1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueSymbolTable.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Program.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV 64 }; 65 66 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 67 switch (Opcode) { 68 default: llvm_unreachable("Unknown cast instruction!"); 69 case Instruction::Trunc : return bitc::CAST_TRUNC; 70 case Instruction::ZExt : return bitc::CAST_ZEXT; 71 case Instruction::SExt : return bitc::CAST_SEXT; 72 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 73 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 74 case Instruction::UIToFP : return bitc::CAST_UITOFP; 75 case Instruction::SIToFP : return bitc::CAST_SITOFP; 76 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 77 case Instruction::FPExt : return bitc::CAST_FPEXT; 78 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 79 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 80 case Instruction::BitCast : return bitc::CAST_BITCAST; 81 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 82 } 83 } 84 85 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 86 switch (Opcode) { 87 default: llvm_unreachable("Unknown binary instruction!"); 88 case Instruction::Add: 89 case Instruction::FAdd: return bitc::BINOP_ADD; 90 case Instruction::Sub: 91 case Instruction::FSub: return bitc::BINOP_SUB; 92 case Instruction::Mul: 93 case Instruction::FMul: return bitc::BINOP_MUL; 94 case Instruction::UDiv: return bitc::BINOP_UDIV; 95 case Instruction::FDiv: 96 case Instruction::SDiv: return bitc::BINOP_SDIV; 97 case Instruction::URem: return bitc::BINOP_UREM; 98 case Instruction::FRem: 99 case Instruction::SRem: return bitc::BINOP_SREM; 100 case Instruction::Shl: return bitc::BINOP_SHL; 101 case Instruction::LShr: return bitc::BINOP_LSHR; 102 case Instruction::AShr: return bitc::BINOP_ASHR; 103 case Instruction::And: return bitc::BINOP_AND; 104 case Instruction::Or: return bitc::BINOP_OR; 105 case Instruction::Xor: return bitc::BINOP_XOR; 106 } 107 } 108 109 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 110 switch (Op) { 111 default: llvm_unreachable("Unknown RMW operation!"); 112 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 113 case AtomicRMWInst::Add: return bitc::RMW_ADD; 114 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 115 case AtomicRMWInst::And: return bitc::RMW_AND; 116 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 117 case AtomicRMWInst::Or: return bitc::RMW_OR; 118 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 119 case AtomicRMWInst::Max: return bitc::RMW_MAX; 120 case AtomicRMWInst::Min: return bitc::RMW_MIN; 121 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 122 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 123 } 124 } 125 126 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 127 switch (Ordering) { 128 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 129 case Unordered: return bitc::ORDERING_UNORDERED; 130 case Monotonic: return bitc::ORDERING_MONOTONIC; 131 case Acquire: return bitc::ORDERING_ACQUIRE; 132 case Release: return bitc::ORDERING_RELEASE; 133 case AcquireRelease: return bitc::ORDERING_ACQREL; 134 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 135 } 136 llvm_unreachable("Invalid ordering"); 137 } 138 139 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 140 switch (SynchScope) { 141 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 142 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 143 } 144 llvm_unreachable("Invalid synch scope"); 145 } 146 147 static void WriteStringRecord(unsigned Code, StringRef Str, 148 unsigned AbbrevToUse, BitstreamWriter &Stream) { 149 SmallVector<unsigned, 64> Vals; 150 151 // Code: [strchar x N] 152 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 153 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 154 AbbrevToUse = 0; 155 Vals.push_back(Str[i]); 156 } 157 158 // Emit the finished record. 159 Stream.EmitRecord(Code, Vals, AbbrevToUse); 160 } 161 162 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 163 switch (Kind) { 164 case Attribute::Alignment: 165 return bitc::ATTR_KIND_ALIGNMENT; 166 case Attribute::AlwaysInline: 167 return bitc::ATTR_KIND_ALWAYS_INLINE; 168 case Attribute::Builtin: 169 return bitc::ATTR_KIND_BUILTIN; 170 case Attribute::ByVal: 171 return bitc::ATTR_KIND_BY_VAL; 172 case Attribute::InAlloca: 173 return bitc::ATTR_KIND_IN_ALLOCA; 174 case Attribute::Cold: 175 return bitc::ATTR_KIND_COLD; 176 case Attribute::InlineHint: 177 return bitc::ATTR_KIND_INLINE_HINT; 178 case Attribute::InReg: 179 return bitc::ATTR_KIND_IN_REG; 180 case Attribute::JumpTable: 181 return bitc::ATTR_KIND_JUMP_TABLE; 182 case Attribute::MinSize: 183 return bitc::ATTR_KIND_MIN_SIZE; 184 case Attribute::Naked: 185 return bitc::ATTR_KIND_NAKED; 186 case Attribute::Nest: 187 return bitc::ATTR_KIND_NEST; 188 case Attribute::NoAlias: 189 return bitc::ATTR_KIND_NO_ALIAS; 190 case Attribute::NoBuiltin: 191 return bitc::ATTR_KIND_NO_BUILTIN; 192 case Attribute::NoCapture: 193 return bitc::ATTR_KIND_NO_CAPTURE; 194 case Attribute::NoDuplicate: 195 return bitc::ATTR_KIND_NO_DUPLICATE; 196 case Attribute::NoImplicitFloat: 197 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 198 case Attribute::NoInline: 199 return bitc::ATTR_KIND_NO_INLINE; 200 case Attribute::NonLazyBind: 201 return bitc::ATTR_KIND_NON_LAZY_BIND; 202 case Attribute::NonNull: 203 return bitc::ATTR_KIND_NON_NULL; 204 case Attribute::NoRedZone: 205 return bitc::ATTR_KIND_NO_RED_ZONE; 206 case Attribute::NoReturn: 207 return bitc::ATTR_KIND_NO_RETURN; 208 case Attribute::NoUnwind: 209 return bitc::ATTR_KIND_NO_UNWIND; 210 case Attribute::OptimizeForSize: 211 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 212 case Attribute::OptimizeNone: 213 return bitc::ATTR_KIND_OPTIMIZE_NONE; 214 case Attribute::ReadNone: 215 return bitc::ATTR_KIND_READ_NONE; 216 case Attribute::ReadOnly: 217 return bitc::ATTR_KIND_READ_ONLY; 218 case Attribute::Returned: 219 return bitc::ATTR_KIND_RETURNED; 220 case Attribute::ReturnsTwice: 221 return bitc::ATTR_KIND_RETURNS_TWICE; 222 case Attribute::SExt: 223 return bitc::ATTR_KIND_S_EXT; 224 case Attribute::StackAlignment: 225 return bitc::ATTR_KIND_STACK_ALIGNMENT; 226 case Attribute::StackProtect: 227 return bitc::ATTR_KIND_STACK_PROTECT; 228 case Attribute::StackProtectReq: 229 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 230 case Attribute::StackProtectStrong: 231 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 232 case Attribute::StructRet: 233 return bitc::ATTR_KIND_STRUCT_RET; 234 case Attribute::SanitizeAddress: 235 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 236 case Attribute::SanitizeThread: 237 return bitc::ATTR_KIND_SANITIZE_THREAD; 238 case Attribute::SanitizeMemory: 239 return bitc::ATTR_KIND_SANITIZE_MEMORY; 240 case Attribute::UWTable: 241 return bitc::ATTR_KIND_UW_TABLE; 242 case Attribute::ZExt: 243 return bitc::ATTR_KIND_Z_EXT; 244 case Attribute::EndAttrKinds: 245 llvm_unreachable("Can not encode end-attribute kinds marker."); 246 case Attribute::None: 247 llvm_unreachable("Can not encode none-attribute."); 248 } 249 250 llvm_unreachable("Trying to encode unknown attribute"); 251 } 252 253 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 254 BitstreamWriter &Stream) { 255 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 256 if (AttrGrps.empty()) return; 257 258 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 259 260 SmallVector<uint64_t, 64> Record; 261 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 262 AttributeSet AS = AttrGrps[i]; 263 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 264 AttributeSet A = AS.getSlotAttributes(i); 265 266 Record.push_back(VE.getAttributeGroupID(A)); 267 Record.push_back(AS.getSlotIndex(i)); 268 269 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 270 I != E; ++I) { 271 Attribute Attr = *I; 272 if (Attr.isEnumAttribute()) { 273 Record.push_back(0); 274 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 275 } else if (Attr.isAlignAttribute()) { 276 Record.push_back(1); 277 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 278 Record.push_back(Attr.getValueAsInt()); 279 } else { 280 StringRef Kind = Attr.getKindAsString(); 281 StringRef Val = Attr.getValueAsString(); 282 283 Record.push_back(Val.empty() ? 