1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/Bitcode/BitcodeCommon.h" 30 #include "llvm/Bitcode/BitcodeReader.h" 31 #include "llvm/Bitcode/LLVMBitCodes.h" 32 #include "llvm/Bitstream/BitCodes.h" 33 #include "llvm/Bitstream/BitstreamWriter.h" 34 #include "llvm/Config/llvm-config.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Comdat.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalIFunc.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/UseListOrder.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/MC/StringTableBuilder.h" 63 #include "llvm/MC/TargetRegistry.h" 64 #include "llvm/Object/IRSymtab.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Endian.h" 69 #include "llvm/Support/Error.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/SHA1.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <map> 80 #include <memory> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 101 namespace { 102 103 /// These are manifest constants used by the bitcode writer. They do not need to 104 /// be kept in sync with the reader, but need to be consistent within this file. 105 enum { 106 // VALUE_SYMTAB_BLOCK abbrev id's. 107 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 VST_ENTRY_7_ABBREV, 109 VST_ENTRY_6_ABBREV, 110 VST_BBENTRY_6_ABBREV, 111 112 // CONSTANTS_BLOCK abbrev id's. 113 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 CONSTANTS_INTEGER_ABBREV, 115 CONSTANTS_CE_CAST_Abbrev, 116 CONSTANTS_NULL_Abbrev, 117 118 // FUNCTION_BLOCK abbrev id's. 119 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 120 FUNCTION_INST_UNOP_ABBREV, 121 FUNCTION_INST_UNOP_FLAGS_ABBREV, 122 FUNCTION_INST_BINOP_ABBREV, 123 FUNCTION_INST_BINOP_FLAGS_ABBREV, 124 FUNCTION_INST_CAST_ABBREV, 125 FUNCTION_INST_RET_VOID_ABBREV, 126 FUNCTION_INST_RET_VAL_ABBREV, 127 FUNCTION_INST_UNREACHABLE_ABBREV, 128 FUNCTION_INST_GEP_ABBREV, 129 }; 130 131 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 132 /// file type. 133 class BitcodeWriterBase { 134 protected: 135 /// The stream created and owned by the client. 136 BitstreamWriter &Stream; 137 138 StringTableBuilder &StrtabBuilder; 139 140 public: 141 /// Constructs a BitcodeWriterBase object that writes to the provided 142 /// \p Stream. 143 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 144 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 145 146 protected: 147 void writeModuleVersion(); 148 }; 149 150 void BitcodeWriterBase::writeModuleVersion() { 151 // VERSION: [version#] 152 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 153 } 154 155 /// Base class to manage the module bitcode writing, currently subclassed for 156 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 157 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 158 protected: 159 /// The Module to write to bitcode. 160 const Module &M; 161 162 /// Enumerates ids for all values in the module. 163 ValueEnumerator VE; 164 165 /// Optional per-module index to write for ThinLTO. 166 const ModuleSummaryIndex *Index; 167 168 /// Map that holds the correspondence between GUIDs in the summary index, 169 /// that came from indirect call profiles, and a value id generated by this 170 /// class to use in the VST and summary block records. 171 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 172 173 /// Tracks the last value id recorded in the GUIDToValueMap. 174 unsigned GlobalValueId; 175 176 /// Saves the offset of the VSTOffset record that must eventually be 177 /// backpatched with the offset of the actual VST. 178 uint64_t VSTOffsetPlaceholder = 0; 179 180 public: 181 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 182 /// writing to the provided \p Buffer. 183 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 184 BitstreamWriter &Stream, 185 bool ShouldPreserveUseListOrder, 186 const ModuleSummaryIndex *Index) 187 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 188 VE(M, ShouldPreserveUseListOrder), Index(Index) { 189 // Assign ValueIds to any callee values in the index that came from 190 // indirect call profiles and were recorded as a GUID not a Value* 191 // (which would have been assigned an ID by the ValueEnumerator). 192 // The starting ValueId is just after the number of values in the 193 // ValueEnumerator, so that they can be emitted in the VST. 194 GlobalValueId = VE.getValues().size(); 195 if (!Index) 196 return; 197 for (const auto &GUIDSummaryLists : *Index) 198 // Examine all summaries for this GUID. 199 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 200 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 201 // For each call in the function summary, see if the call 202 // is to a GUID (which means it is for an indirect call, 203 // otherwise we would have a Value for it). If so, synthesize 204 // a value id. 205 for (auto &CallEdge : FS->calls()) 206 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 207 assignValueId(CallEdge.first.getGUID()); 208 } 209 210 protected: 211 void writePerModuleGlobalValueSummary(); 212 213 private: 214 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 215 GlobalValueSummary *Summary, 216 unsigned ValueID, 217 unsigned FSCallsAbbrev, 218 unsigned FSCallsProfileAbbrev, 219 const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDIGlobalVariable(const DIGlobalVariable *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 void writeDILocalVariable(const DILocalVariable *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDILabel(const DILabel *N, 357 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 358 void writeDIExpression(const DIExpression *N, 359 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 360 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 361 SmallVectorImpl<uint64_t> &Record, 362 unsigned Abbrev); 363 void writeDIObjCProperty(const DIObjCProperty *N, 364 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 365 void writeDIImportedEntity(const DIImportedEntity *N, 366 SmallVectorImpl<uint64_t> &Record, 367 unsigned Abbrev); 368 unsigned createNamedMetadataAbbrev(); 369 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 370 unsigned createMetadataStringsAbbrev(); 371 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 372 SmallVectorImpl<uint64_t> &Record); 373 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 374 SmallVectorImpl<uint64_t> &Record, 375 std::vector<unsigned> *MDAbbrevs = nullptr, 376 std::vector<uint64_t> *IndexPos = nullptr); 377 void writeModuleMetadata(); 378 void writeFunctionMetadata(const Function &F); 379 void writeFunctionMetadataAttachment(const Function &F); 380 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 381 const GlobalObject &GO); 382 void writeModuleMetadataKinds(); 383 void writeOperandBundleTags(); 384 void writeSyncScopeNames(); 385 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 386 void writeModuleConstants(); 387 bool pushValueAndType(const Value *V, unsigned InstID, 388 SmallVectorImpl<unsigned> &Vals); 389 void writeOperandBundles(const CallBase &CB, unsigned InstID); 390 void pushValue(const Value *V, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void pushValueSigned(const Value *V, unsigned InstID, 393 SmallVectorImpl<uint64_t> &Vals); 394 void writeInstruction(const Instruction &I, unsigned InstID, 395 SmallVectorImpl<unsigned> &Vals); 396 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 397 void writeGlobalValueSymbolTable( 398 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 399 void writeUseList(UseListOrder &&Order); 400 void writeUseListBlock(const Function *F); 401 void 402 writeFunction(const Function &F, 403 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 404 void writeBlockInfo(); 405 void writeModuleHash(size_t BlockStartPos); 406 407 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 408 return unsigned(SSID); 409 } 410 411 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 412 }; 413 414 /// Class to manage the bitcode writing for a combined index. 415 class IndexBitcodeWriter : public BitcodeWriterBase { 416 /// The combined index to write to bitcode. 417 const ModuleSummaryIndex &Index; 418 419 /// When writing a subset of the index for distributed backends, client 420 /// provides a map of modules to the corresponding GUIDs/summaries to write. 421 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 422 423 /// Map that holds the correspondence between the GUID used in the combined 424 /// index and a value id generated by this class to use in references. 425 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 426 427 /// Tracks the last value id recorded in the GUIDToValueMap. 428 unsigned GlobalValueId = 0; 429 430 public: 431 /// Constructs a IndexBitcodeWriter object for the given combined index, 432 /// writing to the provided \p Buffer. When writing a subset of the index 433 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 434 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 435 const ModuleSummaryIndex &Index, 436 const std::map<std::string, GVSummaryMapTy> 437 *ModuleToSummariesForIndex = nullptr) 438 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 439 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 440 // Assign unique value ids to all summaries to be written, for use 441 // in writing out the call graph edges. Save the mapping from GUID 442 // to the new global value id to use when writing those edges, which 443 // are currently saved in the index in terms of GUID. 444 forEachSummary([&](GVInfo I, bool) { 445 GUIDToValueIdMap[I.first] = ++GlobalValueId; 446 }); 447 } 448 449 /// The below iterator returns the GUID and associated summary. 450 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 451 452 /// Calls the callback for each value GUID and summary to be written to 453 /// bitcode. This hides the details of whether they are being pulled from the 454 /// entire index or just those in a provided ModuleToSummariesForIndex map. 455 template<typename Functor> 456 void forEachSummary(Functor Callback) { 457 if (ModuleToSummariesForIndex) { 458 for (auto &M : *ModuleToSummariesForIndex) 459 for (auto &Summary : M.second) { 460 Callback(Summary, false); 461 // Ensure aliasee is handled, e.g. for assigning a valueId, 462 // even if we are not importing the aliasee directly (the 463 // imported alias will contain a copy of aliasee). 464 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 465 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 466 } 467 } else { 468 for (auto &Summaries : Index) 469 for (auto &Summary : Summaries.second.SummaryList) 470 Callback({Summaries.first, Summary.get()}, false); 471 } 472 } 473 474 /// Calls the callback for each entry in the modulePaths StringMap that 475 /// should be written to the module path string table. This hides the details 476 /// of whether they are being pulled from the entire index or just those in a 477 /// provided ModuleToSummariesForIndex map. 478 template <typename Functor> void forEachModule(Functor Callback) { 479 if (ModuleToSummariesForIndex) { 480 for (const auto &M : *ModuleToSummariesForIndex) { 481 const auto &MPI = Index.modulePaths().find(M.first); 482 if (MPI == Index.modulePaths().end()) { 483 // This should only happen if the bitcode file was empty, in which 484 // case we shouldn't be importing (the ModuleToSummariesForIndex 485 // would only include the module we are writing and index for). 486 assert(ModuleToSummariesForIndex->size() == 1); 487 continue; 488 } 489 Callback(*MPI); 490 } 491 } else { 492 for (const auto &MPSE : Index.modulePaths()) 493 Callback(MPSE); 494 } 495 } 496 497 /// Main entry point for writing a combined index to bitcode. 498 void write(); 499 500 private: 501 void writeModStrings(); 502 void writeCombinedGlobalValueSummary(); 503 504 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 505 auto VMI = GUIDToValueIdMap.find(ValGUID); 506 if (VMI == GUIDToValueIdMap.end()) 507 return None; 508 return VMI->second; 509 } 510 511 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 512 }; 513 514 } // end anonymous namespace 515 516 static unsigned getEncodedCastOpcode(unsigned Opcode) { 517 switch (Opcode) { 518 default: llvm_unreachable("Unknown cast instruction!"); 519 case Instruction::Trunc : return bitc::CAST_TRUNC; 520 case Instruction::ZExt : return bitc::CAST_ZEXT; 521 case Instruction::SExt : return bitc::CAST_SEXT; 522 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 523 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 524 case Instruction::UIToFP : return bitc::CAST_UITOFP; 525 case Instruction::SIToFP : return bitc::CAST_SITOFP; 526 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 527 case Instruction::FPExt : return bitc::CAST_FPEXT; 528 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 529 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 530 case Instruction::BitCast : return bitc::CAST_BITCAST; 531 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 532 } 533 } 534 535 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 536 switch (Opcode) { 537 default: llvm_unreachable("Unknown binary instruction!"); 538 case Instruction::FNeg: return bitc::UNOP_FNEG; 539 } 540 } 541 542 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 543 switch (Opcode) { 544 default: llvm_unreachable("Unknown binary instruction!"); 545 case Instruction::Add: 546 case Instruction::FAdd: return bitc::BINOP_ADD; 547 case Instruction::Sub: 548 case Instruction::FSub: return bitc::BINOP_SUB; 549 case Instruction::Mul: 550 case Instruction::FMul: return bitc::BINOP_MUL; 551 case Instruction::UDiv: return bitc::BINOP_UDIV; 552 case Instruction::FDiv: 553 case Instruction::SDiv: return bitc::BINOP_SDIV; 554 case Instruction::URem: return bitc::BINOP_UREM; 555 case Instruction::FRem: 556 case Instruction::SRem: return bitc::BINOP_SREM; 557 case Instruction::Shl: return bitc::BINOP_SHL; 558 case Instruction::LShr: return bitc::BINOP_LSHR; 559 case Instruction::AShr: return bitc::BINOP_ASHR; 560 case Instruction::And: return bitc::BINOP_AND; 561 case Instruction::Or: return bitc::BINOP_OR; 562 case Instruction::Xor: return bitc::BINOP_XOR; 563 } 564 } 565 566 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 567 switch (Op) { 568 default: llvm_unreachable("Unknown RMW operation!"); 569 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 570 case AtomicRMWInst::Add: return bitc::RMW_ADD; 571 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 572 case AtomicRMWInst::And: return bitc::RMW_AND; 573 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 574 case AtomicRMWInst::Or: return bitc::RMW_OR; 575 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 576 case AtomicRMWInst::Max: return bitc::RMW_MAX; 577 case AtomicRMWInst::Min: return bitc::RMW_MIN; 578 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 579 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 580 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 581 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 582 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 583 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 584 } 585 } 586 587 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 588 switch (Ordering) { 589 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 590 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 591 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 592 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 593 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 594 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 595 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 596 } 597 llvm_unreachable("Invalid ordering"); 598 } 599 600 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 601 StringRef Str, unsigned AbbrevToUse) { 602 SmallVector<unsigned, 64> Vals; 603 604 // Code: [strchar x N] 605 for (char C : Str) { 606 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 607 AbbrevToUse = 0; 608 Vals.push_back(C); 609 } 610 611 // Emit the finished record. 612 Stream.EmitRecord(Code, Vals, AbbrevToUse); 613 } 614 615 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 616 switch (Kind) { 617 case Attribute::Alignment: 618 return bitc::ATTR_KIND_ALIGNMENT; 619 case Attribute::AllocAlign: 620 return bitc::ATTR_KIND_ALLOC_ALIGN; 621 case Attribute::AllocSize: 622 return bitc::ATTR_KIND_ALLOC_SIZE; 623 case Attribute::AlwaysInline: 624 return bitc::ATTR_KIND_ALWAYS_INLINE; 625 case Attribute::Builtin: 626 return bitc::ATTR_KIND_BUILTIN; 627 case Attribute::ByVal: 628 return bitc::ATTR_KIND_BY_VAL; 629 case Attribute::Convergent: 630 return bitc::ATTR_KIND_CONVERGENT; 631 case Attribute::InAlloca: 632 return bitc::ATTR_KIND_IN_ALLOCA; 633 case Attribute::Cold: 634 return bitc::ATTR_KIND_COLD; 635 case Attribute::DisableSanitizerInstrumentation: 636 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 637 case Attribute::FnRetThunkExtern: 638 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 639 case Attribute::Hot: 640 return bitc::ATTR_KIND_HOT; 641 case Attribute::ElementType: 642 return bitc::ATTR_KIND_ELEMENTTYPE; 643 case Attribute::InlineHint: 644 return bitc::ATTR_KIND_INLINE_HINT; 645 case Attribute::InReg: 646 return bitc::ATTR_KIND_IN_REG; 647 case Attribute::JumpTable: 648 return bitc::ATTR_KIND_JUMP_TABLE; 649 case Attribute::MinSize: 650 return bitc::ATTR_KIND_MIN_SIZE; 651 case Attribute::AllocatedPointer: 652 return bitc::ATTR_KIND_ALLOCATED_POINTER; 653 case Attribute::AllocKind: 654 return bitc::ATTR_KIND_ALLOC_KIND; 655 case Attribute::Memory: 656 return bitc::ATTR_KIND_MEMORY; 657 case Attribute::Naked: 658 return bitc::ATTR_KIND_NAKED; 659 case Attribute::Nest: 660 return bitc::ATTR_KIND_NEST; 661 case Attribute::NoAlias: 662 return bitc::ATTR_KIND_NO_ALIAS; 663 case Attribute::NoBuiltin: 664 return bitc::ATTR_KIND_NO_BUILTIN; 665 case Attribute::NoCallback: 666 return bitc::ATTR_KIND_NO_CALLBACK; 667 case Attribute::NoCapture: 668 return bitc::ATTR_KIND_NO_CAPTURE; 669 case Attribute::NoDuplicate: 670 return bitc::ATTR_KIND_NO_DUPLICATE; 671 case Attribute::NoFree: 672 return bitc::ATTR_KIND_NOFREE; 673 case Attribute::NoImplicitFloat: 674 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 675 case Attribute::NoInline: 676 return bitc::ATTR_KIND_NO_INLINE; 677 case Attribute::NoRecurse: 678 return bitc::ATTR_KIND_NO_RECURSE; 679 case Attribute::NoMerge: 680 return bitc::ATTR_KIND_NO_MERGE; 681 case Attribute::NonLazyBind: 682 return bitc::ATTR_KIND_NON_LAZY_BIND; 683 case Attribute::NonNull: 684 return bitc::ATTR_KIND_NON_NULL; 685 case Attribute::Dereferenceable: 686 return bitc::ATTR_KIND_DEREFERENCEABLE; 687 case Attribute::DereferenceableOrNull: 688 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 689 case Attribute::NoRedZone: 690 return bitc::ATTR_KIND_NO_RED_ZONE; 691 case Attribute::NoReturn: 692 return bitc::ATTR_KIND_NO_RETURN; 693 case Attribute::NoSync: 694 return bitc::ATTR_KIND_NOSYNC; 695 case Attribute::NoCfCheck: 696 return bitc::ATTR_KIND_NOCF_CHECK; 697 case Attribute::NoProfile: 698 return bitc::ATTR_KIND_NO_PROFILE; 699 case Attribute::SkipProfile: 700 return bitc::ATTR_KIND_SKIP_PROFILE; 701 case Attribute::NoUnwind: 702 return bitc::ATTR_KIND_NO_UNWIND; 703 case Attribute::NoSanitizeBounds: 704 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 705 case Attribute::NoSanitizeCoverage: 706 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 707 case Attribute::NullPointerIsValid: 708 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 709 case Attribute::OptForFuzzing: 710 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 711 case Attribute::OptimizeForSize: 712 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 713 case Attribute::OptimizeNone: 714 return bitc::ATTR_KIND_OPTIMIZE_NONE; 715 case Attribute::ReadNone: 716 return bitc::ATTR_KIND_READ_NONE; 717 case Attribute::ReadOnly: 718 return bitc::ATTR_KIND_READ_ONLY; 719 case Attribute::Returned: 720 return bitc::ATTR_KIND_RETURNED; 721 case Attribute::ReturnsTwice: 722 return bitc::ATTR_KIND_RETURNS_TWICE; 723 case Attribute::SExt: 724 return bitc::ATTR_KIND_S_EXT; 725 case Attribute::Speculatable: 726 return bitc::ATTR_KIND_SPECULATABLE; 727 case Attribute::StackAlignment: 728 return bitc::ATTR_KIND_STACK_ALIGNMENT; 729 case Attribute::StackProtect: 730 return bitc::ATTR_KIND_STACK_PROTECT; 731 case Attribute::StackProtectReq: 732 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 733 case Attribute::StackProtectStrong: 734 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 735 case Attribute::SafeStack: 736 return bitc::ATTR_KIND_SAFESTACK; 737 case Attribute::ShadowCallStack: 738 return bitc::ATTR_KIND_SHADOWCALLSTACK; 739 case Attribute::StrictFP: 740 return bitc::ATTR_KIND_STRICT_FP; 741 case Attribute::StructRet: 742 return bitc::ATTR_KIND_STRUCT_RET; 743 case Attribute::SanitizeAddress: 744 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 745 case Attribute::SanitizeHWAddress: 746 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 747 case Attribute::SanitizeThread: 748 return bitc::ATTR_KIND_SANITIZE_THREAD; 749 case Attribute::SanitizeMemory: 750 return bitc::ATTR_KIND_SANITIZE_MEMORY; 751 case Attribute::SpeculativeLoadHardening: 752 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 753 case Attribute::SwiftError: 754 return bitc::ATTR_KIND_SWIFT_ERROR; 755 case Attribute::SwiftSelf: 756 return bitc::ATTR_KIND_SWIFT_SELF; 757 case Attribute::SwiftAsync: 758 return bitc::ATTR_KIND_SWIFT_ASYNC; 759 case Attribute::UWTable: 760 return bitc::ATTR_KIND_UW_TABLE; 761 case Attribute::VScaleRange: 762 return bitc::ATTR_KIND_VSCALE_RANGE; 763 case Attribute::WillReturn: 764 return bitc::ATTR_KIND_WILLRETURN; 765 case Attribute::WriteOnly: 766 return bitc::ATTR_KIND_WRITEONLY; 767 case Attribute::ZExt: 768 return bitc::ATTR_KIND_Z_EXT; 769 case Attribute::ImmArg: 770 return bitc::ATTR_KIND_IMMARG; 771 case Attribute::SanitizeMemTag: 772 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 773 case Attribute::Preallocated: 774 return bitc::ATTR_KIND_PREALLOCATED; 775 case Attribute::NoUndef: 776 return bitc::ATTR_KIND_NOUNDEF; 777 case Attribute::ByRef: 778 return bitc::ATTR_KIND_BYREF; 779 case Attribute::MustProgress: 780 return bitc::ATTR_KIND_MUSTPROGRESS; 781 case Attribute::PresplitCoroutine: 782 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 783 case Attribute::EndAttrKinds: 784 llvm_unreachable("Can not encode end-attribute kinds marker."); 785 case Attribute::None: 786 llvm_unreachable("Can not encode none-attribute."); 787 case Attribute::EmptyKey: 788 case Attribute::TombstoneKey: 789 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 790 } 791 792 llvm_unreachable("Trying to encode unknown attribute"); 793 } 794 795 void ModuleBitcodeWriter::writeAttributeGroupTable() { 796 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 797 VE.getAttributeGroups(); 798 if (AttrGrps.empty()) return; 799 800 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 801 802 SmallVector<uint64_t, 64> Record; 803 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 804 unsigned AttrListIndex = Pair.first; 805 AttributeSet AS = Pair.second; 806 Record.push_back(VE.getAttributeGroupID(Pair)); 807 Record.push_back(AttrListIndex); 808 809 for (Attribute Attr : AS) { 810 if (Attr.isEnumAttribute()) { 811 Record.push_back(0); 812 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 813 } else if (Attr.isIntAttribute()) { 814 Record.push_back(1); 815 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 816 Record.push_back(Attr.getValueAsInt()); 817 } else if (Attr.isStringAttribute()) { 818 StringRef Kind = Attr.getKindAsString(); 819 StringRef Val = Attr.getValueAsString(); 820 821 Record.push_back(Val.empty() ? 