1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/System/Program.h" 30 using namespace llvm; 31 32 /// These are manifest constants used by the bitcode writer. They do not need to 33 /// be kept in sync with the reader, but need to be consistent within this file. 34 enum { 35 CurVersion = 0, 36 37 // VALUE_SYMTAB_BLOCK abbrev id's. 38 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 39 VST_ENTRY_7_ABBREV, 40 VST_ENTRY_6_ABBREV, 41 VST_BBENTRY_6_ABBREV, 42 43 // CONSTANTS_BLOCK abbrev id's. 44 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 45 CONSTANTS_INTEGER_ABBREV, 46 CONSTANTS_CE_CAST_Abbrev, 47 CONSTANTS_NULL_Abbrev, 48 49 // FUNCTION_BLOCK abbrev id's. 50 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 FUNCTION_INST_BINOP_ABBREV, 52 FUNCTION_INST_BINOP_FLAGS_ABBREV, 53 FUNCTION_INST_CAST_ABBREV, 54 FUNCTION_INST_RET_VOID_ABBREV, 55 FUNCTION_INST_RET_VAL_ABBREV, 56 FUNCTION_INST_UNREACHABLE_ABBREV 57 }; 58 59 60 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 61 switch (Opcode) { 62 default: llvm_unreachable("Unknown cast instruction!"); 63 case Instruction::Trunc : return bitc::CAST_TRUNC; 64 case Instruction::ZExt : return bitc::CAST_ZEXT; 65 case Instruction::SExt : return bitc::CAST_SEXT; 66 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 67 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 68 case Instruction::UIToFP : return bitc::CAST_UITOFP; 69 case Instruction::SIToFP : return bitc::CAST_SITOFP; 70 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 71 case Instruction::FPExt : return bitc::CAST_FPEXT; 72 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 73 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 74 case Instruction::BitCast : return bitc::CAST_BITCAST; 75 } 76 } 77 78 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 79 switch (Opcode) { 80 default: llvm_unreachable("Unknown binary instruction!"); 81 case Instruction::Add: 82 case Instruction::FAdd: return bitc::BINOP_ADD; 83 case Instruction::Sub: 84 case Instruction::FSub: return bitc::BINOP_SUB; 85 case Instruction::Mul: 86 case Instruction::FMul: return bitc::BINOP_MUL; 87 case Instruction::UDiv: return bitc::BINOP_UDIV; 88 case Instruction::FDiv: 89 case Instruction::SDiv: return bitc::BINOP_SDIV; 90 case Instruction::URem: return bitc::BINOP_UREM; 91 case Instruction::FRem: 92 case Instruction::SRem: return bitc::BINOP_SREM; 93 case Instruction::Shl: return bitc::BINOP_SHL; 94 case Instruction::LShr: return bitc::BINOP_LSHR; 95 case Instruction::AShr: return bitc::BINOP_ASHR; 96 case Instruction::And: return bitc::BINOP_AND; 97 case Instruction::Or: return bitc::BINOP_OR; 98 case Instruction::Xor: return bitc::BINOP_XOR; 99 } 100 } 101 102 103 104 static void WriteStringRecord(unsigned Code, const std::string &Str, 105 unsigned AbbrevToUse, BitstreamWriter &Stream) { 106 SmallVector<unsigned, 64> Vals; 107 108 // Code: [strchar x N] 109 for (unsigned i = 0, e = Str.size(); i != e; ++i) 110 Vals.push_back(Str[i]); 111 112 // Emit the finished record. 113 Stream.EmitRecord(Code, Vals, AbbrevToUse); 114 } 115 116 // Emit information about parameter attributes. 117 static void WriteAttributeTable(const ValueEnumerator &VE, 118 BitstreamWriter &Stream) { 119 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 120 if (Attrs.empty()) return; 121 122 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 123 124 SmallVector<uint64_t, 64> Record; 125 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 126 const AttrListPtr &A = Attrs[i]; 127 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 128 const AttributeWithIndex &PAWI = A.getSlot(i); 129 Record.push_back(PAWI.Index); 130 131 // FIXME: remove in LLVM 3.0 132 // Store the alignment in the bitcode as a 16-bit raw value instead of a 133 // 5-bit log2 encoded value. Shift the bits above the alignment up by 134 // 11 bits. 135 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 136 if (PAWI.Attrs & Attribute::Alignment) 137 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 138 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 139 140 Record.push_back(FauxAttr); 141 } 142 143 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 144 Record.clear(); 145 } 146 147 Stream.ExitBlock(); 148 } 149 150 /// WriteTypeTable - Write out the type table for a module. 151 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 152 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 153 154 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 155 SmallVector<uint64_t, 64> TypeVals; 156 157 // Abbrev for TYPE_CODE_POINTER. 158 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 161 Log2_32_Ceil(VE.getTypes().size()+1))); 162 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 163 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 164 165 // Abbrev for TYPE_CODE_FUNCTION. 166 Abbv = new BitCodeAbbrev(); 167 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 169 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 172 Log2_32_Ceil(VE.getTypes().size()+1))); 173 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 174 175 // Abbrev for TYPE_CODE_STRUCT. 176 Abbv = new BitCodeAbbrev(); 177 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 181 Log2_32_Ceil(VE.getTypes().size()+1))); 182 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 183 184 // Abbrev for TYPE_CODE_UNION. 185 Abbv = new BitCodeAbbrev(); 186 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_UNION)); 187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 189 Log2_32_Ceil(VE.getTypes().size()+1))); 190 unsigned UnionAbbrev = Stream.EmitAbbrev(Abbv); 191 192 // Abbrev for TYPE_CODE_ARRAY. 193 Abbv = new BitCodeAbbrev(); 194 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 197 Log2_32_Ceil(VE.getTypes().size()+1))); 198 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 199 200 // Emit an entry count so the reader can reserve space. 201 TypeVals.push_back(TypeList.size()); 202 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 203 TypeVals.clear(); 204 205 // Loop over all of the types, emitting each in turn. 206 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 207 const Type *T = TypeList[i].first; 208 int AbbrevToUse = 0; 209 unsigned Code = 0; 210 211 switch (T->getTypeID()) { 212 default: llvm_unreachable("Unknown type!"); 213 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 214 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 215 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 216 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 217 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 218 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 219 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 220 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 221 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 222 case Type::IntegerTyID: 223 // INTEGER: [width] 224 Code = bitc::TYPE_CODE_INTEGER; 225 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 226 break; 227 case Type::PointerTyID: { 228 const PointerType *PTy = cast<PointerType>(T); 229 // POINTER: [pointee type, address space] 230 Code = bitc::TYPE_CODE_POINTER; 231 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 232 unsigned AddressSpace = PTy->getAddressSpace(); 233 TypeVals.push_back(AddressSpace); 234 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 235 break; 236 } 237 case Type::FunctionTyID: { 238 const FunctionType *FT = cast<FunctionType>(T); 239 // FUNCTION: [isvararg, attrid, retty, paramty x N] 240 Code = bitc::TYPE_CODE_FUNCTION; 241 TypeVals.push_back(FT->isVarArg()); 242 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 243 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 244 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 245 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 246 AbbrevToUse = FunctionAbbrev; 247 break; 248 } 249 case Type::StructTyID: { 250 const StructType *ST = cast<StructType>(T); 251 // STRUCT: [ispacked, eltty x N] 252 Code = bitc::TYPE_CODE_STRUCT; 253 TypeVals.push_back(ST->isPacked()); 254 // Output all of the element types. 