1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeModuleVersion(); 146 }; 147 148 void BitcodeWriterBase::writeModuleVersion() { 149 // VERSION: [version#] 150 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 151 } 152 153 /// Base class to manage the module bitcode writing, currently subclassed for 154 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 155 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 156 protected: 157 /// The Module to write to bitcode. 158 const Module &M; 159 160 /// Enumerates ids for all values in the module. 161 ValueEnumerator VE; 162 163 /// Optional per-module index to write for ThinLTO. 164 const ModuleSummaryIndex *Index; 165 166 /// Map that holds the correspondence between GUIDs in the summary index, 167 /// that came from indirect call profiles, and a value id generated by this 168 /// class to use in the VST and summary block records. 169 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 170 171 /// Tracks the last value id recorded in the GUIDToValueMap. 172 unsigned GlobalValueId; 173 174 /// Saves the offset of the VSTOffset record that must eventually be 175 /// backpatched with the offset of the actual VST. 176 uint64_t VSTOffsetPlaceholder = 0; 177 178 public: 179 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 180 /// writing to the provided \p Buffer. 181 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 182 BitstreamWriter &Stream, 183 bool ShouldPreserveUseListOrder, 184 const ModuleSummaryIndex *Index) 185 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 186 VE(M, ShouldPreserveUseListOrder), Index(Index) { 187 // Assign ValueIds to any callee values in the index that came from 188 // indirect call profiles and were recorded as a GUID not a Value* 189 // (which would have been assigned an ID by the ValueEnumerator). 190 // The starting ValueId is just after the number of values in the 191 // ValueEnumerator, so that they can be emitted in the VST. 192 GlobalValueId = VE.getValues().size(); 193 if (!Index) 194 return; 195 for (const auto &GUIDSummaryLists : *Index) 196 // Examine all summaries for this GUID. 197 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 198 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 199 // For each call in the function summary, see if the call 200 // is to a GUID (which means it is for an indirect call, 201 // otherwise we would have a Value for it). If so, synthesize 202 // a value id. 203 for (auto &CallEdge : FS->calls()) 204 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 205 assignValueId(CallEdge.first.getGUID()); 206 } 207 208 protected: 209 void writePerModuleGlobalValueSummary(); 210 211 private: 212 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 213 GlobalValueSummary *Summary, 214 unsigned ValueID, 215 unsigned FSCallsAbbrev, 216 unsigned FSCallsProfileAbbrev, 217 const Function &F); 218 void writeModuleLevelReferences(const GlobalVariable &V, 219 SmallVector<uint64_t, 64> &NameVals, 220 unsigned FSModRefsAbbrev, 221 unsigned FSModVTableRefsAbbrev); 222 223 void assignValueId(GlobalValue::GUID ValGUID) { 224 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 225 } 226 227 unsigned getValueId(GlobalValue::GUID ValGUID) { 228 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 229 // Expect that any GUID value had a value Id assigned by an 230 // earlier call to assignValueId. 231 assert(VMI != GUIDToValueIdMap.end() && 232 "GUID does not have assigned value Id"); 233 return VMI->second; 234 } 235 236 // Helper to get the valueId for the type of value recorded in VI. 237 unsigned getValueId(ValueInfo VI) { 238 if (!VI.haveGVs() || !VI.getValue()) 239 return getValueId(VI.getGUID()); 240 return VE.getValueID(VI.getValue()); 241 } 242 243 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 244 }; 245 246 /// Class to manage the bitcode writing for a module. 247 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 248 /// Pointer to the buffer allocated by caller for bitcode writing. 249 const SmallVectorImpl<char> &Buffer; 250 251 /// True if a module hash record should be written. 252 bool GenerateHash; 253 254 /// If non-null, when GenerateHash is true, the resulting hash is written 255 /// into ModHash. 256 ModuleHash *ModHash; 257 258 SHA1 Hasher; 259 260 /// The start bit of the identification block. 261 uint64_t BitcodeStartBit; 262 263 public: 264 /// Constructs a ModuleBitcodeWriter object for the given Module, 265 /// writing to the provided \p Buffer. 266 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 267 StringTableBuilder &StrtabBuilder, 268 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 269 const ModuleSummaryIndex *Index, bool GenerateHash, 270 ModuleHash *ModHash = nullptr) 271 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 272 ShouldPreserveUseListOrder, Index), 273 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 274 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 275 276 /// Emit the current module to the bitstream. 277 void write(); 278 279 private: 280 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 281 282 size_t addToStrtab(StringRef Str); 283 284 void writeAttributeGroupTable(); 285 void writeAttributeTable(); 286 void writeTypeTable(); 287 void writeComdats(); 288 void writeValueSymbolTableForwardDecl(); 289 void writeModuleInfo(); 290 void writeValueAsMetadata(const ValueAsMetadata *MD, 291 SmallVectorImpl<uint64_t> &Record); 292 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 unsigned createDILocationAbbrev(); 295 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned &Abbrev); 297 unsigned createGenericDINodeAbbrev(); 298 void writeGenericDINode(const GenericDINode *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 300 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIGenericSubrange(const DIGenericSubrange *N, 303 SmallVectorImpl<uint64_t> &Record, 304 unsigned Abbrev); 305 void writeDIEnumerator(const DIEnumerator *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIStringType(const DIStringType *N, 310 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 311 void writeDIDerivedType(const DIDerivedType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDICompositeType(const DICompositeType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubroutineType(const DISubroutineType *N, 316 SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDICompileUnit(const DICompileUnit *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDISubprogram(const DISubprogram *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDILexicalBlock(const DILexicalBlock *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDICommonBlock(const DICommonBlock *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 342 SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIGlobalVariable(const DIGlobalVariable *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDILocalVariable(const DILocalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDILabel(const DILabel *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDIExpression(const DIExpression *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 357 SmallVectorImpl<uint64_t> &Record, 358 unsigned Abbrev); 359 void writeDIObjCProperty(const DIObjCProperty *N, 360 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 361 void writeDIImportedEntity(const DIImportedEntity *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 unsigned createNamedMetadataAbbrev(); 365 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 366 unsigned createMetadataStringsAbbrev(); 367 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 368 SmallVectorImpl<uint64_t> &Record); 369 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 370 SmallVectorImpl<uint64_t> &Record, 371 std::vector<unsigned> *MDAbbrevs = nullptr, 372 std::vector<uint64_t> *IndexPos = nullptr); 373 void writeModuleMetadata(); 374 void writeFunctionMetadata(const Function &F); 375 void writeFunctionMetadataAttachment(const Function &F); 376 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 377 const GlobalObject &GO); 378 void writeModuleMetadataKinds(); 379 void writeOperandBundleTags(); 380 void writeSyncScopeNames(); 381 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 382 void writeModuleConstants(); 383 bool pushValueAndType(const Value *V, unsigned InstID, 384 SmallVectorImpl<unsigned> &Vals); 385 void writeOperandBundles(const CallBase &CB, unsigned InstID); 386 void pushValue(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void pushValueSigned(const Value *V, unsigned InstID, 389 SmallVectorImpl<uint64_t> &Vals); 390 void writeInstruction(const Instruction &I, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 393 void writeGlobalValueSymbolTable( 394 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 395 void writeUseList(UseListOrder &&Order); 396 void writeUseListBlock(const Function *F); 397 void 398 writeFunction(const Function &F, 399 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 400 void writeBlockInfo(); 401 void writeModuleHash(size_t BlockStartPos); 402 403 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 404 return unsigned(SSID); 405 } 406 407 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 408 }; 409 410 /// Class to manage the bitcode writing for a combined index. 411 class IndexBitcodeWriter : public BitcodeWriterBase { 412 /// The combined index to write to bitcode. 413 const ModuleSummaryIndex &Index; 414 415 /// When writing a subset of the index for distributed backends, client 416 /// provides a map of modules to the corresponding GUIDs/summaries to write. 417 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 418 419 /// Map that holds the correspondence between the GUID used in the combined 420 /// index and a value id generated by this class to use in references. 421 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 422 423 /// Tracks the last value id recorded in the GUIDToValueMap. 424 unsigned GlobalValueId = 0; 425 426 public: 427 /// Constructs a IndexBitcodeWriter object for the given combined index, 428 /// writing to the provided \p Buffer. When writing a subset of the index 429 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 430 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 431 const ModuleSummaryIndex &Index, 432 const std::map<std::string, GVSummaryMapTy> 433 *ModuleToSummariesForIndex = nullptr) 434 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 435 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 436 // Assign unique value ids to all summaries to be written, for use 437 // in writing out the call graph edges. Save the mapping from GUID 438 // to the new global value id to use when writing those edges, which 439 // are currently saved in the index in terms of GUID. 440 forEachSummary([&](GVInfo I, bool) { 441 GUIDToValueIdMap[I.first] = ++GlobalValueId; 442 }); 443 } 444 445 /// The below iterator returns the GUID and associated summary. 446 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 447 448 /// Calls the callback for each value GUID and summary to be written to 449 /// bitcode. This hides the details of whether they are being pulled from the 450 /// entire index or just those in a provided ModuleToSummariesForIndex map. 451 template<typename Functor> 452 void forEachSummary(Functor Callback) { 453 if (ModuleToSummariesForIndex) { 454 for (auto &M : *ModuleToSummariesForIndex) 455 for (auto &Summary : M.second) { 456 Callback(Summary, false); 457 // Ensure aliasee is handled, e.g. for assigning a valueId, 458 // even if we are not importing the aliasee directly (the 459 // imported alias will contain a copy of aliasee). 460 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 461 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 462 } 463 } else { 464 for (auto &Summaries : Index) 465 for (auto &Summary : Summaries.second.SummaryList) 466 Callback({Summaries.first, Summary.get()}, false); 467 } 468 } 469 470 /// Calls the callback for each entry in the modulePaths StringMap that 471 /// should be written to the module path string table. This hides the details 472 /// of whether they are being pulled from the entire index or just those in a 473 /// provided ModuleToSummariesForIndex map. 474 template <typename Functor> void forEachModule(Functor Callback) { 475 if (ModuleToSummariesForIndex) { 476 for (const auto &M : *ModuleToSummariesForIndex) { 477 const auto &MPI = Index.modulePaths().find(M.first); 478 if (MPI == Index.modulePaths().end()) { 479 // This should only happen if the bitcode file was empty, in which 480 // case we shouldn't be importing (the ModuleToSummariesForIndex 481 // would only include the module we are writing and index for). 482 assert(ModuleToSummariesForIndex->size() == 1); 483 continue; 484 } 485 Callback(*MPI); 486 } 487 } else { 488 for (const auto &MPSE : Index.modulePaths()) 489 Callback(MPSE); 490 } 491 } 492 493 /// Main entry point for writing a combined index to bitcode. 494 void write(); 495 496 private: 497 void writeModStrings(); 498 void writeCombinedGlobalValueSummary(); 499 500 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 501 auto VMI = GUIDToValueIdMap.find(ValGUID); 502 if (VMI == GUIDToValueIdMap.end()) 503 return None; 504 return VMI->second; 505 } 506 507 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 508 }; 509 510 } // end anonymous namespace 511 512 static unsigned getEncodedCastOpcode(unsigned Opcode) { 513 switch (Opcode) { 514 default: llvm_unreachable("Unknown cast instruction!"); 515 case Instruction::Trunc : return bitc::CAST_TRUNC; 516 case Instruction::ZExt : return bitc::CAST_ZEXT; 517 case Instruction::SExt : return bitc::CAST_SEXT; 518 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 519 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 520 case Instruction::UIToFP : return bitc::CAST_UITOFP; 521 case Instruction::SIToFP : return bitc::CAST_SITOFP; 522 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 523 case Instruction::FPExt : return bitc::CAST_FPEXT; 524 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 525 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 526 case Instruction::BitCast : return bitc::CAST_BITCAST; 527 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 528 } 529 } 530 531 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 532 switch (Opcode) { 533 default: llvm_unreachable("Unknown binary instruction!"); 534 case Instruction::FNeg: return bitc::UNOP_FNEG; 535 } 536 } 537 538 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 539 switch (Opcode) { 540 default: llvm_unreachable("Unknown binary instruction!"); 541 case Instruction::Add: 542 case Instruction::FAdd: return bitc::BINOP_ADD; 543 case Instruction::Sub: 544 case Instruction::FSub: return bitc::BINOP_SUB; 545 case Instruction::Mul: 546 case Instruction::FMul: return bitc::BINOP_MUL; 547 case Instruction::UDiv: return bitc::BINOP_UDIV; 548 case Instruction::FDiv: 549 case Instruction::SDiv: return bitc::BINOP_SDIV; 550 case Instruction::URem: return bitc::BINOP_UREM; 551 case Instruction::FRem: 552 case Instruction::SRem: return bitc::BINOP_SREM; 553 case Instruction::Shl: return bitc::BINOP_SHL; 554 case Instruction::LShr: return bitc::BINOP_LSHR; 555 case Instruction::AShr: return bitc::BINOP_ASHR; 556 case Instruction::And: return bitc::BINOP_AND; 557 case Instruction::Or: return bitc::BINOP_OR; 558 case Instruction::Xor: return bitc::BINOP_XOR; 559 } 560 } 561 562 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 563 switch (Op) { 564 default: llvm_unreachable("Unknown RMW operation!"); 565 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 566 case AtomicRMWInst::Add: return bitc::RMW_ADD; 567 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 568 case AtomicRMWInst::And: return bitc::RMW_AND; 569 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 570 case AtomicRMWInst::Or: return bitc::RMW_OR; 571 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 572 case AtomicRMWInst::Max: return bitc::RMW_MAX; 573 case AtomicRMWInst::Min: return bitc::RMW_MIN; 574 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 575 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 576 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 577 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 578 } 579 } 580 581 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 582 switch (Ordering) { 583 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 584 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 585 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 586 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 587 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 588 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 589 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 590 } 591 llvm_unreachable("Invalid ordering"); 592 } 593 594 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 595 StringRef Str, unsigned AbbrevToUse) { 596 SmallVector<unsigned, 64> Vals; 597 598 // Code: [strchar x N] 599 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 600 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 601 AbbrevToUse = 0; 602 Vals.push_back(Str[i]); 603 } 604 605 // Emit the finished record. 606 Stream.EmitRecord(Code, Vals, AbbrevToUse); 607 } 608 609 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 610 switch (Kind) { 611 case Attribute::Alignment: 612 return bitc::ATTR_KIND_ALIGNMENT; 613 case Attribute::AllocSize: 614 return bitc::ATTR_KIND_ALLOC_SIZE; 615 case Attribute::AlwaysInline: 616 return bitc::ATTR_KIND_ALWAYS_INLINE; 617 case Attribute::ArgMemOnly: 618 return bitc::ATTR_KIND_ARGMEMONLY; 619 case Attribute::Builtin: 620 return bitc::ATTR_KIND_BUILTIN; 621 case Attribute::ByVal: 622 return bitc::ATTR_KIND_BY_VAL; 623 case Attribute::Convergent: 624 return bitc::ATTR_KIND_CONVERGENT; 625 case Attribute::InAlloca: 626 return bitc::ATTR_KIND_IN_ALLOCA; 627 case Attribute::Cold: 628 return bitc::ATTR_KIND_COLD; 629 case Attribute::DisableSanitizerInstrumentation: 630 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 631 case Attribute::Hot: 632 return bitc::ATTR_KIND_HOT; 633 case Attribute::ElementType: 634 return bitc::ATTR_KIND_ELEMENTTYPE; 635 case Attribute::InaccessibleMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 637 case Attribute::InaccessibleMemOrArgMemOnly: 638 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 639 case Attribute::InlineHint: 640 return bitc::ATTR_KIND_INLINE_HINT; 641 case Attribute::InReg: 642 return bitc::ATTR_KIND_IN_REG; 643 case Attribute::JumpTable: 644 return bitc::ATTR_KIND_JUMP_TABLE; 645 case Attribute::MinSize: 646 return bitc::ATTR_KIND_MIN_SIZE; 647 case Attribute::Naked: 648 return bitc::ATTR_KIND_NAKED; 649 case Attribute::Nest: 650 return bitc::ATTR_KIND_NEST; 651 case Attribute::NoAlias: 652 return bitc::ATTR_KIND_NO_ALIAS; 653 case Attribute::NoBuiltin: 654 return bitc::ATTR_KIND_NO_BUILTIN; 655 case Attribute::NoCallback: 656 return bitc::ATTR_KIND_NO_CALLBACK; 657 case Attribute::NoCapture: 658 return bitc::ATTR_KIND_NO_CAPTURE; 659 case Attribute::NoDuplicate: 660 return bitc::ATTR_KIND_NO_DUPLICATE; 661 case Attribute::NoFree: 662 return bitc::ATTR_KIND_NOFREE; 663 case Attribute::NoImplicitFloat: 664 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 665 case Attribute::NoInline: 666 return bitc::ATTR_KIND_NO_INLINE; 667 case Attribute::NoRecurse: 668 return bitc::ATTR_KIND_NO_RECURSE; 669 case Attribute::NoMerge: 670 return bitc::ATTR_KIND_NO_MERGE; 671 case Attribute::NonLazyBind: 672 return bitc::ATTR_KIND_NON_LAZY_BIND; 673 case Attribute::NonNull: 674 return bitc::ATTR_KIND_NON_NULL; 675 case Attribute::Dereferenceable: 676 return bitc::ATTR_KIND_DEREFERENCEABLE; 677 case Attribute::DereferenceableOrNull: 678 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 679 case Attribute::NoRedZone: 680 return bitc::ATTR_KIND_NO_RED_ZONE; 681 case Attribute::NoReturn: 682 return bitc::ATTR_KIND_NO_RETURN; 683 case Attribute::NoSync: 684 return bitc::ATTR_KIND_NOSYNC; 685 case Attribute::NoCfCheck: 686 return bitc::ATTR_KIND_NOCF_CHECK; 687 case Attribute::NoProfile: 688 return bitc::ATTR_KIND_NO_PROFILE; 689 case Attribute::NoUnwind: 690 return bitc::ATTR_KIND_NO_UNWIND; 691 case Attribute::NoSanitizeCoverage: 692 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 693 case Attribute::NullPointerIsValid: 694 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 695 case Attribute::OptForFuzzing: 696 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 697 case Attribute::OptimizeForSize: 698 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 699 case Attribute::OptimizeNone: 700 return bitc::ATTR_KIND_OPTIMIZE_NONE; 701 case Attribute::ReadNone: 702 return bitc::ATTR_KIND_READ_NONE; 703 case Attribute::ReadOnly: 704 return bitc::ATTR_KIND_READ_ONLY; 705 case Attribute::Returned: 706 return bitc::ATTR_KIND_RETURNED; 707 case Attribute::ReturnsTwice: 708 return bitc::ATTR_KIND_RETURNS_TWICE; 709 case Attribute::SExt: 710 return bitc::ATTR_KIND_S_EXT; 711 case Attribute::Speculatable: 712 return bitc::ATTR_KIND_SPECULATABLE; 713 case Attribute::StackAlignment: 714 return bitc::ATTR_KIND_STACK_ALIGNMENT; 715 case Attribute::StackProtect: 716 return bitc::ATTR_KIND_STACK_PROTECT; 