1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/System/Program.h" 30 using namespace llvm; 31 32 /// These are manifest constants used by the bitcode writer. They do not need to 33 /// be kept in sync with the reader, but need to be consistent within this file. 34 enum { 35 CurVersion = 0, 36 37 // VALUE_SYMTAB_BLOCK abbrev id's. 38 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 39 VST_ENTRY_7_ABBREV, 40 VST_ENTRY_6_ABBREV, 41 VST_BBENTRY_6_ABBREV, 42 43 // CONSTANTS_BLOCK abbrev id's. 44 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 45 CONSTANTS_INTEGER_ABBREV, 46 CONSTANTS_CE_CAST_Abbrev, 47 CONSTANTS_NULL_Abbrev, 48 49 // FUNCTION_BLOCK abbrev id's. 50 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 FUNCTION_INST_BINOP_ABBREV, 52 FUNCTION_INST_BINOP_FLAGS_ABBREV, 53 FUNCTION_INST_CAST_ABBREV, 54 FUNCTION_INST_RET_VOID_ABBREV, 55 FUNCTION_INST_RET_VAL_ABBREV, 56 FUNCTION_INST_UNREACHABLE_ABBREV 57 }; 58 59 60 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 61 switch (Opcode) { 62 default: llvm_unreachable("Unknown cast instruction!"); 63 case Instruction::Trunc : return bitc::CAST_TRUNC; 64 case Instruction::ZExt : return bitc::CAST_ZEXT; 65 case Instruction::SExt : return bitc::CAST_SEXT; 66 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 67 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 68 case Instruction::UIToFP : return bitc::CAST_UITOFP; 69 case Instruction::SIToFP : return bitc::CAST_SITOFP; 70 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 71 case Instruction::FPExt : return bitc::CAST_FPEXT; 72 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 73 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 74 case Instruction::BitCast : return bitc::CAST_BITCAST; 75 } 76 } 77 78 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 79 switch (Opcode) { 80 default: llvm_unreachable("Unknown binary instruction!"); 81 case Instruction::Add: 82 case Instruction::FAdd: return bitc::BINOP_ADD; 83 case Instruction::Sub: 84 case Instruction::FSub: return bitc::BINOP_SUB; 85 case Instruction::Mul: 86 case Instruction::FMul: return bitc::BINOP_MUL; 87 case Instruction::UDiv: return bitc::BINOP_UDIV; 88 case Instruction::FDiv: 89 case Instruction::SDiv: return bitc::BINOP_SDIV; 90 case Instruction::URem: return bitc::BINOP_UREM; 91 case Instruction::FRem: 92 case Instruction::SRem: return bitc::BINOP_SREM; 93 case Instruction::Shl: return bitc::BINOP_SHL; 94 case Instruction::LShr: return bitc::BINOP_LSHR; 95 case Instruction::AShr: return bitc::BINOP_ASHR; 96 case Instruction::And: return bitc::BINOP_AND; 97 case Instruction::Or: return bitc::BINOP_OR; 98 case Instruction::Xor: return bitc::BINOP_XOR; 99 } 100 } 101 102 103 104 static void WriteStringRecord(unsigned Code, const std::string &Str, 105 unsigned AbbrevToUse, BitstreamWriter &Stream) { 106 SmallVector<unsigned, 64> Vals; 107 108 // Code: [strchar x N] 109 for (unsigned i = 0, e = Str.size(); i != e; ++i) 110 Vals.push_back(Str[i]); 111 112 // Emit the finished record. 113 Stream.EmitRecord(Code, Vals, AbbrevToUse); 114 } 115 116 // Emit information about parameter attributes. 117 static void WriteAttributeTable(const ValueEnumerator &VE, 118 BitstreamWriter &Stream) { 119 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 120 if (Attrs.empty()) return; 121 122 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 123 124 SmallVector<uint64_t, 64> Record; 125 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 126 const AttrListPtr &A = Attrs[i]; 127 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 128 const AttributeWithIndex &PAWI = A.getSlot(i); 129 Record.push_back(PAWI.Index); 130 131 // FIXME: remove in LLVM 3.0 132 // Store the alignment in the bitcode as a 16-bit raw value instead of a 133 // 5-bit log2 encoded value. Shift the bits above the alignment up by 134 // 11 bits. 135 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 136 if (PAWI.Attrs & Attribute::Alignment) 137 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 138 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 139 140 Record.push_back(FauxAttr); 141 } 142 143 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 144 Record.clear(); 145 } 146 147 Stream.ExitBlock(); 148 } 149 150 /// WriteTypeTable - Write out the type table for a module. 151 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 152 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 153 154 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 155 SmallVector<uint64_t, 64> TypeVals; 156 157 // Abbrev for TYPE_CODE_POINTER. 158 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 161 Log2_32_Ceil(VE.getTypes().size()+1))); 162 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 163 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 164 165 // Abbrev for TYPE_CODE_FUNCTION. 166 Abbv = new BitCodeAbbrev(); 167 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 169 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 172 Log2_32_Ceil(VE.getTypes().size()+1))); 173 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 174 175 // Abbrev for TYPE_CODE_STRUCT. 176 Abbv = new BitCodeAbbrev(); 177 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 181 Log2_32_Ceil(VE.getTypes().size()+1))); 182 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 183 184 // Abbrev for TYPE_CODE_UNION. 185 Abbv = new BitCodeAbbrev(); 186 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_UNION)); 187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 189 Log2_32_Ceil(VE.getTypes().size()+1))); 190 unsigned UnionAbbrev = Stream.EmitAbbrev(Abbv); 191 192 // Abbrev for TYPE_CODE_ARRAY. 193 Abbv = new BitCodeAbbrev(); 194 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 197 Log2_32_Ceil(VE.getTypes().size()+1))); 198 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 199 200 // Emit an entry count so the reader can reserve space. 201 TypeVals.push_back(TypeList.size()); 202 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 203 TypeVals.clear(); 204 205 // Loop over all of the types, emitting each in turn. 206 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 207 const Type *T = TypeList[i].first; 208 int AbbrevToUse = 0; 209 unsigned Code = 0; 210 211 switch (T->getTypeID()) { 212 default: llvm_unreachable("Unknown type!"); 213 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 214 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 215 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 216 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 217 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 218 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 219 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 220 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 221 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 222 case Type::IntegerTyID: 223 // INTEGER: [width] 224 Code = bitc::TYPE_CODE_INTEGER; 225 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 226 break; 227 case Type::PointerTyID: { 228 const PointerType *PTy = cast<PointerType>(T); 229 // POINTER: [pointee type, address space] 230 Code = bitc::TYPE_CODE_POINTER; 231 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 232 unsigned AddressSpace = PTy->getAddressSpace(); 233 TypeVals.push_back(AddressSpace); 234 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 235 break; 236 } 237 case Type::FunctionTyID: { 238 const FunctionType *FT = cast<FunctionType>(T); 239 // FUNCTION: [isvararg, attrid, retty, paramty x N] 240 Code = bitc::TYPE_CODE_FUNCTION; 241 TypeVals.push_back(FT->isVarArg()); 242 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 243 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 244 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 245 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 246 AbbrevToUse = FunctionAbbrev; 247 break; 248 } 249 case Type::StructTyID: { 250 const StructType *ST = cast<StructType>(T); 251 // STRUCT: [ispacked, eltty x N] 252 Code = bitc::TYPE_CODE_STRUCT; 253 TypeVals.push_back(ST->isPacked()); 254 // Output all of the element types. 