1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Bitcode/BitCodes.h" 29 #include "llvm/Bitcode/BitstreamWriter.h" 30 #include "llvm/Bitcode/LLVMBitCodes.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 namespace { 90 91 /// These are manifest constants used by the bitcode writer. They do not need to 92 /// be kept in sync with the reader, but need to be consistent within this file. 93 enum { 94 // VALUE_SYMTAB_BLOCK abbrev id's. 95 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 96 VST_ENTRY_7_ABBREV, 97 VST_ENTRY_6_ABBREV, 98 VST_BBENTRY_6_ABBREV, 99 100 // CONSTANTS_BLOCK abbrev id's. 101 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 CONSTANTS_INTEGER_ABBREV, 103 CONSTANTS_CE_CAST_Abbrev, 104 CONSTANTS_NULL_Abbrev, 105 106 // FUNCTION_BLOCK abbrev id's. 107 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 FUNCTION_INST_BINOP_ABBREV, 109 FUNCTION_INST_BINOP_FLAGS_ABBREV, 110 FUNCTION_INST_CAST_ABBREV, 111 FUNCTION_INST_RET_VOID_ABBREV, 112 FUNCTION_INST_RET_VAL_ABBREV, 113 FUNCTION_INST_UNREACHABLE_ABBREV, 114 FUNCTION_INST_GEP_ABBREV, 115 }; 116 117 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 118 /// file type. 119 class BitcodeWriterBase { 120 protected: 121 /// The stream created and owned by the client. 122 BitstreamWriter &Stream; 123 124 StringTableBuilder &StrtabBuilder; 125 126 public: 127 /// Constructs a BitcodeWriterBase object that writes to the provided 128 /// \p Stream. 129 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 130 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 131 132 protected: 133 void writeBitcodeHeader(); 134 void writeModuleVersion(); 135 }; 136 137 void BitcodeWriterBase::writeModuleVersion() { 138 // VERSION: [version#] 139 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 140 } 141 142 /// Base class to manage the module bitcode writing, currently subclassed for 143 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 144 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 145 protected: 146 /// The Module to write to bitcode. 147 const Module &M; 148 149 /// Enumerates ids for all values in the module. 150 ValueEnumerator VE; 151 152 /// Optional per-module index to write for ThinLTO. 153 const ModuleSummaryIndex *Index; 154 155 /// Map that holds the correspondence between GUIDs in the summary index, 156 /// that came from indirect call profiles, and a value id generated by this 157 /// class to use in the VST and summary block records. 158 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 159 160 /// Tracks the last value id recorded in the GUIDToValueMap. 161 unsigned GlobalValueId; 162 163 /// Saves the offset of the VSTOffset record that must eventually be 164 /// backpatched with the offset of the actual VST. 165 uint64_t VSTOffsetPlaceholder = 0; 166 167 public: 168 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 169 /// writing to the provided \p Buffer. 170 ModuleBitcodeWriterBase(const Module *M, StringTableBuilder &StrtabBuilder, 171 BitstreamWriter &Stream, 172 bool ShouldPreserveUseListOrder, 173 const ModuleSummaryIndex *Index) 174 : BitcodeWriterBase(Stream, StrtabBuilder), M(*M), 175 VE(*M, ShouldPreserveUseListOrder), Index(Index) { 176 // Assign ValueIds to any callee values in the index that came from 177 // indirect call profiles and were recorded as a GUID not a Value* 178 // (which would have been assigned an ID by the ValueEnumerator). 179 // The starting ValueId is just after the number of values in the 180 // ValueEnumerator, so that they can be emitted in the VST. 181 GlobalValueId = VE.getValues().size(); 182 if (!Index) 183 return; 184 for (const auto &GUIDSummaryLists : *Index) 185 // Examine all summaries for this GUID. 186 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 187 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 188 // For each call in the function summary, see if the call 189 // is to a GUID (which means it is for an indirect call, 190 // otherwise we would have a Value for it). If so, synthesize 191 // a value id. 192 for (auto &CallEdge : FS->calls()) 193 if (!CallEdge.first.getValue()) 194 assignValueId(CallEdge.first.getGUID()); 195 } 196 197 protected: 198 void writePerModuleGlobalValueSummary(); 199 200 private: 201 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 202 GlobalValueSummary *Summary, 203 unsigned ValueID, 204 unsigned FSCallsAbbrev, 205 unsigned FSCallsProfileAbbrev, 206 const Function &F); 207 void writeModuleLevelReferences(const GlobalVariable &V, 208 SmallVector<uint64_t, 64> &NameVals, 209 unsigned FSModRefsAbbrev); 210 211 void assignValueId(GlobalValue::GUID ValGUID) { 212 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 213 } 214 215 unsigned getValueId(GlobalValue::GUID ValGUID) { 216 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 217 // Expect that any GUID value had a value Id assigned by an 218 // earlier call to assignValueId. 219 assert(VMI != GUIDToValueIdMap.end() && 220 "GUID does not have assigned value Id"); 221 return VMI->second; 222 } 223 224 // Helper to get the valueId for the type of value recorded in VI. 225 unsigned getValueId(ValueInfo VI) { 226 if (!VI.getValue()) 227 return getValueId(VI.getGUID()); 228 return VE.getValueID(VI.getValue()); 229 } 230 231 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 232 }; 233 234 /// Class to manage the bitcode writing for a module. 235 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 236 /// Pointer to the buffer allocated by caller for bitcode writing. 237 const SmallVectorImpl<char> &Buffer; 238 239 /// True if a module hash record should be written. 240 bool GenerateHash; 241 242 /// If non-null, when GenerateHash is true, the resulting hash is written 243 /// into ModHash. 244 ModuleHash *ModHash; 245 246 SHA1 Hasher; 247 248 /// The start bit of the identification block. 249 uint64_t BitcodeStartBit; 250 251 public: 252 /// Constructs a ModuleBitcodeWriter object for the given Module, 253 /// writing to the provided \p Buffer. 254 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 255 StringTableBuilder &StrtabBuilder, 256 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 257 const ModuleSummaryIndex *Index, bool GenerateHash, 258 ModuleHash *ModHash = nullptr) 259 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 260 ShouldPreserveUseListOrder, Index), 261 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 262 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 263 264 /// Emit the current module to the bitstream. 265 void write(); 266 267 private: 268 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 269 270 size_t addToStrtab(StringRef Str); 271 272 void writeAttributeGroupTable(); 273 void writeAttributeTable(); 274 void writeTypeTable(); 275 void writeComdats(); 276 void writeValueSymbolTableForwardDecl(); 277 void writeModuleInfo(); 278 void writeValueAsMetadata(const ValueAsMetadata *MD, 279 SmallVectorImpl<uint64_t> &Record); 280 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 281 unsigned Abbrev); 282 unsigned createDILocationAbbrev(); 283 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 284 unsigned &Abbrev); 285 unsigned createGenericDINodeAbbrev(); 286 void writeGenericDINode(const GenericDINode *N, 287 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 288 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 289 unsigned Abbrev); 290 void writeDIEnumerator(const DIEnumerator *N, 291 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 292 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 void writeDIDerivedType(const DIDerivedType *N, 295 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 296 void writeDICompositeType(const DICompositeType *N, 297 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 298 void writeDISubroutineType(const DISubroutineType *N, 299 SmallVectorImpl<uint64_t> &Record, 300 unsigned Abbrev); 301 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDICompileUnit(const DICompileUnit *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDISubprogram(const DISubprogram *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDILexicalBlock(const DILexicalBlock *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 310 SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 313 unsigned Abbrev); 314 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 315 unsigned Abbrev); 316 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 321 SmallVectorImpl<uint64_t> &Record, 322 unsigned Abbrev); 323 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 324 SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDIGlobalVariable(const DIGlobalVariable *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDILocalVariable(const DILocalVariable *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDIExpression(const DIExpression *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 334 SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIObjCProperty(const DIObjCProperty *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDIImportedEntity(const DIImportedEntity *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 unsigned createNamedMetadataAbbrev(); 342 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 343 unsigned createMetadataStringsAbbrev(); 344 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 345 SmallVectorImpl<uint64_t> &Record); 346 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 347 SmallVectorImpl<uint64_t> &Record, 348 std::vector<unsigned> *MDAbbrevs = nullptr, 349 std::vector<uint64_t> *IndexPos = nullptr); 350 void writeModuleMetadata(); 351 void writeFunctionMetadata(const Function &F); 352 void writeFunctionMetadataAttachment(const Function &F); 353 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 354 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 355 const GlobalObject &GO); 356 void writeModuleMetadataKinds(); 357 void writeOperandBundleTags(); 358 void writeSyncScopeNames(); 359 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 360 void writeModuleConstants(); 361 bool pushValueAndType(const Value *V, unsigned InstID, 362 SmallVectorImpl<unsigned> &Vals); 363 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 364 void pushValue(const Value *V, unsigned InstID, 365 SmallVectorImpl<unsigned> &Vals); 366 void pushValueSigned(const Value *V, unsigned InstID, 367 SmallVectorImpl<uint64_t> &Vals); 368 void writeInstruction(const Instruction &I, unsigned InstID, 369 SmallVectorImpl<unsigned> &Vals); 370 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 371 void writeGlobalValueSymbolTable( 372 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 373 void writeUseList(UseListOrder &&Order); 374 void writeUseListBlock(const Function *F); 375 void 376 writeFunction(const Function &F, 377 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 378 void writeBlockInfo(); 379 void writeModuleHash(size_t BlockStartPos); 380 381 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 382 return unsigned(SSID); 383 } 384 }; 385 386 /// Class to manage the bitcode writing for a combined index. 387 class IndexBitcodeWriter : public BitcodeWriterBase { 388 /// The combined index to write to bitcode. 389 const ModuleSummaryIndex &Index; 390 391 /// When writing a subset of the index for distributed backends, client 392 /// provides a map of modules to the corresponding GUIDs/summaries to write. 393 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 394 395 /// Map that holds the correspondence between the GUID used in the combined 396 /// index and a value id generated by this class to use in references. 397 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 398 399 /// Tracks the last value id recorded in the GUIDToValueMap. 400 unsigned GlobalValueId = 0; 401 402 public: 403 /// Constructs a IndexBitcodeWriter object for the given combined index, 404 /// writing to the provided \p Buffer. When writing a subset of the index 405 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 406 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 407 const ModuleSummaryIndex &Index, 408 const std::map<std::string, GVSummaryMapTy> 409 *ModuleToSummariesForIndex = nullptr) 410 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 411 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 412 // Assign unique value ids to all summaries to be written, for use 413 // in writing out the call graph edges. Save the mapping from GUID 414 // to the new global value id to use when writing those edges, which 415 // are currently saved in the index in terms of GUID. 416 forEachSummary([&](GVInfo I) { 417 GUIDToValueIdMap[I.first] = ++GlobalValueId; 418 }); 419 } 420 421 /// The below iterator returns the GUID and associated summary. 422 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 423 424 /// Calls the callback for each value GUID and summary to be written to 425 /// bitcode. This hides the details of whether they are being pulled from the 426 /// entire index or just those in a provided ModuleToSummariesForIndex map. 427 template<typename Functor> 428 void forEachSummary(Functor Callback) { 429 if (ModuleToSummariesForIndex) { 430 for (auto &M : *ModuleToSummariesForIndex) 431 for (auto &Summary : M.second) 432 Callback(Summary); 433 } else { 434 for (auto &Summaries : Index) 435 for (auto &Summary : Summaries.second.SummaryList) 436 Callback({Summaries.first, Summary.get()}); 437 } 438 } 439 440 /// Calls the callback for each entry in the modulePaths StringMap that 441 /// should be written to the module path string table. This hides the details 442 /// of whether they are being pulled from the entire index or just those in a 443 /// provided ModuleToSummariesForIndex map. 444 template <typename Functor> void forEachModule(Functor Callback) { 445 if (ModuleToSummariesForIndex) { 446 for (const auto &M : *ModuleToSummariesForIndex) { 447 const auto &MPI = Index.modulePaths().find(M.first); 448 if (MPI == Index.modulePaths().end()) { 449 // This should only happen if the bitcode file was empty, in which 450 // case we shouldn't be importing (the ModuleToSummariesForIndex 451 // would only include the module we are writing and index for). 452 assert(ModuleToSummariesForIndex->size() == 1); 453 continue; 454 } 455 Callback(*MPI); 456 } 457 } else { 458 for (const auto &MPSE : Index.modulePaths()) 459 Callback(MPSE); 460 } 461 } 462 463 /// Main entry point for writing a combined index to bitcode. 464 void write(); 465 466 private: 467 void writeModStrings(); 468 void writeCombinedGlobalValueSummary(); 469 470 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 471 auto VMI = GUIDToValueIdMap.find(ValGUID); 472 if (VMI == GUIDToValueIdMap.end()) 473 return None; 474 return VMI->second; 475 } 476 477 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 478 }; 479 480 } // end anonymous namespace 481 482 static unsigned getEncodedCastOpcode(unsigned Opcode) { 483 switch (Opcode) { 484 default: llvm_unreachable("Unknown cast instruction!"); 485 case Instruction::Trunc : return bitc::CAST_TRUNC; 486 case Instruction::ZExt : return bitc::CAST_ZEXT; 487 case Instruction::SExt : return bitc::CAST_SEXT; 488 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 489 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 490 case Instruction::UIToFP : return bitc::CAST_UITOFP; 491 case Instruction::SIToFP : return bitc::CAST_SITOFP; 492 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 493 case Instruction::FPExt : return bitc::CAST_FPEXT; 494 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 495 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 496 case Instruction::BitCast : return bitc::CAST_BITCAST; 497 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 498 } 499 } 500 501 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown binary instruction!"); 504 case Instruction::Add: 505 case Instruction::FAdd: return bitc::BINOP_ADD; 506 case Instruction::Sub: 507 case Instruction::FSub: return bitc::BINOP_SUB; 508 case Instruction::Mul: 509 case Instruction::FMul: return bitc::BINOP_MUL; 510 case Instruction::UDiv: return bitc::BINOP_UDIV; 511 case Instruction::FDiv: 512 case Instruction::SDiv: return bitc::BINOP_SDIV; 513 case Instruction::URem: return bitc::BINOP_UREM; 514 case Instruction::FRem: 515 case Instruction::SRem: return bitc::BINOP_SREM; 516 case Instruction::Shl: return bitc::BINOP_SHL; 517 case Instruction::LShr: return bitc::BINOP_LSHR; 518 case Instruction::AShr: return bitc::BINOP_ASHR; 519 case Instruction::And: return bitc::BINOP_AND; 520 case Instruction::Or: return bitc::BINOP_OR; 521 case Instruction::Xor: return bitc::BINOP_XOR; 522 } 523 } 524 525 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 526 switch (Op) { 527 default: llvm_unreachable("Unknown RMW operation!"); 528 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 529 case AtomicRMWInst::Add: return bitc::RMW_ADD; 530 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 531 case AtomicRMWInst::And: return bitc::RMW_AND; 532 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 533 case AtomicRMWInst::Or: return bitc::RMW_OR; 534 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 535 case AtomicRMWInst::Max: return bitc::RMW_MAX; 536 case AtomicRMWInst::Min: return bitc::RMW_MIN; 537 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 538 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 539 } 540 } 541 542 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 543 switch (Ordering) { 544 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 545 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 546 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 547 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 548 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 549 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 550 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 551 } 552 llvm_unreachable("Invalid ordering"); 553 } 554 555 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 556 StringRef Str, unsigned AbbrevToUse) { 557 SmallVector<unsigned, 64> Vals; 558 559 // Code: [strchar x N] 560 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 561 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 562 AbbrevToUse = 0; 563 Vals.push_back(Str[i]); 564 } 565 566 // Emit the finished record. 