717 case Attribute::StackProtectReq: 718 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 719 case Attribute::StackProtectStrong: 720 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 721 case Attribute::SafeStack: 722 return bitc::ATTR_KIND_SAFESTACK; 723 case Attribute::ShadowCallStack: 724 return bitc::ATTR_KIND_SHADOWCALLSTACK; 725 case Attribute::StrictFP: 726 return bitc::ATTR_KIND_STRICT_FP; 727 case Attribute::StructRet: 728 return bitc::ATTR_KIND_STRUCT_RET; 729 case Attribute::SanitizeAddress: 730 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 731 case Attribute::SanitizeHWAddress: 732 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 733 case Attribute::SanitizeThread: 734 return bitc::ATTR_KIND_SANITIZE_THREAD; 735 case Attribute::SanitizeMemory: 736 return bitc::ATTR_KIND_SANITIZE_MEMORY; 737 case Attribute::SpeculativeLoadHardening: 738 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 739 case Attribute::SwiftError: 740 return bitc::ATTR_KIND_SWIFT_ERROR; 741 case Attribute::SwiftSelf: 742 return bitc::ATTR_KIND_SWIFT_SELF; 743 case Attribute::SwiftAsync: 744 return bitc::ATTR_KIND_SWIFT_ASYNC; 745 case Attribute::UWTable: 746 return bitc::ATTR_KIND_UW_TABLE; 747 case Attribute::VScaleRange: 748 return bitc::ATTR_KIND_VSCALE_RANGE; 749 case Attribute::WillReturn: 750 return bitc::ATTR_KIND_WILLRETURN; 751 case Attribute::WriteOnly: 752 return bitc::ATTR_KIND_WRITEONLY; 753 case Attribute::ZExt: 754 return bitc::ATTR_KIND_Z_EXT; 755 case Attribute::ImmArg: 756 return bitc::ATTR_KIND_IMMARG; 757 case Attribute::SanitizeMemTag: 758 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 759 case Attribute::Preallocated: 760 return bitc::ATTR_KIND_PREALLOCATED; 761 case Attribute::NoUndef: 762 return bitc::ATTR_KIND_NOUNDEF; 763 case Attribute::ByRef: 764 return bitc::ATTR_KIND_BYREF; 765 case Attribute::MustProgress: 766 return bitc::ATTR_KIND_MUSTPROGRESS; 767 case Attribute::EndAttrKinds: 768 llvm_unreachable("Can not encode end-attribute kinds marker."); 769 case Attribute::None: 770 llvm_unreachable("Can not encode none-attribute."); 771 case Attribute::EmptyKey: 772 case Attribute::TombstoneKey: 773 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 774 } 775 776 llvm_unreachable("Trying to encode unknown attribute"); 777 } 778 779 void ModuleBitcodeWriter::writeAttributeGroupTable() { 780 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 781 VE.getAttributeGroups(); 782 if (AttrGrps.empty()) return; 783 784 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 785 786 SmallVector<uint64_t, 64> Record; 787 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 788 unsigned AttrListIndex = Pair.first; 789 AttributeSet AS = Pair.second; 790 Record.push_back(VE.getAttributeGroupID(Pair)); 791 Record.push_back(AttrListIndex); 792 793 for (Attribute Attr : AS) { 794 if (Attr.isEnumAttribute()) { 795 Record.push_back(0); 796 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 797 } else if (Attr.isIntAttribute()) { 798 Record.push_back(1); 799 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 800 Record.push_back(Attr.getValueAsInt()); 801 } else if (Attr.isStringAttribute()) { 802 StringRef Kind = Attr.getKindAsString(); 803 StringRef Val = Attr.getValueAsString(); 804 805 Record.push_back(Val.empty() ? 3 : 4); 806 Record.append(Kind.begin(), Kind.end()); 807 Record.push_back(0); 808 if (!Val.empty()) { 809 Record.append(Val.begin(), Val.end()); 810 Record.push_back(0); 811 } 812 } else { 813 assert(Attr.isTypeAttribute()); 814 Type *Ty = Attr.getValueAsType(); 815 Record.push_back(Ty ? 6 : 5); 816 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 817 if (Ty) 818 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 819 } 820 } 821 822 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 823 Record.clear(); 824 } 825 826 Stream.ExitBlock(); 827 } 828 829 void ModuleBitcodeWriter::writeAttributeTable() { 830 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 831 if (Attrs.empty()) return; 832 833 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 834 835 SmallVector<uint64_t, 64> Record; 836 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 837 AttributeList AL = Attrs[i]; 838 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 839 AttributeSet AS = AL.getAttributes(i); 840 if (AS.hasAttributes()) 841 Record.push_back(VE.getAttributeGroupID({i, AS})); 842 } 843 844 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 845 Record.clear(); 846 } 847 848 Stream.ExitBlock(); 849 } 850 851 /// WriteTypeTable - Write out the type table for a module. 852 void ModuleBitcodeWriter::writeTypeTable() { 853 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 854 855 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 856 SmallVector<uint64_t, 64> TypeVals; 857 858 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 859 860 // Abbrev for TYPE_CODE_POINTER. 861 auto Abbv = std::make_shared<BitCodeAbbrev>(); 862 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 864 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 865 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 866 867 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 868 Abbv = std::make_shared<BitCodeAbbrev>(); 869 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 870 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 871 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 872 873 // Abbrev for TYPE_CODE_FUNCTION. 874 Abbv = std::make_shared<BitCodeAbbrev>(); 875 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 879 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 880 881 // Abbrev for TYPE_CODE_STRUCT_ANON. 882 Abbv = std::make_shared<BitCodeAbbrev>(); 883 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 887 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 888 889 // Abbrev for TYPE_CODE_STRUCT_NAME. 890 Abbv = std::make_shared<BitCodeAbbrev>(); 891 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 894 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 895 896 // Abbrev for TYPE_CODE_STRUCT_NAMED. 897 Abbv = std::make_shared<BitCodeAbbrev>(); 898 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 902 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 903 904 // Abbrev for TYPE_CODE_ARRAY. 905 Abbv = std::make_shared<BitCodeAbbrev>(); 906 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 909 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 910 911 // Emit an entry count so the reader can reserve space. 912 TypeVals.push_back(TypeList.size()); 913 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 914 TypeVals.clear(); 915 916 // Loop over all of the types, emitting each in turn. 917 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 918 Type *T = TypeList[i]; 919 int AbbrevToUse = 0; 920 unsigned Code = 0; 921 922 switch (T->getTypeID()) { 923 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 924 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 925 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 926 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 927 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 928 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 929 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 930 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 931 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 932 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 933 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 934 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 935 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 936 case Type::IntegerTyID: 937 // INTEGER: [width] 938 Code = bitc::TYPE_CODE_INTEGER; 939 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 940 break; 941 case Type::PointerTyID: { 942 PointerType *PTy = cast<PointerType>(T); 943 unsigned AddressSpace = PTy->getAddressSpace(); 944 if (PTy->isOpaque()) { 945 // OPAQUE_POINTER: [address space] 946 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 947 TypeVals.push_back(AddressSpace); 948 if (AddressSpace == 0) 949 AbbrevToUse = OpaquePtrAbbrev; 950 } else { 951 // POINTER: [pointee type, address space] 952 Code = bitc::TYPE_CODE_POINTER; 953 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 954 TypeVals.push_back(AddressSpace); 955 if (AddressSpace == 0) 956 AbbrevToUse = PtrAbbrev; 957 } 958 break; 959 } 960 case Type::FunctionTyID: { 961 FunctionType *FT = cast<FunctionType>(T); 962 // FUNCTION: [isvararg, retty, paramty x N] 963 Code = bitc::TYPE_CODE_FUNCTION; 964 TypeVals.push_back(FT->isVarArg()); 965 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 966 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 967 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 968 AbbrevToUse = FunctionAbbrev; 969 break; 970 } 971 case Type::StructTyID: { 972 StructType *ST = cast<StructType>(T); 973 // STRUCT: [ispacked, eltty x N] 974 TypeVals.push_back(ST->isPacked()); 975 // Output all of the element types. 976 for (StructType::element_iterator I = ST->element_begin(), 977 E = ST->element_end(); I != E; ++I) 978 TypeVals.push_back(VE.getTypeID(*I)); 979 980 if (ST->isLiteral()) { 981 Code = bitc::TYPE_CODE_STRUCT_ANON; 982 AbbrevToUse = StructAnonAbbrev; 983 } else { 984 if (ST->isOpaque()) { 985 Code = bitc::TYPE_CODE_OPAQUE; 986 } else { 987 Code = bitc::TYPE_CODE_STRUCT_NAMED; 988 AbbrevToUse = StructNamedAbbrev; 989 } 990 991 // Emit the name if it is present. 992 if (!ST->getName().empty()) 993 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 994 StructNameAbbrev); 995 } 996 break; 997 } 998 case Type::ArrayTyID: { 999 ArrayType *AT = cast<ArrayType>(T); 1000 // ARRAY: [numelts, eltty] 1001 Code = bitc::TYPE_CODE_ARRAY; 1002 TypeVals.push_back(AT->getNumElements()); 1003 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1004 AbbrevToUse = ArrayAbbrev; 1005 break; 1006 } 1007 case Type::FixedVectorTyID: 1008 case Type::ScalableVectorTyID: { 1009 VectorType *VT = cast<VectorType>(T); 1010 // VECTOR [numelts, eltty] or 1011 // [numelts, eltty, scalable] 1012 Code = bitc::TYPE_CODE_VECTOR; 1013 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1014 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1015 if (isa<ScalableVectorType>(VT)) 1016 TypeVals.push_back(true); 1017 break; 1018 } 1019 } 1020 1021 // Emit the finished record. 1022 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1023 TypeVals.clear(); 1024 } 1025 1026 Stream.ExitBlock(); 1027 } 1028 1029 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1030 switch (Linkage) { 1031 case GlobalValue::ExternalLinkage: 1032 return 0; 1033 case GlobalValue::WeakAnyLinkage: 1034 return 16; 1035 case GlobalValue::AppendingLinkage: 1036 return 2; 1037 case GlobalValue::InternalLinkage: 1038 return 3; 1039 case GlobalValue::LinkOnceAnyLinkage: 1040 return 18; 1041 case GlobalValue::ExternalWeakLinkage: 1042 return 7; 1043 case GlobalValue::CommonLinkage: 1044 return 8; 1045 case GlobalValue::PrivateLinkage: 1046 return 9; 1047 case GlobalValue::WeakODRLinkage: 1048 return 17; 1049 case GlobalValue::LinkOnceODRLinkage: 1050 return 19; 1051 case GlobalValue::AvailableExternallyLinkage: 1052 return 12; 1053 } 1054 llvm_unreachable("Invalid linkage"); 1055 } 1056 1057 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1058 return getEncodedLinkage(GV.getLinkage()); 1059 } 1060 1061 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1062 uint64_t RawFlags = 0; 1063 RawFlags |= Flags.ReadNone; 1064 RawFlags |= (Flags.ReadOnly << 1); 1065 RawFlags |= (Flags.NoRecurse << 2); 1066 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1067 RawFlags |= (Flags.NoInline << 4); 1068 RawFlags |= (Flags.AlwaysInline << 5); 1069 return RawFlags; 1070 } 1071 1072 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1073 // in BitcodeReader.cpp. 1074 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1075 uint64_t RawFlags = 0; 1076 1077 RawFlags |= Flags.NotEligibleToImport; // bool 1078 RawFlags |= (Flags.Live << 1); 1079 RawFlags |= (Flags.DSOLocal << 2); 1080 RawFlags |= (Flags.CanAutoHide << 3); 1081 1082 // Linkage don't need to be remapped at that time for the summary. Any future 1083 // change to the getEncodedLinkage() function will need to be taken into 1084 // account here as well. 1085 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1086 1087 RawFlags |= (Flags.Visibility << 8); // 2 bits 1088 1089 return RawFlags; 1090 } 1091 1092 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1093 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1094 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1095 return RawFlags; 1096 } 1097 1098 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1099 switch (GV.getVisibility()) { 1100 case GlobalValue::DefaultVisibility: return 0; 1101 case GlobalValue::HiddenVisibility: return 1; 1102 case GlobalValue::ProtectedVisibility: return 2; 1103 } 1104 llvm_unreachable("Invalid visibility"); 1105 } 1106 1107 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1108 switch (GV.getDLLStorageClass()) { 1109 case GlobalValue::DefaultStorageClass: return 0; 1110 case GlobalValue::DLLImportStorageClass: return 1; 1111 case GlobalValue::DLLExportStorageClass: return 2; 1112 } 1113 llvm_unreachable("Invalid DLL storage class"); 1114 } 1115 1116 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1117 switch (GV.getThreadLocalMode()) { 1118 case GlobalVariable::NotThreadLocal: return 0; 1119 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1120 case GlobalVariable::LocalDynamicTLSModel: return 2; 1121 case GlobalVariable::InitialExecTLSModel: return 3; 1122 case GlobalVariable::LocalExecTLSModel: return 4; 1123 } 1124 llvm_unreachable("Invalid TLS model"); 1125 } 1126 1127 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1128 switch (C.getSelectionKind()) { 1129 case Comdat::Any: 1130 return bitc::COMDAT_SELECTION_KIND_ANY; 1131 case Comdat::ExactMatch: 1132 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1133 case Comdat::Largest: 1134 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1135 case Comdat::NoDeduplicate: 1136 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1137 case Comdat::SameSize: 1138 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1139 } 1140 llvm_unreachable("Invalid selection kind"); 1141 } 1142 1143 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1144 switch (GV.getUnnamedAddr()) { 1145 case GlobalValue::UnnamedAddr::None: return 0; 1146 case GlobalValue::UnnamedAddr::Local: return 2; 1147 case GlobalValue::UnnamedAddr::Global: return 1; 1148 } 1149 llvm_unreachable("Invalid unnamed_addr"); 1150 } 1151 1152 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1153 if (GenerateHash) 1154 Hasher.update(Str); 1155 return StrtabBuilder.add(Str); 1156 } 1157 1158 void ModuleBitcodeWriter::writeComdats() { 1159 SmallVector<unsigned, 64> Vals; 1160 for (const Comdat *C : VE.getComdats()) { 1161 // COMDAT: [strtab offset, strtab size, selection_kind] 1162 Vals.push_back(addToStrtab(C->getName())); 1163 Vals.push_back(C->getName().size()); 1164 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1165 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1166 Vals.clear(); 1167 } 1168 } 1169 1170 /// Write a record that will eventually hold the word offset of the 1171 /// module-level VST. For now the offset is 0, which will be backpatched 1172 /// after the real VST is written. Saves the bit offset to backpatch. 1173 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1174 // Write a placeholder value in for the offset of the real VST, 1175 // which is written after the function blocks so that it can include 1176 // the offset of each function. The placeholder offset will be 1177 // updated when the real VST is written. 1178 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1179 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1180 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1181 // hold the real VST offset. Must use fixed instead of VBR as we don't 1182 // know how many VBR chunks to reserve ahead of time. 1183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1184 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1185 1186 // Emit the placeholder 1187 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1188 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1189 1190 // Compute and save the bit offset to the placeholder, which will be 1191 // patched when the real VST is written. We can simply subtract the 32-bit 1192 // fixed size from the current bit number to get the location to backpatch. 1193 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1194 } 1195 1196 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1197 1198 /// Determine the encoding to use for the given string name and length. 1199 static StringEncoding getStringEncoding(StringRef Str) { 1200 bool isChar6 = true; 1201 for (char C : Str) { 1202 if (isChar6) 1203 isChar6 = BitCodeAbbrevOp::isChar6(C); 1204 if ((unsigned char)C & 128) 1205 // don't bother scanning the rest. 1206 return SE_Fixed8; 1207 } 1208 if (isChar6) 1209 return SE_Char6; 1210 return SE_Fixed7; 1211 } 1212 1213 /// Emit top-level description of module, including target triple, inline asm, 1214 /// descriptors for global variables, and function prototype info. 1215 /// Returns the bit offset to backpatch with the location of the real VST. 1216 void ModuleBitcodeWriter::writeModuleInfo() { 1217 // Emit various pieces of data attached to a module. 1218 if (!M.getTargetTriple().empty()) 1219 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1220 0 /*TODO*/); 1221 const std::string &DL = M.getDataLayoutStr(); 1222 if (!DL.empty()) 1223 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1224 if (!M.getModuleInlineAsm().empty()) 1225 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1226 0 /*TODO*/); 1227 1228 // Emit information about sections and GC, computing how many there are. Also 1229 // compute the maximum alignment value. 1230 std::map<std::string, unsigned> SectionMap; 1231 std::map<std::string, unsigned> GCMap; 1232 MaybeAlign MaxAlignment; 1233 unsigned MaxGlobalType = 0; 1234 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1235 if (A) 1236 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1237 }; 1238 for (const GlobalVariable &GV : M.globals()) { 1239 UpdateMaxAlignment(GV.getAlign()); 1240 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1241 if (GV.hasSection()) { 1242 // Give section names unique ID's. 1243 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1244 if (!Entry) { 1245 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1246 0 /*TODO*/); 1247 Entry = SectionMap.size(); 1248 } 1249 } 1250 } 1251 for (const Function &F : M) { 1252 UpdateMaxAlignment(F.getAlign()); 1253 if (F.hasSection()) { 1254 // Give section names unique ID's. 1255 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1256 if (!Entry) { 1257 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1258 0 /*TODO*/); 1259 Entry = SectionMap.size(); 1260 } 1261 } 1262 if (F.hasGC()) { 1263 // Same for GC names. 1264 unsigned &Entry = GCMap[F.getGC()]; 1265 if (!Entry) { 1266 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1267 0 /*TODO*/); 1268 Entry = GCMap.size(); 1269 } 1270 } 1271 } 1272 1273 // Emit abbrev for globals, now that we know # sections and max alignment. 1274 unsigned SimpleGVarAbbrev = 0; 1275 if (!M.global_empty()) { 1276 // Add an abbrev for common globals with no visibility or thread localness. 1277 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1278 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1282 Log2_32_Ceil(MaxGlobalType+1))); 1283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1284 //| explicitType << 1 1285 //| constant 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1288 if (!MaxAlignment) // Alignment. 1289 Abbv->Add(BitCodeAbbrevOp(0)); 1290 else { 1291 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1293 Log2_32_Ceil(MaxEncAlignment+1))); 1294 } 1295 if (SectionMap.empty()) // Section. 1296 Abbv->Add(BitCodeAbbrevOp(0)); 1297 else 1298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1299 Log2_32_Ceil(SectionMap.size()+1))); 1300 // Don't bother emitting vis + thread local. 1301 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1302 } 1303 1304 SmallVector<unsigned, 64> Vals; 1305 // Emit the module's source file name. 1306 { 1307 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1308 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1309 if (Bits == SE_Char6) 1310 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1311 else if (Bits == SE_Fixed7) 1312 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1313 1314 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1315 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1316 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1318 Abbv->Add(AbbrevOpToUse); 1319 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1320 1321 for (const auto P : M.getSourceFileName()) 1322 Vals.push_back((unsigned char)P); 1323 1324 // Emit the finished record. 1325 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1326 Vals.clear(); 1327 } 1328 1329 // Emit the global variable information. 