255 for (StructType::element_iterator I = ST->element_begin(), 256 E = ST->element_end(); I != E; ++I) 257 TypeVals.push_back(VE.getTypeID(*I)); 258 AbbrevToUse = StructAbbrev; 259 break; 260 } 261 case Type::UnionTyID: { 262 const UnionType *UT = cast<UnionType>(T); 263 // UNION: [eltty x N] 264 Code = bitc::TYPE_CODE_UNION; 265 // Output all of the element types. 266 for (UnionType::element_iterator I = UT->element_begin(), 267 E = UT->element_end(); I != E; ++I) 268 TypeVals.push_back(VE.getTypeID(*I)); 269 AbbrevToUse = UnionAbbrev; 270 break; 271 } 272 case Type::ArrayTyID: { 273 const ArrayType *AT = cast<ArrayType>(T); 274 // ARRAY: [numelts, eltty] 275 Code = bitc::TYPE_CODE_ARRAY; 276 TypeVals.push_back(AT->getNumElements()); 277 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 278 AbbrevToUse = ArrayAbbrev; 279 break; 280 } 281 case Type::VectorTyID: { 282 const VectorType *VT = cast<VectorType>(T); 283 // VECTOR [numelts, eltty] 284 Code = bitc::TYPE_CODE_VECTOR; 285 TypeVals.push_back(VT->getNumElements()); 286 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 287 break; 288 } 289 } 290 291 // Emit the finished record. 292 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 293 TypeVals.clear(); 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static unsigned getEncodedLinkage(const GlobalValue *GV) { 300 switch (GV->getLinkage()) { 301 default: llvm_unreachable("Invalid linkage!"); 302 case GlobalValue::ExternalLinkage: return 0; 303 case GlobalValue::WeakAnyLinkage: return 1; 304 case GlobalValue::AppendingLinkage: return 2; 305 case GlobalValue::InternalLinkage: return 3; 306 case GlobalValue::LinkOnceAnyLinkage: return 4; 307 case GlobalValue::DLLImportLinkage: return 5; 308 case GlobalValue::DLLExportLinkage: return 6; 309 case GlobalValue::ExternalWeakLinkage: return 7; 310 case GlobalValue::CommonLinkage: return 8; 311 case GlobalValue::PrivateLinkage: return 9; 312 case GlobalValue::WeakODRLinkage: return 10; 313 case GlobalValue::LinkOnceODRLinkage: return 11; 314 case GlobalValue::AvailableExternallyLinkage: return 12; 315 case GlobalValue::LinkerPrivateLinkage: return 13; 316 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 317 } 318 } 319 320 static unsigned getEncodedVisibility(const GlobalValue *GV) { 321 switch (GV->getVisibility()) { 322 default: llvm_unreachable("Invalid visibility!"); 323 case GlobalValue::DefaultVisibility: return 0; 324 case GlobalValue::HiddenVisibility: return 1; 325 case GlobalValue::ProtectedVisibility: return 2; 326 } 327 } 328 329 // Emit top-level description of module, including target triple, inline asm, 330 // descriptors for global variables, and function prototype info. 331 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 332 BitstreamWriter &Stream) { 333 // Emit the list of dependent libraries for the Module. 334 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 335 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 336 337 // Emit various pieces of data attached to a module. 338 if (!M->getTargetTriple().empty()) 339 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 340 0/*TODO*/, Stream); 341 if (!M->getDataLayout().empty()) 342 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 343 0/*TODO*/, Stream); 344 if (!M->getModuleInlineAsm().empty()) 345 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 346 0/*TODO*/, Stream); 347 348 // Emit information about sections and GC, computing how many there are. Also 349 // compute the maximum alignment value. 350 std::map<std::string, unsigned> SectionMap; 351 std::map<std::string, unsigned> GCMap; 352 unsigned MaxAlignment = 0; 353 unsigned MaxGlobalType = 0; 354 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 355 GV != E; ++GV) { 356 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 357 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 358 359 if (!GV->hasSection()) continue; 360 // Give section names unique ID's. 361 unsigned &Entry = SectionMap[GV->getSection()]; 362 if (Entry != 0) continue; 363 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 364 0/*TODO*/, Stream); 365 Entry = SectionMap.size(); 366 } 367 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 368 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 369 if (F->hasSection()) { 370 // Give section names unique ID's. 371 unsigned &Entry = SectionMap[F->getSection()]; 372 if (!Entry) { 373 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 374 0/*TODO*/, Stream); 375 Entry = SectionMap.size(); 376 } 377 } 378 if (F->hasGC()) { 379 // Same for GC names. 380 unsigned &Entry = GCMap[F->getGC()]; 381 if (!Entry) { 382 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 383 0/*TODO*/, Stream); 384 Entry = GCMap.size(); 385 } 386 } 387 } 388 389 // Emit abbrev for globals, now that we know # sections and max alignment. 390 unsigned SimpleGVarAbbrev = 0; 391 if (!M->global_empty()) { 392 // Add an abbrev for common globals with no visibility or thread localness. 393 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 394 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 396 Log2_32_Ceil(MaxGlobalType+1))); 397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 400 if (MaxAlignment == 0) // Alignment. 401 Abbv->Add(BitCodeAbbrevOp(0)); 402 else { 403 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 405 Log2_32_Ceil(MaxEncAlignment+1))); 406 } 407 if (SectionMap.empty()) // Section. 408 Abbv->Add(BitCodeAbbrevOp(0)); 409 else 410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 411 Log2_32_Ceil(SectionMap.size()+1))); 412 // Don't bother emitting vis + thread local. 413 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 414 } 415 416 // Emit the global variable information. 417 SmallVector<unsigned, 64> Vals; 418 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 419 GV != E; ++GV) { 420 unsigned AbbrevToUse = 0; 421 422 // GLOBALVAR: [type, isconst, initid, 423 // linkage, alignment, section, visibility, threadlocal] 424 Vals.push_back(VE.getTypeID(GV->getType())); 425 Vals.push_back(GV->isConstant()); 426 Vals.push_back(GV->isDeclaration() ? 0 : 427 (VE.getValueID(GV->getInitializer()) + 1)); 428 Vals.push_back(getEncodedLinkage(GV)); 429 Vals.push_back(Log2_32(GV->getAlignment())+1); 430 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 431 if (GV->isThreadLocal() || 432 GV->getVisibility() != GlobalValue::DefaultVisibility) { 433 Vals.push_back(getEncodedVisibility(GV)); 434 Vals.push_back(GV->isThreadLocal()); 435 } else { 436 AbbrevToUse = SimpleGVarAbbrev; 437 } 438 439 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 440 Vals.clear(); 441 } 442 443 // Emit the function proto information. 