1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/TypeSymbolTable.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/Streams.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/System/Program.h" 29 using namespace llvm; 30 31 /// These are manifest constants used by the bitcode writer. They do not need to 32 /// be kept in sync with the reader, but need to be consistent within this file. 33 enum { 34 CurVersion = 0, 35 36 // VALUE_SYMTAB_BLOCK abbrev id's. 37 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 38 VST_ENTRY_7_ABBREV, 39 VST_ENTRY_6_ABBREV, 40 VST_BBENTRY_6_ABBREV, 41 42 // CONSTANTS_BLOCK abbrev id's. 43 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 44 CONSTANTS_INTEGER_ABBREV, 45 CONSTANTS_CE_CAST_Abbrev, 46 CONSTANTS_NULL_Abbrev, 47 48 // FUNCTION_BLOCK abbrev id's. 49 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 50 FUNCTION_INST_BINOP_ABBREV, 51 FUNCTION_INST_CAST_ABBREV, 52 FUNCTION_INST_RET_VOID_ABBREV, 53 FUNCTION_INST_RET_VAL_ABBREV, 54 FUNCTION_INST_UNREACHABLE_ABBREV 55 }; 56 57 58 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 59 switch (Opcode) { 60 default: assert(0 && "Unknown cast instruction!"); 61 case Instruction::Trunc : return bitc::CAST_TRUNC; 62 case Instruction::ZExt : return bitc::CAST_ZEXT; 63 case Instruction::SExt : return bitc::CAST_SEXT; 64 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 65 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 66 case Instruction::UIToFP : return bitc::CAST_UITOFP; 67 case Instruction::SIToFP : return bitc::CAST_SITOFP; 68 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 69 case Instruction::FPExt : return bitc::CAST_FPEXT; 70 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 71 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 72 case Instruction::BitCast : return bitc::CAST_BITCAST; 73 } 74 } 75 76 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 77 switch (Opcode) { 78 default: assert(0 && "Unknown binary instruction!"); 79 case Instruction::Add: return bitc::BINOP_ADD; 80 case Instruction::Sub: return bitc::BINOP_SUB; 81 case Instruction::Mul: return bitc::BINOP_MUL; 82 case Instruction::UDiv: return bitc::BINOP_UDIV; 83 case Instruction::FDiv: 84 case Instruction::SDiv: return bitc::BINOP_SDIV; 85 case Instruction::URem: return bitc::BINOP_UREM; 86 case Instruction::FRem: 87 case Instruction::SRem: return bitc::BINOP_SREM; 88 case Instruction::Shl: return bitc::BINOP_SHL; 89 case Instruction::LShr: return bitc::BINOP_LSHR; 90 case Instruction::AShr: return bitc::BINOP_ASHR; 91 case Instruction::And: return bitc::BINOP_AND; 92 case Instruction::Or: return bitc::BINOP_OR; 93 case Instruction::Xor: return bitc::BINOP_XOR; 94 } 95 } 96 97 98 99 static void WriteStringRecord(unsigned Code, const std::string &Str, 100 unsigned AbbrevToUse, BitstreamWriter &Stream) { 101 SmallVector<unsigned, 64> Vals; 102 103 // Code: [strchar x N] 104 for (unsigned i = 0, e = Str.size(); i != e; ++i) 105 Vals.push_back(Str[i]); 106 107 // Emit the finished record. 108 Stream.EmitRecord(Code, Vals, AbbrevToUse); 109 } 110 111 // Emit information about parameter attributes. 112 static void WriteAttributeTable(const ValueEnumerator &VE, 113 BitstreamWriter &Stream) { 114 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 115 if (Attrs.empty()) return; 116 117 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 118 119 SmallVector<uint64_t, 64> Record; 120 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 121 const AttrListPtr &A = Attrs[i]; 122 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 123 const AttributeWithIndex &PAWI = A.getSlot(i); 124 Record.push_back(PAWI.Index); 125 126 // FIXME: remove in LLVM 3.0 127 // Store the alignment in the bitcode as a 16-bit raw value instead of a 128 // 5-bit log2 encoded value. Shift the bits above the alignment up by 129 // 11 bits. 130 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 131 if (PAWI.Attrs & Attribute::Alignment) 132 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 133 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 134 135 Record.push_back(FauxAttr); 136 } 137 138 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 139 Record.clear(); 140 } 141 142 Stream.ExitBlock(); 143 } 144 145 /// WriteTypeTable - Write out the type table for a module. 146 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 147 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 148 149 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 150 SmallVector<uint64_t, 64> TypeVals; 151 152 // Abbrev for TYPE_CODE_POINTER. 153 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 154 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 156 Log2_32_Ceil(VE.getTypes().size()+1))); 157 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 158 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 159 160 // Abbrev for TYPE_CODE_FUNCTION. 161 Abbv = new BitCodeAbbrev(); 162 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 164 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 167 Log2_32_Ceil(VE.getTypes().size()+1))); 168 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 169 170 // Abbrev for TYPE_CODE_STRUCT. 171 Abbv = new BitCodeAbbrev(); 172 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 176 Log2_32_Ceil(VE.getTypes().size()+1))); 177 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 178 179 // Abbrev for TYPE_CODE_ARRAY. 180 Abbv = new BitCodeAbbrev(); 181 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 184 Log2_32_Ceil(VE.getTypes().size()+1))); 185 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 186 187 // Emit an entry count so the reader can reserve space. 