 case Instruction::Ret: 2538 { 2539 Code = bitc::FUNC_CODE_INST_RET; 2540 unsigned NumOperands = I.getNumOperands(); 2541 if (NumOperands == 0) 2542 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2543 else if (NumOperands == 1) { 2544 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2545 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2546 } else { 2547 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2548 pushValueAndType(I.getOperand(i), InstID, Vals); 2549 } 2550 } 2551 break; 2552 case Instruction::Br: 2553 { 2554 Code = bitc::FUNC_CODE_INST_BR; 2555 const BranchInst &II = cast<BranchInst>(I); 2556 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2557 if (II.isConditional()) { 2558 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2559 pushValue(II.getCondition(), InstID, Vals); 2560 } 2561 } 2562 break; 2563 case Instruction::Switch: 2564 { 2565 Code = bitc::FUNC_CODE_INST_SWITCH; 2566 const SwitchInst &SI = cast<SwitchInst>(I); 2567 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2568 pushValue(SI.getCondition(), InstID, Vals); 2569 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2570 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2571 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2572 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2573 } 2574 } 2575 break; 2576 case Instruction::IndirectBr: 2577 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2578 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2579 // Encode the address operand as relative, but not the basic blocks. 2580 pushValue(I.getOperand(0), InstID, Vals); 2581 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2582 Vals.push_back(VE.getValueID(I.getOperand(i))); 2583 break; 2584 2585 case Instruction::Invoke: { 2586 const InvokeInst *II = cast<InvokeInst>(&I); 2587 const Value *Callee = II->getCalledValue(); 2588 FunctionType *FTy = II->getFunctionType(); 2589 2590 if (II->hasOperandBundles()) 2591 writeOperandBundles(II, InstID); 2592 2593 Code = bitc::FUNC_CODE_INST_INVOKE; 2594 2595 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2596 Vals.push_back(II->getCallingConv() | 1 << 13); 2597 Vals.push_back(VE.getValueID(II->getNormalDest())); 2598 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2599 Vals.push_back(VE.getTypeID(FTy)); 2600 pushValueAndType(Callee, InstID, Vals); 2601 2602 // Emit value #'s for the fixed parameters. 2603 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2604 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2605 2606 // Emit type/value pairs for varargs params. 2607 if (FTy->isVarArg()) { 2608 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2609 i != e; ++i) 2610 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2611 } 2612 break; 2613 } 2614 case Instruction::Resume: 2615 Code = bitc::FUNC_CODE_INST_RESUME; 2616 pushValueAndType(I.getOperand(0), InstID, Vals); 2617 break; 2618 case Instruction::CleanupRet: { 2619 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2620 const auto &CRI = cast<CleanupReturnInst>(I); 2621 pushValue(CRI.getCleanupPad(), InstID, Vals); 2622 if (CRI.hasUnwindDest()) 2623 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2624 break; 2625 } 2626 case Instruction::CatchRet: { 2627 Code = bitc::FUNC_CODE_INST_CATCHRET; 2628 const auto &CRI = cast<CatchReturnInst>(I); 2629 pushValue(CRI.getCatchPad(), InstID, Vals); 2630 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2631 break; 2632 } 2633 case Instruction::CleanupPad: 2634 case Instruction::CatchPad: { 2635 const auto &FuncletPad = cast<FuncletPadInst>(I); 2636 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2637 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2638 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2639 2640 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2641 Vals.push_back(NumArgOperands); 2642 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2643 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2644 break; 2645 } 2646 case Instruction::CatchSwitch: { 2647 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2648 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2649 2650 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2651 2652 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2653 Vals.push_back(NumHandlers); 2654 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2655 Vals.push_back(VE.getValueID(CatchPadBB)); 2656 2657 if (CatchSwitch.hasUnwindDest()) 2658 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2659 break; 2660 } 2661 case Instruction::Unreachable: 2662 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2663 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2664 break; 2665 2666 case Instruction::PHI: { 2667 const PHINode &PN = cast<PHINode>(I); 2668 Code = bitc::FUNC_CODE_INST_PHI; 2669 // With the newer instruction encoding, forward references could give 2670 // negative valued IDs. This is most common for PHIs, so we use 2671 // signed VBRs. 2672 SmallVector<uint64_t, 128> Vals64; 2673 Vals64.push_back(VE.getTypeID(PN.getType())); 2674 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2675 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2676 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2677 } 2678 // Emit a Vals64 vector and exit. 2679 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2680 Vals64.clear(); 2681 return; 2682 } 2683 2684 case Instruction::LandingPad: { 2685 const LandingPadInst &LP = cast<LandingPadInst>(I); 2686 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2687 Vals.push_back(VE.getTypeID(LP.getType())); 2688 Vals.push_back(LP.isCleanup()); 2689 Vals.push_back(LP.getNumClauses()); 2690 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2691 if (LP.isCatch(I)) 2692 Vals.push_back(LandingPadInst::Catch); 2693 else 2694 Vals.push_back(LandingPadInst::Filter); 2695 pushValueAndType(LP.getClause(I), InstID, Vals); 2696 } 2697 break; 2698 } 2699 2700 case Instruction::Alloca: { 2701 Code = bitc::FUNC_CODE_INST_ALLOCA; 2702 const AllocaInst &AI = cast<AllocaInst>(I); 2703 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2704 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2705 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2706 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2707 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2708 "not enough bits for maximum alignment"); 2709 