xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 432a38838d3155ba95f42dda566d4256ca278e1e)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Bitcode/BitCodes.h"
29 #include "llvm/Bitcode/BitstreamWriter.h"
30 #include "llvm/Bitcode/LLVMBitCodes.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/UseListOrder.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/MC/StringTableBuilder.h"
61 #include "llvm/Object/IRSymtab.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Endian.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/SHA1.h"
70 #include "llvm/Support/TargetRegistry.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <memory>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 static cl::opt<unsigned>
86     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
87                    cl::desc("Number of metadatas above which we emit an index "
88                             "to enable lazy-loading"));
89 
90 cl::opt<bool> WriteRelBFToSummary(
91     "write-relbf-to-summary", cl::Hidden, cl::init(false),
92     cl::desc("Write relative block frequency to function summary "));
93 
94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
95 
96 namespace {
97 
98 /// These are manifest constants used by the bitcode writer. They do not need to
99 /// be kept in sync with the reader, but need to be consistent within this file.
100 enum {
101   // VALUE_SYMTAB_BLOCK abbrev id's.
102   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
103   VST_ENTRY_7_ABBREV,
104   VST_ENTRY_6_ABBREV,
105   VST_BBENTRY_6_ABBREV,
106 
107   // CONSTANTS_BLOCK abbrev id's.
108   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
109   CONSTANTS_INTEGER_ABBREV,
110   CONSTANTS_CE_CAST_Abbrev,
111   CONSTANTS_NULL_Abbrev,
112 
113   // FUNCTION_BLOCK abbrev id's.
114   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
115   FUNCTION_INST_BINOP_ABBREV,
116   FUNCTION_INST_BINOP_FLAGS_ABBREV,
117   FUNCTION_INST_CAST_ABBREV,
118   FUNCTION_INST_RET_VOID_ABBREV,
119   FUNCTION_INST_RET_VAL_ABBREV,
120   FUNCTION_INST_UNREACHABLE_ABBREV,
121   FUNCTION_INST_GEP_ABBREV,
122 };
123 
124 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
125 /// file type.
126 class BitcodeWriterBase {
127 protected:
128   /// The stream created and owned by the client.
129   BitstreamWriter &Stream;
130 
131   StringTableBuilder &StrtabBuilder;
132 
133 public:
134   /// Constructs a BitcodeWriterBase object that writes to the provided
135   /// \p Stream.
136   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
137       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
138 
139 protected:
140   void writeBitcodeHeader();
141   void writeModuleVersion();
142 };
143 
144 void BitcodeWriterBase::writeModuleVersion() {
145   // VERSION: [version#]
146   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
147 }
148 
149 /// Base class to manage the module bitcode writing, currently subclassed for
150 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
151 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
152 protected:
153   /// The Module to write to bitcode.
154   const Module &M;
155 
156   /// Enumerates ids for all values in the module.
157   ValueEnumerator VE;
158 
159   /// Optional per-module index to write for ThinLTO.
160   const ModuleSummaryIndex *Index;
161 
162   /// Map that holds the correspondence between GUIDs in the summary index,
163   /// that came from indirect call profiles, and a value id generated by this
164   /// class to use in the VST and summary block records.
165   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
166 
167   /// Tracks the last value id recorded in the GUIDToValueMap.
168   unsigned GlobalValueId;
169 
170   /// Saves the offset of the VSTOffset record that must eventually be
171   /// backpatched with the offset of the actual VST.
172   uint64_t VSTOffsetPlaceholder = 0;
173 
174 public:
175   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
176   /// writing to the provided \p Buffer.
177   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
178                           BitstreamWriter &Stream,
179                           bool ShouldPreserveUseListOrder,
180                           const ModuleSummaryIndex *Index)
181       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
182         VE(M, ShouldPreserveUseListOrder), Index(Index) {
183     // Assign ValueIds to any callee values in the index that came from
184     // indirect call profiles and were recorded as a GUID not a Value*
185     // (which would have been assigned an ID by the ValueEnumerator).
186     // The starting ValueId is just after the number of values in the
187     // ValueEnumerator, so that they can be emitted in the VST.
188     GlobalValueId = VE.getValues().size();
189     if (!Index)
190       return;
191     for (const auto &GUIDSummaryLists : *Index)
192       // Examine all summaries for this GUID.
193       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
194         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
195           // For each call in the function summary, see if the call
196           // is to a GUID (which means it is for an indirect call,
197           // otherwise we would have a Value for it). If so, synthesize
198           // a value id.
199           for (auto &CallEdge : FS->calls())
200             if (!CallEdge.first.getValue())
201               assignValueId(CallEdge.first.getGUID());
202   }
203 
204 protected:
205   void writePerModuleGlobalValueSummary();
206 
207 private:
208   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
209                                            GlobalValueSummary *Summary,
210                                            unsigned ValueID,
211                                            unsigned FSCallsAbbrev,
212                                            unsigned FSCallsProfileAbbrev,
213                                            const Function &F);
214   void writeModuleLevelReferences(const GlobalVariable &V,
215                                   SmallVector<uint64_t, 64> &NameVals,
216                                   unsigned FSModRefsAbbrev);
217 
218   void assignValueId(GlobalValue::GUID ValGUID) {
219     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
220   }
221 
222   unsigned getValueId(GlobalValue::GUID ValGUID) {
223     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
224     // Expect that any GUID value had a value Id assigned by an
225     // earlier call to assignValueId.
226     assert(VMI != GUIDToValueIdMap.end() &&
227            "GUID does not have assigned value Id");
228     return VMI->second;
229   }
230 
231   // Helper to get the valueId for the type of value recorded in VI.
232   unsigned getValueId(ValueInfo VI) {
233     if (!VI.getValue())
234       return getValueId(VI.getGUID());
235     return VE.getValueID(VI.getValue());
236   }
237 
238   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
239 };
240 
241 /// Class to manage the bitcode writing for a module.
242 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
243   /// Pointer to the buffer allocated by caller for bitcode writing.
244   const SmallVectorImpl<char> &Buffer;
245 
246   /// True if a module hash record should be written.
247   bool GenerateHash;
248 
249   /// If non-null, when GenerateHash is true, the resulting hash is written
250   /// into ModHash.
251   ModuleHash *ModHash;
252 
253   SHA1 Hasher;
254 
255   /// The start bit of the identification block.
256   uint64_t BitcodeStartBit;
257 
258 public:
259   /// Constructs a ModuleBitcodeWriter object for the given Module,
260   /// writing to the provided \p Buffer.
261   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
262                       StringTableBuilder &StrtabBuilder,
263                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
264                       const ModuleSummaryIndex *Index, bool GenerateHash,
265                       ModuleHash *ModHash = nullptr)
266       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
267                                 ShouldPreserveUseListOrder, Index),
268         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
269         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
270 
271   /// Emit the current module to the bitstream.
272   void write();
273 
274 private:
275   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
276 
277   size_t addToStrtab(StringRef Str);
278 
279   void writeAttributeGroupTable();
280   void writeAttributeTable();
281   void writeTypeTable();
282   void writeComdats();
283   void writeValueSymbolTableForwardDecl();
284   void writeModuleInfo();
285   void writeValueAsMetadata(const ValueAsMetadata *MD,
286                             SmallVectorImpl<uint64_t> &Record);
287   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
288                     unsigned Abbrev);
289   unsigned createDILocationAbbrev();
290   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
291                        unsigned &Abbrev);
292   unsigned createGenericDINodeAbbrev();
293   void writeGenericDINode(const GenericDINode *N,
294                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
295   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
296                        unsigned Abbrev);
297   void writeDIEnumerator(const DIEnumerator *N,
298                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
299   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
300                         unsigned Abbrev);
301   void writeDIDerivedType(const DIDerivedType *N,
302                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
303   void writeDICompositeType(const DICompositeType *N,
304                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
305   void writeDISubroutineType(const DISubroutineType *N,
306                              SmallVectorImpl<uint64_t> &Record,
307                              unsigned Abbrev);
308   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
309                    unsigned Abbrev);
310   void writeDICompileUnit(const DICompileUnit *N,
311                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
312   void writeDISubprogram(const DISubprogram *N,
313                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
314   void writeDILexicalBlock(const DILexicalBlock *N,
315                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
317                                SmallVectorImpl<uint64_t> &Record,
318                                unsigned Abbrev);
319   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
320                         unsigned Abbrev);
321   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
322                     unsigned Abbrev);
323   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
324                         unsigned Abbrev);
325   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
326                      unsigned Abbrev);
327   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
328                                     SmallVectorImpl<uint64_t> &Record,
329                                     unsigned Abbrev);
330   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
331                                      SmallVectorImpl<uint64_t> &Record,
332                                      unsigned Abbrev);
333   void writeDIGlobalVariable(const DIGlobalVariable *N,
334                              SmallVectorImpl<uint64_t> &Record,
335                              unsigned Abbrev);
336   void writeDILocalVariable(const DILocalVariable *N,
337                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
338   void writeDIExpression(const DIExpression *N,
339                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
340   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
341                                        SmallVectorImpl<uint64_t> &Record,
342                                        unsigned Abbrev);
343   void writeDIObjCProperty(const DIObjCProperty *N,
344                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
345   void writeDIImportedEntity(const DIImportedEntity *N,
346                              SmallVectorImpl<uint64_t> &Record,
347                              unsigned Abbrev);
348   unsigned createNamedMetadataAbbrev();
349   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
350   unsigned createMetadataStringsAbbrev();
351   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
352                             SmallVectorImpl<uint64_t> &Record);
353   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
354                             SmallVectorImpl<uint64_t> &Record,
355                             std::vector<unsigned> *MDAbbrevs = nullptr,
356                             std::vector<uint64_t> *IndexPos = nullptr);
357   void writeModuleMetadata();
358   void writeFunctionMetadata(const Function &F);
359   void writeFunctionMetadataAttachment(const Function &F);
360   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
361   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
362                                     const GlobalObject &GO);
363   void writeModuleMetadataKinds();
364   void writeOperandBundleTags();
365   void writeSyncScopeNames();
366   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
367   void writeModuleConstants();
368   bool pushValueAndType(const Value *V, unsigned InstID,
369                         SmallVectorImpl<unsigned> &Vals);
370   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
371   void pushValue(const Value *V, unsigned InstID,
372                  SmallVectorImpl<unsigned> &Vals);
373   void pushValueSigned(const Value *V, unsigned InstID,
374                        SmallVectorImpl<uint64_t> &Vals);
375   void writeInstruction(const Instruction &I, unsigned InstID,
376                         SmallVectorImpl<unsigned> &Vals);
377   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
378   void writeGlobalValueSymbolTable(
379       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
380   void writeUseList(UseListOrder &&Order);
381   void writeUseListBlock(const Function *F);
382   void
383   writeFunction(const Function &F,
384                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
385   void writeBlockInfo();
386   void writeModuleHash(size_t BlockStartPos);
387 
388   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
389     return unsigned(SSID);
390   }
391 };
392 
393 /// Class to manage the bitcode writing for a combined index.
394 class IndexBitcodeWriter : public BitcodeWriterBase {
395   /// The combined index to write to bitcode.
396   const ModuleSummaryIndex &Index;
397 
398   /// When writing a subset of the index for distributed backends, client
399   /// provides a map of modules to the corresponding GUIDs/summaries to write.
400   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
401 
402   /// Map that holds the correspondence between the GUID used in the combined
403   /// index and a value id generated by this class to use in references.
404   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
405 
406   /// Tracks the last value id recorded in the GUIDToValueMap.
407   unsigned GlobalValueId = 0;
408 
409 public:
410   /// Constructs a IndexBitcodeWriter object for the given combined index,
411   /// writing to the provided \p Buffer. When writing a subset of the index
412   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
413   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
414                      const ModuleSummaryIndex &Index,
415                      const std::map<std::string, GVSummaryMapTy>
416                          *ModuleToSummariesForIndex = nullptr)
417       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
418         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
419     // Assign unique value ids to all summaries to be written, for use
420     // in writing out the call graph edges. Save the mapping from GUID
421     // to the new global value id to use when writing those edges, which
422     // are currently saved in the index in terms of GUID.
423     forEachSummary([&](GVInfo I, bool) {
424       GUIDToValueIdMap[I.first] = ++GlobalValueId;
425     });
426   }
427 
428   /// The below iterator returns the GUID and associated summary.
429   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
430 
431   /// Calls the callback for each value GUID and summary to be written to
432   /// bitcode. This hides the details of whether they are being pulled from the
433   /// entire index or just those in a provided ModuleToSummariesForIndex map.
434   template<typename Functor>
435   void forEachSummary(Functor Callback) {
436     if (ModuleToSummariesForIndex) {
437       for (auto &M : *ModuleToSummariesForIndex)
438         for (auto &Summary : M.second) {
439           Callback(Summary, false);
440           // Ensure aliasee is handled, e.g. for assigning a valueId,
441           // even if we are not importing the aliasee directly (the
442           // imported alias will contain a copy of aliasee).
443           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
444             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
445         }
446     } else {
447       for (auto &Summaries : Index)
448         for (auto &Summary : Summaries.second.SummaryList)
449           Callback({Summaries.first, Summary.get()}, false);
450     }
451   }
452 
453   /// Calls the callback for each entry in the modulePaths StringMap that
454   /// should be written to the module path string table. This hides the details
455   /// of whether they are being pulled from the entire index or just those in a
456   /// provided ModuleToSummariesForIndex map.
457   template <typename Functor> void forEachModule(Functor Callback) {
458     if (ModuleToSummariesForIndex) {
459       for (const auto &M : *ModuleToSummariesForIndex) {
460         const auto &MPI = Index.modulePaths().find(M.first);
461         if (MPI == Index.modulePaths().end()) {
462           // This should only happen if the bitcode file was empty, in which
463           // case we shouldn't be importing (the ModuleToSummariesForIndex
464           // would only include the module we are writing and index for).
465           assert(ModuleToSummariesForIndex->size() == 1);
466           continue;
467         }
468         Callback(*MPI);
469       }
470     } else {
471       for (const auto &MPSE : Index.modulePaths())
472         Callback(MPSE);
473     }
474   }
475 
476   /// Main entry point for writing a combined index to bitcode.
477   void write();
478 
479 private:
480   void writeModStrings();
481   void writeCombinedGlobalValueSummary();
482 
483   Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
484     auto VMI = GUIDToValueIdMap.find(ValGUID);
485     if (VMI == GUIDToValueIdMap.end())
486       return None;
487     return VMI->second;
488   }
489 
490   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
491 };
492 
493 } // end anonymous namespace
494 
495 static unsigned getEncodedCastOpcode(unsigned Opcode) {
496   switch (Opcode) {
497   default: llvm_unreachable("Unknown cast instruction!");
498   case Instruction::Trunc   : return bitc::CAST_TRUNC;
499   case Instruction::ZExt    : return bitc::CAST_ZEXT;
500   case Instruction::SExt    : return bitc::CAST_SEXT;
501   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
502   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
503   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
504   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
505   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
506   case Instruction::FPExt   : return bitc::CAST_FPEXT;
507   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
508   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
509   case Instruction::BitCast : return bitc::CAST_BITCAST;
510   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
511   }
512 }
513 
514 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
515   switch (Opcode) {
516   default: llvm_unreachable("Unknown binary instruction!");
517   case Instruction::Add:
518   case Instruction::FAdd: return bitc::BINOP_ADD;
519   case Instruction::Sub:
520   case Instruction::FSub: return bitc::BINOP_SUB;
521   case Instruction::Mul:
522   case Instruction::FMul: return bitc::BINOP_MUL;
523   case Instruction::UDiv: return bitc::BINOP_UDIV;
524   case Instruction::FDiv:
525   case Instruction::SDiv: return bitc::BINOP_SDIV;
526   case Instruction::URem: return bitc::BINOP_UREM;
527   case Instruction::FRem:
528   case Instruction::SRem: return bitc::BINOP_SREM;
529   case Instruction::Shl:  return bitc::BINOP_SHL;
530   case Instruction::LShr: return bitc::BINOP_LSHR;
531   case Instruction::AShr: return bitc::BINOP_ASHR;
532   case Instruction::And:  return bitc::BINOP_AND;
533   case Instruction::Or:   return bitc::BINOP_OR;
534   case Instruction::Xor:  return bitc::BINOP_XOR;
535   }
536 }
537 
538 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
539   switch (Op) {
540   default: llvm_unreachable("Unknown RMW operation!");
541   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
542   case AtomicRMWInst::Add: return bitc::RMW_ADD;
543   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
544   case AtomicRMWInst::And: return bitc::RMW_AND;
545   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
546   case AtomicRMWInst::Or: return bitc::RMW_OR;
547   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
548   case AtomicRMWInst::Max: return bitc::RMW_MAX;
549   case AtomicRMWInst::Min: return bitc::RMW_MIN;
550   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
551   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
552   }
553 }
554 
555 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
556   switch (Ordering) {
557   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
558   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
559   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
560   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
561   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
562   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
563   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
564   }
565   llvm_unreachable("Invalid ordering");
566 }
567 
568 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
569                               StringRef Str, unsigned AbbrevToUse) {
570   SmallVector<unsigned, 64> Vals;
571 
572   // Code: [strchar x N]
573   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
574     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
575       AbbrevToUse = 0;
576     Vals.push_back(Str[i]);
577   }
578 
579   // Emit the finished record.