188 TypeVals.push_back(TypeList.size()); 189 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 190 TypeVals.clear(); 191 192 // Loop over all of the types, emitting each in turn. 193 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 194 const Type *T = TypeList[i].first; 195 int AbbrevToUse = 0; 196 unsigned Code = 0; 197 198 switch (T->getTypeID()) { 199 default: assert(0 && "Unknown type!"); 200 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 201 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 202 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 203 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 204 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 205 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 206 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 207 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 208 case Type::IntegerTyID: 209 // INTEGER: [width] 210 Code = bitc::TYPE_CODE_INTEGER; 211 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 212 break; 213 case Type::PointerTyID: { 214 const PointerType *PTy = cast<PointerType>(T); 215 // POINTER: [pointee type, address space] 216 Code = bitc::TYPE_CODE_POINTER; 217 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 218 unsigned AddressSpace = PTy->getAddressSpace(); 219 TypeVals.push_back(AddressSpace); 220 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 221 break; 222 } 223 case Type::FunctionTyID: { 224 const FunctionType *FT = cast<FunctionType>(T); 225 // FUNCTION: [isvararg, attrid, retty, paramty x N] 226 Code = bitc::TYPE_CODE_FUNCTION; 227 TypeVals.push_back(FT->isVarArg()); 228 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 229 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 230 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 231 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 232 AbbrevToUse = FunctionAbbrev; 233 break; 234 } 235 case Type::StructTyID: { 236 const StructType *ST = cast<StructType>(T); 237 // STRUCT: [ispacked, eltty x N] 238 Code = bitc::TYPE_CODE_STRUCT; 239 TypeVals.push_back(ST->isPacked()); 240 // Output all of the element types. 241 for (StructType::element_iterator I = ST->element_begin(), 242 E = ST->element_end(); I != E; ++I) 243 TypeVals.push_back(VE.getTypeID(*I)); 244 AbbrevToUse = StructAbbrev; 245 break; 246 } 247 case Type::ArrayTyID: { 248 const ArrayType *AT = cast<ArrayType>(T); 249 // ARRAY: [numelts, eltty] 250 Code = bitc::TYPE_CODE_ARRAY; 251 TypeVals.push_back(AT->getNumElements()); 252 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 253 AbbrevToUse = ArrayAbbrev; 254 break; 255 } 256 case Type::VectorTyID: { 257 const VectorType *VT = cast<VectorType>(T); 258 // VECTOR [numelts, eltty] 259 Code = bitc::TYPE_CODE_VECTOR; 260 TypeVals.push_back(VT->getNumElements()); 261 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 262 break; 263 } 264 } 265 266 // Emit the finished record. 267 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 268 TypeVals.clear(); 269 } 270 271 Stream.ExitBlock(); 272 } 273 274 static unsigned getEncodedLinkage(const GlobalValue *GV) { 275 switch (GV->getLinkage()) { 276 default: assert(0 && "Invalid linkage!"); 277 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 278 case GlobalValue::ExternalLinkage: return 0; 279 case GlobalValue::WeakAnyLinkage: return 1; 280 case GlobalValue::AppendingLinkage: return 2; 281 case GlobalValue::InternalLinkage: return 3; 282 case GlobalValue::LinkOnceAnyLinkage: return 4; 283 case GlobalValue::DLLImportLinkage: return 5; 284 case GlobalValue::DLLExportLinkage: return 6; 285 case GlobalValue::ExternalWeakLinkage: return 7; 286 case GlobalValue::CommonLinkage: return 8; 287 case GlobalValue::PrivateLinkage: return 9; 288 case GlobalValue::WeakODRLinkage: return 10; 289 case GlobalValue::LinkOnceODRLinkage: return 11; 290 } 291 } 292 293 static unsigned getEncodedVisibility(const GlobalValue *GV) { 294 switch (GV->getVisibility()) { 295 default: assert(0 && "Invalid visibility!"); 296 case GlobalValue::DefaultVisibility: return 0; 297 case GlobalValue::HiddenVisibility: return 1; 298 case GlobalValue::ProtectedVisibility: return 2; 299 } 300 } 301 302 // Emit top-level description of module, including target triple, inline asm, 303 // descriptors for global variables, and function prototype info. 304 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 305 BitstreamWriter &Stream) { 306 // Emit the list of dependent libraries for the Module. 307 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 308 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 309 310 // Emit various pieces of data attached to a module. 311 if (!M->getTargetTriple().empty()) 312 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 313 0/*TODO*/, Stream); 314 if (!M->getDataLayout().empty()) 315 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 316 0/*TODO*/, Stream); 317 if (!M->getModuleInlineAsm().empty()) 318 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 319 0/*TODO*/, Stream); 320 321 // Emit information about sections and GC, computing how many there are. Also 322 // compute the maximum alignment value. 323 std::map<std::string, unsigned> SectionMap; 324 std::map<std::string, unsigned> GCMap; 325 unsigned MaxAlignment = 0; 326 unsigned MaxGlobalType = 0; 327 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 328 GV != E; ++GV) { 329 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 330 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 331 332 if (!GV->hasSection()) continue; 333 // Give section names unique ID's. 334 unsigned &Entry = SectionMap[GV->getSection()]; 335 if (Entry != 0) continue; 336 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 337 0/*TODO*/, Stream); 338 Entry = SectionMap.size(); 339 } 340 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 341 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 342 if (F->hasSection()) { 343 // Give section names unique ID's. 344 unsigned &Entry = SectionMap[F->getSection()]; 345 if (!Entry) { 346 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 347 0/*TODO*/, Stream); 348 Entry = SectionMap.size(); 349 } 350 } 351 if (F->hasGC()) { 352 // Same for GC names. 353 unsigned &Entry = GCMap[F->getGC()]; 354 if (!Entry) { 355 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 356 0/*TODO*/, Stream); 357 Entry = GCMap.size(); 358 } 359 } 360 } 361 362 // Emit abbrev for globals, now that we know # sections and max alignment. 363 unsigned SimpleGVarAbbrev = 0; 364 if (!M->global_empty()) { 365 // Add an abbrev for common globals with no visibility or thread localness. 366 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 367 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 369 Log2_32_Ceil(MaxGlobalType+1))); 370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 373 if (MaxAlignment == 0) // Alignment. 