3 : 4); 822 Record.append(Kind.begin(), Kind.end()); 823 Record.push_back(0); 824 if (!Val.empty()) { 825 Record.append(Val.begin(), Val.end()); 826 Record.push_back(0); 827 } 828 } else { 829 assert(Attr.isTypeAttribute()); 830 Type *Ty = Attr.getValueAsType(); 831 Record.push_back(Ty ? 6 : 5); 832 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 833 if (Ty) 834 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 835 } 836 } 837 838 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 839 Record.clear(); 840 } 841 842 Stream.ExitBlock(); 843 } 844 845 void ModuleBitcodeWriter::writeAttributeTable() { 846 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 847 if (Attrs.empty()) return; 848 849 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 850 851 SmallVector<uint64_t, 64> Record; 852 for (const AttributeList &AL : Attrs) { 853 for (unsigned i : AL.indexes()) { 854 AttributeSet AS = AL.getAttributes(i); 855 if (AS.hasAttributes()) 856 Record.push_back(VE.getAttributeGroupID({i, AS})); 857 } 858 859 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 860 Record.clear(); 861 } 862 863 Stream.ExitBlock(); 864 } 865 866 /// WriteTypeTable - Write out the type table for a module. 867 void ModuleBitcodeWriter::writeTypeTable() { 868 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 869 870 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 871 SmallVector<uint64_t, 64> TypeVals; 872 873 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 874 875 // Abbrev for TYPE_CODE_POINTER. 876 auto Abbv = std::make_shared<BitCodeAbbrev>(); 877 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 879 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 880 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 881 882 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 883 Abbv = std::make_shared<BitCodeAbbrev>(); 884 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 885 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 886 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 887 888 // Abbrev for TYPE_CODE_FUNCTION. 889 Abbv = std::make_shared<BitCodeAbbrev>(); 890 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 894 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 895 896 // Abbrev for TYPE_CODE_STRUCT_ANON. 897 Abbv = std::make_shared<BitCodeAbbrev>(); 898 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 902 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 903 904 // Abbrev for TYPE_CODE_STRUCT_NAME. 905 Abbv = std::make_shared<BitCodeAbbrev>(); 906 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 909 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 910 911 // Abbrev for TYPE_CODE_STRUCT_NAMED. 912 Abbv = std::make_shared<BitCodeAbbrev>(); 913 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 917 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 918 919 // Abbrev for TYPE_CODE_ARRAY. 920 Abbv = std::make_shared<BitCodeAbbrev>(); 921 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 924 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 925 926 // Emit an entry count so the reader can reserve space. 927 TypeVals.push_back(TypeList.size()); 928 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 929 TypeVals.clear(); 930 931 // Loop over all of the types, emitting each in turn. 932 for (Type *T : TypeList) { 933 int AbbrevToUse = 0; 934 unsigned Code = 0; 935 936 switch (T->getTypeID()) { 937 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 938 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 939 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 940 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 941 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 942 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 943 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 944 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 945 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 946 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 947 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 948 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 949 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 950 case Type::IntegerTyID: 951 // INTEGER: [width] 952 Code = bitc::TYPE_CODE_INTEGER; 953 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 954 break; 955 case Type::PointerTyID: { 956 PointerType *PTy = cast<PointerType>(T); 957 unsigned AddressSpace = PTy->getAddressSpace(); 958 if (PTy->isOpaque()) { 959 // OPAQUE_POINTER: [address space] 960 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 961 TypeVals.push_back(AddressSpace); 962 if (AddressSpace == 0) 963 AbbrevToUse = OpaquePtrAbbrev; 964 } else { 965 // POINTER: [pointee type, address space] 966 Code = bitc::TYPE_CODE_POINTER; 967 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 968 TypeVals.push_back(AddressSpace); 969 if (AddressSpace == 0) 970 AbbrevToUse = PtrAbbrev; 971 } 972 break; 973 } 974 case Type::FunctionTyID: { 975 FunctionType *FT = cast<FunctionType>(T); 976 // FUNCTION: [isvararg, retty, paramty x N] 977 Code = bitc::TYPE_CODE_FUNCTION; 978 TypeVals.push_back(FT->isVarArg()); 979 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 980 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 981 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 982 AbbrevToUse = FunctionAbbrev; 983 break; 984 } 985 case Type::StructTyID: { 986 StructType *ST = cast<StructType>(T); 987 // STRUCT: [ispacked, eltty x N] 988 TypeVals.push_back(ST->isPacked()); 989 // Output all of the element types. 990 for (Type *ET : ST->elements()) 991 TypeVals.push_back(VE.getTypeID(ET)); 992 993 if (ST->isLiteral()) { 994 Code = bitc::TYPE_CODE_STRUCT_ANON; 995 AbbrevToUse = StructAnonAbbrev; 996 } else { 997 if (ST->isOpaque()) { 998 Code = bitc::TYPE_CODE_OPAQUE; 999 } else { 1000 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1001 AbbrevToUse = StructNamedAbbrev; 1002 } 1003 1004 // Emit the name if it is present. 1005 if (!ST->getName().empty()) 1006 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1007 StructNameAbbrev); 1008 } 1009 break; 1010 } 1011 case Type::ArrayTyID: { 1012 ArrayType *AT = cast<ArrayType>(T); 1013 // ARRAY: [numelts, eltty] 1014 Code = bitc::TYPE_CODE_ARRAY; 1015 TypeVals.push_back(AT->getNumElements()); 1016 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1017 AbbrevToUse = ArrayAbbrev; 1018 break; 1019 } 1020 case Type::FixedVectorTyID: 1021 case Type::ScalableVectorTyID: { 1022 VectorType *VT = cast<VectorType>(T); 1023 // VECTOR [numelts, eltty] or 1024 // [numelts, eltty, scalable] 1025 Code = bitc::TYPE_CODE_VECTOR; 1026 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1027 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1028 if (isa<ScalableVectorType>(VT)) 1029 TypeVals.push_back(true); 1030 break; 1031 } 1032 case Type::TypedPointerTyID: 1033 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1034 } 1035 1036 // Emit the finished record. 1037 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1038 TypeVals.clear(); 1039 } 1040 1041 Stream.ExitBlock(); 1042 } 1043 1044 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1045 switch (Linkage) { 1046 case GlobalValue::ExternalLinkage: 1047 return 0; 1048 case GlobalValue::WeakAnyLinkage: 1049 return 16; 1050 case GlobalValue::AppendingLinkage: 1051 return 2; 1052 case GlobalValue::InternalLinkage: 1053 return 3; 1054 case GlobalValue::LinkOnceAnyLinkage: 1055 return 18; 1056 case GlobalValue::ExternalWeakLinkage: 1057 return 7; 1058 case GlobalValue::CommonLinkage: 1059 return 8; 1060 case GlobalValue::PrivateLinkage: 1061 return 9; 1062 case GlobalValue::WeakODRLinkage: 1063 return 17; 1064 case GlobalValue::LinkOnceODRLinkage: 1065 return 19; 1066 case GlobalValue::AvailableExternallyLinkage: 1067 return 12; 1068 } 1069 llvm_unreachable("Invalid linkage"); 1070 } 1071 1072 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1073 return getEncodedLinkage(GV.getLinkage()); 1074 } 1075 1076 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1077 uint64_t RawFlags = 0; 1078 RawFlags |= Flags.ReadNone; 1079 RawFlags |= (Flags.ReadOnly << 1); 1080 RawFlags |= (Flags.NoRecurse << 2); 1081 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1082 RawFlags |= (Flags.NoInline << 4); 1083 RawFlags |= (Flags.AlwaysInline << 5); 1084 RawFlags |= (Flags.NoUnwind << 6); 1085 RawFlags |= (Flags.MayThrow << 7); 1086 RawFlags |= (Flags.HasUnknownCall << 8); 1087 RawFlags |= (Flags.MustBeUnreachable << 9); 1088 return RawFlags; 1089 } 1090 1091 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1092 // in BitcodeReader.cpp. 1093 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1094 uint64_t RawFlags = 0; 1095 1096 RawFlags |= Flags.NotEligibleToImport; // bool 1097 RawFlags |= (Flags.Live << 1); 1098 RawFlags |= (Flags.DSOLocal << 2); 1099 RawFlags |= (Flags.CanAutoHide << 3); 1100 1101 // Linkage don't need to be remapped at that time for the summary. Any future 1102 // change to the getEncodedLinkage() function will need to be taken into 1103 // account here as well. 1104 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1105 1106 RawFlags |= (Flags.Visibility << 8); // 2 bits 1107 1108 return RawFlags; 1109 } 1110 1111 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1112 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1113 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1114 return RawFlags; 1115 } 1116 1117 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1118 switch (GV.getVisibility()) { 1119 case GlobalValue::DefaultVisibility: return 0; 1120 case GlobalValue::HiddenVisibility: return 1; 1121 case GlobalValue::ProtectedVisibility: return 2; 1122 } 1123 llvm_unreachable("Invalid visibility"); 1124 } 1125 1126 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1127 switch (GV.getDLLStorageClass()) { 1128 case GlobalValue::DefaultStorageClass: return 0; 1129 case GlobalValue::DLLImportStorageClass: return 1; 1130 case GlobalValue::DLLExportStorageClass: return 2; 1131 } 1132 llvm_unreachable("Invalid DLL storage class"); 1133 } 1134 1135 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1136 switch (GV.getThreadLocalMode()) { 1137 case GlobalVariable::NotThreadLocal: return 0; 1138 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1139 case GlobalVariable::LocalDynamicTLSModel: return 2; 1140 case GlobalVariable::InitialExecTLSModel: return 3; 1141 case GlobalVariable::LocalExecTLSModel: return 4; 1142 } 1143 llvm_unreachable("Invalid TLS model"); 1144 } 1145 1146 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1147 switch (C.getSelectionKind()) { 1148 case Comdat::Any: 1149 return bitc::COMDAT_SELECTION_KIND_ANY; 1150 case Comdat::ExactMatch: 1151 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1152 case Comdat::Largest: 1153 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1154 case Comdat::NoDeduplicate: 1155 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1156 case Comdat::SameSize: 1157 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1158 } 1159 llvm_unreachable("Invalid selection kind"); 1160 } 1161 1162 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1163 switch (GV.getUnnamedAddr()) { 1164 case GlobalValue::UnnamedAddr::None: return 0; 1165 case GlobalValue::UnnamedAddr::Local: return 2; 1166 case GlobalValue::UnnamedAddr::Global: return 1; 1167 } 1168 llvm_unreachable("Invalid unnamed_addr"); 1169 } 1170 1171 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1172 if (GenerateHash) 1173 Hasher.update(Str); 1174 return StrtabBuilder.add(Str); 1175 } 1176 1177 void ModuleBitcodeWriter::writeComdats() { 1178 SmallVector<unsigned, 64> Vals; 1179 for (const Comdat *C : VE.getComdats()) { 1180 // COMDAT: [strtab offset, strtab size, selection_kind] 1181 Vals.push_back(addToStrtab(C->getName())); 1182 Vals.push_back(C->getName().size()); 1183 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1184 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1185 Vals.clear(); 1186 } 1187 } 1188 1189 /// Write a record that will eventually hold the word offset of the 1190 /// module-level VST. For now the offset is 0, which will be backpatched 1191 /// after the real VST is written. Saves the bit offset to backpatch. 1192 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1193 // Write a placeholder value in for the offset of the real VST, 1194 // which is written after the function blocks so that it can include 1195 // the offset of each function. The placeholder offset will be 1196 // updated when the real VST is written. 1197 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1198 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1199 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1200 // hold the real VST offset. Must use fixed instead of VBR as we don't 1201 // know how many VBR chunks to reserve ahead of time. 1202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1203 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1204 1205 // Emit the placeholder 1206 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1207 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1208 1209 // Compute and save the bit offset to the placeholder, which will be 1210 // patched when the real VST is written. We can simply subtract the 32-bit 1211 // fixed size from the current bit number to get the location to backpatch. 1212 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1213 } 1214 1215 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1216 1217 /// Determine the encoding to use for the given string name and length. 1218 static StringEncoding getStringEncoding(StringRef Str) { 1219 bool isChar6 = true; 1220 for (char C : Str) { 1221 if (isChar6) 1222 isChar6 = BitCodeAbbrevOp::isChar6(C); 1223 if ((unsigned char)C & 128) 1224 // don't bother scanning the rest. 1225 return SE_Fixed8; 1226 } 1227 if (isChar6) 1228 return SE_Char6; 1229 return SE_Fixed7; 1230 } 1231 1232 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1233 "Sanitizer Metadata is too large for naive serialization."); 1234 static unsigned 1235 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1236 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1237 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1238 } 1239 1240 /// Emit top-level description of module, including target triple, inline asm, 1241 /// descriptors for global variables, and function prototype info. 1242 /// Returns the bit offset to backpatch with the location of the real VST. 1243 void ModuleBitcodeWriter::writeModuleInfo() { 1244 // Emit various pieces of data attached to a module. 1245 if (!M.getTargetTriple().empty()) 1246 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1247 0 /*TODO*/); 1248 const std::string &DL = M.getDataLayoutStr(); 1249 if (!DL.empty()) 1250 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1251 if (!M.getModuleInlineAsm().empty()) 1252 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1253 0 /*TODO*/); 1254 1255 // Emit information about sections and GC, computing how many there are. Also 1256 // compute the maximum alignment value. 1257 std::map<std::string, unsigned> SectionMap; 1258 std::map<std::string, unsigned> GCMap; 1259 MaybeAlign MaxAlignment; 1260 unsigned MaxGlobalType = 0; 1261 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1262 if (A) 1263 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1264 }; 1265 for (const GlobalVariable &GV : M.globals()) { 1266 UpdateMaxAlignment(GV.getAlign()); 1267 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1268 if (GV.hasSection()) { 1269 // Give section names unique ID's. 1270 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1271 if (!Entry) { 1272 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1273 0 /*TODO*/); 1274 Entry = SectionMap.size(); 1275 } 1276 } 1277 } 1278 for (const Function &F : M) { 1279 UpdateMaxAlignment(F.getAlign()); 1280 if (F.hasSection()) { 1281 // Give section names unique ID's. 1282 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1283 if (!Entry) { 1284 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1285 0 /*TODO*/); 1286 Entry = SectionMap.size(); 1287 } 1288 } 1289 if (F.hasGC()) { 1290 // Same for GC names. 1291 unsigned &Entry = GCMap[F.getGC()]; 1292 if (!Entry) { 1293 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1294 0 /*TODO*/); 1295 Entry = GCMap.size(); 1296 } 1297 } 1298 } 1299 1300 // Emit abbrev for globals, now that we know # sections and max alignment. 1301 unsigned SimpleGVarAbbrev = 0; 1302 if (!M.global_empty()) { 1303 // Add an abbrev for common globals with no visibility or thread localness. 1304 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1305 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1309 Log2_32_Ceil(MaxGlobalType+1))); 1310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1311 //| explicitType << 1 1312 //| constant 1313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1315 if (!MaxAlignment) // Alignment. 1316 Abbv->Add(BitCodeAbbrevOp(0)); 1317 else { 1318 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1320 Log2_32_Ceil(MaxEncAlignment+1))); 1321 } 1322 if (SectionMap.empty()) // Section. 1323 Abbv->Add(BitCodeAbbrevOp(0)); 1324 else 1325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1326 Log2_32_Ceil(SectionMap.size()+1))); 1327 // Don't bother emitting vis + thread local. 1328 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1329 } 1330 1331 SmallVector<unsigned, 64> Vals; 1332 // Emit the module's source file name. 1333 { 1334 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1335 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1336 if (Bits == SE_Char6) 1337 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1338 else if (Bits == SE_Fixed7) 1339 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1340 1341 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1342 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1343 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1345 Abbv->Add(AbbrevOpToUse); 1346 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1347 1348 for (const auto P : M.getSourceFileName()) 1349 Vals.push_back((unsigned char)P); 1350 1351 // Emit the finished record. 1352 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1353 Vals.clear(); 1354 } 1355 1356 // Emit the global variable information. 1357 for (const GlobalVariable &GV : M.globals()) { 1358 unsigned AbbrevToUse = 0; 1359 1360 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1361 // linkage, alignment, section, visibility, threadlocal, 1362 // unnamed_addr, externally_initialized, dllstorageclass, 1363 // comdat, attributes, DSO_Local, GlobalSanitizer] 1364 Vals.push_back(addToStrtab(GV.getName())); 1365 Vals.push_back(GV.getName().size()); 1366 Vals.push_back(VE.getTypeID(GV.getValueType())); 1367 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1368 Vals.push_back(GV.isDeclaration() ? 