580   Stream.EmitRecord(Code, Vals, AbbrevToUse);
581 }
582 
583 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
584   switch (Kind) {
585   case Attribute::Alignment:
586     return bitc::ATTR_KIND_ALIGNMENT;
587   case Attribute::AllocSize:
588     return bitc::ATTR_KIND_ALLOC_SIZE;
589   case Attribute::AlwaysInline:
590     return bitc::ATTR_KIND_ALWAYS_INLINE;
591   case Attribute::ArgMemOnly:
592     return bitc::ATTR_KIND_ARGMEMONLY;
593   case Attribute::Builtin:
594     return bitc::ATTR_KIND_BUILTIN;
595   case Attribute::ByVal:
596     return bitc::ATTR_KIND_BY_VAL;
597   case Attribute::Convergent:
598     return bitc::ATTR_KIND_CONVERGENT;
599   case Attribute::InAlloca:
600     return bitc::ATTR_KIND_IN_ALLOCA;
601   case Attribute::Cold:
602     return bitc::ATTR_KIND_COLD;
603   case Attribute::InaccessibleMemOnly:
604     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
605   case Attribute::InaccessibleMemOrArgMemOnly:
606     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
607   case Attribute::InlineHint:
608     return bitc::ATTR_KIND_INLINE_HINT;
609   case Attribute::InReg:
610     return bitc::ATTR_KIND_IN_REG;
611   case Attribute::JumpTable:
612     return bitc::ATTR_KIND_JUMP_TABLE;
613   case Attribute::MinSize:
614     return bitc::ATTR_KIND_MIN_SIZE;
615   case Attribute::Naked:
616     return bitc::ATTR_KIND_NAKED;
617   case Attribute::Nest:
618     return bitc::ATTR_KIND_NEST;
619   case Attribute::NoAlias:
620     return bitc::ATTR_KIND_NO_ALIAS;
621   case Attribute::NoBuiltin:
622     return bitc::ATTR_KIND_NO_BUILTIN;
623   case Attribute::NoCapture:
624     return bitc::ATTR_KIND_NO_CAPTURE;
625   case Attribute::NoDuplicate:
626     return bitc::ATTR_KIND_NO_DUPLICATE;
627   case Attribute::NoImplicitFloat:
628     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
629   case Attribute::NoInline:
630     return bitc::ATTR_KIND_NO_INLINE;
631   case Attribute::NoRecurse:
632     return bitc::ATTR_KIND_NO_RECURSE;
633   case Attribute::NonLazyBind:
634     return bitc::ATTR_KIND_NON_LAZY_BIND;
635   case Attribute::NonNull:
636     return bitc::ATTR_KIND_NON_NULL;
637   case Attribute::Dereferenceable:
638     return bitc::ATTR_KIND_DEREFERENCEABLE;
639   case Attribute::DereferenceableOrNull:
640     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
641   case Attribute::NoRedZone:
642     return bitc::ATTR_KIND_NO_RED_ZONE;
643   case Attribute::NoReturn:
644     return bitc::ATTR_KIND_NO_RETURN;
645   case Attribute::NoCfCheck:
646     return bitc::ATTR_KIND_NOCF_CHECK;
647   case Attribute::NoUnwind:
648     return bitc::ATTR_KIND_NO_UNWIND;
649   case Attribute::OptForFuzzing:
650     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
651   case Attribute::OptimizeForSize:
652     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
653   case Attribute::OptimizeNone:
654     return bitc::ATTR_KIND_OPTIMIZE_NONE;
655   case Attribute::ReadNone:
656     return bitc::ATTR_KIND_READ_NONE;
657   case Attribute::ReadOnly:
658     return bitc::ATTR_KIND_READ_ONLY;
659   case Attribute::Returned:
660     return bitc::ATTR_KIND_RETURNED;
661   case Attribute::ReturnsTwice:
662     return bitc::ATTR_KIND_RETURNS_TWICE;
663   case Attribute::SExt:
664     return bitc::ATTR_KIND_S_EXT;
665   case Attribute::Speculatable:
666     return bitc::ATTR_KIND_SPECULATABLE;
667   case Attribute::StackAlignment:
668     return bitc::ATTR_KIND_STACK_ALIGNMENT;
669   case Attribute::StackProtect:
670     return bitc::ATTR_KIND_STACK_PROTECT;
671   case Attribute::StackProtectReq:
672     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
673   case Attribute::StackProtectStrong:
674     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
675   case Attribute::SafeStack:
676     return bitc::ATTR_KIND_SAFESTACK;
677   case Attribute::ShadowCallStack:
678     return bitc::ATTR_KIND_SHADOWCALLSTACK;
679   case Attribute::StrictFP:
680     return bitc::ATTR_KIND_STRICT_FP;
681   case Attribute::StructRet:
682     return bitc::ATTR_KIND_STRUCT_RET;
683   case Attribute::SanitizeAddress:
684     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
685   case Attribute::SanitizeHWAddress:
686     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
687   case Attribute::SanitizeThread:
688     return bitc::ATTR_KIND_SANITIZE_THREAD;
689   case Attribute::SanitizeMemory:
690     return bitc::ATTR_KIND_SANITIZE_MEMORY;
691   case Attribute::SwiftError:
692     return bitc::ATTR_KIND_SWIFT_ERROR;
693   case Attribute::SwiftSelf:
694     return bitc::ATTR_KIND_SWIFT_SELF;
695   case Attribute::UWTable:
696     return bitc::ATTR_KIND_UW_TABLE;
697   case Attribute::WriteOnly:
698     return bitc::ATTR_KIND_WRITEONLY;
699   case Attribute::ZExt:
700     return bitc::ATTR_KIND_Z_EXT;
701   case Attribute::EndAttrKinds:
702     llvm_unreachable("Can not encode end-attribute kinds marker.");
703   case Attribute::None:
704     llvm_unreachable("Can not encode none-attribute.");
705   }
706 
707   llvm_unreachable("Trying to encode unknown attribute");
708 }
709 
710 void ModuleBitcodeWriter::writeAttributeGroupTable() {
711   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
712       VE.getAttributeGroups();
713   if (AttrGrps.empty()) return;
714 
715   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
716 
717   SmallVector<uint64_t, 64> Record;
718   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
719     unsigned AttrListIndex = Pair.first;
720     AttributeSet AS = Pair.second;
721     Record.push_back(VE.getAttributeGroupID(Pair));
722     Record.push_back(AttrListIndex);
723 
724     for (Attribute Attr : AS) {
725       if (Attr.isEnumAttribute()) {
726         Record.push_back(0);
727         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
728       } else if (Attr.isIntAttribute()) {
729         Record.push_back(1);
730         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
731         Record.push_back(Attr.getValueAsInt());
732       } else {
733         StringRef Kind = Attr.getKindAsString();
734         StringRef Val = Attr.getValueAsString();
735 
736         Record.push_back(Val.empty() ? 3 : 4);
737         Record.append(Kind.begin(), Kind.end());
738         Record.push_back(0);
739         if (!Val.empty()) {
740           Record.append(Val.begin(), Val.end());
741           Record.push_back(0);
742         }
743       }
744     }
745 
746     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
747     Record.clear();
748   }
749 
750   Stream.ExitBlock();
751 }
752 
753 void ModuleBitcodeWriter::writeAttributeTable() {
754   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
755   if (Attrs.empty()) return;
756 
757   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
758 
759   SmallVector<uint64_t, 64> Record;
760   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
761     AttributeList AL = Attrs[i];
762     for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
763       AttributeSet AS = AL.getAttributes(i);
764       if (AS.hasAttributes())
765         Record.push_back(VE.getAttributeGroupID({i, AS}));
766     }
767 
768     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
769     Record.clear();
770   }
771 
772   Stream.ExitBlock();
773 }
774 
775 /// WriteTypeTable - Write out the type table for a module.
776 void ModuleBitcodeWriter::writeTypeTable() {
777   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
778 
779   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
780   SmallVector<uint64_t, 64> TypeVals;
781 
782   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
783 
784   // Abbrev for TYPE_CODE_POINTER.
785   auto Abbv = std::make_shared<BitCodeAbbrev>();
786   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
787   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
788   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
789   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
790 
791   // Abbrev for TYPE_CODE_FUNCTION.
792   Abbv = std::make_shared<BitCodeAbbrev>();
793   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
794   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
795   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
796   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
797   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
798 
799   // Abbrev for TYPE_CODE_STRUCT_ANON.
800   Abbv = std::make_shared<BitCodeAbbrev>();
801   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
802   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
803   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
804   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
805   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
806 
807   // Abbrev for TYPE_CODE_STRUCT_NAME.
808   Abbv = std::make_shared<BitCodeAbbrev>();
809   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
810   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
811   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
812   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
813 
814   // Abbrev for TYPE_CODE_STRUCT_NAMED.
815   Abbv = std::make_shared<BitCodeAbbrev>();
816   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
817   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
818   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
819   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
820   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
821 
822   // Abbrev for TYPE_CODE_ARRAY.
823   Abbv = std::make_shared<BitCodeAbbrev>();
824   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
825   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
826   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
827   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
828 
829   // Emit an entry count so the reader can reserve space.
830   TypeVals.push_back(TypeList.size());
831   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
832   TypeVals.clear();
833 
834   // Loop over all of the types, emitting each in turn.
835   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
836     Type *T = TypeList[i];
837     int AbbrevToUse = 0;
838     unsigned Code = 0;
839 
840     switch (T->getTypeID()) {
841     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
842     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
843     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
844     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
845     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
846     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
847     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
848     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
849     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
850     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
851     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
852     case Type::IntegerTyID:
853       // INTEGER: [width]
854       Code = bitc::TYPE_CODE_INTEGER;
855       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
856       break;
857     case Type::PointerTyID: {
858       PointerType *PTy = cast<PointerType>(T);
859       // POINTER: [pointee type, address space]
860       Code = bitc::TYPE_CODE_POINTER;
861       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
862       unsigned AddressSpace = PTy->getAddressSpace();
863       TypeVals.push_back(AddressSpace);
864       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
865       break;
866     }
867     case Type::FunctionTyID: {
868       FunctionType *FT = cast<FunctionType>(T);
869       // FUNCTION: [isvararg, retty, paramty x N]
870       Code = bitc::TYPE_CODE_FUNCTION;
871       TypeVals.push_back(FT->isVarArg());
872       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
873       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
874         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
875       AbbrevToUse = FunctionAbbrev;
876       break;
877     }
878     case Type::StructTyID: {
879       StructType *ST = cast<StructType>(T);
880       // STRUCT: [ispacked, eltty x N]
881       TypeVals.push_back(ST->isPacked());
882       // Output all of the element types.
883       for (StructType::element_iterator I = ST->element_begin(),
884            E = ST->element_end(); I != E; ++I)
885         TypeVals.push_back(VE.getTypeID(*I));
886 
887       if (ST->isLiteral()) {
888         Code = bitc::TYPE_CODE_STRUCT_ANON;
889         AbbrevToUse = StructAnonAbbrev;
890       } else {
891         if (ST->isOpaque()) {
892           Code = bitc::TYPE_CODE_OPAQUE;
893         } else {
894           Code = bitc::TYPE_CODE_STRUCT_NAMED;
895           AbbrevToUse = StructNamedAbbrev;
896         }
897 
898         // Emit the name if it is present.
899         if (!ST->getName().empty())
900           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
901                             StructNameAbbrev);
902       }
903       break;
904     }
905     case Type::ArrayTyID: {
906       ArrayType *AT = cast<ArrayType>(T);
907       // ARRAY: [numelts, eltty]
908       Code = bitc::TYPE_CODE_ARRAY;
909       TypeVals.push_back(AT->getNumElements());
910       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
911       AbbrevToUse = ArrayAbbrev;
912       break;
913     }
914     case Type::VectorTyID: {
915       VectorType *VT = cast<VectorType>(T);
916       // VECTOR [numelts, eltty]
917       Code = bitc::TYPE_CODE_VECTOR;
918       TypeVals.push_back(VT->getNumElements());
919       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
920       break;
921     }
922     }
923 
924     // Emit the finished record.
925     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
926     TypeVals.clear();
927   }
928 
929   Stream.ExitBlock();
930 }
931 
932 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
933   switch (Linkage) {
934   case GlobalValue::ExternalLinkage:
935     return 0;
936   case GlobalValue::WeakAnyLinkage:
937     return 16;
938   case GlobalValue::AppendingLinkage:
939     return 2;
940   case GlobalValue::InternalLinkage:
941     return 3;
942   case GlobalValue::LinkOnceAnyLinkage:
943     return 18;
944   case GlobalValue::ExternalWeakLinkage:
945     return 7;
946   case GlobalValue::CommonLinkage:
947     return 8;
948   case GlobalValue::PrivateLinkage:
949     return 9;
950   case GlobalValue::WeakODRLinkage:
951     return 17;
952   case GlobalValue::LinkOnceODRLinkage:
953     return 19;
954   case GlobalValue::AvailableExternallyLinkage:
955     return 12;
956   }
957   llvm_unreachable("Invalid linkage");
958 }
959 
960 static unsigned getEncodedLinkage(const GlobalValue &GV) {
961   return getEncodedLinkage(GV.getLinkage());
962 }
963 
964 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
965   uint64_t RawFlags = 0;
966   RawFlags |= Flags.ReadNone;
967   RawFlags |= (Flags.ReadOnly << 1);
968   RawFlags |= (Flags.NoRecurse << 2);
969   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
970   return RawFlags;
971 }
972 
973 // Decode the flags for GlobalValue in the summary
974 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
975   uint64_t RawFlags = 0;
976 
977   RawFlags |= Flags.NotEligibleToImport; // bool
978   RawFlags |= (Flags.Live << 1);
979   RawFlags |= (Flags.DSOLocal << 2);
980 
981   // Linkage don't need to be remapped at that time for the summary. Any future
982   // change to the getEncodedLinkage() function will need to be taken into
983   // account here as well.
984   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
985 
986   return RawFlags;
987 }
988 
989 static unsigned getEncodedVisibility(const GlobalValue &GV) {
990   switch (GV.getVisibility()) {
991   case GlobalValue::DefaultVisibility:   return 0;
992   case GlobalValue::HiddenVisibility:    return 1;
993   case GlobalValue::ProtectedVisibility: return 2;
994   }
995   llvm_unreachable("Invalid visibility");
996 }
997 
998 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
999   switch (GV.getDLLStorageClass()) {
1000   case GlobalValue::DefaultStorageClass:   return 0;
1001   case GlobalValue::DLLImportStorageClass: return 1;
1002   case GlobalValue::DLLExportStorageClass: return 2;
1003   }
1004   llvm_unreachable("Invalid DLL storage class");
1005 }
1006 
1007 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1008   switch (GV.getThreadLocalMode()) {
1009     case GlobalVariable::NotThreadLocal:         return 0;
1010     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1011     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1012     case GlobalVariable::InitialExecTLSModel:    return 3;
1013     case GlobalVariable::LocalExecTLSModel:      return 4;
1014   }
1015   llvm_unreachable("Invalid TLS model");
1016 }
1017 
1018 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1019   switch (C.getSelectionKind()) {
1020   case Comdat::Any:
1021     return bitc::COMDAT_SELECTION_KIND_ANY;
1022   case Comdat::ExactMatch:
1023     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1024   case Comdat::Largest:
1025     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1026   case Comdat::NoDuplicates:
1027     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1028   case Comdat::SameSize:
1029     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1030   }
1031   llvm_unreachable("Invalid selection kind");
1032 }
1033 
1034 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1035   switch (GV.getUnnamedAddr()) {
1036   case GlobalValue::UnnamedAddr::None:   return 0;
1037   case GlobalValue::UnnamedAddr::Local:  return 2;
1038   case GlobalValue::UnnamedAddr::Global: return 1;
1039   }
1040   llvm_unreachable("Invalid unnamed_addr");
1041 }
1042 
1043 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1044   if (GenerateHash)
1045     Hasher.update(Str);
1046   return StrtabBuilder.add(Str);
1047 }
1048 
1049 void ModuleBitcodeWriter::writeComdats() {
1050   SmallVector<unsigned, 64> Vals;
1051   for (const Comdat *C : VE.getComdats()) {
1052     // COMDAT: [strtab offset, strtab size, selection_kind]
1053     Vals.push_back(addToStrtab(C->getName()));
1054     Vals.push_back(C->getName().size());
1055     Vals.push_back(getEncodedComdatSelectionKind(*C));
1056     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1057     Vals.clear();
1058   }
1059 }
1060 
1061 /// Write a record that will eventually hold the word offset of the
1062 /// module-level VST. For now the offset is 0, which will be backpatched
1063 /// after the real VST is written. Saves the bit offset to backpatch.
1064 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1065   // Write a placeholder value in for the offset of the real VST,
1066   // which is written after the function blocks so that it can include
1067   // the offset of each function. The placeholder offset will be
1068   // updated when the real VST is written.