374 Abbv->Add(BitCodeAbbrevOp(0)); 375 else { 376 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 378 Log2_32_Ceil(MaxEncAlignment+1))); 379 } 380 if (SectionMap.empty()) // Section. 381 Abbv->Add(BitCodeAbbrevOp(0)); 382 else 383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 384 Log2_32_Ceil(SectionMap.size()+1))); 385 // Don't bother emitting vis + thread local. 386 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 387 } 388 389 // Emit the global variable information. 390 SmallVector<unsigned, 64> Vals; 391 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 392 GV != E; ++GV) { 393 unsigned AbbrevToUse = 0; 394 395 // GLOBALVAR: [type, isconst, initid, 396 // linkage, alignment, section, visibility, threadlocal] 397 Vals.push_back(VE.getTypeID(GV->getType())); 398 Vals.push_back(GV->isConstant()); 399 Vals.push_back(GV->isDeclaration() ? 0 : 400 (VE.getValueID(GV->getInitializer()) + 1)); 401 Vals.push_back(getEncodedLinkage(GV)); 402 Vals.push_back(Log2_32(GV->getAlignment())+1); 403 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 404 if (GV->isThreadLocal() || 405 GV->getVisibility() != GlobalValue::DefaultVisibility) { 406 Vals.push_back(getEncodedVisibility(GV)); 407 Vals.push_back(GV->isThreadLocal()); 408 } else { 409 AbbrevToUse = SimpleGVarAbbrev; 410 } 411 412 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 413 Vals.clear(); 414 } 415 416 // Emit the function proto information. 417 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 418 // FUNCTION: [type, callingconv, isproto, paramattr, 419 // linkage, alignment, section, visibility, gc] 420 Vals.push_back(VE.getTypeID(F->getType())); 421 Vals.push_back(F->getCallingConv()); 422 Vals.push_back(F->isDeclaration()); 423 Vals.push_back(getEncodedLinkage(F)); 424 Vals.push_back(VE.getAttributeID(F->getAttributes())); 425 Vals.push_back(Log2_32(F->getAlignment())+1); 426 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 427 Vals.push_back(getEncodedVisibility(F)); 428 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 429 430 unsigned AbbrevToUse = 0; 431 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 432 Vals.clear(); 433 } 434 435 436 // Emit the alias information. 437 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 438 AI != E; ++AI) { 439 Vals.push_back(VE.getTypeID(AI->getType())); 440 Vals.push_back(VE.getValueID(AI->getAliasee())); 441 Vals.push_back(getEncodedLinkage(AI)); 442 Vals.push_back(getEncodedVisibility(AI)); 443 unsigned AbbrevToUse = 0; 444 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 445 Vals.clear(); 446 } 447 } 448 449 450 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 451 const ValueEnumerator &VE, 452 BitstreamWriter &Stream, bool isGlobal) { 453 if (FirstVal == LastVal) return; 454 455 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 456 457 unsigned AggregateAbbrev = 0; 458 unsigned String8Abbrev = 0; 459 unsigned CString7Abbrev = 0; 460 unsigned CString6Abbrev = 0; 461 unsigned MDString8Abbrev = 0; 462 unsigned MDString6Abbrev = 0; 463 // If this is a constant pool for the module, emit module-specific abbrevs. 464 if (isGlobal) { 465 // Abbrev for CST_CODE_AGGREGATE. 466 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 467 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 470 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 471 472 // Abbrev for CST_CODE_STRING. 473 Abbv = new BitCodeAbbrev(); 474 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 477 String8Abbrev = Stream.EmitAbbrev(Abbv); 478 // Abbrev for CST_CODE_CSTRING. 479 Abbv = new BitCodeAbbrev(); 480 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 483 CString7Abbrev = Stream.EmitAbbrev(Abbv); 484 // Abbrev for CST_CODE_CSTRING. 485 Abbv = new BitCodeAbbrev(); 486 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 489 CString6Abbrev = Stream.EmitAbbrev(Abbv); 490 491 // Abbrev for CST_CODE_MDSTRING. 492 Abbv = new BitCodeAbbrev(); 493 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING)); 494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 496 MDString8Abbrev = Stream.EmitAbbrev(Abbv); 497 // Abbrev for CST_CODE_MDSTRING. 498 Abbv = new BitCodeAbbrev(); 499 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING)); 500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 502 MDString6Abbrev = Stream.EmitAbbrev(Abbv); 503 } 504 505 SmallVector<uint64_t, 64> Record; 506 507 const ValueEnumerator::ValueList &Vals = VE.getValues(); 508 const Type *LastTy = 0; 509 for (unsigned i = FirstVal; i != LastVal; ++i) { 510 const Value *V = Vals[i].first; 511 // If we need to switch types, do so now. 512 if (V->getType() != LastTy) { 513 LastTy = V->getType(); 514 Record.push_back(VE.getTypeID(LastTy)); 515 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 516 CONSTANTS_SETTYPE_ABBREV); 517 Record.clear(); 518 } 519 520 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 521 Record.push_back(unsigned(IA->hasSideEffects())); 522 523 // Add the asm string. 524 const std::string &AsmStr = IA->getAsmString(); 525 Record.push_back(AsmStr.size()); 526 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 527 Record.push_back(AsmStr[i]); 528 529 // Add the constraint string. 530 const std::string &ConstraintStr = IA->getConstraintString(); 531 Record.push_back(ConstraintStr.size()); 532 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 533 Record.push_back(ConstraintStr[i]); 534 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 535 Record.clear(); 536 continue; 537 } 538 const Constant *C = cast<Constant>(V); 539 unsigned Code = -1U; 540 unsigned AbbrevToUse = 0; 541 if (C->isNullValue()) { 542 Code = bitc::CST_CODE_NULL; 543 } else if (isa<UndefValue>(C)) { 544 Code = bitc::CST_CODE_UNDEF; 545 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 546 if (IV->getBitWidth() <= 64) { 547 int64_t V = IV->getSExtValue(); 548 if (V >= 0) 549 Record.push_back(V << 1); 550 else 551 Record.push_back((-V << 1) | 1); 552 Code = bitc::CST_CODE_INTEGER; 553 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 554 } else { // Wide integers, > 64 bits in size. 555 // We have an arbitrary precision integer value to write whose 556 // bit width is > 64. However, in canonical unsigned integer 557 // format it is likely that the high bits are going to be zero. 558 // So, we only write the number of active words. 