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2710 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2711 AlignRecord |= 1 << 6; 2712 AlignRecord |= AI.isSwiftError() << 7; 2713 Vals.push_back(AlignRecord); 2714 break; 2715 } 2716 2717 case Instruction::Load: 2718 if (cast<LoadInst>(I).isAtomic()) { 2719 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2720 pushValueAndType(I.getOperand(0), InstID, Vals); 2721 } else { 2722 Code = bitc::FUNC_CODE_INST_LOAD; 2723 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2724 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2725 } 2726 Vals.push_back(VE.getTypeID(I.getType())); 2727 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2728 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2729 if (cast<LoadInst>(I).isAtomic()) { 2730 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2731 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2732 } 2733 break; 2734 case Instruction::Store: 2735 if (cast<StoreInst>(I).isAtomic()) 2736 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2737 else 2738 Code = bitc::FUNC_CODE_INST_STORE; 2739 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2740 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2741 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2742 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2743 if (cast<StoreInst>(I).isAtomic()) { 2744 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2745 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2746 } 2747 break; 2748 case Instruction::AtomicCmpXchg: 2749 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2750 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2751 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2752 pushValue(I.getOperand(2), InstID, Vals); // newval. 2753 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2754 Vals.push_back( 2755 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2756 Vals.push_back( 2757 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2758 Vals.push_back( 2759 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2760 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2761 break; 2762 case Instruction::AtomicRMW: 2763 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2764 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2765 pushValue(I.getOperand(1), InstID, Vals); // val. 2766 Vals.push_back( 2767 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2768 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2769 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2770 Vals.push_back( 2771 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2772 break; 2773 case Instruction::Fence: 2774 Code = bitc::FUNC_CODE_INST_FENCE; 2775 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2776 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2777 break; 2778 case Instruction::Call: { 2779 const CallInst &CI = cast<CallInst>(I); 2780 FunctionType *FTy = CI.getFunctionType(); 2781 2782 if (CI.hasOperandBundles()) 2783 writeOperandBundles(&CI, InstID); 2784 2785 Code = bitc::FUNC_CODE_INST_CALL; 2786 2787 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2788 2789 unsigned Flags = getOptimizationFlags(&I); 2790 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2791 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2792 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2793 1 << bitc::CALL_EXPLICIT_TYPE | 2794 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2795 unsigned(Flags != 0) << bitc::CALL_FMF); 2796 if (Flags != 0) 2797 Vals.push_back(Flags); 2798 2799 Vals.push_back(VE.getTypeID(FTy)); 2800 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2801 2802 // Emit value #'s for the fixed parameters. 2803 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2804 // Check for labels (can happen with asm labels). 2805 if (FTy->getParamType(i)->isLabelTy()) 2806 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2807 else 2808 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2809 } 2810 2811 // Emit type/value pairs for varargs params. 2812 if (FTy->isVarArg()) { 2813 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2814 i != e; ++i) 2815 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2816 } 2817 break; 2818 } 2819 case Instruction::VAArg: 2820 Code = bitc::FUNC_CODE_INST_VAARG; 2821 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2822 pushValue(I.getOperand(0), InstID, Vals); // valist. 2823 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2824 break; 2825 } 2826 2827 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2828 Vals.clear(); 2829 } 2830 2831 /// Emit names for globals/functions etc. \p IsModuleLevel is true when 2832 /// we are writing the module-level VST, where we are including a function 2833 /// bitcode index and need to backpatch the VST forward declaration record. 2834 void ModuleBitcodeWriter::writeValueSymbolTable( 2835 const ValueSymbolTable &VST, bool IsModuleLevel, 2836 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) { 2837 if (VST.empty()) { 2838 // writeValueSymbolTableForwardDecl should have returned early as 2839 // well. Ensure this handling remains in sync by asserting that 2840 // the placeholder offset is not set. 2841 assert(!IsModuleLevel || !hasVSTOffsetPlaceholder()); 2842 return; 2843 } 2844 2845 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2846 // Get the offset of the VST we are writing, and backpatch it into 2847 // the VST forward declaration record. 2848 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2849 // The BitcodeStartBit was the stream offset of the identification block. 2850 VSTOffset -= bitcodeStartBit(); 2851 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2852 // Note that we add 1 here because the offset is relative to one word 2853 // before the start of the identification block, which was historically 2854 // always the start of the regular bitcode header. 2855 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2856 } 2857 2858 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2859 2860 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2861 // records, which are not used in the per-function VSTs. 2862 unsigned FnEntry8BitAbbrev; 2863 unsigned FnEntry7BitAbbrev; 2864 unsigned FnEntry6BitAbbrev; 2865 unsigned GUIDEntryAbbrev; 2866 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2867 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2868 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2869 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2874 FnEntry8BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2875 2876 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2877 Abbv = std::make_shared<BitCodeAbbrev>(); 2878 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2883 FnEntry7BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2884 2885 // 6-bit char6 VST_CODE_FNENTRY function strings. 