1330 for (const GlobalVariable &GV : M.globals()) { 1331 unsigned AbbrevToUse = 0; 1332 1333 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1334 // linkage, alignment, section, visibility, threadlocal, 1335 // unnamed_addr, externally_initialized, dllstorageclass, 1336 // comdat, attributes, DSO_Local] 1337 Vals.push_back(addToStrtab(GV.getName())); 1338 Vals.push_back(GV.getName().size()); 1339 Vals.push_back(VE.getTypeID(GV.getValueType())); 1340 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1341 Vals.push_back(GV.isDeclaration() ? 0 : 1342 (VE.getValueID(GV.getInitializer()) + 1)); 1343 Vals.push_back(getEncodedLinkage(GV)); 1344 Vals.push_back(getEncodedAlign(GV.getAlign())); 1345 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1346 : 0); 1347 if (GV.isThreadLocal() || 1348 GV.getVisibility() != GlobalValue::DefaultVisibility || 1349 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1350 GV.isExternallyInitialized() || 1351 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1352 GV.hasComdat() || 1353 GV.hasAttributes() || 1354 GV.isDSOLocal() || 1355 GV.hasPartition()) { 1356 Vals.push_back(getEncodedVisibility(GV)); 1357 Vals.push_back(getEncodedThreadLocalMode(GV)); 1358 Vals.push_back(getEncodedUnnamedAddr(GV)); 1359 Vals.push_back(GV.isExternallyInitialized()); 1360 Vals.push_back(getEncodedDLLStorageClass(GV)); 1361 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1362 1363 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1364 Vals.push_back(VE.getAttributeListID(AL)); 1365 1366 Vals.push_back(GV.isDSOLocal()); 1367 Vals.push_back(addToStrtab(GV.getPartition())); 1368 Vals.push_back(GV.getPartition().size()); 1369 } else { 1370 AbbrevToUse = SimpleGVarAbbrev; 1371 } 1372 1373 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1374 Vals.clear(); 1375 } 1376 1377 // Emit the function proto information. 1378 for (const Function &F : M) { 1379 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1380 // linkage, paramattrs, alignment, section, visibility, gc, 1381 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1382 // prefixdata, personalityfn, DSO_Local, addrspace] 1383 Vals.push_back(addToStrtab(F.getName())); 1384 Vals.push_back(F.getName().size()); 1385 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1386 Vals.push_back(F.getCallingConv()); 1387 Vals.push_back(F.isDeclaration()); 1388 Vals.push_back(getEncodedLinkage(F)); 1389 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1390 Vals.push_back(getEncodedAlign(F.getAlign())); 1391 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1392 : 0); 1393 Vals.push_back(getEncodedVisibility(F)); 1394 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1395 Vals.push_back(getEncodedUnnamedAddr(F)); 1396 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1397 : 0); 1398 Vals.push_back(getEncodedDLLStorageClass(F)); 1399 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1400 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1401 : 0); 1402 Vals.push_back( 1403 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1404 1405 Vals.push_back(F.isDSOLocal()); 1406 Vals.push_back(F.getAddressSpace()); 1407 Vals.push_back(addToStrtab(F.getPartition())); 1408 Vals.push_back(F.getPartition().size()); 1409 1410 unsigned AbbrevToUse = 0; 1411 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1412 Vals.clear(); 1413 } 1414 1415 // Emit the alias information. 1416 for (const GlobalAlias &A : M.aliases()) { 1417 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1418 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1419 // DSO_Local] 1420 Vals.push_back(addToStrtab(A.getName())); 1421 Vals.push_back(A.getName().size()); 1422 Vals.push_back(VE.getTypeID(A.getValueType())); 1423 Vals.push_back(A.getType()->getAddressSpace()); 1424 Vals.push_back(VE.getValueID(A.getAliasee())); 1425 Vals.push_back(getEncodedLinkage(A)); 1426 Vals.push_back(getEncodedVisibility(A)); 1427 Vals.push_back(getEncodedDLLStorageClass(A)); 1428 Vals.push_back(getEncodedThreadLocalMode(A)); 1429 Vals.push_back(getEncodedUnnamedAddr(A)); 1430 Vals.push_back(A.isDSOLocal()); 1431 Vals.push_back(addToStrtab(A.getPartition())); 1432 Vals.push_back(A.getPartition().size()); 1433 1434 unsigned AbbrevToUse = 0; 1435 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1436 Vals.clear(); 1437 } 1438 1439 // Emit the ifunc information. 1440 for (const GlobalIFunc &I : M.ifuncs()) { 1441 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1442 // val#, linkage, visibility, DSO_Local] 1443 Vals.push_back(addToStrtab(I.getName())); 1444 Vals.push_back(I.getName().size()); 1445 Vals.push_back(VE.getTypeID(I.getValueType())); 1446 Vals.push_back(I.getType()->getAddressSpace()); 1447 Vals.push_back(VE.getValueID(I.getResolver())); 1448 Vals.push_back(getEncodedLinkage(I)); 1449 Vals.push_back(getEncodedVisibility(I)); 1450 Vals.push_back(I.isDSOLocal()); 1451 Vals.push_back(addToStrtab(I.getPartition())); 1452 Vals.push_back(I.getPartition().size()); 1453 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1454 Vals.clear(); 1455 } 1456 1457 writeValueSymbolTableForwardDecl(); 1458 } 1459 1460 static uint64_t getOptimizationFlags(const Value *V) { 1461 uint64_t Flags = 0; 1462 1463 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1464 if (OBO->hasNoSignedWrap()) 1465 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1466 if (OBO->hasNoUnsignedWrap()) 1467 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1468 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1469 if (PEO->isExact()) 1470 Flags |= 1 << bitc::PEO_EXACT; 1471 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1472 if (FPMO->hasAllowReassoc()) 1473 Flags |= bitc::AllowReassoc; 1474 if (FPMO->hasNoNaNs()) 1475 Flags |= bitc::NoNaNs; 1476 if (FPMO->hasNoInfs()) 1477 Flags |= bitc::NoInfs; 1478 if (FPMO->hasNoSignedZeros()) 1479 Flags |= bitc::NoSignedZeros; 1480 if (FPMO->hasAllowReciprocal()) 1481 Flags |= bitc::AllowReciprocal; 1482 if (FPMO->hasAllowContract()) 1483 Flags |= bitc::AllowContract; 1484 if (FPMO->hasApproxFunc()) 1485 Flags |= bitc::ApproxFunc; 1486 } 1487 1488 return Flags; 1489 } 1490 1491 void ModuleBitcodeWriter::writeValueAsMetadata( 1492 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1493 // Mimic an MDNode with a value as one operand. 1494 Value *V = MD->getValue(); 1495 Record.push_back(VE.getTypeID(V->getType())); 1496 Record.push_back(VE.getValueID(V)); 1497 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1498 Record.clear(); 1499 } 1500 1501 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1502 SmallVectorImpl<uint64_t> &Record, 1503 unsigned Abbrev) { 1504 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1505 Metadata *MD = N->getOperand(i); 1506 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1507 "Unexpected function-local metadata"); 1508 Record.push_back(VE.getMetadataOrNullID(MD)); 1509 } 1510 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1511 : bitc::METADATA_NODE, 1512 Record, Abbrev); 1513 Record.clear(); 1514 } 1515 1516 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1517 // Assume the column is usually under 128, and always output the inlined-at 1518 // location (it's never more expensive than building an array size 1). 1519 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1520 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1527 return Stream.EmitAbbrev(std::move(Abbv)); 1528 } 1529 1530 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1531 SmallVectorImpl<uint64_t> &Record, 1532 unsigned &Abbrev) { 1533 if (!Abbrev) 1534 Abbrev = createDILocationAbbrev(); 1535 1536 Record.push_back(N->isDistinct()); 1537 Record.push_back(N->getLine()); 1538 Record.push_back(N->getColumn()); 1539 Record.push_back(VE.getMetadataID(N->getScope())); 1540 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1541 Record.push_back(N->isImplicitCode()); 1542 1543 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1544 Record.clear(); 1545 } 1546 1547 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1548 // Assume the column is usually under 128, and always output the inlined-at 1549 // location (it's never more expensive than building an array size 1). 1550 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1551 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1558 return Stream.EmitAbbrev(std::move(Abbv)); 1559 } 1560 1561 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1562 SmallVectorImpl<uint64_t> &Record, 1563 unsigned &Abbrev) { 1564 if (!Abbrev) 1565 Abbrev = createGenericDINodeAbbrev(); 1566 1567 Record.push_back(N->isDistinct()); 1568 Record.push_back(N->getTag()); 1569 Record.push_back(0); // Per-tag version field; unused for now. 1570 1571 for (auto &I : N->operands()) 1572 Record.push_back(VE.getMetadataOrNullID(I)); 1573 1574 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1575 Record.clear(); 1576 } 1577 1578 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1579 SmallVectorImpl<uint64_t> &Record, 1580 unsigned Abbrev) { 1581 const uint64_t Version = 2 << 1; 1582 Record.push_back((uint64_t)N->isDistinct() | Version); 1583 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1584 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1586 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1587 1588 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1589 Record.clear(); 1590 } 1591 1592 void ModuleBitcodeWriter::writeDIGenericSubrange( 1593 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1594 unsigned Abbrev) { 1595 Record.push_back((uint64_t)N->isDistinct()); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1600 1601 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1602 Record.clear(); 1603 } 1604 1605 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1606 if ((int64_t)V >= 0) 1607 Vals.push_back(V << 1); 1608 else 1609 Vals.push_back((-V << 1) | 1); 1610 } 1611 1612 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1613 // We have an arbitrary precision integer value to write whose 1614 // bit width is > 64. However, in canonical unsigned integer 1615 // format it is likely that the high bits are going to be zero. 1616 // So, we only write the number of active words. 1617 unsigned NumWords = A.getActiveWords(); 1618 const uint64_t *RawData = A.getRawData(); 1619 for (unsigned i = 0; i < NumWords; i++) 1620 emitSignedInt64(Vals, RawData[i]); 1621 } 1622 1623 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1624 SmallVectorImpl<uint64_t> &Record, 1625 unsigned Abbrev) { 1626 const uint64_t IsBigInt = 1 << 2; 1627 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1628 Record.push_back(N->getValue().getBitWidth()); 1629 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1630 emitWideAPInt(Record, N->getValue()); 1631 1632 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1633 Record.clear(); 1634 } 1635 1636 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1637 SmallVectorImpl<uint64_t> &Record, 1638 unsigned Abbrev) { 1639 Record.push_back(N->isDistinct()); 1640 Record.push_back(N->getTag()); 1641 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1642 Record.push_back(N->getSizeInBits()); 1643 Record.push_back(N->getAlignInBits()); 1644 Record.push_back(N->getEncoding()); 1645 Record.push_back(N->getFlags()); 1646 1647 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1648 Record.clear(); 1649 } 1650 1651 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1652 SmallVectorImpl<uint64_t> &Record, 1653 unsigned Abbrev) { 1654 Record.push_back(N->isDistinct()); 1655 Record.push_back(N->getTag()); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1659 Record.push_back(N->getSizeInBits()); 1660 Record.push_back(N->getAlignInBits()); 1661 Record.push_back(N->getEncoding()); 1662 1663 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1664 Record.clear(); 1665 } 1666 1667 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1668 SmallVectorImpl<uint64_t> &Record, 1669 unsigned Abbrev) { 1670 Record.push_back(N->isDistinct()); 1671 Record.push_back(N->getTag()); 1672 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1673 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1674 Record.push_back(N->getLine()); 1675 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1677 Record.push_back(N->getSizeInBits()); 1678 Record.push_back(N->getAlignInBits()); 1679 Record.push_back(N->getOffsetInBits()); 1680 Record.push_back(N->getFlags()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1682 1683 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1684 // that there is no DWARF address space associated with DIDerivedType. 1685 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1686 Record.push_back(*DWARFAddressSpace + 1); 1687 else 1688 Record.push_back(0); 1689 1690 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1691 1692 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1693 Record.clear(); 1694 } 1695 1696 void ModuleBitcodeWriter::writeDICompositeType( 1697 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1698 unsigned Abbrev) { 1699 const unsigned IsNotUsedInOldTypeRef = 0x2; 1700 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1701 Record.push_back(N->getTag()); 1702 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1703 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1704 Record.push_back(N->getLine()); 1705 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1706 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1707 Record.push_back(N->getSizeInBits()); 1708 Record.push_back(N->getAlignInBits()); 1709 Record.push_back(N->getOffsetInBits()); 1710 Record.push_back(N->getFlags()); 1711 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1712 Record.push_back(N->getRuntimeLang()); 1713 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1714 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1715 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1716 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1717 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1722 1723 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1724 Record.clear(); 1725 } 1726 1727 void ModuleBitcodeWriter::writeDISubroutineType( 1728 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1729 unsigned Abbrev) { 1730 const unsigned HasNoOldTypeRefs = 0x2; 1731 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1732 Record.push_back(N->getFlags()); 1733 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1734 Record.push_back(N->getCC()); 1735 1736 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1737 Record.clear(); 1738 } 1739 1740 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1741 SmallVectorImpl<uint64_t> &Record, 1742 unsigned Abbrev) { 1743 Record.push_back(N->isDistinct()); 1744 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1745 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1746 if (N->getRawChecksum()) { 1747 Record.push_back(N->getRawChecksum()->Kind); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1749 } else { 1750 // Maintain backwards compatibility with the old internal representation of 1751 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1752 Record.push_back(0); 1753 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1754 } 1755 auto Source = N->getRawSource(); 1756 if (Source) 1757 Record.push_back(VE.getMetadataOrNullID(*Source)); 1758 1759 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1760 Record.clear(); 1761 } 1762 1763 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1764 SmallVectorImpl<uint64_t> &Record, 1765 unsigned Abbrev) { 1766 assert(N->isDistinct() && "Expected distinct compile units"); 1767 Record.push_back(/* IsDistinct */ true); 1768 Record.push_back(N->getSourceLanguage()); 1769 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1770 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1771 Record.push_back(N->isOptimized()); 1772 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1773 Record.push_back(N->getRuntimeVersion()); 1774 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1775 Record.push_back(N->getEmissionKind()); 1776 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1778 Record.push_back(/* subprograms */ 0); 1779 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1781 Record.push_back(N->getDWOId()); 1782 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1783 Record.push_back(N->getSplitDebugInlining()); 1784 Record.push_back(N->getDebugInfoForProfiling()); 1785 Record.push_back((unsigned)N->getNameTableKind()); 1786 Record.push_back(N->getRangesBaseAddress()); 1787 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1788 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1789 1790 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1791 Record.clear(); 1792 } 1793 1794 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1795 SmallVectorImpl<uint64_t> &Record, 1796 unsigned Abbrev) { 1797 const uint64_t HasUnitFlag = 1 << 1; 1798 const uint64_t HasSPFlagsFlag = 1 << 2; 1799 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1800 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1804 Record.push_back(N->getLine()); 1805 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1806 Record.push_back(N->getScopeLine()); 1807 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1808 Record.push_back(N->getSPFlags()); 1809 Record.push_back(N->getVirtualIndex()); 1810 Record.push_back(N->getFlags()); 1811 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1812 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1813 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1815 Record.push_back(N->getThisAdjustment()); 1816 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1817 1818 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1819 Record.clear(); 1820 } 1821 1822 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1823 SmallVectorImpl<uint64_t> &Record, 1824 unsigned Abbrev) { 1825 Record.push_back(N->isDistinct()); 1826 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1827 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1828 Record.push_back(N->getLine()); 1829 Record.push_back(N->getColumn()); 1830 1831 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1832 Record.clear(); 1833 } 1834 1835 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1836 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1837 unsigned Abbrev) { 1838 Record.push_back(N->isDistinct()); 1839 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1840 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1841 Record.push_back(N->getDiscriminator()); 1842 1843 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1844 Record.clear(); 1845 } 1846 1847 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1848 SmallVectorImpl<uint64_t> &Record, 1849 unsigned Abbrev) { 1850 Record.push_back(N->isDistinct()); 1851 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1852 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1854 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1855 Record.push_back(N->getLineNo()); 1856 1857 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1858 Record.clear(); 1859 } 1860 1861 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1862 SmallVectorImpl<uint64_t> &Record, 1863 unsigned Abbrev) { 1864 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1865 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1866 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1867 1868 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1869 Record.clear(); 1870 } 1871 1872 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1873 SmallVectorImpl<uint64_t> &Record, 1874 unsigned Abbrev) { 1875 Record.push_back(N->isDistinct()); 1876 Record.push_back(N->getMacinfoType()); 1877 Record.push_back(N->getLine()); 1878 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1879 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1880 1881 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1882 Record.clear(); 1883 } 1884 1885 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1886 SmallVectorImpl<uint64_t> &Record, 1887 unsigned Abbrev) { 1888 Record.push_back(N->isDistinct()); 1889 Record.push_back(N->getMacinfoType()); 1890 Record.push_back(N->getLine()); 1891 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1892 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1893 1894 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1895 Record.clear(); 1896 } 1897 1898 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1899 SmallVectorImpl<uint64_t> &Record, 1900 unsigned Abbrev) { 1901 Record.reserve(N->getArgs().size()); 1902 for (ValueAsMetadata *MD : N->getArgs()) 1903 Record.push_back(VE.getMetadataID(MD)); 1904 1905 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1906 Record.clear(); 1907 } 1908 1909 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1910 SmallVectorImpl<uint64_t> &Record, 1911 unsigned Abbrev) { 1912 Record.push_back(N->isDistinct()); 1913 for (auto &I : N->operands()) 1914 Record.push_back(VE.getMetadataOrNullID(I)); 1915 Record.push_back(N->getLineNo()); 1916 Record.push_back(N->getIsDecl()); 1917 1918 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1919 Record.clear(); 1920 } 1921 1922 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1923 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1924 unsigned Abbrev) { 1925 Record.push_back(N->isDistinct()); 1926 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1927 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1928 Record.push_back(N->isDefault()); 1929 1930 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1931 Record.clear(); 1932 } 1933 1934 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1935 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1936 unsigned Abbrev) { 1937 Record.push_back(N->isDistinct()); 1938 Record.push_back(N->getTag()); 1939 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1940 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1941 Record.push_back(N->isDefault()); 1942 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1943 1944 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1945 Record.clear(); 1946 } 1947 1948 void ModuleBitcodeWriter::writeDIGlobalVariable( 1949 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1950 unsigned Abbrev) { 1951 const uint64_t Version = 2 << 1; 1952 Record.push_back((uint64_t)N->isDistinct() | Version); 1953 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1954 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1955 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1956 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1957 Record.push_back(N->getLine()); 1958 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1959 Record.push_back(N->isLocalToUnit()); 1960 Record.push_back(N->isDefinition()); 1961 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1962 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1963 Record.push_back(N->getAlignInBits()); 1964 1965 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1966 Record.clear(); 1967 } 1968 1969 void ModuleBitcodeWriter::writeDILocalVariable( 1970 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1971 unsigned Abbrev) { 1972 // In order to support all possible bitcode formats in BitcodeReader we need 1973 // to distinguish the following cases: 1974 // 1) Record has no artificial tag (Record[1]), 1975 // has no obsolete inlinedAt field (Record[9]). 