0 : 1369 (VE.getValueID(GV.getInitializer()) + 1)); 1370 Vals.push_back(getEncodedLinkage(GV)); 1371 Vals.push_back(getEncodedAlign(GV.getAlign())); 1372 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1373 : 0); 1374 if (GV.isThreadLocal() || 1375 GV.getVisibility() != GlobalValue::DefaultVisibility || 1376 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1377 GV.isExternallyInitialized() || 1378 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1379 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1380 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1381 Vals.push_back(getEncodedVisibility(GV)); 1382 Vals.push_back(getEncodedThreadLocalMode(GV)); 1383 Vals.push_back(getEncodedUnnamedAddr(GV)); 1384 Vals.push_back(GV.isExternallyInitialized()); 1385 Vals.push_back(getEncodedDLLStorageClass(GV)); 1386 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1387 1388 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1389 Vals.push_back(VE.getAttributeListID(AL)); 1390 1391 Vals.push_back(GV.isDSOLocal()); 1392 Vals.push_back(addToStrtab(GV.getPartition())); 1393 Vals.push_back(GV.getPartition().size()); 1394 1395 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1396 GV.getSanitizerMetadata()) 1397 : 0)); 1398 } else { 1399 AbbrevToUse = SimpleGVarAbbrev; 1400 } 1401 1402 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1403 Vals.clear(); 1404 } 1405 1406 // Emit the function proto information. 1407 for (const Function &F : M) { 1408 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1409 // linkage, paramattrs, alignment, section, visibility, gc, 1410 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1411 // prefixdata, personalityfn, DSO_Local, addrspace] 1412 Vals.push_back(addToStrtab(F.getName())); 1413 Vals.push_back(F.getName().size()); 1414 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1415 Vals.push_back(F.getCallingConv()); 1416 Vals.push_back(F.isDeclaration()); 1417 Vals.push_back(getEncodedLinkage(F)); 1418 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1419 Vals.push_back(getEncodedAlign(F.getAlign())); 1420 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1421 : 0); 1422 Vals.push_back(getEncodedVisibility(F)); 1423 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1424 Vals.push_back(getEncodedUnnamedAddr(F)); 1425 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1426 : 0); 1427 Vals.push_back(getEncodedDLLStorageClass(F)); 1428 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1429 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1430 : 0); 1431 Vals.push_back( 1432 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1433 1434 Vals.push_back(F.isDSOLocal()); 1435 Vals.push_back(F.getAddressSpace()); 1436 Vals.push_back(addToStrtab(F.getPartition())); 1437 Vals.push_back(F.getPartition().size()); 1438 1439 unsigned AbbrevToUse = 0; 1440 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1441 Vals.clear(); 1442 } 1443 1444 // Emit the alias information. 1445 for (const GlobalAlias &A : M.aliases()) { 1446 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1447 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1448 // DSO_Local] 1449 Vals.push_back(addToStrtab(A.getName())); 1450 Vals.push_back(A.getName().size()); 1451 Vals.push_back(VE.getTypeID(A.getValueType())); 1452 Vals.push_back(A.getType()->getAddressSpace()); 1453 Vals.push_back(VE.getValueID(A.getAliasee())); 1454 Vals.push_back(getEncodedLinkage(A)); 1455 Vals.push_back(getEncodedVisibility(A)); 1456 Vals.push_back(getEncodedDLLStorageClass(A)); 1457 Vals.push_back(getEncodedThreadLocalMode(A)); 1458 Vals.push_back(getEncodedUnnamedAddr(A)); 1459 Vals.push_back(A.isDSOLocal()); 1460 Vals.push_back(addToStrtab(A.getPartition())); 1461 Vals.push_back(A.getPartition().size()); 1462 1463 unsigned AbbrevToUse = 0; 1464 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1465 Vals.clear(); 1466 } 1467 1468 // Emit the ifunc information. 1469 for (const GlobalIFunc &I : M.ifuncs()) { 1470 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1471 // val#, linkage, visibility, DSO_Local] 1472 Vals.push_back(addToStrtab(I.getName())); 1473 Vals.push_back(I.getName().size()); 1474 Vals.push_back(VE.getTypeID(I.getValueType())); 1475 Vals.push_back(I.getType()->getAddressSpace()); 1476 Vals.push_back(VE.getValueID(I.getResolver())); 1477 Vals.push_back(getEncodedLinkage(I)); 1478 Vals.push_back(getEncodedVisibility(I)); 1479 Vals.push_back(I.isDSOLocal()); 1480 Vals.push_back(addToStrtab(I.getPartition())); 1481 Vals.push_back(I.getPartition().size()); 1482 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1483 Vals.clear(); 1484 } 1485 1486 writeValueSymbolTableForwardDecl(); 1487 } 1488 1489 static uint64_t getOptimizationFlags(const Value *V) { 1490 uint64_t Flags = 0; 1491 1492 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1493 if (OBO->hasNoSignedWrap()) 1494 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1495 if (OBO->hasNoUnsignedWrap()) 1496 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1497 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1498 if (PEO->isExact()) 1499 Flags |= 1 << bitc::PEO_EXACT; 1500 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1501 if (FPMO->hasAllowReassoc()) 1502 Flags |= bitc::AllowReassoc; 1503 if (FPMO->hasNoNaNs()) 1504 Flags |= bitc::NoNaNs; 1505 if (FPMO->hasNoInfs()) 1506 Flags |= bitc::NoInfs; 1507 if (FPMO->hasNoSignedZeros()) 1508 Flags |= bitc::NoSignedZeros; 1509 if (FPMO->hasAllowReciprocal()) 1510 Flags |= bitc::AllowReciprocal; 1511 if (FPMO->hasAllowContract()) 1512 Flags |= bitc::AllowContract; 1513 if (FPMO->hasApproxFunc()) 1514 Flags |= bitc::ApproxFunc; 1515 } 1516 1517 return Flags; 1518 } 1519 1520 void ModuleBitcodeWriter::writeValueAsMetadata( 1521 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1522 // Mimic an MDNode with a value as one operand. 1523 Value *V = MD->getValue(); 1524 Record.push_back(VE.getTypeID(V->getType())); 1525 Record.push_back(VE.getValueID(V)); 1526 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1527 Record.clear(); 1528 } 1529 1530 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1531 SmallVectorImpl<uint64_t> &Record, 1532 unsigned Abbrev) { 1533 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1534 Metadata *MD = N->getOperand(i); 1535 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1536 "Unexpected function-local metadata"); 1537 Record.push_back(VE.getMetadataOrNullID(MD)); 1538 } 1539 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1540 : bitc::METADATA_NODE, 1541 Record, Abbrev); 1542 Record.clear(); 1543 } 1544 1545 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1546 // Assume the column is usually under 128, and always output the inlined-at 1547 // location (it's never more expensive than building an array size 1). 1548 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1549 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1556 return Stream.EmitAbbrev(std::move(Abbv)); 1557 } 1558 1559 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1560 SmallVectorImpl<uint64_t> &Record, 1561 unsigned &Abbrev) { 1562 if (!Abbrev) 1563 Abbrev = createDILocationAbbrev(); 1564 1565 Record.push_back(N->isDistinct()); 1566 Record.push_back(N->getLine()); 1567 Record.push_back(N->getColumn()); 1568 Record.push_back(VE.getMetadataID(N->getScope())); 1569 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1570 Record.push_back(N->isImplicitCode()); 1571 1572 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1573 Record.clear(); 1574 } 1575 1576 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1577 // Assume the column is usually under 128, and always output the inlined-at 1578 // location (it's never more expensive than building an array size 1). 1579 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1580 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1587 return Stream.EmitAbbrev(std::move(Abbv)); 1588 } 1589 1590 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1591 SmallVectorImpl<uint64_t> &Record, 1592 unsigned &Abbrev) { 1593 if (!Abbrev) 1594 Abbrev = createGenericDINodeAbbrev(); 1595 1596 Record.push_back(N->isDistinct()); 1597 Record.push_back(N->getTag()); 1598 Record.push_back(0); // Per-tag version field; unused for now. 1599 1600 for (auto &I : N->operands()) 1601 Record.push_back(VE.getMetadataOrNullID(I)); 1602 1603 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1604 Record.clear(); 1605 } 1606 1607 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1608 SmallVectorImpl<uint64_t> &Record, 1609 unsigned Abbrev) { 1610 const uint64_t Version = 2 << 1; 1611 Record.push_back((uint64_t)N->isDistinct() | Version); 1612 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1613 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1614 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1615 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1616 1617 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1618 Record.clear(); 1619 } 1620 1621 void ModuleBitcodeWriter::writeDIGenericSubrange( 1622 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1623 unsigned Abbrev) { 1624 Record.push_back((uint64_t)N->isDistinct()); 1625 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1626 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1627 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1628 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1629 1630 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1631 Record.clear(); 1632 } 1633 1634 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1635 if ((int64_t)V >= 0) 1636 Vals.push_back(V << 1); 1637 else 1638 Vals.push_back((-V << 1) | 1); 1639 } 1640 1641 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1642 // We have an arbitrary precision integer value to write whose 1643 // bit width is > 64. However, in canonical unsigned integer 1644 // format it is likely that the high bits are going to be zero. 1645 // So, we only write the number of active words. 1646 unsigned NumWords = A.getActiveWords(); 1647 const uint64_t *RawData = A.getRawData(); 1648 for (unsigned i = 0; i < NumWords; i++) 1649 emitSignedInt64(Vals, RawData[i]); 1650 } 1651 1652 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1653 SmallVectorImpl<uint64_t> &Record, 1654 unsigned Abbrev) { 1655 const uint64_t IsBigInt = 1 << 2; 1656 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1657 Record.push_back(N->getValue().getBitWidth()); 1658 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1659 emitWideAPInt(Record, N->getValue()); 1660 1661 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1662 Record.clear(); 1663 } 1664 1665 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1666 SmallVectorImpl<uint64_t> &Record, 1667 unsigned Abbrev) { 1668 Record.push_back(N->isDistinct()); 1669 Record.push_back(N->getTag()); 1670 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1671 Record.push_back(N->getSizeInBits()); 1672 Record.push_back(N->getAlignInBits()); 1673 Record.push_back(N->getEncoding()); 1674 Record.push_back(N->getFlags()); 1675 1676 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1677 Record.clear(); 1678 } 1679 1680 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1681 SmallVectorImpl<uint64_t> &Record, 1682 unsigned Abbrev) { 1683 Record.push_back(N->isDistinct()); 1684 Record.push_back(N->getTag()); 1685 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1686 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1687 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1688 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1689 Record.push_back(N->getSizeInBits()); 1690 Record.push_back(N->getAlignInBits()); 1691 Record.push_back(N->getEncoding()); 1692 1693 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1694 Record.clear(); 1695 } 1696 1697 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1698 SmallVectorImpl<uint64_t> &Record, 1699 unsigned Abbrev) { 1700 Record.push_back(N->isDistinct()); 1701 Record.push_back(N->getTag()); 1702 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1703 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1704 Record.push_back(N->getLine()); 1705 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1706 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1707 Record.push_back(N->getSizeInBits()); 1708 Record.push_back(N->getAlignInBits()); 1709 Record.push_back(N->getOffsetInBits()); 1710 Record.push_back(N->getFlags()); 1711 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1712 1713 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1714 // that there is no DWARF address space associated with DIDerivedType. 1715 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1716 Record.push_back(*DWARFAddressSpace + 1); 1717 else 1718 Record.push_back(0); 1719 1720 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1721 1722 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1723 Record.clear(); 1724 } 1725 1726 void ModuleBitcodeWriter::writeDICompositeType( 1727 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1728 unsigned Abbrev) { 1729 const unsigned IsNotUsedInOldTypeRef = 0x2; 1730 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1731 Record.push_back(N->getTag()); 1732 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1733 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1734 Record.push_back(N->getLine()); 1735 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1736 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1737 Record.push_back(N->getSizeInBits()); 1738 Record.push_back(N->getAlignInBits()); 1739 Record.push_back(N->getOffsetInBits()); 1740 Record.push_back(N->getFlags()); 1741 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1742 Record.push_back(N->getRuntimeLang()); 1743 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1744 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1745 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1746 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1747 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1749 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1750 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1751 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1752 1753 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1754 Record.clear(); 1755 } 1756 1757 void ModuleBitcodeWriter::writeDISubroutineType( 1758 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1759 unsigned Abbrev) { 1760 const unsigned HasNoOldTypeRefs = 0x2; 1761 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1762 Record.push_back(N->getFlags()); 1763 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1764 Record.push_back(N->getCC()); 1765 1766 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1767 Record.clear(); 1768 } 1769 1770 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1771 SmallVectorImpl<uint64_t> &Record, 1772 unsigned Abbrev) { 1773 Record.push_back(N->isDistinct()); 1774 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1775 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1776 if (N->getRawChecksum()) { 1777 Record.push_back(N->getRawChecksum()->Kind); 1778 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1779 } else { 1780 // Maintain backwards compatibility with the old internal representation of 1781 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1782 Record.push_back(0); 1783 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1784 } 1785 auto Source = N->getRawSource(); 1786 if (Source) 1787 Record.push_back(VE.getMetadataOrNullID(*Source)); 1788 1789 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1790 Record.clear(); 1791 } 1792 1793 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1794 SmallVectorImpl<uint64_t> &Record, 1795 unsigned Abbrev) { 1796 assert(N->isDistinct() && "Expected distinct compile units"); 1797 Record.push_back(/* IsDistinct */ true); 1798 Record.push_back(N->getSourceLanguage()); 1799 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1800 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1801 Record.push_back(N->isOptimized()); 1802 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1803 Record.push_back(N->getRuntimeVersion()); 1804 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1805 Record.push_back(N->getEmissionKind()); 1806 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1807 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1808 Record.push_back(/* subprograms */ 0); 1809 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1810 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1811 Record.push_back(N->getDWOId()); 1812 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1813 Record.push_back(N->getSplitDebugInlining()); 1814 Record.push_back(N->getDebugInfoForProfiling()); 1815 Record.push_back((unsigned)N->getNameTableKind()); 1816 Record.push_back(N->getRangesBaseAddress()); 1817 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1818 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1819 1820 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1821 Record.clear(); 1822 } 1823 1824 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1825 SmallVectorImpl<uint64_t> &Record, 1826 unsigned Abbrev) { 1827 const uint64_t HasUnitFlag = 1 << 1; 1828 const uint64_t HasSPFlagsFlag = 1 << 2; 1829 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1830 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1831 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1832 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1833 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1834 Record.push_back(N->getLine()); 1835 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1836 Record.push_back(N->getScopeLine()); 1837 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1838 Record.push_back(N->getSPFlags()); 1839 Record.push_back(N->getVirtualIndex()); 1840 Record.push_back(N->getFlags()); 1841 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1842 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1843 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1844 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1845 Record.push_back(N->getThisAdjustment()); 1846 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1847 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1848 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1849 1850 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1851 Record.clear(); 1852 } 1853 1854 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1855 SmallVectorImpl<uint64_t> &Record, 1856 unsigned Abbrev) { 1857 Record.push_back(N->isDistinct()); 1858 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1859 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1860 Record.push_back(N->getLine()); 1861 Record.push_back(N->getColumn()); 1862 1863 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1864 Record.clear(); 1865 } 1866 1867 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1868 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1869 unsigned Abbrev) { 1870 Record.push_back(N->isDistinct()); 1871 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1872 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1873 Record.push_back(N->getDiscriminator()); 1874 1875 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1876 Record.clear(); 1877 } 1878 1879 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1880 SmallVectorImpl<uint64_t> &Record, 1881 unsigned Abbrev) { 1882 Record.push_back(N->isDistinct()); 1883 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1884 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1885 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1886 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1887 Record.push_back(N->getLineNo()); 1888 1889 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1890 Record.clear(); 1891 } 1892 1893 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1894 SmallVectorImpl<uint64_t> &Record, 1895 unsigned Abbrev) { 1896 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1897 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1898 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1899 1900 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1901 Record.clear(); 1902 } 1903 1904 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1905 SmallVectorImpl<uint64_t> &Record, 1906 unsigned Abbrev) { 1907 Record.push_back(N->isDistinct()); 1908 Record.push_back(N->getMacinfoType()); 1909 Record.push_back(N->getLine()); 1910 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1911 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1912 1913 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1914 Record.clear(); 1915 } 1916 1917 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1918 SmallVectorImpl<uint64_t> &Record, 1919 unsigned Abbrev) { 1920 Record.push_back(N->isDistinct()); 1921 Record.push_back(N->getMacinfoType()); 1922 Record.push_back(N->getLine()); 1923 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1924 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1925 1926 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1927 Record.clear(); 1928 } 1929 1930 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1931 SmallVectorImpl<uint64_t> &Record, 1932 unsigned Abbrev) { 1933 Record.reserve(N->getArgs().size()); 1934 for (ValueAsMetadata *MD : N->getArgs()) 1935 Record.push_back(VE.getMetadataID(MD)); 1936 1937 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1938 Record.clear(); 1939 } 1940 1941 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1942 SmallVectorImpl<uint64_t> &Record, 1943 unsigned Abbrev) { 1944 Record.push_back(N->isDistinct()); 1945 for (auto &I : N->operands()) 1946 Record.push_back(VE.getMetadataOrNullID(I)); 1947 Record.push_back(N->getLineNo()); 1948 Record.push_back(N->getIsDecl()); 1949 1950 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1951 Record.clear(); 1952 } 1953 1954 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 1955 SmallVectorImpl<uint64_t> &Record, 1956 unsigned Abbrev) { 1957 // There are no arguments for this metadata type. 1958 Record.push_back(N->isDistinct()); 1959 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 1960 Record.clear(); 1961 } 1962 1963 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1964 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1965 unsigned Abbrev) { 1966 Record.push_back(N->isDistinct()); 1967 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1968 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1969 Record.push_back(N->isDefault()); 1970 1971 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1972 Record.clear(); 1973 } 1974 1975 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1976 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1977 unsigned Abbrev) { 1978 Record.push_back(N->isDistinct()); 1979 Record.push_back(N->getTag()); 1980 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1981 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1982 Record.push_back(N->isDefault()); 1983 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1984 1985 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1986 Record.clear(); 1987 } 1988 1989 void ModuleBitcodeWriter::writeDIGlobalVariable( 1990 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1991 unsigned Abbrev) { 1992 const uint64_t Version = 2 << 1; 1993 Record.push_back((uint64_t)N->isDistinct() | Version); 1994 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1995 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1996 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1997 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1998 Record.push_back(N->getLine()); 1999 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2000 Record.push_back(N->isLocalToUnit()); 2001 Record.push_back(N->isDefinition()); 2002 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2003 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2004 Record.push_back(N->getAlignInBits()); 2005 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2006 2007 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2008 Record.clear(); 2009 } 2010 2011 void ModuleBitcodeWriter::writeDILocalVariable( 2012 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2013 unsigned Abbrev) { 2014 // In order to support all possible bitcode formats in BitcodeReader we need 2015 // to distinguish the following cases: 2016 // 1) Record has no artificial tag (Record[1]), 2017 // has no obsolete inlinedAt field (Record[9]). 