444 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 445 // FUNCTION: [type, callingconv, isproto, paramattr, 446 // linkage, alignment, section, visibility, gc] 447 Vals.push_back(VE.getTypeID(F->getType())); 448 Vals.push_back(F->getCallingConv()); 449 Vals.push_back(F->isDeclaration()); 450 Vals.push_back(getEncodedLinkage(F)); 451 Vals.push_back(VE.getAttributeID(F->getAttributes())); 452 Vals.push_back(Log2_32(F->getAlignment())+1); 453 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 454 Vals.push_back(getEncodedVisibility(F)); 455 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 456 457 unsigned AbbrevToUse = 0; 458 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 459 Vals.clear(); 460 } 461 462 463 // Emit the alias information. 464 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 465 AI != E; ++AI) { 466 Vals.push_back(VE.getTypeID(AI->getType())); 467 Vals.push_back(VE.getValueID(AI->getAliasee())); 468 Vals.push_back(getEncodedLinkage(AI)); 469 Vals.push_back(getEncodedVisibility(AI)); 470 unsigned AbbrevToUse = 0; 471 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 472 Vals.clear(); 473 } 474 } 475 476 static uint64_t GetOptimizationFlags(const Value *V) { 477 uint64_t Flags = 0; 478 479 if (const OverflowingBinaryOperator *OBO = 480 dyn_cast<OverflowingBinaryOperator>(V)) { 481 if (OBO->hasNoSignedWrap()) 482 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 483 if (OBO->hasNoUnsignedWrap()) 484 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 485 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { 486 if (Div->isExact()) 487 Flags |= 1 << bitc::SDIV_EXACT; 488 } 489 490 return Flags; 491 } 492 493 static void WriteMDNode(const MDNode *N, 494 const ValueEnumerator &VE, 495 BitstreamWriter &Stream, 496 SmallVector<uint64_t, 64> &Record) { 497 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 498 if (N->getOperand(i)) { 499 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 500 Record.push_back(VE.getValueID(N->getOperand(i))); 501 } else { 502 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 503 Record.push_back(0); 504 } 505 } 506 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 507 bitc::METADATA_NODE; 508 Stream.EmitRecord(MDCode, Record, 0); 509 Record.clear(); 510 } 511 512 static void WriteModuleMetadata(const ValueEnumerator &VE, 513 BitstreamWriter &Stream) { 514 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 515 bool StartedMetadataBlock = false; 516 unsigned MDSAbbrev = 0; 517 SmallVector<uint64_t, 64> Record; 518 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 519 520 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 521 if (!N->isFunctionLocal() || !N->getFunction()) { 522 if (!StartedMetadataBlock) { 523 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 524 StartedMetadataBlock = true; 525 } 526 WriteMDNode(N, VE, Stream, Record); 527 } 528 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 529 if (!StartedMetadataBlock) { 530 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 531 532 // Abbrev for METADATA_STRING. 533 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 534 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 537 MDSAbbrev = Stream.EmitAbbrev(Abbv); 538 StartedMetadataBlock = true; 539 } 540 541 // Code: [strchar x N] 542 Record.append(MDS->begin(), MDS->end()); 543 544 // Emit the finished record. 545 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 546 Record.clear(); 547 } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) { 548 if (!StartedMetadataBlock) { 549 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 550 StartedMetadataBlock = true; 551 } 552 553 // Write name. 554 StringRef Str = NMD->getName(); 555 for (unsigned i = 0, e = Str.size(); i != e; ++i) 556 Record.push_back(Str[i]); 557 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 558 Record.clear(); 559 560 // Write named metadata operands. 561 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 562 Record.push_back(VE.getValueID(NMD->getOperand(i))); 563 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 564 Record.clear(); 565 } 566 } 567 568 if (StartedMetadataBlock) 569 Stream.ExitBlock(); 570 } 571 572 static void WriteFunctionLocalMetadata(const Function &F, 573 const ValueEnumerator &VE, 574 BitstreamWriter &Stream) { 575 bool StartedMetadataBlock = false; 576 SmallVector<uint64_t, 64> Record; 577 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 578 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 579 if (const MDNode *N = Vals[i]) 580 if (N->isFunctionLocal() && N->getFunction() == &F) { 581 if (!StartedMetadataBlock) { 582 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 583 StartedMetadataBlock = true; 584 } 585 WriteMDNode(N, VE, Stream, Record); 586 } 587 588 if (StartedMetadataBlock) 589 Stream.ExitBlock(); 590 } 591 592 static void WriteMetadataAttachment(const Function &F, 593 const ValueEnumerator &VE, 594 BitstreamWriter &Stream) { 595 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 596 597 SmallVector<uint64_t, 64> Record; 598 599 // Write metadata attachments 600 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 601 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 602 603 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 604 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 605 I != E; ++I) { 606 MDs.clear(); 607 I->getAllMetadataOtherThanDebugLoc(MDs); 608 609 // If no metadata, ignore instruction. 610 if (MDs.empty()) continue; 611 612 Record.push_back(VE.getInstructionID(I)); 613 614 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 615 Record.push_back(MDs[i].first); 616 Record.push_back(VE.getValueID(MDs[i].second)); 617 } 618 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 619 Record.clear(); 620 } 621 622 Stream.ExitBlock(); 623 } 624 625 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 626 SmallVector<uint64_t, 64> Record; 627 628 // Write metadata kinds 629 // METADATA_KIND - [n x [id, name]] 630 SmallVector<StringRef, 4> Names; 631 M->getMDKindNames(Names); 632 633 if (Names.empty()) return; 634 635 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 636 637 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 638 Record.push_back(MDKindID); 639 StringRef KName = Names[MDKindID]; 640 Record.append(KName.begin(), KName.end()); 641 642 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 643 Record.clear(); 644 } 645 646 Stream.ExitBlock(); 647 } 648 649 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 650 const ValueEnumerator &VE, 651 BitstreamWriter &Stream, bool isGlobal) { 652 if (FirstVal == LastVal) return; 653 654 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 655 656 unsigned AggregateAbbrev = 0; 657 unsigned String8Abbrev = 0; 658 unsigned CString7Abbrev = 0; 659 unsigned CString6Abbrev = 0; 660 // If this is a constant pool for the module, emit module-specific abbrevs. 661 if (isGlobal) { 662 // Abbrev for CST_CODE_AGGREGATE. 