559 unsigned NWords = IV->getValue().getActiveWords(); 560 const uint64_t *RawWords = IV->getValue().getRawData(); 561 for (unsigned i = 0; i != NWords; ++i) { 562 int64_t V = RawWords[i]; 563 if (V >= 0) 564 Record.push_back(V << 1); 565 else 566 Record.push_back((-V << 1) | 1); 567 } 568 Code = bitc::CST_CODE_WIDE_INTEGER; 569 } 570 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 571 Code = bitc::CST_CODE_FLOAT; 572 const Type *Ty = CFP->getType(); 573 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 574 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 575 } else if (Ty == Type::X86_FP80Ty) { 576 // api needed to prevent premature destruction 577 // bits are not in the same order as a normal i80 APInt, compensate. 578 APInt api = CFP->getValueAPF().bitcastToAPInt(); 579 const uint64_t *p = api.getRawData(); 580 Record.push_back((p[1] << 48) | (p[0] >> 16)); 581 Record.push_back(p[0] & 0xffffLL); 582 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 583 APInt api = CFP->getValueAPF().bitcastToAPInt(); 584 const uint64_t *p = api.getRawData(); 585 Record.push_back(p[0]); 586 Record.push_back(p[1]); 587 } else { 588 assert (0 && "Unknown FP type!"); 589 } 590 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 591 // Emit constant strings specially. 592 unsigned NumOps = C->getNumOperands(); 593 // If this is a null-terminated string, use the denser CSTRING encoding. 594 if (C->getOperand(NumOps-1)->isNullValue()) { 595 Code = bitc::CST_CODE_CSTRING; 596 --NumOps; // Don't encode the null, which isn't allowed by char6. 597 } else { 598 Code = bitc::CST_CODE_STRING; 599 AbbrevToUse = String8Abbrev; 600 } 601 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 602 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 603 for (unsigned i = 0; i != NumOps; ++i) { 604 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 605 Record.push_back(V); 606 isCStr7 &= (V & 128) == 0; 607 if (isCStrChar6) 608 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 609 } 610 611 if (isCStrChar6) 612 AbbrevToUse = CString6Abbrev; 613 else if (isCStr7) 614 AbbrevToUse = CString7Abbrev; 615 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 616 isa<ConstantVector>(V)) { 617 Code = bitc::CST_CODE_AGGREGATE; 618 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 619 Record.push_back(VE.getValueID(C->getOperand(i))); 620 AbbrevToUse = AggregateAbbrev; 621 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 622 switch (CE->getOpcode()) { 623 default: 624 if (Instruction::isCast(CE->getOpcode())) { 625 Code = bitc::CST_CODE_CE_CAST; 626 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 627 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 628 Record.push_back(VE.getValueID(C->getOperand(0))); 629 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 630 } else { 631 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 632 Code = bitc::CST_CODE_CE_BINOP; 633 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 634 Record.push_back(VE.getValueID(C->getOperand(0))); 635 Record.push_back(VE.getValueID(C->getOperand(1))); 636 } 637 break; 638 case Instruction::GetElementPtr: 639 Code = bitc::CST_CODE_CE_GEP; 640 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 641 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 642 Record.push_back(VE.getValueID(C->getOperand(i))); 643 } 644 break; 645 case Instruction::Select: 646 Code = bitc::CST_CODE_CE_SELECT; 647 Record.push_back(VE.getValueID(C->getOperand(0))); 648 Record.push_back(VE.getValueID(C->getOperand(1))); 649 Record.push_back(VE.getValueID(C->getOperand(2))); 650 break; 651 case Instruction::ExtractElement: 652 Code = bitc::CST_CODE_CE_EXTRACTELT; 653 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 654 Record.push_back(VE.getValueID(C->getOperand(0))); 655 Record.push_back(VE.getValueID(C->getOperand(1))); 656 break; 657 case Instruction::InsertElement: 658 Code = bitc::CST_CODE_CE_INSERTELT; 659 Record.push_back(VE.getValueID(C->getOperand(0))); 660 Record.push_back(VE.getValueID(C->getOperand(1))); 661 Record.push_back(VE.getValueID(C->getOperand(2))); 662 break; 663 case Instruction::ShuffleVector: 664 // If the return type and argument types are the same, this is a 665 // standard shufflevector instruction. If the types are different, 666 // then the shuffle is widening or truncating the input vectors, and 667 // the argument type must also be encoded. 668 if (C->getType() == C->getOperand(0)->getType()) { 669 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 670 } else { 671 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 672 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 673 } 674 Record.push_back(VE.getValueID(C->getOperand(0))); 675 Record.push_back(VE.getValueID(C->getOperand(1))); 676 Record.push_back(VE.getValueID(C->getOperand(2))); 677 break; 678 case Instruction::ICmp: 679 case Instruction::FCmp: 680 case Instruction::VICmp: 681 case Instruction::VFCmp: 682 if (isa<VectorType>(C->getOperand(0)->getType()) 683 && (CE->getOpcode() == Instruction::ICmp 684 || CE->getOpcode() == Instruction::FCmp)) { 685 // compare returning vector of Int1Ty 686 assert(0 && "Unsupported constant!"); 687 } else { 688 Code = bitc::CST_CODE_CE_CMP; 689 } 690 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 691 Record.push_back(VE.getValueID(C->getOperand(0))); 692 Record.push_back(VE.getValueID(C->getOperand(1))); 693 Record.push_back(CE->getPredicate()); 694 break; 695 } 696 } else if (const MDString *S = dyn_cast<MDString>(C)) { 697 Code = bitc::CST_CODE_MDSTRING; 698 AbbrevToUse = MDString6Abbrev; 699 for (unsigned i = 0, e = S->size(); i != e; ++i) { 700 char V = S->begin()[i]; 701 Record.push_back(V); 702 703 if (!BitCodeAbbrevOp::isChar6(V)) 704 AbbrevToUse = MDString8Abbrev; 705 } 706 } else if (const MDNode *N = dyn_cast<MDNode>(C)) { 707 Code = bitc::CST_CODE_MDNODE; 708 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 709 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 710 Record.push_back(VE.getValueID(N->getOperand(i))); 711 } 712 } else { 713 assert(0 && "Unknown constant!"); 714 } 715 Stream.EmitRecord(Code, Record, AbbrevToUse); 716 Record.clear(); 717 } 718 719 Stream.ExitBlock(); 720 } 721 722 static void WriteModuleConstants(const ValueEnumerator &VE, 723 BitstreamWriter &Stream) { 724 const ValueEnumerator::ValueList &Vals = VE.getValues(); 725 726 // Find the first constant to emit, which is the first non-globalvalue value. 