1069   auto Abbv = std::make_shared<BitCodeAbbrev>();
1070   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1071   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1072   // hold the real VST offset. Must use fixed instead of VBR as we don't
1073   // know how many VBR chunks to reserve ahead of time.
1074   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1075   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1076 
1077   // Emit the placeholder
1078   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1079   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1080 
1081   // Compute and save the bit offset to the placeholder, which will be
1082   // patched when the real VST is written. We can simply subtract the 32-bit
1083   // fixed size from the current bit number to get the location to backpatch.
1084   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1085 }
1086 
1087 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1088 
1089 /// Determine the encoding to use for the given string name and length.
1090 static StringEncoding getStringEncoding(StringRef Str) {
1091   bool isChar6 = true;
1092   for (char C : Str) {
1093     if (isChar6)
1094       isChar6 = BitCodeAbbrevOp::isChar6(C);
1095     if ((unsigned char)C & 128)
1096       // don't bother scanning the rest.
1097       return SE_Fixed8;
1098   }
1099   if (isChar6)
1100     return SE_Char6;
1101   return SE_Fixed7;
1102 }
1103 
1104 /// Emit top-level description of module, including target triple, inline asm,
1105 /// descriptors for global variables, and function prototype info.
1106 /// Returns the bit offset to backpatch with the location of the real VST.
1107 void ModuleBitcodeWriter::writeModuleInfo() {
1108   // Emit various pieces of data attached to a module.
1109   if (!M.getTargetTriple().empty())
1110     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1111                       0 /*TODO*/);
1112   const std::string &DL = M.getDataLayoutStr();
1113   if (!DL.empty())
1114     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1115   if (!M.getModuleInlineAsm().empty())
1116     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1117                       0 /*TODO*/);
1118 
1119   // Emit information about sections and GC, computing how many there are. Also
1120   // compute the maximum alignment value.
1121   std::map<std::string, unsigned> SectionMap;
1122   std::map<std::string, unsigned> GCMap;
1123   unsigned MaxAlignment = 0;
1124   unsigned MaxGlobalType = 0;
1125   for (const GlobalValue &GV : M.globals()) {
1126     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1127     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1128     if (GV.hasSection()) {
1129       // Give section names unique ID's.
1130       unsigned &Entry = SectionMap[GV.getSection()];
1131       if (!Entry) {
1132         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1133                           0 /*TODO*/);
1134         Entry = SectionMap.size();
1135       }
1136     }
1137   }
1138   for (const Function &F : M) {
1139     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1140     if (F.hasSection()) {
1141       // Give section names unique ID's.
1142       unsigned &Entry = SectionMap[F.getSection()];
1143       if (!Entry) {
1144         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1145                           0 /*TODO*/);
1146         Entry = SectionMap.size();
1147       }
1148     }
1149     if (F.hasGC()) {
1150       // Same for GC names.
1151       unsigned &Entry = GCMap[F.getGC()];
1152       if (!Entry) {
1153         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1154                           0 /*TODO*/);
1155         Entry = GCMap.size();
1156       }
1157     }
1158   }
1159 
1160   // Emit abbrev for globals, now that we know # sections and max alignment.
1161   unsigned SimpleGVarAbbrev = 0;
1162   if (!M.global_empty()) {
1163     // Add an abbrev for common globals with no visibility or thread localness.
1164     auto Abbv = std::make_shared<BitCodeAbbrev>();
1165     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1166     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1167     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1168     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1169                               Log2_32_Ceil(MaxGlobalType+1)));
1170     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1171                                                            //| explicitType << 1
1172                                                            //| constant
1173     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1174     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1175     if (MaxAlignment == 0)                                 // Alignment.
1176       Abbv->Add(BitCodeAbbrevOp(0));
1177     else {
1178       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1179       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1180                                Log2_32_Ceil(MaxEncAlignment+1)));
1181     }
1182     if (SectionMap.empty())                                    // Section.
1183       Abbv->Add(BitCodeAbbrevOp(0));
1184     else
1185       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1186                                Log2_32_Ceil(SectionMap.size()+1)));
1187     // Don't bother emitting vis + thread local.
1188     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1189   }
1190 
1191   SmallVector<unsigned, 64> Vals;
1192   // Emit the module's source file name.
1193   {
1194     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1195     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1196     if (Bits == SE_Char6)
1197       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1198     else if (Bits == SE_Fixed7)
1199       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1200 
1201     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1202     auto Abbv = std::make_shared<BitCodeAbbrev>();
1203     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1204     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1205     Abbv->Add(AbbrevOpToUse);
1206     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1207 
1208     for (const auto P : M.getSourceFileName())
1209       Vals.push_back((unsigned char)P);
1210 
1211     // Emit the finished record.
1212     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1213     Vals.clear();
1214   }
1215 
1216   // Emit the global variable information.
1217   for (const GlobalVariable &GV : M.globals()) {
1218     unsigned AbbrevToUse = 0;
1219 
1220     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1221     //             linkage, alignment, section, visibility, threadlocal,
1222     //             unnamed_addr, externally_initialized, dllstorageclass,
1223     //             comdat, attributes, DSO_Local]
1224     Vals.push_back(addToStrtab(GV.getName()));
1225     Vals.push_back(GV.getName().size());
1226     Vals.push_back(VE.getTypeID(GV.getValueType()));
1227     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1228     Vals.push_back(GV.isDeclaration() ? 0 :
1229                    (VE.getValueID(GV.getInitializer()) + 1));
1230     Vals.push_back(getEncodedLinkage(GV));
1231     Vals.push_back(Log2_32(GV.getAlignment())+1);
1232     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1233     if (GV.isThreadLocal() ||
1234         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1235         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1236         GV.isExternallyInitialized() ||
1237         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1238         GV.hasComdat() ||
1239         GV.hasAttributes() ||
1240         GV.isDSOLocal()) {
1241       Vals.push_back(getEncodedVisibility(GV));
1242       Vals.push_back(getEncodedThreadLocalMode(GV));
1243       Vals.push_back(getEncodedUnnamedAddr(GV));
1244       Vals.push_back(GV.isExternallyInitialized());
1245       Vals.push_back(getEncodedDLLStorageClass(GV));
1246       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1247 
1248       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1249       Vals.push_back(VE.getAttributeListID(AL));
1250 
1251       Vals.push_back(GV.isDSOLocal());
1252     } else {
1253       AbbrevToUse = SimpleGVarAbbrev;
1254     }
1255 
1256     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1257     Vals.clear();
1258   }
1259 
1260   // Emit the function proto information.
1261   for (const Function &F : M) {
1262     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1263     //             linkage, paramattrs, alignment, section, visibility, gc,
1264     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1265     //             prefixdata, personalityfn, DSO_Local]
1266     Vals.push_back(addToStrtab(F.getName()));
1267     Vals.push_back(F.getName().size());
1268     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1269     Vals.push_back(F.getCallingConv());
1270     Vals.push_back(F.isDeclaration());
1271     Vals.push_back(getEncodedLinkage(F));
1272     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1273     Vals.push_back(Log2_32(F.getAlignment())+1);
1274     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1275     Vals.push_back(getEncodedVisibility(F));
1276     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1277     Vals.push_back(getEncodedUnnamedAddr(F));
1278     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1279                                        : 0);
1280     Vals.push_back(getEncodedDLLStorageClass(F));
1281     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1282     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1283                                      : 0);
1284     Vals.push_back(
1285         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1286 
1287     Vals.push_back(F.isDSOLocal());
1288     unsigned AbbrevToUse = 0;
1289     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1290     Vals.clear();
1291   }
1292 
1293   // Emit the alias information.
1294   for (const GlobalAlias &A : M.aliases()) {
1295     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1296     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1297     //         DSO_Local]
1298     Vals.push_back(addToStrtab(A.getName()));
1299     Vals.push_back(A.getName().size());
1300     Vals.push_back(VE.getTypeID(A.getValueType()));
1301     Vals.push_back(A.getType()->getAddressSpace());
1302     Vals.push_back(VE.getValueID(A.getAliasee()));
1303     Vals.push_back(getEncodedLinkage(A));
1304     Vals.push_back(getEncodedVisibility(A));
1305     Vals.push_back(getEncodedDLLStorageClass(A));
1306     Vals.push_back(getEncodedThreadLocalMode(A));
1307     Vals.push_back(getEncodedUnnamedAddr(A));
1308     Vals.push_back(A.isDSOLocal());
1309 
1310     unsigned AbbrevToUse = 0;
1311     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1312     Vals.clear();
1313   }
1314 
1315   // Emit the ifunc information.
1316   for (const GlobalIFunc &I : M.ifuncs()) {
1317     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1318     //         val#, linkage, visibility, DSO_Local]
1319     Vals.push_back(addToStrtab(I.getName()));
1320     Vals.push_back(I.getName().size());
1321     Vals.push_back(VE.getTypeID(I.getValueType()));
1322     Vals.push_back(I.getType()->getAddressSpace());
1323     Vals.push_back(VE.getValueID(I.getResolver()));
1324     Vals.push_back(getEncodedLinkage(I));
1325     Vals.push_back(getEncodedVisibility(I));
1326     Vals.push_back(I.isDSOLocal());
1327     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1328     Vals.clear();
1329   }
1330 
1331   writeValueSymbolTableForwardDecl();
1332 }
1333 
1334 static uint64_t getOptimizationFlags(const Value *V) {
1335   uint64_t Flags = 0;
1336 
1337   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1338     if (OBO->hasNoSignedWrap())
1339       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1340     if (OBO->hasNoUnsignedWrap())
1341       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1342   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1343     if (PEO->isExact())
1344       Flags |= 1 << bitc::PEO_EXACT;
1345   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1346     if (FPMO->hasAllowReassoc())
1347       Flags |= bitc::AllowReassoc;
1348     if (FPMO->hasNoNaNs())
1349       Flags |= bitc::NoNaNs;
1350     if (FPMO->hasNoInfs())
1351       Flags |= bitc::NoInfs;
1352     if (FPMO->hasNoSignedZeros())
1353       Flags |= bitc::NoSignedZeros;
1354     if (FPMO->hasAllowReciprocal())
1355       Flags |= bitc::AllowReciprocal;
1356     if (FPMO->hasAllowContract())
1357       Flags |= bitc::AllowContract;
1358     if (FPMO->hasApproxFunc())
1359       Flags |= bitc::ApproxFunc;
1360   }
1361 
1362   return Flags;
1363 }
1364 
1365 void ModuleBitcodeWriter::writeValueAsMetadata(
1366     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1367   // Mimic an MDNode with a value as one operand.
1368   Value *V = MD->getValue();
1369   Record.push_back(VE.getTypeID(V->getType()));
1370   Record.push_back(VE.getValueID(V));
1371   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1372   Record.clear();
1373 }
1374 
1375 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1376                                        SmallVectorImpl<uint64_t> &Record,
1377                                        unsigned Abbrev) {
1378   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1379     Metadata *MD = N->getOperand(i);
1380     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1381            "Unexpected function-local metadata");
1382     Record.push_back(VE.getMetadataOrNullID(MD));
1383   }
1384   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1385                                     : bitc::METADATA_NODE,
1386                     Record, Abbrev);
1387   Record.clear();
1388 }
1389 
1390 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1391   // Assume the column is usually under 128, and always output the inlined-at
1392   // location (it's never more expensive than building an array size 1).
1393   auto Abbv = std::make_shared<BitCodeAbbrev>();
1394   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1395   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1396   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1397   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1398   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1399   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1400   return Stream.EmitAbbrev(std::move(Abbv));
1401 }
1402 
1403 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1404                                           SmallVectorImpl<uint64_t> &Record,
1405                                           unsigned &Abbrev) {
1406   if (!Abbrev)
1407     Abbrev = createDILocationAbbrev();
1408 
1409   Record.push_back(N->isDistinct());
1410   Record.push_back(N->getLine());
1411   Record.push_back(N->getColumn());
1412   Record.push_back(VE.getMetadataID(N->getScope()));
1413   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1414 
1415   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1416   Record.clear();
1417 }
1418 
1419 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1420   // Assume the column is usually under 128, and always output the inlined-at
1421   // location (it's never more expensive than building an array size 1).
1422   auto Abbv = std::make_shared<BitCodeAbbrev>();
1423   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1424   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1425   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1426   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1427   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1428   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1429   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1430   return Stream.EmitAbbrev(std::move(Abbv));
1431 }
1432 
1433 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1434                                              SmallVectorImpl<uint64_t> &Record,
1435                                              unsigned &Abbrev) {
1436   if (!Abbrev)
1437     Abbrev = createGenericDINodeAbbrev();
1438 
1439   Record.push_back(N->isDistinct());
1440   Record.push_back(N->getTag());
1441   Record.push_back(0); // Per-tag version field; unused for now.
1442 
1443   for (auto &I : N->operands())
1444     Record.push_back(VE.getMetadataOrNullID(I));
1445 
1446   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1447   Record.clear();
1448 }
1449 
1450 static uint64_t rotateSign(int64_t I) {
1451   uint64_t U = I;
1452   return I < 0 ? ~(U << 1) : U << 1;
1453 }
1454 
1455 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1456                                           SmallVectorImpl<uint64_t> &Record,
1457                                           unsigned Abbrev) {
1458   const uint64_t Version = 1 << 1;
1459   Record.push_back((uint64_t)N->isDistinct() | Version);
1460   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1461   Record.push_back(rotateSign(N->getLowerBound()));
1462 
1463   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1464   Record.clear();
1465 }
1466 
1467 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1468                                             SmallVectorImpl<uint64_t> &Record,
1469                                             unsigned Abbrev) {
1470   Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1471   Record.push_back(rotateSign(N->getValue()));
1472   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1473 
1474   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1475   Record.clear();
1476 }
1477 
1478 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1479                                            SmallVectorImpl<uint64_t> &Record,
1480                                            unsigned Abbrev) {
1481   Record.push_back(N->isDistinct());
1482   Record.push_back(N->getTag());
1483   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1484   Record.push_back(N->getSizeInBits());
1485   Record.push_back(N->getAlignInBits());
1486   Record.push_back(N->getEncoding());
1487 
1488   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1489   Record.clear();
1490 }
1491 
1492 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1493                                              SmallVectorImpl<uint64_t> &Record,
1494                                              unsigned Abbrev) {
1495   Record.push_back(N->isDistinct());
1496   Record.push_back(N->getTag());
1497   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1498   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1499   Record.push_back(N->getLine());
1500   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1501   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1502   Record.push_back(N->getSizeInBits());
1503   Record.push_back(N->getAlignInBits());
1504   Record.push_back(N->getOffsetInBits());
1505   Record.push_back(N->getFlags());
1506   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1507 
1508   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1509   // that there is no DWARF address space associated with DIDerivedType.
