1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Support/Program.h" 30 #include <cctype> 31 using namespace llvm; 32 33 /// These are manifest constants used by the bitcode writer. They do not need to 34 /// be kept in sync with the reader, but need to be consistent within this file. 35 enum { 36 CurVersion = 0, 37 38 // VALUE_SYMTAB_BLOCK abbrev id's. 39 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 40 VST_ENTRY_7_ABBREV, 41 VST_ENTRY_6_ABBREV, 42 VST_BBENTRY_6_ABBREV, 43 44 // CONSTANTS_BLOCK abbrev id's. 45 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 CONSTANTS_INTEGER_ABBREV, 47 CONSTANTS_CE_CAST_Abbrev, 48 CONSTANTS_NULL_Abbrev, 49 50 // FUNCTION_BLOCK abbrev id's. 51 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 FUNCTION_INST_BINOP_ABBREV, 53 FUNCTION_INST_BINOP_FLAGS_ABBREV, 54 FUNCTION_INST_CAST_ABBREV, 55 FUNCTION_INST_RET_VOID_ABBREV, 56 FUNCTION_INST_RET_VAL_ABBREV, 57 FUNCTION_INST_UNREACHABLE_ABBREV 58 }; 59 60 61 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 62 switch (Opcode) { 63 default: llvm_unreachable("Unknown cast instruction!"); 64 case Instruction::Trunc : return bitc::CAST_TRUNC; 65 case Instruction::ZExt : return bitc::CAST_ZEXT; 66 case Instruction::SExt : return bitc::CAST_SEXT; 67 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 68 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 69 case Instruction::UIToFP : return bitc::CAST_UITOFP; 70 case Instruction::SIToFP : return bitc::CAST_SITOFP; 71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 72 case Instruction::FPExt : return bitc::CAST_FPEXT; 73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 75 case Instruction::BitCast : return bitc::CAST_BITCAST; 76 } 77 } 78 79 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 80 switch (Opcode) { 81 default: llvm_unreachable("Unknown binary instruction!"); 82 case Instruction::Add: 83 case Instruction::FAdd: return bitc::BINOP_ADD; 84 case Instruction::Sub: 85 case Instruction::FSub: return bitc::BINOP_SUB; 86 case Instruction::Mul: 87 case Instruction::FMul: return bitc::BINOP_MUL; 88 case Instruction::UDiv: return bitc::BINOP_UDIV; 89 case Instruction::FDiv: 90 case Instruction::SDiv: return bitc::BINOP_SDIV; 91 case Instruction::URem: return bitc::BINOP_UREM; 92 case Instruction::FRem: 93 case Instruction::SRem: return bitc::BINOP_SREM; 94 case Instruction::Shl: return bitc::BINOP_SHL; 95 case Instruction::LShr: return bitc::BINOP_LSHR; 96 case Instruction::AShr: return bitc::BINOP_ASHR; 97 case Instruction::And: return bitc::BINOP_AND; 98 case Instruction::Or: return bitc::BINOP_OR; 99 case Instruction::Xor: return bitc::BINOP_XOR; 100 } 101 } 102 103 104 105 static void WriteStringRecord(unsigned Code, const std::string &Str, 106 unsigned AbbrevToUse, BitstreamWriter &Stream) { 107 SmallVector<unsigned, 64> Vals; 108 109 // Code: [strchar x N] 110 for (unsigned i = 0, e = Str.size(); i != e; ++i) 111 Vals.push_back(Str[i]); 112 113 // Emit the finished record. 114 Stream.EmitRecord(Code, Vals, AbbrevToUse); 115 } 116 117 // Emit information about parameter attributes. 118 static void WriteAttributeTable(const ValueEnumerator &VE, 119 BitstreamWriter &Stream) { 120 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 121 if (Attrs.empty()) return; 122 123 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 124 125 SmallVector<uint64_t, 64> Record; 126 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 127 const AttrListPtr &A = Attrs[i]; 128 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 129 const AttributeWithIndex &PAWI = A.getSlot(i); 130 Record.push_back(PAWI.Index); 131 132 // FIXME: remove in LLVM 3.0 133 // Store the alignment in the bitcode as a 16-bit raw value instead of a 134 // 5-bit log2 encoded value. Shift the bits above the alignment up by 135 // 11 bits. 136 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 137 if (PAWI.Attrs & Attribute::Alignment) 138 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 139 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 140 141 Record.push_back(FauxAttr); 142 } 143 144 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 145 Record.clear(); 146 } 147 148 Stream.ExitBlock(); 149 } 150 151 /// WriteTypeTable - Write out the type table for a module. 152 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 153 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 154 155 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 156 SmallVector<uint64_t, 64> TypeVals; 157 158 // Abbrev for TYPE_CODE_POINTER. 159 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 160 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 162 Log2_32_Ceil(VE.getTypes().size()+1))); 163 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 164 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 165 166 // Abbrev for TYPE_CODE_FUNCTION. 167 Abbv = new BitCodeAbbrev(); 168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 170 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 173 Log2_32_Ceil(VE.getTypes().size()+1))); 174 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 175 176 // Abbrev for TYPE_CODE_STRUCT. 177 Abbv = new BitCodeAbbrev(); 178 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 182 Log2_32_Ceil(VE.getTypes().size()+1))); 183 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 184 185 // Abbrev for TYPE_CODE_ARRAY. 186 Abbv = new BitCodeAbbrev(); 187 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 190 Log2_32_Ceil(VE.getTypes().size()+1))); 191 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 192 193 // Emit an entry count so the reader can reserve space. 194 TypeVals.push_back(TypeList.size()); 195 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 196 TypeVals.clear(); 197 198 // Loop over all of the types, emitting each in turn. 199 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 200 const Type *T = TypeList[i].first; 201 int AbbrevToUse = 0; 202 unsigned Code = 0; 203 204 switch (T->getTypeID()) { 205 default: llvm_unreachable("Unknown type!"); 206 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 207 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 208 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 209 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 210 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 211 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 212 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 213 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 214 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 215 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 216 case Type::IntegerTyID: 217 // INTEGER: [width] 218 Code = bitc::TYPE_CODE_INTEGER; 219 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 220 break; 221 case Type::PointerTyID: { 222 const PointerType *PTy = cast<PointerType>(T); 223 // POINTER: [pointee type, address space] 224 Code = bitc::TYPE_CODE_POINTER; 225 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 226 unsigned AddressSpace = PTy->getAddressSpace(); 227 TypeVals.push_back(AddressSpace); 228 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 229 break; 230 } 231 case Type::FunctionTyID: { 232 const FunctionType *FT = cast<FunctionType>(T); 233 // FUNCTION: [isvararg, attrid, retty, paramty x N] 234 Code = bitc::TYPE_CODE_FUNCTION; 235 TypeVals.push_back(FT->isVarArg()); 236 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 237 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 238 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 239 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 240 AbbrevToUse = FunctionAbbrev; 241 break; 242 } 243 case Type::StructTyID: { 244 const StructType *ST = cast<StructType>(T); 245 // STRUCT: [ispacked, eltty x N] 246 Code = bitc::TYPE_CODE_STRUCT; 247 TypeVals.push_back(ST->isPacked()); 248 // Output all of the element types. 