1976 // In this case Record size will be 8, HasAlignment flag is false. 1977 // 2) Record has artificial tag (Record[1]), 1978 // has no obsolete inlignedAt field (Record[9]). 1979 // In this case Record size will be 9, HasAlignment flag is false. 1980 // 3) Record has both artificial tag (Record[1]) and 1981 // obsolete inlignedAt field (Record[9]). 1982 // In this case Record size will be 10, HasAlignment flag is false. 1983 // 4) Record has neither artificial tag, nor inlignedAt field, but 1984 // HasAlignment flag is true and Record[8] contains alignment value. 1985 const uint64_t HasAlignmentFlag = 1 << 1; 1986 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1987 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1988 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1989 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1990 Record.push_back(N->getLine()); 1991 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1992 Record.push_back(N->getArg()); 1993 Record.push_back(N->getFlags()); 1994 Record.push_back(N->getAlignInBits()); 1995 1996 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1997 Record.clear(); 1998 } 1999 2000 void ModuleBitcodeWriter::writeDILabel( 2001 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2002 unsigned Abbrev) { 2003 Record.push_back((uint64_t)N->isDistinct()); 2004 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2005 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2006 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2007 Record.push_back(N->getLine()); 2008 2009 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2010 Record.clear(); 2011 } 2012 2013 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2014 SmallVectorImpl<uint64_t> &Record, 2015 unsigned Abbrev) { 2016 Record.reserve(N->getElements().size() + 1); 2017 const uint64_t Version = 3 << 1; 2018 Record.push_back((uint64_t)N->isDistinct() | Version); 2019 Record.append(N->elements_begin(), N->elements_end()); 2020 2021 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2022 Record.clear(); 2023 } 2024 2025 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2026 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2027 unsigned Abbrev) { 2028 Record.push_back(N->isDistinct()); 2029 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2030 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2031 2032 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2033 Record.clear(); 2034 } 2035 2036 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2037 SmallVectorImpl<uint64_t> &Record, 2038 unsigned Abbrev) { 2039 Record.push_back(N->isDistinct()); 2040 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2041 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2042 Record.push_back(N->getLine()); 2043 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2044 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2045 Record.push_back(N->getAttributes()); 2046 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2047 2048 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2049 Record.clear(); 2050 } 2051 2052 void ModuleBitcodeWriter::writeDIImportedEntity( 2053 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2054 unsigned Abbrev) { 2055 Record.push_back(N->isDistinct()); 2056 Record.push_back(N->getTag()); 2057 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2058 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2059 Record.push_back(N->getLine()); 2060 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2061 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2062 2063 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2064 Record.clear(); 2065 } 2066 2067 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2068 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2069 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2072 return Stream.EmitAbbrev(std::move(Abbv)); 2073 } 2074 2075 void ModuleBitcodeWriter::writeNamedMetadata( 2076 SmallVectorImpl<uint64_t> &Record) { 2077 if (M.named_metadata_empty()) 2078 return; 2079 2080 unsigned Abbrev = createNamedMetadataAbbrev(); 2081 for (const NamedMDNode &NMD : M.named_metadata()) { 2082 // Write name. 2083 StringRef Str = NMD.getName(); 2084 Record.append(Str.bytes_begin(), Str.bytes_end()); 2085 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2086 Record.clear(); 2087 2088 // Write named metadata operands. 2089 for (const MDNode *N : NMD.operands()) 2090 Record.push_back(VE.getMetadataID(N)); 2091 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2092 Record.clear(); 2093 } 2094 } 2095 2096 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2097 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2098 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2102 return Stream.EmitAbbrev(std::move(Abbv)); 2103 } 2104 2105 /// Write out a record for MDString. 2106 /// 2107 /// All the metadata strings in a metadata block are emitted in a single 2108 /// record. The sizes and strings themselves are shoved into a blob. 2109 void ModuleBitcodeWriter::writeMetadataStrings( 2110 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2111 if (Strings.empty()) 2112 return; 2113 2114 // Start the record with the number of strings. 2115 Record.push_back(bitc::METADATA_STRINGS); 2116 Record.push_back(Strings.size()); 2117 2118 // Emit the sizes of the strings in the blob. 2119 SmallString<256> Blob; 2120 { 2121 BitstreamWriter W(Blob); 2122 for (const Metadata *MD : Strings) 2123 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2124 W.FlushToWord(); 2125 } 2126 2127 // Add the offset to the strings to the record. 2128 Record.push_back(Blob.size()); 2129 2130 // Add the strings to the blob. 2131 for (const Metadata *MD : Strings) 2132 Blob.append(cast<MDString>(MD)->getString()); 2133 2134 // Emit the final record. 2135 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2136 Record.clear(); 2137 } 2138 2139 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2140 enum MetadataAbbrev : unsigned { 2141 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2142 #include "llvm/IR/Metadata.def" 2143 LastPlusOne 2144 }; 2145 2146 void ModuleBitcodeWriter::writeMetadataRecords( 2147 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2148 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2149 if (MDs.empty()) 2150 return; 2151 2152 // Initialize MDNode abbreviations. 2153 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2154 #include "llvm/IR/Metadata.def" 2155 2156 for (const Metadata *MD : MDs) { 2157 if (IndexPos) 2158 IndexPos->push_back(Stream.GetCurrentBitNo()); 2159 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2160 assert(N->isResolved() && "Expected forward references to be resolved"); 2161 2162 switch (N->getMetadataID()) { 2163 default: 2164 llvm_unreachable("Invalid MDNode subclass"); 2165 #define HANDLE_MDNODE_LEAF(CLASS) \ 2166 case Metadata::CLASS##Kind: \ 2167 if (MDAbbrevs) \ 2168 write##CLASS(cast<CLASS>(N), Record, \ 2169 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2170 else \ 2171 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2172 continue; 2173 #include "llvm/IR/Metadata.def" 2174 } 2175 } 2176 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2177 } 2178 } 2179 2180 void ModuleBitcodeWriter::writeModuleMetadata() { 2181 if (!VE.hasMDs() && M.named_metadata_empty()) 2182 return; 2183 2184 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2185 SmallVector<uint64_t, 64> Record; 2186 2187 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2188 // block and load any metadata. 2189 std::vector<unsigned> MDAbbrevs; 2190 2191 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2192 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2193 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2194 createGenericDINodeAbbrev(); 2195 2196 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2197 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2200 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2201 2202 Abbv = std::make_shared<BitCodeAbbrev>(); 2203 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2206 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2207 2208 // Emit MDStrings together upfront. 2209 writeMetadataStrings(VE.getMDStrings(), Record); 2210 2211 // We only emit an index for the metadata record if we have more than a given 2212 // (naive) threshold of metadatas, otherwise it is not worth it. 2213 if (VE.getNonMDStrings().size() > IndexThreshold) { 2214 // Write a placeholder value in for the offset of the metadata index, 2215 // which is written after the records, so that it can include 2216 // the offset of each entry. The placeholder offset will be 2217 // updated after all records are emitted. 2218 uint64_t Vals[] = {0, 0}; 2219 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2220 } 2221 2222 // Compute and save the bit offset to the current position, which will be 2223 // patched when we emit the index later. We can simply subtract the 64-bit 2224 // fixed size from the current bit number to get the location to backpatch. 2225 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2226 2227 // This index will contain the bitpos for each individual record. 2228 std::vector<uint64_t> IndexPos; 2229 IndexPos.reserve(VE.getNonMDStrings().size()); 2230 2231 // Write all the records 2232 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2233 2234 if (VE.getNonMDStrings().size() > IndexThreshold) { 2235 // Now that we have emitted all the records we will emit the index. But 2236 // first 2237 // backpatch the forward reference so that the reader can skip the records 2238 // efficiently. 2239 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2240 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2241 2242 // Delta encode the index. 2243 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2244 for (auto &Elt : IndexPos) { 2245 auto EltDelta = Elt - PreviousValue; 2246 PreviousValue = Elt; 2247 Elt = EltDelta; 2248 } 2249 // Emit the index record. 2250 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2251 IndexPos.clear(); 2252 } 2253 2254 // Write the named metadata now. 2255 writeNamedMetadata(Record); 2256 2257 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2258 SmallVector<uint64_t, 4> Record; 2259 Record.push_back(VE.getValueID(&GO)); 2260 pushGlobalMetadataAttachment(Record, GO); 2261 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2262 }; 2263 for (const Function &F : M) 2264 if (F.isDeclaration() && F.hasMetadata()) 2265 AddDeclAttachedMetadata(F); 2266 // FIXME: Only store metadata for declarations here, and move data for global 2267 // variable definitions to a separate block (PR28134). 2268 for (const GlobalVariable &GV : M.globals()) 2269 if (GV.hasMetadata()) 2270 AddDeclAttachedMetadata(GV); 2271 2272 Stream.ExitBlock(); 2273 } 2274 2275 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2276 if (!VE.hasMDs()) 2277 return; 2278 2279 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2280 SmallVector<uint64_t, 64> Record; 2281 writeMetadataStrings(VE.getMDStrings(), Record); 2282 writeMetadataRecords(VE.getNonMDStrings(), Record); 2283 Stream.ExitBlock(); 2284 } 2285 2286 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2287 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2288 // [n x [id, mdnode]] 2289 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2290 GO.getAllMetadata(MDs); 2291 for (const auto &I : MDs) { 2292 Record.push_back(I.first); 2293 Record.push_back(VE.getMetadataID(I.second)); 2294 } 2295 } 2296 2297 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2298 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2299 2300 SmallVector<uint64_t, 64> Record; 2301 2302 if (F.hasMetadata()) { 2303 pushGlobalMetadataAttachment(Record, F); 2304 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2305 Record.clear(); 2306 } 2307 2308 // Write metadata attachments 2309 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2310 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2311 for (const BasicBlock &BB : F) 2312 for (const Instruction &I : BB) { 2313 MDs.clear(); 2314 I.getAllMetadataOtherThanDebugLoc(MDs); 2315 2316 // If no metadata, ignore instruction. 2317 if (MDs.empty()) continue; 2318 2319 Record.push_back(VE.getInstructionID(&I)); 2320 2321 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2322 Record.push_back(MDs[i].first); 2323 Record.push_back(VE.getMetadataID(MDs[i].second)); 2324 } 2325 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2326 Record.clear(); 2327 } 2328 2329 Stream.ExitBlock(); 2330 } 2331 2332 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2333 SmallVector<uint64_t, 64> Record; 2334 2335 // Write metadata kinds 2336 // METADATA_KIND - [n x [id, name]] 2337 SmallVector<StringRef, 8> Names; 2338 M.getMDKindNames(Names); 2339 2340 if (Names.empty()) return; 2341 2342 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2343 2344 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2345 Record.push_back(MDKindID); 2346 StringRef KName = Names[MDKindID]; 2347 Record.append(KName.begin(), KName.end()); 2348 2349 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2350 Record.clear(); 2351 } 2352 2353 Stream.ExitBlock(); 2354 } 2355 2356 void ModuleBitcodeWriter::writeOperandBundleTags() { 2357 // Write metadata kinds 2358 // 2359 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2360 // 2361 // OPERAND_BUNDLE_TAG - [strchr x N] 2362 2363 SmallVector<StringRef, 8> Tags; 2364 M.getOperandBundleTags(Tags); 2365 2366 if (Tags.empty()) 2367 return; 2368 2369 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2370 2371 SmallVector<uint64_t, 64> Record; 2372 2373 for (auto Tag : Tags) { 2374 Record.append(Tag.begin(), Tag.end()); 2375 2376 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2377 Record.clear(); 2378 } 2379 2380 Stream.ExitBlock(); 2381 } 2382 2383 void ModuleBitcodeWriter::writeSyncScopeNames() { 2384 SmallVector<StringRef, 8> SSNs; 2385 M.getContext().getSyncScopeNames(SSNs); 2386 if (SSNs.empty()) 2387 return; 2388 2389 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2390 2391 SmallVector<uint64_t, 64> Record; 2392 for (auto SSN : SSNs) { 2393 Record.append(SSN.begin(), SSN.end()); 2394 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2395 Record.clear(); 2396 } 2397 2398 Stream.ExitBlock(); 2399 } 2400 2401 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2402 bool isGlobal) { 2403 if (FirstVal == LastVal) return; 2404 2405 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2406 2407 unsigned AggregateAbbrev = 0; 2408 unsigned String8Abbrev = 0; 2409 unsigned CString7Abbrev = 0; 2410 unsigned CString6Abbrev = 0; 2411 // If this is a constant pool for the module, emit module-specific abbrevs. 2412 if (isGlobal) { 2413 // Abbrev for CST_CODE_AGGREGATE. 2414 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2415 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2418 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2419 2420 // Abbrev for CST_CODE_STRING. 2421 Abbv = std::make_shared<BitCodeAbbrev>(); 2422 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2425 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2426 // Abbrev for CST_CODE_CSTRING. 2427 Abbv = std::make_shared<BitCodeAbbrev>(); 2428 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2431 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2432 // Abbrev for CST_CODE_CSTRING. 2433 Abbv = std::make_shared<BitCodeAbbrev>(); 2434 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2437 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2438 } 2439 2440 SmallVector<uint64_t, 64> Record; 2441 2442 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2443 Type *LastTy = nullptr; 2444 for (unsigned i = FirstVal; i != LastVal; ++i) { 2445 const Value *V = Vals[i].first; 2446 // If we need to switch types, do so now. 2447 if (V->getType() != LastTy) { 2448 LastTy = V->getType(); 2449 Record.push_back(VE.getTypeID(LastTy)); 2450 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2451 CONSTANTS_SETTYPE_ABBREV); 2452 Record.clear(); 2453 } 2454 2455 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2456 Record.push_back( 2457 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2458 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2459 2460 // Add the asm string. 2461 const std::string &AsmStr = IA->getAsmString(); 2462 Record.push_back(AsmStr.size()); 2463 Record.append(AsmStr.begin(), AsmStr.end()); 2464 2465 // Add the constraint string. 2466 const std::string &ConstraintStr = IA->getConstraintString(); 2467 Record.push_back(ConstraintStr.size()); 2468 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2469 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2470 Record.clear(); 2471 continue; 2472 } 2473 const Constant *C = cast<Constant>(V); 2474 unsigned Code = -1U; 2475 unsigned AbbrevToUse = 0; 2476 if (C->isNullValue()) { 2477 Code = bitc::CST_CODE_NULL; 2478 } else if (isa<PoisonValue>(C)) { 2479 Code = bitc::CST_CODE_POISON; 2480 } else if (isa<UndefValue>(C)) { 2481 Code = bitc::CST_CODE_UNDEF; 2482 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2483 if (IV->getBitWidth() <= 64) { 2484 uint64_t V = IV->getSExtValue(); 2485 emitSignedInt64(Record, V); 2486 Code = bitc::CST_CODE_INTEGER; 2487 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2488 } else { // Wide integers, > 64 bits in size. 2489 emitWideAPInt(Record, IV->getValue()); 2490 Code = bitc::CST_CODE_WIDE_INTEGER; 2491 } 2492 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2493 Code = bitc::CST_CODE_FLOAT; 2494 Type *Ty = CFP->getType(); 2495 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2496 Ty->isDoubleTy()) { 2497 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2498 } else if (Ty->isX86_FP80Ty()) { 2499 // api needed to prevent premature destruction 2500 // bits are not in the same order as a normal i80 APInt, compensate. 2501 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2502 const uint64_t *p = api.getRawData(); 2503 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2504 Record.push_back(p[0] & 0xffffLL); 2505 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2506 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2507 const uint64_t *p = api.getRawData(); 2508 Record.push_back(p[0]); 2509 Record.push_back(p[1]); 2510 } else { 2511 assert(0 && "Unknown FP type!"); 2512 } 2513 } else if (isa<ConstantDataSequential>(C) && 2514 cast<ConstantDataSequential>(C)->isString()) { 2515 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2516 // Emit constant strings specially. 2517 unsigned NumElts = Str->getNumElements(); 2518 // If this is a null-terminated string, use the denser CSTRING encoding. 2519 if (Str->isCString()) { 2520 Code = bitc::CST_CODE_CSTRING; 2521 --NumElts; // Don't encode the null, which isn't allowed by char6. 