567 Stream.EmitRecord(Code, Vals, AbbrevToUse); 568 } 569 570 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 571 switch (Kind) { 572 case Attribute::Alignment: 573 return bitc::ATTR_KIND_ALIGNMENT; 574 case Attribute::AllocSize: 575 return bitc::ATTR_KIND_ALLOC_SIZE; 576 case Attribute::AlwaysInline: 577 return bitc::ATTR_KIND_ALWAYS_INLINE; 578 case Attribute::ArgMemOnly: 579 return bitc::ATTR_KIND_ARGMEMONLY; 580 case Attribute::Builtin: 581 return bitc::ATTR_KIND_BUILTIN; 582 case Attribute::ByVal: 583 return bitc::ATTR_KIND_BY_VAL; 584 case Attribute::Convergent: 585 return bitc::ATTR_KIND_CONVERGENT; 586 case Attribute::InAlloca: 587 return bitc::ATTR_KIND_IN_ALLOCA; 588 case Attribute::Cold: 589 return bitc::ATTR_KIND_COLD; 590 case Attribute::InaccessibleMemOnly: 591 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 592 case Attribute::InaccessibleMemOrArgMemOnly: 593 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 594 case Attribute::InlineHint: 595 return bitc::ATTR_KIND_INLINE_HINT; 596 case Attribute::InReg: 597 return bitc::ATTR_KIND_IN_REG; 598 case Attribute::JumpTable: 599 return bitc::ATTR_KIND_JUMP_TABLE; 600 case Attribute::MinSize: 601 return bitc::ATTR_KIND_MIN_SIZE; 602 case Attribute::Naked: 603 return bitc::ATTR_KIND_NAKED; 604 case Attribute::Nest: 605 return bitc::ATTR_KIND_NEST; 606 case Attribute::NoAlias: 607 return bitc::ATTR_KIND_NO_ALIAS; 608 case Attribute::NoBuiltin: 609 return bitc::ATTR_KIND_NO_BUILTIN; 610 case Attribute::NoCapture: 611 return bitc::ATTR_KIND_NO_CAPTURE; 612 case Attribute::NoDuplicate: 613 return bitc::ATTR_KIND_NO_DUPLICATE; 614 case Attribute::NoImplicitFloat: 615 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 616 case Attribute::NoInline: 617 return bitc::ATTR_KIND_NO_INLINE; 618 case Attribute::NoRecurse: 619 return bitc::ATTR_KIND_NO_RECURSE; 620 case Attribute::NonLazyBind: 621 return bitc::ATTR_KIND_NON_LAZY_BIND; 622 case Attribute::NonNull: 623 return bitc::ATTR_KIND_NON_NULL; 624 case Attribute::Dereferenceable: 625 return bitc::ATTR_KIND_DEREFERENCEABLE; 626 case Attribute::DereferenceableOrNull: 627 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 628 case Attribute::NoRedZone: 629 return bitc::ATTR_KIND_NO_RED_ZONE; 630 case Attribute::NoReturn: 631 return bitc::ATTR_KIND_NO_RETURN; 632 case Attribute::NoUnwind: 633 return bitc::ATTR_KIND_NO_UNWIND; 634 case Attribute::OptimizeForSize: 635 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 636 case Attribute::OptimizeNone: 637 return bitc::ATTR_KIND_OPTIMIZE_NONE; 638 case Attribute::ReadNone: 639 return bitc::ATTR_KIND_READ_NONE; 640 case Attribute::ReadOnly: 641 return bitc::ATTR_KIND_READ_ONLY; 642 case Attribute::Returned: 643 return bitc::ATTR_KIND_RETURNED; 644 case Attribute::ReturnsTwice: 645 return bitc::ATTR_KIND_RETURNS_TWICE; 646 case Attribute::SExt: 647 return bitc::ATTR_KIND_S_EXT; 648 case Attribute::Speculatable: 649 return bitc::ATTR_KIND_SPECULATABLE; 650 case Attribute::StackAlignment: 651 return bitc::ATTR_KIND_STACK_ALIGNMENT; 652 case Attribute::StackProtect: 653 return bitc::ATTR_KIND_STACK_PROTECT; 654 case Attribute::StackProtectReq: 655 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 656 case Attribute::StackProtectStrong: 657 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 658 case Attribute::SafeStack: 659 return bitc::ATTR_KIND_SAFESTACK; 660 case Attribute::StrictFP: 661 return bitc::ATTR_KIND_STRICT_FP; 662 case Attribute::StructRet: 663 return bitc::ATTR_KIND_STRUCT_RET; 664 case Attribute::SanitizeAddress: 665 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 666 case Attribute::SanitizeThread: 667 return bitc::ATTR_KIND_SANITIZE_THREAD; 668 case Attribute::SanitizeMemory: 669 return bitc::ATTR_KIND_SANITIZE_MEMORY; 670 case Attribute::SwiftError: 671 return bitc::ATTR_KIND_SWIFT_ERROR; 672 case Attribute::SwiftSelf: 673 return bitc::ATTR_KIND_SWIFT_SELF; 674 case Attribute::UWTable: 675 return bitc::ATTR_KIND_UW_TABLE; 676 case Attribute::WriteOnly: 677 return bitc::ATTR_KIND_WRITEONLY; 678 case Attribute::ZExt: 679 return bitc::ATTR_KIND_Z_EXT; 680 case Attribute::EndAttrKinds: 681 llvm_unreachable("Can not encode end-attribute kinds marker."); 682 case Attribute::None: 683 llvm_unreachable("Can not encode none-attribute."); 684 } 685 686 llvm_unreachable("Trying to encode unknown attribute"); 687 } 688 689 void ModuleBitcodeWriter::writeAttributeGroupTable() { 690 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 691 VE.getAttributeGroups(); 692 if (AttrGrps.empty()) return; 693 694 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 695 696 SmallVector<uint64_t, 64> Record; 697 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 698 unsigned AttrListIndex = Pair.first; 699 AttributeSet AS = Pair.second; 700 Record.push_back(VE.getAttributeGroupID(Pair)); 701 Record.push_back(AttrListIndex); 702 703 for (Attribute Attr : AS) { 704 if (Attr.isEnumAttribute()) { 705 Record.push_back(0); 706 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 707 } else if (Attr.isIntAttribute()) { 708 Record.push_back(1); 709 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 710 Record.push_back(Attr.getValueAsInt()); 711 } else { 712 StringRef Kind = Attr.getKindAsString(); 713 StringRef Val = Attr.getValueAsString(); 714 715 Record.push_back(Val.empty() ? 3 : 4); 716 Record.append(Kind.begin(), Kind.end()); 717 Record.push_back(0); 718 if (!Val.empty()) { 719 Record.append(Val.begin(), Val.end()); 720 Record.push_back(0); 721 } 722 } 723 } 724 725 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 726 Record.clear(); 727 } 728 729 Stream.ExitBlock(); 730 } 731 732 void ModuleBitcodeWriter::writeAttributeTable() { 733 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 734 if (Attrs.empty()) return; 735 736 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 737 738 SmallVector<uint64_t, 64> Record; 739 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 740 AttributeList AL = Attrs[i]; 741 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 742 AttributeSet AS = AL.getAttributes(i); 743 if (AS.hasAttributes()) 744 Record.push_back(VE.getAttributeGroupID({i, AS})); 745 } 746 747 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 748 Record.clear(); 749 } 750 751 Stream.ExitBlock(); 752 } 753 754 /// WriteTypeTable - Write out the type table for a module. 755 void ModuleBitcodeWriter::writeTypeTable() { 756 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 757 758 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 759 SmallVector<uint64_t, 64> TypeVals; 760 761 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 762 763 // Abbrev for TYPE_CODE_POINTER. 764 auto Abbv = std::make_shared<BitCodeAbbrev>(); 765 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 767 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 768 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 769 770 // Abbrev for TYPE_CODE_FUNCTION. 771 Abbv = std::make_shared<BitCodeAbbrev>(); 772 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 776 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 777 778 // Abbrev for TYPE_CODE_STRUCT_ANON. 779 Abbv = std::make_shared<BitCodeAbbrev>(); 780 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 784 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 785 786 // Abbrev for TYPE_CODE_STRUCT_NAME. 787 Abbv = std::make_shared<BitCodeAbbrev>(); 788 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 791 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 792 793 // Abbrev for TYPE_CODE_STRUCT_NAMED. 794 Abbv = std::make_shared<BitCodeAbbrev>(); 795 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 799 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 800 801 // Abbrev for TYPE_CODE_ARRAY. 802 Abbv = std::make_shared<BitCodeAbbrev>(); 803 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 806 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 807 808 // Emit an entry count so the reader can reserve space. 809 TypeVals.push_back(TypeList.size()); 810 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 811 TypeVals.clear(); 812 813 // Loop over all of the types, emitting each in turn. 814 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 815 Type *T = TypeList[i]; 816 int AbbrevToUse = 0; 817 unsigned Code = 0; 818 819 switch (T->getTypeID()) { 820 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 821 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 822 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 823 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 824 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 825 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 826 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 827 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 828 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 829 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 830 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 831 case Type::IntegerTyID: 832 // INTEGER: [width] 833 Code = bitc::TYPE_CODE_INTEGER; 834 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 835 break; 836 case Type::PointerTyID: { 837 PointerType *PTy = cast<PointerType>(T); 838 // POINTER: [pointee type, address space] 839 Code = bitc::TYPE_CODE_POINTER; 840 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 841 unsigned AddressSpace = PTy->getAddressSpace(); 842 TypeVals.push_back(AddressSpace); 843 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 844 break; 845 } 846 case Type::FunctionTyID: { 847 FunctionType *FT = cast<FunctionType>(T); 848 // FUNCTION: [isvararg, retty, paramty x N] 849 Code = bitc::TYPE_CODE_FUNCTION; 850 TypeVals.push_back(FT->isVarArg()); 851 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 852 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 853 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 854 AbbrevToUse = FunctionAbbrev; 855 break; 856 } 857 case Type::StructTyID: { 858 StructType *ST = cast<StructType>(T); 859 // STRUCT: [ispacked, eltty x N] 860 TypeVals.push_back(ST->isPacked()); 861 // Output all of the element types. 862 for (StructType::element_iterator I = ST->element_begin(), 863 E = ST->element_end(); I != E; ++I) 864 TypeVals.push_back(VE.getTypeID(*I)); 865 866 if (ST->isLiteral()) { 867 Code = bitc::TYPE_CODE_STRUCT_ANON; 868 AbbrevToUse = StructAnonAbbrev; 869 } else { 870 if (ST->isOpaque()) { 871 Code = bitc::TYPE_CODE_OPAQUE; 872 } else { 873 Code = bitc::TYPE_CODE_STRUCT_NAMED; 874 AbbrevToUse = StructNamedAbbrev; 875 } 876 877 // Emit the name if it is present. 878 if (!ST->getName().empty()) 879 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 880 StructNameAbbrev); 881 } 882 break; 883 } 884 case Type::ArrayTyID: { 885 ArrayType *AT = cast<ArrayType>(T); 886 // ARRAY: [numelts, eltty] 887 Code = bitc::TYPE_CODE_ARRAY; 888 TypeVals.push_back(AT->getNumElements()); 889 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 890 AbbrevToUse = ArrayAbbrev; 891 break; 892 } 893 case Type::VectorTyID: { 894 VectorType *VT = cast<VectorType>(T); 895 // VECTOR [numelts, eltty] 896 Code = bitc::TYPE_CODE_VECTOR; 897 TypeVals.push_back(VT->getNumElements()); 898 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 899 break; 900 } 901 } 902 903 // Emit the finished record. 904 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 905 TypeVals.clear(); 906 } 907 908 Stream.ExitBlock(); 909 } 910 911 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 912 switch (Linkage) { 913 case GlobalValue::ExternalLinkage: 914 return 0; 915 case GlobalValue::WeakAnyLinkage: 916 return 16; 917 case GlobalValue::AppendingLinkage: 918 return 2; 919 case GlobalValue::InternalLinkage: 920 return 3; 921 case GlobalValue::LinkOnceAnyLinkage: 922 return 18; 923 case GlobalValue::ExternalWeakLinkage: 924 return 7; 925 case GlobalValue::CommonLinkage: 926 return 8; 927 case GlobalValue::PrivateLinkage: 928 return 9; 929 case GlobalValue::WeakODRLinkage: 930 return 17; 931 case GlobalValue::LinkOnceODRLinkage: 932 return 19; 933 case GlobalValue::AvailableExternallyLinkage: 934 return 12; 935 } 936 llvm_unreachable("Invalid linkage"); 937 } 938 939 static unsigned getEncodedLinkage(const GlobalValue &GV) { 940 return getEncodedLinkage(GV.getLinkage()); 941 } 942 943 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 944 uint64_t RawFlags = 0; 945 RawFlags |= Flags.ReadNone; 946 RawFlags |= (Flags.ReadOnly << 1); 947 RawFlags |= (Flags.NoRecurse << 2); 948 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 949 return RawFlags; 950 } 951 952 // Decode the flags for GlobalValue in the summary 953 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 954 uint64_t RawFlags = 0; 955 956 RawFlags |= Flags.NotEligibleToImport; // bool 957 RawFlags |= (Flags.Live << 1); 958 RawFlags |= (Flags.DSOLocal << 2); 959 960 // Linkage don't need to be remapped at that time for the summary. Any future 961 // change to the getEncodedLinkage() function will need to be taken into 962 // account here as well. 963 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 964 965 return RawFlags; 966 } 967 968 static unsigned getEncodedVisibility(const GlobalValue &GV) { 969 switch (GV.getVisibility()) { 970 case GlobalValue::DefaultVisibility: return 0; 971 case GlobalValue::HiddenVisibility: return 1; 972 case GlobalValue::ProtectedVisibility: return 2; 973 } 974 llvm_unreachable("Invalid visibility"); 975 } 976 977 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 978 switch (GV.getDLLStorageClass()) { 979 case GlobalValue::DefaultStorageClass: return 0; 980 case GlobalValue::DLLImportStorageClass: return 1; 981 case GlobalValue::DLLExportStorageClass: return 2; 982 } 983 llvm_unreachable("Invalid DLL storage class"); 984 } 985 986 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 987 switch (GV.getThreadLocalMode()) { 988 case GlobalVariable::NotThreadLocal: return 0; 989 case GlobalVariable::GeneralDynamicTLSModel: return 1; 990 case GlobalVariable::LocalDynamicTLSModel: return 2; 991 case GlobalVariable::InitialExecTLSModel: return 3; 992 case GlobalVariable::LocalExecTLSModel: return 4; 993 } 994 llvm_unreachable("Invalid TLS model"); 995 } 996 997 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 998 switch (C.getSelectionKind()) { 999 case Comdat::Any: 1000 return bitc::COMDAT_SELECTION_KIND_ANY; 1001 case Comdat::ExactMatch: 1002 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1003 case Comdat::Largest: 1004 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1005 case Comdat::NoDuplicates: 1006 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1007 case Comdat::SameSize: 1008 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1009 } 1010 llvm_unreachable("Invalid selection kind"); 1011 } 1012 1013 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1014 switch (GV.getUnnamedAddr()) { 1015 case GlobalValue::UnnamedAddr::None: return 0; 1016 case GlobalValue::UnnamedAddr::Local: return 2; 1017 case GlobalValue::UnnamedAddr::Global: return 1; 1018 } 1019 llvm_unreachable("Invalid unnamed_addr"); 1020 } 1021 1022 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1023 if (GenerateHash) 1024 Hasher.update(Str); 1025 return StrtabBuilder.add(Str); 1026 } 1027 1028 void ModuleBitcodeWriter::writeComdats() { 1029 SmallVector<unsigned, 64> Vals; 1030 for (const Comdat *C : VE.getComdats()) { 1031 // COMDAT: [strtab offset, strtab size, selection_kind] 1032 Vals.push_back(addToStrtab(C->getName())); 1033 Vals.push_back(C->getName().size()); 1034 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1035 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1036 Vals.clear(); 1037 } 1038 } 1039 1040 /// Write a record that will eventually hold the word offset of the 1041 /// module-level VST. For now the offset is 0, which will be backpatched 1042 /// after the real VST is written. Saves the bit offset to backpatch. 1043 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1044 // Write a placeholder value in for the offset of the real VST, 1045 // which is written after the function blocks so that it can include 1046 // the offset of each function. The placeholder offset will be 1047 // updated when the real VST is written. 1048 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1049 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1050 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1051 // hold the real VST offset. Must use fixed instead of VBR as we don't 1052 // know how many VBR chunks to reserve ahead of time. 1053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1054 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1055 1056 // Emit the placeholder 1057 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1058 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1059 1060 // Compute and save the bit offset to the placeholder, which will be 1061 // patched when the real VST is written. We can simply subtract the 32-bit 1062 // fixed size from the current bit number to get the location to backpatch. 1063 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1064 } 1065 1066 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1067 1068 /// Determine the encoding to use for the given string name and length. 1069 static StringEncoding getStringEncoding(StringRef Str) { 1070 bool isChar6 = true; 1071 for (char C : Str) { 1072 if (isChar6) 1073 isChar6 = BitCodeAbbrevOp::isChar6(C); 1074 if ((unsigned char)C & 128) 1075 // don't bother scanning the rest. 1076 return SE_Fixed8; 1077 } 1078 if (isChar6) 1079 return SE_Char6; 1080 return SE_Fixed7; 1081 } 1082 1083 /// Emit top-level description of module, including target triple, inline asm, 1084 /// descriptors for global variables, and function prototype info. 1085 /// Returns the bit offset to backpatch with the location of the real VST. 1086 void ModuleBitcodeWriter::writeModuleInfo() { 1087 // Emit various pieces of data attached to a module. 1088 if (!M.getTargetTriple().empty()) 1089 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1090 0 /*TODO*/); 1091 const std::string &DL = M.getDataLayoutStr(); 1092 if (!DL.empty()) 1093 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1094 if (!M.getModuleInlineAsm().empty()) 1095 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1096 0 /*TODO*/); 1097 1098 // Emit information about sections and GC, computing how many there are. Also 1099 // compute the maximum alignment value. 