663 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 664 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 667 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 668 669 // Abbrev for CST_CODE_STRING. 670 Abbv = new BitCodeAbbrev(); 671 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 674 String8Abbrev = Stream.EmitAbbrev(Abbv); 675 // Abbrev for CST_CODE_CSTRING. 676 Abbv = new BitCodeAbbrev(); 677 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 680 CString7Abbrev = Stream.EmitAbbrev(Abbv); 681 // Abbrev for CST_CODE_CSTRING. 682 Abbv = new BitCodeAbbrev(); 683 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 686 CString6Abbrev = Stream.EmitAbbrev(Abbv); 687 } 688 689 SmallVector<uint64_t, 64> Record; 690 691 const ValueEnumerator::ValueList &Vals = VE.getValues(); 692 const Type *LastTy = 0; 693 for (unsigned i = FirstVal; i != LastVal; ++i) { 694 const Value *V = Vals[i].first; 695 // If we need to switch types, do so now. 696 if (V->getType() != LastTy) { 697 LastTy = V->getType(); 698 Record.push_back(VE.getTypeID(LastTy)); 699 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 700 CONSTANTS_SETTYPE_ABBREV); 701 Record.clear(); 702 } 703 704 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 705 Record.push_back(unsigned(IA->hasSideEffects()) | 706 unsigned(IA->isAlignStack()) << 1); 707 708 // Add the asm string. 709 const std::string &AsmStr = IA->getAsmString(); 710 Record.push_back(AsmStr.size()); 711 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 712 Record.push_back(AsmStr[i]); 713 714 // Add the constraint string. 715 const std::string &ConstraintStr = IA->getConstraintString(); 716 Record.push_back(ConstraintStr.size()); 717 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 718 Record.push_back(ConstraintStr[i]); 719 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 720 Record.clear(); 721 continue; 722 } 723 const Constant *C = cast<Constant>(V); 724 unsigned Code = -1U; 725 unsigned AbbrevToUse = 0; 726 if (C->isNullValue()) { 727 Code = bitc::CST_CODE_NULL; 728 } else if (isa<UndefValue>(C)) { 729 Code = bitc::CST_CODE_UNDEF; 730 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 731 if (IV->getBitWidth() <= 64) { 732 int64_t V = IV->getSExtValue(); 733 if (V >= 0) 734 Record.push_back(V << 1); 735 else 736 Record.push_back((-V << 1) | 1); 737 Code = bitc::CST_CODE_INTEGER; 738 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 739 } else { // Wide integers, > 64 bits in size. 740 // We have an arbitrary precision integer value to write whose 741 // bit width is > 64. However, in canonical unsigned integer 742 // format it is likely that the high bits are going to be zero. 743 // So, we only write the number of active words. 744 unsigned NWords = IV->getValue().getActiveWords(); 745 const uint64_t *RawWords = IV->getValue().getRawData(); 746 for (unsigned i = 0; i != NWords; ++i) { 747 int64_t V = RawWords[i]; 748 if (V >= 0) 749 Record.push_back(V << 1); 750 else 751 Record.push_back((-V << 1) | 1); 752 } 753 Code = bitc::CST_CODE_WIDE_INTEGER; 754 } 755 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 756 Code = bitc::CST_CODE_FLOAT; 757 const Type *Ty = CFP->getType(); 758 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 759 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 760 } else if (Ty->isX86_FP80Ty()) { 761 // api needed to prevent premature destruction 762 // bits are not in the same order as a normal i80 APInt, compensate. 763 APInt api = CFP->getValueAPF().bitcastToAPInt(); 764 const uint64_t *p = api.getRawData(); 765 Record.push_back((p[1] << 48) | (p[0] >> 16)); 766 Record.push_back(p[0] & 0xffffLL); 767 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 768 APInt api = CFP->getValueAPF().bitcastToAPInt(); 769 const uint64_t *p = api.getRawData(); 770 Record.push_back(p[0]); 771 Record.push_back(p[1]); 772 } else { 773 assert (0 && "Unknown FP type!"); 774 } 775 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 776 const ConstantArray *CA = cast<ConstantArray>(C); 777 // Emit constant strings specially. 778 unsigned NumOps = CA->getNumOperands(); 779 // If this is a null-terminated string, use the denser CSTRING encoding. 780 if (CA->getOperand(NumOps-1)->isNullValue()) { 781 Code = bitc::CST_CODE_CSTRING; 782 --NumOps; // Don't encode the null, which isn't allowed by char6. 783 } else { 784 Code = bitc::CST_CODE_STRING; 785 AbbrevToUse = String8Abbrev; 786 } 787 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 788 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 789 for (unsigned i = 0; i != NumOps; ++i) { 790 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); 791 Record.push_back(V); 792 isCStr7 &= (V & 128) == 0; 793 if (isCStrChar6) 794 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 795 } 796 797 if (isCStrChar6) 798 AbbrevToUse = CString6Abbrev; 799 else if (isCStr7) 800 AbbrevToUse = CString7Abbrev; 801 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 802 isa<ConstantVector>(V)) { 803 Code = bitc::CST_CODE_AGGREGATE; 804 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 805 Record.push_back(VE.getValueID(C->getOperand(i))); 806 AbbrevToUse = AggregateAbbrev; 807 } else if (isa<ConstantUnion>(C)) { 808 Code = bitc::CST_CODE_AGGREGATE; 809 810 // Unions only have one entry but we must send type along with it. 811 const Type *EntryKind = C->getOperand(0)->getType(); 812 813 const UnionType *UnTy = cast<UnionType>(C->getType()); 814 int UnionIndex = UnTy->getElementTypeIndex(EntryKind); 815 assert(UnionIndex != -1 && "Constant union contains invalid entry"); 816 817 Record.push_back(UnionIndex); 818 Record.push_back(VE.getValueID(C->getOperand(0))); 819 820 AbbrevToUse = AggregateAbbrev; 821 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 822 switch (CE->getOpcode()) { 823 default: 824 if (Instruction::isCast(CE->getOpcode())) { 825 Code = bitc::CST_CODE_CE_CAST; 826 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 827 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 828 Record.push_back(VE.getValueID(C->getOperand(0))); 829 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 830 } else { 831 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 832 Code = bitc::CST_CODE_CE_BINOP; 833 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 834 Record.push_back(VE.getValueID(C->getOperand(0))); 835 Record.push_back(VE.getValueID(C->getOperand(1))); 836 uint64_t Flags = GetOptimizationFlags(CE); 837 if (Flags != 0) 838 Record.push_back(Flags); 839 } 840 break; 841 case Instruction::GetElementPtr: 842 Code = bitc::CST_CODE_CE_GEP; 843 if (cast<GEPOperator>(C)->isInBounds()) 844 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 845 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 846 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 847 Record.push_back(VE.getValueID(C->getOperand(i))); 848 } 849 break; 850 case Instruction::Select: 851 Code = bitc::CST_CODE_CE_SELECT; 852 Record.push_back(VE.getValueID(C->getOperand(0))); 853 Record.push_back(VE.getValueID(C->getOperand(1))); 854 Record.push_back(VE.getValueID(C->getOperand(2))); 855 break; 856 case Instruction::ExtractElement: 857 Code = bitc::CST_CODE_CE_EXTRACTELT; 858 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 859 Record.push_back(VE.getValueID(C->getOperand(0))); 860 Record.push_back(VE.getValueID(C->getOperand(1))); 861 break; 862 case Instruction::InsertElement: 863 Code = bitc::CST_CODE_CE_INSERTELT; 864 Record.push_back(VE.getValueID(C->getOperand(0))); 865 Record.push_back(VE.getValueID(C->getOperand(1))); 866 Record.push_back(VE.getValueID(C->getOperand(2))); 867 break; 868 case Instruction::ShuffleVector: 869 // If the return type and argument types are the same, this is a 870 // standard shufflevector instruction. If the types are different, 871 // then the shuffle is widening or truncating the input vectors, and 872 // the argument type must also be encoded. 