2522 } else { 2523 Code = bitc::CST_CODE_STRING; 2524 AbbrevToUse = String8Abbrev; 2525 } 2526 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2527 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2528 for (unsigned i = 0; i != NumElts; ++i) { 2529 unsigned char V = Str->getElementAsInteger(i); 2530 Record.push_back(V); 2531 isCStr7 &= (V & 128) == 0; 2532 if (isCStrChar6) 2533 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2534 } 2535 2536 if (isCStrChar6) 2537 AbbrevToUse = CString6Abbrev; 2538 else if (isCStr7) 2539 AbbrevToUse = CString7Abbrev; 2540 } else if (const ConstantDataSequential *CDS = 2541 dyn_cast<ConstantDataSequential>(C)) { 2542 Code = bitc::CST_CODE_DATA; 2543 Type *EltTy = CDS->getElementType(); 2544 if (isa<IntegerType>(EltTy)) { 2545 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2546 Record.push_back(CDS->getElementAsInteger(i)); 2547 } else { 2548 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2549 Record.push_back( 2550 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2551 } 2552 } else if (isa<ConstantAggregate>(C)) { 2553 Code = bitc::CST_CODE_AGGREGATE; 2554 for (const Value *Op : C->operands()) 2555 Record.push_back(VE.getValueID(Op)); 2556 AbbrevToUse = AggregateAbbrev; 2557 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2558 switch (CE->getOpcode()) { 2559 default: 2560 if (Instruction::isCast(CE->getOpcode())) { 2561 Code = bitc::CST_CODE_CE_CAST; 2562 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2563 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2564 Record.push_back(VE.getValueID(C->getOperand(0))); 2565 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2566 } else { 2567 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2568 Code = bitc::CST_CODE_CE_BINOP; 2569 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2570 Record.push_back(VE.getValueID(C->getOperand(0))); 2571 Record.push_back(VE.getValueID(C->getOperand(1))); 2572 uint64_t Flags = getOptimizationFlags(CE); 2573 if (Flags != 0) 2574 Record.push_back(Flags); 2575 } 2576 break; 2577 case Instruction::FNeg: { 2578 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2579 Code = bitc::CST_CODE_CE_UNOP; 2580 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2581 Record.push_back(VE.getValueID(C->getOperand(0))); 2582 uint64_t Flags = getOptimizationFlags(CE); 2583 if (Flags != 0) 2584 Record.push_back(Flags); 2585 break; 2586 } 2587 case Instruction::GetElementPtr: { 2588 Code = bitc::CST_CODE_CE_GEP; 2589 const auto *GO = cast<GEPOperator>(C); 2590 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2591 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2592 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2593 Record.push_back((*Idx << 1) | GO->isInBounds()); 2594 } else if (GO->isInBounds()) 2595 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2596 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2597 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2598 Record.push_back(VE.getValueID(C->getOperand(i))); 2599 } 2600 break; 2601 } 2602 case Instruction::Select: 2603 Code = bitc::CST_CODE_CE_SELECT; 2604 Record.push_back(VE.getValueID(C->getOperand(0))); 2605 Record.push_back(VE.getValueID(C->getOperand(1))); 2606 Record.push_back(VE.getValueID(C->getOperand(2))); 2607 break; 2608 case Instruction::ExtractElement: 2609 Code = bitc::CST_CODE_CE_EXTRACTELT; 2610 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2611 Record.push_back(VE.getValueID(C->getOperand(0))); 2612 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2613 Record.push_back(VE.getValueID(C->getOperand(1))); 2614 break; 2615 case Instruction::InsertElement: 2616 Code = bitc::CST_CODE_CE_INSERTELT; 2617 Record.push_back(VE.getValueID(C->getOperand(0))); 2618 Record.push_back(VE.getValueID(C->getOperand(1))); 2619 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2620 Record.push_back(VE.getValueID(C->getOperand(2))); 2621 break; 2622 case Instruction::ShuffleVector: 2623 // If the return type and argument types are the same, this is a 2624 // standard shufflevector instruction. If the types are different, 2625 // then the shuffle is widening or truncating the input vectors, and 2626 // the argument type must also be encoded. 2627 if (C->getType() == C->getOperand(0)->getType()) { 2628 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2629 } else { 2630 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2631 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2632 } 2633 Record.push_back(VE.getValueID(C->getOperand(0))); 2634 Record.push_back(VE.getValueID(C->getOperand(1))); 2635 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2636 break; 2637 case Instruction::ICmp: 2638 case Instruction::FCmp: 2639 Code = bitc::CST_CODE_CE_CMP; 2640 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2641 Record.push_back(VE.getValueID(C->getOperand(0))); 2642 Record.push_back(VE.getValueID(C->getOperand(1))); 2643 Record.push_back(CE->getPredicate()); 2644 break; 2645 } 2646 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2647 Code = bitc::CST_CODE_BLOCKADDRESS; 2648 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2649 Record.push_back(VE.getValueID(BA->getFunction())); 2650 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2651 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2652 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2653 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2654 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2655 } else { 2656 #ifndef NDEBUG 2657 C->dump(); 2658 #endif 2659 llvm_unreachable("Unknown constant!"); 2660 } 2661 Stream.EmitRecord(Code, Record, AbbrevToUse); 2662 Record.clear(); 2663 } 2664 2665 Stream.ExitBlock(); 2666 } 2667 2668 void ModuleBitcodeWriter::writeModuleConstants() { 2669 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2670 2671 // Find the first constant to emit, which is the first non-globalvalue value. 2672 // We know globalvalues have been emitted by WriteModuleInfo. 2673 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2674 if (!isa<GlobalValue>(Vals[i].first)) { 2675 writeConstants(i, Vals.size(), true); 2676 return; 2677 } 2678 } 2679 } 2680 2681 /// pushValueAndType - The file has to encode both the value and type id for 2682 /// many values, because we need to know what type to create for forward 2683 /// references. However, most operands are not forward references, so this type 2684 /// field is not needed. 2685 /// 2686 /// This function adds V's value ID to Vals. If the value ID is higher than the 2687 /// instruction ID, then it is a forward reference, and it also includes the 2688 /// type ID. The value ID that is written is encoded relative to the InstID. 2689 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2690 SmallVectorImpl<unsigned> &Vals) { 2691 unsigned ValID = VE.getValueID(V); 2692 // Make encoding relative to the InstID. 2693 Vals.push_back(InstID - ValID); 2694 if (ValID >= InstID) { 2695 Vals.push_back(VE.getTypeID(V->getType())); 2696 return true; 2697 } 2698 return false; 2699 } 2700 2701 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2702 unsigned InstID) { 2703 SmallVector<unsigned, 64> Record; 2704 LLVMContext &C = CS.getContext(); 2705 2706 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2707 const auto &Bundle = CS.getOperandBundleAt(i); 2708 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2709 2710 for (auto &Input : Bundle.Inputs) 2711 pushValueAndType(Input, InstID, Record); 2712 2713 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2714 Record.clear(); 2715 } 2716 } 2717 2718 /// pushValue - Like pushValueAndType, but where the type of the value is 2719 /// omitted (perhaps it was already encoded in an earlier operand). 2720 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2721 SmallVectorImpl<unsigned> &Vals) { 2722 unsigned ValID = VE.getValueID(V); 2723 Vals.push_back(InstID - ValID); 2724 } 2725 2726 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2727 SmallVectorImpl<uint64_t> &Vals) { 2728 unsigned ValID = VE.getValueID(V); 2729 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2730 emitSignedInt64(Vals, diff); 2731 } 2732 2733 /// WriteInstruction - Emit an instruction to the specified stream. 2734 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2735 unsigned InstID, 2736 SmallVectorImpl<unsigned> &Vals) { 2737 unsigned Code = 0; 2738 unsigned AbbrevToUse = 0; 2739 VE.setInstructionID(&I); 2740 switch (I.getOpcode()) { 2741 default: 2742 if (Instruction::isCast(I.getOpcode())) { 2743 Code = bitc::FUNC_CODE_INST_CAST; 2744 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2745 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2746 Vals.push_back(VE.getTypeID(I.getType())); 2747 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2748 } else { 2749 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2750 Code = bitc::FUNC_CODE_INST_BINOP; 2751 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2752 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2753 pushValue(I.getOperand(1), InstID, Vals); 2754 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2755 uint64_t Flags = getOptimizationFlags(&I); 2756 if (Flags != 0) { 2757 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2758 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2759 Vals.push_back(Flags); 2760 } 2761 } 2762 break; 2763 case Instruction::FNeg: { 2764 Code = bitc::FUNC_CODE_INST_UNOP; 2765 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2766 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2767 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2768 uint64_t Flags = getOptimizationFlags(&I); 2769 if (Flags != 0) { 2770 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2771 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2772 Vals.push_back(Flags); 2773 } 2774 break; 2775 } 2776 case Instruction::GetElementPtr: { 2777 Code = bitc::FUNC_CODE_INST_GEP; 2778 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2779 auto &GEPInst = cast<GetElementPtrInst>(I); 2780 Vals.push_back(GEPInst.isInBounds()); 2781 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2782 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2783 pushValueAndType(I.getOperand(i), InstID, Vals); 2784 break; 2785 } 2786 case Instruction::ExtractValue: { 2787 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2788 pushValueAndType(I.getOperand(0), InstID, Vals); 2789 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2790 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2791 break; 2792 } 2793 case Instruction::InsertValue: { 2794 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2795 pushValueAndType(I.getOperand(0), InstID, Vals); 2796 pushValueAndType(I.getOperand(1), InstID, Vals); 2797 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2798 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2799 break; 2800 } 2801 case Instruction::Select: { 2802 Code = bitc::FUNC_CODE_INST_VSELECT; 2803 pushValueAndType(I.getOperand(1), InstID, Vals); 2804 pushValue(I.getOperand(2), InstID, Vals); 2805 pushValueAndType(I.getOperand(0), InstID, Vals); 2806 uint64_t Flags = getOptimizationFlags(&I); 2807 if (Flags != 0) 2808 Vals.push_back(Flags); 2809 break; 2810 } 2811 case Instruction::ExtractElement: 2812 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2813 pushValueAndType(I.getOperand(0), InstID, Vals); 2814 pushValueAndType(I.getOperand(1), InstID, Vals); 2815 break; 2816 case Instruction::InsertElement: 2817 Code = bitc::FUNC_CODE_INST_INSERTELT; 2818 pushValueAndType(I.getOperand(0), InstID, Vals); 2819 pushValue(I.getOperand(1), InstID, Vals); 2820 pushValueAndType(I.getOperand(2), InstID, Vals); 2821 break; 2822 case Instruction::ShuffleVector: 2823 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2824 pushValueAndType(I.getOperand(0), InstID, Vals); 2825 pushValue(I.getOperand(1), InstID, Vals); 2826 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2827 Vals); 2828 break; 2829 case Instruction::ICmp: 2830 case Instruction::FCmp: { 2831 // compare returning Int1Ty or vector of Int1Ty 2832 Code = bitc::FUNC_CODE_INST_CMP2; 2833 pushValueAndType(I.getOperand(0), InstID, Vals); 2834 pushValue(I.getOperand(1), InstID, Vals); 2835 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2836 uint64_t Flags = getOptimizationFlags(&I); 2837 if (Flags != 0) 2838 Vals.push_back(Flags); 2839 break; 2840 } 2841 2842 case Instruction::Ret: 2843 { 2844 Code = bitc::FUNC_CODE_INST_RET; 2845 unsigned NumOperands = I.getNumOperands(); 2846 if (NumOperands == 0) 2847 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2848 else if (NumOperands == 1) { 2849 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2850 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2851 } else { 2852 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2853 pushValueAndType(I.getOperand(i), InstID, Vals); 2854 } 2855 } 2856 break; 2857 case Instruction::Br: 2858 { 2859 Code = bitc::FUNC_CODE_INST_BR; 2860 const BranchInst &II = cast<BranchInst>(I); 2861 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2862 if (II.isConditional()) { 2863 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2864 pushValue(II.getCondition(), InstID, Vals); 2865 } 2866 } 2867 break; 2868 case Instruction::Switch: 2869 { 2870 Code = bitc::FUNC_CODE_INST_SWITCH; 2871 const SwitchInst &SI = cast<SwitchInst>(I); 2872 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2873 pushValue(SI.getCondition(), InstID, Vals); 2874 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2875 for (auto Case : SI.cases()) { 2876 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2877 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2878 } 2879 } 2880 break; 2881 case Instruction::IndirectBr: 2882 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2883 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2884 // Encode the address operand as relative, but not the basic blocks. 2885 pushValue(I.getOperand(0), InstID, Vals); 2886 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2887 Vals.push_back(VE.getValueID(I.getOperand(i))); 2888 break; 2889 2890 case Instruction::Invoke: { 2891 const InvokeInst *II = cast<InvokeInst>(&I); 2892 const Value *Callee = II->getCalledOperand(); 2893 FunctionType *FTy = II->getFunctionType(); 2894 2895 if (II->hasOperandBundles()) 2896 writeOperandBundles(*II, InstID); 2897 2898 Code = bitc::FUNC_CODE_INST_INVOKE; 2899 2900 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2901 Vals.push_back(II->getCallingConv() | 1 << 13); 2902 Vals.push_back(VE.getValueID(II->getNormalDest())); 2903 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2904 Vals.push_back(VE.getTypeID(FTy)); 2905 pushValueAndType(Callee, InstID, Vals); 2906 2907 // Emit value #'s for the fixed parameters. 2908 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2909 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2910 2911 // Emit type/value pairs for varargs params. 2912 if (FTy->isVarArg()) { 2913 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2914 i != e; ++i) 2915 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2916 } 2917 break; 2918 } 2919 case Instruction::Resume: 2920 Code = bitc::FUNC_CODE_INST_RESUME; 2921 pushValueAndType(I.getOperand(0), InstID, Vals); 2922 break; 2923 case Instruction::CleanupRet: { 2924 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2925 const auto &CRI = cast<CleanupReturnInst>(I); 2926 pushValue(CRI.getCleanupPad(), InstID, Vals); 2927 if (CRI.hasUnwindDest()) 2928 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2929 break; 2930 } 2931 case Instruction::CatchRet: { 2932 Code = bitc::FUNC_CODE_INST_CATCHRET; 2933 const auto &CRI = cast<CatchReturnInst>(I); 2934 pushValue(CRI.getCatchPad(), InstID, Vals); 2935 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2936 break; 2937 } 2938 case Instruction::CleanupPad: 2939 case Instruction::CatchPad: { 2940 const auto &FuncletPad = cast<FuncletPadInst>(I); 2941 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2942 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2943 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2944 2945 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2946 Vals.push_back(NumArgOperands); 2947 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2948 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2949 break; 2950 } 2951 case Instruction::CatchSwitch: { 2952 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2953 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2954 2955 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2956 2957 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2958 Vals.push_back(NumHandlers); 2959 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2960 Vals.push_back(VE.getValueID(CatchPadBB)); 2961 2962 if (CatchSwitch.hasUnwindDest()) 2963 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2964 break; 2965 } 2966 case Instruction::CallBr: { 2967 const CallBrInst *CBI = cast<CallBrInst>(&I); 2968 const Value *Callee = CBI->getCalledOperand(); 2969 FunctionType *FTy = CBI->getFunctionType(); 2970 2971 if (CBI->hasOperandBundles()) 2972 writeOperandBundles(*CBI, InstID); 2973 2974 Code = bitc::FUNC_CODE_INST_CALLBR; 2975 2976 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2977 2978 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2979 1 << bitc::CALL_EXPLICIT_TYPE); 2980 2981 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2982 Vals.push_back(CBI->getNumIndirectDests()); 2983 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2984 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2985 2986 Vals.push_back(VE.getTypeID(FTy)); 2987 pushValueAndType(Callee, InstID, Vals); 2988 2989 // Emit value #'s for the fixed parameters. 2990 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2991 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2992 2993 // Emit type/value pairs for varargs params. 2994 if (FTy->isVarArg()) { 2995 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2996 i != e; ++i) 2997 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2998 } 2999 break; 3000 } 3001 case Instruction::Unreachable: 3002 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3003 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3004 break; 3005 3006 case Instruction::PHI: { 3007 const PHINode &PN = cast<PHINode>(I); 3008 Code = bitc::FUNC_CODE_INST_PHI; 3009 // With the newer instruction encoding, forward references could give 3010 // negative valued IDs. This is most common for PHIs, so we use 3011 // signed VBRs. 3012 SmallVector<uint64_t, 128> Vals64; 3013 Vals64.push_back(VE.getTypeID(PN.getType())); 3014 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3015 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3016 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3017 } 3018 3019 uint64_t Flags = getOptimizationFlags(&I); 3020 if (Flags != 0) 3021 Vals64.push_back(Flags); 3022 3023 // Emit a Vals64 vector and exit. 3024 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3025 Vals64.clear(); 3026 return; 3027 } 3028 3029 case Instruction::LandingPad: { 3030 const LandingPadInst &LP = cast<LandingPadInst>(I); 3031 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3032 Vals.push_back(VE.getTypeID(LP.getType())); 3033 Vals.push_back(LP.isCleanup()); 3034 Vals.push_back(LP.getNumClauses()); 3035 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3036 if (LP.isCatch(I)) 3037 Vals.push_back(LandingPadInst::Catch); 3038 else 3039 Vals.push_back(LandingPadInst::Filter); 3040 pushValueAndType(LP.getClause(I), InstID, Vals); 3041 } 3042 break; 3043 } 3044 3045 case Instruction::Alloca: { 3046 Code = bitc::FUNC_CODE_INST_ALLOCA; 3047 const AllocaInst &AI = cast<AllocaInst>(I); 3048 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3049 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3050 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3051 using APV = AllocaPackedValues; 3052 unsigned Record = 0; 3053 Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign())); 3054 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3055 Bitfield::set<APV::ExplicitType>(Record, true); 3056 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3057 Vals.push_back(Record); 3058 break; 3059 } 3060 3061 case Instruction::Load: 3062 if (cast<LoadInst>(I).isAtomic()) { 3063 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3064 pushValueAndType(I.getOperand(0), InstID, Vals); 3065 } else { 3066 Code = bitc::FUNC_CODE_INST_LOAD; 3067 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3068 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3069 } 3070 Vals.push_back(VE.getTypeID(I.getType())); 3071 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3072 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3073 if (cast<LoadInst>(I).isAtomic()) { 3074 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3075 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3076 } 3077 break; 3078 case Instruction::Store: 3079 if (cast<StoreInst>(I).isAtomic()) 3080 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3081 else 3082 Code = bitc::FUNC_CODE_INST_STORE; 3083 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3084 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3085 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3086 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3087 if (cast<StoreInst>(I).isAtomic()) { 3088 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3089 Vals.push_back( 3090 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3091 } 3092 break; 3093 case Instruction::AtomicCmpXchg: 3094 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3095 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3096 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3097 pushValue(I.getOperand(2), InstID, Vals); // newval. 