255 for (StructType::element_iterator I = ST->element_begin(), 256 E = ST->element_end(); I != E; ++I) 257 TypeVals.push_back(VE.getTypeID(*I)); 258 AbbrevToUse = StructAbbrev; 259 break; 260 } 261 case Type::UnionTyID: { 262 const UnionType *UT = cast<UnionType>(T); 263 // UNION: [eltty x N] 264 Code = bitc::TYPE_CODE_UNION; 265 // Output all of the element types. 266 for (UnionType::element_iterator I = UT->element_begin(), 267 E = UT->element_end(); I != E; ++I) 268 TypeVals.push_back(VE.getTypeID(*I)); 269 AbbrevToUse = UnionAbbrev; 270 break; 271 } 272 case Type::ArrayTyID: { 273 const ArrayType *AT = cast<ArrayType>(T); 274 // ARRAY: [numelts, eltty] 275 Code = bitc::TYPE_CODE_ARRAY; 276 TypeVals.push_back(AT->getNumElements()); 277 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 278 AbbrevToUse = ArrayAbbrev; 279 break; 280 } 281 case Type::VectorTyID: { 282 const VectorType *VT = cast<VectorType>(T); 283 // VECTOR [numelts, eltty] 284 Code = bitc::TYPE_CODE_VECTOR; 285 TypeVals.push_back(VT->getNumElements()); 286 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 287 break; 288 } 289 } 290 291 // Emit the finished record. 292 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 293 TypeVals.clear(); 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static unsigned getEncodedLinkage(const GlobalValue *GV) { 300 switch (GV->getLinkage()) { 301 default: llvm_unreachable("Invalid linkage!"); 302 case GlobalValue::ExternalLinkage: return 0; 303 case GlobalValue::WeakAnyLinkage: return 1; 304 case GlobalValue::AppendingLinkage: return 2; 305 case GlobalValue::InternalLinkage: return 3; 306 case GlobalValue::LinkOnceAnyLinkage: return 4; 307 case GlobalValue::DLLImportLinkage: return 5; 308 case GlobalValue::DLLExportLinkage: return 6; 309 case GlobalValue::ExternalWeakLinkage: return 7; 310 case GlobalValue::CommonLinkage: return 8; 311 case GlobalValue::PrivateLinkage: return 9; 312 case GlobalValue::WeakODRLinkage: return 10; 313 case GlobalValue::LinkOnceODRLinkage: return 11; 314 case GlobalValue::AvailableExternallyLinkage: return 12; 315 case GlobalValue::LinkerPrivateLinkage: return 13; 316 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 317 } 318 } 319 320 static unsigned getEncodedVisibility(const GlobalValue *GV) { 321 switch (GV->getVisibility()) { 322 default: llvm_unreachable("Invalid visibility!"); 323 case GlobalValue::DefaultVisibility: return 0; 324 case GlobalValue::HiddenVisibility: return 1; 325 case GlobalValue::ProtectedVisibility: return 2; 326 } 327 } 328 329 // Emit top-level description of module, including target triple, inline asm, 330 // descriptors for global variables, and function prototype info. 331 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 332 BitstreamWriter &Stream) { 333 // Emit the list of dependent libraries for the Module. 334 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 335 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 336 337 // Emit various pieces of data attached to a module. 338 if (!M->getTargetTriple().empty()) 339 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 340 0/*TODO*/, Stream); 341 if (!M->getDataLayout().empty()) 342 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 343 0/*TODO*/, Stream); 344 if (!M->getModuleInlineAsm().empty()) 345 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 346 0/*TODO*/, Stream); 347 348 // Emit information about sections and GC, computing how many there are. Also 349 // compute the maximum alignment value. 350 std::map<std::string, unsigned> SectionMap; 351 std::map<std::string, unsigned> GCMap; 352 unsigned MaxAlignment = 0; 353 unsigned MaxGlobalType = 0; 354 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 355 GV != E; ++GV) { 356 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 357 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 358 359 if (!GV->hasSection()) continue; 360 // Give section names unique ID's. 361 unsigned &Entry = SectionMap[GV->getSection()]; 362 if (Entry != 0) continue; 363 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 364 0/*TODO*/, Stream); 365 Entry = SectionMap.size(); 366 } 367 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 368 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 369 if (F->hasSection()) { 370 // Give section names unique ID's. 371 unsigned &Entry = SectionMap[F->getSection()]; 372 if (!Entry) { 373 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 374 0/*TODO*/, Stream); 375 Entry = SectionMap.size(); 376 } 377 } 378 if (F->hasGC()) { 379 // Same for GC names. 380 unsigned &Entry = GCMap[F->getGC()]; 381 if (!Entry) { 382 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 383 0/*TODO*/, Stream); 384 Entry = GCMap.size(); 385 } 386 } 387 } 388 389 // Emit abbrev for globals, now that we know # sections and max alignment. 390 unsigned SimpleGVarAbbrev = 0; 391 if (!M->global_empty()) { 392 // Add an abbrev for common globals with no visibility or thread localness. 393 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 394 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 396 Log2_32_Ceil(MaxGlobalType+1))); 397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 400 if (MaxAlignment == 0) // Alignment. 401 Abbv->Add(BitCodeAbbrevOp(0)); 402 else { 403 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 405 Log2_32_Ceil(MaxEncAlignment+1))); 406 } 407 if (SectionMap.empty()) // Section. 408 Abbv->Add(BitCodeAbbrevOp(0)); 409 else 410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 411 Log2_32_Ceil(SectionMap.size()+1))); 412 // Don't bother emitting vis + thread local. 413 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 414 } 415 416 // Emit the global variable information. 417 SmallVector<unsigned, 64> Vals; 418 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 419 GV != E; ++GV) { 420 unsigned AbbrevToUse = 0; 421 422 // GLOBALVAR: [type, isconst, initid, 423 // linkage, alignment, section, visibility, threadlocal] 424 Vals.push_back(VE.getTypeID(GV->getType())); 425 Vals.push_back(GV->isConstant()); 426 Vals.push_back(GV->isDeclaration() ? 0 : 427 (VE.getValueID(GV->getInitializer()) + 1)); 428 Vals.push_back(getEncodedLinkage(GV)); 429 Vals.push_back(Log2_32(GV->getAlignment())+1); 430 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 431 if (GV->isThreadLocal() || 432 GV->getVisibility() != GlobalValue::DefaultVisibility) { 433 Vals.push_back(getEncodedVisibility(GV)); 434 Vals.push_back(GV->isThreadLocal()); 435 } else { 436 AbbrevToUse = SimpleGVarAbbrev; 437 } 438 439 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 440 Vals.clear(); 441 } 442 443 // Emit the function proto information. 