3 : 4); 284 Record.append(Kind.begin(), Kind.end()); 285 Record.push_back(0); 286 if (!Val.empty()) { 287 Record.append(Val.begin(), Val.end()); 288 Record.push_back(0); 289 } 290 } 291 } 292 293 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 294 Record.clear(); 295 } 296 } 297 298 Stream.ExitBlock(); 299 } 300 301 static void WriteAttributeTable(const ValueEnumerator &VE, 302 BitstreamWriter &Stream) { 303 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 304 if (Attrs.empty()) return; 305 306 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 307 308 SmallVector<uint64_t, 64> Record; 309 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 310 const AttributeSet &A = Attrs[i]; 311 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 312 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 313 314 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 315 Record.clear(); 316 } 317 318 Stream.ExitBlock(); 319 } 320 321 /// WriteTypeTable - Write out the type table for a module. 322 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 323 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 324 325 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 326 SmallVector<uint64_t, 64> TypeVals; 327 328 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 329 330 // Abbrev for TYPE_CODE_POINTER. 331 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 332 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 334 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 335 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 336 337 // Abbrev for TYPE_CODE_FUNCTION. 338 Abbv = new BitCodeAbbrev(); 339 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 343 344 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 345 346 // Abbrev for TYPE_CODE_STRUCT_ANON. 347 Abbv = new BitCodeAbbrev(); 348 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 352 353 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 354 355 // Abbrev for TYPE_CODE_STRUCT_NAME. 356 Abbv = new BitCodeAbbrev(); 357 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 360 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 361 362 // Abbrev for TYPE_CODE_STRUCT_NAMED. 363 Abbv = new BitCodeAbbrev(); 364 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 368 369 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 370 371 // Abbrev for TYPE_CODE_ARRAY. 372 Abbv = new BitCodeAbbrev(); 373 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 376 377 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 378 379 // Emit an entry count so the reader can reserve space. 380 TypeVals.push_back(TypeList.size()); 381 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 382 TypeVals.clear(); 383 384 // Loop over all of the types, emitting each in turn. 385 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 386 Type *T = TypeList[i]; 387 int AbbrevToUse = 0; 388 unsigned Code = 0; 389 390 switch (T->getTypeID()) { 391 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 392 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 393 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 394 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 395 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 396 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 397 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 398 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 399 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 400 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 401 case Type::IntegerTyID: 402 // INTEGER: [width] 403 Code = bitc::TYPE_CODE_INTEGER; 404 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 405 break; 406 case Type::PointerTyID: { 407 PointerType *PTy = cast<PointerType>(T); 408 // POINTER: [pointee type, address space] 409 Code = bitc::TYPE_CODE_POINTER; 410 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 411 unsigned AddressSpace = PTy->getAddressSpace(); 412 TypeVals.push_back(AddressSpace); 413 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 414 break; 415 } 416 case Type::FunctionTyID: { 417 FunctionType *FT = cast<FunctionType>(T); 418 // FUNCTION: [isvararg, retty, paramty x N] 419 Code = bitc::TYPE_CODE_FUNCTION; 420 TypeVals.push_back(FT->isVarArg()); 421 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 422 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 423 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 424 AbbrevToUse = FunctionAbbrev; 425 break; 426 } 427 case Type::StructTyID: { 428 StructType *ST = cast<StructType>(T); 429 // STRUCT: [ispacked, eltty x N] 430 TypeVals.push_back(ST->isPacked()); 431 // Output all of the element types. 432 for (StructType::element_iterator I = ST->element_begin(), 433 E = ST->element_end(); I != E; ++I) 434 TypeVals.push_back(VE.getTypeID(*I)); 435 436 if (ST->isLiteral()) { 437 Code = bitc::TYPE_CODE_STRUCT_ANON; 438 AbbrevToUse = StructAnonAbbrev; 439 } else { 440 if (ST->isOpaque()) { 441 Code = bitc::TYPE_CODE_OPAQUE; 442 } else { 443 Code = bitc::TYPE_CODE_STRUCT_NAMED; 444 AbbrevToUse = StructNamedAbbrev; 445 } 446 447 // Emit the name if it is present. 448 if (!ST->getName().empty()) 449 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 450 StructNameAbbrev, Stream); 451 } 452 break; 453 } 454 case Type::ArrayTyID: { 455 ArrayType *AT = cast<ArrayType>(T); 456 // ARRAY: [numelts, eltty] 457 Code = bitc::TYPE_CODE_ARRAY; 458 TypeVals.push_back(AT->getNumElements()); 459 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 460 AbbrevToUse = ArrayAbbrev; 461 break; 462 } 463 case Type::VectorTyID: { 464 VectorType *VT = cast<VectorType>(T); 465 // VECTOR [numelts, eltty] 466 Code = bitc::TYPE_CODE_VECTOR; 467 TypeVals.push_back(VT->getNumElements()); 468 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 469 break; 470 } 471 } 472 473 // Emit the finished record. 474 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 475 TypeVals.clear(); 476 } 477 478 Stream.ExitBlock(); 479 } 480 481 static unsigned getEncodedLinkage(const GlobalValue &GV) { 482 switch (GV.getLinkage()) { 483 case GlobalValue::ExternalLinkage: return 0; 484 case GlobalValue::WeakAnyLinkage: return 1; 485 case GlobalValue::AppendingLinkage: return 2; 486 case GlobalValue::InternalLinkage: return 3; 487 case GlobalValue::LinkOnceAnyLinkage: return 4; 488 case GlobalValue::ExternalWeakLinkage: return 7; 489 case GlobalValue::CommonLinkage: return 8; 490 case GlobalValue::PrivateLinkage: return 9; 491 case GlobalValue::WeakODRLinkage: return 10; 492 case GlobalValue::LinkOnceODRLinkage: return 11; 493 case GlobalValue::AvailableExternallyLinkage: return 12; 494 } 495 llvm_unreachable("Invalid linkage"); 496 } 497 498 static unsigned getEncodedVisibility(const GlobalValue &GV) { 499 switch (GV.getVisibility()) { 500 case GlobalValue::DefaultVisibility: return 0; 501 case GlobalValue::HiddenVisibility: return 1; 502 case GlobalValue::ProtectedVisibility: return 2; 503 } 504 llvm_unreachable("Invalid visibility"); 505 } 506 507 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 508 switch (GV.getDLLStorageClass()) { 509 case GlobalValue::DefaultStorageClass: return 0; 510 case GlobalValue::DLLImportStorageClass: return 1; 511 case GlobalValue::DLLExportStorageClass: return 2; 512 } 513 llvm_unreachable("Invalid DLL storage class"); 514 } 515 516 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 517 switch (GV.getThreadLocalMode()) { 518 case GlobalVariable::NotThreadLocal: return 0; 519 case GlobalVariable::GeneralDynamicTLSModel: return 1; 520 case GlobalVariable::LocalDynamicTLSModel: return 2; 521 case GlobalVariable::InitialExecTLSModel: return 3; 522 case GlobalVariable::LocalExecTLSModel: return 4; 523 } 524 llvm_unreachable("Invalid TLS model"); 525 } 526 527 // Emit top-level description of module, including target triple, inline asm, 528 // descriptors for global variables, and function prototype info. 529 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 530 BitstreamWriter &Stream) { 531 // Emit various pieces of data attached to a module. 532 if (!M->getTargetTriple().empty()) 533 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 534 0/*TODO*/, Stream); 535 const std::string &DL = M->getDataLayoutStr(); 536 if (!DL.empty()) 537 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 538 if (!M->getModuleInlineAsm().empty()) 539 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 540 0/*TODO*/, Stream); 541 542 // Emit information about sections and GC, computing how many there are. Also 543 // compute the maximum alignment value. 544 std::map<std::string, unsigned> SectionMap; 545 std::map<std::string, unsigned> GCMap; 546 unsigned MaxAlignment = 0; 547 unsigned MaxGlobalType = 0; 548 for (const GlobalValue &GV : M->globals()) { 549 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 550 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 551 if (GV.hasSection()) { 552 // Give section names unique ID's. 553 unsigned &Entry = SectionMap[GV.getSection()]; 554 if (!Entry) { 555 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 556 0/*TODO*/, Stream); 557 Entry = SectionMap.size(); 558 } 559 } 560 } 561 for (const Function &F : *M) { 562 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 563 if (F.hasSection()) { 564 // Give section names unique ID's. 565 unsigned &Entry = SectionMap[F.getSection()]; 566 if (!Entry) { 567 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 568 0/*TODO*/, Stream); 569 Entry = SectionMap.size(); 570 } 571 } 572 if (F.hasGC()) { 573 // Same for GC names. 