2886 Abbv = std::make_shared<BitCodeAbbrev>(); 2887 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2892 FnEntry6BitAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2893 2894 // FIXME: Change the name of this record as it is now used by 2895 // the per-module index as well. 2896 Abbv = std::make_shared<BitCodeAbbrev>(); 2897 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2900 GUIDEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2901 } 2902 2903 // FIXME: Set up the abbrev, we know how many values there are! 2904 // FIXME: We know if the type names can use 7-bit ascii. 2905 SmallVector<uint64_t, 64> NameVals; 2906 2907 for (const ValueName &Name : VST) { 2908 // Figure out the encoding to use for the name. 2909 StringEncoding Bits = 2910 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2911 2912 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2913 NameVals.push_back(VE.getValueID(Name.getValue())); 2914 2915 Function *F = dyn_cast<Function>(Name.getValue()); 2916 if (!F) { 2917 // If value is an alias, need to get the aliased base object to 2918 // see if it is a function. 2919 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2920 if (GA && GA->getBaseObject()) 2921 F = dyn_cast<Function>(GA->getBaseObject()); 2922 } 2923 2924 // VST_CODE_ENTRY: [valueid, namechar x N] 2925 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2926 // VST_CODE_BBENTRY: [bbid, namechar x N] 2927 unsigned Code; 2928 if (isa<BasicBlock>(Name.getValue())) { 2929 Code = bitc::VST_CODE_BBENTRY; 2930 if (Bits == SE_Char6) 2931 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2932 } else if (F && !F->isDeclaration()) { 2933 // Must be the module-level VST, where we pass in the Index and 2934 // have a VSTOffsetPlaceholder. The function-level VST should not 2935 // contain any Function symbols. 2936 assert(FunctionToBitcodeIndex); 2937 assert(hasVSTOffsetPlaceholder()); 2938 2939 // Save the word offset of the function (from the start of the 2940 // actual bitcode written to the stream). 2941 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit(); 2942 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2943 // Note that we add 1 here because the offset is relative to one word 2944 // before the start of the identification block, which was historically 2945 // always the start of the regular bitcode header. 2946 NameVals.push_back(BitcodeIndex / 32 + 1); 2947 2948 Code = bitc::VST_CODE_FNENTRY; 2949 AbbrevToUse = FnEntry8BitAbbrev; 2950 if (Bits == SE_Char6) 2951 AbbrevToUse = FnEntry6BitAbbrev; 2952 else if (Bits == SE_Fixed7) 2953 AbbrevToUse = FnEntry7BitAbbrev; 2954 } else { 2955 Code = bitc::VST_CODE_ENTRY; 2956 if (Bits == SE_Char6) 2957 AbbrevToUse = VST_ENTRY_6_ABBREV; 2958 else if (Bits == SE_Fixed7) 2959 AbbrevToUse = VST_ENTRY_7_ABBREV; 2960 } 2961 2962 for (const auto P : Name.getKey()) 2963 NameVals.push_back((unsigned char)P); 2964 2965 // Emit the finished record. 2966 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2967 NameVals.clear(); 2968 } 2969 // Emit any GUID valueIDs created for indirect call edges into the 2970 // module-level VST. 2971 if (IsModuleLevel && hasVSTOffsetPlaceholder()) 2972 for (const auto &GI : valueIds()) { 2973 NameVals.push_back(GI.second); 2974 NameVals.push_back(GI.first); 2975 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, 2976 GUIDEntryAbbrev); 2977 NameVals.clear(); 2978 } 2979 Stream.ExitBlock(); 2980 } 2981 2982 /// Emit function names and summary offsets for the combined index 2983 /// used by ThinLTO. 2984 void IndexBitcodeWriter::writeCombinedValueSymbolTable() { 2985 assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder"); 2986 // Get the offset of the VST we are writing, and backpatch it into 2987 // the VST forward declaration record. 2988 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2989 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2990 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2991 2992 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2993 2994 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2995 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2998 unsigned EntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2999 3000 SmallVector<uint64_t, 64> NameVals; 3001 for (const auto &GVI : valueIds()) { 3002 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 3003 NameVals.push_back(GVI.second); 3004 NameVals.push_back(GVI.first); 3005 3006 // Emit the finished record. 3007 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 3008 NameVals.clear(); 3009 } 3010 Stream.ExitBlock(); 3011 } 3012 3013 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3014 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3015 unsigned Code; 3016 if (isa<BasicBlock>(Order.V)) 3017 Code = bitc::USELIST_CODE_BB; 3018 else 3019 Code = bitc::USELIST_CODE_DEFAULT; 3020 3021 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3022 Record.push_back(VE.getValueID(Order.V)); 3023 Stream.EmitRecord(Code, Record); 3024 } 3025 3026 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3027 assert(VE.shouldPreserveUseListOrder() && 3028 "Expected to be preserving use-list order"); 3029 3030 auto hasMore = [&]() { 3031 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3032 }; 3033 if (!hasMore()) 3034 // Nothing to do. 3035 return; 3036 3037 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3038 while (hasMore()) { 3039 writeUseList(std::move(VE.UseListOrders.back())); 3040 VE.UseListOrders.pop_back(); 3041 } 3042 Stream.ExitBlock(); 3043 } 3044 3045 /// Emit a function body to the module stream. 