249 for (StructType::element_iterator I = ST->element_begin(), 250 E = ST->element_end(); I != E; ++I) 251 TypeVals.push_back(VE.getTypeID(*I)); 252 AbbrevToUse = StructAbbrev; 253 break; 254 } 255 case Type::ArrayTyID: { 256 const ArrayType *AT = cast<ArrayType>(T); 257 // ARRAY: [numelts, eltty] 258 Code = bitc::TYPE_CODE_ARRAY; 259 TypeVals.push_back(AT->getNumElements()); 260 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 261 AbbrevToUse = ArrayAbbrev; 262 break; 263 } 264 case Type::VectorTyID: { 265 const VectorType *VT = cast<VectorType>(T); 266 // VECTOR [numelts, eltty] 267 Code = bitc::TYPE_CODE_VECTOR; 268 TypeVals.push_back(VT->getNumElements()); 269 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 270 break; 271 } 272 } 273 274 // Emit the finished record. 275 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 276 TypeVals.clear(); 277 } 278 279 Stream.ExitBlock(); 280 } 281 282 static unsigned getEncodedLinkage(const GlobalValue *GV) { 283 switch (GV->getLinkage()) { 284 default: llvm_unreachable("Invalid linkage!"); 285 case GlobalValue::ExternalLinkage: return 0; 286 case GlobalValue::WeakAnyLinkage: return 1; 287 case GlobalValue::AppendingLinkage: return 2; 288 case GlobalValue::InternalLinkage: return 3; 289 case GlobalValue::LinkOnceAnyLinkage: return 4; 290 case GlobalValue::DLLImportLinkage: return 5; 291 case GlobalValue::DLLExportLinkage: return 6; 292 case GlobalValue::ExternalWeakLinkage: return 7; 293 case GlobalValue::CommonLinkage: return 8; 294 case GlobalValue::PrivateLinkage: return 9; 295 case GlobalValue::WeakODRLinkage: return 10; 296 case GlobalValue::LinkOnceODRLinkage: return 11; 297 case GlobalValue::AvailableExternallyLinkage: return 12; 298 case GlobalValue::LinkerPrivateLinkage: return 13; 299 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 300 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15; 301 } 302 } 303 304 static unsigned getEncodedVisibility(const GlobalValue *GV) { 305 switch (GV->getVisibility()) { 306 default: llvm_unreachable("Invalid visibility!"); 307 case GlobalValue::DefaultVisibility: return 0; 308 case GlobalValue::HiddenVisibility: return 1; 309 case GlobalValue::ProtectedVisibility: return 2; 310 } 311 } 312 313 // Emit top-level description of module, including target triple, inline asm, 314 // descriptors for global variables, and function prototype info. 315 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 316 BitstreamWriter &Stream) { 317 // Emit the list of dependent libraries for the Module. 318 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 319 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 320 321 // Emit various pieces of data attached to a module. 322 if (!M->getTargetTriple().empty()) 323 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 324 0/*TODO*/, Stream); 325 if (!M->getDataLayout().empty()) 326 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 327 0/*TODO*/, Stream); 328 if (!M->getModuleInlineAsm().empty()) 329 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 330 0/*TODO*/, Stream); 331 332 // Emit information about sections and GC, computing how many there are. Also 333 // compute the maximum alignment value. 334 std::map<std::string, unsigned> SectionMap; 335 std::map<std::string, unsigned> GCMap; 336 unsigned MaxAlignment = 0; 337 unsigned MaxGlobalType = 0; 338 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 339 GV != E; ++GV) { 340 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 341 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 342 343 if (!GV->hasSection()) continue; 344 // Give section names unique ID's. 345 unsigned &Entry = SectionMap[GV->getSection()]; 346 if (Entry != 0) continue; 347 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 348 0/*TODO*/, Stream); 349 Entry = SectionMap.size(); 350 } 351 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 352 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 353 if (F->hasSection()) { 354 // Give section names unique ID's. 355 unsigned &Entry = SectionMap[F->getSection()]; 356 if (!Entry) { 357 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 358 0/*TODO*/, Stream); 359 Entry = SectionMap.size(); 360 } 361 } 362 if (F->hasGC()) { 363 // Same for GC names. 364 unsigned &Entry = GCMap[F->getGC()]; 365 if (!Entry) { 366 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 367 0/*TODO*/, Stream); 368 Entry = GCMap.size(); 369 } 370 } 371 } 372 373 // Emit abbrev for globals, now that we know # sections and max alignment. 374 unsigned SimpleGVarAbbrev = 0; 375 if (!M->global_empty()) { 376 // Add an abbrev for common globals with no visibility or thread localness. 377 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 378 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 380 Log2_32_Ceil(MaxGlobalType+1))); 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 384 if (MaxAlignment == 0) // Alignment. 385 Abbv->Add(BitCodeAbbrevOp(0)); 386 else { 387 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 389 Log2_32_Ceil(MaxEncAlignment+1))); 390 } 391 if (SectionMap.empty()) // Section. 392 Abbv->Add(BitCodeAbbrevOp(0)); 393 else 394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 395 Log2_32_Ceil(SectionMap.size()+1))); 396 // Don't bother emitting vis + thread local. 397 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 398 } 399 400 // Emit the global variable information. 401 SmallVector<unsigned, 64> Vals; 402 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 403 GV != E; ++GV) { 404 unsigned AbbrevToUse = 0; 405 406 // GLOBALVAR: [type, isconst, initid, 407 // linkage, alignment, section, visibility, threadlocal, 408 // unnamed_addr] 409 Vals.push_back(VE.getTypeID(GV->getType())); 410 Vals.push_back(GV->isConstant()); 411 Vals.push_back(GV->isDeclaration() ? 0 : 412 (VE.getValueID(GV->getInitializer()) + 1)); 413 Vals.push_back(getEncodedLinkage(GV)); 414 Vals.push_back(Log2_32(GV->getAlignment())+1); 415 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 416 if (GV->isThreadLocal() || 417 GV->getVisibility() != GlobalValue::DefaultVisibility || 418 GV->hasUnnamedAddr()) { 419 Vals.push_back(getEncodedVisibility(GV)); 420 Vals.push_back(GV->isThreadLocal()); 421 Vals.push_back(GV->hasUnnamedAddr()); 422 } else { 423 AbbrevToUse = SimpleGVarAbbrev; 424 } 425 426 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 427 Vals.clear(); 428 } 429 430 // Emit the function proto information. 