2018 // In this case Record size will be 8, HasAlignment flag is false. 2019 // 2) Record has artificial tag (Record[1]), 2020 // has no obsolete inlignedAt field (Record[9]). 2021 // In this case Record size will be 9, HasAlignment flag is false. 2022 // 3) Record has both artificial tag (Record[1]) and 2023 // obsolete inlignedAt field (Record[9]). 2024 // In this case Record size will be 10, HasAlignment flag is false. 2025 // 4) Record has neither artificial tag, nor inlignedAt field, but 2026 // HasAlignment flag is true and Record[8] contains alignment value. 2027 const uint64_t HasAlignmentFlag = 1 << 1; 2028 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2029 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2030 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2031 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2032 Record.push_back(N->getLine()); 2033 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2034 Record.push_back(N->getArg()); 2035 Record.push_back(N->getFlags()); 2036 Record.push_back(N->getAlignInBits()); 2037 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2038 2039 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2040 Record.clear(); 2041 } 2042 2043 void ModuleBitcodeWriter::writeDILabel( 2044 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2045 unsigned Abbrev) { 2046 Record.push_back((uint64_t)N->isDistinct()); 2047 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2048 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2049 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2050 Record.push_back(N->getLine()); 2051 2052 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2053 Record.clear(); 2054 } 2055 2056 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2057 SmallVectorImpl<uint64_t> &Record, 2058 unsigned Abbrev) { 2059 Record.reserve(N->getElements().size() + 1); 2060 const uint64_t Version = 3 << 1; 2061 Record.push_back((uint64_t)N->isDistinct() | Version); 2062 Record.append(N->elements_begin(), N->elements_end()); 2063 2064 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2065 Record.clear(); 2066 } 2067 2068 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2069 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2070 unsigned Abbrev) { 2071 Record.push_back(N->isDistinct()); 2072 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2073 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2074 2075 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2076 Record.clear(); 2077 } 2078 2079 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2080 SmallVectorImpl<uint64_t> &Record, 2081 unsigned Abbrev) { 2082 Record.push_back(N->isDistinct()); 2083 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2084 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2085 Record.push_back(N->getLine()); 2086 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2087 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2088 Record.push_back(N->getAttributes()); 2089 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2090 2091 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2092 Record.clear(); 2093 } 2094 2095 void ModuleBitcodeWriter::writeDIImportedEntity( 2096 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2097 unsigned Abbrev) { 2098 Record.push_back(N->isDistinct()); 2099 Record.push_back(N->getTag()); 2100 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2101 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2102 Record.push_back(N->getLine()); 2103 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2104 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2105 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2106 2107 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2108 Record.clear(); 2109 } 2110 2111 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2112 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2113 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2116 return Stream.EmitAbbrev(std::move(Abbv)); 2117 } 2118 2119 void ModuleBitcodeWriter::writeNamedMetadata( 2120 SmallVectorImpl<uint64_t> &Record) { 2121 if (M.named_metadata_empty()) 2122 return; 2123 2124 unsigned Abbrev = createNamedMetadataAbbrev(); 2125 for (const NamedMDNode &NMD : M.named_metadata()) { 2126 // Write name. 2127 StringRef Str = NMD.getName(); 2128 Record.append(Str.bytes_begin(), Str.bytes_end()); 2129 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2130 Record.clear(); 2131 2132 // Write named metadata operands. 2133 for (const MDNode *N : NMD.operands()) 2134 Record.push_back(VE.getMetadataID(N)); 2135 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2136 Record.clear(); 2137 } 2138 } 2139 2140 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2141 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2142 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2146 return Stream.EmitAbbrev(std::move(Abbv)); 2147 } 2148 2149 /// Write out a record for MDString. 2150 /// 2151 /// All the metadata strings in a metadata block are emitted in a single 2152 /// record. The sizes and strings themselves are shoved into a blob. 2153 void ModuleBitcodeWriter::writeMetadataStrings( 2154 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2155 if (Strings.empty()) 2156 return; 2157 2158 // Start the record with the number of strings. 2159 Record.push_back(bitc::METADATA_STRINGS); 2160 Record.push_back(Strings.size()); 2161 2162 // Emit the sizes of the strings in the blob. 2163 SmallString<256> Blob; 2164 { 2165 BitstreamWriter W(Blob); 2166 for (const Metadata *MD : Strings) 2167 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2168 W.FlushToWord(); 2169 } 2170 2171 // Add the offset to the strings to the record. 2172 Record.push_back(Blob.size()); 2173 2174 // Add the strings to the blob. 2175 for (const Metadata *MD : Strings) 2176 Blob.append(cast<MDString>(MD)->getString()); 2177 2178 // Emit the final record. 2179 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2180 Record.clear(); 2181 } 2182 2183 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2184 enum MetadataAbbrev : unsigned { 2185 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2186 #include "llvm/IR/Metadata.def" 2187 LastPlusOne 2188 }; 2189 2190 void ModuleBitcodeWriter::writeMetadataRecords( 2191 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2192 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2193 if (MDs.empty()) 2194 return; 2195 2196 // Initialize MDNode abbreviations. 2197 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2198 #include "llvm/IR/Metadata.def" 2199 2200 for (const Metadata *MD : MDs) { 2201 if (IndexPos) 2202 IndexPos->push_back(Stream.GetCurrentBitNo()); 2203 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2204 assert(N->isResolved() && "Expected forward references to be resolved"); 2205 2206 switch (N->getMetadataID()) { 2207 default: 2208 llvm_unreachable("Invalid MDNode subclass"); 2209 #define HANDLE_MDNODE_LEAF(CLASS) \ 2210 case Metadata::CLASS##Kind: \ 2211 if (MDAbbrevs) \ 2212 write##CLASS(cast<CLASS>(N), Record, \ 2213 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2214 else \ 2215 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2216 continue; 2217 #include "llvm/IR/Metadata.def" 2218 } 2219 } 2220 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2221 } 2222 } 2223 2224 void ModuleBitcodeWriter::writeModuleMetadata() { 2225 if (!VE.hasMDs() && M.named_metadata_empty()) 2226 return; 2227 2228 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2229 SmallVector<uint64_t, 64> Record; 2230 2231 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2232 // block and load any metadata. 2233 std::vector<unsigned> MDAbbrevs; 2234 2235 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2236 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2237 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2238 createGenericDINodeAbbrev(); 2239 2240 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2241 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2244 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2245 2246 Abbv = std::make_shared<BitCodeAbbrev>(); 2247 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2250 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2251 2252 // Emit MDStrings together upfront. 2253 writeMetadataStrings(VE.getMDStrings(), Record); 2254 2255 // We only emit an index for the metadata record if we have more than a given 2256 // (naive) threshold of metadatas, otherwise it is not worth it. 2257 if (VE.getNonMDStrings().size() > IndexThreshold) { 2258 // Write a placeholder value in for the offset of the metadata index, 2259 // which is written after the records, so that it can include 2260 // the offset of each entry. The placeholder offset will be 2261 // updated after all records are emitted. 2262 uint64_t Vals[] = {0, 0}; 2263 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2264 } 2265 2266 // Compute and save the bit offset to the current position, which will be 2267 // patched when we emit the index later. We can simply subtract the 64-bit 2268 // fixed size from the current bit number to get the location to backpatch. 2269 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2270 2271 // This index will contain the bitpos for each individual record. 2272 std::vector<uint64_t> IndexPos; 2273 IndexPos.reserve(VE.getNonMDStrings().size()); 2274 2275 // Write all the records 2276 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2277 2278 if (VE.getNonMDStrings().size() > IndexThreshold) { 2279 // Now that we have emitted all the records we will emit the index. But 2280 // first 2281 // backpatch the forward reference so that the reader can skip the records 2282 // efficiently. 2283 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2284 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2285 2286 // Delta encode the index. 2287 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2288 for (auto &Elt : IndexPos) { 2289 auto EltDelta = Elt - PreviousValue; 2290 PreviousValue = Elt; 2291 Elt = EltDelta; 2292 } 2293 // Emit the index record. 2294 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2295 IndexPos.clear(); 2296 } 2297 2298 // Write the named metadata now. 2299 writeNamedMetadata(Record); 2300 2301 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2302 SmallVector<uint64_t, 4> Record; 2303 Record.push_back(VE.getValueID(&GO)); 2304 pushGlobalMetadataAttachment(Record, GO); 2305 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2306 }; 2307 for (const Function &F : M) 2308 if (F.isDeclaration() && F.hasMetadata()) 2309 AddDeclAttachedMetadata(F); 2310 // FIXME: Only store metadata for declarations here, and move data for global 2311 // variable definitions to a separate block (PR28134). 2312 for (const GlobalVariable &GV : M.globals()) 2313 if (GV.hasMetadata()) 2314 AddDeclAttachedMetadata(GV); 2315 2316 Stream.ExitBlock(); 2317 } 2318 2319 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2320 if (!VE.hasMDs()) 2321 return; 2322 2323 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2324 SmallVector<uint64_t, 64> Record; 2325 writeMetadataStrings(VE.getMDStrings(), Record); 2326 writeMetadataRecords(VE.getNonMDStrings(), Record); 2327 Stream.ExitBlock(); 2328 } 2329 2330 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2331 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2332 // [n x [id, mdnode]] 2333 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2334 GO.getAllMetadata(MDs); 2335 for (const auto &I : MDs) { 2336 Record.push_back(I.first); 2337 Record.push_back(VE.getMetadataID(I.second)); 2338 } 2339 } 2340 2341 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2342 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2343 2344 SmallVector<uint64_t, 64> Record; 2345 2346 if (F.hasMetadata()) { 2347 pushGlobalMetadataAttachment(Record, F); 2348 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2349 Record.clear(); 2350 } 2351 2352 // Write metadata attachments 2353 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2354 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2355 for (const BasicBlock &BB : F) 2356 for (const Instruction &I : BB) { 2357 MDs.clear(); 2358 I.getAllMetadataOtherThanDebugLoc(MDs); 2359 2360 // If no metadata, ignore instruction. 2361 if (MDs.empty()) continue; 2362 2363 Record.push_back(VE.getInstructionID(&I)); 2364 2365 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2366 Record.push_back(MDs[i].first); 2367 Record.push_back(VE.getMetadataID(MDs[i].second)); 2368 } 2369 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2370 Record.clear(); 2371 } 2372 2373 Stream.ExitBlock(); 2374 } 2375 2376 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2377 SmallVector<uint64_t, 64> Record; 2378 2379 // Write metadata kinds 2380 // METADATA_KIND - [n x [id, name]] 2381 SmallVector<StringRef, 8> Names; 2382 M.getMDKindNames(Names); 2383 2384 if (Names.empty()) return; 2385 2386 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2387 2388 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2389 Record.push_back(MDKindID); 2390 StringRef KName = Names[MDKindID]; 2391 Record.append(KName.begin(), KName.end()); 2392 2393 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2394 Record.clear(); 2395 } 2396 2397 Stream.ExitBlock(); 2398 } 2399 2400 void ModuleBitcodeWriter::writeOperandBundleTags() { 2401 // Write metadata kinds 2402 // 2403 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2404 // 2405 // OPERAND_BUNDLE_TAG - [strchr x N] 2406 2407 SmallVector<StringRef, 8> Tags; 2408 M.getOperandBundleTags(Tags); 2409 2410 if (Tags.empty()) 2411 return; 2412 2413 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2414 2415 SmallVector<uint64_t, 64> Record; 2416 2417 for (auto Tag : Tags) { 2418 Record.append(Tag.begin(), Tag.end()); 2419 2420 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2421 Record.clear(); 2422 } 2423 2424 Stream.ExitBlock(); 2425 } 2426 2427 void ModuleBitcodeWriter::writeSyncScopeNames() { 2428 SmallVector<StringRef, 8> SSNs; 2429 M.getContext().getSyncScopeNames(SSNs); 2430 if (SSNs.empty()) 2431 return; 2432 2433 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2434 2435 SmallVector<uint64_t, 64> Record; 2436 for (auto SSN : SSNs) { 2437 Record.append(SSN.begin(), SSN.end()); 2438 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2439 Record.clear(); 2440 } 2441 2442 Stream.ExitBlock(); 2443 } 2444 2445 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2446 bool isGlobal) { 2447 if (FirstVal == LastVal) return; 2448 2449 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2450 2451 unsigned AggregateAbbrev = 0; 2452 unsigned String8Abbrev = 0; 2453 unsigned CString7Abbrev = 0; 2454 unsigned CString6Abbrev = 0; 2455 // If this is a constant pool for the module, emit module-specific abbrevs. 2456 if (isGlobal) { 2457 // Abbrev for CST_CODE_AGGREGATE. 2458 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2459 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2462 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2463 2464 // Abbrev for CST_CODE_STRING. 2465 Abbv = std::make_shared<BitCodeAbbrev>(); 2466 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2469 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2470 // Abbrev for CST_CODE_CSTRING. 2471 Abbv = std::make_shared<BitCodeAbbrev>(); 2472 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2475 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2476 // Abbrev for CST_CODE_CSTRING. 2477 Abbv = std::make_shared<BitCodeAbbrev>(); 2478 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2481 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2482 } 2483 2484 SmallVector<uint64_t, 64> Record; 2485 2486 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2487 Type *LastTy = nullptr; 2488 for (unsigned i = FirstVal; i != LastVal; ++i) { 2489 const Value *V = Vals[i].first; 2490 // If we need to switch types, do so now. 2491 if (V->getType() != LastTy) { 2492 LastTy = V->getType(); 2493 Record.push_back(VE.getTypeID(LastTy)); 2494 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2495 CONSTANTS_SETTYPE_ABBREV); 2496 Record.clear(); 2497 } 2498 2499 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2500 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2501 Record.push_back( 2502 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2503 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2504 2505 // Add the asm string. 2506 const std::string &AsmStr = IA->getAsmString(); 2507 Record.push_back(AsmStr.size()); 2508 Record.append(AsmStr.begin(), AsmStr.end()); 2509 2510 // Add the constraint string. 2511 const std::string &ConstraintStr = IA->getConstraintString(); 2512 Record.push_back(ConstraintStr.size()); 2513 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2514 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2515 Record.clear(); 2516 continue; 2517 } 2518 const Constant *C = cast<Constant>(V); 2519 unsigned Code = -1U; 2520 unsigned AbbrevToUse = 0; 2521 if (C->isNullValue()) { 2522 Code = bitc::CST_CODE_NULL; 2523 } else if (isa<PoisonValue>(C)) { 2524 Code = bitc::CST_CODE_POISON; 2525 } else if (isa<UndefValue>(C)) { 2526 Code = bitc::CST_CODE_UNDEF; 2527 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2528 if (IV->getBitWidth() <= 64) { 2529 uint64_t V = IV->getSExtValue(); 2530 emitSignedInt64(Record, V); 2531 Code = bitc::CST_CODE_INTEGER; 2532 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2533 } else { // Wide integers, > 64 bits in size. 2534 emitWideAPInt(Record, IV->getValue()); 2535 Code = bitc::CST_CODE_WIDE_INTEGER; 2536 } 2537 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2538 Code = bitc::CST_CODE_FLOAT; 2539 Type *Ty = CFP->getType(); 2540 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2541 Ty->isDoubleTy()) { 2542 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2543 } else if (Ty->isX86_FP80Ty()) { 2544 // api needed to prevent premature destruction 2545 // bits are not in the same order as a normal i80 APInt, compensate. 2546 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2547 const uint64_t *p = api.getRawData(); 2548 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2549 Record.push_back(p[0] & 0xffffLL); 2550 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2551 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2552 const uint64_t *p = api.getRawData(); 2553 Record.push_back(p[0]); 2554 Record.push_back(p[1]); 2555 } else { 2556 assert(0 && "Unknown FP type!"); 2557 } 2558 } else if (isa<ConstantDataSequential>(C) && 2559 cast<ConstantDataSequential>(C)->isString()) { 2560 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2561 // Emit constant strings specially. 2562 unsigned NumElts = Str->getNumElements(); 2563 // If this is a null-terminated string, use the denser CSTRING encoding. 2564 if (Str->isCString()) { 2565 Code = bitc::CST_CODE_CSTRING; 2566 --NumElts; // Don't encode the null, which isn't allowed by char6. 