574 unsigned &Entry = GCMap[F.getGC()]; 575 if (!Entry) { 576 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 577 0/*TODO*/, Stream); 578 Entry = GCMap.size(); 579 } 580 } 581 } 582 583 // Emit abbrev for globals, now that we know # sections and max alignment. 584 unsigned SimpleGVarAbbrev = 0; 585 if (!M->global_empty()) { 586 // Add an abbrev for common globals with no visibility or thread localness. 587 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 588 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 590 Log2_32_Ceil(MaxGlobalType+1))); 591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 594 if (MaxAlignment == 0) // Alignment. 595 Abbv->Add(BitCodeAbbrevOp(0)); 596 else { 597 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 599 Log2_32_Ceil(MaxEncAlignment+1))); 600 } 601 if (SectionMap.empty()) // Section. 602 Abbv->Add(BitCodeAbbrevOp(0)); 603 else 604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 605 Log2_32_Ceil(SectionMap.size()+1))); 606 // Don't bother emitting vis + thread local. 607 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 608 } 609 610 // Emit the global variable information. 611 SmallVector<unsigned, 64> Vals; 612 for (const GlobalVariable &GV : M->globals()) { 613 unsigned AbbrevToUse = 0; 614 615 // GLOBALVAR: [type, isconst, initid, 616 // linkage, alignment, section, visibility, threadlocal, 617 // unnamed_addr, externally_initialized, dllstorageclass] 618 Vals.push_back(VE.getTypeID(GV.getType())); 619 Vals.push_back(GV.isConstant()); 620 Vals.push_back(GV.isDeclaration() ? 0 : 621 (VE.getValueID(GV.getInitializer()) + 1)); 622 Vals.push_back(getEncodedLinkage(GV)); 623 Vals.push_back(Log2_32(GV.getAlignment())+1); 624 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 625 if (GV.isThreadLocal() || 626 GV.getVisibility() != GlobalValue::DefaultVisibility || 627 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 628 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass) { 629 Vals.push_back(getEncodedVisibility(GV)); 630 Vals.push_back(getEncodedThreadLocalMode(GV)); 631 Vals.push_back(GV.hasUnnamedAddr()); 632 Vals.push_back(GV.isExternallyInitialized()); 633 Vals.push_back(getEncodedDLLStorageClass(GV)); 634 } else { 635 AbbrevToUse = SimpleGVarAbbrev; 636 } 637 638 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 639 Vals.clear(); 640 } 641 642 // Emit the function proto information. 643 for (const Function &F : *M) { 644 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 645 // section, visibility, gc, unnamed_addr, prefix] 646 Vals.push_back(VE.getTypeID(F.getType())); 647 Vals.push_back(F.getCallingConv()); 648 Vals.push_back(F.isDeclaration()); 649 Vals.push_back(getEncodedLinkage(F)); 650 Vals.push_back(VE.getAttributeID(F.getAttributes())); 651 Vals.push_back(Log2_32(F.getAlignment())+1); 652 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 653 Vals.push_back(getEncodedVisibility(F)); 654 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 655 Vals.push_back(F.hasUnnamedAddr()); 656 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 657 : 0); 658 Vals.push_back(getEncodedDLLStorageClass(F)); 659 660 unsigned AbbrevToUse = 0; 661 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 662 Vals.clear(); 663 } 664 665 // Emit the alias information. 666 for (const GlobalAlias &A : M->aliases()) { 667 // ALIAS: [alias type, aliasee val#, linkage, visibility] 668 Vals.push_back(VE.getTypeID(A.getType())); 669 Vals.push_back(VE.getValueID(A.getAliasee())); 670 Vals.push_back(getEncodedLinkage(A)); 671 Vals.push_back(getEncodedVisibility(A)); 672 Vals.push_back(getEncodedDLLStorageClass(A)); 673 Vals.push_back(getEncodedThreadLocalMode(A)); 674 Vals.push_back(A.hasUnnamedAddr()); 675 unsigned AbbrevToUse = 0; 676 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 677 Vals.clear(); 678 } 679 } 680 681 static uint64_t GetOptimizationFlags(const Value *V) { 682 uint64_t Flags = 0; 683 684 if (const OverflowingBinaryOperator *OBO = 685 dyn_cast<OverflowingBinaryOperator>(V)) { 686 if (OBO->hasNoSignedWrap()) 687 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 688 if (OBO->hasNoUnsignedWrap()) 689 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 690 } else if (const PossiblyExactOperator *PEO = 691 dyn_cast<PossiblyExactOperator>(V)) { 692 if (PEO->isExact()) 693 Flags |= 1 << bitc::PEO_EXACT; 694 } else if (const FPMathOperator *FPMO = 695 dyn_cast<const FPMathOperator>(V)) { 696 if (FPMO->hasUnsafeAlgebra()) 697 Flags |= FastMathFlags::UnsafeAlgebra; 698 if (FPMO->hasNoNaNs()) 699 Flags |= FastMathFlags::NoNaNs; 700 if (FPMO->hasNoInfs()) 701 Flags |= FastMathFlags::NoInfs; 702 if (FPMO->hasNoSignedZeros()) 703 Flags |= FastMathFlags::NoSignedZeros; 704 if (FPMO->hasAllowReciprocal()) 705 Flags |= FastMathFlags::AllowReciprocal; 706 } 707 708 return Flags; 709 } 710 711 static void WriteMDNode(const MDNode *N, 712 const ValueEnumerator &VE, 713 BitstreamWriter &Stream, 714 SmallVectorImpl<uint64_t> &Record) { 715 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 716 if (N->getOperand(i)) { 717 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 718 Record.push_back(VE.getValueID(N->getOperand(i))); 719 } else { 720 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 721 Record.push_back(0); 722 } 723 } 724 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 725 bitc::METADATA_NODE; 726 Stream.EmitRecord(MDCode, Record, 0); 727 Record.clear(); 728 } 729 730 static void WriteModuleMetadata(const Module *M, 731 const ValueEnumerator &VE, 732 BitstreamWriter &Stream) { 733 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 734 bool StartedMetadataBlock = false; 735 unsigned MDSAbbrev = 0; 736 SmallVector<uint64_t, 64> Record; 737 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 738 739 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 740 if (!N->isFunctionLocal() || !N->getFunction()) { 741 if (!StartedMetadataBlock) { 742 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 743 StartedMetadataBlock = true; 744 } 745 WriteMDNode(N, VE, Stream, Record); 746 } 747 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 748 if (!StartedMetadataBlock) { 749 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 750 751 // Abbrev for METADATA_STRING. 752 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 753 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 756 MDSAbbrev = Stream.EmitAbbrev(Abbv); 757 StartedMetadataBlock = true; 758 } 759 760 // Code: [strchar x N] 761 Record.append(MDS->begin(), MDS->end()); 762 763 // Emit the finished record. 764 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 765 Record.clear(); 766 } 767 } 768 769 // Write named metadata. 770 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 771 E = M->named_metadata_end(); I != E; ++I) { 772 const NamedMDNode *NMD = I; 773 if (!StartedMetadataBlock) { 774 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 775 StartedMetadataBlock = true; 776 } 777 778 // Write name. 779 StringRef Str = NMD->getName(); 780 for (unsigned i = 0, e = Str.size(); i != e; ++i) 781 Record.push_back(Str[i]); 782 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 783 Record.clear(); 784 785 // Write named metadata operands. 786 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 787 Record.push_back(VE.getValueID(NMD->getOperand(i))); 788 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 789 Record.clear(); 790 } 791 792 if (StartedMetadataBlock) 793 Stream.ExitBlock(); 794 } 795 796 static void WriteFunctionLocalMetadata(const Function &F, 797 const ValueEnumerator &VE, 798 BitstreamWriter &Stream) { 799 bool StartedMetadataBlock = false; 800 SmallVector<uint64_t, 64> Record; 801 const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues(); 802 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 803 if (const MDNode *N = Vals[i]) 804 if (N->isFunctionLocal() && N->getFunction() == &F) { 805 if (!StartedMetadataBlock) { 806 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 807 StartedMetadataBlock = true; 808 } 809 WriteMDNode(N, VE, Stream, Record); 810 } 811 812 if (StartedMetadataBlock) 813 Stream.ExitBlock(); 814 } 815 816 static void WriteMetadataAttachment(const Function &F, 817 const ValueEnumerator &VE, 818 BitstreamWriter &Stream) { 819 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 820 821 SmallVector<uint64_t, 64> Record; 822 823 // Write metadata attachments 824 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 825 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 826 827 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 828 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 829 I != E; ++I) { 830 MDs.clear(); 831 I->getAllMetadataOtherThanDebugLoc(MDs); 832 833 // If no metadata, ignore instruction. 