727 // We know globalvalues have been emitted by WriteModuleInfo. 728 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 729 if (!isa<GlobalValue>(Vals[i].first)) { 730 WriteConstants(i, Vals.size(), VE, Stream, true); 731 return; 732 } 733 } 734 } 735 736 /// PushValueAndType - The file has to encode both the value and type id for 737 /// many values, because we need to know what type to create for forward 738 /// references. However, most operands are not forward references, so this type 739 /// field is not needed. 740 /// 741 /// This function adds V's value ID to Vals. If the value ID is higher than the 742 /// instruction ID, then it is a forward reference, and it also includes the 743 /// type ID. 744 static bool PushValueAndType(const Value *V, unsigned InstID, 745 SmallVector<unsigned, 64> &Vals, 746 ValueEnumerator &VE) { 747 unsigned ValID = VE.getValueID(V); 748 Vals.push_back(ValID); 749 if (ValID >= InstID) { 750 Vals.push_back(VE.getTypeID(V->getType())); 751 return true; 752 } 753 return false; 754 } 755 756 /// WriteInstruction - Emit an instruction to the specified stream. 757 static void WriteInstruction(const Instruction &I, unsigned InstID, 758 ValueEnumerator &VE, BitstreamWriter &Stream, 759 SmallVector<unsigned, 64> &Vals) { 760 unsigned Code = 0; 761 unsigned AbbrevToUse = 0; 762 switch (I.getOpcode()) { 763 default: 764 if (Instruction::isCast(I.getOpcode())) { 765 Code = bitc::FUNC_CODE_INST_CAST; 766 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 767 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 768 Vals.push_back(VE.getTypeID(I.getType())); 769 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 770 } else { 771 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 772 Code = bitc::FUNC_CODE_INST_BINOP; 773 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 774 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 775 Vals.push_back(VE.getValueID(I.getOperand(1))); 776 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 777 } 778 break; 779 780 case Instruction::GetElementPtr: 781 Code = bitc::FUNC_CODE_INST_GEP; 782 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 783 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 784 break; 785 case Instruction::ExtractValue: { 786 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 787 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 788 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 789 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 790 Vals.push_back(*i); 791 break; 792 } 793 case Instruction::InsertValue: { 794 Code = bitc::FUNC_CODE_INST_INSERTVAL; 795 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 796 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 797 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 798 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 799 Vals.push_back(*i); 800 break; 801 } 802 case Instruction::Select: 803 Code = bitc::FUNC_CODE_INST_VSELECT; 804 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 805 Vals.push_back(VE.getValueID(I.getOperand(2))); 806 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 807 break; 808 case Instruction::ExtractElement: 809 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 810 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 811 Vals.push_back(VE.getValueID(I.getOperand(1))); 812 break; 813 case Instruction::InsertElement: 814 Code = bitc::FUNC_CODE_INST_INSERTELT; 815 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 816 Vals.push_back(VE.getValueID(I.getOperand(1))); 817 Vals.push_back(VE.getValueID(I.getOperand(2))); 818 break; 819 case Instruction::ShuffleVector: 820 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 821 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 822 Vals.push_back(VE.getValueID(I.getOperand(1))); 823 Vals.push_back(VE.getValueID(I.getOperand(2))); 824 break; 825 case Instruction::ICmp: 826 case Instruction::FCmp: 827 case Instruction::VICmp: 828 case Instruction::VFCmp: 829 if (I.getOpcode() == Instruction::ICmp 830 || I.getOpcode() == Instruction::FCmp) { 831 // compare returning Int1Ty or vector of Int1Ty 832 Code = bitc::FUNC_CODE_INST_CMP2; 833 } else { 834 Code = bitc::FUNC_CODE_INST_CMP; 835 } 836 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 837 Vals.push_back(VE.getValueID(I.getOperand(1))); 838 Vals.push_back(cast<CmpInst>(I).getPredicate()); 839 break; 840 841 case Instruction::Ret: 842 { 843 Code = bitc::FUNC_CODE_INST_RET; 844 unsigned NumOperands = I.getNumOperands(); 845 if (NumOperands == 0) 846 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 847 else if (NumOperands == 1) { 848 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 849 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 850 } else { 851 for (unsigned i = 0, e = NumOperands; i != e; ++i) 852 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 853 } 854 } 855 break; 856 case Instruction::Br: 857 { 858 Code = bitc::FUNC_CODE_INST_BR; 859 BranchInst &II(cast<BranchInst>(I)); 860 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 861 if (II.isConditional()) { 862 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 863 Vals.push_back(VE.getValueID(II.getCondition())); 864 } 865 } 866 break; 867 case Instruction::Switch: 868 Code = bitc::FUNC_CODE_INST_SWITCH; 869 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 870 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 871 Vals.push_back(VE.getValueID(I.getOperand(i))); 872 break; 873 case Instruction::Invoke: { 874 const InvokeInst *II = cast<InvokeInst>(&I); 875 const Value *Callee(II->getCalledValue()); 876 const PointerType *PTy = cast<PointerType>(Callee->getType()); 877 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 878 Code = bitc::FUNC_CODE_INST_INVOKE; 879 880 Vals.push_back(VE.getAttributeID(II->getAttributes())); 881 Vals.push_back(II->getCallingConv()); 882 Vals.push_back(VE.getValueID(II->getNormalDest())); 883 Vals.push_back(VE.getValueID(II->getUnwindDest())); 884 PushValueAndType(Callee, InstID, Vals, VE); 885 886 // Emit value #'s for the fixed parameters. 