3098 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3099 Vals.push_back( 3100 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3101 Vals.push_back( 3102 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3103 Vals.push_back( 3104 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3105 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3106 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3107 break; 3108 case Instruction::AtomicRMW: 3109 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3110 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3111 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3112 Vals.push_back( 3113 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3114 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3115 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3116 Vals.push_back( 3117 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3118 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3119 break; 3120 case Instruction::Fence: 3121 Code = bitc::FUNC_CODE_INST_FENCE; 3122 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3123 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3124 break; 3125 case Instruction::Call: { 3126 const CallInst &CI = cast<CallInst>(I); 3127 FunctionType *FTy = CI.getFunctionType(); 3128 3129 if (CI.hasOperandBundles()) 3130 writeOperandBundles(CI, InstID); 3131 3132 Code = bitc::FUNC_CODE_INST_CALL; 3133 3134 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3135 3136 unsigned Flags = getOptimizationFlags(&I); 3137 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3138 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3139 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3140 1 << bitc::CALL_EXPLICIT_TYPE | 3141 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3142 unsigned(Flags != 0) << bitc::CALL_FMF); 3143 if (Flags != 0) 3144 Vals.push_back(Flags); 3145 3146 Vals.push_back(VE.getTypeID(FTy)); 3147 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3148 3149 // Emit value #'s for the fixed parameters. 3150 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3151 // Check for labels (can happen with asm labels). 3152 if (FTy->getParamType(i)->isLabelTy()) 3153 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3154 else 3155 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3156 } 3157 3158 // Emit type/value pairs for varargs params. 3159 if (FTy->isVarArg()) { 3160 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3161 i != e; ++i) 3162 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3163 } 3164 break; 3165 } 3166 case Instruction::VAArg: 3167 Code = bitc::FUNC_CODE_INST_VAARG; 3168 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3169 pushValue(I.getOperand(0), InstID, Vals); // valist. 3170 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3171 break; 3172 case Instruction::Freeze: 3173 Code = bitc::FUNC_CODE_INST_FREEZE; 3174 pushValueAndType(I.getOperand(0), InstID, Vals); 3175 break; 3176 } 3177 3178 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3179 Vals.clear(); 3180 } 3181 3182 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3183 /// to allow clients to efficiently find the function body. 3184 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3185 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3186 // Get the offset of the VST we are writing, and backpatch it into 3187 // the VST forward declaration record. 3188 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3189 // The BitcodeStartBit was the stream offset of the identification block. 3190 VSTOffset -= bitcodeStartBit(); 3191 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3192 // Note that we add 1 here because the offset is relative to one word 3193 // before the start of the identification block, which was historically 3194 // always the start of the regular bitcode header. 3195 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3196 3197 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3198 3199 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3200 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3203 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3204 3205 for (const Function &F : M) { 3206 uint64_t Record[2]; 3207 3208 if (F.isDeclaration()) 3209 continue; 3210 3211 Record[0] = VE.getValueID(&F); 3212 3213 // Save the word offset of the function (from the start of the 3214 // actual bitcode written to the stream). 3215 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3216 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3217 // Note that we add 1 here because the offset is relative to one word 3218 // before the start of the identification block, which was historically 3219 // always the start of the regular bitcode header. 3220 Record[1] = BitcodeIndex / 32 + 1; 3221 3222 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3223 } 3224 3225 Stream.ExitBlock(); 3226 } 3227 3228 /// Emit names for arguments, instructions and basic blocks in a function. 3229 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3230 const ValueSymbolTable &VST) { 3231 if (VST.empty()) 3232 return; 3233 3234 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3235 3236 // FIXME: Set up the abbrev, we know how many values there are! 3237 // FIXME: We know if the type names can use 7-bit ascii. 3238 SmallVector<uint64_t, 64> NameVals; 3239 3240 for (const ValueName &Name : VST) { 3241 // Figure out the encoding to use for the name. 3242 StringEncoding Bits = getStringEncoding(Name.getKey()); 3243 3244 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3245 NameVals.push_back(VE.getValueID(Name.getValue())); 3246 3247 // VST_CODE_ENTRY: [valueid, namechar x N] 3248 // VST_CODE_BBENTRY: [bbid, namechar x N] 3249 unsigned Code; 3250 if (isa<BasicBlock>(Name.getValue())) { 3251 Code = bitc::VST_CODE_BBENTRY; 3252 if (Bits == SE_Char6) 3253 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3254 } else { 3255 Code = bitc::VST_CODE_ENTRY; 3256 if (Bits == SE_Char6) 3257 AbbrevToUse = VST_ENTRY_6_ABBREV; 3258 else if (Bits == SE_Fixed7) 3259 AbbrevToUse = VST_ENTRY_7_ABBREV; 3260 } 3261 3262 for (const auto P : Name.getKey()) 3263 NameVals.push_back((unsigned char)P); 3264 3265 // Emit the finished record. 3266 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3267 NameVals.clear(); 3268 } 3269 3270 Stream.ExitBlock(); 3271 } 3272 3273 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3274 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3275 unsigned Code; 3276 if (isa<BasicBlock>(Order.V)) 3277 Code = bitc::USELIST_CODE_BB; 3278 else 3279 Code = bitc::USELIST_CODE_DEFAULT; 3280 3281 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3282 Record.push_back(VE.getValueID(Order.V)); 3283 Stream.EmitRecord(Code, Record); 3284 } 3285 3286 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3287 assert(VE.shouldPreserveUseListOrder() && 3288 "Expected to be preserving use-list order"); 3289 3290 auto hasMore = [&]() { 3291 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3292 }; 3293 if (!hasMore()) 3294 // Nothing to do. 3295 return; 3296 3297 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3298 while (hasMore()) { 3299 writeUseList(std::move(VE.UseListOrders.back())); 3300 VE.UseListOrders.pop_back(); 3301 } 3302 Stream.ExitBlock(); 3303 } 3304 3305 /// Emit a function body to the module stream. 3306 void ModuleBitcodeWriter::writeFunction( 3307 const Function &F, 3308 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3309 // Save the bitcode index of the start of this function block for recording 3310 // in the VST. 3311 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3312 3313 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3314 VE.incorporateFunction(F); 3315 3316 SmallVector<unsigned, 64> Vals; 3317 3318 // Emit the number of basic blocks, so the reader can create them ahead of 3319 // time. 3320 Vals.push_back(VE.getBasicBlocks().size()); 3321 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3322 Vals.clear(); 3323 3324 // If there are function-local constants, emit them now. 3325 unsigned CstStart, CstEnd; 3326 VE.getFunctionConstantRange(CstStart, CstEnd); 3327 writeConstants(CstStart, CstEnd, false); 3328 3329 // If there is function-local metadata, emit it now. 3330 writeFunctionMetadata(F); 3331 3332 // Keep a running idea of what the instruction ID is. 3333 unsigned InstID = CstEnd; 3334 3335 bool NeedsMetadataAttachment = F.hasMetadata(); 3336 3337 DILocation *LastDL = nullptr; 3338 // Finally, emit all the instructions, in order. 3339 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3340 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3341 I != E; ++I) { 3342 writeInstruction(*I, InstID, Vals); 3343 3344 if (!I->getType()->isVoidTy()) 3345 ++InstID; 3346 3347 // If the instruction has metadata, write a metadata attachment later. 3348 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3349 3350 // If the instruction has a debug location, emit it. 3351 DILocation *DL = I->getDebugLoc(); 3352 if (!DL) 3353 continue; 3354 3355 if (DL == LastDL) { 3356 // Just repeat the same debug loc as last time. 3357 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3358 continue; 3359 } 3360 3361 Vals.push_back(DL->getLine()); 3362 Vals.push_back(DL->getColumn()); 3363 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3364 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3365 Vals.push_back(DL->isImplicitCode()); 3366 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3367 Vals.clear(); 3368 3369 LastDL = DL; 3370 } 3371 3372 // Emit names for all the instructions etc. 3373 if (auto *Symtab = F.getValueSymbolTable()) 3374 writeFunctionLevelValueSymbolTable(*Symtab); 3375 3376 if (NeedsMetadataAttachment) 3377 writeFunctionMetadataAttachment(F); 3378 if (VE.shouldPreserveUseListOrder()) 3379 writeUseListBlock(&F); 3380 VE.purgeFunction(); 3381 Stream.ExitBlock(); 3382 } 3383 3384 // Emit blockinfo, which defines the standard abbreviations etc. 3385 void ModuleBitcodeWriter::writeBlockInfo() { 3386 // We only want to emit block info records for blocks that have multiple 3387 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3388 // Other blocks can define their abbrevs inline. 3389 Stream.EnterBlockInfoBlock(); 3390 3391 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3392 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3397 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3398 VST_ENTRY_8_ABBREV) 3399 llvm_unreachable("Unexpected abbrev ordering!"); 3400 } 3401 3402 { // 7-bit fixed width VST_CODE_ENTRY strings. 3403 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3404 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3408 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3409 VST_ENTRY_7_ABBREV) 3410 llvm_unreachable("Unexpected abbrev ordering!"); 3411 } 3412 { // 6-bit char6 VST_CODE_ENTRY strings. 3413 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3414 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3418 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3419 VST_ENTRY_6_ABBREV) 3420 llvm_unreachable("Unexpected abbrev ordering!"); 3421 } 3422 { // 6-bit char6 VST_CODE_BBENTRY strings. 3423 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3424 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3428 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3429 VST_BBENTRY_6_ABBREV) 3430 llvm_unreachable("Unexpected abbrev ordering!"); 3431 } 3432 3433 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3434 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3435 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3437 VE.computeBitsRequiredForTypeIndicies())); 3438 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3439 CONSTANTS_SETTYPE_ABBREV) 3440 llvm_unreachable("Unexpected abbrev ordering!"); 3441 } 3442 3443 { // INTEGER abbrev for CONSTANTS_BLOCK. 3444 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3445 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3447 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3448 CONSTANTS_INTEGER_ABBREV) 3449 llvm_unreachable("Unexpected abbrev ordering!"); 3450 } 3451 3452 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3453 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3454 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3457 VE.computeBitsRequiredForTypeIndicies())); 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3459 3460 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3461 CONSTANTS_CE_CAST_Abbrev) 3462 llvm_unreachable("Unexpected abbrev ordering!"); 3463 } 3464 { // NULL abbrev for CONSTANTS_BLOCK. 3465 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3466 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3467 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3468 CONSTANTS_NULL_Abbrev) 3469 llvm_unreachable("Unexpected abbrev ordering!"); 3470 } 3471 3472 // FIXME: This should only use space for first class types! 3473 3474 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3475 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3476 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3479 VE.computeBitsRequiredForTypeIndicies())); 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3482 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3483 FUNCTION_INST_LOAD_ABBREV) 3484 llvm_unreachable("Unexpected abbrev ordering!"); 3485 } 3486 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3487 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3488 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3491 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3492 FUNCTION_INST_UNOP_ABBREV) 3493 llvm_unreachable("Unexpected abbrev ordering!"); 3494 } 3495 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3496 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3497 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3501 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3502 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3503 llvm_unreachable("Unexpected abbrev ordering!"); 3504 } 3505 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3506 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3507 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3511 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3512 FUNCTION_INST_BINOP_ABBREV) 3513 llvm_unreachable("Unexpected abbrev ordering!"); 3514 } 3515 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3516 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3517 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3522 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3523 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3524 llvm_unreachable("Unexpected abbrev ordering!"); 3525 } 3526 { // INST_CAST abbrev for FUNCTION_BLOCK. 3527 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3528 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3531 VE.computeBitsRequiredForTypeIndicies())); 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3533 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3534 FUNCTION_INST_CAST_ABBREV) 3535 llvm_unreachable("Unexpected abbrev ordering!"); 3536 } 3537 3538 { // INST_RET abbrev for FUNCTION_BLOCK. 3539 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3540 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3541 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3542 FUNCTION_INST_RET_VOID_ABBREV) 3543 llvm_unreachable("Unexpected abbrev ordering!"); 3544 } 3545 { // INST_RET abbrev for FUNCTION_BLOCK. 3546 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3547 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3549 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3550 FUNCTION_INST_RET_VAL_ABBREV) 3551 llvm_unreachable("Unexpected abbrev ordering!"); 3552 } 3553 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3554 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3555 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3556 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3557 FUNCTION_INST_UNREACHABLE_ABBREV) 3558 llvm_unreachable("Unexpected abbrev ordering!"); 3559 } 3560 { 3561 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3562 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3565 Log2_32_Ceil(VE.getTypes().size() + 1))); 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3568 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3569 FUNCTION_INST_GEP_ABBREV) 3570 llvm_unreachable("Unexpected abbrev ordering!"); 3571 } 3572 3573 Stream.ExitBlock(); 3574 } 3575 3576 /// Write the module path strings, currently only used when generating 3577 /// a combined index file. 3578 void IndexBitcodeWriter::writeModStrings() { 3579 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3580 3581 // TODO: See which abbrev sizes we actually need to emit 3582 3583 // 8-bit fixed-width MST_ENTRY strings. 3584 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3585 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3589 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3590 3591 // 7-bit fixed width MST_ENTRY strings. 3592 Abbv = std::make_shared<BitCodeAbbrev>(); 3593 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3597 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3598 3599 // 6-bit char6 MST_ENTRY strings. 3600 Abbv = std::make_shared<BitCodeAbbrev>(); 3601 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3605 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3606 3607 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3608 Abbv = std::make_shared<BitCodeAbbrev>(); 3609 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3615 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3616 3617 SmallVector<unsigned, 64> Vals; 3618 forEachModule( 3619 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3620 StringRef Key = MPSE.getKey(); 3621 const auto &Value = MPSE.getValue(); 3622 StringEncoding Bits = getStringEncoding(Key); 3623 unsigned AbbrevToUse = Abbrev8Bit; 3624 if (Bits == SE_Char6) 3625 AbbrevToUse = Abbrev6Bit; 3626 else if (Bits == SE_Fixed7) 3627 AbbrevToUse = Abbrev7Bit; 3628 3629 Vals.push_back(Value.first); 3630 Vals.append(Key.begin(), Key.end()); 3631 3632 // Emit the finished record. 3633 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3634 3635 // Emit an optional hash for the module now 3636 const auto &Hash = Value.second; 3637 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3638 Vals.assign(Hash.begin(), Hash.end()); 3639 // Emit the hash record. 3640 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3641 } 3642 3643 Vals.clear(); 3644 }); 3645 Stream.ExitBlock(); 3646 } 3647 3648 /// Write the function type metadata related records that need to appear before 3649 /// a function summary entry (whether per-module or combined). 3650 template <typename Fn> 3651 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3652 FunctionSummary *FS, 3653 Fn GetValueID) { 3654 if (!FS->type_tests().empty()) 3655 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3656 3657 SmallVector<uint64_t, 64> Record; 3658 3659 auto WriteVFuncIdVec = [&](uint64_t Ty, 3660 ArrayRef<FunctionSummary::VFuncId> VFs) { 3661 if (VFs.empty()) 3662 return; 3663 Record.clear(); 3664 for (auto &VF : VFs) { 3665 Record.push_back(VF.GUID); 3666 Record.push_back(VF.Offset); 3667 } 3668 Stream.EmitRecord(Ty, Record); 3669 }; 3670 3671 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3672 FS->type_test_assume_vcalls()); 3673 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3674 FS->type_checked_load_vcalls()); 3675 3676 auto WriteConstVCallVec = [&](uint64_t Ty, 3677 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3678 for (auto &VC : VCs) { 3679 Record.clear(); 3680 Record.push_back(VC.VFunc.GUID); 3681 Record.push_back(VC.VFunc.Offset); 3682 llvm::append_range(Record, VC.Args); 3683 Stream.EmitRecord(Ty, Record); 3684 } 3685 }; 3686 3687 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3688 FS->type_test_assume_const_vcalls()); 3689 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3690 FS->type_checked_load_const_vcalls()); 3691 3692 auto WriteRange = [&](ConstantRange Range) { 3693 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3694 assert(Range.getLower().getNumWords() == 1); 3695 assert(Range.getUpper().getNumWords() == 1); 3696 emitSignedInt64(Record, *Range.getLower().getRawData()); 3697 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3698 }; 3699 3700 if (!FS->paramAccesses().empty()) { 3701 Record.clear(); 3702 for (auto &Arg : FS->paramAccesses()) { 3703 size_t UndoSize = Record.size(); 3704 Record.push_back(Arg.ParamNo); 3705 WriteRange(Arg.Use); 3706 Record.push_back(Arg.Calls.size()); 3707 for (auto &Call : Arg.Calls) { 3708 Record.push_back(Call.ParamNo); 3709 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3710 if (!ValueID) { 3711 // If ValueID is unknown we can't drop just this call, we must drop 3712 // entire parameter. 