834 if (MDs.empty()) continue; 835 836 Record.push_back(VE.getInstructionID(I)); 837 838 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 839 Record.push_back(MDs[i].first); 840 Record.push_back(VE.getValueID(MDs[i].second)); 841 } 842 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 843 Record.clear(); 844 } 845 846 Stream.ExitBlock(); 847 } 848 849 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 850 SmallVector<uint64_t, 64> Record; 851 852 // Write metadata kinds 853 // METADATA_KIND - [n x [id, name]] 854 SmallVector<StringRef, 8> Names; 855 M->getMDKindNames(Names); 856 857 if (Names.empty()) return; 858 859 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 860 861 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 862 Record.push_back(MDKindID); 863 StringRef KName = Names[MDKindID]; 864 Record.append(KName.begin(), KName.end()); 865 866 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 867 Record.clear(); 868 } 869 870 Stream.ExitBlock(); 871 } 872 873 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 874 if ((int64_t)V >= 0) 875 Vals.push_back(V << 1); 876 else 877 Vals.push_back((-V << 1) | 1); 878 } 879 880 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 881 const ValueEnumerator &VE, 882 BitstreamWriter &Stream, bool isGlobal) { 883 if (FirstVal == LastVal) return; 884 885 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 886 887 unsigned AggregateAbbrev = 0; 888 unsigned String8Abbrev = 0; 889 unsigned CString7Abbrev = 0; 890 unsigned CString6Abbrev = 0; 891 // If this is a constant pool for the module, emit module-specific abbrevs. 892 if (isGlobal) { 893 // Abbrev for CST_CODE_AGGREGATE. 894 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 895 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 898 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 899 900 // Abbrev for CST_CODE_STRING. 901 Abbv = new BitCodeAbbrev(); 902 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 905 String8Abbrev = Stream.EmitAbbrev(Abbv); 906 // Abbrev for CST_CODE_CSTRING. 907 Abbv = new BitCodeAbbrev(); 908 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 911 CString7Abbrev = Stream.EmitAbbrev(Abbv); 912 // Abbrev for CST_CODE_CSTRING. 913 Abbv = new BitCodeAbbrev(); 914 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 917 CString6Abbrev = Stream.EmitAbbrev(Abbv); 918 } 919 920 SmallVector<uint64_t, 64> Record; 921 922 const ValueEnumerator::ValueList &Vals = VE.getValues(); 923 Type *LastTy = nullptr; 924 for (unsigned i = FirstVal; i != LastVal; ++i) { 925 const Value *V = Vals[i].first; 926 // If we need to switch types, do so now. 927 if (V->getType() != LastTy) { 928 LastTy = V->getType(); 929 Record.push_back(VE.getTypeID(LastTy)); 930 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 931 CONSTANTS_SETTYPE_ABBREV); 932 Record.clear(); 933 } 934 935 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 936 Record.push_back(unsigned(IA->hasSideEffects()) | 937 unsigned(IA->isAlignStack()) << 1 | 938 unsigned(IA->getDialect()&1) << 2); 939 940 // Add the asm string. 941 const std::string &AsmStr = IA->getAsmString(); 942 Record.push_back(AsmStr.size()); 943 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 944 Record.push_back(AsmStr[i]); 945 946 // Add the constraint string. 947 const std::string &ConstraintStr = IA->getConstraintString(); 948 Record.push_back(ConstraintStr.size()); 949 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 950 Record.push_back(ConstraintStr[i]); 951 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 952 Record.clear(); 953 continue; 954 } 955 const Constant *C = cast<Constant>(V); 956 unsigned Code = -1U; 957 unsigned AbbrevToUse = 0; 958 if (C->isNullValue()) { 959 Code = bitc::CST_CODE_NULL; 960 } else if (isa<UndefValue>(C)) { 961 Code = bitc::CST_CODE_UNDEF; 962 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 963 if (IV->getBitWidth() <= 64) { 964 uint64_t V = IV->getSExtValue(); 965 emitSignedInt64(Record, V); 966 Code = bitc::CST_CODE_INTEGER; 967 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 968 } else { // Wide integers, > 64 bits in size. 969 // We have an arbitrary precision integer value to write whose 970 // bit width is > 64. However, in canonical unsigned integer 971 // format it is likely that the high bits are going to be zero. 972 // So, we only write the number of active words. 973 unsigned NWords = IV->getValue().getActiveWords(); 974 const uint64_t *RawWords = IV->getValue().getRawData(); 975 for (unsigned i = 0; i != NWords; ++i) { 976 emitSignedInt64(Record, RawWords[i]); 977 } 978 Code = bitc::CST_CODE_WIDE_INTEGER; 979 } 980 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 981 Code = bitc::CST_CODE_FLOAT; 982 Type *Ty = CFP->getType(); 983 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 984 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 985 } else if (Ty->isX86_FP80Ty()) { 986 // api needed to prevent premature destruction 987 // bits are not in the same order as a normal i80 APInt, compensate. 988 APInt api = CFP->getValueAPF().bitcastToAPInt(); 989 const uint64_t *p = api.getRawData(); 990 Record.push_back((p[1] << 48) | (p[0] >> 16)); 991 Record.push_back(p[0] & 0xffffLL); 992 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 993 APInt api = CFP->getValueAPF().bitcastToAPInt(); 994 const uint64_t *p = api.getRawData(); 995 Record.push_back(p[0]); 996 Record.push_back(p[1]); 997 } else { 998 assert (0 && "Unknown FP type!"); 999 } 1000 } else if (isa<ConstantDataSequential>(C) && 1001 cast<ConstantDataSequential>(C)->isString()) { 1002 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1003 // Emit constant strings specially. 1004 unsigned NumElts = Str->getNumElements(); 1005 // If this is a null-terminated string, use the denser CSTRING encoding. 1006 if (Str->isCString()) { 1007 Code = bitc::CST_CODE_CSTRING; 1008 --NumElts; // Don't encode the null, which isn't allowed by char6. 1009 } else { 1010 Code = bitc::CST_CODE_STRING; 1011 AbbrevToUse = String8Abbrev; 1012 } 1013 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1014 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1015 for (unsigned i = 0; i != NumElts; ++i) { 1016 unsigned char V = Str->getElementAsInteger(i); 1017 Record.push_back(V); 1018 isCStr7 &= (V & 128) == 0; 1019 if (isCStrChar6) 1020 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1021 } 1022 1023 if (isCStrChar6) 1024 AbbrevToUse = CString6Abbrev; 1025 else if (isCStr7) 1026 AbbrevToUse = CString7Abbrev; 1027 } else if (const ConstantDataSequential *CDS = 1028 dyn_cast<ConstantDataSequential>(C)) { 1029 Code = bitc::CST_CODE_DATA; 1030 Type *EltTy = CDS->getType()->getElementType(); 1031 if (isa<IntegerType>(EltTy)) { 1032 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1033 Record.push_back(CDS->getElementAsInteger(i)); 1034 } else if (EltTy->isFloatTy()) { 1035 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1036 union { float F; uint32_t I; }; 1037 F = CDS->getElementAsFloat(i); 1038 Record.push_back(I); 1039 } 1040 } else { 1041 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1042 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1043 union { double F; uint64_t I; }; 1044 F = CDS->getElementAsDouble(i); 1045 Record.push_back(I); 1046 } 1047 } 1048 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1049 isa<ConstantVector>(C)) { 1050 Code = bitc::CST_CODE_AGGREGATE; 1051 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1052 Record.push_back(VE.getValueID(C->getOperand(i))); 1053 AbbrevToUse = AggregateAbbrev; 1054 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1055 switch (CE->getOpcode()) { 1056 default: 1057 if (Instruction::isCast(CE->getOpcode())) { 1058 Code = bitc::CST_CODE_CE_CAST; 1059 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1060 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1061 Record.push_back(VE.getValueID(C->getOperand(0))); 1062 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1063 } else { 1064 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1065 Code = bitc::CST_CODE_CE_BINOP; 1066 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1067 Record.push_back(VE.getValueID(C->getOperand(0))); 1068 Record.push_back(VE.getValueID(C->getOperand(1))); 1069 uint64_t Flags = GetOptimizationFlags(CE); 1070 if (Flags != 0) 1071 Record.push_back(Flags); 1072 } 1073 break; 1074 case Instruction::GetElementPtr: 1075 Code = bitc::CST_CODE_CE_GEP; 1076 if (cast<GEPOperator>(C)->isInBounds()) 1077 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1078 