887 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 888 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 889 890 // Emit type/value pairs for varargs params. 891 if (FTy->isVarArg()) { 892 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 893 i != e; ++i) 894 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 895 } 896 break; 897 } 898 case Instruction::Unwind: 899 Code = bitc::FUNC_CODE_INST_UNWIND; 900 break; 901 case Instruction::Unreachable: 902 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 903 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 904 break; 905 906 case Instruction::PHI: 907 Code = bitc::FUNC_CODE_INST_PHI; 908 Vals.push_back(VE.getTypeID(I.getType())); 909 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 910 Vals.push_back(VE.getValueID(I.getOperand(i))); 911 break; 912 913 case Instruction::Malloc: 914 Code = bitc::FUNC_CODE_INST_MALLOC; 915 Vals.push_back(VE.getTypeID(I.getType())); 916 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 917 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 918 break; 919 920 case Instruction::Free: 921 Code = bitc::FUNC_CODE_INST_FREE; 922 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 923 break; 924 925 case Instruction::Alloca: 926 Code = bitc::FUNC_CODE_INST_ALLOCA; 927 Vals.push_back(VE.getTypeID(I.getType())); 928 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 929 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 930 break; 931 932 case Instruction::Load: 933 Code = bitc::FUNC_CODE_INST_LOAD; 934 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 935 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 936 937 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 938 Vals.push_back(cast<LoadInst>(I).isVolatile()); 939 break; 940 case Instruction::Store: 941 Code = bitc::FUNC_CODE_INST_STORE2; 942 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 943 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 944 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 945 Vals.push_back(cast<StoreInst>(I).isVolatile()); 946 break; 947 case Instruction::Call: { 948 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 949 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 950 951 Code = bitc::FUNC_CODE_INST_CALL; 952 953 const CallInst *CI = cast<CallInst>(&I); 954 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 955 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 956 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 957 958 // Emit value #'s for the fixed parameters. 959 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 960 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 961 962 // Emit type/value pairs for varargs params. 963 if (FTy->isVarArg()) { 964 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 965 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 966 i != e; ++i) 967 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 968 } 969 break; 970 } 971 case Instruction::VAArg: 972 Code = bitc::FUNC_CODE_INST_VAARG; 973 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 974 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 975 Vals.push_back(VE.getTypeID(I.getType())); // restype. 976 break; 977 } 978 979 Stream.EmitRecord(Code, Vals, AbbrevToUse); 980 Vals.clear(); 981 } 982 983 // Emit names for globals/functions etc. 984 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 985 const ValueEnumerator &VE, 986 BitstreamWriter &Stream) { 987 if (VST.empty()) return; 988 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 989 990 // FIXME: Set up the abbrev, we know how many values there are! 991 // FIXME: We know if the type names can use 7-bit ascii. 992 SmallVector<unsigned, 64> NameVals; 993 994 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 995 SI != SE; ++SI) { 996 997 const ValueName &Name = *SI; 998 999 // Figure out the encoding to use for the name. 1000 bool is7Bit = true; 1001 bool isChar6 = true; 1002 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1003 C != E; ++C) { 1004 if (isChar6) 1005 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1006 if ((unsigned char)*C & 128) { 1007 is7Bit = false; 1008 break; // don't bother scanning the rest. 1009 } 1010 } 1011 1012 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1013 1014 // VST_ENTRY: [valueid, namechar x N] 1015 // VST_BBENTRY: [bbid, namechar x N] 1016 unsigned Code; 1017 if (isa<BasicBlock>(SI->getValue())) { 1018 Code = bitc::VST_CODE_BBENTRY; 1019 if (isChar6) 1020 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1021 } else { 1022 Code = bitc::VST_CODE_ENTRY; 1023 if (isChar6) 1024 AbbrevToUse = VST_ENTRY_6_ABBREV; 1025 else if (is7Bit) 1026 AbbrevToUse = VST_ENTRY_7_ABBREV; 1027 } 1028 1029 NameVals.push_back(VE.getValueID(SI->getValue())); 1030 for (const char *P = Name.getKeyData(), 1031 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1032 NameVals.push_back((unsigned char)*P); 1033 1034 // Emit the finished record. 1035 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1036 NameVals.clear(); 1037 } 1038 Stream.ExitBlock(); 1039 } 1040 1041 /// WriteFunction - Emit a function body to the module stream. 1042 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1043 BitstreamWriter &Stream) { 1044 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1045 VE.incorporateFunction(F); 1046 1047 SmallVector<unsigned, 64> Vals; 1048 1049 // Emit the number of basic blocks, so the reader can create them ahead of 1050 // time. 1051 Vals.push_back(VE.getBasicBlocks().size()); 1052 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1053 Vals.clear(); 1054 1055 // If there are function-local constants, emit them now. 1056 unsigned CstStart, CstEnd; 1057 VE.getFunctionConstantRange(CstStart, CstEnd); 1058 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1059 1060 // Keep a running idea of what the instruction ID is. 1061 unsigned InstID = CstEnd; 1062 1063 // Finally, emit all the instructions, in order. 