444 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 445 // FUNCTION: [type, callingconv, isproto, paramattr, 446 // linkage, alignment, section, visibility, gc] 447 Vals.push_back(VE.getTypeID(F->getType())); 448 Vals.push_back(F->getCallingConv()); 449 Vals.push_back(F->isDeclaration()); 450 Vals.push_back(getEncodedLinkage(F)); 451 Vals.push_back(VE.getAttributeID(F->getAttributes())); 452 Vals.push_back(Log2_32(F->getAlignment())+1); 453 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 454 Vals.push_back(getEncodedVisibility(F)); 455 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 456 457 unsigned AbbrevToUse = 0; 458 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 459 Vals.clear(); 460 } 461 462 463 // Emit the alias information. 464 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 465 AI != E; ++AI) { 466 Vals.push_back(VE.getTypeID(AI->getType())); 467 Vals.push_back(VE.getValueID(AI->getAliasee())); 468 Vals.push_back(getEncodedLinkage(AI)); 469 Vals.push_back(getEncodedVisibility(AI)); 470 unsigned AbbrevToUse = 0; 471 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 472 Vals.clear(); 473 } 474 } 475 476 static uint64_t GetOptimizationFlags(const Value *V) { 477 uint64_t Flags = 0; 478 479 if (const OverflowingBinaryOperator *OBO = 480 dyn_cast<OverflowingBinaryOperator>(V)) { 481 if (OBO->hasNoSignedWrap()) 482 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 483 if (OBO->hasNoUnsignedWrap()) 484 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 485 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { 486 if (Div->isExact()) 487 Flags |= 1 << bitc::SDIV_EXACT; 488 } 489 490 return Flags; 491 } 492 493 static void WriteMDNode(const MDNode *N, 494 const ValueEnumerator &VE, 495 BitstreamWriter &Stream, 496 SmallVector<uint64_t, 64> &Record) { 497 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 498 if (N->getOperand(i)) { 499 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 500 Record.push_back(VE.getValueID(N->getOperand(i))); 501 } else { 502 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 503 Record.push_back(0); 504 } 505 } 506 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 507 bitc::METADATA_NODE; 508 Stream.EmitRecord(MDCode, Record, 0); 509 Record.clear(); 510 } 511 512 static void WriteModuleMetadata(const ValueEnumerator &VE, 513 BitstreamWriter &Stream) { 514 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 515 bool StartedMetadataBlock = false; 516 unsigned MDSAbbrev = 0; 517 SmallVector<uint64_t, 64> Record; 518 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 519 520 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 521 if (!N->isFunctionLocal() || !N->getFunction()) { 522 if (!StartedMetadataBlock) { 523 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 524 StartedMetadataBlock = true; 525 } 526 WriteMDNode(N, VE, Stream, Record); 527 } 528 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 529 if (!StartedMetadataBlock) { 530 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 531 532 // Abbrev for METADATA_STRING. 533 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 534 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 537 MDSAbbrev = Stream.EmitAbbrev(Abbv); 538 StartedMetadataBlock = true; 539 } 540 541 // Code: [strchar x N] 542 Record.append(MDS->begin(), MDS->end()); 543 544 // Emit the finished record. 545 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 546 Record.clear(); 547 } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) { 548 if (!StartedMetadataBlock) { 549 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 550 StartedMetadataBlock = true; 551 } 552 553 // Write name. 554 StringRef Str = NMD->getName(); 555 for (unsigned i = 0, e = Str.size(); i != e; ++i) 556 Record.push_back(Str[i]); 557 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 558 Record.clear(); 559 560 // Write named metadata operands. 561 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 562 if (NMD->getOperand(i)) 563 Record.push_back(VE.getValueID(NMD->getOperand(i))); 564 else 565 Record.push_back(~0U); 566 } 567 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 568 Record.clear(); 569 } 570 } 571 572 if (StartedMetadataBlock) 573 Stream.ExitBlock(); 574 } 575 576 static void WriteFunctionLocalMetadata(const Function &F, 577 const ValueEnumerator &VE, 578 BitstreamWriter &Stream) { 579 bool StartedMetadataBlock = false; 580 SmallVector<uint64_t, 64> Record; 581 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 582 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 583 if (const MDNode *N = Vals[i]) 584 if (N->isFunctionLocal() && N->getFunction() == &F) { 585 if (!StartedMetadataBlock) { 586 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 587 StartedMetadataBlock = true; 588 } 589 WriteMDNode(N, VE, Stream, Record); 590 } 591 592 if (StartedMetadataBlock) 593 Stream.ExitBlock(); 594 } 595 596 static void WriteMetadataAttachment(const Function &F, 597 const ValueEnumerator &VE, 598 BitstreamWriter &Stream) { 599 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 600 601 SmallVector<uint64_t, 64> Record; 602 603 // Write metadata attachments 604 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 605 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 606 607 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 608 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 609 I != E; ++I) { 610 MDs.clear(); 611 I->getAllMetadataOtherThanDebugLoc(MDs); 612 613 // If no metadata, ignore instruction. 614 if (MDs.empty()) continue; 615 616 Record.push_back(VE.getInstructionID(I)); 617 618 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 619 Record.push_back(MDs[i].first); 620 Record.push_back(VE.getValueID(MDs[i].second)); 621 } 622 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 623 Record.clear(); 624 } 625 626 Stream.ExitBlock(); 627 } 628 629 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 630 SmallVector<uint64_t, 64> Record; 631 632 // Write metadata kinds 633 // METADATA_KIND - [n x [id, name]] 634 SmallVector<StringRef, 4> Names; 635 M->getMDKindNames(Names); 636 637 if (Names.empty()) return; 638 639 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 640 641 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 642 Record.push_back(MDKindID); 643 StringRef KName = Names[MDKindID]; 644 Record.append(KName.begin(), KName.end()); 645 646 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 647 Record.clear(); 648 } 649 650 Stream.ExitBlock(); 651 } 652 653 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 654 const ValueEnumerator &VE, 655 BitstreamWriter &Stream, bool isGlobal) { 656 if (FirstVal == LastVal) return; 657 658 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 659 660 unsigned AggregateAbbrev = 0; 661 unsigned String8Abbrev = 0; 662 unsigned CString7Abbrev = 0; 663 unsigned CString6Abbrev = 0; 664 // If this is a constant pool for the module, emit module-specific abbrevs. 665 if (isGlobal) { 666 // Abbrev for CST_CODE_AGGREGATE. 