1510   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1511     Record.push_back(*DWARFAddressSpace + 1);
1512   else
1513     Record.push_back(0);
1514 
1515   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1516   Record.clear();
1517 }
1518 
1519 void ModuleBitcodeWriter::writeDICompositeType(
1520     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1521     unsigned Abbrev) {
1522   const unsigned IsNotUsedInOldTypeRef = 0x2;
1523   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1524   Record.push_back(N->getTag());
1525   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1526   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1527   Record.push_back(N->getLine());
1528   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1529   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1530   Record.push_back(N->getSizeInBits());
1531   Record.push_back(N->getAlignInBits());
1532   Record.push_back(N->getOffsetInBits());
1533   Record.push_back(N->getFlags());
1534   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1535   Record.push_back(N->getRuntimeLang());
1536   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1537   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1538   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1539   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1540 
1541   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1542   Record.clear();
1543 }
1544 
1545 void ModuleBitcodeWriter::writeDISubroutineType(
1546     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1547     unsigned Abbrev) {
1548   const unsigned HasNoOldTypeRefs = 0x2;
1549   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1550   Record.push_back(N->getFlags());
1551   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1552   Record.push_back(N->getCC());
1553 
1554   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1555   Record.clear();
1556 }
1557 
1558 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1559                                       SmallVectorImpl<uint64_t> &Record,
1560                                       unsigned Abbrev) {
1561   Record.push_back(N->isDistinct());
1562   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1563   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1564   if (N->getRawChecksum()) {
1565     Record.push_back(N->getRawChecksum()->Kind);
1566     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1567   } else {
1568     // Maintain backwards compatibility with the old internal representation of
1569     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1570     Record.push_back(0);
1571     Record.push_back(VE.getMetadataOrNullID(nullptr));
1572   }
1573   auto Source = N->getRawSource();
1574   if (Source)
1575     Record.push_back(VE.getMetadataOrNullID(*Source));
1576 
1577   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1578   Record.clear();
1579 }
1580 
1581 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1582                                              SmallVectorImpl<uint64_t> &Record,
1583                                              unsigned Abbrev) {
1584   assert(N->isDistinct() && "Expected distinct compile units");
1585   Record.push_back(/* IsDistinct */ true);
1586   Record.push_back(N->getSourceLanguage());
1587   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1588   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1589   Record.push_back(N->isOptimized());
1590   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1591   Record.push_back(N->getRuntimeVersion());
1592   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1593   Record.push_back(N->getEmissionKind());
1594   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1595   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1596   Record.push_back(/* subprograms */ 0);
1597   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1598   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1599   Record.push_back(N->getDWOId());
1600   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1601   Record.push_back(N->getSplitDebugInlining());
1602   Record.push_back(N->getDebugInfoForProfiling());
1603   Record.push_back(N->getGnuPubnames());
1604 
1605   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1606   Record.clear();
1607 }
1608 
1609 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1610                                             SmallVectorImpl<uint64_t> &Record,
1611                                             unsigned Abbrev) {
1612   uint64_t HasUnitFlag = 1 << 1;
1613   Record.push_back(N->isDistinct() | HasUnitFlag);
1614   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1615   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1616   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1617   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1618   Record.push_back(N->getLine());
1619   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1620   Record.push_back(N->isLocalToUnit());
1621   Record.push_back(N->isDefinition());
1622   Record.push_back(N->getScopeLine());
1623   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1624   Record.push_back(N->getVirtuality());
1625   Record.push_back(N->getVirtualIndex());
1626   Record.push_back(N->getFlags());
1627   Record.push_back(N->isOptimized());
1628   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1629   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1630   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1631   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1632   Record.push_back(N->getThisAdjustment());
1633   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1634 
1635   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1636   Record.clear();
1637 }
1638 
1639 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1640                                               SmallVectorImpl<uint64_t> &Record,
1641                                               unsigned Abbrev) {
1642   Record.push_back(N->isDistinct());
1643   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1644   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1645   Record.push_back(N->getLine());
1646   Record.push_back(N->getColumn());
1647 
1648   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1649   Record.clear();
1650 }
1651 
1652 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1653     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1654     unsigned Abbrev) {
1655   Record.push_back(N->isDistinct());
1656   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1657   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1658   Record.push_back(N->getDiscriminator());
1659 
1660   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1661   Record.clear();
1662 }
1663 
1664 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1665                                            SmallVectorImpl<uint64_t> &Record,
1666                                            unsigned Abbrev) {
1667   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1668   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1669   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1670 
1671   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1672   Record.clear();
1673 }
1674 
1675 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1676                                        SmallVectorImpl<uint64_t> &Record,
1677                                        unsigned Abbrev) {
1678   Record.push_back(N->isDistinct());
1679   Record.push_back(N->getMacinfoType());
1680   Record.push_back(N->getLine());
1681   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1682   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1683 
1684   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1685   Record.clear();
1686 }
1687 
1688 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1689                                            SmallVectorImpl<uint64_t> &Record,
1690                                            unsigned Abbrev) {
1691   Record.push_back(N->isDistinct());
1692   Record.push_back(N->getMacinfoType());
1693   Record.push_back(N->getLine());
1694   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1695   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1696 
1697   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1698   Record.clear();
1699 }
1700 
1701 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1702                                         SmallVectorImpl<uint64_t> &Record,
1703                                         unsigned Abbrev) {
1704   Record.push_back(N->isDistinct());
1705   for (auto &I : N->operands())
1706     Record.push_back(VE.getMetadataOrNullID(I));
1707 
1708   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1709   Record.clear();
1710 }
1711 
1712 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1713     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1714     unsigned Abbrev) {
1715   Record.push_back(N->isDistinct());
1716   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1717   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1718 
1719   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1720   Record.clear();
1721 }
1722 
1723 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1724     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1725     unsigned Abbrev) {
1726   Record.push_back(N->isDistinct());
1727   Record.push_back(N->getTag());
1728   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1729   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1730   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1731 
1732   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1733   Record.clear();
1734 }
1735 
1736 void ModuleBitcodeWriter::writeDIGlobalVariable(
1737     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1738     unsigned Abbrev) {
1739   const uint64_t Version = 1 << 1;
1740   Record.push_back((uint64_t)N->isDistinct() | Version);
1741   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1742   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1743   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1744   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1745   Record.push_back(N->getLine());
1746   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1747   Record.push_back(N->isLocalToUnit());
1748   Record.push_back(N->isDefinition());
1749   Record.push_back(/* expr */ 0);
1750   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1751   Record.push_back(N->getAlignInBits());
1752 
1753   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1754   Record.clear();
1755 }
1756 
1757 void ModuleBitcodeWriter::writeDILocalVariable(
1758     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1759     unsigned Abbrev) {
1760   // In order to support all possible bitcode formats in BitcodeReader we need
1761   // to distinguish the following cases:
1762   // 1) Record has no artificial tag (Record[1]),
1763   //   has no obsolete inlinedAt field (Record[9]).
1764   //   In this case Record size will be 8, HasAlignment flag is false.
1765   // 2) Record has artificial tag (Record[1]),
1766   //   has no obsolete inlignedAt field (Record[9]).
1767   //   In this case Record size will be 9, HasAlignment flag is false.
1768   // 3) Record has both artificial tag (Record[1]) and
1769   //   obsolete inlignedAt field (Record[9]).
1770   //   In this case Record size will be 10, HasAlignment flag is false.
1771   // 4) Record has neither artificial tag, nor inlignedAt field, but
1772   //   HasAlignment flag is true and Record[8] contains alignment value.
1773   const uint64_t HasAlignmentFlag = 1 << 1;
1774   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1775   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1776   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1777   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1778   Record.push_back(N->getLine());
1779   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1780   Record.push_back(N->getArg());
1781   Record.push_back(N->getFlags());
1782   Record.push_back(N->getAlignInBits());
1783 
1784   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1785   Record.clear();
1786 }
1787 
1788 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1789                                             SmallVectorImpl<uint64_t> &Record,
1790                                             unsigned Abbrev) {
1791   Record.reserve(N->getElements().size() + 1);
1792   const uint64_t Version = 3 << 1;
1793   Record.push_back((uint64_t)N->isDistinct() | Version);
1794   Record.append(N->elements_begin(), N->elements_end());
1795 
1796   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1797   Record.clear();
1798 }
1799 
1800 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1801     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1802     unsigned Abbrev) {
1803   Record.push_back(N->isDistinct());
1804   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1805   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1806 
1807   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1808   Record.clear();
1809 }
1810 
1811 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1812                                               SmallVectorImpl<uint64_t> &Record,
1813                                               unsigned Abbrev) {
1814   Record.push_back(N->isDistinct());
1815   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1816   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1817   Record.push_back(N->getLine());
1818   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1819   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1820   Record.push_back(N->getAttributes());
1821   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1822 
1823   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1824   Record.clear();
1825 }
1826 
1827 void ModuleBitcodeWriter::writeDIImportedEntity(
1828     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1829     unsigned Abbrev) {
1830   Record.push_back(N->isDistinct());
1831   Record.push_back(N->getTag());
1832   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1833   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1834   Record.push_back(N->getLine());
1835   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1836   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1837 
1838   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1839   Record.clear();
1840 }
1841 
1842 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1843   auto Abbv = std::make_shared<BitCodeAbbrev>();
1844   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1845   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1846   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1847   return Stream.EmitAbbrev(std::move(Abbv));
1848 }
1849 
1850 void ModuleBitcodeWriter::writeNamedMetadata(
1851     SmallVectorImpl<uint64_t> &Record) {
1852   if (M.named_metadata_empty())
1853     return;
1854 
1855   unsigned Abbrev = createNamedMetadataAbbrev();
1856   for (const NamedMDNode &NMD : M.named_metadata()) {
1857     // Write name.
1858     StringRef Str = NMD.getName();
1859     Record.append(Str.bytes_begin(), Str.bytes_end());
1860     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1861     Record.clear();
1862 
1863     // Write named metadata operands.
1864     for (const MDNode *N : NMD.operands())
1865       Record.push_back(VE.getMetadataID(N));
1866     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1867     Record.clear();
1868   }
1869 }
1870 
1871 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1872   auto Abbv = std::make_shared<BitCodeAbbrev>();
1873   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1874   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1875   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1876   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1877   return Stream.EmitAbbrev(std::move(Abbv));
1878 }
1879 
1880 /// Write out a record for MDString.
1881 ///
1882 /// All the metadata strings in a metadata block are emitted in a single
1883 /// record.  The sizes and strings themselves are shoved into a blob.
1884 void ModuleBitcodeWriter::writeMetadataStrings(
1885     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1886   if (Strings.empty())
1887     return;
1888 
1889   // Start the record with the number of strings.
1890   Record.push_back(bitc::METADATA_STRINGS);
1891   Record.push_back(Strings.size());
1892 
1893   // Emit the sizes of the strings in the blob.
1894   SmallString<256> Blob;
1895   {
1896     BitstreamWriter W(Blob);
1897     for (const Metadata *MD : Strings)
1898       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1899     W.FlushToWord();
1900   }
1901 
1902   // Add the offset to the strings to the record.
1903   Record.push_back(Blob.size());
1904 
1905   // Add the strings to the blob.
1906   for (const Metadata *MD : Strings)
1907     Blob.append(cast<MDString>(MD)->getString());
1908 
1909   // Emit the final record.
1910   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1911   Record.clear();
1912 }
1913 
1914 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1915 enum MetadataAbbrev : unsigned {
1916 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1917 #include "llvm/IR/Metadata.def"
1918   LastPlusOne
1919 };
1920 
1921 void ModuleBitcodeWriter::writeMetadataRecords(
1922     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
1923     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
1924   if (MDs.empty())
1925     return;
1926 
1927   // Initialize MDNode abbreviations.
1928 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1929 #include "llvm/IR/Metadata.def"
1930 
1931   for (const Metadata *MD : MDs) {
1932     if (IndexPos)
1933       IndexPos->push_back(Stream.GetCurrentBitNo());
1934     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1935       assert(N->isResolved() && "Expected forward references to be resolved");
1936 
1937       switch (N->getMetadataID()) {
1938       default:
1939         llvm_unreachable("Invalid MDNode subclass");
1940 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1941   case Metadata::CLASS##Kind:                                                  \
1942     if (MDAbbrevs)                                                             \
1943       write##CLASS(cast<CLASS>(N), Record,                                     \
1944                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1945     else                                                                       \
1946       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1947     continue;
1948 #include "llvm/IR/Metadata.def"
1949       }
1950     }
1951     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1952   }
1953 }
1954 
1955 void ModuleBitcodeWriter::writeModuleMetadata() {
1956   if (!VE.hasMDs() && M.named_metadata_empty())
1957     return;
1958 
1959   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1960   SmallVector<uint64_t, 64> Record;
1961 
1962   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1963   // block and load any metadata.
1964   std::vector<unsigned> MDAbbrevs;
1965 
1966   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1967   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1968   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1969       createGenericDINodeAbbrev();
1970 
1971   auto Abbv = std::make_shared<BitCodeAbbrev>();
1972   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
1973   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1974   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1975   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1976 
1977   Abbv = std::make_shared<BitCodeAbbrev>();
1978   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
1979   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1980   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1981   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1982 
1983   // Emit MDStrings together upfront.
1984   writeMetadataStrings(VE.getMDStrings(), Record);
1985 
1986   // We only emit an index for the metadata record if we have more than a given
1987   // (naive) threshold of metadatas, otherwise it is not worth it.
1988   if (VE.getNonMDStrings().size() > IndexThreshold) {
1989     // Write a placeholder value in for the offset of the metadata index,
1990     // which is written after the records, so that it can include
1991     // the offset of each entry. The placeholder offset will be
1992     // updated after all records are emitted.
1993     uint64_t Vals[] = {0, 0};
1994     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
1995   }
1996 
1997   // Compute and save the bit offset to the current position, which will be
1998   // patched when we emit the index later. We can simply subtract the 64-bit
1999   // fixed size from the current bit number to get the location to backpatch.
2000   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2001 
2002   // This index will contain the bitpos for each individual record.
2003   std::vector<uint64_t> IndexPos;
2004   IndexPos.reserve(VE.getNonMDStrings().size());
2005 
2006   // Write all the records
2007   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2008 
2009   if (VE.getNonMDStrings().size() > IndexThreshold) {
2010     // Now that we have emitted all the records we will emit the index. But
2011     // first
2012     // backpatch the forward reference so that the reader can skip the records
2013     // efficiently.
2014     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2015                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2016 
2017     // Delta encode the index.
2018     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2019     for (auto &Elt : IndexPos) {
2020       auto EltDelta = Elt - PreviousValue;
2021       PreviousValue = Elt;
2022       Elt = EltDelta;
2023     }
2024     // Emit the index record.
2025     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2026     IndexPos.clear();
2027   }
2028 
2029   // Write the named metadata now.
2030   writeNamedMetadata(Record);
2031 
2032   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2033     SmallVector<uint64_t, 4> Record;
2034     Record.push_back(VE.getValueID(&GO));
2035     pushGlobalMetadataAttachment(Record, GO);
2036     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2037   };
2038   for (const Function &F : M)
2039     if (F.isDeclaration() && F.hasMetadata())
2040       AddDeclAttachedMetadata(F);
2041   // FIXME: Only store metadata for declarations here, and move data for global
2042   // variable definitions to a separate block (PR28134).
2043   for (const GlobalVariable &GV : M.globals())
2044     if (GV.hasMetadata())
2045       AddDeclAttachedMetadata(GV);
2046 
2047   Stream.ExitBlock();
2048 }
2049 
2050 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2051   if (!VE.hasMDs())
2052     return;
2053 
2054   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2055   SmallVector<uint64_t, 64> Record;
2056   writeMetadataStrings(VE.getMDStrings(), Record);
2057   writeMetadataRecords(VE.getNonMDStrings(), Record);
2058   Stream.ExitBlock();
2059 }
2060 
2061 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2062     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2063   // [n x [id, mdnode]]
2064   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2065   GO.getAllMetadata(MDs);
2066   for (const auto &I : MDs) {
2067     Record.push_back(I.first);
2068     Record.push_back(VE.getMetadataID(I.second));
2069   }
2070 }
2071 
2072 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2073   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2074 
2075   SmallVector<uint64_t, 64> Record;
2076 
2077   if (F.hasMetadata()) {
2078     pushGlobalMetadataAttachment(Record, F);
2079     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2080     Record.clear();
2081   }
2082 
2083   // Write metadata attachments
2084   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2085   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2086   for (const BasicBlock &BB : F)
2087     for (const Instruction &I : BB) {
2088       MDs.clear();
2089       I.getAllMetadataOtherThanDebugLoc(MDs);
2090 
2091       // If no metadata, ignore instruction.
2092       if (MDs.empty()) continue;
2093 
2094       Record.push_back(VE.getInstructionID(&I));
2095 
2096       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2097         Record.push_back(MDs[i].first);
2098         Record.push_back(VE.getMetadataID(MDs[i].second));
2099       }
2100       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2101       Record.clear();
2102     }
2103 
2104   Stream.ExitBlock();
2105 }
2106 
2107 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2108   SmallVector<uint64_t, 64> Record;
2109 
2110   // Write metadata kinds
2111   // METADATA_KIND - [n x [id, name]]
2112   SmallVector<StringRef, 8> Names;
2113   M.getMDKindNames(Names);
2114 
2115   if (Names.empty()) return;
2116 
2117   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2118 
2119   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2120     Record.push_back(MDKindID);
2121     StringRef KName = Names[MDKindID];
2122     Record.append(KName.begin(), KName.end());
2123 
2124     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2125     Record.clear();
2126   }
2127 
2128   Stream.ExitBlock();
2129 }
2130 
2131 void ModuleBitcodeWriter::writeOperandBundleTags() {
2132   // Write metadata kinds
2133   //
2134   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2135   //
2136   // OPERAND_BUNDLE_TAG - [strchr x N]
2137 
2138   SmallVector<StringRef, 8> Tags;
2139   M.getOperandBundleTags(Tags);
2140 
2141   if (Tags.empty())
2142     return;
2143 
2144   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2145 
2146   SmallVector<uint64_t, 64> Record;
2147 
2148   for (auto Tag : Tags) {
2149     Record.append(Tag.begin(), Tag.end());
2150 
2151     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2152     Record.clear();
2153   }
2154 
2155   Stream.ExitBlock();
2156 }
2157 
2158 void ModuleBitcodeWriter::writeSyncScopeNames() {
2159   SmallVector<StringRef, 8> SSNs;
2160   M.getContext().getSyncScopeNames(SSNs);
2161   if (SSNs.empty())
2162     return;
2163 
2164   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2165 
2166   SmallVector<uint64_t, 64> Record;
2167   for (auto SSN : SSNs) {
2168     Record.append(SSN.begin(), SSN.end());
2169     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2170     Record.clear();
2171   }
2172 
2173   Stream.ExitBlock();
2174 }
2175 
2176 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2177   if ((int64_t)V >= 0)
2178     Vals.push_back(V << 1);
2179   else
2180     Vals.push_back((-V << 1) | 1);
2181 }
2182 
2183 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2184                                          bool isGlobal) {
2185   if (FirstVal == LastVal) return;
2186 
2187   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2188 
2189   unsigned AggregateAbbrev = 0;
2190   unsigned String8Abbrev = 0;
2191   unsigned CString7Abbrev = 0;
2192   unsigned CString6Abbrev = 0;
2193   // If this is a constant pool for the module, emit module-specific abbrevs.
2194   if (isGlobal) {
2195     // Abbrev for CST_CODE_AGGREGATE.