3046 void ModuleBitcodeWriter::writeFunction( 3047 const Function &F, 3048 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3049 // Save the bitcode index of the start of this function block for recording 3050 // in the VST. 3051 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3052 3053 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3054 VE.incorporateFunction(F); 3055 3056 SmallVector<unsigned, 64> Vals; 3057 3058 // Emit the number of basic blocks, so the reader can create them ahead of 3059 // time. 3060 Vals.push_back(VE.getBasicBlocks().size()); 3061 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3062 Vals.clear(); 3063 3064 // If there are function-local constants, emit them now. 3065 unsigned CstStart, CstEnd; 3066 VE.getFunctionConstantRange(CstStart, CstEnd); 3067 writeConstants(CstStart, CstEnd, false); 3068 3069 // If there is function-local metadata, emit it now. 3070 writeFunctionMetadata(F); 3071 3072 // Keep a running idea of what the instruction ID is. 3073 unsigned InstID = CstEnd; 3074 3075 bool NeedsMetadataAttachment = F.hasMetadata(); 3076 3077 DILocation *LastDL = nullptr; 3078 // Finally, emit all the instructions, in order. 3079 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3080 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3081 I != E; ++I) { 3082 writeInstruction(*I, InstID, Vals); 3083 3084 if (!I->getType()->isVoidTy()) 3085 ++InstID; 3086 3087 // If the instruction has metadata, write a metadata attachment later. 3088 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3089 3090 // If the instruction has a debug location, emit it. 3091 DILocation *DL = I->getDebugLoc(); 3092 if (!DL) 3093 continue; 3094 3095 if (DL == LastDL) { 3096 // Just repeat the same debug loc as last time. 3097 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3098 continue; 3099 } 3100 3101 Vals.push_back(DL->getLine()); 3102 Vals.push_back(DL->getColumn()); 3103 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3104 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3105 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3106 Vals.clear(); 3107 3108 LastDL = DL; 3109 } 3110 3111 // Emit names for all the instructions etc. 3112 if (auto *Symtab = F.getValueSymbolTable()) 3113 writeValueSymbolTable(*Symtab); 3114 3115 if (NeedsMetadataAttachment) 3116 writeFunctionMetadataAttachment(F); 3117 if (VE.shouldPreserveUseListOrder()) 3118 writeUseListBlock(&F); 3119 VE.purgeFunction(); 3120 Stream.ExitBlock(); 3121 } 3122 3123 // Emit blockinfo, which defines the standard abbreviations etc. 3124 void ModuleBitcodeWriter::writeBlockInfo() { 3125 // We only want to emit block info records for blocks that have multiple 3126 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3127 // Other blocks can define their abbrevs inline. 3128 Stream.EnterBlockInfoBlock(); 3129 3130 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3131 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3136 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3137 VST_ENTRY_8_ABBREV) 3138 llvm_unreachable("Unexpected abbrev ordering!"); 3139 } 3140 3141 { // 7-bit fixed width VST_CODE_ENTRY strings. 3142 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3143 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3147 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3148 VST_ENTRY_7_ABBREV) 3149 llvm_unreachable("Unexpected abbrev ordering!"); 3150 } 3151 { // 6-bit char6 VST_CODE_ENTRY strings. 3152 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3153 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3157 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3158 VST_ENTRY_6_ABBREV) 3159 llvm_unreachable("Unexpected abbrev ordering!"); 3160 } 3161 { // 6-bit char6 VST_CODE_BBENTRY strings. 3162 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3163 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3167 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3168 VST_BBENTRY_6_ABBREV) 3169 llvm_unreachable("Unexpected abbrev ordering!"); 3170 } 3171 3172 3173 3174 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3175 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3176 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3178 VE.computeBitsRequiredForTypeIndicies())); 3179 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3180 CONSTANTS_SETTYPE_ABBREV) 3181 llvm_unreachable("Unexpected abbrev ordering!"); 3182 } 3183 3184 { // INTEGER abbrev for CONSTANTS_BLOCK. 3185 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3186 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3188 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3189 CONSTANTS_INTEGER_ABBREV) 3190 llvm_unreachable("Unexpected abbrev ordering!"); 3191 } 3192 3193 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3194 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3195 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3198 VE.computeBitsRequiredForTypeIndicies())); 3199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3200 3201 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3202 CONSTANTS_CE_CAST_Abbrev) 3203 llvm_unreachable("Unexpected abbrev ordering!"); 3204 } 3205 { // NULL abbrev for CONSTANTS_BLOCK. 3206 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3207 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3208 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3209 CONSTANTS_NULL_Abbrev) 3210 llvm_unreachable("Unexpected abbrev ordering!"); 3211 } 3212 3213 // FIXME: This should only use space for first class types! 3214 3215 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3216 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3217 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3220 VE.computeBitsRequiredForTypeIndicies())); 3221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3223 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3224 FUNCTION_INST_LOAD_ABBREV) 3225 llvm_unreachable("Unexpected abbrev ordering!"); 3226 } 3227 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3228 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3229 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3233 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3234 FUNCTION_INST_BINOP_ABBREV) 3235 llvm_unreachable("Unexpected abbrev ordering!"); 3236 } 3237 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3238 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3239 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3244 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3245 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3246 llvm_unreachable("Unexpected abbrev ordering!"); 3247 } 3248 { // INST_CAST abbrev for FUNCTION_BLOCK. 