1100 std::map<std::string, unsigned> SectionMap; 1101 std::map<std::string, unsigned> GCMap; 1102 unsigned MaxAlignment = 0; 1103 unsigned MaxGlobalType = 0; 1104 for (const GlobalValue &GV : M.globals()) { 1105 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1106 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1107 if (GV.hasSection()) { 1108 // Give section names unique ID's. 1109 unsigned &Entry = SectionMap[GV.getSection()]; 1110 if (!Entry) { 1111 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1112 0 /*TODO*/); 1113 Entry = SectionMap.size(); 1114 } 1115 } 1116 } 1117 for (const Function &F : M) { 1118 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1119 if (F.hasSection()) { 1120 // Give section names unique ID's. 1121 unsigned &Entry = SectionMap[F.getSection()]; 1122 if (!Entry) { 1123 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1124 0 /*TODO*/); 1125 Entry = SectionMap.size(); 1126 } 1127 } 1128 if (F.hasGC()) { 1129 // Same for GC names. 1130 unsigned &Entry = GCMap[F.getGC()]; 1131 if (!Entry) { 1132 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1133 0 /*TODO*/); 1134 Entry = GCMap.size(); 1135 } 1136 } 1137 } 1138 1139 // Emit abbrev for globals, now that we know # sections and max alignment. 1140 unsigned SimpleGVarAbbrev = 0; 1141 if (!M.global_empty()) { 1142 // Add an abbrev for common globals with no visibility or thread localness. 1143 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1144 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1148 Log2_32_Ceil(MaxGlobalType+1))); 1149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1150 //| explicitType << 1 1151 //| constant 1152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1154 if (MaxAlignment == 0) // Alignment. 1155 Abbv->Add(BitCodeAbbrevOp(0)); 1156 else { 1157 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1159 Log2_32_Ceil(MaxEncAlignment+1))); 1160 } 1161 if (SectionMap.empty()) // Section. 1162 Abbv->Add(BitCodeAbbrevOp(0)); 1163 else 1164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1165 Log2_32_Ceil(SectionMap.size()+1))); 1166 // Don't bother emitting vis + thread local. 1167 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1168 } 1169 1170 SmallVector<unsigned, 64> Vals; 1171 // Emit the module's source file name. 1172 { 1173 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1174 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1175 if (Bits == SE_Char6) 1176 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1177 else if (Bits == SE_Fixed7) 1178 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1179 1180 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1181 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1182 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1184 Abbv->Add(AbbrevOpToUse); 1185 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1186 1187 for (const auto P : M.getSourceFileName()) 1188 Vals.push_back((unsigned char)P); 1189 1190 // Emit the finished record. 1191 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1192 Vals.clear(); 1193 } 1194 1195 // Emit the global variable information. 1196 for (const GlobalVariable &GV : M.globals()) { 1197 unsigned AbbrevToUse = 0; 1198 1199 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1200 // linkage, alignment, section, visibility, threadlocal, 1201 // unnamed_addr, externally_initialized, dllstorageclass, 1202 // comdat, attributes, DSO_Local] 1203 Vals.push_back(addToStrtab(GV.getName())); 1204 Vals.push_back(GV.getName().size()); 1205 Vals.push_back(VE.getTypeID(GV.getValueType())); 1206 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1207 Vals.push_back(GV.isDeclaration() ? 0 : 1208 (VE.getValueID(GV.getInitializer()) + 1)); 1209 Vals.push_back(getEncodedLinkage(GV)); 1210 Vals.push_back(Log2_32(GV.getAlignment())+1); 1211 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1212 if (GV.isThreadLocal() || 1213 GV.getVisibility() != GlobalValue::DefaultVisibility || 1214 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1215 GV.isExternallyInitialized() || 1216 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1217 GV.hasComdat() || 1218 GV.hasAttributes() || 1219 GV.isDSOLocal()) { 1220 Vals.push_back(getEncodedVisibility(GV)); 1221 Vals.push_back(getEncodedThreadLocalMode(GV)); 1222 Vals.push_back(getEncodedUnnamedAddr(GV)); 1223 Vals.push_back(GV.isExternallyInitialized()); 1224 Vals.push_back(getEncodedDLLStorageClass(GV)); 1225 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1226 1227 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1228 Vals.push_back(VE.getAttributeListID(AL)); 1229 1230 Vals.push_back(GV.isDSOLocal()); 1231 } else { 1232 AbbrevToUse = SimpleGVarAbbrev; 1233 } 1234 1235 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1236 Vals.clear(); 1237 } 1238 1239 // Emit the function proto information. 1240 for (const Function &F : M) { 1241 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1242 // linkage, paramattrs, alignment, section, visibility, gc, 1243 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1244 // prefixdata, personalityfn, DSO_Local] 1245 Vals.push_back(addToStrtab(F.getName())); 1246 Vals.push_back(F.getName().size()); 1247 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1248 Vals.push_back(F.getCallingConv()); 1249 Vals.push_back(F.isDeclaration()); 1250 Vals.push_back(getEncodedLinkage(F)); 1251 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1252 Vals.push_back(Log2_32(F.getAlignment())+1); 1253 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1254 Vals.push_back(getEncodedVisibility(F)); 1255 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1256 Vals.push_back(getEncodedUnnamedAddr(F)); 1257 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1258 : 0); 1259 Vals.push_back(getEncodedDLLStorageClass(F)); 1260 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1261 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1262 : 0); 1263 Vals.push_back( 1264 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1265 1266 Vals.push_back(F.isDSOLocal()); 1267 unsigned AbbrevToUse = 0; 1268 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1269 Vals.clear(); 1270 } 1271 1272 // Emit the alias information. 1273 for (const GlobalAlias &A : M.aliases()) { 1274 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1275 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1276 // DSO_Local] 1277 Vals.push_back(addToStrtab(A.getName())); 1278 Vals.push_back(A.getName().size()); 1279 Vals.push_back(VE.getTypeID(A.getValueType())); 1280 Vals.push_back(A.getType()->getAddressSpace()); 1281 Vals.push_back(VE.getValueID(A.getAliasee())); 1282 Vals.push_back(getEncodedLinkage(A)); 1283 Vals.push_back(getEncodedVisibility(A)); 1284 Vals.push_back(getEncodedDLLStorageClass(A)); 1285 Vals.push_back(getEncodedThreadLocalMode(A)); 1286 Vals.push_back(getEncodedUnnamedAddr(A)); 1287 Vals.push_back(A.isDSOLocal()); 1288 1289 unsigned AbbrevToUse = 0; 1290 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1291 Vals.clear(); 1292 } 1293 1294 // Emit the ifunc information. 1295 for (const GlobalIFunc &I : M.ifuncs()) { 1296 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1297 // val#, linkage, visibility] 1298 Vals.push_back(addToStrtab(I.getName())); 1299 Vals.push_back(I.getName().size()); 1300 Vals.push_back(VE.getTypeID(I.getValueType())); 1301 Vals.push_back(I.getType()->getAddressSpace()); 1302 Vals.push_back(VE.getValueID(I.getResolver())); 1303 Vals.push_back(getEncodedLinkage(I)); 1304 Vals.push_back(getEncodedVisibility(I)); 1305 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1306 Vals.clear(); 1307 } 1308 1309 writeValueSymbolTableForwardDecl(); 1310 } 1311 1312 static uint64_t getOptimizationFlags(const Value *V) { 1313 uint64_t Flags = 0; 1314 1315 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1316 if (OBO->hasNoSignedWrap()) 1317 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1318 if (OBO->hasNoUnsignedWrap()) 1319 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1320 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1321 if (PEO->isExact()) 1322 Flags |= 1 << bitc::PEO_EXACT; 1323 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1324 if (FPMO->hasUnsafeAlgebra()) 1325 Flags |= FastMathFlags::UnsafeAlgebra; 1326 if (FPMO->hasNoNaNs()) 1327 Flags |= FastMathFlags::NoNaNs; 1328 if (FPMO->hasNoInfs()) 1329 Flags |= FastMathFlags::NoInfs; 1330 if (FPMO->hasNoSignedZeros()) 1331 Flags |= FastMathFlags::NoSignedZeros; 1332 if (FPMO->hasAllowReciprocal()) 1333 Flags |= FastMathFlags::AllowReciprocal; 1334 if (FPMO->hasAllowContract()) 1335 Flags |= FastMathFlags::AllowContract; 1336 } 1337 1338 return Flags; 1339 } 1340 1341 void ModuleBitcodeWriter::writeValueAsMetadata( 1342 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1343 // Mimic an MDNode with a value as one operand. 1344 Value *V = MD->getValue(); 1345 Record.push_back(VE.getTypeID(V->getType())); 1346 Record.push_back(VE.getValueID(V)); 1347 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1348 Record.clear(); 1349 } 1350 1351 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1352 SmallVectorImpl<uint64_t> &Record, 1353 unsigned Abbrev) { 1354 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1355 Metadata *MD = N->getOperand(i); 1356 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1357 "Unexpected function-local metadata"); 1358 Record.push_back(VE.getMetadataOrNullID(MD)); 1359 } 1360 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1361 : bitc::METADATA_NODE, 1362 Record, Abbrev); 1363 Record.clear(); 1364 } 1365 1366 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1367 // Assume the column is usually under 128, and always output the inlined-at 1368 // location (it's never more expensive than building an array size 1). 1369 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1370 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1376 return Stream.EmitAbbrev(std::move(Abbv)); 1377 } 1378 1379 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1380 SmallVectorImpl<uint64_t> &Record, 1381 unsigned &Abbrev) { 1382 if (!Abbrev) 1383 Abbrev = createDILocationAbbrev(); 1384 1385 Record.push_back(N->isDistinct()); 1386 Record.push_back(N->getLine()); 1387 Record.push_back(N->getColumn()); 1388 Record.push_back(VE.getMetadataID(N->getScope())); 1389 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1390 1391 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1392 Record.clear(); 1393 } 1394 1395 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1396 // Assume the column is usually under 128, and always output the inlined-at 1397 // location (it's never more expensive than building an array size 1). 1398 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1399 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1406 return Stream.EmitAbbrev(std::move(Abbv)); 1407 } 1408 1409 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1410 SmallVectorImpl<uint64_t> &Record, 1411 unsigned &Abbrev) { 1412 if (!Abbrev) 1413 Abbrev = createGenericDINodeAbbrev(); 1414 1415 Record.push_back(N->isDistinct()); 1416 Record.push_back(N->getTag()); 1417 Record.push_back(0); // Per-tag version field; unused for now. 1418 1419 for (auto &I : N->operands()) 1420 Record.push_back(VE.getMetadataOrNullID(I)); 1421 1422 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1423 Record.clear(); 1424 } 1425 1426 static uint64_t rotateSign(int64_t I) { 1427 uint64_t U = I; 1428 return I < 0 ? ~(U << 1) : U << 1; 1429 } 1430 1431 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1432 SmallVectorImpl<uint64_t> &Record, 1433 unsigned Abbrev) { 1434 Record.push_back(N->isDistinct()); 1435 Record.push_back(N->getCount()); 1436 Record.push_back(rotateSign(N->getLowerBound())); 1437 1438 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1439 Record.clear(); 1440 } 1441 1442 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1443 SmallVectorImpl<uint64_t> &Record, 1444 unsigned Abbrev) { 1445 Record.push_back(N->isDistinct()); 1446 Record.push_back(rotateSign(N->getValue())); 1447 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1448 1449 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1450 Record.clear(); 1451 } 1452 1453 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1454 SmallVectorImpl<uint64_t> &Record, 1455 unsigned Abbrev) { 1456 Record.push_back(N->isDistinct()); 1457 Record.push_back(N->getTag()); 1458 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1459 Record.push_back(N->getSizeInBits()); 1460 Record.push_back(N->getAlignInBits()); 1461 Record.push_back(N->getEncoding()); 1462 1463 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1464 Record.clear(); 1465 } 1466 1467 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1468 SmallVectorImpl<uint64_t> &Record, 1469 unsigned Abbrev) { 1470 Record.push_back(N->isDistinct()); 1471 Record.push_back(N->getTag()); 1472 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1473 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1474 Record.push_back(N->getLine()); 1475 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1476 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1477 Record.push_back(N->getSizeInBits()); 1478 Record.push_back(N->getAlignInBits()); 1479 Record.push_back(N->getOffsetInBits()); 1480 Record.push_back(N->getFlags()); 1481 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1482 1483 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1484 // that there is no DWARF address space associated with DIDerivedType. 1485 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1486 Record.push_back(*DWARFAddressSpace + 1); 1487 else 1488 Record.push_back(0); 1489 1490 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1491 Record.clear(); 1492 } 1493 1494 void ModuleBitcodeWriter::writeDICompositeType( 1495 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1496 unsigned Abbrev) { 1497 const unsigned IsNotUsedInOldTypeRef = 0x2; 1498 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1499 Record.push_back(N->getTag()); 1500 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1501 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1502 Record.push_back(N->getLine()); 1503 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1504 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1505 Record.push_back(N->getSizeInBits()); 1506 Record.push_back(N->getAlignInBits()); 1507 Record.push_back(N->getOffsetInBits()); 1508 Record.push_back(N->getFlags()); 1509 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1510 Record.push_back(N->getRuntimeLang()); 1511 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1512 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1513 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1514 1515 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1516 Record.clear(); 1517 } 1518 1519 void ModuleBitcodeWriter::writeDISubroutineType( 1520 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1521 unsigned Abbrev) { 1522 const unsigned HasNoOldTypeRefs = 0x2; 1523 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1524 Record.push_back(N->getFlags()); 1525 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1526 Record.push_back(N->getCC()); 1527 1528 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1529 Record.clear(); 1530 } 1531 1532 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1533 SmallVectorImpl<uint64_t> &Record, 1534 unsigned Abbrev) { 1535 Record.push_back(N->isDistinct()); 1536 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1537 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1538 Record.push_back(N->getChecksumKind()); 1539 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1540 1541 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1542 Record.clear(); 1543 } 1544 1545 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1546 SmallVectorImpl<uint64_t> &Record, 1547 unsigned Abbrev) { 1548 assert(N->isDistinct() && "Expected distinct compile units"); 1549 Record.push_back(/* IsDistinct */ true); 1550 Record.push_back(N->getSourceLanguage()); 1551 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1552 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1553 Record.push_back(N->isOptimized()); 1554 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1555 Record.push_back(N->getRuntimeVersion()); 1556 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1557 Record.push_back(N->getEmissionKind()); 1558 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1559 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1560 Record.push_back(/* subprograms */ 0); 1561 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1562 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1563 Record.push_back(N->getDWOId()); 1564 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1565 Record.push_back(N->getSplitDebugInlining()); 1566 Record.push_back(N->getDebugInfoForProfiling()); 1567 Record.push_back(N->getGnuPubnames()); 1568 1569 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1570 Record.clear(); 1571 } 1572 1573 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1574 SmallVectorImpl<uint64_t> &Record, 1575 unsigned Abbrev) { 1576 uint64_t HasUnitFlag = 1 << 1; 1577 Record.push_back(N->isDistinct() | HasUnitFlag); 1578 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1579 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1580 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1581 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1582 Record.push_back(N->getLine()); 1583 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1584 Record.push_back(N->isLocalToUnit()); 1585 Record.push_back(N->isDefinition()); 1586 Record.push_back(N->getScopeLine()); 1587 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1588 Record.push_back(N->getVirtuality()); 1589 Record.push_back(N->getVirtualIndex()); 1590 Record.push_back(N->getFlags()); 1591 Record.push_back(N->isOptimized()); 1592 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1593 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1594 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1596 Record.push_back(N->getThisAdjustment()); 1597 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1598 1599 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1600 Record.clear(); 1601 } 1602 1603 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1604 SmallVectorImpl<uint64_t> &Record, 1605 unsigned Abbrev) { 1606 Record.push_back(N->isDistinct()); 1607 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1608 