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1079 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1080 Record.push_back(VE.getValueID(C->getOperand(i))); 1081 } 1082 break; 1083 case Instruction::Select: 1084 Code = bitc::CST_CODE_CE_SELECT; 1085 Record.push_back(VE.getValueID(C->getOperand(0))); 1086 Record.push_back(VE.getValueID(C->getOperand(1))); 1087 Record.push_back(VE.getValueID(C->getOperand(2))); 1088 break; 1089 case Instruction::ExtractElement: 1090 Code = bitc::CST_CODE_CE_EXTRACTELT; 1091 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1092 Record.push_back(VE.getValueID(C->getOperand(0))); 1093 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1094 Record.push_back(VE.getValueID(C->getOperand(1))); 1095 break; 1096 case Instruction::InsertElement: 1097 Code = bitc::CST_CODE_CE_INSERTELT; 1098 Record.push_back(VE.getValueID(C->getOperand(0))); 1099 Record.push_back(VE.getValueID(C->getOperand(1))); 1100 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1101 Record.push_back(VE.getValueID(C->getOperand(2))); 1102 break; 1103 case Instruction::ShuffleVector: 1104 // If the return type and argument types are the same, this is a 1105 // standard shufflevector instruction. If the types are different, 1106 // then the shuffle is widening or truncating the input vectors, and 1107 // the argument type must also be encoded. 1108 if (C->getType() == C->getOperand(0)->getType()) { 1109 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1110 } else { 1111 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1112 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1113 } 1114 Record.push_back(VE.getValueID(C->getOperand(0))); 1115 Record.push_back(VE.getValueID(C->getOperand(1))); 1116 Record.push_back(VE.getValueID(C->getOperand(2))); 1117 break; 1118 case Instruction::ICmp: 1119 case Instruction::FCmp: 1120 Code = bitc::CST_CODE_CE_CMP; 1121 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1122 Record.push_back(VE.getValueID(C->getOperand(0))); 1123 Record.push_back(VE.getValueID(C->getOperand(1))); 1124 Record.push_back(CE->getPredicate()); 1125 break; 1126 } 1127 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1128 Code = bitc::CST_CODE_BLOCKADDRESS; 1129 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1130 Record.push_back(VE.getValueID(BA->getFunction())); 1131 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1132 } else { 1133 #ifndef NDEBUG 1134 C->dump(); 1135 #endif 1136 llvm_unreachable("Unknown constant!"); 1137 } 1138 Stream.EmitRecord(Code, Record, AbbrevToUse); 1139 Record.clear(); 1140 } 1141 1142 Stream.ExitBlock(); 1143 } 1144 1145 static void WriteModuleConstants(const ValueEnumerator &VE, 1146 BitstreamWriter &Stream) { 1147 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1148 1149 // Find the first constant to emit, which is the first non-globalvalue value. 1150 // We know globalvalues have been emitted by WriteModuleInfo. 1151 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1152 if (!isa<GlobalValue>(Vals[i].first)) { 1153 WriteConstants(i, Vals.size(), VE, Stream, true); 1154 return; 1155 } 1156 } 1157 } 1158 1159 /// PushValueAndType - The file has to encode both the value and type id for 1160 /// many values, because we need to know what type to create for forward 1161 /// references. However, most operands are not forward references, so this type 1162 /// field is not needed. 1163 /// 1164 /// This function adds V's value ID to Vals. If the value ID is higher than the 1165 /// instruction ID, then it is a forward reference, and it also includes the 1166 /// type ID. The value ID that is written is encoded relative to the InstID. 1167 static bool PushValueAndType(const Value *V, unsigned InstID, 1168 SmallVectorImpl<unsigned> &Vals, 1169 ValueEnumerator &VE) { 1170 unsigned ValID = VE.getValueID(V); 1171 // Make encoding relative to the InstID. 1172 Vals.push_back(InstID - ValID); 1173 if (ValID >= InstID) { 1174 Vals.push_back(VE.getTypeID(V->getType())); 1175 return true; 1176 } 1177 return false; 1178 } 1179 1180 /// pushValue - Like PushValueAndType, but where the type of the value is 1181 /// omitted (perhaps it was already encoded in an earlier operand). 1182 static void pushValue(const Value *V, unsigned InstID, 1183 SmallVectorImpl<unsigned> &Vals, 1184 ValueEnumerator &VE) { 1185 unsigned ValID = VE.getValueID(V); 1186 Vals.push_back(InstID - ValID); 1187 } 1188 1189 static void pushValueSigned(const Value *V, unsigned InstID, 1190 SmallVectorImpl<uint64_t> &Vals, 1191 ValueEnumerator &VE) { 1192 unsigned ValID = VE.getValueID(V); 1193 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1194 emitSignedInt64(Vals, diff); 1195 } 1196 1197 /// WriteInstruction - Emit an instruction to the specified stream. 1198 static void WriteInstruction(const Instruction &I, unsigned InstID, 1199 ValueEnumerator &VE, BitstreamWriter &Stream, 1200 SmallVectorImpl<unsigned> &Vals) { 1201 unsigned Code = 0; 1202 unsigned AbbrevToUse = 0; 1203 VE.setInstructionID(&I); 1204 switch (I.getOpcode()) { 1205 default: 1206 if (Instruction::isCast(I.getOpcode())) { 1207 Code = bitc::FUNC_CODE_INST_CAST; 1208 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1209 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1210 Vals.push_back(VE.getTypeID(I.getType())); 1211 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1212 } else { 1213 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1214 Code = bitc::FUNC_CODE_INST_BINOP; 1215 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1216 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1217 pushValue(I.getOperand(1), InstID, Vals, VE); 1218 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1219 uint64_t Flags = GetOptimizationFlags(&I); 1220 if (Flags != 0) { 1221 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1222 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1223 Vals.push_back(Flags); 1224 } 1225 } 1226 break; 1227 1228 case Instruction::GetElementPtr: 1229 Code = bitc::FUNC_CODE_INST_GEP; 1230 if (cast<GEPOperator>(&I)->isInBounds()) 1231 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1232 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1233 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1234 break; 1235 case Instruction::ExtractValue: { 1236 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1237 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1238 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1239 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1240 Vals.push_back(*i); 1241 break; 1242 } 1243 case Instruction::InsertValue: { 1244 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1245 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1246 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1247 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1248 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1249 Vals.push_back(*i); 1250 break; 1251 } 1252 case Instruction::Select: 1253 Code = bitc::FUNC_CODE_INST_VSELECT; 1254 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1255 pushValue(I.getOperand(2), InstID, Vals, VE); 1256 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1257 break; 1258 case Instruction::ExtractElement: 1259 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1260 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1261 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1262 break; 1263 case Instruction::InsertElement: 1264 Code = bitc::FUNC_CODE_INST_INSERTELT; 1265 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1266 pushValue(I.getOperand(1), InstID, Vals, VE); 1267 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1268 break; 1269 case Instruction::ShuffleVector: 1270 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1271 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1272 pushValue(I.getOperand(1), InstID, Vals, VE); 1273 pushValue(I.getOperand(2), InstID, Vals, VE); 1274 break; 1275 case Instruction::ICmp: 1276 case Instruction::FCmp: 1277 // compare returning Int1Ty or vector of Int1Ty 1278 Code = bitc::FUNC_CODE_INST_CMP2; 1279 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1280 pushValue(I.getOperand(1), InstID, Vals, VE); 1281 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1282 break; 1283 1284 case Instruction::Ret: 1285 { 1286 Code = bitc::FUNC_CODE_INST_RET; 1287 unsigned NumOperands = I.getNumOperands(); 1288 if (NumOperands == 0) 1289 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1290 else if (NumOperands == 1) { 1291 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1292 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1293 } else { 1294 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1295 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1296 } 1297 } 1298 break; 1299 case Instruction::Br: 1300 { 1301 Code = bitc::FUNC_CODE_INST_BR; 1302 const BranchInst &II = cast<BranchInst>(I); 1303 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1304 if (II.isConditional()) { 1305 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1306 pushValue(II.getCondition(), InstID, Vals, VE); 1307 } 1308 } 1309 break; 1310 case Instruction::Switch: 1311 { 1312 Code = bitc::FUNC_CODE_INST_SWITCH; 1313 const SwitchInst &SI = cast<SwitchInst>(I); 1314 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1315 pushValue(SI.getCondition(), InstID, Vals, VE); 1316 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1317 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1318 i != e; ++i) { 1319 Vals.push_back(VE.getValueID(i.getCaseValue())); 1320 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1321 } 1322 } 1323 break; 1324 case Instruction::IndirectBr: 1325 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1326 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1327 // Encode the address operand as relative, but not the basic blocks. 