3249 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3250 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3253 VE.computeBitsRequiredForTypeIndicies())); 3254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3255 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3256 FUNCTION_INST_CAST_ABBREV) 3257 llvm_unreachable("Unexpected abbrev ordering!"); 3258 } 3259 3260 { // INST_RET abbrev for FUNCTION_BLOCK. 3261 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3262 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3263 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3264 FUNCTION_INST_RET_VOID_ABBREV) 3265 llvm_unreachable("Unexpected abbrev ordering!"); 3266 } 3267 { // INST_RET abbrev for FUNCTION_BLOCK. 3268 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3269 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3271 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3272 FUNCTION_INST_RET_VAL_ABBREV) 3273 llvm_unreachable("Unexpected abbrev ordering!"); 3274 } 3275 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3276 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3277 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3278 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3279 FUNCTION_INST_UNREACHABLE_ABBREV) 3280 llvm_unreachable("Unexpected abbrev ordering!"); 3281 } 3282 { 3283 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3284 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3287 Log2_32_Ceil(VE.getTypes().size() + 1))); 3288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3290 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3291 FUNCTION_INST_GEP_ABBREV) 3292 llvm_unreachable("Unexpected abbrev ordering!"); 3293 } 3294 3295 Stream.ExitBlock(); 3296 } 3297 3298 /// Write the module path strings, currently only used when generating 3299 /// a combined index file. 3300 void IndexBitcodeWriter::writeModStrings() { 3301 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3302 3303 // TODO: See which abbrev sizes we actually need to emit 3304 3305 // 8-bit fixed-width MST_ENTRY strings. 3306 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3307 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3311 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3312 3313 // 7-bit fixed width MST_ENTRY strings. 3314 Abbv = std::make_shared<BitCodeAbbrev>(); 3315 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3319 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3320 3321 // 6-bit char6 MST_ENTRY strings. 3322 Abbv = std::make_shared<BitCodeAbbrev>(); 3323 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3327 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3328 3329 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3330 Abbv = std::make_shared<BitCodeAbbrev>(); 3331 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3337 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3338 3339 SmallVector<unsigned, 64> Vals; 3340 for (const auto &MPSE : Index.modulePaths()) { 3341 if (!doIncludeModule(MPSE.getKey())) 3342 continue; 3343 StringEncoding Bits = 3344 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3345 unsigned AbbrevToUse = Abbrev8Bit; 3346 if (Bits == SE_Char6) 3347 AbbrevToUse = Abbrev6Bit; 3348 else if (Bits == SE_Fixed7) 3349 AbbrevToUse = Abbrev7Bit; 3350 3351 Vals.push_back(MPSE.getValue().first); 3352 3353 for (const auto P : MPSE.getKey()) 3354 Vals.push_back((unsigned char)P); 3355 3356 // Emit the finished record. 3357 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3358 3359 Vals.clear(); 3360 // Emit an optional hash for the module now 3361 auto &Hash = MPSE.getValue().second; 3362 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3363 for (auto Val : Hash) { 3364 if (Val) 3365 AllZero = false; 3366 Vals.push_back(Val); 3367 } 3368 if (!AllZero) { 3369 // Emit the hash record. 3370 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3371 } 3372 3373 Vals.clear(); 3374 } 3375 Stream.ExitBlock(); 3376 } 3377 3378 /// Write the function type metadata related records that need to appear before 3379 /// a function summary entry (whether per-module or combined). 3380 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3381 FunctionSummary *FS) { 3382 if (!FS->type_tests().empty()) 3383 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3384 3385 SmallVector<uint64_t, 64> Record; 3386 3387 auto WriteVFuncIdVec = [&](uint64_t Ty, 3388 ArrayRef<FunctionSummary::VFuncId> VFs) { 3389 if (VFs.empty()) 3390 return; 3391 Record.clear(); 3392 for (auto &VF : VFs) { 3393 Record.push_back(VF.GUID); 3394 Record.push_back(VF.Offset); 3395 } 3396 Stream.EmitRecord(Ty, Record); 3397 }; 3398 3399 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3400 FS->type_test_assume_vcalls()); 3401 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3402 FS->type_checked_load_vcalls()); 3403 3404 auto WriteConstVCallVec = [&](uint64_t Ty, 3405 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3406 for (auto &VC : VCs) { 3407 Record.clear(); 3408 Record.push_back(VC.VFunc.GUID); 3409 Record.push_back(VC.VFunc.Offset); 3410 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3411 Stream.EmitRecord(Ty, Record); 3412 } 3413 }; 3414 3415 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3416 FS->type_test_assume_const_vcalls()); 3417 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3418 FS->type_checked_load_const_vcalls()); 3419 } 3420 3421 // Helper to emit a single function summary record. 3422 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3423 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3424 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3425 const Function &F) { 3426 NameVals.push_back(ValueID); 3427 3428 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3429 writeFunctionTypeMetadataRecords(Stream, FS); 3430 3431 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3432 NameVals.push_back(FS->instCount()); 3433 NameVals.push_back(FS->refs().size()); 3434 3435 for (auto &RI : FS->refs()) 3436 NameVals.push_back(VE.getValueID(RI.getValue())); 3437 3438 bool HasProfileData = F.getEntryCount().hasValue(); 3439 for (auto &ECI : FS->calls()) { 3440 NameVals.push_back(getValueId(ECI.first)); 3441 if (HasProfileData) 3442 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3443 } 3444 3445 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3446 unsigned Code = 3447 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3448 3449 // Emit the finished record. 