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1609 Record.push_back(N->getLine()); 1610 Record.push_back(N->getColumn()); 1611 1612 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1613 Record.clear(); 1614 } 1615 1616 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1617 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1618 unsigned Abbrev) { 1619 Record.push_back(N->isDistinct()); 1620 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1621 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1622 Record.push_back(N->getDiscriminator()); 1623 1624 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1625 Record.clear(); 1626 } 1627 1628 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1629 SmallVectorImpl<uint64_t> &Record, 1630 unsigned Abbrev) { 1631 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1632 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1633 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1634 1635 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1636 Record.clear(); 1637 } 1638 1639 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1640 SmallVectorImpl<uint64_t> &Record, 1641 unsigned Abbrev) { 1642 Record.push_back(N->isDistinct()); 1643 Record.push_back(N->getMacinfoType()); 1644 Record.push_back(N->getLine()); 1645 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1646 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1647 1648 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1649 Record.clear(); 1650 } 1651 1652 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1653 SmallVectorImpl<uint64_t> &Record, 1654 unsigned Abbrev) { 1655 Record.push_back(N->isDistinct()); 1656 Record.push_back(N->getMacinfoType()); 1657 Record.push_back(N->getLine()); 1658 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1659 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1660 1661 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1662 Record.clear(); 1663 } 1664 1665 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1666 SmallVectorImpl<uint64_t> &Record, 1667 unsigned Abbrev) { 1668 Record.push_back(N->isDistinct()); 1669 for (auto &I : N->operands()) 1670 Record.push_back(VE.getMetadataOrNullID(I)); 1671 1672 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1673 Record.clear(); 1674 } 1675 1676 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1677 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1678 unsigned Abbrev) { 1679 Record.push_back(N->isDistinct()); 1680 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1681 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1682 1683 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1684 Record.clear(); 1685 } 1686 1687 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1688 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1689 unsigned Abbrev) { 1690 Record.push_back(N->isDistinct()); 1691 Record.push_back(N->getTag()); 1692 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1693 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1694 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1695 1696 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1697 Record.clear(); 1698 } 1699 1700 void ModuleBitcodeWriter::writeDIGlobalVariable( 1701 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1702 unsigned Abbrev) { 1703 const uint64_t Version = 1 << 1; 1704 Record.push_back((uint64_t)N->isDistinct() | Version); 1705 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1706 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1707 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1708 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1709 Record.push_back(N->getLine()); 1710 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1711 Record.push_back(N->isLocalToUnit()); 1712 Record.push_back(N->isDefinition()); 1713 Record.push_back(/* expr */ 0); 1714 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1715 Record.push_back(N->getAlignInBits()); 1716 1717 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1718 Record.clear(); 1719 } 1720 1721 void ModuleBitcodeWriter::writeDILocalVariable( 1722 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1723 unsigned Abbrev) { 1724 // In order to support all possible bitcode formats in BitcodeReader we need 1725 // to distinguish the following cases: 1726 // 1) Record has no artificial tag (Record[1]), 1727 // has no obsolete inlinedAt field (Record[9]). 1728 // In this case Record size will be 8, HasAlignment flag is false. 1729 // 2) Record has artificial tag (Record[1]), 1730 // has no obsolete inlignedAt field (Record[9]). 1731 // In this case Record size will be 9, HasAlignment flag is false. 1732 // 3) Record has both artificial tag (Record[1]) and 1733 // obsolete inlignedAt field (Record[9]). 1734 // In this case Record size will be 10, HasAlignment flag is false. 1735 // 4) Record has neither artificial tag, nor inlignedAt field, but 1736 // HasAlignment flag is true and Record[8] contains alignment value. 1737 const uint64_t HasAlignmentFlag = 1 << 1; 1738 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1739 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1740 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1741 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1742 Record.push_back(N->getLine()); 1743 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1744 Record.push_back(N->getArg()); 1745 Record.push_back(N->getFlags()); 1746 Record.push_back(N->getAlignInBits()); 1747 1748 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1749 Record.clear(); 1750 } 1751 1752 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1753 SmallVectorImpl<uint64_t> &Record, 1754 unsigned Abbrev) { 1755 Record.reserve(N->getElements().size() + 1); 1756 const uint64_t Version = 3 << 1; 1757 Record.push_back((uint64_t)N->isDistinct() | Version); 1758 Record.append(N->elements_begin(), N->elements_end()); 1759 1760 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1761 Record.clear(); 1762 } 1763 1764 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1765 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1766 unsigned Abbrev) { 1767 Record.push_back(N->isDistinct()); 1768 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1769 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1770 1771 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1772 Record.clear(); 1773 } 1774 1775 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1776 SmallVectorImpl<uint64_t> &Record, 1777 unsigned Abbrev) { 1778 Record.push_back(N->isDistinct()); 1779 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1781 Record.push_back(N->getLine()); 1782 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1783 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1784 Record.push_back(N->getAttributes()); 1785 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1786 1787 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1788 Record.clear(); 1789 } 1790 1791 void ModuleBitcodeWriter::writeDIImportedEntity( 1792 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1793 unsigned Abbrev) { 1794 Record.push_back(N->isDistinct()); 1795 Record.push_back(N->getTag()); 1796 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1797 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1798 Record.push_back(N->getLine()); 1799 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1800 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1801 1802 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1803 Record.clear(); 1804 } 1805 1806 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1807 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1808 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1811 return Stream.EmitAbbrev(std::move(Abbv)); 1812 } 1813 1814 void ModuleBitcodeWriter::writeNamedMetadata( 1815 SmallVectorImpl<uint64_t> &Record) { 1816 if (M.named_metadata_empty()) 1817 return; 1818 1819 unsigned Abbrev = createNamedMetadataAbbrev(); 1820 for (const NamedMDNode &NMD : M.named_metadata()) { 1821 // Write name. 1822 StringRef Str = NMD.getName(); 1823 Record.append(Str.bytes_begin(), Str.bytes_end()); 1824 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1825 Record.clear(); 1826 1827 // Write named metadata operands. 1828 for (const MDNode *N : NMD.operands()) 1829 Record.push_back(VE.getMetadataID(N)); 1830 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1831 Record.clear(); 1832 } 1833 } 1834 1835 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1836 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1837 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1841 return Stream.EmitAbbrev(std::move(Abbv)); 1842 } 1843 1844 /// Write out a record for MDString. 1845 /// 1846 /// All the metadata strings in a metadata block are emitted in a single 1847 /// record. The sizes and strings themselves are shoved into a blob. 1848 void ModuleBitcodeWriter::writeMetadataStrings( 1849 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1850 if (Strings.empty()) 1851 return; 1852 1853 // Start the record with the number of strings. 1854 Record.push_back(bitc::METADATA_STRINGS); 1855 Record.push_back(Strings.size()); 1856 1857 // Emit the sizes of the strings in the blob. 1858 SmallString<256> Blob; 1859 { 1860 BitstreamWriter W(Blob); 1861 for (const Metadata *MD : Strings) 1862 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1863 W.FlushToWord(); 1864 } 1865 1866 // Add the offset to the strings to the record. 1867 Record.push_back(Blob.size()); 1868 1869 // Add the strings to the blob. 1870 for (const Metadata *MD : Strings) 1871 Blob.append(cast<MDString>(MD)->getString()); 1872 1873 // Emit the final record. 1874 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1875 Record.clear(); 1876 } 1877 1878 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1879 enum MetadataAbbrev : unsigned { 1880 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1881 #include "llvm/IR/Metadata.def" 1882 LastPlusOne 1883 }; 1884 1885 void ModuleBitcodeWriter::writeMetadataRecords( 1886 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1887 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1888 if (MDs.empty()) 1889 return; 1890 1891 // Initialize MDNode abbreviations. 1892 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1893 #include "llvm/IR/Metadata.def" 1894 1895 for (const Metadata *MD : MDs) { 1896 if (IndexPos) 1897 IndexPos->push_back(Stream.GetCurrentBitNo()); 1898 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1899 assert(N->isResolved() && "Expected forward references to be resolved"); 1900 1901 switch (N->getMetadataID()) { 1902 default: 1903 llvm_unreachable("Invalid MDNode subclass"); 1904 #define HANDLE_MDNODE_LEAF(CLASS) \ 1905 case Metadata::CLASS##Kind: \ 1906 if (MDAbbrevs) \ 1907 write##CLASS(cast<CLASS>(N), Record, \ 1908 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1909 else \ 1910 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1911 continue; 1912 #include "llvm/IR/Metadata.def" 1913 } 1914 } 1915 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1916 } 1917 } 1918 1919 void ModuleBitcodeWriter::writeModuleMetadata() { 1920 if (!VE.hasMDs() && M.named_metadata_empty()) 1921 return; 1922 1923 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1924 SmallVector<uint64_t, 64> Record; 1925 1926 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1927 // block and load any metadata. 1928 std::vector<unsigned> MDAbbrevs; 1929 1930 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1931 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1932 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1933 createGenericDINodeAbbrev(); 1934 1935 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1936 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1939 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1940 1941 Abbv = std::make_shared<BitCodeAbbrev>(); 1942 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1945 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1946 1947 // Emit MDStrings together upfront. 1948 writeMetadataStrings(VE.getMDStrings(), Record); 1949 1950 // We only emit an index for the metadata record if we have more than a given 1951 // (naive) threshold of metadatas, otherwise it is not worth it. 1952 if (VE.getNonMDStrings().size() > IndexThreshold) { 1953 // Write a placeholder value in for the offset of the metadata index, 1954 // which is written after the records, so that it can include 1955 // the offset of each entry. The placeholder offset will be 1956 // updated after all records are emitted. 1957 uint64_t Vals[] = {0, 0}; 1958 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1959 } 1960 1961 // Compute and save the bit offset to the current position, which will be 1962 // patched when we emit the index later. We can simply subtract the 64-bit 1963 // fixed size from the current bit number to get the location to backpatch. 1964 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1965 1966 // This index will contain the bitpos for each individual record. 1967 std::vector<uint64_t> IndexPos; 1968 IndexPos.reserve(VE.getNonMDStrings().size()); 1969 1970 // Write all the records 1971 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1972 1973 if (VE.getNonMDStrings().size() > IndexThreshold) { 1974 // Now that we have emitted all the records we will emit the index. But 1975 // first 1976 // backpatch the forward reference so that the reader can skip the records 1977 // efficiently. 1978 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1979 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1980 1981 // Delta encode the index. 1982 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1983 for (auto &Elt : IndexPos) { 1984 auto EltDelta = Elt - PreviousValue; 1985 PreviousValue = Elt; 1986 Elt = EltDelta; 1987 } 1988 // Emit the index record. 1989 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1990 IndexPos.clear(); 1991 } 1992 1993 // Write the named metadata now. 1994 writeNamedMetadata(Record); 1995 1996 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1997 SmallVector<uint64_t, 4> Record; 1998 Record.push_back(VE.getValueID(&GO)); 1999 pushGlobalMetadataAttachment(Record, GO); 2000 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2001 }; 2002 for (const Function &F : M) 2003 if (F.isDeclaration() && F.hasMetadata()) 2004 AddDeclAttachedMetadata(F); 2005 // FIXME: Only store metadata for declarations here, and move data for global 2006 // variable definitions to a separate block (PR28134). 2007 for (const GlobalVariable &GV : M.globals()) 2008 if (GV.hasMetadata()) 2009 AddDeclAttachedMetadata(GV); 2010 2011 Stream.ExitBlock(); 2012 } 2013 2014 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2015 if (!VE.hasMDs()) 2016 return; 2017 2018 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2019 SmallVector<uint64_t, 64> Record; 2020 writeMetadataStrings(VE.getMDStrings(), Record); 2021 writeMetadataRecords(VE.getNonMDStrings(), Record); 2022 Stream.ExitBlock(); 2023 } 2024 2025 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2026 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2027 // [n x [id, mdnode]] 2028 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2029 GO.getAllMetadata(MDs); 2030 for (const auto &I : MDs) { 2031 Record.push_back(I.first); 2032 Record.push_back(VE.getMetadataID(I.second)); 2033 } 2034 } 2035 2036 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2037 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2038 2039 SmallVector<uint64_t, 64> Record; 2040 2041 if (F.hasMetadata()) { 2042 pushGlobalMetadataAttachment(Record, F); 2043 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2044 Record.clear(); 2045 } 2046 2047 // Write metadata attachments 2048 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2049 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2050 for (const BasicBlock &BB : F) 2051 for (const Instruction &I : BB) { 2052 MDs.clear(); 2053 I.getAllMetadataOtherThanDebugLoc(MDs); 2054 2055 // If no metadata, ignore instruction. 2056 if (MDs.empty()) continue; 2057 2058 Record.push_back(VE.getInstructionID(&I)); 2059 2060 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2061 Record.push_back(MDs[i].first); 2062 Record.push_back(VE.getMetadataID(MDs[i].second)); 2063 } 2064 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2065 Record.clear(); 2066 } 2067 2068 Stream.ExitBlock(); 2069 } 2070 2071 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2072 SmallVector<uint64_t, 64> Record; 2073 2074 // Write metadata kinds 2075 // METADATA_KIND - [n x [id, name]] 2076 SmallVector<StringRef, 8> Names; 2077 M.getMDKindNames(Names); 2078 2079 if (Names.empty()) return; 2080 2081 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2082 2083 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2084 Record.push_back(MDKindID); 2085 StringRef KName = Names[MDKindID]; 2086 Record.append(KName.begin(), KName.end()); 2087 2088 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2089 Record.clear(); 2090 } 2091 2092 Stream.ExitBlock(); 2093 } 2094 2095 void ModuleBitcodeWriter::writeOperandBundleTags() { 2096 // Write metadata kinds 2097 // 2098 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2099 // 2100 // OPERAND_BUNDLE_TAG - [strchr x N] 2101 2102 SmallVector<StringRef, 8> Tags; 2103 M.getOperandBundleTags(Tags); 2104 2105 if (Tags.empty()) 2106 return; 2107 2108 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2109 2110 SmallVector<uint64_t, 64> Record; 2111 2112 for (auto Tag : Tags) { 2113 Record.append(Tag.begin(), Tag.end()); 2114 2115 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2116 Record.clear(); 2117 } 2118 2119 Stream.ExitBlock(); 2120 } 2121 2122 void ModuleBitcodeWriter::writeSyncScopeNames() { 2123 SmallVector<StringRef, 8> SSNs; 2124 M.getContext().getSyncScopeNames(SSNs); 2125 if (SSNs.empty()) 2126 return; 2127 2128 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2129 2130 SmallVector<uint64_t, 64> Record; 2131 for (auto SSN : SSNs) { 2132 Record.append(SSN.begin(), SSN.end()); 2133 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2134 Record.clear(); 2135 } 2136 2137 Stream.ExitBlock(); 2138 } 2139 2140 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2141 if ((int64_t)V >= 0) 2142 Vals.push_back(V << 1); 2143 else 2144 Vals.push_back((-V << 1) | 1); 2145 } 2146 2147 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2148 bool isGlobal) { 2149 if (FirstVal == LastVal) return; 2150 2151 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2152 2153 unsigned AggregateAbbrev = 0; 2154 unsigned String8Abbrev = 0; 2155 unsigned CString7Abbrev = 0; 2156 unsigned CString6Abbrev = 0; 2157 // If this is a constant pool for the module, emit module-specific abbrevs. 