2567 } else { 2568 Code = bitc::CST_CODE_STRING; 2569 AbbrevToUse = String8Abbrev; 2570 } 2571 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2572 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2573 for (unsigned i = 0; i != NumElts; ++i) { 2574 unsigned char V = Str->getElementAsInteger(i); 2575 Record.push_back(V); 2576 isCStr7 &= (V & 128) == 0; 2577 if (isCStrChar6) 2578 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2579 } 2580 2581 if (isCStrChar6) 2582 AbbrevToUse = CString6Abbrev; 2583 else if (isCStr7) 2584 AbbrevToUse = CString7Abbrev; 2585 } else if (const ConstantDataSequential *CDS = 2586 dyn_cast<ConstantDataSequential>(C)) { 2587 Code = bitc::CST_CODE_DATA; 2588 Type *EltTy = CDS->getElementType(); 2589 if (isa<IntegerType>(EltTy)) { 2590 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2591 Record.push_back(CDS->getElementAsInteger(i)); 2592 } else { 2593 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2594 Record.push_back( 2595 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2596 } 2597 } else if (isa<ConstantAggregate>(C)) { 2598 Code = bitc::CST_CODE_AGGREGATE; 2599 for (const Value *Op : C->operands()) 2600 Record.push_back(VE.getValueID(Op)); 2601 AbbrevToUse = AggregateAbbrev; 2602 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2603 switch (CE->getOpcode()) { 2604 default: 2605 if (Instruction::isCast(CE->getOpcode())) { 2606 Code = bitc::CST_CODE_CE_CAST; 2607 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2608 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2609 Record.push_back(VE.getValueID(C->getOperand(0))); 2610 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2611 } else { 2612 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2613 Code = bitc::CST_CODE_CE_BINOP; 2614 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2615 Record.push_back(VE.getValueID(C->getOperand(0))); 2616 Record.push_back(VE.getValueID(C->getOperand(1))); 2617 uint64_t Flags = getOptimizationFlags(CE); 2618 if (Flags != 0) 2619 Record.push_back(Flags); 2620 } 2621 break; 2622 case Instruction::FNeg: { 2623 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2624 Code = bitc::CST_CODE_CE_UNOP; 2625 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2626 Record.push_back(VE.getValueID(C->getOperand(0))); 2627 uint64_t Flags = getOptimizationFlags(CE); 2628 if (Flags != 0) 2629 Record.push_back(Flags); 2630 break; 2631 } 2632 case Instruction::GetElementPtr: { 2633 Code = bitc::CST_CODE_CE_GEP; 2634 const auto *GO = cast<GEPOperator>(C); 2635 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2636 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2637 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2638 Record.push_back((*Idx << 1) | GO->isInBounds()); 2639 } else if (GO->isInBounds()) 2640 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2641 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2642 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2643 Record.push_back(VE.getValueID(C->getOperand(i))); 2644 } 2645 break; 2646 } 2647 case Instruction::Select: 2648 Code = bitc::CST_CODE_CE_SELECT; 2649 Record.push_back(VE.getValueID(C->getOperand(0))); 2650 Record.push_back(VE.getValueID(C->getOperand(1))); 2651 Record.push_back(VE.getValueID(C->getOperand(2))); 2652 break; 2653 case Instruction::ExtractElement: 2654 Code = bitc::CST_CODE_CE_EXTRACTELT; 2655 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2656 Record.push_back(VE.getValueID(C->getOperand(0))); 2657 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2658 Record.push_back(VE.getValueID(C->getOperand(1))); 2659 break; 2660 case Instruction::InsertElement: 2661 Code = bitc::CST_CODE_CE_INSERTELT; 2662 Record.push_back(VE.getValueID(C->getOperand(0))); 2663 Record.push_back(VE.getValueID(C->getOperand(1))); 2664 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2665 Record.push_back(VE.getValueID(C->getOperand(2))); 2666 break; 2667 case Instruction::ShuffleVector: 2668 // If the return type and argument types are the same, this is a 2669 // standard shufflevector instruction. If the types are different, 2670 // then the shuffle is widening or truncating the input vectors, and 2671 // the argument type must also be encoded. 2672 if (C->getType() == C->getOperand(0)->getType()) { 2673 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2674 } else { 2675 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2676 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2677 } 2678 Record.push_back(VE.getValueID(C->getOperand(0))); 2679 Record.push_back(VE.getValueID(C->getOperand(1))); 2680 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2681 break; 2682 case Instruction::ICmp: 2683 case Instruction::FCmp: 2684 Code = bitc::CST_CODE_CE_CMP; 2685 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2686 Record.push_back(VE.getValueID(C->getOperand(0))); 2687 Record.push_back(VE.getValueID(C->getOperand(1))); 2688 Record.push_back(CE->getPredicate()); 2689 break; 2690 } 2691 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2692 Code = bitc::CST_CODE_BLOCKADDRESS; 2693 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2694 Record.push_back(VE.getValueID(BA->getFunction())); 2695 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2696 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2697 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2698 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2699 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2700 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2701 Code = bitc::CST_CODE_NO_CFI_VALUE; 2702 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2703 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2704 } else { 2705 #ifndef NDEBUG 2706 C->dump(); 2707 #endif 2708 llvm_unreachable("Unknown constant!"); 2709 } 2710 Stream.EmitRecord(Code, Record, AbbrevToUse); 2711 Record.clear(); 2712 } 2713 2714 Stream.ExitBlock(); 2715 } 2716 2717 void ModuleBitcodeWriter::writeModuleConstants() { 2718 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2719 2720 // Find the first constant to emit, which is the first non-globalvalue value. 2721 // We know globalvalues have been emitted by WriteModuleInfo. 2722 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2723 if (!isa<GlobalValue>(Vals[i].first)) { 2724 writeConstants(i, Vals.size(), true); 2725 return; 2726 } 2727 } 2728 } 2729 2730 /// pushValueAndType - The file has to encode both the value and type id for 2731 /// many values, because we need to know what type to create for forward 2732 /// references. However, most operands are not forward references, so this type 2733 /// field is not needed. 2734 /// 2735 /// This function adds V's value ID to Vals. If the value ID is higher than the 2736 /// instruction ID, then it is a forward reference, and it also includes the 2737 /// type ID. The value ID that is written is encoded relative to the InstID. 2738 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2739 SmallVectorImpl<unsigned> &Vals) { 2740 unsigned ValID = VE.getValueID(V); 2741 // Make encoding relative to the InstID. 2742 Vals.push_back(InstID - ValID); 2743 if (ValID >= InstID) { 2744 Vals.push_back(VE.getTypeID(V->getType())); 2745 return true; 2746 } 2747 return false; 2748 } 2749 2750 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2751 unsigned InstID) { 2752 SmallVector<unsigned, 64> Record; 2753 LLVMContext &C = CS.getContext(); 2754 2755 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2756 const auto &Bundle = CS.getOperandBundleAt(i); 2757 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2758 2759 for (auto &Input : Bundle.Inputs) 2760 pushValueAndType(Input, InstID, Record); 2761 2762 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2763 Record.clear(); 2764 } 2765 } 2766 2767 /// pushValue - Like pushValueAndType, but where the type of the value is 2768 /// omitted (perhaps it was already encoded in an earlier operand). 2769 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2770 SmallVectorImpl<unsigned> &Vals) { 2771 unsigned ValID = VE.getValueID(V); 2772 Vals.push_back(InstID - ValID); 2773 } 2774 2775 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2776 SmallVectorImpl<uint64_t> &Vals) { 2777 unsigned ValID = VE.getValueID(V); 2778 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2779 emitSignedInt64(Vals, diff); 2780 } 2781 2782 /// WriteInstruction - Emit an instruction to the specified stream. 2783 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2784 unsigned InstID, 2785 SmallVectorImpl<unsigned> &Vals) { 2786 unsigned Code = 0; 2787 unsigned AbbrevToUse = 0; 2788 VE.setInstructionID(&I); 2789 switch (I.getOpcode()) { 2790 default: 2791 if (Instruction::isCast(I.getOpcode())) { 2792 Code = bitc::FUNC_CODE_INST_CAST; 2793 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2794 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2795 Vals.push_back(VE.getTypeID(I.getType())); 2796 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2797 } else { 2798 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2799 Code = bitc::FUNC_CODE_INST_BINOP; 2800 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2801 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2802 pushValue(I.getOperand(1), InstID, Vals); 2803 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2804 uint64_t Flags = getOptimizationFlags(&I); 2805 if (Flags != 0) { 2806 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2807 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2808 Vals.push_back(Flags); 2809 } 2810 } 2811 break; 2812 case Instruction::FNeg: { 2813 Code = bitc::FUNC_CODE_INST_UNOP; 2814 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2815 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2816 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2817 uint64_t Flags = getOptimizationFlags(&I); 2818 if (Flags != 0) { 2819 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2820 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2821 Vals.push_back(Flags); 2822 } 2823 break; 2824 } 2825 case Instruction::GetElementPtr: { 2826 Code = bitc::FUNC_CODE_INST_GEP; 2827 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2828 auto &GEPInst = cast<GetElementPtrInst>(I); 2829 Vals.push_back(GEPInst.isInBounds()); 2830 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2831 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2832 pushValueAndType(I.getOperand(i), InstID, Vals); 2833 break; 2834 } 2835 case Instruction::ExtractValue: { 2836 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2837 pushValueAndType(I.getOperand(0), InstID, Vals); 2838 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2839 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2840 break; 2841 } 2842 case Instruction::InsertValue: { 2843 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2844 pushValueAndType(I.getOperand(0), InstID, Vals); 2845 pushValueAndType(I.getOperand(1), InstID, Vals); 2846 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2847 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2848 break; 2849 } 2850 case Instruction::Select: { 2851 Code = bitc::FUNC_CODE_INST_VSELECT; 2852 pushValueAndType(I.getOperand(1), InstID, Vals); 2853 pushValue(I.getOperand(2), InstID, Vals); 2854 pushValueAndType(I.getOperand(0), InstID, Vals); 2855 uint64_t Flags = getOptimizationFlags(&I); 2856 if (Flags != 0) 2857 Vals.push_back(Flags); 2858 break; 2859 } 2860 case Instruction::ExtractElement: 2861 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2862 pushValueAndType(I.getOperand(0), InstID, Vals); 2863 pushValueAndType(I.getOperand(1), InstID, Vals); 2864 break; 2865 case Instruction::InsertElement: 2866 Code = bitc::FUNC_CODE_INST_INSERTELT; 2867 pushValueAndType(I.getOperand(0), InstID, Vals); 2868 pushValue(I.getOperand(1), InstID, Vals); 2869 pushValueAndType(I.getOperand(2), InstID, Vals); 2870 break; 2871 case Instruction::ShuffleVector: 2872 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2873 pushValueAndType(I.getOperand(0), InstID, Vals); 2874 pushValue(I.getOperand(1), InstID, Vals); 2875 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2876 Vals); 2877 break; 2878 case Instruction::ICmp: 2879 case Instruction::FCmp: { 2880 // compare returning Int1Ty or vector of Int1Ty 2881 Code = bitc::FUNC_CODE_INST_CMP2; 2882 pushValueAndType(I.getOperand(0), InstID, Vals); 2883 pushValue(I.getOperand(1), InstID, Vals); 2884 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2885 uint64_t Flags = getOptimizationFlags(&I); 2886 if (Flags != 0) 2887 Vals.push_back(Flags); 2888 break; 2889 } 2890 2891 case Instruction::Ret: 2892 { 2893 Code = bitc::FUNC_CODE_INST_RET; 2894 unsigned NumOperands = I.getNumOperands(); 2895 if (NumOperands == 0) 2896 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2897 else if (NumOperands == 1) { 2898 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2899 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2900 } else { 2901 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2902 pushValueAndType(I.getOperand(i), InstID, Vals); 2903 } 2904 } 2905 break; 2906 case Instruction::Br: 2907 { 2908 Code = bitc::FUNC_CODE_INST_BR; 2909 const BranchInst &II = cast<BranchInst>(I); 2910 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2911 if (II.isConditional()) { 2912 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2913 pushValue(II.getCondition(), InstID, Vals); 2914 } 2915 } 2916 break; 2917 case Instruction::Switch: 2918 { 2919 Code = bitc::FUNC_CODE_INST_SWITCH; 2920 const SwitchInst &SI = cast<SwitchInst>(I); 2921 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2922 pushValue(SI.getCondition(), InstID, Vals); 2923 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2924 for (auto Case : SI.cases()) { 2925 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2926 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2927 } 2928 } 2929 break; 2930 case Instruction::IndirectBr: 2931 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2932 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2933 // Encode the address operand as relative, but not the basic blocks. 2934 pushValue(I.getOperand(0), InstID, Vals); 2935 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2936 Vals.push_back(VE.getValueID(I.getOperand(i))); 2937 break; 2938 2939 case Instruction::Invoke: { 2940 const InvokeInst *II = cast<InvokeInst>(&I); 2941 const Value *Callee = II->getCalledOperand(); 2942 FunctionType *FTy = II->getFunctionType(); 2943 2944 if (II->hasOperandBundles()) 2945 writeOperandBundles(*II, InstID); 2946 2947 Code = bitc::FUNC_CODE_INST_INVOKE; 2948 2949 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2950 Vals.push_back(II->getCallingConv() | 1 << 13); 2951 Vals.push_back(VE.getValueID(II->getNormalDest())); 2952 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2953 Vals.push_back(VE.getTypeID(FTy)); 2954 pushValueAndType(Callee, InstID, Vals); 2955 2956 // Emit value #'s for the fixed parameters. 2957 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2958 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2959 2960 // Emit type/value pairs for varargs params. 2961 if (FTy->isVarArg()) { 2962 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2963 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2964 } 2965 break; 2966 } 2967 case Instruction::Resume: 2968 Code = bitc::FUNC_CODE_INST_RESUME; 2969 pushValueAndType(I.getOperand(0), InstID, Vals); 2970 break; 2971 case Instruction::CleanupRet: { 2972 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2973 const auto &CRI = cast<CleanupReturnInst>(I); 2974 pushValue(CRI.getCleanupPad(), InstID, Vals); 2975 if (CRI.hasUnwindDest()) 2976 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2977 break; 2978 } 2979 case Instruction::CatchRet: { 2980 Code = bitc::FUNC_CODE_INST_CATCHRET; 2981 const auto &CRI = cast<CatchReturnInst>(I); 2982 pushValue(CRI.getCatchPad(), InstID, Vals); 2983 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2984 break; 2985 } 2986 case Instruction::CleanupPad: 2987 case Instruction::CatchPad: { 2988 const auto &FuncletPad = cast<FuncletPadInst>(I); 2989 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2990 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2991 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2992 2993 unsigned NumArgOperands = FuncletPad.arg_size(); 2994 Vals.push_back(NumArgOperands); 2995 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2996 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2997 break; 2998 } 2999 case Instruction::CatchSwitch: { 3000 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3001 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3002 3003 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3004 3005 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3006 Vals.push_back(NumHandlers); 3007 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3008 Vals.push_back(VE.getValueID(CatchPadBB)); 3009 3010 if (CatchSwitch.hasUnwindDest()) 3011 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3012 break; 3013 } 3014 case Instruction::CallBr: { 3015 const CallBrInst *CBI = cast<CallBrInst>(&I); 3016 const Value *Callee = CBI->getCalledOperand(); 3017 FunctionType *FTy = CBI->getFunctionType(); 3018 3019 if (CBI->hasOperandBundles()) 3020 writeOperandBundles(*CBI, InstID); 3021 3022 Code = bitc::FUNC_CODE_INST_CALLBR; 3023 3024 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3025 3026 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3027 1 << bitc::CALL_EXPLICIT_TYPE); 3028 3029 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3030 Vals.push_back(CBI->getNumIndirectDests()); 3031 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3032 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3033 3034 Vals.push_back(VE.getTypeID(FTy)); 3035 pushValueAndType(Callee, InstID, Vals); 3036 3037 // Emit value #'s for the fixed parameters. 3038 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3039 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3040 3041 // Emit type/value pairs for varargs params. 3042 if (FTy->isVarArg()) { 3043 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3044 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3045 } 3046 break; 3047 } 3048 case Instruction::Unreachable: 3049 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3050 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3051 break; 3052 3053 case Instruction::PHI: { 3054 const PHINode &PN = cast<PHINode>(I); 3055 Code = bitc::FUNC_CODE_INST_PHI; 3056 // With the newer instruction encoding, forward references could give 3057 // negative valued IDs. This is most common for PHIs, so we use 3058 // signed VBRs. 3059 SmallVector<uint64_t, 128> Vals64; 3060 Vals64.push_back(VE.getTypeID(PN.getType())); 3061 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3062 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3063 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3064 } 3065 3066 uint64_t Flags = getOptimizationFlags(&I); 3067 if (Flags != 0) 3068 Vals64.push_back(Flags); 3069 3070 // Emit a Vals64 vector and exit. 3071 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3072 Vals64.clear(); 3073 return; 3074 } 3075 3076 case Instruction::LandingPad: { 3077 const LandingPadInst &LP = cast<LandingPadInst>(I); 3078 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3079 Vals.push_back(VE.getTypeID(LP.getType())); 3080 Vals.push_back(LP.isCleanup()); 3081 Vals.push_back(LP.getNumClauses()); 3082 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3083 if (LP.isCatch(I)) 3084 Vals.push_back(LandingPadInst::Catch); 3085 else 3086 Vals.push_back(LandingPadInst::Filter); 3087 pushValueAndType(LP.getClause(I), InstID, Vals); 3088 } 3089 break; 3090 } 3091 3092 case Instruction::Alloca: { 3093 Code = bitc::FUNC_CODE_INST_ALLOCA; 3094 const AllocaInst &AI = cast<AllocaInst>(I); 3095 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3096 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3097 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3098 using APV = AllocaPackedValues; 3099 unsigned Record = 0; 3100 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3101 Bitfield::set<APV::AlignLower>( 3102 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3103 Bitfield::set<APV::AlignUpper>(Record, 3104 EncodedAlign >> APV::AlignLower::Bits); 3105 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3106 Bitfield::set<APV::ExplicitType>(Record, true); 3107 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3108 Vals.push_back(Record); 3109 3110 unsigned AS = AI.getAddressSpace(); 3111 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3112 Vals.push_back(AS); 3113 break; 3114 } 3115 3116 case Instruction::Load: 3117 if (cast<LoadInst>(I).isAtomic()) { 3118 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3119 pushValueAndType(I.getOperand(0), InstID, Vals); 3120 } else { 3121 Code = bitc::FUNC_CODE_INST_LOAD; 3122 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3123 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3124 } 3125 Vals.push_back(VE.getTypeID(I.getType())); 3126 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3127 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3128 if (cast<LoadInst>(I).isAtomic()) { 3129 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3130 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3131 } 3132 break; 3133 case Instruction::Store: 3134 if (cast<StoreInst>(I).isAtomic()) 3135 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3136 else 3137 Code = bitc::FUNC_CODE_INST_STORE; 3138 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3139 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3140 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3141 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3142 if (cast<StoreInst>(I).isAtomic()) { 3143 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3144 Vals.push_back( 3145 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3146 } 3147 break; 3148 case Instruction::AtomicCmpXchg: 3149 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3150 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3151 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3152 pushValue(I.getOperand(2), InstID, Vals); // newval. 