667 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 668 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 671 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 672 673 // Abbrev for CST_CODE_STRING. 674 Abbv = new BitCodeAbbrev(); 675 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 678 String8Abbrev = Stream.EmitAbbrev(Abbv); 679 // Abbrev for CST_CODE_CSTRING. 680 Abbv = new BitCodeAbbrev(); 681 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 684 CString7Abbrev = Stream.EmitAbbrev(Abbv); 685 // Abbrev for CST_CODE_CSTRING. 686 Abbv = new BitCodeAbbrev(); 687 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 690 CString6Abbrev = Stream.EmitAbbrev(Abbv); 691 } 692 693 SmallVector<uint64_t, 64> Record; 694 695 const ValueEnumerator::ValueList &Vals = VE.getValues(); 696 const Type *LastTy = 0; 697 for (unsigned i = FirstVal; i != LastVal; ++i) { 698 const Value *V = Vals[i].first; 699 // If we need to switch types, do so now. 700 if (V->getType() != LastTy) { 701 LastTy = V->getType(); 702 Record.push_back(VE.getTypeID(LastTy)); 703 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 704 CONSTANTS_SETTYPE_ABBREV); 705 Record.clear(); 706 } 707 708 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 709 Record.push_back(unsigned(IA->hasSideEffects()) | 710 unsigned(IA->isAlignStack()) << 1); 711 712 // Add the asm string. 713 const std::string &AsmStr = IA->getAsmString(); 714 Record.push_back(AsmStr.size()); 715 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 716 Record.push_back(AsmStr[i]); 717 718 // Add the constraint string. 719 const std::string &ConstraintStr = IA->getConstraintString(); 720 Record.push_back(ConstraintStr.size()); 721 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 722 Record.push_back(ConstraintStr[i]); 723 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 724 Record.clear(); 725 continue; 726 } 727 const Constant *C = cast<Constant>(V); 728 unsigned Code = -1U; 729 unsigned AbbrevToUse = 0; 730 if (C->isNullValue()) { 731 Code = bitc::CST_CODE_NULL; 732 } else if (isa<UndefValue>(C)) { 733 Code = bitc::CST_CODE_UNDEF; 734 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 735 if (IV->getBitWidth() <= 64) { 736 int64_t V = IV->getSExtValue(); 737 if (V >= 0) 738 Record.push_back(V << 1); 739 else 740 Record.push_back((-V << 1) | 1); 741 Code = bitc::CST_CODE_INTEGER; 742 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 743 } else { // Wide integers, > 64 bits in size. 744 // We have an arbitrary precision integer value to write whose 745 // bit width is > 64. However, in canonical unsigned integer 746 // format it is likely that the high bits are going to be zero. 747 // So, we only write the number of active words. 748 unsigned NWords = IV->getValue().getActiveWords(); 749 const uint64_t *RawWords = IV->getValue().getRawData(); 750 for (unsigned i = 0; i != NWords; ++i) { 751 int64_t V = RawWords[i]; 752 if (V >= 0) 753 Record.push_back(V << 1); 754 else 755 Record.push_back((-V << 1) | 1); 756 } 757 Code = bitc::CST_CODE_WIDE_INTEGER; 758 } 759 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 760 Code = bitc::CST_CODE_FLOAT; 761 const Type *Ty = CFP->getType(); 762 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 763 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 764 } else if (Ty->isX86_FP80Ty()) { 765 // api needed to prevent premature destruction 766 // bits are not in the same order as a normal i80 APInt, compensate. 767 APInt api = CFP->getValueAPF().bitcastToAPInt(); 768 const uint64_t *p = api.getRawData(); 769 Record.push_back((p[1] << 48) | (p[0] >> 16)); 770 Record.push_back(p[0] & 0xffffLL); 771 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 772 APInt api = CFP->getValueAPF().bitcastToAPInt(); 773 const uint64_t *p = api.getRawData(); 774 Record.push_back(p[0]); 775 Record.push_back(p[1]); 776 } else { 777 assert (0 && "Unknown FP type!"); 778 } 779 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 780 const ConstantArray *CA = cast<ConstantArray>(C); 781 // Emit constant strings specially. 782 unsigned NumOps = CA->getNumOperands(); 783 // If this is a null-terminated string, use the denser CSTRING encoding. 784 if (CA->getOperand(NumOps-1)->isNullValue()) { 785 Code = bitc::CST_CODE_CSTRING; 786 --NumOps; // Don't encode the null, which isn't allowed by char6. 787 } else { 788 Code = bitc::CST_CODE_STRING; 789 AbbrevToUse = String8Abbrev; 790 } 791 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 792 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 793 for (unsigned i = 0; i != NumOps; ++i) { 794 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); 795 Record.push_back(V); 796 isCStr7 &= (V & 128) == 0; 797 if (isCStrChar6) 798 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 799 } 800 801 if (isCStrChar6) 802 AbbrevToUse = CString6Abbrev; 803 else if (isCStr7) 804 AbbrevToUse = CString7Abbrev; 805 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 806 isa<ConstantVector>(V)) { 807 Code = bitc::CST_CODE_AGGREGATE; 808 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 809 Record.push_back(VE.getValueID(C->getOperand(i))); 810 AbbrevToUse = AggregateAbbrev; 811 } else if (isa<ConstantUnion>(C)) { 812 Code = bitc::CST_CODE_AGGREGATE; 813 814 // Unions only have one entry but we must send type along with it. 815 const Type *EntryKind = C->getOperand(0)->getType(); 816 817 const UnionType *UnTy = cast<UnionType>(C->getType()); 818 int UnionIndex = UnTy->getElementTypeIndex(EntryKind); 819 assert(UnionIndex != -1 && "Constant union contains invalid entry"); 820 821 Record.push_back(UnionIndex); 822 Record.push_back(VE.getValueID(C->getOperand(0))); 823 824 AbbrevToUse = AggregateAbbrev; 825 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 826 switch (CE->getOpcode()) { 827 default: 828 if (Instruction::isCast(CE->getOpcode())) { 829 Code = bitc::CST_CODE_CE_CAST; 830 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 831 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 832 Record.push_back(VE.getValueID(C->getOperand(0))); 833 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 834 } else { 835 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 836 Code = bitc::CST_CODE_CE_BINOP; 837 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 838 Record.push_back(VE.getValueID(C->getOperand(0))); 839 Record.push_back(VE.getValueID(C->getOperand(1))); 840 uint64_t Flags = GetOptimizationFlags(CE); 841 if (Flags != 0) 842 Record.push_back(Flags); 843 } 844 break; 845 case Instruction::GetElementPtr: 846 Code = bitc::CST_CODE_CE_GEP; 847 if (cast<GEPOperator>(C)->isInBounds()) 848 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 849 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 850 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 851 Record.push_back(VE.getValueID(C->getOperand(i))); 852 } 853 break; 854 case Instruction::Select: 855 Code = bitc::CST_CODE_CE_SELECT; 856 Record.push_back(VE.getValueID(C->getOperand(0))); 857 Record.push_back(VE.getValueID(C->getOperand(1))); 858 Record.push_back(VE.getValueID(C->getOperand(2))); 859 break; 860 case Instruction::ExtractElement: 861 Code = bitc::CST_CODE_CE_EXTRACTELT; 862 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 863 Record.push_back(VE.getValueID(C->getOperand(0))); 864 Record.push_back(VE.getValueID(C->getOperand(1))); 865 break; 866 case Instruction::InsertElement: 867 Code = bitc::CST_CODE_CE_INSERTELT; 868 Record.push_back(VE.getValueID(C->getOperand(0))); 869 Record.push_back(VE.getValueID(C->getOperand(1))); 870 Record.push_back(VE.getValueID(C->getOperand(2))); 871 break; 872 case Instruction::ShuffleVector: 873 // If the return type and argument types are the same, this is a 874 // standard shufflevector instruction. If the types are different, 875 // then the shuffle is widening or truncating the input vectors, and 876 // the argument type must also be encoded. 