2158 if (isGlobal) { 2159 // Abbrev for CST_CODE_AGGREGATE. 2160 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2161 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2164 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2165 2166 // Abbrev for CST_CODE_STRING. 2167 Abbv = std::make_shared<BitCodeAbbrev>(); 2168 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2171 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2172 // Abbrev for CST_CODE_CSTRING. 2173 Abbv = std::make_shared<BitCodeAbbrev>(); 2174 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2177 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2178 // Abbrev for CST_CODE_CSTRING. 2179 Abbv = std::make_shared<BitCodeAbbrev>(); 2180 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2183 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2184 } 2185 2186 SmallVector<uint64_t, 64> Record; 2187 2188 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2189 Type *LastTy = nullptr; 2190 for (unsigned i = FirstVal; i != LastVal; ++i) { 2191 const Value *V = Vals[i].first; 2192 // If we need to switch types, do so now. 2193 if (V->getType() != LastTy) { 2194 LastTy = V->getType(); 2195 Record.push_back(VE.getTypeID(LastTy)); 2196 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2197 CONSTANTS_SETTYPE_ABBREV); 2198 Record.clear(); 2199 } 2200 2201 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2202 Record.push_back(unsigned(IA->hasSideEffects()) | 2203 unsigned(IA->isAlignStack()) << 1 | 2204 unsigned(IA->getDialect()&1) << 2); 2205 2206 // Add the asm string. 2207 const std::string &AsmStr = IA->getAsmString(); 2208 Record.push_back(AsmStr.size()); 2209 Record.append(AsmStr.begin(), AsmStr.end()); 2210 2211 // Add the constraint string. 2212 const std::string &ConstraintStr = IA->getConstraintString(); 2213 Record.push_back(ConstraintStr.size()); 2214 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2215 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2216 Record.clear(); 2217 continue; 2218 } 2219 const Constant *C = cast<Constant>(V); 2220 unsigned Code = -1U; 2221 unsigned AbbrevToUse = 0; 2222 if (C->isNullValue()) { 2223 Code = bitc::CST_CODE_NULL; 2224 } else if (isa<UndefValue>(C)) { 2225 Code = bitc::CST_CODE_UNDEF; 2226 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2227 if (IV->getBitWidth() <= 64) { 2228 uint64_t V = IV->getSExtValue(); 2229 emitSignedInt64(Record, V); 2230 Code = bitc::CST_CODE_INTEGER; 2231 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2232 } else { // Wide integers, > 64 bits in size. 2233 // We have an arbitrary precision integer value to write whose 2234 // bit width is > 64. However, in canonical unsigned integer 2235 // format it is likely that the high bits are going to be zero. 2236 // So, we only write the number of active words. 2237 unsigned NWords = IV->getValue().getActiveWords(); 2238 const uint64_t *RawWords = IV->getValue().getRawData(); 2239 for (unsigned i = 0; i != NWords; ++i) { 2240 emitSignedInt64(Record, RawWords[i]); 2241 } 2242 Code = bitc::CST_CODE_WIDE_INTEGER; 2243 } 2244 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2245 Code = bitc::CST_CODE_FLOAT; 2246 Type *Ty = CFP->getType(); 2247 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2248 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2249 } else if (Ty->isX86_FP80Ty()) { 2250 // api needed to prevent premature destruction 2251 // bits are not in the same order as a normal i80 APInt, compensate. 2252 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2253 const uint64_t *p = api.getRawData(); 2254 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2255 Record.push_back(p[0] & 0xffffLL); 2256 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2257 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2258 const uint64_t *p = api.getRawData(); 2259 Record.push_back(p[0]); 2260 Record.push_back(p[1]); 2261 } else { 2262 assert(0 && "Unknown FP type!"); 2263 } 2264 } else if (isa<ConstantDataSequential>(C) && 2265 cast<ConstantDataSequential>(C)->isString()) { 2266 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2267 // Emit constant strings specially. 2268 unsigned NumElts = Str->getNumElements(); 2269 // If this is a null-terminated string, use the denser CSTRING encoding. 2270 if (Str->isCString()) { 2271 Code = bitc::CST_CODE_CSTRING; 2272 --NumElts; // Don't encode the null, which isn't allowed by char6. 2273 } else { 2274 Code = bitc::CST_CODE_STRING; 2275 AbbrevToUse = String8Abbrev; 2276 } 2277 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2278 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2279 for (unsigned i = 0; i != NumElts; ++i) { 2280 unsigned char V = Str->getElementAsInteger(i); 2281 Record.push_back(V); 2282 isCStr7 &= (V & 128) == 0; 2283 if (isCStrChar6) 2284 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2285 } 2286 2287 if (isCStrChar6) 2288 AbbrevToUse = CString6Abbrev; 2289 else if (isCStr7) 2290 AbbrevToUse = CString7Abbrev; 2291 } else if (const ConstantDataSequential *CDS = 2292 dyn_cast<ConstantDataSequential>(C)) { 2293 Code = bitc::CST_CODE_DATA; 2294 Type *EltTy = CDS->getType()->getElementType(); 2295 if (isa<IntegerType>(EltTy)) { 2296 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2297 Record.push_back(CDS->getElementAsInteger(i)); 2298 } else { 2299 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2300 Record.push_back( 2301 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2302 } 2303 } else if (isa<ConstantAggregate>(C)) { 2304 Code = bitc::CST_CODE_AGGREGATE; 2305 for (const Value *Op : C->operands()) 2306 Record.push_back(VE.getValueID(Op)); 2307 AbbrevToUse = AggregateAbbrev; 2308 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2309 switch (CE->getOpcode()) { 2310 default: 2311 if (Instruction::isCast(CE->getOpcode())) { 2312 Code = bitc::CST_CODE_CE_CAST; 2313 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2314 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2315 Record.push_back(VE.getValueID(C->getOperand(0))); 2316 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2317 } else { 2318 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2319 Code = bitc::CST_CODE_CE_BINOP; 2320 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2321 Record.push_back(VE.getValueID(C->getOperand(0))); 2322 Record.push_back(VE.getValueID(C->getOperand(1))); 2323 uint64_t Flags = getOptimizationFlags(CE); 2324 if (Flags != 0) 2325 Record.push_back(Flags); 2326 } 2327 break; 2328 case Instruction::GetElementPtr: { 2329 Code = bitc::CST_CODE_CE_GEP; 2330 const auto *GO = cast<GEPOperator>(C); 2331 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2332 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2333 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2334 Record.push_back((*Idx << 1) | GO->isInBounds()); 2335 } else if (GO->isInBounds()) 2336 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2337 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2338 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2339 Record.push_back(VE.getValueID(C->getOperand(i))); 2340 } 2341 break; 2342 } 2343 case Instruction::Select: 2344 Code = bitc::CST_CODE_CE_SELECT; 2345 Record.push_back(VE.getValueID(C->getOperand(0))); 2346 Record.push_back(VE.getValueID(C->getOperand(1))); 2347 Record.push_back(VE.getValueID(C->getOperand(2))); 2348 break; 2349 case Instruction::ExtractElement: 2350 Code = bitc::CST_CODE_CE_EXTRACTELT; 2351 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2352 Record.push_back(VE.getValueID(C->getOperand(0))); 2353 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2354 Record.push_back(VE.getValueID(C->getOperand(1))); 2355 break; 2356 case Instruction::InsertElement: 2357 Code = bitc::CST_CODE_CE_INSERTELT; 2358 Record.push_back(VE.getValueID(C->getOperand(0))); 2359 Record.push_back(VE.getValueID(C->getOperand(1))); 2360 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2361 Record.push_back(VE.getValueID(C->getOperand(2))); 2362 break; 2363 case Instruction::ShuffleVector: 2364 // If the return type and argument types are the same, this is a 2365 // standard shufflevector instruction. If the types are different, 2366 // then the shuffle is widening or truncating the input vectors, and 2367 // the argument type must also be encoded. 2368 if (C->getType() == C->getOperand(0)->getType()) { 2369 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2370 } else { 2371 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2372 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2373 } 2374 Record.push_back(VE.getValueID(C->getOperand(0))); 2375 Record.push_back(VE.getValueID(C->getOperand(1))); 2376 Record.push_back(VE.getValueID(C->getOperand(2))); 2377 break; 2378 case Instruction::ICmp: 2379 case Instruction::FCmp: 2380 Code = bitc::CST_CODE_CE_CMP; 2381 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2382 Record.push_back(VE.getValueID(C->getOperand(0))); 2383 Record.push_back(VE.getValueID(C->getOperand(1))); 2384 Record.push_back(CE->getPredicate()); 2385 break; 2386 } 2387 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2388 Code = bitc::CST_CODE_BLOCKADDRESS; 2389 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2390 Record.push_back(VE.getValueID(BA->getFunction())); 2391 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2392 } else { 2393 #ifndef NDEBUG 2394 C->dump(); 2395 #endif 2396 llvm_unreachable("Unknown constant!"); 2397 } 2398 Stream.EmitRecord(Code, Record, AbbrevToUse); 2399 Record.clear(); 2400 } 2401 2402 Stream.ExitBlock(); 2403 } 2404 2405 void ModuleBitcodeWriter::writeModuleConstants() { 2406 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2407 2408 // Find the first constant to emit, which is the first non-globalvalue value. 2409 // We know globalvalues have been emitted by WriteModuleInfo. 2410 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2411 if (!isa<GlobalValue>(Vals[i].first)) { 2412 writeConstants(i, Vals.size(), true); 2413 return; 2414 } 2415 } 2416 } 2417 2418 /// pushValueAndType - The file has to encode both the value and type id for 2419 /// many values, because we need to know what type to create for forward 2420 /// references. However, most operands are not forward references, so this type 2421 /// field is not needed. 2422 /// 2423 /// This function adds V's value ID to Vals. If the value ID is higher than the 2424 /// instruction ID, then it is a forward reference, and it also includes the 2425 /// type ID. The value ID that is written is encoded relative to the InstID. 2426 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2427 SmallVectorImpl<unsigned> &Vals) { 2428 unsigned ValID = VE.getValueID(V); 2429 // Make encoding relative to the InstID. 2430 Vals.push_back(InstID - ValID); 2431 if (ValID >= InstID) { 2432 Vals.push_back(VE.getTypeID(V->getType())); 2433 return true; 2434 } 2435 return false; 2436 } 2437 2438 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2439 unsigned InstID) { 2440 SmallVector<unsigned, 64> Record; 2441 LLVMContext &C = CS.getInstruction()->getContext(); 2442 2443 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2444 const auto &Bundle = CS.getOperandBundleAt(i); 2445 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2446 2447 for (auto &Input : Bundle.Inputs) 2448 pushValueAndType(Input, InstID, Record); 2449 2450 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2451 Record.clear(); 2452 } 2453 } 2454 2455 /// pushValue - Like pushValueAndType, but where the type of the value is 2456 /// omitted (perhaps it was already encoded in an earlier operand). 2457 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2458 SmallVectorImpl<unsigned> &Vals) { 2459 unsigned ValID = VE.getValueID(V); 2460 Vals.push_back(InstID - ValID); 2461 } 2462 2463 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2464 SmallVectorImpl<uint64_t> &Vals) { 2465 unsigned ValID = VE.getValueID(V); 2466 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2467 emitSignedInt64(Vals, diff); 2468 } 2469 2470 /// WriteInstruction - Emit an instruction to the specified stream. 2471 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2472 unsigned InstID, 2473 SmallVectorImpl<unsigned> &Vals) { 2474 unsigned Code = 0; 2475 unsigned AbbrevToUse = 0; 2476 VE.setInstructionID(&I); 2477 switch (I.getOpcode()) { 2478 default: 2479 if (Instruction::isCast(I.getOpcode())) { 2480 Code = bitc::FUNC_CODE_INST_CAST; 2481 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2482 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2483 Vals.push_back(VE.getTypeID(I.getType())); 2484 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2485 } else { 2486 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2487 Code = bitc::FUNC_CODE_INST_BINOP; 2488 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2489 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2490 pushValue(I.getOperand(1), InstID, Vals); 2491 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2492 uint64_t Flags = getOptimizationFlags(&I); 2493 if (Flags != 0) { 2494 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2495 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2496 Vals.push_back(Flags); 2497 } 2498 } 2499 break; 2500 2501 case Instruction::GetElementPtr: { 2502 Code = bitc::FUNC_CODE_INST_GEP; 2503 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2504 auto &GEPInst = cast<GetElementPtrInst>(I); 2505 Vals.push_back(GEPInst.isInBounds()); 2506 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2507 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2508 pushValueAndType(I.getOperand(i), InstID, Vals); 2509 break; 2510 } 2511 case Instruction::ExtractValue: { 2512 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2513 pushValueAndType(I.getOperand(0), InstID, Vals); 2514 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2515 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2516 break; 2517 } 2518 case Instruction::InsertValue: { 2519 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2520 pushValueAndType(I.getOperand(0), InstID, Vals); 2521 pushValueAndType(I.getOperand(1), InstID, Vals); 2522 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2523 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2524 break; 2525 } 2526 case Instruction::Select: 2527 Code = bitc::FUNC_CODE_INST_VSELECT; 2528 pushValueAndType(I.getOperand(1), InstID, Vals); 2529 pushValue(I.getOperand(2), InstID, Vals); 2530 pushValueAndType(I.getOperand(0), InstID, Vals); 2531 break; 2532 case Instruction::ExtractElement: 2533 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2534 pushValueAndType(I.getOperand(0), InstID, Vals); 2535 pushValueAndType(I.getOperand(1), InstID, Vals); 2536 break; 2537 case Instruction::InsertElement: 2538 Code = bitc::FUNC_CODE_INST_INSERTELT; 2539 pushValueAndType(I.getOperand(0), InstID, Vals); 2540 pushValue(I.getOperand(1), InstID, Vals); 2541 pushValueAndType(I.getOperand(2), InstID, Vals); 2542 break; 2543 case Instruction::ShuffleVector: 2544 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2545 pushValueAndType(I.getOperand(0), InstID, Vals); 2546 pushValue(I.getOperand(1), InstID, Vals); 2547 pushValue(I.getOperand(2), InstID, Vals); 2548 break; 2549 case Instruction::ICmp: 2550 case Instruction::FCmp: { 2551 // compare returning Int1Ty or vector of Int1Ty 2552 Code = bitc::FUNC_CODE_INST_CMP2; 2553 pushValueAndType(I.getOperand(0), InstID, Vals); 2554 pushValue(I.getOperand(1), InstID, Vals); 2555 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2556 uint64_t Flags = getOptimizationFlags(&I); 2557 if (Flags != 0) 2558 Vals.push_back(Flags); 2559 break; 2560 } 2561 2562 case Instruction::Ret: 2563 { 2564 Code = bitc::FUNC_CODE_INST_RET; 2565 unsigned NumOperands = I.getNumOperands(); 2566 if (NumOperands == 0) 2567 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2568 else if (NumOperands == 1) { 2569 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2570 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2571 } else { 2572 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2573 pushValueAndType(I.getOperand(i), InstID, Vals); 2574 } 2575 } 2576 break; 2577 case Instruction::Br: 2578 { 2579 Code = bitc::FUNC_CODE_INST_BR; 2580 const BranchInst &II = cast<BranchInst>(I); 2581 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2582 if (II.isConditional()) { 2583 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2584 pushValue(II.getCondition(), InstID, Vals); 2585 } 2586 } 2587 break; 2588 case Instruction::Switch: 2589 { 2590 Code = bitc::FUNC_CODE_INST_SWITCH; 2591 const SwitchInst &SI = cast<SwitchInst>(I); 2592 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2593 pushValue(SI.getCondition(), InstID, Vals); 2594 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2595 for (auto Case : SI.cases()) { 2596 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2597 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2598 } 2599 } 2600 break; 2601 case Instruction::IndirectBr: 2602 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2603 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2604 // Encode the address operand as relative, but not the basic blocks. 2605 pushValue(I.getOperand(0), InstID, Vals); 2606 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2607 Vals.push_back(VE.getValueID(I.getOperand(i))); 2608 break; 2609 2610 case Instruction::Invoke: { 2611 const InvokeInst *II = cast<InvokeInst>(&I); 2612 const Value *Callee = II->getCalledValue(); 2613 FunctionType *FTy = II->getFunctionType(); 2614 2615 if (II->hasOperandBundles()) 2616 writeOperandBundles(II, InstID); 2617 2618 Code = bitc::FUNC_CODE_INST_INVOKE; 2619 2620 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2621 Vals.push_back(II->getCallingConv() | 1 << 13); 2622 Vals.push_back(VE.getValueID(II->getNormalDest())); 2623 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2624 Vals.push_back(VE.getTypeID(FTy)); 2625 pushValueAndType(Callee, InstID, Vals); 2626 2627 // Emit value #'s for the fixed parameters. 