1328 pushValue(I.getOperand(0), InstID, Vals, VE); 1329 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1330 Vals.push_back(VE.getValueID(I.getOperand(i))); 1331 break; 1332 1333 case Instruction::Invoke: { 1334 const InvokeInst *II = cast<InvokeInst>(&I); 1335 const Value *Callee(II->getCalledValue()); 1336 PointerType *PTy = cast<PointerType>(Callee->getType()); 1337 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1338 Code = bitc::FUNC_CODE_INST_INVOKE; 1339 1340 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1341 Vals.push_back(II->getCallingConv()); 1342 Vals.push_back(VE.getValueID(II->getNormalDest())); 1343 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1344 PushValueAndType(Callee, InstID, Vals, VE); 1345 1346 // Emit value #'s for the fixed parameters. 1347 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1348 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1349 1350 // Emit type/value pairs for varargs params. 1351 if (FTy->isVarArg()) { 1352 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1353 i != e; ++i) 1354 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1355 } 1356 break; 1357 } 1358 case Instruction::Resume: 1359 Code = bitc::FUNC_CODE_INST_RESUME; 1360 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1361 break; 1362 case Instruction::Unreachable: 1363 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1364 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1365 break; 1366 1367 case Instruction::PHI: { 1368 const PHINode &PN = cast<PHINode>(I); 1369 Code = bitc::FUNC_CODE_INST_PHI; 1370 // With the newer instruction encoding, forward references could give 1371 // negative valued IDs. This is most common for PHIs, so we use 1372 // signed VBRs. 1373 SmallVector<uint64_t, 128> Vals64; 1374 Vals64.push_back(VE.getTypeID(PN.getType())); 1375 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1376 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1377 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1378 } 1379 // Emit a Vals64 vector and exit. 1380 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1381 Vals64.clear(); 1382 return; 1383 } 1384 1385 case Instruction::LandingPad: { 1386 const LandingPadInst &LP = cast<LandingPadInst>(I); 1387 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1388 Vals.push_back(VE.getTypeID(LP.getType())); 1389 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1390 Vals.push_back(LP.isCleanup()); 1391 Vals.push_back(LP.getNumClauses()); 1392 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1393 if (LP.isCatch(I)) 1394 Vals.push_back(LandingPadInst::Catch); 1395 else 1396 Vals.push_back(LandingPadInst::Filter); 1397 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1398 } 1399 break; 1400 } 1401 1402 case Instruction::Alloca: 1403 Code = bitc::FUNC_CODE_INST_ALLOCA; 1404 Vals.push_back(VE.getTypeID(I.getType())); 1405 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1406 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1407 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1408 break; 1409 1410 case Instruction::Load: 1411 if (cast<LoadInst>(I).isAtomic()) { 1412 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1413 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1414 } else { 1415 Code = bitc::FUNC_CODE_INST_LOAD; 1416 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1417 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1418 } 1419 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1420 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1421 if (cast<LoadInst>(I).isAtomic()) { 1422 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1423 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1424 } 1425 break; 1426 case Instruction::Store: 1427 if (cast<StoreInst>(I).isAtomic()) 1428 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1429 else 1430 Code = bitc::FUNC_CODE_INST_STORE; 1431 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1432 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1433 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1434 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1435 if (cast<StoreInst>(I).isAtomic()) { 1436 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1437 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1438 } 1439 break; 1440 case Instruction::AtomicCmpXchg: 1441 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1442 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1443 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1444 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1445 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1446 Vals.push_back(GetEncodedOrdering( 1447 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1448 Vals.push_back(GetEncodedSynchScope( 1449 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1450 Vals.push_back(GetEncodedOrdering( 1451 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1452 break; 1453 case Instruction::AtomicRMW: 1454 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1455 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1456 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1457 Vals.push_back(GetEncodedRMWOperation( 1458 cast<AtomicRMWInst>(I).getOperation())); 1459 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1460 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1461 Vals.push_back(GetEncodedSynchScope( 1462 cast<AtomicRMWInst>(I).getSynchScope())); 1463 break; 1464 case Instruction::Fence: 1465 Code = bitc::FUNC_CODE_INST_FENCE; 1466 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1467 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1468 break; 1469 case Instruction::Call: { 1470 const CallInst &CI = cast<CallInst>(I); 1471 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1472 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1473 1474 Code = bitc::FUNC_CODE_INST_CALL; 1475 1476 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1477 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1478 unsigned(CI.isMustTailCall()) << 14); 1479 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1480 1481 // Emit value #'s for the fixed parameters. 1482 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1483 // Check for labels (can happen with asm labels). 1484 if (FTy->getParamType(i)->isLabelTy()) 1485 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1486 else 1487 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1488 } 1489 1490 // Emit type/value pairs for varargs params. 1491 if (FTy->isVarArg()) { 1492 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1493 i != e; ++i) 1494 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1495 } 1496 break; 1497 } 1498 case Instruction::VAArg: 1499 Code = bitc::FUNC_CODE_INST_VAARG; 1500 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1501 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1502 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1503 break; 1504 } 1505 1506 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1507 Vals.clear(); 1508 } 1509 1510 // Emit names for globals/functions etc. 1511 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1512 const ValueEnumerator &VE, 1513 BitstreamWriter &Stream) { 1514 if (VST.empty()) return; 1515 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1516 1517 // FIXME: Set up the abbrev, we know how many values there are! 1518 // FIXME: We know if the type names can use 7-bit ascii. 