2196     auto Abbv = std::make_shared<BitCodeAbbrev>();
2197     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2198     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2199     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2200     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2201 
2202     // Abbrev for CST_CODE_STRING.
2203     Abbv = std::make_shared<BitCodeAbbrev>();
2204     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2205     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2206     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2207     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2208     // Abbrev for CST_CODE_CSTRING.
2209     Abbv = std::make_shared<BitCodeAbbrev>();
2210     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2211     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2212     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2213     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2214     // Abbrev for CST_CODE_CSTRING.
2215     Abbv = std::make_shared<BitCodeAbbrev>();
2216     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2217     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2218     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2219     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2220   }
2221 
2222   SmallVector<uint64_t, 64> Record;
2223 
2224   const ValueEnumerator::ValueList &Vals = VE.getValues();
2225   Type *LastTy = nullptr;
2226   for (unsigned i = FirstVal; i != LastVal; ++i) {
2227     const Value *V = Vals[i].first;
2228     // If we need to switch types, do so now.
2229     if (V->getType() != LastTy) {
2230       LastTy = V->getType();
2231       Record.push_back(VE.getTypeID(LastTy));
2232       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2233                         CONSTANTS_SETTYPE_ABBREV);
2234       Record.clear();
2235     }
2236 
2237     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2238       Record.push_back(unsigned(IA->hasSideEffects()) |
2239                        unsigned(IA->isAlignStack()) << 1 |
2240                        unsigned(IA->getDialect()&1) << 2);
2241 
2242       // Add the asm string.
2243       const std::string &AsmStr = IA->getAsmString();
2244       Record.push_back(AsmStr.size());
2245       Record.append(AsmStr.begin(), AsmStr.end());
2246 
2247       // Add the constraint string.
2248       const std::string &ConstraintStr = IA->getConstraintString();
2249       Record.push_back(ConstraintStr.size());
2250       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2251       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2252       Record.clear();
2253       continue;
2254     }
2255     const Constant *C = cast<Constant>(V);
2256     unsigned Code = -1U;
2257     unsigned AbbrevToUse = 0;
2258     if (C->isNullValue()) {
2259       Code = bitc::CST_CODE_NULL;
2260     } else if (isa<UndefValue>(C)) {
2261       Code = bitc::CST_CODE_UNDEF;
2262     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2263       if (IV->getBitWidth() <= 64) {
2264         uint64_t V = IV->getSExtValue();
2265         emitSignedInt64(Record, V);
2266         Code = bitc::CST_CODE_INTEGER;
2267         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2268       } else {                             // Wide integers, > 64 bits in size.
2269         // We have an arbitrary precision integer value to write whose
2270         // bit width is > 64. However, in canonical unsigned integer
2271         // format it is likely that the high bits are going to be zero.
2272         // So, we only write the number of active words.
2273         unsigned NWords = IV->getValue().getActiveWords();
2274         const uint64_t *RawWords = IV->getValue().getRawData();
2275         for (unsigned i = 0; i != NWords; ++i) {
2276           emitSignedInt64(Record, RawWords[i]);
2277         }
2278         Code = bitc::CST_CODE_WIDE_INTEGER;
2279       }
2280     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2281       Code = bitc::CST_CODE_FLOAT;
2282       Type *Ty = CFP->getType();
2283       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2284         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2285       } else if (Ty->isX86_FP80Ty()) {
2286         // api needed to prevent premature destruction
2287         // bits are not in the same order as a normal i80 APInt, compensate.
2288         APInt api = CFP->getValueAPF().bitcastToAPInt();
2289         const uint64_t *p = api.getRawData();
2290         Record.push_back((p[1] << 48) | (p[0] >> 16));
2291         Record.push_back(p[0] & 0xffffLL);
2292       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2293         APInt api = CFP->getValueAPF().bitcastToAPInt();
2294         const uint64_t *p = api.getRawData();
2295         Record.push_back(p[0]);
2296         Record.push_back(p[1]);
2297       } else {
2298         assert(0 && "Unknown FP type!");
2299       }
2300     } else if (isa<ConstantDataSequential>(C) &&
2301                cast<ConstantDataSequential>(C)->isString()) {
2302       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2303       // Emit constant strings specially.
2304       unsigned NumElts = Str->getNumElements();
2305       // If this is a null-terminated string, use the denser CSTRING encoding.
2306       if (Str->isCString()) {
2307         Code = bitc::CST_CODE_CSTRING;
2308         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2309       } else {
2310         Code = bitc::CST_CODE_STRING;
2311         AbbrevToUse = String8Abbrev;
2312       }
2313       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2314       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2315       for (unsigned i = 0; i != NumElts; ++i) {
2316         unsigned char V = Str->getElementAsInteger(i);
2317         Record.push_back(V);
2318         isCStr7 &= (V & 128) == 0;
2319         if (isCStrChar6)
2320           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2321       }
2322 
2323       if (isCStrChar6)
2324         AbbrevToUse = CString6Abbrev;
2325       else if (isCStr7)
2326         AbbrevToUse = CString7Abbrev;
2327     } else if (const ConstantDataSequential *CDS =
2328                   dyn_cast<ConstantDataSequential>(C)) {
2329       Code = bitc::CST_CODE_DATA;
2330       Type *EltTy = CDS->getType()->getElementType();
2331       if (isa<IntegerType>(EltTy)) {
2332         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2333           Record.push_back(CDS->getElementAsInteger(i));
2334       } else {
2335         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2336           Record.push_back(
2337               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2338       }
2339     } else if (isa<ConstantAggregate>(C)) {
2340       Code = bitc::CST_CODE_AGGREGATE;
2341       for (const Value *Op : C->operands())
2342         Record.push_back(VE.getValueID(Op));
2343       AbbrevToUse = AggregateAbbrev;
2344     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2345       switch (CE->getOpcode()) {
2346       default:
2347         if (Instruction::isCast(CE->getOpcode())) {
2348           Code = bitc::CST_CODE_CE_CAST;
2349           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2350           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2351           Record.push_back(VE.getValueID(C->getOperand(0)));
2352           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2353         } else {
2354           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2355           Code = bitc::CST_CODE_CE_BINOP;
2356           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2357           Record.push_back(VE.getValueID(C->getOperand(0)));
2358           Record.push_back(VE.getValueID(C->getOperand(1)));
2359           uint64_t Flags = getOptimizationFlags(CE);
2360           if (Flags != 0)
2361             Record.push_back(Flags);
2362         }
2363         break;
2364       case Instruction::GetElementPtr: {
2365         Code = bitc::CST_CODE_CE_GEP;
2366         const auto *GO = cast<GEPOperator>(C);
2367         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2368         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2369           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2370           Record.push_back((*Idx << 1) | GO->isInBounds());
2371         } else if (GO->isInBounds())
2372           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2373         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2374           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2375           Record.push_back(VE.getValueID(C->getOperand(i)));
2376         }
2377         break;
2378       }
2379       case Instruction::Select:
2380         Code = bitc::CST_CODE_CE_SELECT;
2381         Record.push_back(VE.getValueID(C->getOperand(0)));
2382         Record.push_back(VE.getValueID(C->getOperand(1)));
2383         Record.push_back(VE.getValueID(C->getOperand(2)));
2384         break;
2385       case Instruction::ExtractElement:
2386         Code = bitc::CST_CODE_CE_EXTRACTELT;
2387         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2388         Record.push_back(VE.getValueID(C->getOperand(0)));
2389         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2390         Record.push_back(VE.getValueID(C->getOperand(1)));
2391         break;
2392       case Instruction::InsertElement:
2393         Code = bitc::CST_CODE_CE_INSERTELT;
2394         Record.push_back(VE.getValueID(C->getOperand(0)));
2395         Record.push_back(VE.getValueID(C->getOperand(1)));
2396         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2397         Record.push_back(VE.getValueID(C->getOperand(2)));
2398         break;
2399       case Instruction::ShuffleVector:
2400         // If the return type and argument types are the same, this is a
2401         // standard shufflevector instruction.  If the types are different,
2402         // then the shuffle is widening or truncating the input vectors, and
2403         // the argument type must also be encoded.
2404         if (C->getType() == C->getOperand(0)->getType()) {
2405           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2406         } else {
2407           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2408           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2409         }
2410         Record.push_back(VE.getValueID(C->getOperand(0)));
2411         Record.push_back(VE.getValueID(C->getOperand(1)));
2412         Record.push_back(VE.getValueID(C->getOperand(2)));
2413         break;
2414       case Instruction::ICmp:
2415       case Instruction::FCmp:
2416         Code = bitc::CST_CODE_CE_CMP;
2417         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2418         Record.push_back(VE.getValueID(C->getOperand(0)));
2419         Record.push_back(VE.getValueID(C->getOperand(1)));
2420         Record.push_back(CE->getPredicate());
2421         break;
2422       }
2423     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2424       Code = bitc::CST_CODE_BLOCKADDRESS;
2425       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2426       Record.push_back(VE.getValueID(BA->getFunction()));
2427       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2428     } else {
2429 #ifndef NDEBUG
2430       C->dump();
2431 #endif
2432       llvm_unreachable("Unknown constant!");
2433     }
2434     Stream.EmitRecord(Code, Record, AbbrevToUse);
2435     Record.clear();
2436   }
2437 
2438   Stream.ExitBlock();
2439 }
2440 
2441 void ModuleBitcodeWriter::writeModuleConstants() {
2442   const ValueEnumerator::ValueList &Vals = VE.getValues();
2443 
2444   // Find the first constant to emit, which is the first non-globalvalue value.
2445   // We know globalvalues have been emitted by WriteModuleInfo.
2446   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2447     if (!isa<GlobalValue>(Vals[i].first)) {
2448       writeConstants(i, Vals.size(), true);
2449       return;
2450     }
2451   }
2452 }
2453 
2454 /// pushValueAndType - The file has to encode both the value and type id for
2455 /// many values, because we need to know what type to create for forward
2456 /// references.  However, most operands are not forward references, so this type
2457 /// field is not needed.
2458 ///
2459 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2460 /// instruction ID, then it is a forward reference, and it also includes the
2461 /// type ID.  The value ID that is written is encoded relative to the InstID.
2462 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2463                                            SmallVectorImpl<unsigned> &Vals) {
2464   unsigned ValID = VE.getValueID(V);
2465   // Make encoding relative to the InstID.
2466   Vals.push_back(InstID - ValID);
2467   if (ValID >= InstID) {
2468     Vals.push_back(VE.getTypeID(V->getType()));
2469     return true;
2470   }
2471   return false;
2472 }
2473 
2474 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2475                                               unsigned InstID) {
2476   SmallVector<unsigned, 64> Record;
2477   LLVMContext &C = CS.getInstruction()->getContext();
2478 
2479   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2480     const auto &Bundle = CS.getOperandBundleAt(i);
2481     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2482 
2483     for (auto &Input : Bundle.Inputs)
2484       pushValueAndType(Input, InstID, Record);
2485 
2486     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2487     Record.clear();
2488   }
2489 }
2490 
2491 /// pushValue - Like pushValueAndType, but where the type of the value is
2492 /// omitted (perhaps it was already encoded in an earlier operand).
2493 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2494                                     SmallVectorImpl<unsigned> &Vals) {
2495   unsigned ValID = VE.getValueID(V);
2496   Vals.push_back(InstID - ValID);
2497 }
2498 
2499 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2500                                           SmallVectorImpl<uint64_t> &Vals) {
2501   unsigned ValID = VE.getValueID(V);
2502   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2503   emitSignedInt64(Vals, diff);
2504 }
2505 
2506 /// WriteInstruction - Emit an instruction to the specified stream.
2507 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2508                                            unsigned InstID,
2509                                            SmallVectorImpl<unsigned> &Vals) {
2510   unsigned Code = 0;
2511   unsigned AbbrevToUse = 0;
2512   VE.setInstructionID(&I);
2513   switch (I.getOpcode()) {
2514   default:
2515     if (Instruction::isCast(I.getOpcode())) {
2516       Code = bitc::FUNC_CODE_INST_CAST;
2517       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2518         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2519       Vals.push_back(VE.getTypeID(I.getType()));
2520       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2521     } else {
2522       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2523       Code = bitc::FUNC_CODE_INST_BINOP;
2524       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2525         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2526       pushValue(I.getOperand(1), InstID, Vals);
2527       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2528       uint64_t Flags = getOptimizationFlags(&I);
2529       if (Flags != 0) {
2530         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2531           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2532         Vals.push_back(Flags);
2533       }
2534     }
2535     break;
2536 
2537   case Instruction::GetElementPtr: {
2538     Code = bitc::FUNC_CODE_INST_GEP;
2539     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2540     auto &GEPInst = cast<GetElementPtrInst>(I);
2541     Vals.push_back(GEPInst.isInBounds());
2542     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2543     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2544       pushValueAndType(I.getOperand(i), InstID, Vals);
2545     break;
2546   }
2547   case Instruction::ExtractValue: {
2548     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2549     pushValueAndType(I.getOperand(0), InstID, Vals);
2550     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2551     Vals.append(EVI->idx_begin(), EVI->idx_end());
2552     break;
2553   }
2554   case Instruction::InsertValue: {
2555     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2556     pushValueAndType(I.getOperand(0), InstID, Vals);
2557     pushValueAndType(I.getOperand(1), InstID, Vals);
2558     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2559     Vals.append(IVI->idx_begin(), IVI->idx_end());
2560     break;
2561   }
2562   case Instruction::Select:
2563     Code = bitc::FUNC_CODE_INST_VSELECT;
2564     pushValueAndType(I.getOperand(1), InstID, Vals);
2565     pushValue(I.getOperand(2), InstID, Vals);
2566     pushValueAndType(I.getOperand(0), InstID, Vals);
2567     break;
2568   case Instruction::ExtractElement:
2569     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2570     pushValueAndType(I.getOperand(0), InstID, Vals);
2571     pushValueAndType(I.getOperand(1), InstID, Vals);
2572     break;
2573   case Instruction::InsertElement:
2574     Code = bitc::FUNC_CODE_INST_INSERTELT;
2575     pushValueAndType(I.getOperand(0), InstID, Vals);
2576     pushValue(I.getOperand(1), InstID, Vals);
2577     pushValueAndType(I.getOperand(2), InstID, Vals);
2578     break;
2579   case Instruction::ShuffleVector:
2580     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2581     pushValueAndType(I.getOperand(0), InstID, Vals);
2582     pushValue(I.getOperand(1), InstID, Vals);
2583     pushValue(I.getOperand(2), InstID, Vals);
2584     break;
2585   case Instruction::ICmp:
2586   case Instruction::FCmp: {
2587     // compare returning Int1Ty or vector of Int1Ty
2588     Code = bitc::FUNC_CODE_INST_CMP2;
2589     pushValueAndType(I.getOperand(0), InstID, Vals);
2590     pushValue(I.getOperand(1), InstID, Vals);
2591     Vals.push_back(cast<CmpInst>(I).getPredicate());
2592     uint64_t Flags = getOptimizationFlags(&I);
2593     if (Flags != 0)
2594       Vals.push_back(Flags);
2595     break;
2596   }
2597 
2598   case Instruction::Ret:
2599     {
2600       Code = bitc::FUNC_CODE_INST_RET;
2601       unsigned NumOperands = I.getNumOperands();
2602       if (NumOperands == 0)
2603         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2604       else if (NumOperands == 1) {
2605         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2606           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2607       } else {
2608         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2609           pushValueAndType(I.getOperand(i), InstID, Vals);
2610       }
2611     }
2612     break;
2613   case Instruction::Br:
2614     {
2615       Code = bitc::FUNC_CODE_INST_BR;
2616       const BranchInst &II = cast<BranchInst>(I);
2617       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2618       if (II.isConditional()) {
2619         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2620         pushValue(II.getCondition(), InstID, Vals);
2621       }
2622     }
2623     break;
2624   case Instruction::Switch:
2625     {
2626       Code = bitc::FUNC_CODE_INST_SWITCH;
2627       const SwitchInst &SI = cast<SwitchInst>(I);
2628       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2629       pushValue(SI.getCondition(), InstID, Vals);
2630       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2631       for (auto Case : SI.cases()) {
2632         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2633         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2634       }
2635     }
2636     break;
2637   case Instruction::IndirectBr:
2638     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2639     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2640     // Encode the address operand as relative, but not the basic blocks.
2641     pushValue(I.getOperand(0), InstID, Vals);
2642     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2643       Vals.push_back(VE.getValueID(I.getOperand(i)));
2644     break;
2645 
2646   case Instruction::Invoke: {
2647     const InvokeInst *II = cast<InvokeInst>(&I);
2648     const Value *Callee = II->getCalledValue();
2649     FunctionType *FTy = II->getFunctionType();
2650 
2651     if (II->hasOperandBundles())
2652       writeOperandBundles(II, InstID);
2653 
2654     Code = bitc::FUNC_CODE_INST_INVOKE;
2655 
2656     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2657     Vals.push_back(II->getCallingConv() | 1 << 13);
2658     Vals.push_back(VE.getValueID(II->getNormalDest()));
2659     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2660     Vals.push_back(VE.getTypeID(FTy));
2661     pushValueAndType(Callee, InstID, Vals);
2662 
2663     // Emit value #'s for the fixed parameters.