877 if (C->getType() == C->getOperand(0)->getType()) { 878 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 879 } else { 880 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 881 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 882 } 883 Record.push_back(VE.getValueID(C->getOperand(0))); 884 Record.push_back(VE.getValueID(C->getOperand(1))); 885 Record.push_back(VE.getValueID(C->getOperand(2))); 886 break; 887 case Instruction::ICmp: 888 case Instruction::FCmp: 889 Code = bitc::CST_CODE_CE_CMP; 890 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 891 Record.push_back(VE.getValueID(C->getOperand(0))); 892 Record.push_back(VE.getValueID(C->getOperand(1))); 893 Record.push_back(CE->getPredicate()); 894 break; 895 } 896 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 897 assert(BA->getFunction() == BA->getBasicBlock()->getParent() && 898 "Malformed blockaddress"); 899 Code = bitc::CST_CODE_BLOCKADDRESS; 900 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 901 Record.push_back(VE.getValueID(BA->getFunction())); 902 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 903 } else { 904 llvm_unreachable("Unknown constant!"); 905 } 906 Stream.EmitRecord(Code, Record, AbbrevToUse); 907 Record.clear(); 908 } 909 910 Stream.ExitBlock(); 911 } 912 913 static void WriteModuleConstants(const ValueEnumerator &VE, 914 BitstreamWriter &Stream) { 915 const ValueEnumerator::ValueList &Vals = VE.getValues(); 916 917 // Find the first constant to emit, which is the first non-globalvalue value. 918 // We know globalvalues have been emitted by WriteModuleInfo. 919 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 920 if (!isa<GlobalValue>(Vals[i].first)) { 921 WriteConstants(i, Vals.size(), VE, Stream, true); 922 return; 923 } 924 } 925 } 926 927 /// PushValueAndType - The file has to encode both the value and type id for 928 /// many values, because we need to know what type to create for forward 929 /// references. However, most operands are not forward references, so this type 930 /// field is not needed. 931 /// 932 /// This function adds V's value ID to Vals. If the value ID is higher than the 933 /// instruction ID, then it is a forward reference, and it also includes the 934 /// type ID. 935 static bool PushValueAndType(const Value *V, unsigned InstID, 936 SmallVector<unsigned, 64> &Vals, 937 ValueEnumerator &VE) { 938 unsigned ValID = VE.getValueID(V); 939 Vals.push_back(ValID); 940 if (ValID >= InstID) { 941 Vals.push_back(VE.getTypeID(V->getType())); 942 return true; 943 } 944 return false; 945 } 946 947 /// WriteInstruction - Emit an instruction to the specified stream. 948 static void WriteInstruction(const Instruction &I, unsigned InstID, 949 ValueEnumerator &VE, BitstreamWriter &Stream, 950 SmallVector<unsigned, 64> &Vals) { 951 unsigned Code = 0; 952 unsigned AbbrevToUse = 0; 953 VE.setInstructionID(&I); 954 switch (I.getOpcode()) { 955 default: 956 if (Instruction::isCast(I.getOpcode())) { 957 Code = bitc::FUNC_CODE_INST_CAST; 958 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 959 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 960 Vals.push_back(VE.getTypeID(I.getType())); 961 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 962 } else { 963 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 964 Code = bitc::FUNC_CODE_INST_BINOP; 965 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 966 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 967 Vals.push_back(VE.getValueID(I.getOperand(1))); 968 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 969 uint64_t Flags = GetOptimizationFlags(&I); 970 if (Flags != 0) { 971 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 972 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 973 Vals.push_back(Flags); 974 } 975 } 976 break; 977 978 case Instruction::GetElementPtr: 979 Code = bitc::FUNC_CODE_INST_GEP; 980 if (cast<GEPOperator>(&I)->isInBounds()) 981 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 982 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 983 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 984 break; 985 case Instruction::ExtractValue: { 986 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 987 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 988 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 989 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 990 Vals.push_back(*i); 991 break; 992 } 993 case Instruction::InsertValue: { 994 Code = bitc::FUNC_CODE_INST_INSERTVAL; 995 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 996 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 997 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 998 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 999 Vals.push_back(*i); 1000 break; 1001 } 1002 case Instruction::Select: 1003 Code = bitc::FUNC_CODE_INST_VSELECT; 1004 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1005 Vals.push_back(VE.getValueID(I.getOperand(2))); 1006 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1007 break; 1008 case Instruction::ExtractElement: 1009 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1010 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1011 Vals.push_back(VE.getValueID(I.getOperand(1))); 1012 break; 1013 case Instruction::InsertElement: 1014 Code = bitc::FUNC_CODE_INST_INSERTELT; 1015 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1016 Vals.push_back(VE.getValueID(I.getOperand(1))); 1017 Vals.push_back(VE.getValueID(I.getOperand(2))); 1018 break; 1019 case Instruction::ShuffleVector: 1020 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1021 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1022 Vals.push_back(VE.getValueID(I.getOperand(1))); 1023 Vals.push_back(VE.getValueID(I.getOperand(2))); 1024 break; 1025 case Instruction::ICmp: 1026 case Instruction::FCmp: 1027 // compare returning Int1Ty or vector of Int1Ty 1028 Code = bitc::FUNC_CODE_INST_CMP2; 1029 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1030 Vals.push_back(VE.getValueID(I.getOperand(1))); 1031 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1032 break; 1033 1034 case Instruction::Ret: 1035 { 1036 Code = bitc::FUNC_CODE_INST_RET; 1037 unsigned NumOperands = I.getNumOperands(); 1038 if (NumOperands == 0) 1039 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1040 else if (NumOperands == 1) { 1041 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1042 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1043 } else { 1044 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1045 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1046 } 1047 } 1048 break; 1049 