1519 SmallVector<unsigned, 64> NameVals; 1520 1521 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1522 SI != SE; ++SI) { 1523 1524 const ValueName &Name = *SI; 1525 1526 // Figure out the encoding to use for the name. 1527 bool is7Bit = true; 1528 bool isChar6 = true; 1529 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1530 C != E; ++C) { 1531 if (isChar6) 1532 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1533 if ((unsigned char)*C & 128) { 1534 is7Bit = false; 1535 break; // don't bother scanning the rest. 1536 } 1537 } 1538 1539 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1540 1541 // VST_ENTRY: [valueid, namechar x N] 1542 // VST_BBENTRY: [bbid, namechar x N] 1543 unsigned Code; 1544 if (isa<BasicBlock>(SI->getValue())) { 1545 Code = bitc::VST_CODE_BBENTRY; 1546 if (isChar6) 1547 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1548 } else { 1549 Code = bitc::VST_CODE_ENTRY; 1550 if (isChar6) 1551 AbbrevToUse = VST_ENTRY_6_ABBREV; 1552 else if (is7Bit) 1553 AbbrevToUse = VST_ENTRY_7_ABBREV; 1554 } 1555 1556 NameVals.push_back(VE.getValueID(SI->getValue())); 1557 for (const char *P = Name.getKeyData(), 1558 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1559 NameVals.push_back((unsigned char)*P); 1560 1561 // Emit the finished record. 1562 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1563 NameVals.clear(); 1564 } 1565 Stream.ExitBlock(); 1566 } 1567 1568 /// WriteFunction - Emit a function body to the module stream. 1569 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1570 BitstreamWriter &Stream) { 1571 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1572 VE.incorporateFunction(F); 1573 1574 SmallVector<unsigned, 64> Vals; 1575 1576 // Emit the number of basic blocks, so the reader can create them ahead of 1577 // time. 1578 Vals.push_back(VE.getBasicBlocks().size()); 1579 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1580 Vals.clear(); 1581 1582 // If there are function-local constants, emit them now. 1583 unsigned CstStart, CstEnd; 1584 VE.getFunctionConstantRange(CstStart, CstEnd); 1585 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1586 1587 // If there is function-local metadata, emit it now. 1588 WriteFunctionLocalMetadata(F, VE, Stream); 1589 1590 // Keep a running idea of what the instruction ID is. 1591 unsigned InstID = CstEnd; 1592 1593 bool NeedsMetadataAttachment = false; 1594 1595 DebugLoc LastDL; 1596 1597 // Finally, emit all the instructions, in order. 1598 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1599 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1600 I != E; ++I) { 1601 WriteInstruction(*I, InstID, VE, Stream, Vals); 1602 1603 if (!I->getType()->isVoidTy()) 1604 ++InstID; 1605 1606 // If the instruction has metadata, write a metadata attachment later. 1607 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1608 1609 // If the instruction has a debug location, emit it. 1610 DebugLoc DL = I->getDebugLoc(); 1611 if (DL.isUnknown()) { 1612 // nothing todo. 1613 } else if (DL == LastDL) { 1614 // Just repeat the same debug loc as last time. 1615 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1616 } else { 1617 MDNode *Scope, *IA; 1618 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1619 1620 Vals.push_back(DL.getLine()); 1621 Vals.push_back(DL.getCol()); 1622 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1623 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1624 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1625 Vals.clear(); 1626 1627 LastDL = DL; 1628 } 1629 } 1630 1631 // Emit names for all the instructions etc. 1632 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1633 1634 if (NeedsMetadataAttachment) 1635 WriteMetadataAttachment(F, VE, Stream); 1636 VE.purgeFunction(); 1637 Stream.ExitBlock(); 1638 } 1639 1640 // Emit blockinfo, which defines the standard abbreviations etc. 1641 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1642 // We only want to emit block info records for blocks that have multiple 1643 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1644 // Other blocks can define their abbrevs inline. 1645 Stream.EnterBlockInfoBlock(2); 1646 1647 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1648 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1653 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1654 Abbv) != VST_ENTRY_8_ABBREV) 1655 llvm_unreachable("Unexpected abbrev ordering!"); 1656 } 1657 1658 { // 7-bit fixed width VST_ENTRY strings. 1659 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1660 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1661 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1664 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1665 Abbv) != VST_ENTRY_7_ABBREV) 1666 llvm_unreachable("Unexpected abbrev ordering!"); 1667 } 1668 { // 6-bit char6 VST_ENTRY strings. 1669 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1670 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1674 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1675 Abbv) != VST_ENTRY_6_ABBREV) 1676 llvm_unreachable("Unexpected abbrev ordering!"); 1677 } 1678 { // 6-bit char6 VST_BBENTRY strings. 1679 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1680 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1684 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1685 Abbv) != VST_BBENTRY_6_ABBREV) 1686 llvm_unreachable("Unexpected abbrev ordering!"); 1687 } 1688 1689 1690 1691 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1692 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1693 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1695 Log2_32_Ceil(VE.getTypes().size()+1))); 1696 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1697 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1698 llvm_unreachable("Unexpected abbrev ordering!"); 1699 } 1700 1701 { // INTEGER abbrev for CONSTANTS_BLOCK. 1702 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1703 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1705 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1706 Abbv) != CONSTANTS_INTEGER_ABBREV) 1707 llvm_unreachable("Unexpected abbrev ordering!"); 1708 } 1709 1710 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1711 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1712 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1715 Log2_32_Ceil(VE.getTypes().size()+1))); 1716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1717 1718 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1719 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1720 llvm_unreachable("Unexpected abbrev ordering!"); 1721 } 1722 { // NULL abbrev for CONSTANTS_BLOCK. 1723 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1724 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1725 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1726 Abbv) != CONSTANTS_NULL_Abbrev) 1727 llvm_unreachable("Unexpected abbrev ordering!"); 1728 } 1729 1730 // FIXME: This should only use space for first class types! 1731 1732 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1733 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1734 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1738 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1739 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1740 llvm_unreachable("Unexpected abbrev ordering!"); 1741 } 1742 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1743 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1744 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1748 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1749 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1750 llvm_unreachable("Unexpected abbrev ordering!"); 1751 } 1752 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1753 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1754 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1759 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1760 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1761 llvm_unreachable("Unexpected abbrev ordering!"); 1762 } 1763 { // INST_CAST abbrev for FUNCTION_BLOCK. 1764 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1765 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1768 Log2_32_Ceil(VE.getTypes().size()+1))); 1769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1770 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1771 Abbv) != FUNCTION_INST_CAST_ABBREV) 1772 llvm_unreachable("Unexpected abbrev ordering!"); 1773 } 1774 1775 { // INST_RET abbrev for FUNCTION_BLOCK. 1776 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1777 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1778 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1779 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1780 llvm_unreachable("Unexpected abbrev ordering!"); 1781 } 1782 { // INST_RET abbrev for FUNCTION_BLOCK. 