431 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 432 // FUNCTION: [type, callingconv, isproto, paramattr, 433 // linkage, alignment, section, visibility, gc, unnamed_addr] 434 Vals.push_back(VE.getTypeID(F->getType())); 435 Vals.push_back(F->getCallingConv()); 436 Vals.push_back(F->isDeclaration()); 437 Vals.push_back(getEncodedLinkage(F)); 438 Vals.push_back(VE.getAttributeID(F->getAttributes())); 439 Vals.push_back(Log2_32(F->getAlignment())+1); 440 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 441 Vals.push_back(getEncodedVisibility(F)); 442 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 443 Vals.push_back(F->hasUnnamedAddr()); 444 445 unsigned AbbrevToUse = 0; 446 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 447 Vals.clear(); 448 } 449 450 451 // Emit the alias information. 452 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 453 AI != E; ++AI) { 454 Vals.push_back(VE.getTypeID(AI->getType())); 455 Vals.push_back(VE.getValueID(AI->getAliasee())); 456 Vals.push_back(getEncodedLinkage(AI)); 457 Vals.push_back(getEncodedVisibility(AI)); 458 unsigned AbbrevToUse = 0; 459 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 460 Vals.clear(); 461 } 462 } 463 464 static uint64_t GetOptimizationFlags(const Value *V) { 465 uint64_t Flags = 0; 466 467 if (const OverflowingBinaryOperator *OBO = 468 dyn_cast<OverflowingBinaryOperator>(V)) { 469 if (OBO->hasNoSignedWrap()) 470 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 471 if (OBO->hasNoUnsignedWrap()) 472 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 473 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { 474 if (Div->isExact()) 475 Flags |= 1 << bitc::SDIV_EXACT; 476 } 477 478 return Flags; 479 } 480 481 static void WriteMDNode(const MDNode *N, 482 const ValueEnumerator &VE, 483 BitstreamWriter &Stream, 484 SmallVector<uint64_t, 64> &Record) { 485 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 486 if (N->getOperand(i)) { 487 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 488 Record.push_back(VE.getValueID(N->getOperand(i))); 489 } else { 490 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 491 Record.push_back(0); 492 } 493 } 494 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE2 : 495 bitc::METADATA_NODE2; 496 Stream.EmitRecord(MDCode, Record, 0); 497 Record.clear(); 498 } 499 500 static void WriteModuleMetadata(const Module *M, 501 const ValueEnumerator &VE, 502 BitstreamWriter &Stream) { 503 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 504 bool StartedMetadataBlock = false; 505 unsigned MDSAbbrev = 0; 506 SmallVector<uint64_t, 64> Record; 507 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 508 509 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 510 if (!N->isFunctionLocal() || !N->getFunction()) { 511 if (!StartedMetadataBlock) { 512 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 513 StartedMetadataBlock = true; 514 } 515 WriteMDNode(N, VE, Stream, Record); 516 } 517 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 518 if (!StartedMetadataBlock) { 519 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 520 521 // Abbrev for METADATA_STRING. 522 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 523 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 526 MDSAbbrev = Stream.EmitAbbrev(Abbv); 527 StartedMetadataBlock = true; 528 } 529 530 // Code: [strchar x N] 531 Record.append(MDS->begin(), MDS->end()); 532 533 // Emit the finished record. 534 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 535 Record.clear(); 536 } 537 } 538 539 // Write named metadata. 540 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 541 E = M->named_metadata_end(); I != E; ++I) { 542 const NamedMDNode *NMD = I; 543 if (!StartedMetadataBlock) { 544 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 545 StartedMetadataBlock = true; 546 } 547 548 // Write name. 549 StringRef Str = NMD->getName(); 550 for (unsigned i = 0, e = Str.size(); i != e; ++i) 551 Record.push_back(Str[i]); 552 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 553 Record.clear(); 554 555 // Write named metadata operands. 556 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 557 Record.push_back(VE.getValueID(NMD->getOperand(i))); 558 Stream.EmitRecord(bitc::METADATA_NAMED_NODE2, Record, 0); 559 Record.clear(); 560 } 561 562 if (StartedMetadataBlock) 563 Stream.ExitBlock(); 564 } 565 566 static void WriteFunctionLocalMetadata(const Function &F, 567 const ValueEnumerator &VE, 568 BitstreamWriter &Stream) { 569 bool StartedMetadataBlock = false; 570 SmallVector<uint64_t, 64> Record; 571 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 572 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 573 if (const MDNode *N = Vals[i]) 574 if (N->isFunctionLocal() && N->getFunction() == &F) { 575 if (!StartedMetadataBlock) { 576 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 577 StartedMetadataBlock = true; 578 } 579 WriteMDNode(N, VE, Stream, Record); 580 } 581 582 if (StartedMetadataBlock) 583 Stream.ExitBlock(); 584 } 585 586 static void WriteMetadataAttachment(const Function &F, 587 const ValueEnumerator &VE, 588 BitstreamWriter &Stream) { 589 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 590 591 SmallVector<uint64_t, 64> Record; 592 593 // Write metadata attachments 594 // METADATA_ATTACHMENT2 - [m x [value, [n x [id, mdnode]]] 595 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 596 597 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 598 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 599 I != E; ++I) { 600 MDs.clear(); 601 I->getAllMetadataOtherThanDebugLoc(MDs); 602 603 // If no metadata, ignore instruction. 604 if (MDs.empty()) continue; 605 606 Record.push_back(VE.getInstructionID(I)); 607 608 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 609 Record.push_back(MDs[i].first); 610 Record.push_back(VE.getValueID(MDs[i].second)); 611 } 612 Stream.EmitRecord(bitc::METADATA_ATTACHMENT2, Record, 0); 613 Record.clear(); 614 } 615 616 Stream.ExitBlock(); 617 } 618 619 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 620 SmallVector<uint64_t, 64> Record; 621 622 // Write metadata kinds 623 // METADATA_KIND - [n x [id, name]] 624 SmallVector<StringRef, 4> Names; 625 M->getMDKindNames(Names); 626 627 if (Names.empty()) return; 628 629 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 630 631 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 632 Record.push_back(MDKindID); 633 StringRef KName = Names[MDKindID]; 634 Record.append(KName.begin(), KName.end()); 635 636 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 637 Record.clear(); 638 } 639 640 Stream.ExitBlock(); 641 } 642 643 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 644 const ValueEnumerator &VE, 645 BitstreamWriter &Stream, bool isGlobal) { 646 if (FirstVal == LastVal) return; 647 648 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 649 650 unsigned AggregateAbbrev = 0; 651 unsigned String8Abbrev = 0; 652 unsigned CString7Abbrev = 0; 653 unsigned CString6Abbrev = 0; 654 // If this is a constant pool for the module, emit module-specific abbrevs. 655 if (isGlobal) { 656 // Abbrev for CST_CODE_AGGREGATE. 