case Instruction::Br: 1050 { 1051 Code = bitc::FUNC_CODE_INST_BR; 1052 BranchInst &II = cast<BranchInst>(I); 1053 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1054 if (II.isConditional()) { 1055 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1056 Vals.push_back(VE.getValueID(II.getCondition())); 1057 } 1058 } 1059 break; 1060 case Instruction::Switch: 1061 Code = bitc::FUNC_CODE_INST_SWITCH; 1062 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1063 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1064 Vals.push_back(VE.getValueID(I.getOperand(i))); 1065 break; 1066 case Instruction::IndirectBr: 1067 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1068 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1069 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1070 Vals.push_back(VE.getValueID(I.getOperand(i))); 1071 break; 1072 1073 case Instruction::Invoke: { 1074 const InvokeInst *II = cast<InvokeInst>(&I); 1075 const Value *Callee(II->getCalledValue()); 1076 const PointerType *PTy = cast<PointerType>(Callee->getType()); 1077 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1078 Code = bitc::FUNC_CODE_INST_INVOKE; 1079 1080 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1081 Vals.push_back(II->getCallingConv()); 1082 Vals.push_back(VE.getValueID(II->getNormalDest())); 1083 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1084 PushValueAndType(Callee, InstID, Vals, VE); 1085 1086 // Emit value #'s for the fixed parameters. 1087 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1088 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1089 1090 // Emit type/value pairs for varargs params. 1091 if (FTy->isVarArg()) { 1092 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1093 i != e; ++i) 1094 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1095 } 1096 break; 1097 } 1098 case Instruction::Unwind: 1099 Code = bitc::FUNC_CODE_INST_UNWIND; 1100 break; 1101 case Instruction::Unreachable: 1102 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1103 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1104 break; 1105 1106 case Instruction::PHI: 1107 Code = bitc::FUNC_CODE_INST_PHI; 1108 Vals.push_back(VE.getTypeID(I.getType())); 1109 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1110 Vals.push_back(VE.getValueID(I.getOperand(i))); 1111 break; 1112 1113 case Instruction::Alloca: 1114 Code = bitc::FUNC_CODE_INST_ALLOCA; 1115 Vals.push_back(VE.getTypeID(I.getType())); 1116 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1117 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1118 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1119 break; 1120 1121 case Instruction::Load: 1122 Code = bitc::FUNC_CODE_INST_LOAD; 1123 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1124 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1125 1126 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1127 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1128 break; 1129 case Instruction::Store: 1130 Code = bitc::FUNC_CODE_INST_STORE2; 1131 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1132 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1133 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1134 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1135 break; 1136 case Instruction::Call: { 1137 const CallInst &CI = cast<CallInst>(I); 1138 const PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1139 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1140 1141 Code = bitc::FUNC_CODE_INST_CALL; 1142 1143 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1144 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1145 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1146 1147 // Emit value #'s for the fixed parameters. 1148 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1149 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1150 1151 // Emit type/value pairs for varargs params. 1152 if (FTy->isVarArg()) { 1153 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1154 i != e; ++i) 1155 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1156 } 1157 break; 1158 } 1159 case Instruction::VAArg: 1160 Code = bitc::FUNC_CODE_INST_VAARG; 1161 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1162 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1163 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1164 break; 1165 } 1166 1167 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1168 Vals.clear(); 1169 } 1170 1171 // Emit names for globals/functions etc. 1172 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1173 const ValueEnumerator &VE, 1174 BitstreamWriter &Stream) { 1175 if (VST.empty()) return; 1176 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1177 1178 // FIXME: Set up the abbrev, we know how many values there are! 1179 // FIXME: We know if the type names can use 7-bit ascii. 1180 SmallVector<unsigned, 64> NameVals; 1181 1182 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1183 SI != SE; ++SI) { 1184 1185 const ValueName &Name = *SI; 1186 1187 // Figure out the encoding to use for the name. 1188 bool is7Bit = true; 1189 bool isChar6 = true; 1190 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1191 C != E; ++C) { 1192 if (isChar6) 1193 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1194 if ((unsigned char)*C & 128) { 1195 is7Bit = false; 1196 break; // don't bother scanning the rest. 1197 } 1198 } 1199 1200 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1201 1202 // VST_ENTRY: [valueid, namechar x N] 1203 // VST_BBENTRY: [bbid, namechar x N] 1204 unsigned Code; 1205 if (isa<BasicBlock>(SI->getValue())) { 1206 Code = bitc::VST_CODE_BBENTRY; 1207 if (isChar6) 1208 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1209 } else { 1210 Code = bitc::VST_CODE_ENTRY; 1211 if (isChar6) 1212 AbbrevToUse = VST_ENTRY_6_ABBREV; 1213 else if (is7Bit) 1214 AbbrevToUse = VST_ENTRY_7_ABBREV; 1215 } 1216 1217 NameVals.push_back(VE.getValueID(SI->getValue())); 1218 for (const char *P = Name.getKeyData(), 1219 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1220 NameVals.push_back((unsigned char)*P); 1221 1222 // Emit the finished record. 1223 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1224 NameVals.clear(); 1225 } 1226 Stream.ExitBlock(); 1227 } 1228 1229 /// WriteFunction - Emit a function body to the module stream. 1230 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1231 BitstreamWriter &Stream) { 1232 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1233 VE.incorporateFunction(F); 1234 1235 SmallVector<unsigned, 64> Vals; 1236 1237 // Emit the number of basic blocks, so the reader can create them ahead of 1238 // time. 1239 Vals.push_back(VE.getBasicBlocks().size()); 1240 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1241 Vals.clear(); 1242 1243 // If there are function-local constants, emit them now. 1244 unsigned CstStart, CstEnd; 1245 VE.getFunctionConstantRange(CstStart, CstEnd); 1246 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1247 1248 // If there is function-local metadata, emit it now. 1249 WriteFunctionLocalMetadata(F, VE, Stream); 1250 1251 // Keep a running idea of what the instruction ID is. 1252 unsigned InstID = CstEnd; 1253 1254 bool NeedsMetadataAttachment = false; 1255 1256 DebugLoc LastDL; 1257 1258 // Finally, emit all the instructions, in order. 