3450 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3451 NameVals.clear(); 3452 } 3453 3454 // Collect the global value references in the given variable's initializer, 3455 // and emit them in a summary record. 3456 void ModuleBitcodeWriter::writeModuleLevelReferences( 3457 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3458 unsigned FSModRefsAbbrev) { 3459 auto Summaries = 3460 Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName())); 3461 if (Summaries == Index->end()) { 3462 // Only declarations should not have a summary (a declaration might however 3463 // have a summary if the def was in module level asm). 3464 assert(V.isDeclaration()); 3465 return; 3466 } 3467 auto *Summary = Summaries->second.front().get(); 3468 NameVals.push_back(VE.getValueID(&V)); 3469 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3470 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3471 3472 unsigned SizeBeforeRefs = NameVals.size(); 3473 for (auto &RI : VS->refs()) 3474 NameVals.push_back(VE.getValueID(RI.getValue())); 3475 // Sort the refs for determinism output, the vector returned by FS->refs() has 3476 // been initialized from a DenseSet. 3477 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3478 3479 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3480 FSModRefsAbbrev); 3481 NameVals.clear(); 3482 } 3483 3484 // Current version for the summary. 3485 // This is bumped whenever we introduce changes in the way some record are 3486 // interpreted, like flags for instance. 3487 static const uint64_t INDEX_VERSION = 3; 3488 3489 /// Emit the per-module summary section alongside the rest of 3490 /// the module's bitcode. 3491 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3492 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3493 3494 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3495 3496 if (Index->begin() == Index->end()) { 3497 Stream.ExitBlock(); 3498 return; 3499 } 3500 3501 // Abbrev for FS_PERMODULE. 3502 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3503 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3508 // numrefs x valueid, n x (valueid) 3509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3511 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3512 3513 // Abbrev for FS_PERMODULE_PROFILE. 3514 Abbv = std::make_shared<BitCodeAbbrev>(); 3515 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3520 // numrefs x valueid, n x (valueid, hotness) 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3523 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3524 3525 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3526 Abbv = std::make_shared<BitCodeAbbrev>(); 3527 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3532 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3533 3534 // Abbrev for FS_ALIAS. 3535 Abbv = std::make_shared<BitCodeAbbrev>(); 3536 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3540 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3541 3542 SmallVector<uint64_t, 64> NameVals; 3543 // Iterate over the list of functions instead of the Index to 3544 // ensure the ordering is stable. 3545 for (const Function &F : M) { 3546 // Summary emission does not support anonymous functions, they have to 3547 // renamed using the anonymous function renaming pass. 3548 if (!F.hasName()) 3549 report_fatal_error("Unexpected anonymous function when writing summary"); 3550 3551 auto Summaries = 3552 Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName())); 3553 if (Summaries == Index->end()) { 3554 // Only declarations should not have a summary (a declaration might 3555 // however have a summary if the def was in module level asm). 3556 assert(F.isDeclaration()); 3557 continue; 3558 } 3559 auto *Summary = Summaries->second.front().get(); 3560 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3561 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3562 } 3563 3564 // Capture references from GlobalVariable initializers, which are outside 3565 // of a function scope. 3566 for (const GlobalVariable &G : M.globals()) 3567 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3568 3569 for (const GlobalAlias &A : M.aliases()) { 3570 auto *Aliasee = A.getBaseObject(); 3571 if (!Aliasee->hasName()) 3572 // Nameless function don't have an entry in the summary, skip it. 3573 continue; 3574 auto AliasId = VE.getValueID(&A); 3575 auto AliaseeId = VE.getValueID(Aliasee); 3576 NameVals.push_back(AliasId); 3577 auto *Summary = Index->getGlobalValueSummary(A); 3578 AliasSummary *AS = cast<AliasSummary>(Summary); 3579 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3580 NameVals.push_back(AliaseeId); 3581 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3582 NameVals.clear(); 3583 } 3584 3585 Stream.ExitBlock(); 3586 } 3587 3588 /// Emit the combined summary section into the combined index file. 3589 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3590 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3591 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3592 3593 // Abbrev for FS_COMBINED. 3594 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3595 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3601 // numrefs x valueid, n x (valueid) 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3604 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3605 3606 // Abbrev for FS_COMBINED_PROFILE. 3607 Abbv = std::make_shared<BitCodeAbbrev>(); 3608 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3614 // numrefs x valueid, n x (valueid, hotness) 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3617 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3618 3619 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3620 Abbv = std::make_shared<BitCodeAbbrev>(); 3621 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3627 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3628 3629 // Abbrev for FS_COMBINED_ALIAS. 3630 Abbv = std::make_shared<BitCodeAbbrev>(); 3631 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3636 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3637 3638 // The aliases are emitted as a post-pass, and will point to the value 3639 // id of the aliasee. Save them in a vector for post-processing. 3640 SmallVector<AliasSummary *, 64> Aliases; 3641 3642 // Save the value id for each summary for alias emission. 