2628 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2629 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2630 2631 // Emit type/value pairs for varargs params. 2632 if (FTy->isVarArg()) { 2633 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2634 i != e; ++i) 2635 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2636 } 2637 break; 2638 } 2639 case Instruction::Resume: 2640 Code = bitc::FUNC_CODE_INST_RESUME; 2641 pushValueAndType(I.getOperand(0), InstID, Vals); 2642 break; 2643 case Instruction::CleanupRet: { 2644 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2645 const auto &CRI = cast<CleanupReturnInst>(I); 2646 pushValue(CRI.getCleanupPad(), InstID, Vals); 2647 if (CRI.hasUnwindDest()) 2648 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2649 break; 2650 } 2651 case Instruction::CatchRet: { 2652 Code = bitc::FUNC_CODE_INST_CATCHRET; 2653 const auto &CRI = cast<CatchReturnInst>(I); 2654 pushValue(CRI.getCatchPad(), InstID, Vals); 2655 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2656 break; 2657 } 2658 case Instruction::CleanupPad: 2659 case Instruction::CatchPad: { 2660 const auto &FuncletPad = cast<FuncletPadInst>(I); 2661 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2662 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2663 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2664 2665 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2666 Vals.push_back(NumArgOperands); 2667 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2668 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2669 break; 2670 } 2671 case Instruction::CatchSwitch: { 2672 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2673 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2674 2675 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2676 2677 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2678 Vals.push_back(NumHandlers); 2679 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2680 Vals.push_back(VE.getValueID(CatchPadBB)); 2681 2682 if (CatchSwitch.hasUnwindDest()) 2683 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2684 break; 2685 } 2686 case Instruction::Unreachable: 2687 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2688 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2689 break; 2690 2691 case Instruction::PHI: { 2692 const PHINode &PN = cast<PHINode>(I); 2693 Code = bitc::FUNC_CODE_INST_PHI; 2694 // With the newer instruction encoding, forward references could give 2695 // negative valued IDs. This is most common for PHIs, so we use 2696 // signed VBRs. 2697 SmallVector<uint64_t, 128> Vals64; 2698 Vals64.push_back(VE.getTypeID(PN.getType())); 2699 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2700 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2701 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2702 } 2703 // Emit a Vals64 vector and exit. 2704 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2705 Vals64.clear(); 2706 return; 2707 } 2708 2709 case Instruction::LandingPad: { 2710 const LandingPadInst &LP = cast<LandingPadInst>(I); 2711 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2712 Vals.push_back(VE.getTypeID(LP.getType())); 2713 Vals.push_back(LP.isCleanup()); 2714 Vals.push_back(LP.getNumClauses()); 2715 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2716 if (LP.isCatch(I)) 2717 Vals.push_back(LandingPadInst::Catch); 2718 else 2719 Vals.push_back(LandingPadInst::Filter); 2720 pushValueAndType(LP.getClause(I), InstID, Vals); 2721 } 2722 break; 2723 } 2724 2725 case Instruction::Alloca: { 2726 Code = bitc::FUNC_CODE_INST_ALLOCA; 2727 const AllocaInst &AI = cast<AllocaInst>(I); 2728 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2729 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2730 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2731 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2732 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2733 "not enough bits for maximum alignment"); 2734 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2735 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2736 AlignRecord |= 1 << 6; 2737 AlignRecord |= AI.isSwiftError() << 7; 2738 Vals.push_back(AlignRecord); 2739 break; 2740 } 2741 2742 case Instruction::Load: 2743 if (cast<LoadInst>(I).isAtomic()) { 2744 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2745 pushValueAndType(I.getOperand(0), InstID, Vals); 2746 } else { 2747 Code = bitc::FUNC_CODE_INST_LOAD; 2748 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2749 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2750 } 2751 Vals.push_back(VE.getTypeID(I.getType())); 2752 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2753 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2754 if (cast<LoadInst>(I).isAtomic()) { 2755 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2756 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2757 } 2758 break; 2759 case Instruction::Store: 2760 if (cast<StoreInst>(I).isAtomic()) 2761 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2762 else 2763 Code = bitc::FUNC_CODE_INST_STORE; 2764 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2765 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2766 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2767 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2768 if (cast<StoreInst>(I).isAtomic()) { 2769 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2770 Vals.push_back( 2771 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2772 } 2773 break; 2774 case Instruction::AtomicCmpXchg: 2775 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2776 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2777 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2778 pushValue(I.getOperand(2), InstID, Vals); // newval. 2779 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2780 Vals.push_back( 2781 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2782 Vals.push_back( 2783 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2784 Vals.push_back( 2785 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2786 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2787 break; 2788 case Instruction::AtomicRMW: 2789 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2790 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2791 pushValue(I.getOperand(1), InstID, Vals); // val. 2792 Vals.push_back( 2793 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2794 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2795 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2796 Vals.push_back( 2797 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2798 break; 2799 case Instruction::Fence: 2800 Code = bitc::FUNC_CODE_INST_FENCE; 2801 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2802 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2803 break; 2804 case Instruction::Call: { 2805 const CallInst &CI = cast<CallInst>(I); 2806 FunctionType *FTy = CI.getFunctionType(); 2807 2808 if (CI.hasOperandBundles()) 2809 writeOperandBundles(&CI, InstID); 2810 2811 Code = bitc::FUNC_CODE_INST_CALL; 2812 2813 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2814 2815 unsigned Flags = getOptimizationFlags(&I); 2816 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2817 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2818 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2819 1 << bitc::CALL_EXPLICIT_TYPE | 2820 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2821 unsigned(Flags != 0) << bitc::CALL_FMF); 2822 if (Flags != 0) 2823 Vals.push_back(Flags); 2824 2825 Vals.push_back(VE.getTypeID(FTy)); 2826 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2827 2828 // Emit value #'s for the fixed parameters. 2829 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2830 // Check for labels (can happen with asm labels). 2831 if (FTy->getParamType(i)->isLabelTy()) 2832 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2833 else 2834 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2835 } 2836 2837 // Emit type/value pairs for varargs params. 2838 if (FTy->isVarArg()) { 2839 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2840 i != e; ++i) 2841 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2842 } 2843 break; 2844 } 2845 case Instruction::VAArg: 2846 Code = bitc::FUNC_CODE_INST_VAARG; 2847 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2848 pushValue(I.getOperand(0), InstID, Vals); // valist. 2849 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2850 break; 2851 } 2852 2853 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2854 Vals.clear(); 2855 } 2856 2857 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2858 /// to allow clients to efficiently find the function body. 2859 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2860 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2861 // Get the offset of the VST we are writing, and backpatch it into 2862 // the VST forward declaration record. 2863 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2864 // The BitcodeStartBit was the stream offset of the identification block. 2865 VSTOffset -= bitcodeStartBit(); 2866 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2867 // Note that we add 1 here because the offset is relative to one word 2868 // before the start of the identification block, which was historically 2869 // always the start of the regular bitcode header. 2870 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2871 2872 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2873 2874 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2875 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2878 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2879 2880 for (const Function &F : M) { 2881 uint64_t Record[2]; 2882 2883 if (F.isDeclaration()) 2884 continue; 2885 2886 Record[0] = VE.getValueID(&F); 2887 2888 // Save the word offset of the function (from the start of the 2889 // actual bitcode written to the stream). 2890 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2891 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2892 // Note that we add 1 here because the offset is relative to one word 2893 // before the start of the identification block, which was historically 2894 // always the start of the regular bitcode header. 2895 Record[1] = BitcodeIndex / 32 + 1; 2896 2897 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2898 } 2899 2900 Stream.ExitBlock(); 2901 } 2902 2903 /// Emit names for arguments, instructions and basic blocks in a function. 2904 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2905 const ValueSymbolTable &VST) { 2906 if (VST.empty()) 2907 return; 2908 2909 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2910 2911 // FIXME: Set up the abbrev, we know how many values there are! 2912 // FIXME: We know if the type names can use 7-bit ascii. 2913 SmallVector<uint64_t, 64> NameVals; 2914 2915 for (const ValueName &Name : VST) { 2916 // Figure out the encoding to use for the name. 2917 StringEncoding Bits = getStringEncoding(Name.getKey()); 2918 2919 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2920 NameVals.push_back(VE.getValueID(Name.getValue())); 2921 2922 // VST_CODE_ENTRY: [valueid, namechar x N] 2923 // VST_CODE_BBENTRY: [bbid, namechar x N] 2924 unsigned Code; 2925 if (isa<BasicBlock>(Name.getValue())) { 2926 Code = bitc::VST_CODE_BBENTRY; 2927 if (Bits == SE_Char6) 2928 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2929 } else { 2930 Code = bitc::VST_CODE_ENTRY; 2931 if (Bits == SE_Char6) 2932 AbbrevToUse = VST_ENTRY_6_ABBREV; 2933 else if (Bits == SE_Fixed7) 2934 AbbrevToUse = VST_ENTRY_7_ABBREV; 2935 } 2936 2937 for (const auto P : Name.getKey()) 2938 NameVals.push_back((unsigned char)P); 2939 2940 // Emit the finished record. 2941 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2942 NameVals.clear(); 2943 } 2944 2945 Stream.ExitBlock(); 2946 } 2947 2948 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2949 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2950 unsigned Code; 2951 if (isa<BasicBlock>(Order.V)) 2952 Code = bitc::USELIST_CODE_BB; 2953 else 2954 Code = bitc::USELIST_CODE_DEFAULT; 2955 2956 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2957 Record.push_back(VE.getValueID(Order.V)); 2958 Stream.EmitRecord(Code, Record); 2959 } 2960 2961 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2962 assert(VE.shouldPreserveUseListOrder() && 2963 "Expected to be preserving use-list order"); 2964 2965 auto hasMore = [&]() { 2966 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2967 }; 2968 if (!hasMore()) 2969 // Nothing to do. 2970 return; 2971 2972 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2973 while (hasMore()) { 2974 writeUseList(std::move(VE.UseListOrders.back())); 2975 VE.UseListOrders.pop_back(); 2976 } 2977 Stream.ExitBlock(); 2978 } 2979 2980 /// Emit a function body to the module stream. 2981 void ModuleBitcodeWriter::writeFunction( 2982 const Function &F, 2983 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2984 // Save the bitcode index of the start of this function block for recording 2985 // in the VST. 2986 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2987 2988 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2989 VE.incorporateFunction(F); 2990 2991 SmallVector<unsigned, 64> Vals; 2992 2993 // Emit the number of basic blocks, so the reader can create them ahead of 2994 // time. 2995 Vals.push_back(VE.getBasicBlocks().size()); 2996 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2997 Vals.clear(); 2998 2999 // If there are function-local constants, emit them now. 3000 unsigned CstStart, CstEnd; 3001 VE.getFunctionConstantRange(CstStart, CstEnd); 3002 writeConstants(CstStart, CstEnd, false); 3003 3004 // If there is function-local metadata, emit it now. 3005 writeFunctionMetadata(F); 3006 3007 // Keep a running idea of what the instruction ID is. 3008 unsigned InstID = CstEnd; 3009 3010 bool NeedsMetadataAttachment = F.hasMetadata(); 3011 3012 DILocation *LastDL = nullptr; 3013 // Finally, emit all the instructions, in order. 3014 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3015 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3016 I != E; ++I) { 3017 writeInstruction(*I, InstID, Vals); 3018 3019 if (!I->getType()->isVoidTy()) 3020 ++InstID; 3021 3022 // If the instruction has metadata, write a metadata attachment later. 3023 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3024 3025 // If the instruction has a debug location, emit it. 3026 DILocation *DL = I->getDebugLoc(); 3027 if (!DL) 3028 continue; 3029 3030 if (DL == LastDL) { 3031 // Just repeat the same debug loc as last time. 3032 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3033 continue; 3034 } 3035 3036 Vals.push_back(DL->getLine()); 3037 Vals.push_back(DL->getColumn()); 3038 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3039 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3040 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3041 Vals.clear(); 3042 3043 LastDL = DL; 3044 } 3045 3046 // Emit names for all the instructions etc. 3047 if (auto *Symtab = F.getValueSymbolTable()) 3048 writeFunctionLevelValueSymbolTable(*Symtab); 3049 3050 if (NeedsMetadataAttachment) 3051 writeFunctionMetadataAttachment(F); 3052 if (VE.shouldPreserveUseListOrder()) 3053 writeUseListBlock(&F); 3054 VE.purgeFunction(); 3055 Stream.ExitBlock(); 3056 } 3057 3058 // Emit blockinfo, which defines the standard abbreviations etc. 3059 void ModuleBitcodeWriter::writeBlockInfo() { 3060 // We only want to emit block info records for blocks that have multiple 3061 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3062 // Other blocks can define their abbrevs inline. 3063 Stream.EnterBlockInfoBlock(); 3064 3065 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3066 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3071 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3072 VST_ENTRY_8_ABBREV) 3073 llvm_unreachable("Unexpected abbrev ordering!"); 3074 } 3075 3076 { // 7-bit fixed width VST_CODE_ENTRY strings. 3077 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3078 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3082 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3083 VST_ENTRY_7_ABBREV) 3084 llvm_unreachable("Unexpected abbrev ordering!"); 3085 } 3086 { // 6-bit char6 VST_CODE_ENTRY strings. 3087 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3088 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3092 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3093 VST_ENTRY_6_ABBREV) 3094 llvm_unreachable("Unexpected abbrev ordering!"); 3095 } 3096 { // 6-bit char6 VST_CODE_BBENTRY strings. 3097 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3098 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3102 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3103 VST_BBENTRY_6_ABBREV) 3104 llvm_unreachable("Unexpected abbrev ordering!"); 3105 } 3106 3107 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3108 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3109 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3111 VE.computeBitsRequiredForTypeIndicies())); 3112 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3113 CONSTANTS_SETTYPE_ABBREV) 3114 llvm_unreachable("Unexpected abbrev ordering!"); 3115 } 3116 3117 { // INTEGER abbrev for CONSTANTS_BLOCK. 3118 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3119 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3121 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3122 CONSTANTS_INTEGER_ABBREV) 3123 llvm_unreachable("Unexpected abbrev ordering!"); 3124 } 3125 3126 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3127 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3128 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3131 VE.computeBitsRequiredForTypeIndicies())); 3132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3133 3134 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3135 CONSTANTS_CE_CAST_Abbrev) 3136 llvm_unreachable("Unexpected abbrev ordering!"); 3137 } 3138 { // NULL abbrev for CONSTANTS_BLOCK. 3139 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3140 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3141 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3142 CONSTANTS_NULL_Abbrev) 3143 llvm_unreachable("Unexpected abbrev ordering!"); 3144 } 3145 3146 // FIXME: This should only use space for first class types! 