1259 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1260 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1261 I != E; ++I) { 1262 WriteInstruction(*I, InstID, VE, Stream, Vals); 1263 1264 if (!I->getType()->isVoidTy()) 1265 ++InstID; 1266 1267 // If the instruction has metadata, write a metadata attachment later. 1268 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1269 1270 // If the instruction has a debug location, emit it. 1271 DebugLoc DL = I->getDebugLoc(); 1272 if (DL.isUnknown()) { 1273 // nothing todo. 1274 } else if (DL == LastDL) { 1275 // Just repeat the same debug loc as last time. 1276 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1277 } else { 1278 MDNode *Scope, *IA; 1279 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1280 1281 Vals.push_back(DL.getLine()); 1282 Vals.push_back(DL.getCol()); 1283 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1284 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1285 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1286 Vals.clear(); 1287 1288 LastDL = DL; 1289 } 1290 } 1291 1292 // Emit names for all the instructions etc. 1293 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1294 1295 if (NeedsMetadataAttachment) 1296 WriteMetadataAttachment(F, VE, Stream); 1297 VE.purgeFunction(); 1298 Stream.ExitBlock(); 1299 } 1300 1301 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1302 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1303 const ValueEnumerator &VE, 1304 BitstreamWriter &Stream) { 1305 if (TST.empty()) return; 1306 1307 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1308 1309 // 7-bit fixed width VST_CODE_ENTRY strings. 1310 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1311 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1313 Log2_32_Ceil(VE.getTypes().size()+1))); 1314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1316 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1317 1318 SmallVector<unsigned, 64> NameVals; 1319 1320 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1321 TI != TE; ++TI) { 1322 // TST_ENTRY: [typeid, namechar x N] 1323 NameVals.push_back(VE.getTypeID(TI->second)); 1324 1325 const std::string &Str = TI->first; 1326 bool is7Bit = true; 1327 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1328 NameVals.push_back((unsigned char)Str[i]); 1329 if (Str[i] & 128) 1330 is7Bit = false; 1331 } 1332 1333 // Emit the finished record. 1334 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1335 NameVals.clear(); 1336 } 1337 1338 Stream.ExitBlock(); 1339 } 1340 1341 // Emit blockinfo, which defines the standard abbreviations etc. 1342 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1343 // We only want to emit block info records for blocks that have multiple 1344 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1345 // blocks can defined their abbrevs inline. 1346 Stream.EnterBlockInfoBlock(2); 1347 1348 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1349 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1354 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1355 Abbv) != VST_ENTRY_8_ABBREV) 1356 llvm_unreachable("Unexpected abbrev ordering!"); 1357 } 1358 1359 { // 7-bit fixed width VST_ENTRY strings. 1360 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1361 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1365 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1366 Abbv) != VST_ENTRY_7_ABBREV) 1367 llvm_unreachable("Unexpected abbrev ordering!"); 1368 } 1369 { // 6-bit char6 VST_ENTRY strings. 1370 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1371 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1375 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1376 Abbv) != VST_ENTRY_6_ABBREV) 1377 llvm_unreachable("Unexpected abbrev ordering!"); 1378 } 1379 { // 6-bit char6 VST_BBENTRY strings. 1380 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1381 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1385 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1386 Abbv) != VST_BBENTRY_6_ABBREV) 1387 llvm_unreachable("Unexpected abbrev ordering!"); 1388 } 1389 1390 1391 1392 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1393 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1394 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1396 Log2_32_Ceil(VE.getTypes().size()+1))); 1397 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1398 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1399 llvm_unreachable("Unexpected abbrev ordering!"); 1400 } 1401 1402 { // INTEGER abbrev for CONSTANTS_BLOCK. 1403 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1404 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1406 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1407 Abbv) != CONSTANTS_INTEGER_ABBREV) 1408 llvm_unreachable("Unexpected abbrev ordering!"); 1409 } 1410 1411 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1412 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1413 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1416 Log2_32_Ceil(VE.getTypes().size()+1))); 1417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1418 1419 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1420 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1421 llvm_unreachable("Unexpected abbrev ordering!"); 1422 } 1423 { // NULL abbrev for CONSTANTS_BLOCK. 1424 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1425 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1426 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1427 Abbv) != CONSTANTS_NULL_Abbrev) 1428 llvm_unreachable("Unexpected abbrev ordering!"); 1429 } 1430 1431 // FIXME: This should only use space for first class types! 1432 1433 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1434 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1435 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1439 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1440 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1441 llvm_unreachable("Unexpected abbrev ordering!"); 1442 } 1443 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1444 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1445 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1449 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1450 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1451 llvm_unreachable("Unexpected abbrev ordering!"); 1452 } 1453 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1454 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1455 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1460 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1461 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1462 llvm_unreachable("Unexpected abbrev ordering!"); 1463 } 1464 { // INST_CAST abbrev for FUNCTION_BLOCK. 1465 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1466 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1469 Log2_32_Ceil(VE.getTypes().size()+1))); 1470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1471 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1472 Abbv) != FUNCTION_INST_CAST_ABBREV) 1473 llvm_unreachable("Unexpected abbrev ordering!"); 1474 } 1475 1476 { // INST_RET abbrev for FUNCTION_BLOCK. 