657 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 658 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 661 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 662 663 // Abbrev for CST_CODE_STRING. 664 Abbv = new BitCodeAbbrev(); 665 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 668 String8Abbrev = Stream.EmitAbbrev(Abbv); 669 // Abbrev for CST_CODE_CSTRING. 670 Abbv = new BitCodeAbbrev(); 671 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 674 CString7Abbrev = Stream.EmitAbbrev(Abbv); 675 // Abbrev for CST_CODE_CSTRING. 676 Abbv = new BitCodeAbbrev(); 677 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 680 CString6Abbrev = Stream.EmitAbbrev(Abbv); 681 } 682 683 SmallVector<uint64_t, 64> Record; 684 685 const ValueEnumerator::ValueList &Vals = VE.getValues(); 686 const Type *LastTy = 0; 687 for (unsigned i = FirstVal; i != LastVal; ++i) { 688 const Value *V = Vals[i].first; 689 // If we need to switch types, do so now. 690 if (V->getType() != LastTy) { 691 LastTy = V->getType(); 692 Record.push_back(VE.getTypeID(LastTy)); 693 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 694 CONSTANTS_SETTYPE_ABBREV); 695 Record.clear(); 696 } 697 698 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 699 Record.push_back(unsigned(IA->hasSideEffects()) | 700 unsigned(IA->isAlignStack()) << 1); 701 702 // Add the asm string. 703 const std::string &AsmStr = IA->getAsmString(); 704 Record.push_back(AsmStr.size()); 705 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 706 Record.push_back(AsmStr[i]); 707 708 // Add the constraint string. 709 const std::string &ConstraintStr = IA->getConstraintString(); 710 Record.push_back(ConstraintStr.size()); 711 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 712 Record.push_back(ConstraintStr[i]); 713 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 714 Record.clear(); 715 continue; 716 } 717 const Constant *C = cast<Constant>(V); 718 unsigned Code = -1U; 719 unsigned AbbrevToUse = 0; 720 if (C->isNullValue()) { 721 Code = bitc::CST_CODE_NULL; 722 } else if (isa<UndefValue>(C)) { 723 Code = bitc::CST_CODE_UNDEF; 724 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 725 if (IV->getBitWidth() <= 64) { 726 uint64_t V = IV->getSExtValue(); 727 if ((int64_t)V >= 0) 728 Record.push_back(V << 1); 729 else 730 Record.push_back((-V << 1) | 1); 731 Code = bitc::CST_CODE_INTEGER; 732 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 733 } else { // Wide integers, > 64 bits in size. 734 // We have an arbitrary precision integer value to write whose 735 // bit width is > 64. However, in canonical unsigned integer 736 // format it is likely that the high bits are going to be zero. 737 // So, we only write the number of active words. 738 unsigned NWords = IV->getValue().getActiveWords(); 739 const uint64_t *RawWords = IV->getValue().getRawData(); 740 for (unsigned i = 0; i != NWords; ++i) { 741 int64_t V = RawWords[i]; 742 if (V >= 0) 743 Record.push_back(V << 1); 744 else 745 Record.push_back((-V << 1) | 1); 746 } 747 Code = bitc::CST_CODE_WIDE_INTEGER; 748 } 749 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 750 Code = bitc::CST_CODE_FLOAT; 751 const Type *Ty = CFP->getType(); 752 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 753 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 754 } else if (Ty->isX86_FP80Ty()) { 755 // api needed to prevent premature destruction 756 // bits are not in the same order as a normal i80 APInt, compensate. 757 APInt api = CFP->getValueAPF().bitcastToAPInt(); 758 const uint64_t *p = api.getRawData(); 759 Record.push_back((p[1] << 48) | (p[0] >> 16)); 760 Record.push_back(p[0] & 0xffffLL); 761 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 762 APInt api = CFP->getValueAPF().bitcastToAPInt(); 763 const uint64_t *p = api.getRawData(); 764 Record.push_back(p[0]); 765 Record.push_back(p[1]); 766 } else { 767 assert (0 && "Unknown FP type!"); 768 } 769 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 770 const ConstantArray *CA = cast<ConstantArray>(C); 771 // Emit constant strings specially. 772 unsigned NumOps = CA->getNumOperands(); 773 // If this is a null-terminated string, use the denser CSTRING encoding. 774 if (CA->getOperand(NumOps-1)->isNullValue()) { 775 Code = bitc::CST_CODE_CSTRING; 776 --NumOps; // Don't encode the null, which isn't allowed by char6. 777 } else { 778 Code = bitc::CST_CODE_STRING; 779 AbbrevToUse = String8Abbrev; 780 } 781 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 782 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 783 for (unsigned i = 0; i != NumOps; ++i) { 784 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); 785 Record.push_back(V); 786 isCStr7 &= (V & 128) == 0; 787 if (isCStrChar6) 788 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 789 } 790 791 if (isCStrChar6) 792 AbbrevToUse = CString6Abbrev; 793 else if (isCStr7) 794 AbbrevToUse = CString7Abbrev; 795 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 796 isa<ConstantVector>(V)) { 797 Code = bitc::CST_CODE_AGGREGATE; 798 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 799 Record.push_back(VE.getValueID(C->getOperand(i))); 800 AbbrevToUse = AggregateAbbrev; 801 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 802 switch (CE->getOpcode()) { 803 default: 804 if (Instruction::isCast(CE->getOpcode())) { 805 Code = bitc::CST_CODE_CE_CAST; 806 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 807 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 808 Record.push_back(VE.getValueID(C->getOperand(0))); 809 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 810 } else { 811 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 812 Code = bitc::CST_CODE_CE_BINOP; 813 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 814 Record.push_back(VE.getValueID(C->getOperand(0))); 815 Record.push_back(VE.getValueID(C->getOperand(1))); 816 uint64_t Flags = GetOptimizationFlags(CE); 817 if (Flags != 0) 818 Record.push_back(Flags); 819 } 820 break; 821 case Instruction::GetElementPtr: 822 Code = bitc::CST_CODE_CE_GEP; 823 if (cast<GEPOperator>(C)->isInBounds()) 824 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 825 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 826 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 827 Record.push_back(VE.getValueID(C->getOperand(i))); 828 } 829 break; 830 case Instruction::Select: 831 Code = bitc::CST_CODE_CE_SELECT; 832 Record.push_back(VE.getValueID(C->getOperand(0))); 833 Record.push_back(VE.getValueID(C->getOperand(1))); 834 Record.push_back(VE.getValueID(C->getOperand(2))); 835 break; 836 case Instruction::ExtractElement: 837 Code = bitc::CST_CODE_CE_EXTRACTELT; 838 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 839 Record.push_back(VE.getValueID(C->getOperand(0))); 840 Record.push_back(VE.getValueID(C->getOperand(1))); 841 break; 842 case Instruction::InsertElement: 843 Code = bitc::CST_CODE_CE_INSERTELT; 844 Record.push_back(VE.getValueID(C->getOperand(0))); 845 Record.push_back(VE.getValueID(C->getOperand(1))); 846 Record.push_back(VE.getValueID(C->getOperand(2))); 847 break; 848 case Instruction::ShuffleVector: 849 // If the return type and argument types are the same, this is a 850 // standard shufflevector instruction. If the types are different, 851 // then the shuffle is widening or truncating the input vectors, and 852 // the argument type must also be encoded. 