3147 3148 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3149 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3150 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3153 VE.computeBitsRequiredForTypeIndicies())); 3154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3156 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3157 FUNCTION_INST_LOAD_ABBREV) 3158 llvm_unreachable("Unexpected abbrev ordering!"); 3159 } 3160 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3161 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3162 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3166 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3167 FUNCTION_INST_BINOP_ABBREV) 3168 llvm_unreachable("Unexpected abbrev ordering!"); 3169 } 3170 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3171 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3172 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3177 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3178 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3179 llvm_unreachable("Unexpected abbrev ordering!"); 3180 } 3181 { // INST_CAST abbrev for FUNCTION_BLOCK. 3182 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3183 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3186 VE.computeBitsRequiredForTypeIndicies())); 3187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3188 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3189 FUNCTION_INST_CAST_ABBREV) 3190 llvm_unreachable("Unexpected abbrev ordering!"); 3191 } 3192 3193 { // INST_RET abbrev for FUNCTION_BLOCK. 3194 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3195 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3196 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3197 FUNCTION_INST_RET_VOID_ABBREV) 3198 llvm_unreachable("Unexpected abbrev ordering!"); 3199 } 3200 { // INST_RET abbrev for FUNCTION_BLOCK. 3201 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3202 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3204 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3205 FUNCTION_INST_RET_VAL_ABBREV) 3206 llvm_unreachable("Unexpected abbrev ordering!"); 3207 } 3208 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3209 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3210 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3211 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3212 FUNCTION_INST_UNREACHABLE_ABBREV) 3213 llvm_unreachable("Unexpected abbrev ordering!"); 3214 } 3215 { 3216 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3217 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3220 Log2_32_Ceil(VE.getTypes().size() + 1))); 3221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3223 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3224 FUNCTION_INST_GEP_ABBREV) 3225 llvm_unreachable("Unexpected abbrev ordering!"); 3226 } 3227 3228 Stream.ExitBlock(); 3229 } 3230 3231 /// Write the module path strings, currently only used when generating 3232 /// a combined index file. 3233 void IndexBitcodeWriter::writeModStrings() { 3234 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3235 3236 // TODO: See which abbrev sizes we actually need to emit 3237 3238 // 8-bit fixed-width MST_ENTRY strings. 3239 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3240 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3244 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3245 3246 // 7-bit fixed width MST_ENTRY strings. 3247 Abbv = std::make_shared<BitCodeAbbrev>(); 3248 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3252 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3253 3254 // 6-bit char6 MST_ENTRY strings. 3255 Abbv = std::make_shared<BitCodeAbbrev>(); 3256 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3260 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3261 3262 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3263 Abbv = std::make_shared<BitCodeAbbrev>(); 3264 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3270 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3271 3272 SmallVector<unsigned, 64> Vals; 3273 forEachModule( 3274 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3275 StringRef Key = MPSE.getKey(); 3276 const auto &Value = MPSE.getValue(); 3277 StringEncoding Bits = getStringEncoding(Key); 3278 unsigned AbbrevToUse = Abbrev8Bit; 3279 if (Bits == SE_Char6) 3280 AbbrevToUse = Abbrev6Bit; 3281 else if (Bits == SE_Fixed7) 3282 AbbrevToUse = Abbrev7Bit; 3283 3284 Vals.push_back(Value.first); 3285 Vals.append(Key.begin(), Key.end()); 3286 3287 // Emit the finished record. 3288 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3289 3290 // Emit an optional hash for the module now 3291 const auto &Hash = Value.second; 3292 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3293 Vals.assign(Hash.begin(), Hash.end()); 3294 // Emit the hash record. 3295 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3296 } 3297 3298 Vals.clear(); 3299 }); 3300 Stream.ExitBlock(); 3301 } 3302 3303 /// Write the function type metadata related records that need to appear before 3304 /// a function summary entry (whether per-module or combined). 3305 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3306 FunctionSummary *FS) { 3307 if (!FS->type_tests().empty()) 3308 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3309 3310 SmallVector<uint64_t, 64> Record; 3311 3312 auto WriteVFuncIdVec = [&](uint64_t Ty, 3313 ArrayRef<FunctionSummary::VFuncId> VFs) { 3314 if (VFs.empty()) 3315 return; 3316 Record.clear(); 3317 for (auto &VF : VFs) { 3318 Record.push_back(VF.GUID); 3319 Record.push_back(VF.Offset); 3320 } 3321 Stream.EmitRecord(Ty, Record); 3322 }; 3323 3324 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3325 FS->type_test_assume_vcalls()); 3326 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3327 FS->type_checked_load_vcalls()); 3328 3329 auto WriteConstVCallVec = [&](uint64_t Ty, 3330 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3331 for (auto &VC : VCs) { 3332 Record.clear(); 3333 Record.push_back(VC.VFunc.GUID); 3334 Record.push_back(VC.VFunc.Offset); 3335 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3336 Stream.EmitRecord(Ty, Record); 3337 } 3338 }; 3339 3340 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3341 FS->type_test_assume_const_vcalls()); 3342 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3343 FS->type_checked_load_const_vcalls()); 3344 } 3345 3346 // Helper to emit a single function summary record. 3347 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3348 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3349 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3350 const Function &F) { 3351 NameVals.push_back(ValueID); 3352 3353 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3354 writeFunctionTypeMetadataRecords(Stream, FS); 3355 3356 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3357 NameVals.push_back(FS->instCount()); 3358 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3359 NameVals.push_back(FS->refs().size()); 3360 3361 for (auto &RI : FS->refs()) 3362 NameVals.push_back(VE.getValueID(RI.getValue())); 3363 3364 bool HasProfileData = F.getEntryCount().hasValue(); 3365 for (auto &ECI : FS->calls()) { 3366 NameVals.push_back(getValueId(ECI.first)); 3367 if (HasProfileData) 3368 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3369 } 3370 3371 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3372 unsigned Code = 3373 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3374 3375 // Emit the finished record. 3376 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3377 NameVals.clear(); 3378 } 3379 3380 // Collect the global value references in the given variable's initializer, 3381 // and emit them in a summary record. 3382 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3383 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3384 unsigned FSModRefsAbbrev) { 3385 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3386 if (!VI || VI.getSummaryList().empty()) { 3387 // Only declarations should not have a summary (a declaration might however 3388 // have a summary if the def was in module level asm). 3389 assert(V.isDeclaration()); 3390 return; 3391 } 3392 auto *Summary = VI.getSummaryList()[0].get(); 3393 NameVals.push_back(VE.getValueID(&V)); 3394 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3395 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3396 3397 unsigned SizeBeforeRefs = NameVals.size(); 3398 for (auto &RI : VS->refs()) 3399 NameVals.push_back(VE.getValueID(RI.getValue())); 3400 // Sort the refs for determinism output, the vector returned by FS->refs() has 3401 // been initialized from a DenseSet. 3402 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3403 3404 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3405 FSModRefsAbbrev); 3406 NameVals.clear(); 3407 } 3408 3409 // Current version for the summary. 3410 // This is bumped whenever we introduce changes in the way some record are 3411 // interpreted, like flags for instance. 3412 static const uint64_t INDEX_VERSION = 4; 3413 3414 /// Emit the per-module summary section alongside the rest of 3415 /// the module's bitcode. 3416 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3417 // By default we compile with ThinLTO if the module has a summary, but the 3418 // client can request full LTO with a module flag. 3419 bool IsThinLTO = true; 3420 if (auto *MD = 3421 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3422 IsThinLTO = MD->getZExtValue(); 3423 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3424 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3425 4); 3426 3427 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3428 3429 if (Index->begin() == Index->end()) { 3430 Stream.ExitBlock(); 3431 return; 3432 } 3433 3434 for (const auto &GVI : valueIds()) { 3435 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3436 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3437 } 3438 3439 // Abbrev for FS_PERMODULE. 3440 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3441 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3447 // numrefs x valueid, n x (valueid) 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3450 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3451 3452 // Abbrev for FS_PERMODULE_PROFILE. 3453 Abbv = std::make_shared<BitCodeAbbrev>(); 3454 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3460 // numrefs x valueid, n x (valueid, hotness) 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3463 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3464 3465 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3466 Abbv = std::make_shared<BitCodeAbbrev>(); 3467 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3472 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3473 3474 // Abbrev for FS_ALIAS. 3475 Abbv = std::make_shared<BitCodeAbbrev>(); 3476 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3480 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3481 3482 SmallVector<uint64_t, 64> NameVals; 3483 // Iterate over the list of functions instead of the Index to 3484 // ensure the ordering is stable. 3485 for (const Function &F : M) { 3486 // Summary emission does not support anonymous functions, they have to 3487 // renamed using the anonymous function renaming pass. 3488 if (!F.hasName()) 3489 report_fatal_error("Unexpected anonymous function when writing summary"); 3490 3491 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3492 if (!VI || VI.getSummaryList().empty()) { 3493 // Only declarations should not have a summary (a declaration might 3494 // however have a summary if the def was in module level asm). 3495 assert(F.isDeclaration()); 3496 continue; 3497 } 3498 auto *Summary = VI.getSummaryList()[0].get(); 3499 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3500 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3501 } 3502 3503 // Capture references from GlobalVariable initializers, which are outside 3504 // of a function scope. 3505 for (const GlobalVariable &G : M.globals()) 3506 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3507 3508 for (const GlobalAlias &A : M.aliases()) { 3509 auto *Aliasee = A.getBaseObject(); 3510 if (!Aliasee->hasName()) 3511 // Nameless function don't have an entry in the summary, skip it. 3512 continue; 3513 auto AliasId = VE.getValueID(&A); 3514 auto AliaseeId = VE.getValueID(Aliasee); 3515 NameVals.push_back(AliasId); 3516 auto *Summary = Index->getGlobalValueSummary(A); 3517 AliasSummary *AS = cast<AliasSummary>(Summary); 3518 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3519 NameVals.push_back(AliaseeId); 3520 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3521 NameVals.clear(); 3522 } 3523 3524 Stream.ExitBlock(); 3525 } 3526 3527 /// Emit the combined summary section into the combined index file. 3528 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3529 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3530 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3531 3532 for (const auto &GVI : valueIds()) { 3533 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3534 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3535 } 3536 3537 // Abbrev for FS_COMBINED. 3538 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3539 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3546 // numrefs x valueid, n x (valueid) 3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3549 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3550 3551 // Abbrev for FS_COMBINED_PROFILE. 3552 Abbv = std::make_shared<BitCodeAbbrev>(); 3553 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3560 // numrefs x valueid, n x (valueid, hotness) 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3563 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3564 3565 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3566 Abbv = std::make_shared<BitCodeAbbrev>(); 3567 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3573 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3574 3575 // Abbrev for FS_COMBINED_ALIAS. 3576 Abbv = std::make_shared<BitCodeAbbrev>(); 3577 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3582 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3583 3584 // The aliases are emitted as a post-pass, and will point to the value 3585 // id of the aliasee. Save them in a vector for post-processing. 3586 SmallVector<AliasSummary *, 64> Aliases; 3587 3588 // Save the value id for each summary for alias emission. 3589 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3590 3591 SmallVector<uint64_t, 64> NameVals; 3592 3593 // For local linkage, we also emit the original name separately 3594 // immediately after the record. 3595 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3596 if (!GlobalValue::isLocalLinkage(S.linkage())) 3597 return; 3598 NameVals.push_back(S.getOriginalName()); 3599 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3600 NameVals.clear(); 3601 }; 3602 3603 forEachSummary([&](GVInfo I) { 3604 GlobalValueSummary *S = I.second; 3605 assert(S); 3606 3607 auto ValueId = getValueId(I.first); 3608 assert(ValueId); 3609 SummaryToValueIdMap[S] = *ValueId; 3610 3611 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3612 // Will process aliases as a post-pass because the reader wants all 3613 // global to be loaded first. 3614 Aliases.push_back(AS); 3615 return; 3616 } 3617 3618 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3619 NameVals.push_back(*ValueId); 3620 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3621 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3622 for (auto &RI : VS->refs()) { 3623 auto RefValueId = getValueId(RI.getGUID()); 3624 if (!RefValueId) 3625 continue; 3626 NameVals.push_back(*RefValueId); 3627 } 3628 3629 // Emit the finished record. 3630 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3631 FSModRefsAbbrev); 3632 NameVals.clear(); 3633 MaybeEmitOriginalName(*S); 3634 return; 3635 } 3636 3637 auto *FS = cast<FunctionSummary>(S); 3638 writeFunctionTypeMetadataRecords(Stream, FS); 3639 3640 NameVals.push_back(*ValueId); 3641 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3642 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3643 NameVals.push_back(FS->instCount()); 3644 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3645 // Fill in below 3646 NameVals.push_back(0); 3647 3648 unsigned Count = 0; 3649 for (auto &RI : FS->refs()) { 3650 auto RefValueId = getValueId(RI.getGUID()); 3651 if (!RefValueId) 3652 continue; 3653 NameVals.push_back(*RefValueId); 3654 Count++; 3655 } 3656 NameVals[5] = Count; 3657 3658 bool HasProfileData = false; 3659 for (auto &EI : FS->calls()) { 3660 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3661 if (HasProfileData) 3662 break; 3663 } 3664 3665 for (auto &EI : FS->calls()) { 3666 // If this GUID doesn't have a value id, it doesn't have a function 3667 // summary and we don't need to record any calls to it. 3668 GlobalValue::GUID GUID = EI.first.getGUID(); 3669 auto CallValueId = getValueId(GUID); 3670 if (!CallValueId) { 3671 // For SamplePGO, the indirect call targets for local functions will 3672 // have its original name annotated in profile. We try to find the 3673 // corresponding PGOFuncName as the GUID. 3674 GUID = Index.getGUIDFromOriginalID(GUID); 3675 if (GUID == 0) 3676 continue; 3677 CallValueId = getValueId(GUID); 3678 if (!CallValueId) 3679 continue; 3680 // The mapping from OriginalId to GUID may return a GUID 3681 // that corresponds to a static variable. Filter it out here. 3682 // This can happen when 3683 // 1) There is a call to a library function which does not have 3684 // a CallValidId; 3685 // 2) There is a static variable with the OriginalGUID identical 3686 // to the GUID of the library function in 1); 3687 // When this happens, the logic for SamplePGO kicks in and 3688 // the static variable in 2) will be found, which needs to be 3689 // filtered out. 3690 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 3691 if (GVSum && 3692 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 3693 continue; 3694 } 3695 NameVals.push_back(*CallValueId); 3696 if (HasProfileData) 3697 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3698 } 3699 3700 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3701 unsigned Code = 3702 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3703 3704 // Emit the finished record. 