873 if (C->getType() == C->getOperand(0)->getType()) { 874 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 875 } else { 876 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 877 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 878 } 879 Record.push_back(VE.getValueID(C->getOperand(0))); 880 Record.push_back(VE.getValueID(C->getOperand(1))); 881 Record.push_back(VE.getValueID(C->getOperand(2))); 882 break; 883 case Instruction::ICmp: 884 case Instruction::FCmp: 885 Code = bitc::CST_CODE_CE_CMP; 886 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 887 Record.push_back(VE.getValueID(C->getOperand(0))); 888 Record.push_back(VE.getValueID(C->getOperand(1))); 889 Record.push_back(CE->getPredicate()); 890 break; 891 } 892 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 893 assert(BA->getFunction() == BA->getBasicBlock()->getParent() && 894 "Malformed blockaddress"); 895 Code = bitc::CST_CODE_BLOCKADDRESS; 896 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 897 Record.push_back(VE.getValueID(BA->getFunction())); 898 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 899 } else { 900 #ifndef NDEBUG 901 C->dump(); 902 #endif 903 llvm_unreachable("Unknown constant!"); 904 } 905 Stream.EmitRecord(Code, Record, AbbrevToUse); 906 Record.clear(); 907 } 908 909 Stream.ExitBlock(); 910 } 911 912 static void WriteModuleConstants(const ValueEnumerator &VE, 913 BitstreamWriter &Stream) { 914 const ValueEnumerator::ValueList &Vals = VE.getValues(); 915 916 // Find the first constant to emit, which is the first non-globalvalue value. 917 // We know globalvalues have been emitted by WriteModuleInfo. 918 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 919 if (!isa<GlobalValue>(Vals[i].first)) { 920 WriteConstants(i, Vals.size(), VE, Stream, true); 921 return; 922 } 923 } 924 } 925 926 /// PushValueAndType - The file has to encode both the value and type id for 927 /// many values, because we need to know what type to create for forward 928 /// references. However, most operands are not forward references, so this type 929 /// field is not needed. 930 /// 931 /// This function adds V's value ID to Vals. If the value ID is higher than the 932 /// instruction ID, then it is a forward reference, and it also includes the 933 /// type ID. 934 static bool PushValueAndType(const Value *V, unsigned InstID, 935 SmallVector<unsigned, 64> &Vals, 936 ValueEnumerator &VE) { 937 unsigned ValID = VE.getValueID(V); 938 Vals.push_back(ValID); 939 if (ValID >= InstID) { 940 Vals.push_back(VE.getTypeID(V->getType())); 941 return true; 942 } 943 return false; 944 } 945 946 /// WriteInstruction - Emit an instruction to the specified stream. 947 static void WriteInstruction(const Instruction &I, unsigned InstID, 948 ValueEnumerator &VE, BitstreamWriter &Stream, 949 SmallVector<unsigned, 64> &Vals) { 950 unsigned Code = 0; 951 unsigned AbbrevToUse = 0; 952 VE.setInstructionID(&I); 953 switch (I.getOpcode()) { 954 default: 955 if (Instruction::isCast(I.getOpcode())) { 956 Code = bitc::FUNC_CODE_INST_CAST; 957 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 958 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 959 Vals.push_back(VE.getTypeID(I.getType())); 960 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 961 } else { 962 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 963 Code = bitc::FUNC_CODE_INST_BINOP; 964 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 965 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 966 Vals.push_back(VE.getValueID(I.getOperand(1))); 967 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 968 uint64_t Flags = GetOptimizationFlags(&I); 969 if (Flags != 0) { 970 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 971 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 972 Vals.push_back(Flags); 973 } 974 } 975 break; 976 977 case Instruction::GetElementPtr: 978 Code = bitc::FUNC_CODE_INST_GEP; 979 if (cast<GEPOperator>(&I)->isInBounds()) 980 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 981 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 982 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 983 break; 984 case Instruction::ExtractValue: { 985 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 986 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 987 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 988 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 989 Vals.push_back(*i); 990 break; 991 } 992 case Instruction::InsertValue: { 993 Code = bitc::FUNC_CODE_INST_INSERTVAL; 994 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 995 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 996 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 997 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 998 Vals.push_back(*i); 999 break; 1000 } 1001 case Instruction::Select: 1002 Code = bitc::FUNC_CODE_INST_VSELECT; 1003 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1004 Vals.push_back(VE.getValueID(I.getOperand(2))); 1005 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1006 break; 1007 case Instruction::ExtractElement: 1008 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1009 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1010 Vals.push_back(VE.getValueID(I.getOperand(1))); 1011 break; 1012 case Instruction::InsertElement: 1013 Code = bitc::FUNC_CODE_INST_INSERTELT; 1014 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1015 Vals.push_back(VE.getValueID(I.getOperand(1))); 1016 Vals.push_back(VE.getValueID(I.getOperand(2))); 1017 break; 1018 case Instruction::ShuffleVector: 1019 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1020 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1021 Vals.push_back(VE.getValueID(I.getOperand(1))); 1022 Vals.push_back(VE.getValueID(I.getOperand(2))); 1023 break; 1024 case Instruction::ICmp: 1025 case Instruction::FCmp: 1026 // compare returning Int1Ty or vector of Int1Ty 1027 Code = bitc::FUNC_CODE_INST_CMP2; 1028 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1029 Vals.push_back(VE.getValueID(I.getOperand(1))); 1030 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1031 break; 1032 1033 case Instruction::Ret: 1034 { 1035 Code = bitc::FUNC_CODE_INST_RET; 1036 unsigned NumOperands = I.getNumOperands(); 1037 if (NumOperands == 0) 1038 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1039 else if (NumOperands == 1) { 1040 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1041 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1042 } else { 1043 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1044 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1045 } 1046 } 1047 break; 1048 case