3713 Record.resize(UndoSize); 3714 break; 3715 } 3716 Record.push_back(*ValueID); 3717 WriteRange(Call.Offsets); 3718 } 3719 } 3720 if (!Record.empty()) 3721 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3722 } 3723 } 3724 3725 /// Collect type IDs from type tests used by function. 3726 static void 3727 getReferencedTypeIds(FunctionSummary *FS, 3728 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3729 if (!FS->type_tests().empty()) 3730 for (auto &TT : FS->type_tests()) 3731 ReferencedTypeIds.insert(TT); 3732 3733 auto GetReferencedTypesFromVFuncIdVec = 3734 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3735 for (auto &VF : VFs) 3736 ReferencedTypeIds.insert(VF.GUID); 3737 }; 3738 3739 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3740 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3741 3742 auto GetReferencedTypesFromConstVCallVec = 3743 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3744 for (auto &VC : VCs) 3745 ReferencedTypeIds.insert(VC.VFunc.GUID); 3746 }; 3747 3748 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3749 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3750 } 3751 3752 static void writeWholeProgramDevirtResolutionByArg( 3753 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3754 const WholeProgramDevirtResolution::ByArg &ByArg) { 3755 NameVals.push_back(args.size()); 3756 llvm::append_range(NameVals, args); 3757 3758 NameVals.push_back(ByArg.TheKind); 3759 NameVals.push_back(ByArg.Info); 3760 NameVals.push_back(ByArg.Byte); 3761 NameVals.push_back(ByArg.Bit); 3762 } 3763 3764 static void writeWholeProgramDevirtResolution( 3765 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3766 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3767 NameVals.push_back(Id); 3768 3769 NameVals.push_back(Wpd.TheKind); 3770 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3771 NameVals.push_back(Wpd.SingleImplName.size()); 3772 3773 NameVals.push_back(Wpd.ResByArg.size()); 3774 for (auto &A : Wpd.ResByArg) 3775 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3776 } 3777 3778 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3779 StringTableBuilder &StrtabBuilder, 3780 const std::string &Id, 3781 const TypeIdSummary &Summary) { 3782 NameVals.push_back(StrtabBuilder.add(Id)); 3783 NameVals.push_back(Id.size()); 3784 3785 NameVals.push_back(Summary.TTRes.TheKind); 3786 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3787 NameVals.push_back(Summary.TTRes.AlignLog2); 3788 NameVals.push_back(Summary.TTRes.SizeM1); 3789 NameVals.push_back(Summary.TTRes.BitMask); 3790 NameVals.push_back(Summary.TTRes.InlineBits); 3791 3792 for (auto &W : Summary.WPDRes) 3793 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3794 W.second); 3795 } 3796 3797 static void writeTypeIdCompatibleVtableSummaryRecord( 3798 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3799 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3800 ValueEnumerator &VE) { 3801 NameVals.push_back(StrtabBuilder.add(Id)); 3802 NameVals.push_back(Id.size()); 3803 3804 for (auto &P : Summary) { 3805 NameVals.push_back(P.AddressPointOffset); 3806 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3807 } 3808 } 3809 3810 // Helper to emit a single function summary record. 3811 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3812 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3813 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3814 const Function &F) { 3815 NameVals.push_back(ValueID); 3816 3817 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3818 3819 writeFunctionTypeMetadataRecords( 3820 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3821 return {VE.getValueID(VI.getValue())}; 3822 }); 3823 3824 auto SpecialRefCnts = FS->specialRefCounts(); 3825 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3826 NameVals.push_back(FS->instCount()); 3827 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3828 NameVals.push_back(FS->refs().size()); 3829 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3830 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3831 3832 for (auto &RI : FS->refs()) 3833 NameVals.push_back(VE.getValueID(RI.getValue())); 3834 3835 bool HasProfileData = 3836 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3837 for (auto &ECI : FS->calls()) { 3838 NameVals.push_back(getValueId(ECI.first)); 3839 if (HasProfileData) 3840 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3841 else if (WriteRelBFToSummary) 3842 NameVals.push_back(ECI.second.RelBlockFreq); 3843 } 3844 3845 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3846 unsigned Code = 3847 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3848 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3849 : bitc::FS_PERMODULE)); 3850 3851 // Emit the finished record. 3852 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3853 NameVals.clear(); 3854 } 3855 3856 // Collect the global value references in the given variable's initializer, 3857 // and emit them in a summary record. 3858 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3859 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3860 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3861 auto VI = Index->getValueInfo(V.getGUID()); 3862 if (!VI || VI.getSummaryList().empty()) { 3863 // Only declarations should not have a summary (a declaration might however 3864 // have a summary if the def was in module level asm). 3865 assert(V.isDeclaration()); 3866 return; 3867 } 3868 auto *Summary = VI.getSummaryList()[0].get(); 3869 NameVals.push_back(VE.getValueID(&V)); 3870 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3871 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3872 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3873 3874 auto VTableFuncs = VS->vTableFuncs(); 3875 if (!VTableFuncs.empty()) 3876 NameVals.push_back(VS->refs().size()); 3877 3878 unsigned SizeBeforeRefs = NameVals.size(); 3879 for (auto &RI : VS->refs()) 3880 NameVals.push_back(VE.getValueID(RI.getValue())); 3881 // Sort the refs for determinism output, the vector returned by FS->refs() has 3882 // been initialized from a DenseSet. 3883 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3884 3885 if (VTableFuncs.empty()) 3886 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3887 FSModRefsAbbrev); 3888 else { 3889 // VTableFuncs pairs should already be sorted by offset. 3890 for (auto &P : VTableFuncs) { 3891 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3892 NameVals.push_back(P.VTableOffset); 3893 } 3894 3895 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3896 FSModVTableRefsAbbrev); 3897 } 3898 NameVals.clear(); 3899 } 3900 3901 /// Emit the per-module summary section alongside the rest of 3902 /// the module's bitcode. 3903 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3904 // By default we compile with ThinLTO if the module has a summary, but the 3905 // client can request full LTO with a module flag. 3906 bool IsThinLTO = true; 3907 if (auto *MD = 3908 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3909 IsThinLTO = MD->getZExtValue(); 3910 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3911 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3912 4); 3913 3914 Stream.EmitRecord( 3915 bitc::FS_VERSION, 3916 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3917 3918 // Write the index flags. 3919 uint64_t Flags = 0; 3920 // Bits 1-3 are set only in the combined index, skip them. 3921 if (Index->enableSplitLTOUnit()) 3922 Flags |= 0x8; 3923 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3924 3925 if (Index->begin() == Index->end()) { 3926 Stream.ExitBlock(); 3927 return; 3928 } 3929 3930 for (const auto &GVI : valueIds()) { 3931 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3932 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3933 } 3934 3935 // Abbrev for FS_PERMODULE_PROFILE. 3936 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3937 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3945 // numrefs x valueid, n x (valueid, hotness) 3946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3948 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3949 3950 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3951 Abbv = std::make_shared<BitCodeAbbrev>(); 3952 if (WriteRelBFToSummary) 3953 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3954 else 3955 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3963 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3966 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3967 3968 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3969 Abbv = std::make_shared<BitCodeAbbrev>(); 3970 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3975 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3976 3977 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3978 Abbv = std::make_shared<BitCodeAbbrev>(); 3979 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3983 // numrefs x valueid, n x (valueid , offset) 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3986 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3987 3988 // Abbrev for FS_ALIAS. 3989 Abbv = std::make_shared<BitCodeAbbrev>(); 3990 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3994 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3995 3996 // Abbrev for FS_TYPE_ID_METADATA 3997 Abbv = std::make_shared<BitCodeAbbrev>(); 3998 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4001 // n x (valueid , offset) 4002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4004 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4005 4006 SmallVector<uint64_t, 64> NameVals; 4007 // Iterate over the list of functions instead of the Index to 4008 // ensure the ordering is stable. 4009 for (const Function &F : M) { 4010 // Summary emission does not support anonymous functions, they have to 4011 // renamed using the anonymous function renaming pass. 4012 if (!F.hasName()) 4013 report_fatal_error("Unexpected anonymous function when writing summary"); 4014 4015 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4016 if (!VI || VI.getSummaryList().empty()) { 4017 // Only declarations should not have a summary (a declaration might 4018 // however have a summary if the def was in module level asm). 4019 assert(F.isDeclaration()); 4020 continue; 4021 } 4022 auto *Summary = VI.getSummaryList()[0].get(); 4023 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4024 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4025 } 4026 4027 // Capture references from GlobalVariable initializers, which are outside 4028 // of a function scope. 4029 for (const GlobalVariable &G : M.globals()) 4030 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4031 FSModVTableRefsAbbrev); 4032 4033 for (const GlobalAlias &A : M.aliases()) { 4034 auto *Aliasee = A.getBaseObject(); 4035 if (!Aliasee->hasName()) 4036 // Nameless function don't have an entry in the summary, skip it. 4037 continue; 4038 auto AliasId = VE.getValueID(&A); 4039 auto AliaseeId = VE.getValueID(Aliasee); 4040 NameVals.push_back(AliasId); 4041 auto *Summary = Index->getGlobalValueSummary(A); 4042 AliasSummary *AS = cast<AliasSummary>(Summary); 4043 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4044 NameVals.push_back(AliaseeId); 4045 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4046 NameVals.clear(); 4047 } 4048 4049 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4050 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4051 S.second, VE); 4052 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4053 TypeIdCompatibleVtableAbbrev); 4054 NameVals.clear(); 4055 } 4056 4057 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4058 ArrayRef<uint64_t>{Index->getBlockCount()}); 4059 4060 Stream.ExitBlock(); 4061 } 4062 4063 /// Emit the combined summary section into the combined index file. 4064 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4065 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4066 Stream.EmitRecord( 4067 bitc::FS_VERSION, 4068 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4069 4070 // Write the index flags. 4071 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4072 4073 for (const auto &GVI : valueIds()) { 4074 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4075 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4076 } 4077 4078 // Abbrev for FS_COMBINED. 4079 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4080 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4090 // numrefs x valueid, n x (valueid) 4091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4093 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4094 4095 // Abbrev for FS_COMBINED_PROFILE. 4096 Abbv = std::make_shared<BitCodeAbbrev>(); 4097 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4107 // numrefs x valueid, n x (valueid, hotness) 4108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4110 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4111 4112 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4113 Abbv = std::make_shared<BitCodeAbbrev>(); 4114 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4120 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4121 4122 // Abbrev for FS_COMBINED_ALIAS. 4123 Abbv = std::make_shared<BitCodeAbbrev>(); 4124 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4129 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4130 4131 // The aliases are emitted as a post-pass, and will point to the value 4132 // id of the aliasee. Save them in a vector for post-processing. 4133 SmallVector<AliasSummary *, 64> Aliases; 4134 4135 // Save the value id for each summary for alias emission. 4136 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4137 4138 SmallVector<uint64_t, 64> NameVals; 4139 4140 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4141 // with the type ids referenced by this index file. 4142 std::set<GlobalValue::GUID> ReferencedTypeIds; 4143 4144 // For local linkage, we also emit the original name separately 4145 // immediately after the record. 4146 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4147 if (!GlobalValue::isLocalLinkage(S.linkage())) 4148 return; 4149 NameVals.push_back(S.getOriginalName()); 4150 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4151 NameVals.clear(); 4152 }; 4153 4154 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4155 forEachSummary([&](GVInfo I, bool IsAliasee) { 4156 GlobalValueSummary *S = I.second; 4157 assert(S); 4158 DefOrUseGUIDs.insert(I.first); 4159 for (const ValueInfo &VI : S->refs()) 4160 DefOrUseGUIDs.insert(VI.getGUID()); 4161 4162 auto ValueId = getValueId(I.first); 4163 assert(ValueId); 4164 SummaryToValueIdMap[S] = *ValueId; 4165 4166 // If this is invoked for an aliasee, we want to record the above 4167 // mapping, but then not emit a summary entry (if the aliasee is 4168 // to be imported, we will invoke this separately with IsAliasee=false). 4169 if (IsAliasee) 4170 return; 4171 4172 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4173 // Will process aliases as a post-pass because the reader wants all 4174 // global to be loaded first. 4175 Aliases.push_back(AS); 4176 return; 4177 } 4178 4179 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4180 NameVals.push_back(*ValueId); 4181 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4182 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4183 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4184 for (auto &RI : VS->refs()) { 4185 auto RefValueId = getValueId(RI.getGUID()); 4186 if (!RefValueId) 4187 continue; 4188 NameVals.push_back(*RefValueId); 4189 } 4190 4191 // Emit the finished record. 4192 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4193 FSModRefsAbbrev); 4194 NameVals.clear(); 4195 MaybeEmitOriginalName(*S); 4196 return; 4197 } 4198 4199 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4200 GlobalValue::GUID GUID = VI.getGUID(); 4201 Optional<unsigned> CallValueId = getValueId(GUID); 4202 if (CallValueId) 4203 return CallValueId; 4204 // For SamplePGO, the indirect call targets for local functions will 4205 // have its original name annotated in profile. We try to find the 4206 // corresponding PGOFuncName as the GUID. 4207 GUID = Index.getGUIDFromOriginalID(GUID); 4208 if (!GUID) 4209 return None; 4210 CallValueId = getValueId(GUID); 4211 if (!CallValueId) 4212 return None; 4213 // The mapping from OriginalId to GUID may return a GUID 4214 // that corresponds to a static variable. Filter it out here. 4215 // This can happen when 4216 // 1) There is a call to a library function which does not have 4217 // a CallValidId; 4218 // 2) There is a static variable with the OriginalGUID identical 4219 // to the GUID of the library function in 1); 4220 // When this happens, the logic for SamplePGO kicks in and 4221 // the static variable in 2) will be found, which needs to be 4222 // filtered out. 4223 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4224 if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4225 return None; 4226 return CallValueId; 4227 }; 4228 4229 auto *FS = cast<FunctionSummary>(S); 4230 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4231 getReferencedTypeIds(FS, ReferencedTypeIds); 4232 4233 NameVals.push_back(*ValueId); 4234 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4235 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4236 NameVals.push_back(FS->instCount()); 4237 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4238 NameVals.push_back(FS->entryCount()); 4239 4240 // Fill in below 4241 NameVals.push_back(0); // numrefs 4242 NameVals.push_back(0); // rorefcnt 4243 NameVals.push_back(0); // worefcnt 4244 4245 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4246 for (auto &RI : FS->refs()) { 4247 auto RefValueId = getValueId(RI.getGUID()); 4248 if (!RefValueId) 4249 continue; 4250 NameVals.push_back(*RefValueId); 4251 if (RI.isReadOnly()) 4252 RORefCnt++; 4253 else if (RI.isWriteOnly()) 4254 WORefCnt++; 4255 Count++; 4256 } 4257 NameVals[6] = Count; 4258 NameVals[7] = RORefCnt; 4259 NameVals[8] = WORefCnt; 4260 4261 bool HasProfileData = false; 4262 for (auto &EI : FS->calls()) { 4263 HasProfileData |= 4264 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4265 if (HasProfileData) 4266 break; 4267 } 4268 4269 for (auto &EI : FS->calls()) { 4270 // If this GUID doesn't have a value id, it doesn't have a function 4271 // summary and we don't need to record any calls to it. 4272 Optional<unsigned> CallValueId = GetValueId(EI.first); 4273 if (!CallValueId) 4274 continue; 4275 NameVals.push_back(*CallValueId); 4276 if (HasProfileData) 4277 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4278 } 4279 4280 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4281 unsigned Code = 4282 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4283 4284 // Emit the finished record. 4285 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4286 NameVals.clear(); 4287 MaybeEmitOriginalName(*S); 4288 }); 4289 4290 for (auto *AS : Aliases) { 4291 auto AliasValueId = SummaryToValueIdMap[AS]; 4292 assert(AliasValueId); 4293 NameVals.push_back(AliasValueId); 4294 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4295 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4296 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4297 assert(AliaseeValueId); 4298 NameVals.push_back(AliaseeValueId); 4299 4300 // Emit the finished record. 4301 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4302 NameVals.clear(); 4303 MaybeEmitOriginalName(*AS); 4304 4305 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4306 getReferencedTypeIds(FS, ReferencedTypeIds); 4307 } 4308 4309 if (!Index.cfiFunctionDefs().empty()) { 4310 for (auto &S : Index.cfiFunctionDefs()) { 4311 if (DefOrUseGUIDs.count( 4312 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4313 NameVals.push_back(StrtabBuilder.add(S)); 4314 NameVals.push_back(S.size()); 4315 } 4316 } 4317 if (!NameVals.empty()) { 4318 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4319 NameVals.clear(); 4320 } 4321 } 4322 4323 if (!Index.cfiFunctionDecls().empty()) { 4324 for (auto &S : Index.cfiFunctionDecls()) { 4325 if (DefOrUseGUIDs.count( 4326 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4327 NameVals.push_back(StrtabBuilder.add(S)); 4328 NameVals.push_back(S.size()); 4329 } 4330 } 4331 if (!NameVals.empty()) { 4332 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4333 NameVals.clear(); 4334 } 4335 } 4336 4337 // Walk the GUIDs that were referenced, and write the 4338 // corresponding type id records. 4339 for (auto &T : ReferencedTypeIds) { 4340 auto TidIter = Index.typeIds().equal_range(T); 4341 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4342 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4343 It->second.second); 4344 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4345 NameVals.clear(); 4346 } 4347 } 4348 4349 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4350 ArrayRef<uint64_t>{Index.getBlockCount()}); 4351 4352 Stream.ExitBlock(); 4353 } 4354 4355 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4356 /// current llvm version, and a record for the epoch number. 