3705 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3706 NameVals.clear(); 3707 MaybeEmitOriginalName(*S); 3708 }); 3709 3710 for (auto *AS : Aliases) { 3711 auto AliasValueId = SummaryToValueIdMap[AS]; 3712 assert(AliasValueId); 3713 NameVals.push_back(AliasValueId); 3714 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3715 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3716 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3717 assert(AliaseeValueId); 3718 NameVals.push_back(AliaseeValueId); 3719 3720 // Emit the finished record. 3721 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3722 NameVals.clear(); 3723 MaybeEmitOriginalName(*AS); 3724 } 3725 3726 if (!Index.cfiFunctionDefs().empty()) { 3727 for (auto &S : Index.cfiFunctionDefs()) { 3728 NameVals.push_back(StrtabBuilder.add(S)); 3729 NameVals.push_back(S.size()); 3730 } 3731 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3732 NameVals.clear(); 3733 } 3734 3735 if (!Index.cfiFunctionDecls().empty()) { 3736 for (auto &S : Index.cfiFunctionDecls()) { 3737 NameVals.push_back(StrtabBuilder.add(S)); 3738 NameVals.push_back(S.size()); 3739 } 3740 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3741 NameVals.clear(); 3742 } 3743 3744 Stream.ExitBlock(); 3745 } 3746 3747 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3748 /// current llvm version, and a record for the epoch number. 3749 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3750 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3751 3752 // Write the "user readable" string identifying the bitcode producer 3753 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3754 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3757 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3758 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3759 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3760 3761 // Write the epoch version 3762 Abbv = std::make_shared<BitCodeAbbrev>(); 3763 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3765 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3766 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3767 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3768 Stream.ExitBlock(); 3769 } 3770 3771 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3772 // Emit the module's hash. 3773 // MODULE_CODE_HASH: [5*i32] 3774 if (GenerateHash) { 3775 uint32_t Vals[5]; 3776 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3777 Buffer.size() - BlockStartPos)); 3778 StringRef Hash = Hasher.result(); 3779 for (int Pos = 0; Pos < 20; Pos += 4) { 3780 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3781 } 3782 3783 // Emit the finished record. 3784 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3785 3786 if (ModHash) 3787 // Save the written hash value. 3788 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3789 } 3790 } 3791 3792 void ModuleBitcodeWriter::write() { 3793 writeIdentificationBlock(Stream); 3794 3795 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3796 size_t BlockStartPos = Buffer.size(); 3797 3798 writeModuleVersion(); 3799 3800 // Emit blockinfo, which defines the standard abbreviations etc. 3801 writeBlockInfo(); 3802 3803 // Emit information about attribute groups. 3804 writeAttributeGroupTable(); 3805 3806 // Emit information about parameter attributes. 3807 writeAttributeTable(); 3808 3809 // Emit information describing all of the types in the module. 3810 writeTypeTable(); 3811 3812 writeComdats(); 3813 3814 // Emit top-level description of module, including target triple, inline asm, 3815 // descriptors for global variables, and function prototype info. 3816 writeModuleInfo(); 3817 3818 // Emit constants. 3819 writeModuleConstants(); 3820 3821 // Emit metadata kind names. 3822 writeModuleMetadataKinds(); 3823 3824 // Emit metadata. 3825 writeModuleMetadata(); 3826 3827 // Emit module-level use-lists. 3828 if (VE.shouldPreserveUseListOrder()) 3829 writeUseListBlock(nullptr); 3830 3831 writeOperandBundleTags(); 3832 writeSyncScopeNames(); 3833 3834 // Emit function bodies. 3835 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3836 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3837 if (!F->isDeclaration()) 3838 writeFunction(*F, FunctionToBitcodeIndex); 3839 3840 // Need to write after the above call to WriteFunction which populates 3841 // the summary information in the index. 3842 if (Index) 3843 writePerModuleGlobalValueSummary(); 3844 3845 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3846 3847 writeModuleHash(BlockStartPos); 3848 3849 Stream.ExitBlock(); 3850 } 3851 3852 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3853 uint32_t &Position) { 3854 support::endian::write32le(&Buffer[Position], Value); 3855 Position += 4; 3856 } 3857 3858 /// If generating a bc file on darwin, we have to emit a 3859 /// header and trailer to make it compatible with the system archiver. To do 3860 /// this we emit the following header, and then emit a trailer that pads the 3861 /// file out to be a multiple of 16 bytes. 3862 /// 3863 /// struct bc_header { 3864 /// uint32_t Magic; // 0x0B17C0DE 3865 /// uint32_t Version; // Version, currently always 0. 3866 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3867 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3868 /// uint32_t CPUType; // CPU specifier. 3869 /// ... potentially more later ... 3870 /// }; 3871 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3872 const Triple &TT) { 3873 unsigned CPUType = ~0U; 3874 3875 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3876 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3877 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3878 // specific constants here because they are implicitly part of the Darwin ABI. 3879 enum { 3880 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3881 DARWIN_CPU_TYPE_X86 = 7, 3882 DARWIN_CPU_TYPE_ARM = 12, 3883 DARWIN_CPU_TYPE_POWERPC = 18 3884 }; 3885 3886 Triple::ArchType Arch = TT.getArch(); 3887 if (Arch == Triple::x86_64) 3888 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3889 else if (Arch == Triple::x86) 3890 CPUType = DARWIN_CPU_TYPE_X86; 3891 else if (Arch == Triple::ppc) 3892 CPUType = DARWIN_CPU_TYPE_POWERPC; 3893 else if (Arch == Triple::ppc64) 3894 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3895 else if (Arch == Triple::arm || Arch == Triple::thumb) 3896 CPUType = DARWIN_CPU_TYPE_ARM; 3897 3898 // Traditional Bitcode starts after header. 3899 assert(Buffer.size() >= BWH_HeaderSize && 3900 "Expected header size to be reserved"); 3901 unsigned BCOffset = BWH_HeaderSize; 3902 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3903 3904 // Write the magic and version. 3905 unsigned Position = 0; 3906 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3907 writeInt32ToBuffer(0, Buffer, Position); // Version. 3908 writeInt32ToBuffer(BCOffset, Buffer, Position); 3909 writeInt32ToBuffer(BCSize, Buffer, Position); 3910 writeInt32ToBuffer(CPUType, Buffer, Position); 3911 3912 // If the file is not a multiple of 16 bytes, insert dummy padding. 3913 while (Buffer.size() & 15) 3914 Buffer.push_back(0); 3915 } 3916 3917 /// Helper to write the header common to all bitcode files. 3918 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3919 // Emit the file header. 3920 Stream.Emit((unsigned)'B', 8); 3921 Stream.Emit((unsigned)'C', 8); 3922 Stream.Emit(0x0, 4); 3923 Stream.Emit(0xC, 4); 3924 Stream.Emit(0xE, 4); 3925 Stream.Emit(0xD, 4); 3926 } 3927 3928 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3929 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3930 writeBitcodeHeader(*Stream); 3931 } 3932 3933 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3934 3935 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3936 Stream->EnterSubblock(Block, 3); 3937 3938 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3939 Abbv->Add(BitCodeAbbrevOp(Record)); 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3941 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3942 3943 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3944 3945 Stream->ExitBlock(); 3946 } 3947 3948 void BitcodeWriter::writeSymtab() { 3949 assert(!WroteStrtab && !WroteSymtab); 3950 3951 // If any module has module-level inline asm, we will require a registered asm 3952 // parser for the target so that we can create an accurate symbol table for 3953 // the module. 3954 for (Module *M : Mods) { 3955 if (M->getModuleInlineAsm().empty()) 3956 continue; 3957 3958 std::string Err; 3959 const Triple TT(M->getTargetTriple()); 3960 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 3961 if (!T || !T->hasMCAsmParser()) 3962 return; 3963 } 3964 3965 WroteSymtab = true; 3966 SmallVector<char, 0> Symtab; 3967 // The irsymtab::build function may be unable to create a symbol table if the 3968 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 3969 // table is not required for correctness, but we still want to be able to 3970 // write malformed modules to bitcode files, so swallow the error. 3971 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 3972 consumeError(std::move(E)); 3973 return; 3974 } 3975 3976 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 3977 {Symtab.data(), Symtab.size()}); 3978 } 3979 3980 void BitcodeWriter::writeStrtab() { 3981 assert(!WroteStrtab); 3982 3983 std::vector<char> Strtab; 3984 StrtabBuilder.finalizeInOrder(); 3985 Strtab.resize(StrtabBuilder.getSize()); 3986 StrtabBuilder.write((uint8_t *)Strtab.data()); 3987 3988 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3989 {Strtab.data(), Strtab.size()}); 3990 3991 WroteStrtab = true; 3992 } 3993 3994 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3995 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3996 WroteStrtab = true; 3997 } 3998 3999 void BitcodeWriter::writeModule(const Module *M, 4000 bool ShouldPreserveUseListOrder, 4001 const ModuleSummaryIndex *Index, 4002 bool GenerateHash, ModuleHash *ModHash) { 4003 assert(!WroteStrtab); 4004 4005 // The Mods vector is used by irsymtab::build, which requires non-const 4006 // Modules in case it needs to materialize metadata. But the bitcode writer 4007 // requires that the module is materialized, so we can cast to non-const here, 4008 // after checking that it is in fact materialized. 4009 assert(M->isMaterialized()); 4010 Mods.push_back(const_cast<Module *>(M)); 4011 4012 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4013 ShouldPreserveUseListOrder, Index, 4014 GenerateHash, ModHash); 4015 ModuleWriter.write(); 4016 } 4017 4018 void BitcodeWriter::writeIndex( 4019 const ModuleSummaryIndex *Index, 4020 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4021 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4022 ModuleToSummariesForIndex); 4023 IndexWriter.write(); 4024 } 4025 4026 /// WriteBitcodeToFile - Write the specified module to the specified output 4027 /// stream. 4028 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 4029 bool ShouldPreserveUseListOrder, 4030 const ModuleSummaryIndex *Index, 4031 bool GenerateHash, ModuleHash *ModHash) { 4032 SmallVector<char, 0> Buffer; 4033 Buffer.reserve(256*1024); 4034 4035 // If this is darwin or another generic macho target, reserve space for the 4036 // header. 4037 Triple TT(M->getTargetTriple()); 4038 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4039 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4040 4041 BitcodeWriter Writer(Buffer); 4042 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4043 ModHash); 4044 Writer.writeSymtab(); 4045 Writer.writeStrtab(); 4046 4047 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4048 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4049 4050 // Write the generated bitstream to "Out". 4051 Out.write((char*)&Buffer.front(), Buffer.size()); 4052 } 4053 4054 void IndexBitcodeWriter::write() { 4055 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4056 4057 writeModuleVersion(); 4058 4059 // Write the module paths in the combined index. 4060 writeModStrings(); 4061 4062 // Write the summary combined index records. 4063 writeCombinedGlobalValueSummary(); 4064 4065 Stream.ExitBlock(); 4066 } 4067 4068 // Write the specified module summary index to the given raw output stream, 4069 // where it will be written in a new bitcode block. This is used when 4070 // writing the combined index file for ThinLTO. When writing a subset of the 4071 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4072 void llvm::WriteIndexToFile( 4073 const ModuleSummaryIndex &Index, raw_ostream &Out, 4074 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4075 SmallVector<char, 0> Buffer; 4076 Buffer.reserve(256 * 1024); 4077 4078 BitcodeWriter Writer(Buffer); 4079 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4080 Writer.writeStrtab(); 4081 4082 Out.write((char *)&Buffer.front(), Buffer.size()); 4083 } 4084 4085 namespace { 4086 4087 /// Class to manage the bitcode writing for a thin link bitcode file. 4088 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4089 /// ModHash is for use in ThinLTO incremental build, generated while writing 4090 /// the module bitcode file. 4091 const ModuleHash *ModHash; 4092 4093 public: 4094 ThinLinkBitcodeWriter(const Module *M, StringTableBuilder &StrtabBuilder, 4095 BitstreamWriter &Stream, 4096 const ModuleSummaryIndex &Index, 4097 const ModuleHash &ModHash) 4098 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4099 /*ShouldPreserveUseListOrder=*/false, &Index), 4100 ModHash(&ModHash) {} 4101 4102 void write(); 4103 4104 private: 4105 void writeSimplifiedModuleInfo(); 4106 }; 4107 4108 } // end anonymous namespace 4109 4110 // This function writes a simpilified module info for thin link bitcode file. 4111 // It only contains the source file name along with the name(the offset and 4112 // size in strtab) and linkage for global values. For the global value info 4113 // entry, in order to keep linkage at offset 5, there are three zeros used 4114 // as padding. 4115 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4116 SmallVector<unsigned, 64> Vals; 4117 // Emit the module's source file name. 4118 { 4119 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4120 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4121 if (Bits == SE_Char6) 4122 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4123 else if (Bits == SE_Fixed7) 4124 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4125 4126 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4127 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4128 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4130 Abbv->Add(AbbrevOpToUse); 4131 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4132 4133 for (const auto P : M.getSourceFileName()) 4134 Vals.push_back((unsigned char)P); 4135 4136 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4137 Vals.clear(); 4138 } 4139 4140 // Emit the global variable information. 4141 for (const GlobalVariable &GV : M.globals()) { 4142 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4143 Vals.push_back(StrtabBuilder.add(GV.getName())); 4144 Vals.push_back(GV.getName().size()); 4145 Vals.push_back(0); 4146 Vals.push_back(0); 4147 Vals.push_back(0); 4148 Vals.push_back(getEncodedLinkage(GV)); 4149 4150 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4151 Vals.clear(); 4152 } 4153 4154 // Emit the function proto information. 4155 for (const Function &F : M) { 4156 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4157 Vals.push_back(StrtabBuilder.add(F.getName())); 4158 Vals.push_back(F.getName().size()); 4159 Vals.push_back(0); 4160 Vals.push_back(0); 4161 Vals.push_back(0); 4162 Vals.push_back(getEncodedLinkage(F)); 4163 4164 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4165 Vals.clear(); 4166 } 4167 4168 // Emit the alias information. 4169 for (const GlobalAlias &A : M.aliases()) { 4170 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4171 Vals.push_back(StrtabBuilder.add(A.getName())); 4172 Vals.push_back(A.getName().size()); 4173 Vals.push_back(0); 4174 Vals.push_back(0); 4175 Vals.push_back(0); 4176 Vals.push_back(getEncodedLinkage(A)); 4177 4178 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4179 Vals.clear(); 4180 } 4181 4182 // Emit the ifunc information. 4183 for (const GlobalIFunc &I : M.ifuncs()) { 4184 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4185 Vals.push_back(StrtabBuilder.add(I.getName())); 4186 Vals.push_back(I.getName().size()); 4187 Vals.push_back(0); 4188 Vals.push_back(0); 4189 Vals.push_back(0); 4190 Vals.push_back(getEncodedLinkage(I)); 4191 4192 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4193 Vals.clear(); 4194 } 4195 } 4196 4197 void ThinLinkBitcodeWriter::write() { 4198 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4199 4200 writeModuleVersion(); 4201 4202 writeSimplifiedModuleInfo(); 4203 4204 writePerModuleGlobalValueSummary(); 4205 4206 // Write module hash. 4207 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4208 4209 Stream.ExitBlock(); 4210 } 4211 4212 void BitcodeWriter::writeThinLinkBitcode(const Module *M, 4213 const ModuleSummaryIndex &Index, 4214 const ModuleHash &ModHash) { 4215 assert(!WroteStrtab); 4216 4217 // The Mods vector is used by irsymtab::build, which requires non-const 4218 // Modules in case it needs to materialize metadata. But the bitcode writer 4219 // requires that the module is materialized, so we can cast to non-const here, 4220 // after checking that it is in fact materialized. 4221 assert(M->isMaterialized()); 4222 Mods.push_back(const_cast<Module *>(M)); 4223 4224 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4225 ModHash); 4226 ThinLinkWriter.write(); 4227 } 4228 4229 // Write the specified thin link bitcode file to the given raw output stream, 4230 // where it will be written in a new bitcode block. This is used when 4231 // writing the per-module index file for ThinLTO. 4232 void llvm::WriteThinLinkBitcodeToFile(const Module *M, raw_ostream &Out, 4233 const ModuleSummaryIndex &Index, 4234 const ModuleHash &ModHash) { 4235 SmallVector<char, 0> Buffer; 4236 Buffer.reserve(256 * 1024); 4237 4238 BitcodeWriter Writer(Buffer); 4239 Writer.writeThinLinkBitcode(M, Index, ModHash); 4240 Writer.writeSymtab(); 4241 Writer.writeStrtab(); 4242 4243 Out.write((char *)&Buffer.front(), Buffer.size()); 4244 } 4245