Instruction::Br: 1049 { 1050 Code = bitc::FUNC_CODE_INST_BR; 1051 BranchInst &II = cast<BranchInst>(I); 1052 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1053 if (II.isConditional()) { 1054 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1055 Vals.push_back(VE.getValueID(II.getCondition())); 1056 } 1057 } 1058 break; 1059 case Instruction::Switch: 1060 Code = bitc::FUNC_CODE_INST_SWITCH; 1061 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1062 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1063 Vals.push_back(VE.getValueID(I.getOperand(i))); 1064 break; 1065 case Instruction::IndirectBr: 1066 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1067 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1068 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1069 Vals.push_back(VE.getValueID(I.getOperand(i))); 1070 break; 1071 1072 case Instruction::Invoke: { 1073 const InvokeInst *II = cast<InvokeInst>(&I); 1074 const Value *Callee(II->getCalledValue()); 1075 const PointerType *PTy = cast<PointerType>(Callee->getType()); 1076 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1077 Code = bitc::FUNC_CODE_INST_INVOKE; 1078 1079 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1080 Vals.push_back(II->getCallingConv()); 1081 Vals.push_back(VE.getValueID(II->getNormalDest())); 1082 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1083 PushValueAndType(Callee, InstID, Vals, VE); 1084 1085 // Emit value #'s for the fixed parameters. 1086 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1087 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1088 1089 // Emit type/value pairs for varargs params. 1090 if (FTy->isVarArg()) { 1091 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1092 i != e; ++i) 1093 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1094 } 1095 break; 1096 } 1097 case Instruction::Unwind: 1098 Code = bitc::FUNC_CODE_INST_UNWIND; 1099 break; 1100 case Instruction::Unreachable: 1101 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1102 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1103 break; 1104 1105 case Instruction::PHI: 1106 Code = bitc::FUNC_CODE_INST_PHI; 1107 Vals.push_back(VE.getTypeID(I.getType())); 1108 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1109 Vals.push_back(VE.getValueID(I.getOperand(i))); 1110 break; 1111 1112 case Instruction::Alloca: 1113 Code = bitc::FUNC_CODE_INST_ALLOCA; 1114 Vals.push_back(VE.getTypeID(I.getType())); 1115 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1116 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1117 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1118 break; 1119 1120 case Instruction::Load: 1121 Code = bitc::FUNC_CODE_INST_LOAD; 1122 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1123 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1124 1125 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1126 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1127 break; 1128 case Instruction::Store: 1129 Code = bitc::FUNC_CODE_INST_STORE2; 1130 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1131 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1132 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1133 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1134 break; 1135 case Instruction::Call: { 1136 const CallInst &CI = cast<CallInst>(I); 1137 const PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1138 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1139 1140 Code = bitc::FUNC_CODE_INST_CALL; 1141 1142 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1143 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1144 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1145 1146 // Emit value #'s for the fixed parameters. 1147 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1148 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1149 1150 // Emit type/value pairs for varargs params. 1151 if (FTy->isVarArg()) { 1152 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1153 i != e; ++i) 1154 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1155 } 1156 break; 1157 } 1158 case Instruction::VAArg: 1159 Code = bitc::FUNC_CODE_INST_VAARG; 1160 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1161 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1162 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1163 break; 1164 } 1165 1166 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1167 Vals.clear(); 1168 } 1169 1170 // Emit names for globals/functions etc. 1171 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1172 const ValueEnumerator &VE, 1173 BitstreamWriter &Stream) { 1174 if (VST.empty()) return; 1175 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1176 1177 // FIXME: Set up the abbrev, we know how many values there are! 1178 // FIXME: We know if the type names can use 7-bit ascii. 1179 SmallVector<unsigned, 64> NameVals; 1180 1181 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1182 SI != SE; ++SI) { 1183 1184 const ValueName &Name = *SI; 1185 1186 // Figure out the encoding to use for the name. 1187 bool is7Bit = true; 1188 bool isChar6 = true; 1189 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1190 C != E; ++C) { 1191 if (isChar6) 1192 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1193 if ((unsigned char)*C & 128) { 1194 is7Bit = false; 1195 break; // don't bother scanning the rest. 1196 } 1197 } 1198 1199 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1200 1201 // VST_ENTRY: [valueid, namechar x N] 1202 // VST_BBENTRY: [bbid, namechar x N] 1203 unsigned Code; 1204 if (isa<BasicBlock>(SI->getValue())) { 1205 Code = bitc::VST_CODE_BBENTRY; 1206 if (isChar6) 1207 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1208 } else { 1209 Code = bitc::VST_CODE_ENTRY; 1210 if (isChar6) 1211 AbbrevToUse = VST_ENTRY_6_ABBREV; 1212 else if (is7Bit) 1213 AbbrevToUse = VST_ENTRY_7_ABBREV; 1214 } 1215 1216 NameVals.push_back(VE.getValueID(SI->getValue())); 1217 for (const char *P = Name.getKeyData(), 1218 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1219 NameVals.push_back((unsigned char)*P); 1220 1221 // Emit the finished record. 1222 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1223 NameVals.clear(); 1224 } 1225 Stream.ExitBlock(); 1226 } 1227 1228 /// WriteFunction - Emit a function body to the module stream. 1229 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1230 BitstreamWriter &Stream) { 1231 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1232 VE.incorporateFunction(F); 1233 1234 SmallVector<unsigned, 64> Vals; 1235 1236 // Emit the number of basic blocks, so the reader can create them ahead of 1237 // time. 1238 Vals.push_back(VE.getBasicBlocks().size()); 1239 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1240 Vals.clear(); 1241 1242 // If there are function-local constants, emit them now. 1243 unsigned CstStart, CstEnd; 1244 VE.getFunctionConstantRange(CstStart, CstEnd); 1245 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1246 1247 // If there is function-local metadata, emit it now. 1248 WriteFunctionLocalMetadata(F, VE, Stream); 1249 1250 // Keep a running idea of what the instruction ID is. 1251 unsigned InstID = CstEnd; 1252 1253 bool NeedsMetadataAttachment = false; 1254 1255 DebugLoc LastDL; 1256 1257 // Finally, emit all the instructions, in order. 