1064 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1065 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1066 I != E; ++I) { 1067 WriteInstruction(*I, InstID, VE, Stream, Vals); 1068 if (I->getType() != Type::VoidTy) 1069 ++InstID; 1070 } 1071 1072 // Emit names for all the instructions etc. 1073 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1074 1075 VE.purgeFunction(); 1076 Stream.ExitBlock(); 1077 } 1078 1079 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1080 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1081 const ValueEnumerator &VE, 1082 BitstreamWriter &Stream) { 1083 if (TST.empty()) return; 1084 1085 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1086 1087 // 7-bit fixed width VST_CODE_ENTRY strings. 1088 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1089 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1091 Log2_32_Ceil(VE.getTypes().size()+1))); 1092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1094 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1095 1096 SmallVector<unsigned, 64> NameVals; 1097 1098 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1099 TI != TE; ++TI) { 1100 // TST_ENTRY: [typeid, namechar x N] 1101 NameVals.push_back(VE.getTypeID(TI->second)); 1102 1103 const std::string &Str = TI->first; 1104 bool is7Bit = true; 1105 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1106 NameVals.push_back((unsigned char)Str[i]); 1107 if (Str[i] & 128) 1108 is7Bit = false; 1109 } 1110 1111 // Emit the finished record. 1112 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1113 NameVals.clear(); 1114 } 1115 1116 Stream.ExitBlock(); 1117 } 1118 1119 // Emit blockinfo, which defines the standard abbreviations etc. 1120 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1121 // We only want to emit block info records for blocks that have multiple 1122 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1123 // blocks can defined their abbrevs inline. 1124 Stream.EnterBlockInfoBlock(2); 1125 1126 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1127 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1132 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1133 Abbv) != VST_ENTRY_8_ABBREV) 1134 assert(0 && "Unexpected abbrev ordering!"); 1135 } 1136 1137 { // 7-bit fixed width VST_ENTRY strings. 1138 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1139 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1143 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1144 Abbv) != VST_ENTRY_7_ABBREV) 1145 assert(0 && "Unexpected abbrev ordering!"); 1146 } 1147 { // 6-bit char6 VST_ENTRY strings. 1148 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1149 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1153 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1154 Abbv) != VST_ENTRY_6_ABBREV) 1155 assert(0 && "Unexpected abbrev ordering!"); 1156 } 1157 { // 6-bit char6 VST_BBENTRY strings. 1158 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1159 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1163 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1164 Abbv) != VST_BBENTRY_6_ABBREV) 1165 assert(0 && "Unexpected abbrev ordering!"); 1166 } 1167 1168 1169 1170 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1171 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1172 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1174 Log2_32_Ceil(VE.getTypes().size()+1))); 1175 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1176 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1177 assert(0 && "Unexpected abbrev ordering!"); 1178 } 1179 1180 { // INTEGER abbrev for CONSTANTS_BLOCK. 1181 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1182 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1184 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1185 Abbv) != CONSTANTS_INTEGER_ABBREV) 1186 assert(0 && "Unexpected abbrev ordering!"); 1187 } 1188 1189 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1190 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1191 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1194 Log2_32_Ceil(VE.getTypes().size()+1))); 1195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1196 1197 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1198 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1199 assert(0 && "Unexpected abbrev ordering!"); 1200 } 1201 { // NULL abbrev for CONSTANTS_BLOCK. 1202 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1203 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1204 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1205 Abbv) != CONSTANTS_NULL_Abbrev) 1206 assert(0 && "Unexpected abbrev ordering!"); 1207 } 1208 1209 // FIXME: This should only use space for first class types! 1210 1211 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1212 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1213 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1217 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1218 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1219 assert(0 && "Unexpected abbrev ordering!"); 1220 } 1221 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1222 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1223 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1227 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1228 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1229 assert(0 && "Unexpected abbrev ordering!"); 1230 } 1231 { // INST_CAST abbrev for FUNCTION_BLOCK. 1232 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1233 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1236 Log2_32_Ceil(VE.getTypes().size()+1))); 1237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1238 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1239 Abbv) != FUNCTION_INST_CAST_ABBREV) 1240 assert(0 && "Unexpected abbrev ordering!"); 1241 } 1242 1243 { // INST_RET abbrev for FUNCTION_BLOCK. 1244 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1245 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1246 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1247 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1248 assert(0 && "Unexpected abbrev ordering!"); 1249 } 1250 { // INST_RET abbrev for FUNCTION_BLOCK. 