3643 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3644 3645 SmallVector<uint64_t, 64> NameVals; 3646 3647 // For local linkage, we also emit the original name separately 3648 // immediately after the record. 3649 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3650 if (!GlobalValue::isLocalLinkage(S.linkage())) 3651 return; 3652 NameVals.push_back(S.getOriginalName()); 3653 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3654 NameVals.clear(); 3655 }; 3656 3657 for (const auto &I : *this) { 3658 GlobalValueSummary *S = I.second; 3659 assert(S); 3660 3661 assert(hasValueId(I.first)); 3662 unsigned ValueId = getValueId(I.first); 3663 SummaryToValueIdMap[S] = ValueId; 3664 3665 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3666 // Will process aliases as a post-pass because the reader wants all 3667 // global to be loaded first. 3668 Aliases.push_back(AS); 3669 continue; 3670 } 3671 3672 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3673 NameVals.push_back(ValueId); 3674 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3675 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3676 for (auto &RI : VS->refs()) { 3677 NameVals.push_back(getValueId(RI.getGUID())); 3678 } 3679 3680 // Emit the finished record. 3681 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3682 FSModRefsAbbrev); 3683 NameVals.clear(); 3684 MaybeEmitOriginalName(*S); 3685 continue; 3686 } 3687 3688 auto *FS = cast<FunctionSummary>(S); 3689 writeFunctionTypeMetadataRecords(Stream, FS); 3690 3691 NameVals.push_back(ValueId); 3692 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3693 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3694 NameVals.push_back(FS->instCount()); 3695 NameVals.push_back(FS->refs().size()); 3696 3697 for (auto &RI : FS->refs()) { 3698 NameVals.push_back(getValueId(RI.getGUID())); 3699 } 3700 3701 bool HasProfileData = false; 3702 for (auto &EI : FS->calls()) { 3703 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3704 if (HasProfileData) 3705 break; 3706 } 3707 3708 for (auto &EI : FS->calls()) { 3709 // If this GUID doesn't have a value id, it doesn't have a function 3710 // summary and we don't need to record any calls to it. 3711 GlobalValue::GUID GUID = EI.first.getGUID(); 3712 if (!hasValueId(GUID)) { 3713 // For SamplePGO, the indirect call targets for local functions will 3714 // have its original name annotated in profile. We try to find the 3715 // corresponding PGOFuncName as the GUID. 3716 GUID = Index.getGUIDFromOriginalID(GUID); 3717 if (GUID == 0 || !hasValueId(GUID)) 3718 continue; 3719 } 3720 NameVals.push_back(getValueId(GUID)); 3721 if (HasProfileData) 3722 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3723 } 3724 3725 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3726 unsigned Code = 3727 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3728 3729 // Emit the finished record. 3730 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3731 NameVals.clear(); 3732 MaybeEmitOriginalName(*S); 3733 } 3734 3735 for (auto *AS : Aliases) { 3736 auto AliasValueId = SummaryToValueIdMap[AS]; 3737 assert(AliasValueId); 3738 NameVals.push_back(AliasValueId); 3739 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3740 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3741 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3742 assert(AliaseeValueId); 3743 NameVals.push_back(AliaseeValueId); 3744 3745 // Emit the finished record. 3746 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3747 NameVals.clear(); 3748 MaybeEmitOriginalName(*AS); 3749 } 3750 3751 Stream.ExitBlock(); 3752 } 3753 3754 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3755 /// current llvm version, and a record for the epoch number. 3756 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3757 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3758 3759 // Write the "user readable" string identifying the bitcode producer 3760 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3761 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3764 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3765 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3766 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3767 3768 // Write the epoch version 3769 Abbv = std::make_shared<BitCodeAbbrev>(); 3770 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3772 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3773 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3774 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3775 Stream.ExitBlock(); 3776 } 3777 3778 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3779 // Emit the module's hash. 3780 // MODULE_CODE_HASH: [5*i32] 3781 SHA1 Hasher; 3782 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3783 Buffer.size() - BlockStartPos)); 3784 StringRef Hash = Hasher.result(); 3785 uint32_t Vals[5]; 3786 for (int Pos = 0; Pos < 20; Pos += 4) { 3787 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3788 } 3789 3790 // Emit the finished record. 3791 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3792 } 3793 3794 void ModuleBitcodeWriter::write() { 3795 writeIdentificationBlock(Stream); 3796 3797 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3798 size_t BlockStartPos = Buffer.size(); 3799 3800 SmallVector<unsigned, 1> Vals; 3801 unsigned CurVersion = 1; 3802 Vals.push_back(CurVersion); 3803 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3804 3805 // Emit blockinfo, which defines the standard abbreviations etc. 3806 writeBlockInfo(); 3807 3808 // Emit information about attribute groups. 3809 writeAttributeGroupTable(); 3810 3811 // Emit information about parameter attributes. 3812 writeAttributeTable(); 3813 3814 // Emit information describing all of the types in the module. 3815 writeTypeTable(); 3816 3817 writeComdats(); 3818 3819 // Emit top-level description of module, including target triple, inline asm, 3820 // descriptors for global variables, and function prototype info. 3821 writeModuleInfo(); 3822 3823 // Emit constants. 3824 writeModuleConstants(); 3825 3826 // Emit metadata kind names. 3827 writeModuleMetadataKinds(); 3828 3829 // Emit metadata. 3830 writeModuleMetadata(); 3831 3832 // Emit module-level use-lists. 3833 if (VE.shouldPreserveUseListOrder()) 3834 writeUseListBlock(nullptr); 3835 3836 writeOperandBundleTags(); 3837 3838 // Emit function bodies. 