1258 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1259 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1260 I != E; ++I) { 1261 WriteInstruction(*I, InstID, VE, Stream, Vals); 1262 1263 if (!I->getType()->isVoidTy()) 1264 ++InstID; 1265 1266 // If the instruction has metadata, write a metadata attachment later. 1267 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1268 1269 // If the instruction has a debug location, emit it. 1270 DebugLoc DL = I->getDebugLoc(); 1271 if (DL.isUnknown()) { 1272 // nothing todo. 1273 } else if (DL == LastDL) { 1274 // Just repeat the same debug loc as last time. 1275 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1276 } else { 1277 MDNode *Scope, *IA; 1278 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1279 1280 Vals.push_back(DL.getLine()); 1281 Vals.push_back(DL.getCol()); 1282 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1283 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1284 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1285 Vals.clear(); 1286 1287 LastDL = DL; 1288 } 1289 } 1290 1291 // Emit names for all the instructions etc. 1292 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1293 1294 if (NeedsMetadataAttachment) 1295 WriteMetadataAttachment(F, VE, Stream); 1296 VE.purgeFunction(); 1297 Stream.ExitBlock(); 1298 } 1299 1300 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1301 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1302 const ValueEnumerator &VE, 1303 BitstreamWriter &Stream) { 1304 if (TST.empty()) return; 1305 1306 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1307 1308 // 7-bit fixed width VST_CODE_ENTRY strings. 1309 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1310 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1312 Log2_32_Ceil(VE.getTypes().size()+1))); 1313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1315 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1316 1317 SmallVector<unsigned, 64> NameVals; 1318 1319 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1320 TI != TE; ++TI) { 1321 // TST_ENTRY: [typeid, namechar x N] 1322 NameVals.push_back(VE.getTypeID(TI->second)); 1323 1324 const std::string &Str = TI->first; 1325 bool is7Bit = true; 1326 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1327 NameVals.push_back((unsigned char)Str[i]); 1328 if (Str[i] & 128) 1329 is7Bit = false; 1330 } 1331 1332 // Emit the finished record. 1333 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1334 NameVals.clear(); 1335 } 1336 1337 Stream.ExitBlock(); 1338 } 1339 1340 // Emit blockinfo, which defines the standard abbreviations etc. 1341 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1342 // We only want to emit block info records for blocks that have multiple 1343 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1344 // blocks can defined their abbrevs inline. 1345 Stream.EnterBlockInfoBlock(2); 1346 1347 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1348 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1353 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1354 Abbv) != VST_ENTRY_8_ABBREV) 1355 llvm_unreachable("Unexpected abbrev ordering!"); 1356 } 1357 1358 { // 7-bit fixed width VST_ENTRY strings. 1359 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1360 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1364 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1365 Abbv) != VST_ENTRY_7_ABBREV) 1366 llvm_unreachable("Unexpected abbrev ordering!"); 1367 } 1368 { // 6-bit char6 VST_ENTRY strings. 1369 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1370 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1374 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1375 Abbv) != VST_ENTRY_6_ABBREV) 1376 llvm_unreachable("Unexpected abbrev ordering!"); 1377 } 1378 { // 6-bit char6 VST_BBENTRY strings. 1379 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1380 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1384 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1385 Abbv) != VST_BBENTRY_6_ABBREV) 1386 llvm_unreachable("Unexpected abbrev ordering!"); 1387 } 1388 1389 1390 1391 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1392 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1393 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1395 Log2_32_Ceil(VE.getTypes().size()+1))); 1396 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1397 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1398 llvm_unreachable("Unexpected abbrev ordering!"); 1399 } 1400 1401 { // INTEGER abbrev for CONSTANTS_BLOCK. 1402 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1403 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1405 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1406 Abbv) != CONSTANTS_INTEGER_ABBREV) 1407 llvm_unreachable("Unexpected abbrev ordering!"); 1408 } 1409 1410 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1411 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1412 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1415 Log2_32_Ceil(VE.getTypes().size()+1))); 1416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1417 1418 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1419 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1420 llvm_unreachable("Unexpected abbrev ordering!"); 1421 } 1422 { // NULL abbrev for CONSTANTS_BLOCK. 1423 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1424 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1425 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1426 Abbv) != CONSTANTS_NULL_Abbrev) 1427 llvm_unreachable("Unexpected abbrev ordering!"); 1428 } 1429 1430 // FIXME: This should only use space for first class types! 1431 1432 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1433 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1434 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1438 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1439 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1440 llvm_unreachable("Unexpected abbrev ordering!"); 1441 } 1442 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1443 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1444 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1448 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1449 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1450 llvm_unreachable("Unexpected abbrev ordering!"); 1451 } 1452 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1453 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1454 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1459 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1460 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1461 llvm_unreachable("Unexpected abbrev ordering!"); 1462 } 1463 { // INST_CAST abbrev for FUNCTION_BLOCK. 1464 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1465 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1468 Log2_32_Ceil(VE.getTypes().size()+1))); 1469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1470 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1471 Abbv) != FUNCTION_INST_CAST_ABBREV) 1472 llvm_unreachable("Unexpected abbrev ordering!"); 1473 } 1474 1475 { // INST_RET abbrev for FUNCTION_BLOCK. 