1251 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1252 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1254 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1255 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1256 assert(0 && "Unexpected abbrev ordering!"); 1257 } 1258 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1259 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1260 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1261 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1262 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1263 assert(0 && "Unexpected abbrev ordering!"); 1264 } 1265 1266 Stream.ExitBlock(); 1267 } 1268 1269 1270 /// WriteModule - Emit the specified module to the bitstream. 1271 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1272 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1273 1274 // Emit the version number if it is non-zero. 1275 if (CurVersion) { 1276 SmallVector<unsigned, 1> Vals; 1277 Vals.push_back(CurVersion); 1278 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1279 } 1280 1281 // Analyze the module, enumerating globals, functions, etc. 1282 ValueEnumerator VE(M); 1283 1284 // Emit blockinfo, which defines the standard abbreviations etc. 1285 WriteBlockInfo(VE, Stream); 1286 1287 // Emit information about parameter attributes. 1288 WriteAttributeTable(VE, Stream); 1289 1290 // Emit information describing all of the types in the module. 1291 WriteTypeTable(VE, Stream); 1292 1293 // Emit top-level description of module, including target triple, inline asm, 1294 // descriptors for global variables, and function prototype info. 1295 WriteModuleInfo(M, VE, Stream); 1296 1297 // Emit constants. 1298 WriteModuleConstants(VE, Stream); 1299 1300 // If we have any aggregate values in the value table, purge them - these can 1301 // only be used to initialize global variables. Doing so makes the value 1302 // namespace smaller for code in functions. 1303 int NumNonAggregates = VE.PurgeAggregateValues(); 1304 if (NumNonAggregates != -1) { 1305 SmallVector<unsigned, 1> Vals; 1306 Vals.push_back(NumNonAggregates); 1307 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1308 } 1309 1310 // Emit function bodies. 1311 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1312 if (!I->isDeclaration()) 1313 WriteFunction(*I, VE, Stream); 1314 1315 // Emit the type symbol table information. 1316 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1317 1318 // Emit names for globals/functions etc. 1319 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1320 1321 Stream.ExitBlock(); 1322 } 1323 1324 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1325 /// header and trailer to make it compatible with the system archiver. To do 1326 /// this we emit the following header, and then emit a trailer that pads the 1327 /// file out to be a multiple of 16 bytes. 1328 /// 1329 /// struct bc_header { 1330 /// uint32_t Magic; // 0x0B17C0DE 1331 /// uint32_t Version; // Version, currently always 0. 1332 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1333 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1334 /// uint32_t CPUType; // CPU specifier. 1335 /// ... potentially more later ... 1336 /// }; 1337 enum { 1338 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1339 DarwinBCHeaderSize = 5*4 1340 }; 1341 1342 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1343 const std::string &TT) { 1344 unsigned CPUType = ~0U; 1345 1346 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1347 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1348 // specific constants here because they are implicitly part of the Darwin ABI. 1349 enum { 1350 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1351 DARWIN_CPU_TYPE_X86 = 7, 1352 DARWIN_CPU_TYPE_POWERPC = 18 1353 }; 1354 1355 if (TT.find("x86_64-") == 0) 1356 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1357 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1358 TT[4] == '-' && TT[1] - '3' < 6) 1359 CPUType = DARWIN_CPU_TYPE_X86; 1360 else if (TT.find("powerpc-") == 0) 1361 CPUType = DARWIN_CPU_TYPE_POWERPC; 1362 else if (TT.find("powerpc64-") == 0) 1363 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1364 1365 // Traditional Bitcode starts after header. 1366 unsigned BCOffset = DarwinBCHeaderSize; 1367 1368 Stream.Emit(0x0B17C0DE, 32); 1369 Stream.Emit(0 , 32); // Version. 1370 Stream.Emit(BCOffset , 32); 1371 Stream.Emit(0 , 32); // Filled in later. 1372 Stream.Emit(CPUType , 32); 1373 } 1374 1375 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1376 /// finalize the header. 1377 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1378 // Update the size field in the header. 1379 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1380 1381 // If the file is not a multiple of 16 bytes, insert dummy padding. 1382 while (BufferSize & 15) { 1383 Stream.Emit(0, 8); 1384 ++BufferSize; 1385 } 1386 } 1387 1388 1389 /// WriteBitcodeToFile - Write the specified module to the specified output 1390 /// stream. 1391 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1392 raw_os_ostream RawOut(Out); 1393 // If writing to stdout, set binary mode. 1394 if (llvm::cout == Out) 1395 sys::Program::ChangeStdoutToBinary(); 1396 WriteBitcodeToFile(M, RawOut); 1397 } 1398 1399 /// WriteBitcodeToFile - Write the specified module to the specified output 1400 /// stream. 1401 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1402 std::vector<unsigned char> Buffer; 1403 BitstreamWriter Stream(Buffer); 1404 1405 Buffer.reserve(256*1024); 1406 1407 WriteBitcodeToStream( M, Stream ); 1408 1409 // If writing to stdout, set binary mode. 1410 if (&llvm::outs() == &Out) 1411 sys::Program::ChangeStdoutToBinary(); 1412 1413 // Write the generated bitstream to "Out". 1414 Out.write((char*)&Buffer.front(), Buffer.size()); 1415 1416 // Make sure it hits disk now. 1417 Out.flush(); 1418 } 1419 1420 /// WriteBitcodeToStream - Write the specified module to the specified output 1421 /// stream. 1422 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1423 // If this is darwin, emit a file header and trailer if needed. 1424 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1425 if (isDarwin) 1426 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1427 1428 // Emit the file header. 1429 Stream.Emit((unsigned)'B', 8); 1430 Stream.Emit((unsigned)'C', 8); 1431 Stream.Emit(0x0, 4); 1432 Stream.Emit(0xC, 4); 1433 Stream.Emit(0xE, 4); 1434 Stream.Emit(0xD, 4); 1435 1436 // Emit the module. 1437 WriteModule(M, Stream); 1438 1439 if (isDarwin) 1440 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1441 } 1442