3153 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3154 Vals.push_back( 3155 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3156 Vals.push_back( 3157 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3158 Vals.push_back( 3159 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3160 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3161 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3162 break; 3163 case Instruction::AtomicRMW: 3164 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3165 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3166 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3167 Vals.push_back( 3168 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3169 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3170 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3171 Vals.push_back( 3172 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3173 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3174 break; 3175 case Instruction::Fence: 3176 Code = bitc::FUNC_CODE_INST_FENCE; 3177 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3178 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3179 break; 3180 case Instruction::Call: { 3181 const CallInst &CI = cast<CallInst>(I); 3182 FunctionType *FTy = CI.getFunctionType(); 3183 3184 if (CI.hasOperandBundles()) 3185 writeOperandBundles(CI, InstID); 3186 3187 Code = bitc::FUNC_CODE_INST_CALL; 3188 3189 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3190 3191 unsigned Flags = getOptimizationFlags(&I); 3192 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3193 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3194 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3195 1 << bitc::CALL_EXPLICIT_TYPE | 3196 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3197 unsigned(Flags != 0) << bitc::CALL_FMF); 3198 if (Flags != 0) 3199 Vals.push_back(Flags); 3200 3201 Vals.push_back(VE.getTypeID(FTy)); 3202 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3203 3204 // Emit value #'s for the fixed parameters. 3205 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3206 // Check for labels (can happen with asm labels). 3207 if (FTy->getParamType(i)->isLabelTy()) 3208 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3209 else 3210 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3211 } 3212 3213 // Emit type/value pairs for varargs params. 3214 if (FTy->isVarArg()) { 3215 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3216 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3217 } 3218 break; 3219 } 3220 case Instruction::VAArg: 3221 Code = bitc::FUNC_CODE_INST_VAARG; 3222 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3223 pushValue(I.getOperand(0), InstID, Vals); // valist. 3224 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3225 break; 3226 case Instruction::Freeze: 3227 Code = bitc::FUNC_CODE_INST_FREEZE; 3228 pushValueAndType(I.getOperand(0), InstID, Vals); 3229 break; 3230 } 3231 3232 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3233 Vals.clear(); 3234 } 3235 3236 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3237 /// to allow clients to efficiently find the function body. 3238 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3239 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3240 // Get the offset of the VST we are writing, and backpatch it into 3241 // the VST forward declaration record. 3242 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3243 // The BitcodeStartBit was the stream offset of the identification block. 3244 VSTOffset -= bitcodeStartBit(); 3245 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3246 // Note that we add 1 here because the offset is relative to one word 3247 // before the start of the identification block, which was historically 3248 // always the start of the regular bitcode header. 3249 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3250 3251 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3252 3253 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3254 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3257 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3258 3259 for (const Function &F : M) { 3260 uint64_t Record[2]; 3261 3262 if (F.isDeclaration()) 3263 continue; 3264 3265 Record[0] = VE.getValueID(&F); 3266 3267 // Save the word offset of the function (from the start of the 3268 // actual bitcode written to the stream). 3269 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3270 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3271 // Note that we add 1 here because the offset is relative to one word 3272 // before the start of the identification block, which was historically 3273 // always the start of the regular bitcode header. 3274 Record[1] = BitcodeIndex / 32 + 1; 3275 3276 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3277 } 3278 3279 Stream.ExitBlock(); 3280 } 3281 3282 /// Emit names for arguments, instructions and basic blocks in a function. 3283 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3284 const ValueSymbolTable &VST) { 3285 if (VST.empty()) 3286 return; 3287 3288 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3289 3290 // FIXME: Set up the abbrev, we know how many values there are! 3291 // FIXME: We know if the type names can use 7-bit ascii. 3292 SmallVector<uint64_t, 64> NameVals; 3293 3294 for (const ValueName &Name : VST) { 3295 // Figure out the encoding to use for the name. 3296 StringEncoding Bits = getStringEncoding(Name.getKey()); 3297 3298 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3299 NameVals.push_back(VE.getValueID(Name.getValue())); 3300 3301 // VST_CODE_ENTRY: [valueid, namechar x N] 3302 // VST_CODE_BBENTRY: [bbid, namechar x N] 3303 unsigned Code; 3304 if (isa<BasicBlock>(Name.getValue())) { 3305 Code = bitc::VST_CODE_BBENTRY; 3306 if (Bits == SE_Char6) 3307 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3308 } else { 3309 Code = bitc::VST_CODE_ENTRY; 3310 if (Bits == SE_Char6) 3311 AbbrevToUse = VST_ENTRY_6_ABBREV; 3312 else if (Bits == SE_Fixed7) 3313 AbbrevToUse = VST_ENTRY_7_ABBREV; 3314 } 3315 3316 for (const auto P : Name.getKey()) 3317 NameVals.push_back((unsigned char)P); 3318 3319 // Emit the finished record. 3320 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3321 NameVals.clear(); 3322 } 3323 3324 Stream.ExitBlock(); 3325 } 3326 3327 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3328 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3329 unsigned Code; 3330 if (isa<BasicBlock>(Order.V)) 3331 Code = bitc::USELIST_CODE_BB; 3332 else 3333 Code = bitc::USELIST_CODE_DEFAULT; 3334 3335 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3336 Record.push_back(VE.getValueID(Order.V)); 3337 Stream.EmitRecord(Code, Record); 3338 } 3339 3340 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3341 assert(VE.shouldPreserveUseListOrder() && 3342 "Expected to be preserving use-list order"); 3343 3344 auto hasMore = [&]() { 3345 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3346 }; 3347 if (!hasMore()) 3348 // Nothing to do. 3349 return; 3350 3351 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3352 while (hasMore()) { 3353 writeUseList(std::move(VE.UseListOrders.back())); 3354 VE.UseListOrders.pop_back(); 3355 } 3356 Stream.ExitBlock(); 3357 } 3358 3359 /// Emit a function body to the module stream. 3360 void ModuleBitcodeWriter::writeFunction( 3361 const Function &F, 3362 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3363 // Save the bitcode index of the start of this function block for recording 3364 // in the VST. 3365 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3366 3367 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3368 VE.incorporateFunction(F); 3369 3370 SmallVector<unsigned, 64> Vals; 3371 3372 // Emit the number of basic blocks, so the reader can create them ahead of 3373 // time. 3374 Vals.push_back(VE.getBasicBlocks().size()); 3375 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3376 Vals.clear(); 3377 3378 // If there are function-local constants, emit them now. 3379 unsigned CstStart, CstEnd; 3380 VE.getFunctionConstantRange(CstStart, CstEnd); 3381 writeConstants(CstStart, CstEnd, false); 3382 3383 // If there is function-local metadata, emit it now. 3384 writeFunctionMetadata(F); 3385 3386 // Keep a running idea of what the instruction ID is. 3387 unsigned InstID = CstEnd; 3388 3389 bool NeedsMetadataAttachment = F.hasMetadata(); 3390 3391 DILocation *LastDL = nullptr; 3392 SmallSetVector<Function *, 4> BlockAddressUsers; 3393 3394 // Finally, emit all the instructions, in order. 3395 for (const BasicBlock &BB : F) { 3396 for (const Instruction &I : BB) { 3397 writeInstruction(I, InstID, Vals); 3398 3399 if (!I.getType()->isVoidTy()) 3400 ++InstID; 3401 3402 // If the instruction has metadata, write a metadata attachment later. 3403 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3404 3405 // If the instruction has a debug location, emit it. 3406 DILocation *DL = I.getDebugLoc(); 3407 if (!DL) 3408 continue; 3409 3410 if (DL == LastDL) { 3411 // Just repeat the same debug loc as last time. 3412 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3413 continue; 3414 } 3415 3416 Vals.push_back(DL->getLine()); 3417 Vals.push_back(DL->getColumn()); 3418 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3419 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3420 Vals.push_back(DL->isImplicitCode()); 3421 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3422 Vals.clear(); 3423 3424 LastDL = DL; 3425 } 3426 3427 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3428 SmallVector<Value *> Worklist{BA}; 3429 SmallPtrSet<Value *, 8> Visited{BA}; 3430 while (!Worklist.empty()) { 3431 Value *V = Worklist.pop_back_val(); 3432 for (User *U : V->users()) { 3433 if (auto *I = dyn_cast<Instruction>(U)) { 3434 Function *P = I->getFunction(); 3435 if (P != &F) 3436 BlockAddressUsers.insert(P); 3437 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3438 Visited.insert(U).second) 3439 Worklist.push_back(U); 3440 } 3441 } 3442 } 3443 } 3444 3445 if (!BlockAddressUsers.empty()) { 3446 Vals.resize(BlockAddressUsers.size()); 3447 for (auto I : llvm::enumerate(BlockAddressUsers)) 3448 Vals[I.index()] = VE.getValueID(I.value()); 3449 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3450 Vals.clear(); 3451 } 3452 3453 // Emit names for all the instructions etc. 3454 if (auto *Symtab = F.getValueSymbolTable()) 3455 writeFunctionLevelValueSymbolTable(*Symtab); 3456 3457 if (NeedsMetadataAttachment) 3458 writeFunctionMetadataAttachment(F); 3459 if (VE.shouldPreserveUseListOrder()) 3460 writeUseListBlock(&F); 3461 VE.purgeFunction(); 3462 Stream.ExitBlock(); 3463 } 3464 3465 // Emit blockinfo, which defines the standard abbreviations etc. 3466 void ModuleBitcodeWriter::writeBlockInfo() { 3467 // We only want to emit block info records for blocks that have multiple 3468 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3469 // Other blocks can define their abbrevs inline. 3470 Stream.EnterBlockInfoBlock(); 3471 3472 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3473 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3478 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3479 VST_ENTRY_8_ABBREV) 3480 llvm_unreachable("Unexpected abbrev ordering!"); 3481 } 3482 3483 { // 7-bit fixed width VST_CODE_ENTRY strings. 3484 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3485 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3489 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3490 VST_ENTRY_7_ABBREV) 3491 llvm_unreachable("Unexpected abbrev ordering!"); 3492 } 3493 { // 6-bit char6 VST_CODE_ENTRY strings. 3494 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3495 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3499 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3500 VST_ENTRY_6_ABBREV) 3501 llvm_unreachable("Unexpected abbrev ordering!"); 3502 } 3503 { // 6-bit char6 VST_CODE_BBENTRY strings. 3504 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3505 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3509 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3510 VST_BBENTRY_6_ABBREV) 3511 llvm_unreachable("Unexpected abbrev ordering!"); 3512 } 3513 3514 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3515 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3516 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3518 VE.computeBitsRequiredForTypeIndicies())); 3519 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3520 CONSTANTS_SETTYPE_ABBREV) 3521 llvm_unreachable("Unexpected abbrev ordering!"); 3522 } 3523 3524 { // INTEGER abbrev for CONSTANTS_BLOCK. 3525 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3526 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3528 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3529 CONSTANTS_INTEGER_ABBREV) 3530 llvm_unreachable("Unexpected abbrev ordering!"); 3531 } 3532 3533 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3534 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3535 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3538 VE.computeBitsRequiredForTypeIndicies())); 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3540 3541 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3542 CONSTANTS_CE_CAST_Abbrev) 3543 llvm_unreachable("Unexpected abbrev ordering!"); 3544 } 3545 { // NULL abbrev for CONSTANTS_BLOCK. 3546 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3547 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3548 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3549 CONSTANTS_NULL_Abbrev) 3550 llvm_unreachable("Unexpected abbrev ordering!"); 3551 } 3552 3553 // FIXME: This should only use space for first class types! 3554 3555 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3556 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3557 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3560 VE.computeBitsRequiredForTypeIndicies())); 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3563 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3564 FUNCTION_INST_LOAD_ABBREV) 3565 llvm_unreachable("Unexpected abbrev ordering!"); 3566 } 3567 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3568 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3569 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3572 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3573 FUNCTION_INST_UNOP_ABBREV) 3574 llvm_unreachable("Unexpected abbrev ordering!"); 3575 } 3576 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3577 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3578 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3582 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3583 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3584 llvm_unreachable("Unexpected abbrev ordering!"); 3585 } 3586 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3587 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3588 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3592 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3593 FUNCTION_INST_BINOP_ABBREV) 3594 llvm_unreachable("Unexpected abbrev ordering!"); 3595 } 3596 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3597 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3598 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3603 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3604 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3605 llvm_unreachable("Unexpected abbrev ordering!"); 3606 } 3607 { // INST_CAST abbrev for FUNCTION_BLOCK. 3608 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3609 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3612 VE.computeBitsRequiredForTypeIndicies())); 3613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3614 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3615 FUNCTION_INST_CAST_ABBREV) 3616 llvm_unreachable("Unexpected abbrev ordering!"); 3617 } 3618 3619 { // INST_RET abbrev for FUNCTION_BLOCK. 3620 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3621 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3622 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3623 FUNCTION_INST_RET_VOID_ABBREV) 3624 llvm_unreachable("Unexpected abbrev ordering!"); 3625 } 3626 { // INST_RET abbrev for FUNCTION_BLOCK. 3627 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3628 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3630 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3631 FUNCTION_INST_RET_VAL_ABBREV) 3632 llvm_unreachable("Unexpected abbrev ordering!"); 3633 } 3634 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3635 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3636 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3637 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3638 FUNCTION_INST_UNREACHABLE_ABBREV) 3639 llvm_unreachable("Unexpected abbrev ordering!"); 3640 } 3641 { 3642 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3643 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3646 Log2_32_Ceil(VE.getTypes().size() + 1))); 3647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3649 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3650 FUNCTION_INST_GEP_ABBREV) 3651 llvm_unreachable("Unexpected abbrev ordering!"); 3652 } 3653 3654 Stream.ExitBlock(); 3655 } 3656 3657 /// Write the module path strings, currently only used when generating 3658 /// a combined index file. 3659 void IndexBitcodeWriter::writeModStrings() { 3660 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3661 3662 // TODO: See which abbrev sizes we actually need to emit 3663 3664 // 8-bit fixed-width MST_ENTRY strings. 3665 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3666 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3670 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3671 3672 // 7-bit fixed width MST_ENTRY strings. 3673 Abbv = std::make_shared<BitCodeAbbrev>(); 3674 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3678 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3679 3680 // 6-bit char6 MST_ENTRY strings. 3681 Abbv = std::make_shared<BitCodeAbbrev>(); 3682 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3686 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3687 3688 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3689 Abbv = std::make_shared<BitCodeAbbrev>(); 3690 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3696 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3697 3698 SmallVector<unsigned, 64> Vals; 3699 forEachModule( 3700 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3701 StringRef Key = MPSE.getKey(); 3702 const auto &Value = MPSE.getValue(); 3703 StringEncoding Bits = getStringEncoding(Key); 3704 unsigned AbbrevToUse = Abbrev8Bit; 3705 if (Bits == SE_Char6) 3706 AbbrevToUse = Abbrev6Bit; 3707 else if (Bits == SE_Fixed7) 3708 AbbrevToUse = Abbrev7Bit; 3709 3710 Vals.push_back(Value.first); 3711 Vals.append(Key.begin(), Key.end()); 3712 3713 // Emit the finished record. 3714 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3715 3716 // Emit an optional hash for the module now 3717 const auto &Hash = Value.second; 3718 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3719 Vals.assign(Hash.begin(), Hash.end()); 3720 // Emit the hash record. 3721 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3722 } 3723 3724 Vals.clear(); 3725 }); 3726 Stream.ExitBlock(); 3727 } 3728 3729 /// Write the function type metadata related records that need to appear before 3730 /// a function summary entry (whether per-module or combined). 3731 template <typename Fn> 3732 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3733 FunctionSummary *FS, 3734 Fn GetValueID) { 3735 if (!FS->type_tests().empty()) 3736 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3737 3738 SmallVector<uint64_t, 64> Record; 3739 3740 auto WriteVFuncIdVec = [&](uint64_t Ty, 3741 ArrayRef<FunctionSummary::VFuncId> VFs) { 3742 if (VFs.empty()) 3743 return; 3744 Record.clear(); 3745 for (auto &VF : VFs) { 3746 Record.push_back(VF.GUID); 3747 Record.push_back(VF.Offset); 3748 } 3749 Stream.EmitRecord(Ty, Record); 3750 }; 3751 3752 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3753 FS->type_test_assume_vcalls()); 3754 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3755 FS->type_checked_load_vcalls()); 3756 3757 auto WriteConstVCallVec = [&](uint64_t Ty, 3758 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3759 for (auto &VC : VCs) { 3760 Record.clear(); 3761 Record.push_back(VC.VFunc.GUID); 3762 Record.push_back(VC.VFunc.Offset); 3763 llvm::append_range(Record, VC.Args); 3764 Stream.EmitRecord(Ty, Record); 3765 } 3766 }; 3767 3768 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3769 FS->type_test_assume_const_vcalls()); 3770 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3771 FS->type_checked_load_const_vcalls()); 3772 3773 auto WriteRange = [&](ConstantRange Range) { 3774 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3775 assert(Range.getLower().getNumWords() == 1); 3776 assert(Range.getUpper().getNumWords() == 1); 3777 emitSignedInt64(Record, *Range.getLower().getRawData()); 3778 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3779 }; 3780 3781 if (!FS->paramAccesses().empty()) { 3782 Record.clear(); 3783 for (auto &Arg : FS->paramAccesses()) { 3784 size_t UndoSize = Record.size(); 3785 Record.push_back(Arg.ParamNo); 3786 WriteRange(Arg.Use); 3787 Record.push_back(Arg.Calls.size()); 3788 for (auto &Call : Arg.Calls) { 3789 Record.push_back(Call.ParamNo); 3790 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3791 if (!ValueID) { 3792 // If ValueID is unknown we can't drop just this call, we must drop 3793 // entire parameter. 