853 if (C->getType() == C->getOperand(0)->getType()) { 854 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 855 } else { 856 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 857 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 858 } 859 Record.push_back(VE.getValueID(C->getOperand(0))); 860 Record.push_back(VE.getValueID(C->getOperand(1))); 861 Record.push_back(VE.getValueID(C->getOperand(2))); 862 break; 863 case Instruction::ICmp: 864 case Instruction::FCmp: 865 Code = bitc::CST_CODE_CE_CMP; 866 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 867 Record.push_back(VE.getValueID(C->getOperand(0))); 868 Record.push_back(VE.getValueID(C->getOperand(1))); 869 Record.push_back(CE->getPredicate()); 870 break; 871 } 872 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 873 assert(BA->getFunction() == BA->getBasicBlock()->getParent() && 874 "Malformed blockaddress"); 875 Code = bitc::CST_CODE_BLOCKADDRESS; 876 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 877 Record.push_back(VE.getValueID(BA->getFunction())); 878 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 879 } else { 880 #ifndef NDEBUG 881 C->dump(); 882 #endif 883 llvm_unreachable("Unknown constant!"); 884 } 885 Stream.EmitRecord(Code, Record, AbbrevToUse); 886 Record.clear(); 887 } 888 889 Stream.ExitBlock(); 890 } 891 892 static void WriteModuleConstants(const ValueEnumerator &VE, 893 BitstreamWriter &Stream) { 894 const ValueEnumerator::ValueList &Vals = VE.getValues(); 895 896 // Find the first constant to emit, which is the first non-globalvalue value. 897 // We know globalvalues have been emitted by WriteModuleInfo. 898 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 899 if (!isa<GlobalValue>(Vals[i].first)) { 900 WriteConstants(i, Vals.size(), VE, Stream, true); 901 return; 902 } 903 } 904 } 905 906 /// PushValueAndType - The file has to encode both the value and type id for 907 /// many values, because we need to know what type to create for forward 908 /// references. However, most operands are not forward references, so this type 909 /// field is not needed. 910 /// 911 /// This function adds V's value ID to Vals. If the value ID is higher than the 912 /// instruction ID, then it is a forward reference, and it also includes the 913 /// type ID. 914 static bool PushValueAndType(const Value *V, unsigned InstID, 915 SmallVector<unsigned, 64> &Vals, 916 ValueEnumerator &VE) { 917 unsigned ValID = VE.getValueID(V); 918 Vals.push_back(ValID); 919 if (ValID >= InstID) { 920 Vals.push_back(VE.getTypeID(V->getType())); 921 return true; 922 } 923 return false; 924 } 925 926 /// WriteInstruction - Emit an instruction to the specified stream. 927 static void WriteInstruction(const Instruction &I, unsigned InstID, 928 ValueEnumerator &VE, BitstreamWriter &Stream, 929 SmallVector<unsigned, 64> &Vals) { 930 unsigned Code = 0; 931 unsigned AbbrevToUse = 0; 932 VE.setInstructionID(&I); 933 switch (I.getOpcode()) { 934 default: 935 if (Instruction::isCast(I.getOpcode())) { 936 Code = bitc::FUNC_CODE_INST_CAST; 937 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 938 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 939 Vals.push_back(VE.getTypeID(I.getType())); 940 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 941 } else { 942 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 943 Code = bitc::FUNC_CODE_INST_BINOP; 944 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 945 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 946 Vals.push_back(VE.getValueID(I.getOperand(1))); 947 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 948 uint64_t Flags = GetOptimizationFlags(&I); 949 if (Flags != 0) { 950 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 951 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 952 Vals.push_back(Flags); 953 } 954 } 955 break; 956 957 case Instruction::GetElementPtr: 958 Code = bitc::FUNC_CODE_INST_GEP; 959 if (cast<GEPOperator>(&I)->isInBounds()) 960 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 961 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 962 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 963 break; 964 case Instruction::ExtractValue: { 965 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 966 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 967 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 968 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 969 Vals.push_back(*i); 970 break; 971 } 972 case Instruction::InsertValue: { 973 Code = bitc::FUNC_CODE_INST_INSERTVAL; 974 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 975 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 976 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 977 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 978 Vals.push_back(*i); 979 break; 980 } 981 case Instruction::Select: 982 Code = bitc::FUNC_CODE_INST_VSELECT; 983 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 984 Vals.push_back(VE.getValueID(I.getOperand(2))); 985 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 986 break; 987 case Instruction::ExtractElement: 988 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 989 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 990 Vals.push_back(VE.getValueID(I.getOperand(1))); 991 break; 992 case Instruction::InsertElement: 993 Code = bitc::FUNC_CODE_INST_INSERTELT; 994 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 995 Vals.push_back(VE.getValueID(I.getOperand(1))); 996 Vals.push_back(VE.getValueID(I.getOperand(2))); 997 break; 998 case Instruction::ShuffleVector: 999 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1000 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1001 Vals.push_back(VE.getValueID(I.getOperand(1))); 1002 Vals.push_back(VE.getValueID(I.getOperand(2))); 1003 break; 1004 case Instruction::ICmp: 1005 case Instruction::FCmp: 1006 // compare returning Int1Ty or vector of Int1Ty 1007 Code = bitc::FUNC_CODE_INST_CMP2; 1008 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1009 Vals.push_back(VE.getValueID(I.getOperand(1))); 1010 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1011 break; 1012 1013 case Instruction::Ret: 1014 { 1015 Code = bitc::FUNC_CODE_INST_RET; 1016 unsigned NumOperands = I.getNumOperands(); 1017 if (NumOperands == 0) 1018 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1019 else if (NumOperands == 1) { 1020 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1021 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1022 } else { 1023 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1024 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1025 } 1026 } 1027 break; 1028 case Instruction::Br: 1029 { 1030 Code = bitc::FUNC_CODE_INST_BR; 1031 BranchInst &II = cast<BranchInst>(I); 1032 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1033 if (II.isConditional()) { 1034 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1035 Vals.push_back(VE.getValueID(II.getCondition())); 1036 } 1037 } 1038 break; 1039 case Instruction::Switch: 1040 Code = bitc::FUNC_CODE_INST_SWITCH; 1041 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1042 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1043 Vals.push_back(VE.getValueID(I.getOperand(i))); 1044 break; 1045 case Instruction::IndirectBr: 1046 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1047 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1048 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1049 Vals.push_back(VE.getValueID(I.getOperand(i))); 1050 break; 1051 1052 case Instruction::Invoke: { 1053 const InvokeInst *II = cast<InvokeInst>(&I); 1054 const Value *Callee(II->getCalledValue()); 1055 const PointerType *PTy = cast<PointerType>(Callee->getType()); 1056 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1057 Code = bitc::FUNC_CODE_INST_INVOKE; 1058 1059 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1060 Vals.push_back(II->getCallingConv()); 1061 Vals.push_back(VE.getValueID(II->getNormalDest())); 1062 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1063 PushValueAndType(Callee, InstID, Vals, VE); 1064 1065 // Emit value #'s for the fixed parameters. 1066 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1067 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1068 1069 // Emit type/value pairs for varargs params. 1070 if (FTy->isVarArg()) { 1071 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1072 i != e; ++i) 1073 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1074 } 1075 break; 1076 } 1077 case Instruction::Unwind: 1078 Code = bitc::FUNC_CODE_INST_UNWIND; 1079 break; 1080 case Instruction::Unreachable: 1081 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1082 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1083 break; 1084 1085 case Instruction::PHI: 1086 Code = bitc::FUNC_CODE_INST_PHI; 1087 Vals.push_back(VE.getTypeID(I.getType())); 1088 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1089 Vals.push_back(VE.getValueID(I.getOperand(i))); 1090 break; 1091 1092 case Instruction::Alloca: 1093 Code = bitc::FUNC_CODE_INST_ALLOCA; 1094 Vals.push_back(VE.getTypeID(I.getType())); 1095 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1096 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1097 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1098 break; 1099 1100 case Instruction::Load: 1101 Code = bitc::FUNC_CODE_INST_LOAD; 1102 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1103 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1104 1105 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1106 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1107 break; 1108 case Instruction::Store: 1109 Code = bitc::FUNC_CODE_INST_STORE2; 1110 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1111 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1112 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1113 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1114 break; 1115 case Instruction::Call: { 1116 const CallInst &CI = cast<CallInst>(I); 1117 const PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1118 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1119 1120 Code = bitc::FUNC_CODE_INST_CALL2; 1121 1122 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1123 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1124 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1125 1126 // Emit value #'s for the fixed parameters. 1127 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1128 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1129 1130 // Emit type/value pairs for varargs params. 1131 if (FTy->isVarArg()) { 1132 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1133 i != e; ++i) 1134 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1135 } 1136 break; 1137 } 1138 case Instruction::VAArg: 1139 Code = bitc::FUNC_CODE_INST_VAARG; 1140 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1141 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1142 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1143 break; 1144 } 1145 1146 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1147 Vals.clear(); 1148 } 1149 1150 // Emit names for globals/functions etc. 1151 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1152 const ValueEnumerator &VE, 1153 BitstreamWriter &Stream) { 1154 if (VST.empty()) return; 1155 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1156 1157 // FIXME: Set up the abbrev, we know how many values there are! 1158 // FIXME: We know if the type names can use 7-bit ascii. 1159 SmallVector<unsigned, 64> NameVals; 1160 1161 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1162 SI != SE; ++SI) { 1163 1164 const ValueName &Name = *SI; 1165 1166 // Figure out the encoding to use for the name. 1167 bool is7Bit = true; 1168 bool isChar6 = true; 1169 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1170 C != E; ++C) { 1171 if (isChar6) 1172 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1173 if ((unsigned char)*C & 128) { 1174 is7Bit = false; 1175 break; // don't bother scanning the rest. 1176 } 1177 } 1178 1179 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1180 1181 // VST_ENTRY: [valueid, namechar x N] 1182 // VST_BBENTRY: [bbid, namechar x N] 1183 unsigned Code; 1184 if (isa<BasicBlock>(SI->getValue())) { 1185 Code = bitc::VST_CODE_BBENTRY; 1186 if (isChar6) 1187 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1188 } else { 1189 Code = bitc::VST_CODE_ENTRY; 1190 if (isChar6) 1191 AbbrevToUse = VST_ENTRY_6_ABBREV; 1192 else if (is7Bit) 1193 AbbrevToUse = VST_ENTRY_7_ABBREV; 1194 } 1195 1196 NameVals.push_back(VE.getValueID(SI->getValue())); 1197 for (const char *P = Name.getKeyData(), 1198 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1199 NameVals.push_back((unsigned char)*P); 1200 1201 // Emit the finished record. 1202 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1203 NameVals.clear(); 1204 } 1205 Stream.ExitBlock(); 1206 } 1207 1208 /// WriteFunction - Emit a function body to the module stream. 1209 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1210 BitstreamWriter &Stream) { 1211 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1212 VE.incorporateFunction(F); 1213 1214 SmallVector<unsigned, 64> Vals; 1215 1216 // Emit the number of basic blocks, so the reader can create them ahead of 1217 // time. 1218 Vals.push_back(VE.getBasicBlocks().size()); 1219 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1220 Vals.clear(); 1221 1222 // If there are function-local constants, emit them now. 1223 unsigned CstStart, CstEnd; 1224 VE.getFunctionConstantRange(CstStart, CstEnd); 1225 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1226 1227 // If there is function-local metadata, emit it now. 1228 WriteFunctionLocalMetadata(F, VE, Stream); 1229 1230 // Keep a running idea of what the instruction ID is. 1231 unsigned InstID = CstEnd; 1232 1233 bool NeedsMetadataAttachment = false; 1234 1235 DebugLoc LastDL; 1236 1237 // Finally, emit all the instructions, in order. 1238 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1239 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1240 I != E; ++I) { 1241 WriteInstruction(*I, InstID, VE, Stream, Vals); 1242 1243 if (!I->getType()->isVoidTy()) 1244 ++InstID; 1245 1246 // If the instruction has metadata, write a metadata attachment later. 