2664     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2665       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2666 
2667     // Emit type/value pairs for varargs params.
2668     if (FTy->isVarArg()) {
2669       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2670            i != e; ++i)
2671         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2672     }
2673     break;
2674   }
2675   case Instruction::Resume:
2676     Code = bitc::FUNC_CODE_INST_RESUME;
2677     pushValueAndType(I.getOperand(0), InstID, Vals);
2678     break;
2679   case Instruction::CleanupRet: {
2680     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2681     const auto &CRI = cast<CleanupReturnInst>(I);
2682     pushValue(CRI.getCleanupPad(), InstID, Vals);
2683     if (CRI.hasUnwindDest())
2684       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2685     break;
2686   }
2687   case Instruction::CatchRet: {
2688     Code = bitc::FUNC_CODE_INST_CATCHRET;
2689     const auto &CRI = cast<CatchReturnInst>(I);
2690     pushValue(CRI.getCatchPad(), InstID, Vals);
2691     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2692     break;
2693   }
2694   case Instruction::CleanupPad:
2695   case Instruction::CatchPad: {
2696     const auto &FuncletPad = cast<FuncletPadInst>(I);
2697     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2698                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2699     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2700 
2701     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2702     Vals.push_back(NumArgOperands);
2703     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2704       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2705     break;
2706   }
2707   case Instruction::CatchSwitch: {
2708     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2709     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2710 
2711     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2712 
2713     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2714     Vals.push_back(NumHandlers);
2715     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2716       Vals.push_back(VE.getValueID(CatchPadBB));
2717 
2718     if (CatchSwitch.hasUnwindDest())
2719       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2720     break;
2721   }
2722   case Instruction::Unreachable:
2723     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2724     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2725     break;
2726 
2727   case Instruction::PHI: {
2728     const PHINode &PN = cast<PHINode>(I);
2729     Code = bitc::FUNC_CODE_INST_PHI;
2730     // With the newer instruction encoding, forward references could give
2731     // negative valued IDs.  This is most common for PHIs, so we use
2732     // signed VBRs.
2733     SmallVector<uint64_t, 128> Vals64;
2734     Vals64.push_back(VE.getTypeID(PN.getType()));
2735     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2736       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2737       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2738     }
2739     // Emit a Vals64 vector and exit.
2740     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2741     Vals64.clear();
2742     return;
2743   }
2744 
2745   case Instruction::LandingPad: {
2746     const LandingPadInst &LP = cast<LandingPadInst>(I);
2747     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2748     Vals.push_back(VE.getTypeID(LP.getType()));
2749     Vals.push_back(LP.isCleanup());
2750     Vals.push_back(LP.getNumClauses());
2751     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2752       if (LP.isCatch(I))
2753         Vals.push_back(LandingPadInst::Catch);
2754       else
2755         Vals.push_back(LandingPadInst::Filter);
2756       pushValueAndType(LP.getClause(I), InstID, Vals);
2757     }
2758     break;
2759   }
2760 
2761   case Instruction::Alloca: {
2762     Code = bitc::FUNC_CODE_INST_ALLOCA;
2763     const AllocaInst &AI = cast<AllocaInst>(I);
2764     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2765     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2766     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2767     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2768     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2769            "not enough bits for maximum alignment");
2770     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2771     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2772     AlignRecord |= 1 << 6;
2773     AlignRecord |= AI.isSwiftError() << 7;
2774     Vals.push_back(AlignRecord);
2775     break;
2776   }
2777 
2778   case Instruction::Load:
2779     if (cast<LoadInst>(I).isAtomic()) {
2780       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2781       pushValueAndType(I.getOperand(0), InstID, Vals);
2782     } else {
2783       Code = bitc::FUNC_CODE_INST_LOAD;
2784       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2785         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2786     }
2787     Vals.push_back(VE.getTypeID(I.getType()));
2788     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2789     Vals.push_back(cast<LoadInst>(I).isVolatile());
2790     if (cast<LoadInst>(I).isAtomic()) {
2791       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2792       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2793     }
2794     break;
2795   case Instruction::Store:
2796     if (cast<StoreInst>(I).isAtomic())
2797       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2798     else
2799       Code = bitc::FUNC_CODE_INST_STORE;
2800     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2801     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2802     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2803     Vals.push_back(cast<StoreInst>(I).isVolatile());
2804     if (cast<StoreInst>(I).isAtomic()) {
2805       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2806       Vals.push_back(
2807           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2808     }
2809     break;
2810   case Instruction::AtomicCmpXchg:
2811     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2812     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2813     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2814     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2815     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2816     Vals.push_back(
2817         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2818     Vals.push_back(
2819         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2820     Vals.push_back(
2821         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2822     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2823     break;
2824   case Instruction::AtomicRMW:
2825     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2826     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2827     pushValue(I.getOperand(1), InstID, Vals);        // val.
2828     Vals.push_back(
2829         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2830     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2831     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2832     Vals.push_back(
2833         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2834     break;
2835   case Instruction::Fence:
2836     Code = bitc::FUNC_CODE_INST_FENCE;
2837     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2838     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2839     break;
2840   case Instruction::Call: {
2841     const CallInst &CI = cast<CallInst>(I);
2842     FunctionType *FTy = CI.getFunctionType();
2843 
2844     if (CI.hasOperandBundles())
2845       writeOperandBundles(&CI, InstID);
2846 
2847     Code = bitc::FUNC_CODE_INST_CALL;
2848 
2849     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2850 
2851     unsigned Flags = getOptimizationFlags(&I);
2852     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2853                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2854                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2855                    1 << bitc::CALL_EXPLICIT_TYPE |
2856                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2857                    unsigned(Flags != 0) << bitc::CALL_FMF);
2858     if (Flags != 0)
2859       Vals.push_back(Flags);
2860 
2861     Vals.push_back(VE.getTypeID(FTy));
2862     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2863 
2864     // Emit value #'s for the fixed parameters.
2865     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2866       // Check for labels (can happen with asm labels).
2867       if (FTy->getParamType(i)->isLabelTy())
2868         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2869       else
2870         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2871     }
2872 
2873     // Emit type/value pairs for varargs params.
2874     if (FTy->isVarArg()) {
2875       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2876            i != e; ++i)
2877         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2878     }
2879     break;
2880   }
2881   case Instruction::VAArg:
2882     Code = bitc::FUNC_CODE_INST_VAARG;
2883     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2884     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2885     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2886     break;
2887   }
2888 
2889   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2890   Vals.clear();
2891 }
2892 
2893 /// Write a GlobalValue VST to the module. The purpose of this data structure is
2894 /// to allow clients to efficiently find the function body.
2895 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
2896   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2897   // Get the offset of the VST we are writing, and backpatch it into
2898   // the VST forward declaration record.
2899   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2900   // The BitcodeStartBit was the stream offset of the identification block.
2901   VSTOffset -= bitcodeStartBit();
2902   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2903   // Note that we add 1 here because the offset is relative to one word
2904   // before the start of the identification block, which was historically
2905   // always the start of the regular bitcode header.
2906   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
2907 
2908   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2909 
2910   auto Abbv = std::make_shared<BitCodeAbbrev>();
2911   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2912   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2913   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2914   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2915 
2916   for (const Function &F : M) {
2917     uint64_t Record[2];
2918 
2919     if (F.isDeclaration())
2920       continue;
2921 
2922     Record[0] = VE.getValueID(&F);
2923 
2924     // Save the word offset of the function (from the start of the
2925     // actual bitcode written to the stream).
2926     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
2927     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2928     // Note that we add 1 here because the offset is relative to one word
2929     // before the start of the identification block, which was historically
2930     // always the start of the regular bitcode header.
2931     Record[1] = BitcodeIndex / 32 + 1;
2932 
2933     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
2934   }
2935 
2936   Stream.ExitBlock();
2937 }
2938 
2939 /// Emit names for arguments, instructions and basic blocks in a function.
2940 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
2941     const ValueSymbolTable &VST) {
2942   if (VST.empty())
2943     return;
2944 
2945   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2946 
2947   // FIXME: Set up the abbrev, we know how many values there are!
2948   // FIXME: We know if the type names can use 7-bit ascii.
2949   SmallVector<uint64_t, 64> NameVals;
2950 
2951   for (const ValueName &Name : VST) {
2952     // Figure out the encoding to use for the name.
2953     StringEncoding Bits = getStringEncoding(Name.getKey());
2954 
2955     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2956     NameVals.push_back(VE.getValueID(Name.getValue()));
2957 
2958     // VST_CODE_ENTRY:   [valueid, namechar x N]
2959     // VST_CODE_BBENTRY: [bbid, namechar x N]
2960     unsigned Code;
2961     if (isa<BasicBlock>(Name.getValue())) {
2962       Code = bitc::VST_CODE_BBENTRY;
2963       if (Bits == SE_Char6)
2964         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2965     } else {
2966       Code = bitc::VST_CODE_ENTRY;
2967       if (Bits == SE_Char6)
2968         AbbrevToUse = VST_ENTRY_6_ABBREV;
2969       else if (Bits == SE_Fixed7)
2970         AbbrevToUse = VST_ENTRY_7_ABBREV;
2971     }
2972 
2973     for (const auto P : Name.getKey())
2974       NameVals.push_back((unsigned char)P);
2975 
2976     // Emit the finished record.
2977     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2978     NameVals.clear();
2979   }
2980 
2981   Stream.ExitBlock();
2982 }
2983 
2984 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
2985   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2986   unsigned Code;
2987   if (isa<BasicBlock>(Order.V))
2988     Code = bitc::USELIST_CODE_BB;
2989   else
2990     Code = bitc::USELIST_CODE_DEFAULT;
2991 
2992   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2993   Record.push_back(VE.getValueID(Order.V));
2994   Stream.EmitRecord(Code, Record);
2995 }
2996 
2997 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
2998   assert(VE.shouldPreserveUseListOrder() &&
2999          "Expected to be preserving use-list order");
3000 
3001   auto hasMore = [&]() {
3002     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3003   };
3004   if (!hasMore())
3005     // Nothing to do.
3006     return;
3007 
3008   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3009   while (hasMore()) {
3010     writeUseList(std::move(VE.UseListOrders.back()));
3011     VE.UseListOrders.pop_back();
3012   }
3013   Stream.ExitBlock();
3014 }
3015 
3016 /// Emit a function body to the module stream.
3017 void ModuleBitcodeWriter::writeFunction(
3018     const Function &F,
3019     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3020   // Save the bitcode index of the start of this function block for recording
3021   // in the VST.
3022   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3023 
3024   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3025   VE.incorporateFunction(F);
3026 
3027   SmallVector<unsigned, 64> Vals;
3028 
3029   // Emit the number of basic blocks, so the reader can create them ahead of
3030   // time.
3031   Vals.push_back(VE.getBasicBlocks().size());
3032   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3033   Vals.clear();
3034 
3035   // If there are function-local constants, emit them now.
3036   unsigned CstStart, CstEnd;
3037   VE.getFunctionConstantRange(CstStart, CstEnd);
3038   writeConstants(CstStart, CstEnd, false);
3039 
3040   // If there is function-local metadata, emit it now.
3041   writeFunctionMetadata(F);
3042 
3043   // Keep a running idea of what the instruction ID is.
3044   unsigned InstID = CstEnd;
3045 
3046   bool NeedsMetadataAttachment = F.hasMetadata();
3047 
3048   DILocation *LastDL = nullptr;
3049   // Finally, emit all the instructions, in order.
3050   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3051     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3052          I != E; ++I) {
3053       writeInstruction(*I, InstID, Vals);
3054 
3055       if (!I->getType()->isVoidTy())
3056         ++InstID;
3057 
3058       // If the instruction has metadata, write a metadata attachment later.
3059       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3060 
3061       // If the instruction has a debug location, emit it.
3062       DILocation *DL = I->getDebugLoc();
3063       if (!DL)
3064         continue;
3065 
3066       if (DL == LastDL) {
3067         // Just repeat the same debug loc as last time.
3068         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3069         continue;
3070       }
3071 
3072       Vals.push_back(DL->getLine());
3073       Vals.push_back(DL->getColumn());
3074       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3075       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3076       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3077       Vals.clear();
3078 
3079       LastDL = DL;
3080     }
3081 
3082   // Emit names for all the instructions etc.
3083   if (auto *Symtab = F.getValueSymbolTable())
3084     writeFunctionLevelValueSymbolTable(*Symtab);
3085 
3086   if (NeedsMetadataAttachment)
3087     writeFunctionMetadataAttachment(F);
3088   if (VE.shouldPreserveUseListOrder())
3089     writeUseListBlock(&F);
3090   VE.purgeFunction();
3091   Stream.ExitBlock();
3092 }
3093 
3094 // Emit blockinfo, which defines the standard abbreviations etc.
3095 void ModuleBitcodeWriter::writeBlockInfo() {
3096   // We only want to emit block info records for blocks that have multiple
3097   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3098   // Other blocks can define their abbrevs inline.
3099   Stream.EnterBlockInfoBlock();
3100 
3101   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3102     auto Abbv = std::make_shared<BitCodeAbbrev>();
3103     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3104     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3105     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3106     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3107     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3108         VST_ENTRY_8_ABBREV)
3109       llvm_unreachable("Unexpected abbrev ordering!");
3110   }
3111 
3112   { // 7-bit fixed width VST_CODE_ENTRY strings.
3113     auto Abbv = std::make_shared<BitCodeAbbrev>();
3114     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3115     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3116     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3117     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3118     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3119         VST_ENTRY_7_ABBREV)
3120       llvm_unreachable("Unexpected abbrev ordering!");
3121   }
3122   { // 6-bit char6 VST_CODE_ENTRY strings.
3123     auto Abbv = std::make_shared<BitCodeAbbrev>();
3124     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3125     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3126     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3127     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3128     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3129         VST_ENTRY_6_ABBREV)
3130       llvm_unreachable("Unexpected abbrev ordering!");
3131   }
3132   { // 6-bit char6 VST_CODE_BBENTRY strings.
3133     auto Abbv = std::make_shared<BitCodeAbbrev>();
3134     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3135     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3136     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3137     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3138     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3139         VST_BBENTRY_6_ABBREV)
3140       llvm_unreachable("Unexpected abbrev ordering!");
3141   }
3142 
3143   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3144     auto Abbv = std::make_shared<BitCodeAbbrev>();
3145     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3146     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3147                               VE.computeBitsRequiredForTypeIndicies()));
3148     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3149         CONSTANTS_SETTYPE_ABBREV)
3150       llvm_unreachable("Unexpected abbrev ordering!");
3151   }
3152 
3153   { // INTEGER abbrev for CONSTANTS_BLOCK.
3154     auto Abbv = std::make_shared<BitCodeAbbrev>();
3155     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3156     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3157     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3158         CONSTANTS_INTEGER_ABBREV)
3159       llvm_unreachable("Unexpected abbrev ordering!");
3160   }
3161 
3162   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3163     auto Abbv = std::make_shared<BitCodeAbbrev>();
3164     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3165     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3166     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3167                               VE.computeBitsRequiredForTypeIndicies()));
3168     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3169 
3170     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3171         CONSTANTS_CE_CAST_Abbrev)
3172       llvm_unreachable("Unexpected abbrev ordering!");
3173   }
3174   { // NULL abbrev for CONSTANTS_BLOCK.
3175     auto Abbv = std::make_shared<BitCodeAbbrev>();
3176     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3177     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3178         CONSTANTS_NULL_Abbrev)
3179       llvm_unreachable("Unexpected abbrev ordering!");
3180   }
3181 
3182   // FIXME: This should only use space for first class types!
3183 
3184   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3185     auto Abbv = std::make_shared<BitCodeAbbrev>();
3186     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3187     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3188     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3189                               VE.computeBitsRequiredForTypeIndicies()));
3190     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3191     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3192     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3193         FUNCTION_INST_LOAD_ABBREV)
3194       llvm_unreachable("Unexpected abbrev ordering!");
3195   }
3196   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3197     auto Abbv = std::make_shared<BitCodeAbbrev>();
3198     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3199     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3200     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3201     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3202     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3203         FUNCTION_INST_BINOP_ABBREV)
3204       llvm_unreachable("Unexpected abbrev ordering!");
3205   }
3206   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3207     auto Abbv = std::make_shared<BitCodeAbbrev>();
3208     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3209     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3210     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3211     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3212     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3213     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3214         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3215       llvm_unreachable("Unexpected abbrev ordering!");
3216   }
3217   { // INST_CAST abbrev for FUNCTION_BLOCK.
3218     auto Abbv = std::make_shared<BitCodeAbbrev>();
3219     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3220     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3221     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3222                               VE.computeBitsRequiredForTypeIndicies()));
3223     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3224     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3225         FUNCTION_INST_CAST_ABBREV)
3226       llvm_unreachable("Unexpected abbrev ordering!");
3227   }
3228 
3229   { // INST_RET abbrev for FUNCTION_BLOCK.