3794 Record.resize(UndoSize); 3795 break; 3796 } 3797 Record.push_back(*ValueID); 3798 WriteRange(Call.Offsets); 3799 } 3800 } 3801 if (!Record.empty()) 3802 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3803 } 3804 } 3805 3806 /// Collect type IDs from type tests used by function. 3807 static void 3808 getReferencedTypeIds(FunctionSummary *FS, 3809 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3810 if (!FS->type_tests().empty()) 3811 for (auto &TT : FS->type_tests()) 3812 ReferencedTypeIds.insert(TT); 3813 3814 auto GetReferencedTypesFromVFuncIdVec = 3815 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3816 for (auto &VF : VFs) 3817 ReferencedTypeIds.insert(VF.GUID); 3818 }; 3819 3820 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3821 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3822 3823 auto GetReferencedTypesFromConstVCallVec = 3824 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3825 for (auto &VC : VCs) 3826 ReferencedTypeIds.insert(VC.VFunc.GUID); 3827 }; 3828 3829 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3830 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3831 } 3832 3833 static void writeWholeProgramDevirtResolutionByArg( 3834 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3835 const WholeProgramDevirtResolution::ByArg &ByArg) { 3836 NameVals.push_back(args.size()); 3837 llvm::append_range(NameVals, args); 3838 3839 NameVals.push_back(ByArg.TheKind); 3840 NameVals.push_back(ByArg.Info); 3841 NameVals.push_back(ByArg.Byte); 3842 NameVals.push_back(ByArg.Bit); 3843 } 3844 3845 static void writeWholeProgramDevirtResolution( 3846 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3847 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3848 NameVals.push_back(Id); 3849 3850 NameVals.push_back(Wpd.TheKind); 3851 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3852 NameVals.push_back(Wpd.SingleImplName.size()); 3853 3854 NameVals.push_back(Wpd.ResByArg.size()); 3855 for (auto &A : Wpd.ResByArg) 3856 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3857 } 3858 3859 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3860 StringTableBuilder &StrtabBuilder, 3861 const std::string &Id, 3862 const TypeIdSummary &Summary) { 3863 NameVals.push_back(StrtabBuilder.add(Id)); 3864 NameVals.push_back(Id.size()); 3865 3866 NameVals.push_back(Summary.TTRes.TheKind); 3867 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3868 NameVals.push_back(Summary.TTRes.AlignLog2); 3869 NameVals.push_back(Summary.TTRes.SizeM1); 3870 NameVals.push_back(Summary.TTRes.BitMask); 3871 NameVals.push_back(Summary.TTRes.InlineBits); 3872 3873 for (auto &W : Summary.WPDRes) 3874 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3875 W.second); 3876 } 3877 3878 static void writeTypeIdCompatibleVtableSummaryRecord( 3879 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3880 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3881 ValueEnumerator &VE) { 3882 NameVals.push_back(StrtabBuilder.add(Id)); 3883 NameVals.push_back(Id.size()); 3884 3885 for (auto &P : Summary) { 3886 NameVals.push_back(P.AddressPointOffset); 3887 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3888 } 3889 } 3890 3891 // Helper to emit a single function summary record. 3892 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3893 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3894 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3895 const Function &F) { 3896 NameVals.push_back(ValueID); 3897 3898 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3899 3900 writeFunctionTypeMetadataRecords( 3901 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3902 return {VE.getValueID(VI.getValue())}; 3903 }); 3904 3905 auto SpecialRefCnts = FS->specialRefCounts(); 3906 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3907 NameVals.push_back(FS->instCount()); 3908 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3909 NameVals.push_back(FS->refs().size()); 3910 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3911 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3912 3913 for (auto &RI : FS->refs()) 3914 NameVals.push_back(VE.getValueID(RI.getValue())); 3915 3916 bool HasProfileData = 3917 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3918 for (auto &ECI : FS->calls()) { 3919 NameVals.push_back(getValueId(ECI.first)); 3920 if (HasProfileData) 3921 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3922 else if (WriteRelBFToSummary) 3923 NameVals.push_back(ECI.second.RelBlockFreq); 3924 } 3925 3926 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3927 unsigned Code = 3928 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3929 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3930 : bitc::FS_PERMODULE)); 3931 3932 // Emit the finished record. 3933 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3934 NameVals.clear(); 3935 } 3936 3937 // Collect the global value references in the given variable's initializer, 3938 // and emit them in a summary record. 3939 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3940 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3941 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3942 auto VI = Index->getValueInfo(V.getGUID()); 3943 if (!VI || VI.getSummaryList().empty()) { 3944 // Only declarations should not have a summary (a declaration might however 3945 // have a summary if the def was in module level asm). 3946 assert(V.isDeclaration()); 3947 return; 3948 } 3949 auto *Summary = VI.getSummaryList()[0].get(); 3950 NameVals.push_back(VE.getValueID(&V)); 3951 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3952 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3953 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3954 3955 auto VTableFuncs = VS->vTableFuncs(); 3956 if (!VTableFuncs.empty()) 3957 NameVals.push_back(VS->refs().size()); 3958 3959 unsigned SizeBeforeRefs = NameVals.size(); 3960 for (auto &RI : VS->refs()) 3961 NameVals.push_back(VE.getValueID(RI.getValue())); 3962 // Sort the refs for determinism output, the vector returned by FS->refs() has 3963 // been initialized from a DenseSet. 3964 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3965 3966 if (VTableFuncs.empty()) 3967 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3968 FSModRefsAbbrev); 3969 else { 3970 // VTableFuncs pairs should already be sorted by offset. 3971 for (auto &P : VTableFuncs) { 3972 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3973 NameVals.push_back(P.VTableOffset); 3974 } 3975 3976 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3977 FSModVTableRefsAbbrev); 3978 } 3979 NameVals.clear(); 3980 } 3981 3982 /// Emit the per-module summary section alongside the rest of 3983 /// the module's bitcode. 3984 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3985 // By default we compile with ThinLTO if the module has a summary, but the 3986 // client can request full LTO with a module flag. 3987 bool IsThinLTO = true; 3988 if (auto *MD = 3989 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3990 IsThinLTO = MD->getZExtValue(); 3991 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3992 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3993 4); 3994 3995 Stream.EmitRecord( 3996 bitc::FS_VERSION, 3997 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3998 3999 // Write the index flags. 4000 uint64_t Flags = 0; 4001 // Bits 1-3 are set only in the combined index, skip them. 4002 if (Index->enableSplitLTOUnit()) 4003 Flags |= 0x8; 4004 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4005 4006 if (Index->begin() == Index->end()) { 4007 Stream.ExitBlock(); 4008 return; 4009 } 4010 4011 for (const auto &GVI : valueIds()) { 4012 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4013 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4014 } 4015 4016 // Abbrev for FS_PERMODULE_PROFILE. 4017 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4018 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4026 // numrefs x valueid, n x (valueid, hotness) 4027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4029 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4030 4031 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4032 Abbv = std::make_shared<BitCodeAbbrev>(); 4033 if (WriteRelBFToSummary) 4034 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4035 else 4036 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4044 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4047 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4048 4049 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4050 Abbv = std::make_shared<BitCodeAbbrev>(); 4051 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4056 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4057 4058 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4059 Abbv = std::make_shared<BitCodeAbbrev>(); 4060 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4064 // numrefs x valueid, n x (valueid , offset) 4065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4067 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4068 4069 // Abbrev for FS_ALIAS. 4070 Abbv = std::make_shared<BitCodeAbbrev>(); 4071 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4075 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4076 4077 // Abbrev for FS_TYPE_ID_METADATA 4078 Abbv = std::make_shared<BitCodeAbbrev>(); 4079 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4082 // n x (valueid , offset) 4083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4085 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4086 4087 SmallVector<uint64_t, 64> NameVals; 4088 // Iterate over the list of functions instead of the Index to 4089 // ensure the ordering is stable. 4090 for (const Function &F : M) { 4091 // Summary emission does not support anonymous functions, they have to 4092 // renamed using the anonymous function renaming pass. 4093 if (!F.hasName()) 4094 report_fatal_error("Unexpected anonymous function when writing summary"); 4095 4096 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4097 if (!VI || VI.getSummaryList().empty()) { 4098 // Only declarations should not have a summary (a declaration might 4099 // however have a summary if the def was in module level asm). 4100 assert(F.isDeclaration()); 4101 continue; 4102 } 4103 auto *Summary = VI.getSummaryList()[0].get(); 4104 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4105 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4106 } 4107 4108 // Capture references from GlobalVariable initializers, which are outside 4109 // of a function scope. 4110 for (const GlobalVariable &G : M.globals()) 4111 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4112 FSModVTableRefsAbbrev); 4113 4114 for (const GlobalAlias &A : M.aliases()) { 4115 auto *Aliasee = A.getAliaseeObject(); 4116 // Skip ifunc and nameless functions which don't have an entry in the 4117 // summary. 4118 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4119 continue; 4120 auto AliasId = VE.getValueID(&A); 4121 auto AliaseeId = VE.getValueID(Aliasee); 4122 NameVals.push_back(AliasId); 4123 auto *Summary = Index->getGlobalValueSummary(A); 4124 AliasSummary *AS = cast<AliasSummary>(Summary); 4125 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4126 NameVals.push_back(AliaseeId); 4127 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4128 NameVals.clear(); 4129 } 4130 4131 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4132 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4133 S.second, VE); 4134 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4135 TypeIdCompatibleVtableAbbrev); 4136 NameVals.clear(); 4137 } 4138 4139 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4140 ArrayRef<uint64_t>{Index->getBlockCount()}); 4141 4142 Stream.ExitBlock(); 4143 } 4144 4145 /// Emit the combined summary section into the combined index file. 4146 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4147 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4148 Stream.EmitRecord( 4149 bitc::FS_VERSION, 4150 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4151 4152 // Write the index flags. 4153 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4154 4155 for (const auto &GVI : valueIds()) { 4156 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4157 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4158 } 4159 4160 // Abbrev for FS_COMBINED. 4161 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4162 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4172 // numrefs x valueid, n x (valueid) 4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4175 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4176 4177 // Abbrev for FS_COMBINED_PROFILE. 4178 Abbv = std::make_shared<BitCodeAbbrev>(); 4179 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4189 // numrefs x valueid, n x (valueid, hotness) 4190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4192 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4193 4194 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4195 Abbv = std::make_shared<BitCodeAbbrev>(); 4196 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4202 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4203 4204 // Abbrev for FS_COMBINED_ALIAS. 4205 Abbv = std::make_shared<BitCodeAbbrev>(); 4206 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4211 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4212 4213 // The aliases are emitted as a post-pass, and will point to the value 4214 // id of the aliasee. Save them in a vector for post-processing. 4215 SmallVector<AliasSummary *, 64> Aliases; 4216 4217 // Save the value id for each summary for alias emission. 4218 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4219 4220 SmallVector<uint64_t, 64> NameVals; 4221 4222 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4223 // with the type ids referenced by this index file. 4224 std::set<GlobalValue::GUID> ReferencedTypeIds; 4225 4226 // For local linkage, we also emit the original name separately 4227 // immediately after the record. 4228 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4229 // We don't need to emit the original name if we are writing the index for 4230 // distributed backends (in which case ModuleToSummariesForIndex is 4231 // non-null). The original name is only needed during the thin link, since 4232 // for SamplePGO the indirect call targets for local functions have 4233 // have the original name annotated in profile. 4234 // Continue to emit it when writing out the entire combined index, which is 4235 // used in testing the thin link via llvm-lto. 4236 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4237 return; 4238 NameVals.push_back(S.getOriginalName()); 4239 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4240 NameVals.clear(); 4241 }; 4242 4243 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4244 forEachSummary([&](GVInfo I, bool IsAliasee) { 4245 GlobalValueSummary *S = I.second; 4246 assert(S); 4247 DefOrUseGUIDs.insert(I.first); 4248 for (const ValueInfo &VI : S->refs()) 4249 DefOrUseGUIDs.insert(VI.getGUID()); 4250 4251 auto ValueId = getValueId(I.first); 4252 assert(ValueId); 4253 SummaryToValueIdMap[S] = *ValueId; 4254 4255 // If this is invoked for an aliasee, we want to record the above 4256 // mapping, but then not emit a summary entry (if the aliasee is 4257 // to be imported, we will invoke this separately with IsAliasee=false). 4258 if (IsAliasee) 4259 return; 4260 4261 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4262 // Will process aliases as a post-pass because the reader wants all 4263 // global to be loaded first. 4264 Aliases.push_back(AS); 4265 return; 4266 } 4267 4268 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4269 NameVals.push_back(*ValueId); 4270 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4271 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4272 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4273 for (auto &RI : VS->refs()) { 4274 auto RefValueId = getValueId(RI.getGUID()); 4275 if (!RefValueId) 4276 continue; 4277 NameVals.push_back(*RefValueId); 4278 } 4279 4280 // Emit the finished record. 4281 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4282 FSModRefsAbbrev); 4283 NameVals.clear(); 4284 MaybeEmitOriginalName(*S); 4285 return; 4286 } 4287 4288 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4289 return getValueId(VI.getGUID()); 4290 }; 4291 4292 auto *FS = cast<FunctionSummary>(S); 4293 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4294 getReferencedTypeIds(FS, ReferencedTypeIds); 4295 4296 NameVals.push_back(*ValueId); 4297 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4298 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4299 NameVals.push_back(FS->instCount()); 4300 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4301 NameVals.push_back(FS->entryCount()); 4302 4303 // Fill in below 4304 NameVals.push_back(0); // numrefs 4305 NameVals.push_back(0); // rorefcnt 4306 NameVals.push_back(0); // worefcnt 4307 4308 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4309 for (auto &RI : FS->refs()) { 4310 auto RefValueId = getValueId(RI.getGUID()); 4311 if (!RefValueId) 4312 continue; 4313 NameVals.push_back(*RefValueId); 4314 if (RI.isReadOnly()) 4315 RORefCnt++; 4316 else if (RI.isWriteOnly()) 4317 WORefCnt++; 4318 Count++; 4319 } 4320 NameVals[6] = Count; 4321 NameVals[7] = RORefCnt; 4322 NameVals[8] = WORefCnt; 4323 4324 bool HasProfileData = false; 4325 for (auto &EI : FS->calls()) { 4326 HasProfileData |= 4327 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4328 if (HasProfileData) 4329 break; 4330 } 4331 4332 for (auto &EI : FS->calls()) { 4333 // If this GUID doesn't have a value id, it doesn't have a function 4334 // summary and we don't need to record any calls to it. 4335 Optional<unsigned> CallValueId = GetValueId(EI.first); 4336 if (!CallValueId) 4337 continue; 4338 NameVals.push_back(*CallValueId); 4339 if (HasProfileData) 4340 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4341 } 4342 4343 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4344 unsigned Code = 4345 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4346 4347 // Emit the finished record. 4348 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4349 NameVals.clear(); 4350 MaybeEmitOriginalName(*S); 4351 }); 4352 4353 for (auto *AS : Aliases) { 4354 auto AliasValueId = SummaryToValueIdMap[AS]; 4355 assert(AliasValueId); 4356 NameVals.push_back(AliasValueId); 4357 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4358 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4359 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4360 assert(AliaseeValueId); 4361 NameVals.push_back(AliaseeValueId); 4362 4363 // Emit the finished record. 4364 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4365 NameVals.clear(); 4366 MaybeEmitOriginalName(*AS); 4367 4368 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4369 getReferencedTypeIds(FS, ReferencedTypeIds); 4370 } 4371 4372 if (!Index.cfiFunctionDefs().empty()) { 4373 for (auto &S : Index.cfiFunctionDefs()) { 4374 if (DefOrUseGUIDs.count( 4375 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4376 NameVals.push_back(StrtabBuilder.add(S)); 4377 NameVals.push_back(S.size()); 4378 } 4379 } 4380 if (!NameVals.empty()) { 4381 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4382 NameVals.clear(); 4383 } 4384 } 4385 4386 if (!Index.cfiFunctionDecls().empty()) { 4387 for (auto &S : Index.cfiFunctionDecls()) { 4388 if (DefOrUseGUIDs.count( 4389 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4390 NameVals.push_back(StrtabBuilder.add(S)); 4391 NameVals.push_back(S.size()); 4392 } 4393 } 4394 if (!NameVals.empty()) { 4395 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4396 NameVals.clear(); 4397 } 4398 } 4399 4400 // Walk the GUIDs that were referenced, and write the 4401 // corresponding type id records. 4402 for (auto &T : ReferencedTypeIds) { 4403 auto TidIter = Index.typeIds().equal_range(T); 4404 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4405 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4406 It->second.second); 4407 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4408 NameVals.clear(); 4409 } 4410 } 4411 4412 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4413 ArrayRef<uint64_t>{Index.getBlockCount()}); 4414 4415 Stream.ExitBlock(); 4416 } 4417 4418 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4419 /// current llvm version, and a record for the epoch number. 