4357 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4358 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4359 4360 // Write the "user readable" string identifying the bitcode producer 4361 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4362 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4365 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4366 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4367 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4368 4369 // Write the epoch version 4370 Abbv = std::make_shared<BitCodeAbbrev>(); 4371 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4373 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4374 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4375 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4376 Stream.ExitBlock(); 4377 } 4378 4379 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4380 // Emit the module's hash. 4381 // MODULE_CODE_HASH: [5*i32] 4382 if (GenerateHash) { 4383 uint32_t Vals[5]; 4384 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4385 Buffer.size() - BlockStartPos)); 4386 StringRef Hash = Hasher.result(); 4387 for (int Pos = 0; Pos < 20; Pos += 4) { 4388 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4389 } 4390 4391 // Emit the finished record. 4392 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4393 4394 if (ModHash) 4395 // Save the written hash value. 4396 llvm::copy(Vals, std::begin(*ModHash)); 4397 } 4398 } 4399 4400 void ModuleBitcodeWriter::write() { 4401 writeIdentificationBlock(Stream); 4402 4403 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4404 size_t BlockStartPos = Buffer.size(); 4405 4406 writeModuleVersion(); 4407 4408 // Emit blockinfo, which defines the standard abbreviations etc. 4409 writeBlockInfo(); 4410 4411 // Emit information describing all of the types in the module. 4412 writeTypeTable(); 4413 4414 // Emit information about attribute groups. 4415 writeAttributeGroupTable(); 4416 4417 // Emit information about parameter attributes. 4418 writeAttributeTable(); 4419 4420 writeComdats(); 4421 4422 // Emit top-level description of module, including target triple, inline asm, 4423 // descriptors for global variables, and function prototype info. 4424 writeModuleInfo(); 4425 4426 // Emit constants. 4427 writeModuleConstants(); 4428 4429 // Emit metadata kind names. 4430 writeModuleMetadataKinds(); 4431 4432 // Emit metadata. 4433 writeModuleMetadata(); 4434 4435 // Emit module-level use-lists. 4436 if (VE.shouldPreserveUseListOrder()) 4437 writeUseListBlock(nullptr); 4438 4439 writeOperandBundleTags(); 4440 writeSyncScopeNames(); 4441 4442 // Emit function bodies. 4443 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4444 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4445 if (!F->isDeclaration()) 4446 writeFunction(*F, FunctionToBitcodeIndex); 4447 4448 // Need to write after the above call to WriteFunction which populates 4449 // the summary information in the index. 4450 if (Index) 4451 writePerModuleGlobalValueSummary(); 4452 4453 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4454 4455 writeModuleHash(BlockStartPos); 4456 4457 Stream.ExitBlock(); 4458 } 4459 4460 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4461 uint32_t &Position) { 4462 support::endian::write32le(&Buffer[Position], Value); 4463 Position += 4; 4464 } 4465 4466 /// If generating a bc file on darwin, we have to emit a 4467 /// header and trailer to make it compatible with the system archiver. To do 4468 /// this we emit the following header, and then emit a trailer that pads the 4469 /// file out to be a multiple of 16 bytes. 4470 /// 4471 /// struct bc_header { 4472 /// uint32_t Magic; // 0x0B17C0DE 4473 /// uint32_t Version; // Version, currently always 0. 4474 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4475 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4476 /// uint32_t CPUType; // CPU specifier. 4477 /// ... potentially more later ... 4478 /// }; 4479 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4480 const Triple &TT) { 4481 unsigned CPUType = ~0U; 4482 4483 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4484 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4485 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4486 // specific constants here because they are implicitly part of the Darwin ABI. 4487 enum { 4488 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4489 DARWIN_CPU_TYPE_X86 = 7, 4490 DARWIN_CPU_TYPE_ARM = 12, 4491 DARWIN_CPU_TYPE_POWERPC = 18 4492 }; 4493 4494 Triple::ArchType Arch = TT.getArch(); 4495 if (Arch == Triple::x86_64) 4496 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4497 else if (Arch == Triple::x86) 4498 CPUType = DARWIN_CPU_TYPE_X86; 4499 else if (Arch == Triple::ppc) 4500 CPUType = DARWIN_CPU_TYPE_POWERPC; 4501 else if (Arch == Triple::ppc64) 4502 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4503 else if (Arch == Triple::arm || Arch == Triple::thumb) 4504 CPUType = DARWIN_CPU_TYPE_ARM; 4505 4506 // Traditional Bitcode starts after header. 4507 assert(Buffer.size() >= BWH_HeaderSize && 4508 "Expected header size to be reserved"); 4509 unsigned BCOffset = BWH_HeaderSize; 4510 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4511 4512 // Write the magic and version. 4513 unsigned Position = 0; 4514 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4515 writeInt32ToBuffer(0, Buffer, Position); // Version. 4516 writeInt32ToBuffer(BCOffset, Buffer, Position); 4517 writeInt32ToBuffer(BCSize, Buffer, Position); 4518 writeInt32ToBuffer(CPUType, Buffer, Position); 4519 4520 // If the file is not a multiple of 16 bytes, insert dummy padding. 4521 while (Buffer.size() & 15) 4522 Buffer.push_back(0); 4523 } 4524 4525 /// Helper to write the header common to all bitcode files. 4526 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4527 // Emit the file header. 4528 Stream.Emit((unsigned)'B', 8); 4529 Stream.Emit((unsigned)'C', 8); 4530 Stream.Emit(0x0, 4); 4531 Stream.Emit(0xC, 4); 4532 Stream.Emit(0xE, 4); 4533 Stream.Emit(0xD, 4); 4534 } 4535 4536 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4537 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4538 writeBitcodeHeader(*Stream); 4539 } 4540 4541 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4542 4543 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4544 Stream->EnterSubblock(Block, 3); 4545 4546 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4547 Abbv->Add(BitCodeAbbrevOp(Record)); 4548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4549 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4550 4551 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4552 4553 Stream->ExitBlock(); 4554 } 4555 4556 void BitcodeWriter::writeSymtab() { 4557 assert(!WroteStrtab && !WroteSymtab); 4558 4559 // If any module has module-level inline asm, we will require a registered asm 4560 // parser for the target so that we can create an accurate symbol table for 4561 // the module. 4562 for (Module *M : Mods) { 4563 if (M->getModuleInlineAsm().empty()) 4564 continue; 4565 4566 std::string Err; 4567 const Triple TT(M->getTargetTriple()); 4568 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4569 if (!T || !T->hasMCAsmParser()) 4570 return; 4571 } 4572 4573 WroteSymtab = true; 4574 SmallVector<char, 0> Symtab; 4575 // The irsymtab::build function may be unable to create a symbol table if the 4576 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4577 // table is not required for correctness, but we still want to be able to 4578 // write malformed modules to bitcode files, so swallow the error. 4579 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4580 consumeError(std::move(E)); 4581 return; 4582 } 4583 4584 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4585 {Symtab.data(), Symtab.size()}); 4586 } 4587 4588 void BitcodeWriter::writeStrtab() { 4589 assert(!WroteStrtab); 4590 4591 std::vector<char> Strtab; 4592 StrtabBuilder.finalizeInOrder(); 4593 Strtab.resize(StrtabBuilder.getSize()); 4594 StrtabBuilder.write((uint8_t *)Strtab.data()); 4595 4596 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4597 {Strtab.data(), Strtab.size()}); 4598 4599 WroteStrtab = true; 4600 } 4601 4602 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4603 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4604 WroteStrtab = true; 4605 } 4606 4607 void BitcodeWriter::writeModule(const Module &M, 4608 bool ShouldPreserveUseListOrder, 4609 const ModuleSummaryIndex *Index, 4610 bool GenerateHash, ModuleHash *ModHash) { 4611 assert(!WroteStrtab); 4612 4613 // The Mods vector is used by irsymtab::build, which requires non-const 4614 // Modules in case it needs to materialize metadata. But the bitcode writer 4615 // requires that the module is materialized, so we can cast to non-const here, 4616 // after checking that it is in fact materialized. 4617 assert(M.isMaterialized()); 4618 Mods.push_back(const_cast<Module *>(&M)); 4619 4620 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4621 ShouldPreserveUseListOrder, Index, 4622 GenerateHash, ModHash); 4623 ModuleWriter.write(); 4624 } 4625 4626 void BitcodeWriter::writeIndex( 4627 const ModuleSummaryIndex *Index, 4628 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4629 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4630 ModuleToSummariesForIndex); 4631 IndexWriter.write(); 4632 } 4633 4634 /// Write the specified module to the specified output stream. 4635 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4636 bool ShouldPreserveUseListOrder, 4637 const ModuleSummaryIndex *Index, 4638 bool GenerateHash, ModuleHash *ModHash) { 4639 SmallVector<char, 0> Buffer; 4640 Buffer.reserve(256*1024); 4641 4642 // If this is darwin or another generic macho target, reserve space for the 4643 // header. 4644 Triple TT(M.getTargetTriple()); 4645 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4646 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4647 4648 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4649 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4650 ModHash); 4651 Writer.writeSymtab(); 4652 Writer.writeStrtab(); 4653 4654 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4655 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4656 4657 // Write the generated bitstream to "Out". 4658 if (!Buffer.empty()) 4659 Out.write((char *)&Buffer.front(), Buffer.size()); 4660 } 4661 4662 void IndexBitcodeWriter::write() { 4663 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4664 4665 writeModuleVersion(); 4666 4667 // Write the module paths in the combined index. 4668 writeModStrings(); 4669 4670 // Write the summary combined index records. 4671 writeCombinedGlobalValueSummary(); 4672 4673 Stream.ExitBlock(); 4674 } 4675 4676 // Write the specified module summary index to the given raw output stream, 4677 // where it will be written in a new bitcode block. This is used when 4678 // writing the combined index file for ThinLTO. When writing a subset of the 4679 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4680 void llvm::WriteIndexToFile( 4681 const ModuleSummaryIndex &Index, raw_ostream &Out, 4682 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4683 SmallVector<char, 0> Buffer; 4684 Buffer.reserve(256 * 1024); 4685 4686 BitcodeWriter Writer(Buffer); 4687 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4688 Writer.writeStrtab(); 4689 4690 Out.write((char *)&Buffer.front(), Buffer.size()); 4691 } 4692 4693 namespace { 4694 4695 /// Class to manage the bitcode writing for a thin link bitcode file. 4696 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4697 /// ModHash is for use in ThinLTO incremental build, generated while writing 4698 /// the module bitcode file. 4699 const ModuleHash *ModHash; 4700 4701 public: 4702 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4703 BitstreamWriter &Stream, 4704 const ModuleSummaryIndex &Index, 4705 const ModuleHash &ModHash) 4706 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4707 /*ShouldPreserveUseListOrder=*/false, &Index), 4708 ModHash(&ModHash) {} 4709 4710 void write(); 4711 4712 private: 4713 void writeSimplifiedModuleInfo(); 4714 }; 4715 4716 } // end anonymous namespace 4717 4718 // This function writes a simpilified module info for thin link bitcode file. 4719 // It only contains the source file name along with the name(the offset and 4720 // size in strtab) and linkage for global values. For the global value info 4721 // entry, in order to keep linkage at offset 5, there are three zeros used 4722 // as padding. 4723 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4724 SmallVector<unsigned, 64> Vals; 4725 // Emit the module's source file name. 4726 { 4727 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4728 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4729 if (Bits == SE_Char6) 4730 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4731 else if (Bits == SE_Fixed7) 4732 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4733 4734 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4735 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4736 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4738 Abbv->Add(AbbrevOpToUse); 4739 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4740 4741 for (const auto P : M.getSourceFileName()) 4742 Vals.push_back((unsigned char)P); 4743 4744 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4745 Vals.clear(); 4746 } 4747 4748 // Emit the global variable information. 4749 for (const GlobalVariable &GV : M.globals()) { 4750 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4751 Vals.push_back(StrtabBuilder.add(GV.getName())); 4752 Vals.push_back(GV.getName().size()); 4753 Vals.push_back(0); 4754 Vals.push_back(0); 4755 Vals.push_back(0); 4756 Vals.push_back(getEncodedLinkage(GV)); 4757 4758 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4759 Vals.clear(); 4760 } 4761 4762 // Emit the function proto information. 4763 for (const Function &F : M) { 4764 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4765 Vals.push_back(StrtabBuilder.add(F.getName())); 4766 Vals.push_back(F.getName().size()); 4767 Vals.push_back(0); 4768 Vals.push_back(0); 4769 Vals.push_back(0); 4770 Vals.push_back(getEncodedLinkage(F)); 4771 4772 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4773 Vals.clear(); 4774 } 4775 4776 // Emit the alias information. 4777 for (const GlobalAlias &A : M.aliases()) { 4778 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4779 Vals.push_back(StrtabBuilder.add(A.getName())); 4780 Vals.push_back(A.getName().size()); 4781 Vals.push_back(0); 4782 Vals.push_back(0); 4783 Vals.push_back(0); 4784 Vals.push_back(getEncodedLinkage(A)); 4785 4786 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4787 Vals.clear(); 4788 } 4789 4790 // Emit the ifunc information. 4791 for (const GlobalIFunc &I : M.ifuncs()) { 4792 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4793 Vals.push_back(StrtabBuilder.add(I.getName())); 4794 Vals.push_back(I.getName().size()); 4795 Vals.push_back(0); 4796 Vals.push_back(0); 4797 Vals.push_back(0); 4798 Vals.push_back(getEncodedLinkage(I)); 4799 4800 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4801 Vals.clear(); 4802 } 4803 } 4804 4805 void ThinLinkBitcodeWriter::write() { 4806 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4807 4808 writeModuleVersion(); 4809 4810 writeSimplifiedModuleInfo(); 4811 4812 writePerModuleGlobalValueSummary(); 4813 4814 // Write module hash. 4815 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4816 4817 Stream.ExitBlock(); 4818 } 4819 4820 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4821 const ModuleSummaryIndex &Index, 4822 const ModuleHash &ModHash) { 4823 assert(!WroteStrtab); 4824 4825 // The Mods vector is used by irsymtab::build, which requires non-const 4826 // Modules in case it needs to materialize metadata. But the bitcode writer 4827 // requires that the module is materialized, so we can cast to non-const here, 4828 // after checking that it is in fact materialized. 4829 assert(M.isMaterialized()); 4830 Mods.push_back(const_cast<Module *>(&M)); 4831 4832 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4833 ModHash); 4834 ThinLinkWriter.write(); 4835 } 4836 4837 // Write the specified thin link bitcode file to the given raw output stream, 4838 // where it will be written in a new bitcode block. This is used when 4839 // writing the per-module index file for ThinLTO. 4840 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4841 const ModuleSummaryIndex &Index, 4842 const ModuleHash &ModHash) { 4843 SmallVector<char, 0> Buffer; 4844 Buffer.reserve(256 * 1024); 4845 4846 BitcodeWriter Writer(Buffer); 4847 Writer.writeThinLinkBitcode(M, Index, ModHash); 4848 Writer.writeSymtab(); 4849 Writer.writeStrtab(); 4850 4851 Out.write((char *)&Buffer.front(), Buffer.size()); 4852 } 4853 4854 static const char *getSectionNameForBitcode(const Triple &T) { 4855 switch (T.getObjectFormat()) { 4856 case Triple::MachO: 4857 return "__LLVM,__bitcode"; 4858 case Triple::COFF: 4859 case Triple::ELF: 4860 case Triple::Wasm: 4861 case Triple::UnknownObjectFormat: 4862 return ".llvmbc"; 4863 case Triple::GOFF: 4864 llvm_unreachable("GOFF is not yet implemented"); 4865 break; 4866 case Triple::XCOFF: 4867 llvm_unreachable("XCOFF is not yet implemented"); 4868 break; 4869 } 4870 llvm_unreachable("Unimplemented ObjectFormatType"); 4871 } 4872 4873 static const char *getSectionNameForCommandline(const Triple &T) { 4874 switch (T.getObjectFormat()) { 4875 case Triple::MachO: 4876 return "__LLVM,__cmdline"; 4877 case Triple::COFF: 4878 case Triple::ELF: 4879 case Triple::Wasm: 4880 case Triple::UnknownObjectFormat: 4881 return ".llvmcmd"; 4882 case Triple::GOFF: 4883 llvm_unreachable("GOFF is not yet implemented"); 4884 break; 4885 case Triple::XCOFF: 4886 llvm_unreachable("XCOFF is not yet implemented"); 4887 break; 4888 } 4889 llvm_unreachable("Unimplemented ObjectFormatType"); 4890 } 4891 4892 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4893 bool EmbedBitcode, bool EmbedCmdline, 4894 const std::vector<uint8_t> &CmdArgs) { 4895 // Save llvm.compiler.used and remove it. 4896 SmallVector<Constant *, 2> UsedArray; 4897 SmallVector<GlobalValue *, 4> UsedGlobals; 4898 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4899 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4900 for (auto *GV : UsedGlobals) { 4901 if (GV->getName() != "llvm.embedded.module" && 4902 GV->getName() != "llvm.cmdline") 4903 UsedArray.push_back( 4904 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4905 } 4906 if (Used) 4907 Used->eraseFromParent(); 4908 4909 // Embed the bitcode for the llvm module. 4910 std::string Data; 4911 ArrayRef<uint8_t> ModuleData; 4912 Triple T(M.getTargetTriple()); 4913 4914 if (EmbedBitcode) { 4915 if (Buf.getBufferSize() == 0 || 4916 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4917 (const unsigned char *)Buf.getBufferEnd())) { 4918 // If the input is LLVM Assembly, bitcode is produced by serializing 4919 // the module. Use-lists order need to be preserved in this case. 4920 llvm::raw_string_ostream OS(Data); 4921 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4922 ModuleData = 4923 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4924 } else 4925 // If the input is LLVM bitcode, write the input byte stream directly. 4926 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4927 Buf.getBufferSize()); 4928 } 4929 llvm::Constant *ModuleConstant = 4930 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4931 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4932 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4933 ModuleConstant); 4934 GV->setSection(getSectionNameForBitcode(T)); 4935 // Set alignment to 1 to prevent padding between two contributions from input 4936 // sections after linking. 4937 GV->setAlignment(Align(1)); 4938 UsedArray.push_back( 4939 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4940 if (llvm::GlobalVariable *Old = 4941 M.getGlobalVariable("llvm.embedded.module", true)) { 4942 assert(Old->hasOneUse() && 4943 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4944 GV->takeName(Old); 4945 Old->eraseFromParent(); 4946 } else { 4947 GV->setName("llvm.embedded.module"); 4948 } 4949 4950 // Skip if only bitcode needs to be embedded. 4951 if (EmbedCmdline) { 4952 // Embed command-line options. 4953 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4954 CmdArgs.size()); 4955 llvm::Constant *CmdConstant = 4956 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4957 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4958 llvm::GlobalValue::PrivateLinkage, 4959 CmdConstant); 4960 GV->setSection(getSectionNameForCommandline(T)); 4961 GV->setAlignment(Align(1)); 4962 UsedArray.push_back( 4963 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4964 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4965 assert(Old->hasOneUse() && 4966 "llvm.cmdline can only be used once in llvm.compiler.used"); 4967 GV->takeName(Old); 4968 Old->eraseFromParent(); 4969 } else { 4970 GV->setName("llvm.cmdline"); 4971 } 4972 } 4973 4974 if (UsedArray.empty()) 4975 return; 4976 4977 // Recreate llvm.compiler.used. 4978 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4979 auto *NewUsed = new GlobalVariable( 4980 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4981 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4982 NewUsed->setSection("llvm.metadata"); 4983 } 4984