3839 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3840 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3841 if (!F->isDeclaration()) 3842 writeFunction(*F, FunctionToBitcodeIndex); 3843 3844 // Need to write after the above call to WriteFunction which populates 3845 // the summary information in the index. 3846 if (Index) 3847 writePerModuleGlobalValueSummary(); 3848 3849 writeValueSymbolTable(M.getValueSymbolTable(), 3850 /* IsModuleLevel */ true, &FunctionToBitcodeIndex); 3851 3852 if (GenerateHash) { 3853 writeModuleHash(BlockStartPos); 3854 } 3855 3856 Stream.ExitBlock(); 3857 } 3858 3859 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3860 uint32_t &Position) { 3861 support::endian::write32le(&Buffer[Position], Value); 3862 Position += 4; 3863 } 3864 3865 /// If generating a bc file on darwin, we have to emit a 3866 /// header and trailer to make it compatible with the system archiver. To do 3867 /// this we emit the following header, and then emit a trailer that pads the 3868 /// file out to be a multiple of 16 bytes. 3869 /// 3870 /// struct bc_header { 3871 /// uint32_t Magic; // 0x0B17C0DE 3872 /// uint32_t Version; // Version, currently always 0. 3873 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3874 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3875 /// uint32_t CPUType; // CPU specifier. 3876 /// ... potentially more later ... 3877 /// }; 3878 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3879 const Triple &TT) { 3880 unsigned CPUType = ~0U; 3881 3882 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3883 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3884 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3885 // specific constants here because they are implicitly part of the Darwin ABI. 3886 enum { 3887 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3888 DARWIN_CPU_TYPE_X86 = 7, 3889 DARWIN_CPU_TYPE_ARM = 12, 3890 DARWIN_CPU_TYPE_POWERPC = 18 3891 }; 3892 3893 Triple::ArchType Arch = TT.getArch(); 3894 if (Arch == Triple::x86_64) 3895 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3896 else if (Arch == Triple::x86) 3897 CPUType = DARWIN_CPU_TYPE_X86; 3898 else if (Arch == Triple::ppc) 3899 CPUType = DARWIN_CPU_TYPE_POWERPC; 3900 else if (Arch == Triple::ppc64) 3901 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3902 else if (Arch == Triple::arm || Arch == Triple::thumb) 3903 CPUType = DARWIN_CPU_TYPE_ARM; 3904 3905 // Traditional Bitcode starts after header. 3906 assert(Buffer.size() >= BWH_HeaderSize && 3907 "Expected header size to be reserved"); 3908 unsigned BCOffset = BWH_HeaderSize; 3909 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3910 3911 // Write the magic and version. 3912 unsigned Position = 0; 3913 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3914 writeInt32ToBuffer(0, Buffer, Position); // Version. 3915 writeInt32ToBuffer(BCOffset, Buffer, Position); 3916 writeInt32ToBuffer(BCSize, Buffer, Position); 3917 writeInt32ToBuffer(CPUType, Buffer, Position); 3918 3919 // If the file is not a multiple of 16 bytes, insert dummy padding. 3920 while (Buffer.size() & 15) 3921 Buffer.push_back(0); 3922 } 3923 3924 /// Helper to write the header common to all bitcode files. 3925 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3926 // Emit the file header. 3927 Stream.Emit((unsigned)'B', 8); 3928 Stream.Emit((unsigned)'C', 8); 3929 Stream.Emit(0x0, 4); 3930 Stream.Emit(0xC, 4); 3931 Stream.Emit(0xE, 4); 3932 Stream.Emit(0xD, 4); 3933 } 3934 3935 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3936 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3937 writeBitcodeHeader(*Stream); 3938 } 3939 3940 BitcodeWriter::~BitcodeWriter() = default; 3941 3942 void BitcodeWriter::writeModule(const Module *M, 3943 bool ShouldPreserveUseListOrder, 3944 const ModuleSummaryIndex *Index, 3945 bool GenerateHash) { 3946 ModuleBitcodeWriter ModuleWriter( 3947 M, Buffer, *Stream, ShouldPreserveUseListOrder, Index, GenerateHash); 3948 ModuleWriter.write(); 3949 } 3950 3951 /// WriteBitcodeToFile - Write the specified module to the specified output 3952 /// stream. 3953 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3954 bool ShouldPreserveUseListOrder, 3955 const ModuleSummaryIndex *Index, 3956 bool GenerateHash) { 3957 SmallVector<char, 0> Buffer; 3958 Buffer.reserve(256*1024); 3959 3960 // If this is darwin or another generic macho target, reserve space for the 3961 // header. 3962 Triple TT(M->getTargetTriple()); 3963 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3964 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3965 3966 BitcodeWriter Writer(Buffer); 3967 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash); 3968 3969 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3970 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3971 3972 // Write the generated bitstream to "Out". 3973 Out.write((char*)&Buffer.front(), Buffer.size()); 3974 } 3975 3976 void IndexBitcodeWriter::write() { 3977 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3978 3979 SmallVector<unsigned, 1> Vals; 3980 unsigned CurVersion = 1; 3981 Vals.push_back(CurVersion); 3982 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3983 3984 // If we have a VST, write the VSTOFFSET record placeholder. 3985 writeValueSymbolTableForwardDecl(); 3986 3987 // Write the module paths in the combined index. 3988 writeModStrings(); 3989 3990 // Write the summary combined index records. 3991 writeCombinedGlobalValueSummary(); 3992 3993 // Need a special VST writer for the combined index (we don't have a 3994 // real VST and real values when this is invoked). 3995 writeCombinedValueSymbolTable(); 3996 3997 Stream.ExitBlock(); 3998 } 3999 4000 // Write the specified module summary index to the given raw output stream, 4001 // where it will be written in a new bitcode block. This is used when 4002 // writing the combined index file for ThinLTO. When writing a subset of the 4003 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4004 void llvm::WriteIndexToFile( 4005 const ModuleSummaryIndex &Index, raw_ostream &Out, 4006 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4007 SmallVector<char, 0> Buffer; 4008 Buffer.reserve(256 * 1024); 4009 4010 BitstreamWriter Stream(Buffer); 4011 writeBitcodeHeader(Stream); 4012 4013 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 4014 IndexWriter.write(); 4015 4016 Out.write((char *)&Buffer.front(), Buffer.size()); 4017 } 4018