4420 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4421 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4422 4423 // Write the "user readable" string identifying the bitcode producer 4424 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4425 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4428 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4429 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4430 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4431 4432 // Write the epoch version 4433 Abbv = std::make_shared<BitCodeAbbrev>(); 4434 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4436 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4437 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4438 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4439 Stream.ExitBlock(); 4440 } 4441 4442 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4443 // Emit the module's hash. 4444 // MODULE_CODE_HASH: [5*i32] 4445 if (GenerateHash) { 4446 uint32_t Vals[5]; 4447 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4448 Buffer.size() - BlockStartPos)); 4449 std::array<uint8_t, 20> Hash = Hasher.result(); 4450 for (int Pos = 0; Pos < 20; Pos += 4) { 4451 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4452 } 4453 4454 // Emit the finished record. 4455 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4456 4457 if (ModHash) 4458 // Save the written hash value. 4459 llvm::copy(Vals, std::begin(*ModHash)); 4460 } 4461 } 4462 4463 void ModuleBitcodeWriter::write() { 4464 writeIdentificationBlock(Stream); 4465 4466 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4467 size_t BlockStartPos = Buffer.size(); 4468 4469 writeModuleVersion(); 4470 4471 // Emit blockinfo, which defines the standard abbreviations etc. 4472 writeBlockInfo(); 4473 4474 // Emit information describing all of the types in the module. 4475 writeTypeTable(); 4476 4477 // Emit information about attribute groups. 4478 writeAttributeGroupTable(); 4479 4480 // Emit information about parameter attributes. 4481 writeAttributeTable(); 4482 4483 writeComdats(); 4484 4485 // Emit top-level description of module, including target triple, inline asm, 4486 // descriptors for global variables, and function prototype info. 4487 writeModuleInfo(); 4488 4489 // Emit constants. 4490 writeModuleConstants(); 4491 4492 // Emit metadata kind names. 4493 writeModuleMetadataKinds(); 4494 4495 // Emit metadata. 4496 writeModuleMetadata(); 4497 4498 // Emit module-level use-lists. 4499 if (VE.shouldPreserveUseListOrder()) 4500 writeUseListBlock(nullptr); 4501 4502 writeOperandBundleTags(); 4503 writeSyncScopeNames(); 4504 4505 // Emit function bodies. 4506 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4507 for (const Function &F : M) 4508 if (!F.isDeclaration()) 4509 writeFunction(F, FunctionToBitcodeIndex); 4510 4511 // Need to write after the above call to WriteFunction which populates 4512 // the summary information in the index. 4513 if (Index) 4514 writePerModuleGlobalValueSummary(); 4515 4516 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4517 4518 writeModuleHash(BlockStartPos); 4519 4520 Stream.ExitBlock(); 4521 } 4522 4523 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4524 uint32_t &Position) { 4525 support::endian::write32le(&Buffer[Position], Value); 4526 Position += 4; 4527 } 4528 4529 /// If generating a bc file on darwin, we have to emit a 4530 /// header and trailer to make it compatible with the system archiver. To do 4531 /// this we emit the following header, and then emit a trailer that pads the 4532 /// file out to be a multiple of 16 bytes. 4533 /// 4534 /// struct bc_header { 4535 /// uint32_t Magic; // 0x0B17C0DE 4536 /// uint32_t Version; // Version, currently always 0. 4537 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4538 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4539 /// uint32_t CPUType; // CPU specifier. 4540 /// ... potentially more later ... 4541 /// }; 4542 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4543 const Triple &TT) { 4544 unsigned CPUType = ~0U; 4545 4546 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4547 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4548 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4549 // specific constants here because they are implicitly part of the Darwin ABI. 4550 enum { 4551 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4552 DARWIN_CPU_TYPE_X86 = 7, 4553 DARWIN_CPU_TYPE_ARM = 12, 4554 DARWIN_CPU_TYPE_POWERPC = 18 4555 }; 4556 4557 Triple::ArchType Arch = TT.getArch(); 4558 if (Arch == Triple::x86_64) 4559 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4560 else if (Arch == Triple::x86) 4561 CPUType = DARWIN_CPU_TYPE_X86; 4562 else if (Arch == Triple::ppc) 4563 CPUType = DARWIN_CPU_TYPE_POWERPC; 4564 else if (Arch == Triple::ppc64) 4565 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4566 else if (Arch == Triple::arm || Arch == Triple::thumb) 4567 CPUType = DARWIN_CPU_TYPE_ARM; 4568 4569 // Traditional Bitcode starts after header. 4570 assert(Buffer.size() >= BWH_HeaderSize && 4571 "Expected header size to be reserved"); 4572 unsigned BCOffset = BWH_HeaderSize; 4573 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4574 4575 // Write the magic and version. 4576 unsigned Position = 0; 4577 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4578 writeInt32ToBuffer(0, Buffer, Position); // Version. 4579 writeInt32ToBuffer(BCOffset, Buffer, Position); 4580 writeInt32ToBuffer(BCSize, Buffer, Position); 4581 writeInt32ToBuffer(CPUType, Buffer, Position); 4582 4583 // If the file is not a multiple of 16 bytes, insert dummy padding. 4584 while (Buffer.size() & 15) 4585 Buffer.push_back(0); 4586 } 4587 4588 /// Helper to write the header common to all bitcode files. 4589 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4590 // Emit the file header. 4591 Stream.Emit((unsigned)'B', 8); 4592 Stream.Emit((unsigned)'C', 8); 4593 Stream.Emit(0x0, 4); 4594 Stream.Emit(0xC, 4); 4595 Stream.Emit(0xE, 4); 4596 Stream.Emit(0xD, 4); 4597 } 4598 4599 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4600 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4601 writeBitcodeHeader(*Stream); 4602 } 4603 4604 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4605 4606 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4607 Stream->EnterSubblock(Block, 3); 4608 4609 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4610 Abbv->Add(BitCodeAbbrevOp(Record)); 4611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4612 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4613 4614 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4615 4616 Stream->ExitBlock(); 4617 } 4618 4619 void BitcodeWriter::writeSymtab() { 4620 assert(!WroteStrtab && !WroteSymtab); 4621 4622 // If any module has module-level inline asm, we will require a registered asm 4623 // parser for the target so that we can create an accurate symbol table for 4624 // the module. 4625 for (Module *M : Mods) { 4626 if (M->getModuleInlineAsm().empty()) 4627 continue; 4628 4629 std::string Err; 4630 const Triple TT(M->getTargetTriple()); 4631 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4632 if (!T || !T->hasMCAsmParser()) 4633 return; 4634 } 4635 4636 WroteSymtab = true; 4637 SmallVector<char, 0> Symtab; 4638 // The irsymtab::build function may be unable to create a symbol table if the 4639 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4640 // table is not required for correctness, but we still want to be able to 4641 // write malformed modules to bitcode files, so swallow the error. 4642 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4643 consumeError(std::move(E)); 4644 return; 4645 } 4646 4647 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4648 {Symtab.data(), Symtab.size()}); 4649 } 4650 4651 void BitcodeWriter::writeStrtab() { 4652 assert(!WroteStrtab); 4653 4654 std::vector<char> Strtab; 4655 StrtabBuilder.finalizeInOrder(); 4656 Strtab.resize(StrtabBuilder.getSize()); 4657 StrtabBuilder.write((uint8_t *)Strtab.data()); 4658 4659 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4660 {Strtab.data(), Strtab.size()}); 4661 4662 WroteStrtab = true; 4663 } 4664 4665 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4666 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4667 WroteStrtab = true; 4668 } 4669 4670 void BitcodeWriter::writeModule(const Module &M, 4671 bool ShouldPreserveUseListOrder, 4672 const ModuleSummaryIndex *Index, 4673 bool GenerateHash, ModuleHash *ModHash) { 4674 assert(!WroteStrtab); 4675 4676 // The Mods vector is used by irsymtab::build, which requires non-const 4677 // Modules in case it needs to materialize metadata. But the bitcode writer 4678 // requires that the module is materialized, so we can cast to non-const here, 4679 // after checking that it is in fact materialized. 4680 assert(M.isMaterialized()); 4681 Mods.push_back(const_cast<Module *>(&M)); 4682 4683 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4684 ShouldPreserveUseListOrder, Index, 4685 GenerateHash, ModHash); 4686 ModuleWriter.write(); 4687 } 4688 4689 void BitcodeWriter::writeIndex( 4690 const ModuleSummaryIndex *Index, 4691 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4692 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4693 ModuleToSummariesForIndex); 4694 IndexWriter.write(); 4695 } 4696 4697 /// Write the specified module to the specified output stream. 4698 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4699 bool ShouldPreserveUseListOrder, 4700 const ModuleSummaryIndex *Index, 4701 bool GenerateHash, ModuleHash *ModHash) { 4702 SmallVector<char, 0> Buffer; 4703 Buffer.reserve(256*1024); 4704 4705 // If this is darwin or another generic macho target, reserve space for the 4706 // header. 4707 Triple TT(M.getTargetTriple()); 4708 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4709 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4710 4711 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4712 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4713 ModHash); 4714 Writer.writeSymtab(); 4715 Writer.writeStrtab(); 4716 4717 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4718 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4719 4720 // Write the generated bitstream to "Out". 4721 if (!Buffer.empty()) 4722 Out.write((char *)&Buffer.front(), Buffer.size()); 4723 } 4724 4725 void IndexBitcodeWriter::write() { 4726 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4727 4728 writeModuleVersion(); 4729 4730 // Write the module paths in the combined index. 4731 writeModStrings(); 4732 4733 // Write the summary combined index records. 4734 writeCombinedGlobalValueSummary(); 4735 4736 Stream.ExitBlock(); 4737 } 4738 4739 // Write the specified module summary index to the given raw output stream, 4740 // where it will be written in a new bitcode block. This is used when 4741 // writing the combined index file for ThinLTO. When writing a subset of the 4742 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4743 void llvm::writeIndexToFile( 4744 const ModuleSummaryIndex &Index, raw_ostream &Out, 4745 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4746 SmallVector<char, 0> Buffer; 4747 Buffer.reserve(256 * 1024); 4748 4749 BitcodeWriter Writer(Buffer); 4750 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4751 Writer.writeStrtab(); 4752 4753 Out.write((char *)&Buffer.front(), Buffer.size()); 4754 } 4755 4756 namespace { 4757 4758 /// Class to manage the bitcode writing for a thin link bitcode file. 4759 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4760 /// ModHash is for use in ThinLTO incremental build, generated while writing 4761 /// the module bitcode file. 4762 const ModuleHash *ModHash; 4763 4764 public: 4765 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4766 BitstreamWriter &Stream, 4767 const ModuleSummaryIndex &Index, 4768 const ModuleHash &ModHash) 4769 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4770 /*ShouldPreserveUseListOrder=*/false, &Index), 4771 ModHash(&ModHash) {} 4772 4773 void write(); 4774 4775 private: 4776 void writeSimplifiedModuleInfo(); 4777 }; 4778 4779 } // end anonymous namespace 4780 4781 // This function writes a simpilified module info for thin link bitcode file. 4782 // It only contains the source file name along with the name(the offset and 4783 // size in strtab) and linkage for global values. For the global value info 4784 // entry, in order to keep linkage at offset 5, there are three zeros used 4785 // as padding. 4786 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4787 SmallVector<unsigned, 64> Vals; 4788 // Emit the module's source file name. 4789 { 4790 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4791 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4792 if (Bits == SE_Char6) 4793 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4794 else if (Bits == SE_Fixed7) 4795 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4796 4797 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4798 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4799 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4801 Abbv->Add(AbbrevOpToUse); 4802 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4803 4804 for (const auto P : M.getSourceFileName()) 4805 Vals.push_back((unsigned char)P); 4806 4807 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4808 Vals.clear(); 4809 } 4810 4811 // Emit the global variable information. 4812 for (const GlobalVariable &GV : M.globals()) { 4813 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4814 Vals.push_back(StrtabBuilder.add(GV.getName())); 4815 Vals.push_back(GV.getName().size()); 4816 Vals.push_back(0); 4817 Vals.push_back(0); 4818 Vals.push_back(0); 4819 Vals.push_back(getEncodedLinkage(GV)); 4820 4821 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4822 Vals.clear(); 4823 } 4824 4825 // Emit the function proto information. 4826 for (const Function &F : M) { 4827 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4828 Vals.push_back(StrtabBuilder.add(F.getName())); 4829 Vals.push_back(F.getName().size()); 4830 Vals.push_back(0); 4831 Vals.push_back(0); 4832 Vals.push_back(0); 4833 Vals.push_back(getEncodedLinkage(F)); 4834 4835 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4836 Vals.clear(); 4837 } 4838 4839 // Emit the alias information. 4840 for (const GlobalAlias &A : M.aliases()) { 4841 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4842 Vals.push_back(StrtabBuilder.add(A.getName())); 4843 Vals.push_back(A.getName().size()); 4844 Vals.push_back(0); 4845 Vals.push_back(0); 4846 Vals.push_back(0); 4847 Vals.push_back(getEncodedLinkage(A)); 4848 4849 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4850 Vals.clear(); 4851 } 4852 4853 // Emit the ifunc information. 4854 for (const GlobalIFunc &I : M.ifuncs()) { 4855 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4856 Vals.push_back(StrtabBuilder.add(I.getName())); 4857 Vals.push_back(I.getName().size()); 4858 Vals.push_back(0); 4859 Vals.push_back(0); 4860 Vals.push_back(0); 4861 Vals.push_back(getEncodedLinkage(I)); 4862 4863 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4864 Vals.clear(); 4865 } 4866 } 4867 4868 void ThinLinkBitcodeWriter::write() { 4869 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4870 4871 writeModuleVersion(); 4872 4873 writeSimplifiedModuleInfo(); 4874 4875 writePerModuleGlobalValueSummary(); 4876 4877 // Write module hash. 4878 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4879 4880 Stream.ExitBlock(); 4881 } 4882 4883 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4884 const ModuleSummaryIndex &Index, 4885 const ModuleHash &ModHash) { 4886 assert(!WroteStrtab); 4887 4888 // The Mods vector is used by irsymtab::build, which requires non-const 4889 // Modules in case it needs to materialize metadata. But the bitcode writer 4890 // requires that the module is materialized, so we can cast to non-const here, 4891 // after checking that it is in fact materialized. 4892 assert(M.isMaterialized()); 4893 Mods.push_back(const_cast<Module *>(&M)); 4894 4895 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4896 ModHash); 4897 ThinLinkWriter.write(); 4898 } 4899 4900 // Write the specified thin link bitcode file to the given raw output stream, 4901 // where it will be written in a new bitcode block. This is used when 4902 // writing the per-module index file for ThinLTO. 4903 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4904 const ModuleSummaryIndex &Index, 4905 const ModuleHash &ModHash) { 4906 SmallVector<char, 0> Buffer; 4907 Buffer.reserve(256 * 1024); 4908 4909 BitcodeWriter Writer(Buffer); 4910 Writer.writeThinLinkBitcode(M, Index, ModHash); 4911 Writer.writeSymtab(); 4912 Writer.writeStrtab(); 4913 4914 Out.write((char *)&Buffer.front(), Buffer.size()); 4915 } 4916 4917 static const char *getSectionNameForBitcode(const Triple &T) { 4918 switch (T.getObjectFormat()) { 4919 case Triple::MachO: 4920 return "__LLVM,__bitcode"; 4921 case Triple::COFF: 4922 case Triple::ELF: 4923 case Triple::Wasm: 4924 case Triple::UnknownObjectFormat: 4925 return ".llvmbc"; 4926 case Triple::GOFF: 4927 llvm_unreachable("GOFF is not yet implemented"); 4928 break; 4929 case Triple::SPIRV: 4930 llvm_unreachable("SPIRV is not yet implemented"); 4931 break; 4932 case Triple::XCOFF: 4933 llvm_unreachable("XCOFF is not yet implemented"); 4934 break; 4935 case Triple::DXContainer: 4936 llvm_unreachable("DXContainer is not yet implemented"); 4937 break; 4938 } 4939 llvm_unreachable("Unimplemented ObjectFormatType"); 4940 } 4941 4942 static const char *getSectionNameForCommandline(const Triple &T) { 4943 switch (T.getObjectFormat()) { 4944 case Triple::MachO: 4945 return "__LLVM,__cmdline"; 4946 case Triple::COFF: 4947 case Triple::ELF: 4948 case Triple::Wasm: 4949 case Triple::UnknownObjectFormat: 4950 return ".llvmcmd"; 4951 case Triple::GOFF: 4952 llvm_unreachable("GOFF is not yet implemented"); 4953 break; 4954 case Triple::SPIRV: 4955 llvm_unreachable("SPIRV is not yet implemented"); 4956 break; 4957 case Triple::XCOFF: 4958 llvm_unreachable("XCOFF is not yet implemented"); 4959 break; 4960 case Triple::DXContainer: 4961 llvm_unreachable("DXC is not yet implemented"); 4962 break; 4963 } 4964 llvm_unreachable("Unimplemented ObjectFormatType"); 4965 } 4966 4967 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4968 bool EmbedBitcode, bool EmbedCmdline, 4969 const std::vector<uint8_t> &CmdArgs) { 4970 // Save llvm.compiler.used and remove it. 4971 SmallVector<Constant *, 2> UsedArray; 4972 SmallVector<GlobalValue *, 4> UsedGlobals; 4973 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4974 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4975 for (auto *GV : UsedGlobals) { 4976 if (GV->getName() != "llvm.embedded.module" && 4977 GV->getName() != "llvm.cmdline") 4978 UsedArray.push_back( 4979 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4980 } 4981 if (Used) 4982 Used->eraseFromParent(); 4983 4984 // Embed the bitcode for the llvm module. 4985 std::string Data; 4986 ArrayRef<uint8_t> ModuleData; 4987 Triple T(M.getTargetTriple()); 4988 4989 if (EmbedBitcode) { 4990 if (Buf.getBufferSize() == 0 || 4991 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4992 (const unsigned char *)Buf.getBufferEnd())) { 4993 // If the input is LLVM Assembly, bitcode is produced by serializing 4994 // the module. Use-lists order need to be preserved in this case. 4995 llvm::raw_string_ostream OS(Data); 4996 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4997 ModuleData = 4998 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4999 } else 5000 // If the input is LLVM bitcode, write the input byte stream directly. 5001 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5002 Buf.getBufferSize()); 5003 } 5004 llvm::Constant *ModuleConstant = 5005 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5006 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5007 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5008 ModuleConstant); 5009 GV->setSection(getSectionNameForBitcode(T)); 5010 // Set alignment to 1 to prevent padding between two contributions from input 5011 // sections after linking. 5012 GV->setAlignment(Align(1)); 5013 UsedArray.push_back( 5014 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5015 if (llvm::GlobalVariable *Old = 5016 M.getGlobalVariable("llvm.embedded.module", true)) { 5017 assert(Old->hasZeroLiveUses() && 5018 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5019 GV->takeName(Old); 5020 Old->eraseFromParent(); 5021 } else { 5022 GV->setName("llvm.embedded.module"); 5023 } 5024 5025 // Skip if only bitcode needs to be embedded. 5026 if (EmbedCmdline) { 5027 // Embed command-line options. 5028 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5029 CmdArgs.size()); 5030 llvm::Constant *CmdConstant = 5031 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5032 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5033 llvm::GlobalValue::PrivateLinkage, 5034 CmdConstant); 5035 GV->setSection(getSectionNameForCommandline(T)); 5036 GV->setAlignment(Align(1)); 5037 UsedArray.push_back( 5038 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5039 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5040 assert(Old->hasZeroLiveUses() && 5041 "llvm.cmdline can only be used once in llvm.compiler.used"); 5042 GV->takeName(Old); 5043 Old->eraseFromParent(); 5044 } else { 5045 GV->setName("llvm.cmdline"); 5046 } 5047 } 5048 5049 if (UsedArray.empty()) 5050 return; 5051 5052 // Recreate llvm.compiler.used. 5053 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5054 auto *NewUsed = new GlobalVariable( 5055 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5056 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5057 NewUsed->setSection("llvm.metadata"); 5058 } 5059