1247 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1248 1249 // If the instruction has a debug location, emit it. 1250 DebugLoc DL = I->getDebugLoc(); 1251 if (DL.isUnknown()) { 1252 // nothing todo. 1253 } else if (DL == LastDL) { 1254 // Just repeat the same debug loc as last time. 1255 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1256 } else { 1257 MDNode *Scope, *IA; 1258 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1259 1260 Vals.push_back(DL.getLine()); 1261 Vals.push_back(DL.getCol()); 1262 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1263 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1264 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC2, Vals); 1265 Vals.clear(); 1266 1267 LastDL = DL; 1268 } 1269 } 1270 1271 // Emit names for all the instructions etc. 1272 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1273 1274 if (NeedsMetadataAttachment) 1275 WriteMetadataAttachment(F, VE, Stream); 1276 VE.purgeFunction(); 1277 Stream.ExitBlock(); 1278 } 1279 1280 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1281 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1282 const ValueEnumerator &VE, 1283 BitstreamWriter &Stream) { 1284 if (TST.empty()) return; 1285 1286 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1287 1288 // 7-bit fixed width VST_CODE_ENTRY strings. 1289 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1290 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1292 Log2_32_Ceil(VE.getTypes().size()+1))); 1293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1295 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1296 1297 SmallVector<unsigned, 64> NameVals; 1298 1299 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1300 TI != TE; ++TI) { 1301 // TST_ENTRY: [typeid, namechar x N] 1302 NameVals.push_back(VE.getTypeID(TI->second)); 1303 1304 const std::string &Str = TI->first; 1305 bool is7Bit = true; 1306 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1307 NameVals.push_back((unsigned char)Str[i]); 1308 if (Str[i] & 128) 1309 is7Bit = false; 1310 } 1311 1312 // Emit the finished record. 1313 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1314 NameVals.clear(); 1315 } 1316 1317 Stream.ExitBlock(); 1318 } 1319 1320 // Emit blockinfo, which defines the standard abbreviations etc. 1321 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1322 // We only want to emit block info records for blocks that have multiple 1323 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1324 // blocks can defined their abbrevs inline. 1325 Stream.EnterBlockInfoBlock(2); 1326 1327 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1328 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1333 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1334 Abbv) != VST_ENTRY_8_ABBREV) 1335 llvm_unreachable("Unexpected abbrev ordering!"); 1336 } 1337 1338 { // 7-bit fixed width VST_ENTRY strings. 1339 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1340 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1344 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1345 Abbv) != VST_ENTRY_7_ABBREV) 1346 llvm_unreachable("Unexpected abbrev ordering!"); 1347 } 1348 { // 6-bit char6 VST_ENTRY strings. 1349 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1350 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1354 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1355 Abbv) != VST_ENTRY_6_ABBREV) 1356 llvm_unreachable("Unexpected abbrev ordering!"); 1357 } 1358 { // 6-bit char6 VST_BBENTRY strings. 1359 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1360 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1364 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1365 Abbv) != VST_BBENTRY_6_ABBREV) 1366 llvm_unreachable("Unexpected abbrev ordering!"); 1367 } 1368 1369 1370 1371 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1372 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1373 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1375 Log2_32_Ceil(VE.getTypes().size()+1))); 1376 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1377 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1378 llvm_unreachable("Unexpected abbrev ordering!"); 1379 } 1380 1381 { // INTEGER abbrev for CONSTANTS_BLOCK. 1382 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1383 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1385 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1386 Abbv) != CONSTANTS_INTEGER_ABBREV) 1387 llvm_unreachable("Unexpected abbrev ordering!"); 1388 } 1389 1390 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1391 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1392 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1395 Log2_32_Ceil(VE.getTypes().size()+1))); 1396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1397 1398 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1399 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1400 llvm_unreachable("Unexpected abbrev ordering!"); 1401 } 1402 { // NULL abbrev for CONSTANTS_BLOCK. 1403 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1404 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1405 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1406 Abbv) != CONSTANTS_NULL_Abbrev) 1407 llvm_unreachable("Unexpected abbrev ordering!"); 1408 } 1409 1410 // FIXME: This should only use space for first class types! 1411 1412 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1413 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1414 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1418 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1419 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1420 llvm_unreachable("Unexpected abbrev ordering!"); 1421 } 1422 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1423 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1424 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1428 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1429 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1430 llvm_unreachable("Unexpected abbrev ordering!"); 1431 } 1432 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1433 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1434 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1439 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1440 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1441 llvm_unreachable("Unexpected abbrev ordering!"); 1442 } 1443 { // INST_CAST abbrev for FUNCTION_BLOCK. 1444 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1445 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1448 Log2_32_Ceil(VE.getTypes().size()+1))); 1449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1450 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1451 Abbv) != FUNCTION_INST_CAST_ABBREV) 1452 llvm_unreachable("Unexpected abbrev ordering!"); 1453 } 1454 1455 { // INST_RET abbrev for FUNCTION_BLOCK. 1456 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1457 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1458 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1459 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1460 llvm_unreachable("Unexpected abbrev ordering!"); 1461 } 1462 { // INST_RET abbrev for FUNCTION_BLOCK. 