1476 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1477 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1478 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1479 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1480 llvm_unreachable("Unexpected abbrev ordering!"); 1481 } 1482 { // INST_RET abbrev for FUNCTION_BLOCK. 1483 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1484 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1486 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1487 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1488 llvm_unreachable("Unexpected abbrev ordering!"); 1489 } 1490 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1491 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1492 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1493 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1494 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1495 llvm_unreachable("Unexpected abbrev ordering!"); 1496 } 1497 1498 Stream.ExitBlock(); 1499 } 1500 1501 1502 /// WriteModule - Emit the specified module to the bitstream. 1503 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1504 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1505 1506 // Emit the version number if it is non-zero. 1507 if (CurVersion) { 1508 SmallVector<unsigned, 1> Vals; 1509 Vals.push_back(CurVersion); 1510 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1511 } 1512 1513 // Analyze the module, enumerating globals, functions, etc. 1514 ValueEnumerator VE(M); 1515 1516 // Emit blockinfo, which defines the standard abbreviations etc. 1517 WriteBlockInfo(VE, Stream); 1518 1519 // Emit information about parameter attributes. 1520 WriteAttributeTable(VE, Stream); 1521 1522 // Emit information describing all of the types in the module. 1523 WriteTypeTable(VE, Stream); 1524 1525 // Emit top-level description of module, including target triple, inline asm, 1526 // descriptors for global variables, and function prototype info. 1527 WriteModuleInfo(M, VE, Stream); 1528 1529 // Emit constants. 1530 WriteModuleConstants(VE, Stream); 1531 1532 // Emit metadata. 1533 WriteModuleMetadata(VE, Stream); 1534 1535 // Emit function bodies. 1536 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1537 if (!I->isDeclaration()) 1538 WriteFunction(*I, VE, Stream); 1539 1540 // Emit metadata. 1541 WriteModuleMetadataStore(M, Stream); 1542 1543 // Emit the type symbol table information. 1544 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1545 1546 // Emit names for globals/functions etc. 1547 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1548 1549 Stream.ExitBlock(); 1550 } 1551 1552 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1553 /// header and trailer to make it compatible with the system archiver. To do 1554 /// this we emit the following header, and then emit a trailer that pads the 1555 /// file out to be a multiple of 16 bytes. 1556 /// 1557 /// struct bc_header { 1558 /// uint32_t Magic; // 0x0B17C0DE 1559 /// uint32_t Version; // Version, currently always 0. 1560 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1561 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1562 /// uint32_t CPUType; // CPU specifier. 1563 /// ... potentially more later ... 1564 /// }; 1565 enum { 1566 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1567 DarwinBCHeaderSize = 5*4 1568 }; 1569 1570 /// isARMTriplet - Return true if the triplet looks like: 1571 /// arm-*, thumb-*, armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. 1572 static bool isARMTriplet(const std::string &TT) { 1573 size_t Pos = 0; 1574 size_t Size = TT.size(); 1575 if (Size >= 6 && 1576 TT[0] == 't' && TT[1] == 'h' && TT[2] == 'u' && 1577 TT[3] == 'm' && TT[4] == 'b') 1578 Pos = 5; 1579 else if (Size >= 4 && TT[0] == 'a' && TT[1] == 'r' && TT[2] == 'm') 1580 Pos = 3; 1581 else 1582 return false; 1583 1584 if (TT[Pos] == '-') 1585 return true; 1586 else if (TT[Pos] == 'v') { 1587 if (Size >= Pos+4 && 1588 TT[Pos+1] == '6' && TT[Pos+2] == 't' && TT[Pos+3] == '2') 1589 return true; 1590 else if (Size >= Pos+4 && 1591 TT[Pos+1] == '5' && TT[Pos+2] == 't' && TT[Pos+3] == 'e') 1592 return true; 1593 } else 1594 return false; 1595 while (++Pos < Size && TT[Pos] != '-') { 1596 if (!isdigit(TT[Pos])) 1597 return false; 1598 } 1599 return true; 1600 } 1601 1602 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1603 const std::string &TT) { 1604 unsigned CPUType = ~0U; 1605 1606 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1607 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1608 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1609 // specific constants here because they are implicitly part of the Darwin ABI. 1610 enum { 1611 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1612 DARWIN_CPU_TYPE_X86 = 7, 1613 DARWIN_CPU_TYPE_ARM = 12, 1614 DARWIN_CPU_TYPE_POWERPC = 18 1615 }; 1616 1617 if (TT.find("x86_64-") == 0) 1618 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1619 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1620 TT[4] == '-' && TT[1] - '3' < 6) 1621 CPUType = DARWIN_CPU_TYPE_X86; 1622 else if (TT.find("powerpc-") == 0) 1623 CPUType = DARWIN_CPU_TYPE_POWERPC; 1624 else if (TT.find("powerpc64-") == 0) 1625 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1626 else if (isARMTriplet(TT)) 1627 CPUType = DARWIN_CPU_TYPE_ARM; 1628 1629 // Traditional Bitcode starts after header. 1630 unsigned BCOffset = DarwinBCHeaderSize; 1631 1632 Stream.Emit(0x0B17C0DE, 32); 1633 Stream.Emit(0 , 32); // Version. 1634 Stream.Emit(BCOffset , 32); 1635 Stream.Emit(0 , 32); // Filled in later. 1636 Stream.Emit(CPUType , 32); 1637 } 1638 1639 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1640 /// finalize the header. 1641 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1642 // Update the size field in the header. 1643 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1644 1645 // If the file is not a multiple of 16 bytes, insert dummy padding. 1646 while (BufferSize & 15) { 1647 Stream.Emit(0, 8); 1648 ++BufferSize; 1649 } 1650 } 1651 1652 1653 /// WriteBitcodeToFile - Write the specified module to the specified output 1654 /// stream. 1655 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1656 std::vector<unsigned char> Buffer; 1657 BitstreamWriter Stream(Buffer); 1658 1659 Buffer.reserve(256*1024); 1660 1661 WriteBitcodeToStream( M, Stream ); 1662 1663 // Write the generated bitstream to "Out". 1664 Out.write((char*)&Buffer.front(), Buffer.size()); 1665 } 1666 1667 /// WriteBitcodeToStream - Write the specified module to the specified output 1668 /// stream. 1669 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1670 // If this is darwin, emit a file header and trailer if needed. 1671 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1672 if (isDarwin) 1673 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1674 1675 // Emit the file header. 1676 Stream.Emit((unsigned)'B', 8); 1677 Stream.Emit((unsigned)'C', 8); 1678 Stream.Emit(0x0, 4); 1679 Stream.Emit(0xC, 4); 1680 Stream.Emit(0xE, 4); 1681 Stream.Emit(0xD, 4); 1682 1683 // Emit the module. 1684 WriteModule(M, Stream); 1685 1686 if (isDarwin) 1687 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1688 } 1689