3230     auto Abbv = std::make_shared<BitCodeAbbrev>();
3231     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3232     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3233         FUNCTION_INST_RET_VOID_ABBREV)
3234       llvm_unreachable("Unexpected abbrev ordering!");
3235   }
3236   { // INST_RET abbrev for FUNCTION_BLOCK.
3237     auto Abbv = std::make_shared<BitCodeAbbrev>();
3238     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3239     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3240     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3241         FUNCTION_INST_RET_VAL_ABBREV)
3242       llvm_unreachable("Unexpected abbrev ordering!");
3243   }
3244   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3245     auto Abbv = std::make_shared<BitCodeAbbrev>();
3246     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3247     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3248         FUNCTION_INST_UNREACHABLE_ABBREV)
3249       llvm_unreachable("Unexpected abbrev ordering!");
3250   }
3251   {
3252     auto Abbv = std::make_shared<BitCodeAbbrev>();
3253     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3254     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3255     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3256                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3257     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3258     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3259     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3260         FUNCTION_INST_GEP_ABBREV)
3261       llvm_unreachable("Unexpected abbrev ordering!");
3262   }
3263 
3264   Stream.ExitBlock();
3265 }
3266 
3267 /// Write the module path strings, currently only used when generating
3268 /// a combined index file.
3269 void IndexBitcodeWriter::writeModStrings() {
3270   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3271 
3272   // TODO: See which abbrev sizes we actually need to emit
3273 
3274   // 8-bit fixed-width MST_ENTRY strings.
3275   auto Abbv = std::make_shared<BitCodeAbbrev>();
3276   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3277   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3278   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3279   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3280   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3281 
3282   // 7-bit fixed width MST_ENTRY strings.
3283   Abbv = std::make_shared<BitCodeAbbrev>();
3284   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3285   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3286   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3287   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3288   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3289 
3290   // 6-bit char6 MST_ENTRY strings.
3291   Abbv = std::make_shared<BitCodeAbbrev>();
3292   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3293   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3294   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3295   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3296   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3297 
3298   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3299   Abbv = std::make_shared<BitCodeAbbrev>();
3300   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3301   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3302   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3303   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3304   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3305   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3306   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3307 
3308   SmallVector<unsigned, 64> Vals;
3309   forEachModule(
3310       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3311         StringRef Key = MPSE.getKey();
3312         const auto &Value = MPSE.getValue();
3313         StringEncoding Bits = getStringEncoding(Key);
3314         unsigned AbbrevToUse = Abbrev8Bit;
3315         if (Bits == SE_Char6)
3316           AbbrevToUse = Abbrev6Bit;
3317         else if (Bits == SE_Fixed7)
3318           AbbrevToUse = Abbrev7Bit;
3319 
3320         Vals.push_back(Value.first);
3321         Vals.append(Key.begin(), Key.end());
3322 
3323         // Emit the finished record.
3324         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3325 
3326         // Emit an optional hash for the module now
3327         const auto &Hash = Value.second;
3328         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3329           Vals.assign(Hash.begin(), Hash.end());
3330           // Emit the hash record.
3331           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3332         }
3333 
3334         Vals.clear();
3335       });
3336   Stream.ExitBlock();
3337 }
3338 
3339 /// Write the function type metadata related records that need to appear before
3340 /// a function summary entry (whether per-module or combined).
3341 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3342                                              FunctionSummary *FS) {
3343   if (!FS->type_tests().empty())
3344     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3345 
3346   SmallVector<uint64_t, 64> Record;
3347 
3348   auto WriteVFuncIdVec = [&](uint64_t Ty,
3349                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3350     if (VFs.empty())
3351       return;
3352     Record.clear();
3353     for (auto &VF : VFs) {
3354       Record.push_back(VF.GUID);
3355       Record.push_back(VF.Offset);
3356     }
3357     Stream.EmitRecord(Ty, Record);
3358   };
3359 
3360   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3361                   FS->type_test_assume_vcalls());
3362   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3363                   FS->type_checked_load_vcalls());
3364 
3365   auto WriteConstVCallVec = [&](uint64_t Ty,
3366                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3367     for (auto &VC : VCs) {
3368       Record.clear();
3369       Record.push_back(VC.VFunc.GUID);
3370       Record.push_back(VC.VFunc.Offset);
3371       Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3372       Stream.EmitRecord(Ty, Record);
3373     }
3374   };
3375 
3376   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3377                      FS->type_test_assume_const_vcalls());
3378   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3379                      FS->type_checked_load_const_vcalls());
3380 }
3381 
3382 static void writeWholeProgramDevirtResolutionByArg(
3383     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3384     const WholeProgramDevirtResolution::ByArg &ByArg) {
3385   NameVals.push_back(args.size());
3386   NameVals.insert(NameVals.end(), args.begin(), args.end());
3387 
3388   NameVals.push_back(ByArg.TheKind);
3389   NameVals.push_back(ByArg.Info);
3390   NameVals.push_back(ByArg.Byte);
3391   NameVals.push_back(ByArg.Bit);
3392 }
3393 
3394 static void writeWholeProgramDevirtResolution(
3395     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3396     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3397   NameVals.push_back(Id);
3398 
3399   NameVals.push_back(Wpd.TheKind);
3400   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3401   NameVals.push_back(Wpd.SingleImplName.size());
3402 
3403   NameVals.push_back(Wpd.ResByArg.size());
3404   for (auto &A : Wpd.ResByArg)
3405     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3406 }
3407 
3408 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3409                                      StringTableBuilder &StrtabBuilder,
3410                                      const std::string &Id,
3411                                      const TypeIdSummary &Summary) {
3412   NameVals.push_back(StrtabBuilder.add(Id));
3413   NameVals.push_back(Id.size());
3414 
3415   NameVals.push_back(Summary.TTRes.TheKind);
3416   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3417   NameVals.push_back(Summary.TTRes.AlignLog2);
3418   NameVals.push_back(Summary.TTRes.SizeM1);
3419   NameVals.push_back(Summary.TTRes.BitMask);
3420   NameVals.push_back(Summary.TTRes.InlineBits);
3421 
3422   for (auto &W : Summary.WPDRes)
3423     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3424                                       W.second);
3425 }
3426 
3427 // Helper to emit a single function summary record.
3428 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3429     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3430     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3431     const Function &F) {
3432   NameVals.push_back(ValueID);
3433 
3434   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3435   writeFunctionTypeMetadataRecords(Stream, FS);
3436 
3437   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3438   NameVals.push_back(FS->instCount());
3439   NameVals.push_back(getEncodedFFlags(FS->fflags()));
3440   NameVals.push_back(FS->refs().size());
3441 
3442   for (auto &RI : FS->refs())
3443     NameVals.push_back(VE.getValueID(RI.getValue()));
3444 
3445   bool HasProfileData =
3446       F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3447   for (auto &ECI : FS->calls()) {
3448     NameVals.push_back(getValueId(ECI.first));
3449     if (HasProfileData)
3450       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3451     else if (WriteRelBFToSummary)
3452       NameVals.push_back(ECI.second.RelBlockFreq);
3453   }
3454 
3455   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3456   unsigned Code =
3457       (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3458                       : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3459                                              : bitc::FS_PERMODULE));
3460 
3461   // Emit the finished record.
3462   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3463   NameVals.clear();
3464 }
3465 
3466 // Collect the global value references in the given variable's initializer,
3467 // and emit them in a summary record.
3468 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3469     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3470     unsigned FSModRefsAbbrev) {
3471   auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName()));
3472   if (!VI || VI.getSummaryList().empty()) {
3473     // Only declarations should not have a summary (a declaration might however
3474     // have a summary if the def was in module level asm).
3475     assert(V.isDeclaration());
3476     return;
3477   }
3478   auto *Summary = VI.getSummaryList()[0].get();
3479   NameVals.push_back(VE.getValueID(&V));
3480   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3481   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3482 
3483   unsigned SizeBeforeRefs = NameVals.size();
3484   for (auto &RI : VS->refs())
3485     NameVals.push_back(VE.getValueID(RI.getValue()));
3486   // Sort the refs for determinism output, the vector returned by FS->refs() has
3487   // been initialized from a DenseSet.
3488   llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3489 
3490   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3491                     FSModRefsAbbrev);
3492   NameVals.clear();
3493 }
3494 
3495 // Current version for the summary.
3496 // This is bumped whenever we introduce changes in the way some record are
3497 // interpreted, like flags for instance.
3498 static const uint64_t INDEX_VERSION = 4;
3499 
3500 /// Emit the per-module summary section alongside the rest of
3501 /// the module's bitcode.
3502 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3503   // By default we compile with ThinLTO if the module has a summary, but the
3504   // client can request full LTO with a module flag.
3505   bool IsThinLTO = true;
3506   if (auto *MD =
3507           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3508     IsThinLTO = MD->getZExtValue();
3509   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3510                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3511                        4);
3512 
3513   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3514 
3515   if (Index->begin() == Index->end()) {
3516     Stream.ExitBlock();
3517     return;
3518   }
3519 
3520   for (const auto &GVI : valueIds()) {
3521     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3522                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3523   }
3524 
3525   // Abbrev for FS_PERMODULE_PROFILE.
3526   auto Abbv = std::make_shared<BitCodeAbbrev>();
3527   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3528   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3529   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3530   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3531   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3532   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3533   // numrefs x valueid, n x (valueid, hotness)
3534   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3535   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3536   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3537 
3538   // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3539   Abbv = std::make_shared<BitCodeAbbrev>();
3540   if (WriteRelBFToSummary)
3541     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3542   else
3543     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3544   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3545   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3546   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3547   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3548   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3549   // numrefs x valueid, n x (valueid [, rel_block_freq])
3550   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3551   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3552   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3553 
3554   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3555   Abbv = std::make_shared<BitCodeAbbrev>();
3556   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3557   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3558   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3559   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3560   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3561   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3562 
3563   // Abbrev for FS_ALIAS.
3564   Abbv = std::make_shared<BitCodeAbbrev>();
3565   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3566   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3567   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3568   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3569   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3570 
3571   SmallVector<uint64_t, 64> NameVals;
3572   // Iterate over the list of functions instead of the Index to
3573   // ensure the ordering is stable.
3574   for (const Function &F : M) {
3575     // Summary emission does not support anonymous functions, they have to
3576     // renamed using the anonymous function renaming pass.
3577     if (!F.hasName())
3578       report_fatal_error("Unexpected anonymous function when writing summary");
3579 
3580     ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName()));
3581     if (!VI || VI.getSummaryList().empty()) {
3582       // Only declarations should not have a summary (a declaration might
3583       // however have a summary if the def was in module level asm).
3584       assert(F.isDeclaration());
3585       continue;
3586     }
3587     auto *Summary = VI.getSummaryList()[0].get();
3588     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3589                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3590   }
3591 
3592   // Capture references from GlobalVariable initializers, which are outside
3593   // of a function scope.
3594   for (const GlobalVariable &G : M.globals())
3595     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3596 
3597   for (const GlobalAlias &A : M.aliases()) {
3598     auto *Aliasee = A.getBaseObject();
3599     if (!Aliasee->hasName())
3600       // Nameless function don't have an entry in the summary, skip it.
3601       continue;
3602     auto AliasId = VE.getValueID(&A);
3603     auto AliaseeId = VE.getValueID(Aliasee);
3604     NameVals.push_back(AliasId);
3605     auto *Summary = Index->getGlobalValueSummary(A);
3606     AliasSummary *AS = cast<AliasSummary>(Summary);
3607     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3608     NameVals.push_back(AliaseeId);
3609     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3610     NameVals.clear();
3611   }
3612 
3613   Stream.ExitBlock();
3614 }
3615 
3616 /// Emit the combined summary section into the combined index file.
3617 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3618   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3619   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3620 
3621   // Write the index flags.
3622   uint64_t Flags = 0;
3623   if (Index.withGlobalValueDeadStripping())
3624     Flags |= 0x1;
3625   if (Index.skipModuleByDistributedBackend())
3626     Flags |= 0x2;
3627   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3628 
3629   for (const auto &GVI : valueIds()) {
3630     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3631                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3632   }
3633 
3634   // Abbrev for FS_COMBINED.
3635   auto Abbv = std::make_shared<BitCodeAbbrev>();
3636   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3637   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3638   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3639   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3640   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3641   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3642   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3643   // numrefs x valueid, n x (valueid)
3644   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3645   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3646   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3647 
3648   // Abbrev for FS_COMBINED_PROFILE.
3649   Abbv = std::make_shared<BitCodeAbbrev>();
3650   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3651   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3652   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3653   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3654   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3655   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3656   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3657   // numrefs x valueid, n x (valueid, hotness)
3658   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3659   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3660   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3661 
3662   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3663   Abbv = std::make_shared<BitCodeAbbrev>();
3664   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3665   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3666   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3667   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3668   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3669   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3670   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3671 
3672   // Abbrev for FS_COMBINED_ALIAS.
3673   Abbv = std::make_shared<BitCodeAbbrev>();
3674   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3675   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3676   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3677   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3678   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3679   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3680 
3681   // The aliases are emitted as a post-pass, and will point to the value
3682   // id of the aliasee. Save them in a vector for post-processing.
3683   SmallVector<AliasSummary *, 64> Aliases;
3684 
3685   // Save the value id for each summary for alias emission.
3686   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3687 
3688   SmallVector<uint64_t, 64> NameVals;
3689 
3690   // For local linkage, we also emit the original name separately
3691   // immediately after the record.
3692   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3693     if (!GlobalValue::isLocalLinkage(S.linkage()))
3694       return;
3695     NameVals.push_back(S.getOriginalName());
3696     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3697     NameVals.clear();
3698   };
3699 
3700   forEachSummary([&](GVInfo I, bool IsAliasee) {
3701     GlobalValueSummary *S = I.second;
3702     assert(S);
3703 
3704     auto ValueId = getValueId(I.first);
3705     assert(ValueId);
3706     SummaryToValueIdMap[S] = *ValueId;
3707 
3708     // If this is invoked for an aliasee, we want to record the above
3709     // mapping, but then not emit a summary entry (if the aliasee is
3710     // to be imported, we will invoke this separately with IsAliasee=false).
3711     if (IsAliasee)
3712       return;
3713 
3714     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3715       // Will process aliases as a post-pass because the reader wants all
3716       // global to be loaded first.
3717       Aliases.push_back(AS);
3718       return;
3719     }
3720 
3721     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3722       NameVals.push_back(*ValueId);
3723       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3724       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3725       for (auto &RI : VS->refs()) {
3726         auto RefValueId = getValueId(RI.getGUID());
3727         if (!RefValueId)
3728           continue;
3729         NameVals.push_back(*RefValueId);
3730       }
3731 
3732       // Emit the finished record.
3733       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3734                         FSModRefsAbbrev);
3735       NameVals.clear();
3736       MaybeEmitOriginalName(*S);
3737       return;
3738     }
3739 
3740     auto *FS = cast<FunctionSummary>(S);
3741     writeFunctionTypeMetadataRecords(Stream, FS);
3742 
3743     NameVals.push_back(*ValueId);
3744     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3745     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3746     NameVals.push_back(FS->instCount());
3747     NameVals.push_back(getEncodedFFlags(FS->fflags()));
3748     // Fill in below
3749     NameVals.push_back(0);
3750 
3751     unsigned Count = 0;
3752     for (auto &RI : FS->refs()) {
3753       auto RefValueId = getValueId(RI.getGUID());
3754       if (!RefValueId)
3755         continue;
3756       NameVals.push_back(*RefValueId);
3757       Count++;
3758     }
3759     NameVals[5] = Count;
3760 
3761     bool HasProfileData = false;
3762     for (auto &EI : FS->calls()) {
3763       HasProfileData |=
3764           EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
3765       if (HasProfileData)
3766         break;
3767     }
3768 
3769     for (auto &EI : FS->calls()) {
3770       // If this GUID doesn't have a value id, it doesn't have a function
3771       // summary and we don't need to record any calls to it.
3772       GlobalValue::GUID GUID = EI.first.getGUID();
3773       auto CallValueId = getValueId(GUID);
3774       if (!CallValueId) {
3775         // For SamplePGO, the indirect call targets for local functions will
3776         // have its original name annotated in profile. We try to find the
3777         // corresponding PGOFuncName as the GUID.
3778         GUID = Index.getGUIDFromOriginalID(GUID);
3779         if (GUID == 0)
3780           continue;
3781         CallValueId = getValueId(GUID);
3782         if (!CallValueId)
3783           continue;
3784         // The mapping from OriginalId to GUID may return a GUID
3785         // that corresponds to a static variable. Filter it out here.
3786         // This can happen when
3787         // 1) There is a call to a library function which does not have
3788         // a CallValidId;
3789         // 2) There is a static variable with the  OriginalGUID identical
3790         // to the GUID of the library function in 1);
3791         // When this happens, the logic for SamplePGO kicks in and
3792         // the static variable in 2) will be found, which needs to be
3793         // filtered out.
3794         auto *GVSum = Index.getGlobalValueSummary(GUID, false);
3795         if (GVSum &&
3796             GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
3797           continue;
3798       }
3799       NameVals.push_back(*CallValueId);
3800       if (HasProfileData)
3801         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3802     }
3803 
3804     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3805     unsigned Code =
3806         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3807 
3808     // Emit the finished record.