1463 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1464 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1466 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1467 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1468 llvm_unreachable("Unexpected abbrev ordering!"); 1469 } 1470 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1471 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1472 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1473 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1474 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1475 llvm_unreachable("Unexpected abbrev ordering!"); 1476 } 1477 1478 Stream.ExitBlock(); 1479 } 1480 1481 1482 /// WriteModule - Emit the specified module to the bitstream. 1483 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1484 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1485 1486 // Emit the version number if it is non-zero. 1487 if (CurVersion) { 1488 SmallVector<unsigned, 1> Vals; 1489 Vals.push_back(CurVersion); 1490 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1491 } 1492 1493 // Analyze the module, enumerating globals, functions, etc. 1494 ValueEnumerator VE(M); 1495 1496 // Emit blockinfo, which defines the standard abbreviations etc. 1497 WriteBlockInfo(VE, Stream); 1498 1499 // Emit information about parameter attributes. 1500 WriteAttributeTable(VE, Stream); 1501 1502 // Emit information describing all of the types in the module. 1503 WriteTypeTable(VE, Stream); 1504 1505 // Emit top-level description of module, including target triple, inline asm, 1506 // descriptors for global variables, and function prototype info. 1507 WriteModuleInfo(M, VE, Stream); 1508 1509 // Emit constants. 1510 WriteModuleConstants(VE, Stream); 1511 1512 // Emit metadata. 1513 WriteModuleMetadata(M, VE, Stream); 1514 1515 // Emit function bodies. 1516 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1517 if (!I->isDeclaration()) 1518 WriteFunction(*I, VE, Stream); 1519 1520 // Emit metadata. 1521 WriteModuleMetadataStore(M, Stream); 1522 1523 // Emit the type symbol table information. 1524 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1525 1526 // Emit names for globals/functions etc. 1527 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1528 1529 Stream.ExitBlock(); 1530 } 1531 1532 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1533 /// header and trailer to make it compatible with the system archiver. To do 1534 /// this we emit the following header, and then emit a trailer that pads the 1535 /// file out to be a multiple of 16 bytes. 1536 /// 1537 /// struct bc_header { 1538 /// uint32_t Magic; // 0x0B17C0DE 1539 /// uint32_t Version; // Version, currently always 0. 1540 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1541 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1542 /// uint32_t CPUType; // CPU specifier. 1543 /// ... potentially more later ... 1544 /// }; 1545 enum { 1546 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1547 DarwinBCHeaderSize = 5*4 1548 }; 1549 1550 /// isARMTriplet - Return true if the triplet looks like: 1551 /// arm-*, thumb-*, armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. 1552 static bool isARMTriplet(const std::string &TT) { 1553 size_t Pos = 0; 1554 size_t Size = TT.size(); 1555 if (Size >= 6 && 1556 TT[0] == 't' && TT[1] == 'h' && TT[2] == 'u' && 1557 TT[3] == 'm' && TT[4] == 'b') 1558 Pos = 5; 1559 else if (Size >= 4 && TT[0] == 'a' && TT[1] == 'r' && TT[2] == 'm') 1560 Pos = 3; 1561 else 1562 return false; 1563 1564 if (TT[Pos] == '-') 1565 return true; 1566 else if (TT[Pos] == 'v') { 1567 if (Size >= Pos+4 && 1568 TT[Pos+1] == '6' && TT[Pos+2] == 't' && TT[Pos+3] == '2') 1569 return true; 1570 else if (Size >= Pos+4 && 1571 TT[Pos+1] == '5' && TT[Pos+2] == 't' && TT[Pos+3] == 'e') 1572 return true; 1573 } else 1574 return false; 1575 while (++Pos < Size && TT[Pos] != '-') { 1576 if (!isdigit(TT[Pos])) 1577 return false; 1578 } 1579 return true; 1580 } 1581 1582 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1583 const std::string &TT) { 1584 unsigned CPUType = ~0U; 1585 1586 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1587 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1588 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1589 // specific constants here because they are implicitly part of the Darwin ABI. 1590 enum { 1591 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1592 DARWIN_CPU_TYPE_X86 = 7, 1593 DARWIN_CPU_TYPE_ARM = 12, 1594 DARWIN_CPU_TYPE_POWERPC = 18 1595 }; 1596 1597 if (TT.find("x86_64-") == 0) 1598 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1599 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1600 TT[4] == '-' && TT[1] - '3' < 6) 1601 CPUType = DARWIN_CPU_TYPE_X86; 1602 else if (TT.find("powerpc-") == 0) 1603 CPUType = DARWIN_CPU_TYPE_POWERPC; 1604 else if (TT.find("powerpc64-") == 0) 1605 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1606 else if (isARMTriplet(TT)) 1607 CPUType = DARWIN_CPU_TYPE_ARM; 1608 1609 // Traditional Bitcode starts after header. 1610 unsigned BCOffset = DarwinBCHeaderSize; 1611 1612 Stream.Emit(0x0B17C0DE, 32); 1613 Stream.Emit(0 , 32); // Version. 1614 Stream.Emit(BCOffset , 32); 1615 Stream.Emit(0 , 32); // Filled in later. 1616 Stream.Emit(CPUType , 32); 1617 } 1618 1619 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1620 /// finalize the header. 1621 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1622 // Update the size field in the header. 1623 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1624 1625 // If the file is not a multiple of 16 bytes, insert dummy padding. 1626 while (BufferSize & 15) { 1627 Stream.Emit(0, 8); 1628 ++BufferSize; 1629 } 1630 } 1631 1632 1633 /// WriteBitcodeToFile - Write the specified module to the specified output 1634 /// stream. 1635 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1636 std::vector<unsigned char> Buffer; 1637 BitstreamWriter Stream(Buffer); 1638 1639 Buffer.reserve(256*1024); 1640 1641 WriteBitcodeToStream( M, Stream ); 1642 1643 // Write the generated bitstream to "Out". 1644 Out.write((char*)&Buffer.front(), Buffer.size()); 1645 } 1646 1647 /// WriteBitcodeToStream - Write the specified module to the specified output 1648 /// stream. 1649 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1650 // If this is darwin or another generic macho target, emit a file header and 1651 // trailer if needed. 1652 bool isMacho = 1653 M->getTargetTriple().find("-darwin") != std::string::npos || 1654 M->getTargetTriple().find("-macho") != std::string::npos; 1655 if (isMacho) 1656 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1657 1658 // Emit the file header. 1659 Stream.Emit((unsigned)'B', 8); 1660 Stream.Emit((unsigned)'C', 8); 1661 Stream.Emit(0x0, 4); 1662 Stream.Emit(0xC, 4); 1663 Stream.Emit(0xE, 4); 1664 Stream.Emit(0xD, 4); 1665 1666 // Emit the module. 1667 WriteModule(M, Stream); 1668 1669 if (isMacho) 1670 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1671 } 1672