1477 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1478 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1479 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1480 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1481 llvm_unreachable("Unexpected abbrev ordering!"); 1482 } 1483 { // INST_RET abbrev for FUNCTION_BLOCK. 1484 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1485 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1487 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1488 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1489 llvm_unreachable("Unexpected abbrev ordering!"); 1490 } 1491 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1492 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1493 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1494 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1495 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1496 llvm_unreachable("Unexpected abbrev ordering!"); 1497 } 1498 1499 Stream.ExitBlock(); 1500 } 1501 1502 1503 /// WriteModule - Emit the specified module to the bitstream. 1504 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1505 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1506 1507 // Emit the version number if it is non-zero. 1508 if (CurVersion) { 1509 SmallVector<unsigned, 1> Vals; 1510 Vals.push_back(CurVersion); 1511 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1512 } 1513 1514 // Analyze the module, enumerating globals, functions, etc. 1515 ValueEnumerator VE(M); 1516 1517 // Emit blockinfo, which defines the standard abbreviations etc. 1518 WriteBlockInfo(VE, Stream); 1519 1520 // Emit information about parameter attributes. 1521 WriteAttributeTable(VE, Stream); 1522 1523 // Emit information describing all of the types in the module. 1524 WriteTypeTable(VE, Stream); 1525 1526 // Emit top-level description of module, including target triple, inline asm, 1527 // descriptors for global variables, and function prototype info. 1528 WriteModuleInfo(M, VE, Stream); 1529 1530 // Emit constants. 1531 WriteModuleConstants(VE, Stream); 1532 1533 // Emit metadata. 1534 WriteModuleMetadata(VE, Stream); 1535 1536 // Emit function bodies. 1537 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1538 if (!I->isDeclaration()) 1539 WriteFunction(*I, VE, Stream); 1540 1541 // Emit metadata. 1542 WriteModuleMetadataStore(M, Stream); 1543 1544 // Emit the type symbol table information. 1545 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1546 1547 // Emit names for globals/functions etc. 1548 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1549 1550 Stream.ExitBlock(); 1551 } 1552 1553 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1554 /// header and trailer to make it compatible with the system archiver. To do 1555 /// this we emit the following header, and then emit a trailer that pads the 1556 /// file out to be a multiple of 16 bytes. 1557 /// 1558 /// struct bc_header { 1559 /// uint32_t Magic; // 0x0B17C0DE 1560 /// uint32_t Version; // Version, currently always 0. 1561 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1562 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1563 /// uint32_t CPUType; // CPU specifier. 1564 /// ... potentially more later ... 1565 /// }; 1566 enum { 1567 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1568 DarwinBCHeaderSize = 5*4 1569 }; 1570 1571 /// isARMTriplet - Return true if the triplet looks like: 1572 /// arm-*, thumb-*, armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. 1573 static bool isARMTriplet(const std::string &TT) { 1574 size_t Pos = 0; 1575 size_t Size = TT.size(); 1576 if (Size >= 6 && 1577 TT[0] == 't' && TT[1] == 'h' && TT[2] == 'u' && 1578 TT[3] == 'm' && TT[4] == 'b') 1579 Pos = 5; 1580 else if (Size >= 4 && TT[0] == 'a' && TT[1] == 'r' && TT[2] == 'm') 1581 Pos = 3; 1582 else 1583 return false; 1584 1585 if (TT[Pos] == '-') 1586 return true; 1587 else if (TT[Pos] == 'v') { 1588 if (Size >= Pos+4 && 1589 TT[Pos+1] == '6' && TT[Pos+2] == 't' && TT[Pos+3] == '2') 1590 return true; 1591 else if (Size >= Pos+4 && 1592 TT[Pos+1] == '5' && TT[Pos+2] == 't' && TT[Pos+3] == 'e') 1593 return true; 1594 } else 1595 return false; 1596 while (++Pos < Size && TT[Pos] != '-') { 1597 if (!isdigit(TT[Pos])) 1598 return false; 1599 } 1600 return true; 1601 } 1602 1603 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1604 const std::string &TT) { 1605 unsigned CPUType = ~0U; 1606 1607 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1608 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1609 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1610 // specific constants here because they are implicitly part of the Darwin ABI. 1611 enum { 1612 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1613 DARWIN_CPU_TYPE_X86 = 7, 1614 DARWIN_CPU_TYPE_ARM = 12, 1615 DARWIN_CPU_TYPE_POWERPC = 18 1616 }; 1617 1618 if (TT.find("x86_64-") == 0) 1619 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1620 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1621 TT[4] == '-' && TT[1] - '3' < 6) 1622 CPUType = DARWIN_CPU_TYPE_X86; 1623 else if (TT.find("powerpc-") == 0) 1624 CPUType = DARWIN_CPU_TYPE_POWERPC; 1625 else if (TT.find("powerpc64-") == 0) 1626 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1627 else if (isARMTriplet(TT)) 1628 CPUType = DARWIN_CPU_TYPE_ARM; 1629 1630 // Traditional Bitcode starts after header. 1631 unsigned BCOffset = DarwinBCHeaderSize; 1632 1633 Stream.Emit(0x0B17C0DE, 32); 1634 Stream.Emit(0 , 32); // Version. 1635 Stream.Emit(BCOffset , 32); 1636 Stream.Emit(0 , 32); // Filled in later. 1637 Stream.Emit(CPUType , 32); 1638 } 1639 1640 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1641 /// finalize the header. 1642 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1643 // Update the size field in the header. 1644 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1645 1646 // If the file is not a multiple of 16 bytes, insert dummy padding. 1647 while (BufferSize & 15) { 1648 Stream.Emit(0, 8); 1649 ++BufferSize; 1650 } 1651 } 1652 1653 1654 /// WriteBitcodeToFile - Write the specified module to the specified output 1655 /// stream. 1656 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1657 std::vector<unsigned char> Buffer; 1658 BitstreamWriter Stream(Buffer); 1659 1660 Buffer.reserve(256*1024); 1661 1662 WriteBitcodeToStream( M, Stream ); 1663 1664 // Write the generated bitstream to "Out". 1665 Out.write((char*)&Buffer.front(), Buffer.size()); 1666 } 1667 1668 /// WriteBitcodeToStream - Write the specified module to the specified output 1669 /// stream. 1670 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1671 // If this is darwin, emit a file header and trailer if needed. 1672 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1673 if (isDarwin) 1674 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1675 1676 // Emit the file header. 1677 Stream.Emit((unsigned)'B', 8); 1678 Stream.Emit((unsigned)'C', 8); 1679 Stream.Emit(0x0, 4); 1680 Stream.Emit(0xC, 4); 1681 Stream.Emit(0xE, 4); 1682 Stream.Emit(0xD, 4); 1683 1684 // Emit the module. 1685 WriteModule(M, Stream); 1686 1687 if (isDarwin) 1688 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1689 } 1690