3809     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3810     NameVals.clear();
3811     MaybeEmitOriginalName(*S);
3812   });
3813 
3814   for (auto *AS : Aliases) {
3815     auto AliasValueId = SummaryToValueIdMap[AS];
3816     assert(AliasValueId);
3817     NameVals.push_back(AliasValueId);
3818     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3819     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3820     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3821     assert(AliaseeValueId);
3822     NameVals.push_back(AliaseeValueId);
3823 
3824     // Emit the finished record.
3825     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3826     NameVals.clear();
3827     MaybeEmitOriginalName(*AS);
3828   }
3829 
3830   if (!Index.cfiFunctionDefs().empty()) {
3831     for (auto &S : Index.cfiFunctionDefs()) {
3832       NameVals.push_back(StrtabBuilder.add(S));
3833       NameVals.push_back(S.size());
3834     }
3835     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
3836     NameVals.clear();
3837   }
3838 
3839   if (!Index.cfiFunctionDecls().empty()) {
3840     for (auto &S : Index.cfiFunctionDecls()) {
3841       NameVals.push_back(StrtabBuilder.add(S));
3842       NameVals.push_back(S.size());
3843     }
3844     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
3845     NameVals.clear();
3846   }
3847 
3848   if (!Index.typeIds().empty()) {
3849     for (auto &S : Index.typeIds()) {
3850       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, S.first, S.second);
3851       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
3852       NameVals.clear();
3853     }
3854   }
3855 
3856   Stream.ExitBlock();
3857 }
3858 
3859 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
3860 /// current llvm version, and a record for the epoch number.
3861 static void writeIdentificationBlock(BitstreamWriter &Stream) {
3862   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3863 
3864   // Write the "user readable" string identifying the bitcode producer
3865   auto Abbv = std::make_shared<BitCodeAbbrev>();
3866   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3867   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3868   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3869   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3870   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
3871                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
3872 
3873   // Write the epoch version
3874   Abbv = std::make_shared<BitCodeAbbrev>();
3875   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3876   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3877   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3878   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3879   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3880   Stream.ExitBlock();
3881 }
3882 
3883 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3884   // Emit the module's hash.
3885   // MODULE_CODE_HASH: [5*i32]
3886   if (GenerateHash) {
3887     uint32_t Vals[5];
3888     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3889                                     Buffer.size() - BlockStartPos));
3890     StringRef Hash = Hasher.result();
3891     for (int Pos = 0; Pos < 20; Pos += 4) {
3892       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
3893     }
3894 
3895     // Emit the finished record.
3896     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3897 
3898     if (ModHash)
3899       // Save the written hash value.
3900       std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash));
3901   }
3902 }
3903 
3904 void ModuleBitcodeWriter::write() {
3905   writeIdentificationBlock(Stream);
3906 
3907   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3908   size_t BlockStartPos = Buffer.size();
3909 
3910   writeModuleVersion();
3911 
3912   // Emit blockinfo, which defines the standard abbreviations etc.
3913   writeBlockInfo();
3914 
3915   // Emit information about attribute groups.
3916   writeAttributeGroupTable();
3917 
3918   // Emit information about parameter attributes.
3919   writeAttributeTable();
3920 
3921   // Emit information describing all of the types in the module.
3922   writeTypeTable();
3923 
3924   writeComdats();
3925 
3926   // Emit top-level description of module, including target triple, inline asm,
3927   // descriptors for global variables, and function prototype info.
3928   writeModuleInfo();
3929 
3930   // Emit constants.
3931   writeModuleConstants();
3932 
3933   // Emit metadata kind names.
3934   writeModuleMetadataKinds();
3935 
3936   // Emit metadata.
3937   writeModuleMetadata();
3938 
3939   // Emit module-level use-lists.
3940   if (VE.shouldPreserveUseListOrder())
3941     writeUseListBlock(nullptr);
3942 
3943   writeOperandBundleTags();
3944   writeSyncScopeNames();
3945 
3946   // Emit function bodies.
3947   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
3948   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
3949     if (!F->isDeclaration())
3950       writeFunction(*F, FunctionToBitcodeIndex);
3951 
3952   // Need to write after the above call to WriteFunction which populates
3953   // the summary information in the index.
3954   if (Index)
3955     writePerModuleGlobalValueSummary();
3956 
3957   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
3958 
3959   writeModuleHash(BlockStartPos);
3960 
3961   Stream.ExitBlock();
3962 }
3963 
3964 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3965                                uint32_t &Position) {
3966   support::endian::write32le(&Buffer[Position], Value);
3967   Position += 4;
3968 }
3969 
3970 /// If generating a bc file on darwin, we have to emit a
3971 /// header and trailer to make it compatible with the system archiver.  To do
3972 /// this we emit the following header, and then emit a trailer that pads the
3973 /// file out to be a multiple of 16 bytes.
3974 ///
3975 /// struct bc_header {
3976 ///   uint32_t Magic;         // 0x0B17C0DE
3977 ///   uint32_t Version;       // Version, currently always 0.
3978 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
3979 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
3980 ///   uint32_t CPUType;       // CPU specifier.
3981 ///   ... potentially more later ...
3982 /// };
3983 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
3984                                          const Triple &TT) {
3985   unsigned CPUType = ~0U;
3986 
3987   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
3988   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
3989   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
3990   // specific constants here because they are implicitly part of the Darwin ABI.
3991   enum {
3992     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
3993     DARWIN_CPU_TYPE_X86        = 7,
3994     DARWIN_CPU_TYPE_ARM        = 12,
3995     DARWIN_CPU_TYPE_POWERPC    = 18
3996   };
3997 
3998   Triple::ArchType Arch = TT.getArch();
3999   if (Arch == Triple::x86_64)
4000     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4001   else if (Arch == Triple::x86)
4002     CPUType = DARWIN_CPU_TYPE_X86;
4003   else if (Arch == Triple::ppc)
4004     CPUType = DARWIN_CPU_TYPE_POWERPC;
4005   else if (Arch == Triple::ppc64)
4006     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4007   else if (Arch == Triple::arm || Arch == Triple::thumb)
4008     CPUType = DARWIN_CPU_TYPE_ARM;
4009 
4010   // Traditional Bitcode starts after header.
4011   assert(Buffer.size() >= BWH_HeaderSize &&
4012          "Expected header size to be reserved");
4013   unsigned BCOffset = BWH_HeaderSize;
4014   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4015 
4016   // Write the magic and version.
4017   unsigned Position = 0;
4018   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4019   writeInt32ToBuffer(0, Buffer, Position); // Version.
4020   writeInt32ToBuffer(BCOffset, Buffer, Position);
4021   writeInt32ToBuffer(BCSize, Buffer, Position);
4022   writeInt32ToBuffer(CPUType, Buffer, Position);
4023 
4024   // If the file is not a multiple of 16 bytes, insert dummy padding.
4025   while (Buffer.size() & 15)
4026     Buffer.push_back(0);
4027 }
4028 
4029 /// Helper to write the header common to all bitcode files.
4030 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4031   // Emit the file header.
4032   Stream.Emit((unsigned)'B', 8);
4033   Stream.Emit((unsigned)'C', 8);
4034   Stream.Emit(0x0, 4);
4035   Stream.Emit(0xC, 4);
4036   Stream.Emit(0xE, 4);
4037   Stream.Emit(0xD, 4);
4038 }
4039 
4040 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
4041     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4042   writeBitcodeHeader(*Stream);
4043 }
4044 
4045 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4046 
4047 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4048   Stream->EnterSubblock(Block, 3);
4049 
4050   auto Abbv = std::make_shared<BitCodeAbbrev>();
4051   Abbv->Add(BitCodeAbbrevOp(Record));
4052   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4053   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4054 
4055   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4056 
4057   Stream->ExitBlock();
4058 }
4059 
4060 void BitcodeWriter::writeSymtab() {
4061   assert(!WroteStrtab && !WroteSymtab);
4062 
4063   // If any module has module-level inline asm, we will require a registered asm
4064   // parser for the target so that we can create an accurate symbol table for
4065   // the module.
4066   for (Module *M : Mods) {
4067     if (M->getModuleInlineAsm().empty())
4068       continue;
4069 
4070     std::string Err;
4071     const Triple TT(M->getTargetTriple());
4072     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4073     if (!T || !T->hasMCAsmParser())
4074       return;
4075   }
4076 
4077   WroteSymtab = true;
4078   SmallVector<char, 0> Symtab;
4079   // The irsymtab::build function may be unable to create a symbol table if the
4080   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4081   // table is not required for correctness, but we still want to be able to
4082   // write malformed modules to bitcode files, so swallow the error.
4083   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4084     consumeError(std::move(E));
4085     return;
4086   }
4087 
4088   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4089             {Symtab.data(), Symtab.size()});
4090 }
4091 
4092 void BitcodeWriter::writeStrtab() {
4093   assert(!WroteStrtab);
4094 
4095   std::vector<char> Strtab;
4096   StrtabBuilder.finalizeInOrder();
4097   Strtab.resize(StrtabBuilder.getSize());
4098   StrtabBuilder.write((uint8_t *)Strtab.data());
4099 
4100   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4101             {Strtab.data(), Strtab.size()});
4102 
4103   WroteStrtab = true;
4104 }
4105 
4106 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4107   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4108   WroteStrtab = true;
4109 }
4110 
4111 void BitcodeWriter::writeModule(const Module &M,
4112                                 bool ShouldPreserveUseListOrder,
4113                                 const ModuleSummaryIndex *Index,
4114                                 bool GenerateHash, ModuleHash *ModHash) {
4115   assert(!WroteStrtab);
4116 
4117   // The Mods vector is used by irsymtab::build, which requires non-const
4118   // Modules in case it needs to materialize metadata. But the bitcode writer
4119   // requires that the module is materialized, so we can cast to non-const here,
4120   // after checking that it is in fact materialized.
4121   assert(M.isMaterialized());
4122   Mods.push_back(const_cast<Module *>(&M));
4123 
4124   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4125                                    ShouldPreserveUseListOrder, Index,
4126                                    GenerateHash, ModHash);
4127   ModuleWriter.write();
4128 }
4129 
4130 void BitcodeWriter::writeIndex(
4131     const ModuleSummaryIndex *Index,
4132     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4133   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4134                                  ModuleToSummariesForIndex);
4135   IndexWriter.write();
4136 }
4137 
4138 /// Write the specified module to the specified output stream.
4139 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4140                               bool ShouldPreserveUseListOrder,
4141                               const ModuleSummaryIndex *Index,
4142                               bool GenerateHash, ModuleHash *ModHash) {
4143   SmallVector<char, 0> Buffer;
4144   Buffer.reserve(256*1024);
4145 
4146   // If this is darwin or another generic macho target, reserve space for the
4147   // header.
4148   Triple TT(M.getTargetTriple());
4149   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4150     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4151 
4152   BitcodeWriter Writer(Buffer);
4153   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4154                      ModHash);
4155   Writer.writeSymtab();
4156   Writer.writeStrtab();
4157 
4158   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4159     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4160 
4161   // Write the generated bitstream to "Out".
4162   Out.write((char*)&Buffer.front(), Buffer.size());
4163 }
4164 
4165 void IndexBitcodeWriter::write() {
4166   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4167 
4168   writeModuleVersion();
4169 
4170   // Write the module paths in the combined index.
4171   writeModStrings();
4172 
4173   // Write the summary combined index records.
4174   writeCombinedGlobalValueSummary();
4175 
4176   Stream.ExitBlock();
4177 }
4178 
4179 // Write the specified module summary index to the given raw output stream,
4180 // where it will be written in a new bitcode block. This is used when
4181 // writing the combined index file for ThinLTO. When writing a subset of the
4182 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4183 void llvm::WriteIndexToFile(
4184     const ModuleSummaryIndex &Index, raw_ostream &Out,
4185     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4186   SmallVector<char, 0> Buffer;
4187   Buffer.reserve(256 * 1024);
4188 
4189   BitcodeWriter Writer(Buffer);
4190   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4191   Writer.writeStrtab();
4192 
4193   Out.write((char *)&Buffer.front(), Buffer.size());
4194 }
4195 
4196 namespace {
4197 
4198 /// Class to manage the bitcode writing for a thin link bitcode file.
4199 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4200   /// ModHash is for use in ThinLTO incremental build, generated while writing
4201   /// the module bitcode file.
4202   const ModuleHash *ModHash;
4203 
4204 public:
4205   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4206                         BitstreamWriter &Stream,
4207                         const ModuleSummaryIndex &Index,
4208                         const ModuleHash &ModHash)
4209       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4210                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4211         ModHash(&ModHash) {}
4212 
4213   void write();
4214 
4215 private:
4216   void writeSimplifiedModuleInfo();
4217 };
4218 
4219 } // end anonymous namespace
4220 
4221 // This function writes a simpilified module info for thin link bitcode file.
4222 // It only contains the source file name along with the name(the offset and
4223 // size in strtab) and linkage for global values. For the global value info
4224 // entry, in order to keep linkage at offset 5, there are three zeros used
4225 // as padding.
4226 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4227   SmallVector<unsigned, 64> Vals;
4228   // Emit the module's source file name.
4229   {
4230     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4231     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4232     if (Bits == SE_Char6)
4233       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4234     else if (Bits == SE_Fixed7)
4235       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4236 
4237     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4238     auto Abbv = std::make_shared<BitCodeAbbrev>();
4239     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4240     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4241     Abbv->Add(AbbrevOpToUse);
4242     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4243 
4244     for (const auto P : M.getSourceFileName())
4245       Vals.push_back((unsigned char)P);
4246 
4247     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4248     Vals.clear();
4249   }
4250 
4251   // Emit the global variable information.
4252   for (const GlobalVariable &GV : M.globals()) {
4253     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4254     Vals.push_back(StrtabBuilder.add(GV.getName()));
4255     Vals.push_back(GV.getName().size());
4256     Vals.push_back(0);
4257     Vals.push_back(0);
4258     Vals.push_back(0);
4259     Vals.push_back(getEncodedLinkage(GV));
4260 
4261     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4262     Vals.clear();
4263   }
4264 
4265   // Emit the function proto information.
4266   for (const Function &F : M) {
4267     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4268     Vals.push_back(StrtabBuilder.add(F.getName()));
4269     Vals.push_back(F.getName().size());
4270     Vals.push_back(0);
4271     Vals.push_back(0);
4272     Vals.push_back(0);
4273     Vals.push_back(getEncodedLinkage(F));
4274 
4275     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4276     Vals.clear();
4277   }
4278 
4279   // Emit the alias information.
4280   for (const GlobalAlias &A : M.aliases()) {
4281     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4282     Vals.push_back(StrtabBuilder.add(A.getName()));
4283     Vals.push_back(A.getName().size());
4284     Vals.push_back(0);
4285     Vals.push_back(0);
4286     Vals.push_back(0);
4287     Vals.push_back(getEncodedLinkage(A));
4288 
4289     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4290     Vals.clear();
4291   }
4292 
4293   // Emit the ifunc information.
4294   for (const GlobalIFunc &I : M.ifuncs()) {
4295     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4296     Vals.push_back(StrtabBuilder.add(I.getName()));
4297     Vals.push_back(I.getName().size());
4298     Vals.push_back(0);
4299     Vals.push_back(0);
4300     Vals.push_back(0);
4301     Vals.push_back(getEncodedLinkage(I));
4302 
4303     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4304     Vals.clear();
4305   }
4306 }
4307 
4308 void ThinLinkBitcodeWriter::write() {
4309   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4310 
4311   writeModuleVersion();
4312 
4313   writeSimplifiedModuleInfo();
4314 
4315   writePerModuleGlobalValueSummary();
4316 
4317   // Write module hash.
4318   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4319 
4320   Stream.ExitBlock();
4321 }
4322 
4323 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4324                                          const ModuleSummaryIndex &Index,
4325                                          const ModuleHash &ModHash) {
4326   assert(!WroteStrtab);
4327 
4328   // The Mods vector is used by irsymtab::build, which requires non-const
4329   // Modules in case it needs to materialize metadata. But the bitcode writer
4330   // requires that the module is materialized, so we can cast to non-const here,
4331   // after checking that it is in fact materialized.
4332   assert(M.isMaterialized());
4333   Mods.push_back(const_cast<Module *>(&M));
4334 
4335   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4336                                        ModHash);
4337   ThinLinkWriter.write();
4338 }
4339 
4340 // Write the specified thin link bitcode file to the given raw output stream,
4341 // where it will be written in a new bitcode block. This is used when
4342 // writing the per-module index file for ThinLTO.
4343 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4344                                       const ModuleSummaryIndex &Index,
4345                                       const ModuleHash &ModHash) {
4346   SmallVector<char, 0> Buffer;
4347   Buffer.reserve(256 * 1024);
4348 
4349   BitcodeWriter Writer(Buffer);
4350   Writer.writeThinLinkBitcode(M, Index, ModHash);
4351   Writer.writeSymtab();
4352   Writer.writeStrtab();
4353 
4354   Out.write((char *)&Buffer.front(), Buffer.size());
4355 }
4356