1783 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1784 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1786 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1787 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1788 llvm_unreachable("Unexpected abbrev ordering!"); 1789 } 1790 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1791 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1792 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1793 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1794 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1795 llvm_unreachable("Unexpected abbrev ordering!"); 1796 } 1797 1798 Stream.ExitBlock(); 1799 } 1800 1801 // Sort the Users based on the order in which the reader parses the bitcode 1802 // file. 1803 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1804 // TODO: Implement. 1805 return true; 1806 } 1807 1808 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1809 BitstreamWriter &Stream) { 1810 1811 // One or zero uses can't get out of order. 1812 if (V->use_empty() || V->hasNUses(1)) 1813 return; 1814 1815 // Make a copy of the in-memory use-list for sorting. 1816 SmallVector<const User*, 8> UserList(V->user_begin(), V->user_end()); 1817 1818 // Sort the copy based on the order read by the BitcodeReader. 1819 std::sort(UserList.begin(), UserList.end(), bitcodereader_order); 1820 1821 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1822 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1823 1824 // TODO: Emit the USELIST_CODE_ENTRYs. 1825 } 1826 1827 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1828 BitstreamWriter &Stream) { 1829 VE.incorporateFunction(*F); 1830 1831 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1832 AI != AE; ++AI) 1833 WriteUseList(AI, VE, Stream); 1834 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1835 ++BB) { 1836 WriteUseList(BB, VE, Stream); 1837 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1838 ++II) { 1839 WriteUseList(II, VE, Stream); 1840 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1841 OI != E; ++OI) { 1842 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1843 isa<InlineAsm>(*OI)) 1844 WriteUseList(*OI, VE, Stream); 1845 } 1846 } 1847 } 1848 VE.purgeFunction(); 1849 } 1850 1851 // Emit use-lists. 1852 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1853 BitstreamWriter &Stream) { 1854 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1855 1856 // XXX: this modifies the module, but in a way that should never change the 1857 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1858 // contain entries in the use_list that do not exist in the Module and are 1859 // not stored in the .bc file. 1860 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1861 I != E; ++I) 1862 I->removeDeadConstantUsers(); 1863 1864 // Write the global variables. 1865 for (Module::const_global_iterator GI = M->global_begin(), 1866 GE = M->global_end(); GI != GE; ++GI) { 1867 WriteUseList(GI, VE, Stream); 1868 1869 // Write the global variable initializers. 1870 if (GI->hasInitializer()) 1871 WriteUseList(GI->getInitializer(), VE, Stream); 1872 } 1873 1874 // Write the functions. 1875 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1876 WriteUseList(FI, VE, Stream); 1877 if (!FI->isDeclaration()) 1878 WriteFunctionUseList(FI, VE, Stream); 1879 if (FI->hasPrefixData()) 1880 WriteUseList(FI->getPrefixData(), VE, Stream); 1881 } 1882 1883 // Write the aliases. 1884 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1885 AI != AE; ++AI) { 1886 WriteUseList(AI, VE, Stream); 1887 WriteUseList(AI->getAliasee(), VE, Stream); 1888 } 1889 1890 Stream.ExitBlock(); 1891 } 1892 1893 /// WriteModule - Emit the specified module to the bitstream. 1894 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1895 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1896 1897 SmallVector<unsigned, 1> Vals; 1898 unsigned CurVersion = 1; 1899 Vals.push_back(CurVersion); 1900 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1901 1902 // Analyze the module, enumerating globals, functions, etc. 1903 ValueEnumerator VE(M); 1904 1905 // Emit blockinfo, which defines the standard abbreviations etc. 1906 WriteBlockInfo(VE, Stream); 1907 1908 // Emit information about attribute groups. 1909 WriteAttributeGroupTable(VE, Stream); 1910 1911 // Emit information about parameter attributes. 1912 WriteAttributeTable(VE, Stream); 1913 1914 // Emit information describing all of the types in the module. 1915 WriteTypeTable(VE, Stream); 1916 1917 // Emit top-level description of module, including target triple, inline asm, 1918 // descriptors for global variables, and function prototype info. 1919 WriteModuleInfo(M, VE, Stream); 1920 1921 // Emit constants. 1922 WriteModuleConstants(VE, Stream); 1923 1924 // Emit metadata. 1925 WriteModuleMetadata(M, VE, Stream); 1926 1927 // Emit metadata. 1928 WriteModuleMetadataStore(M, Stream); 1929 1930 // Emit names for globals/functions etc. 1931 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1932 1933 // Emit use-lists. 1934 if (EnablePreserveUseListOrdering) 1935 WriteModuleUseLists(M, VE, Stream); 1936 1937 // Emit function bodies. 1938 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1939 if (!F->isDeclaration()) 1940 WriteFunction(*F, VE, Stream); 1941 1942 Stream.ExitBlock(); 1943 } 1944 1945 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1946 /// header and trailer to make it compatible with the system archiver. To do 1947 /// this we emit the following header, and then emit a trailer that pads the 1948 /// file out to be a multiple of 16 bytes. 1949 /// 1950 /// struct bc_header { 1951 /// uint32_t Magic; // 0x0B17C0DE 1952 /// uint32_t Version; // Version, currently always 0. 1953 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1954 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1955 /// uint32_t CPUType; // CPU specifier. 1956 /// ... potentially more later ... 1957 /// }; 1958 enum { 1959 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1960 DarwinBCHeaderSize = 5*4 1961 }; 1962 1963 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1964 uint32_t &Position) { 1965 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1966 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1967 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1968 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1969 Position += 4; 1970 } 1971 1972 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1973 const Triple &TT) { 1974 unsigned CPUType = ~0U; 1975 1976 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1977 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1978 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1979 // specific constants here because they are implicitly part of the Darwin ABI. 1980 enum { 1981 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1982 DARWIN_CPU_TYPE_X86 = 7, 1983 DARWIN_CPU_TYPE_ARM = 12, 1984 DARWIN_CPU_TYPE_POWERPC = 18 1985 }; 1986 1987 Triple::ArchType Arch = TT.getArch(); 1988 if (Arch == Triple::x86_64) 1989 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1990 else if (Arch == Triple::x86) 1991 CPUType = DARWIN_CPU_TYPE_X86; 1992 else if (Arch == Triple::ppc) 1993 CPUType = DARWIN_CPU_TYPE_POWERPC; 1994 else if (Arch == Triple::ppc64) 1995 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1996 else if (Arch == Triple::arm || Arch == Triple::thumb) 1997 CPUType = DARWIN_CPU_TYPE_ARM; 1998 1999 // Traditional Bitcode starts after header. 2000 assert(Buffer.size() >= DarwinBCHeaderSize && 2001 "Expected header size to be reserved"); 2002 unsigned BCOffset = DarwinBCHeaderSize; 2003 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2004 2005 // Write the magic and version. 2006 unsigned Position = 0; 2007 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2008 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2009 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2010 WriteInt32ToBuffer(BCSize , Buffer, Position); 2011 WriteInt32ToBuffer(CPUType , Buffer, Position); 2012 2013 // If the file is not a multiple of 16 bytes, insert dummy padding. 2014 while (Buffer.size() & 15) 2015 Buffer.push_back(0); 2016 } 2017 2018 /// WriteBitcodeToFile - Write the specified module to the specified output 2019 /// stream. 2020 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2021 SmallVector<char, 0> Buffer; 2022 Buffer.reserve(256*1024); 2023 2024 // If this is darwin or another generic macho target, reserve space for the 2025 // header. 2026 Triple TT(M->getTargetTriple()); 2027 if (TT.isOSDarwin()) 2028 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2029 2030 // Emit the module into the buffer. 2031 { 2032 BitstreamWriter Stream(Buffer); 2033 2034 // Emit the file header. 2035 Stream.Emit((unsigned)'B', 8); 2036 Stream.Emit((unsigned)'C', 8); 2037 Stream.Emit(0x0, 4); 2038 Stream.Emit(0xC, 4); 2039 Stream.Emit(0xE, 4); 2040 Stream.Emit(0xD, 4); 2041 2042 // Emit the module. 2043 WriteModule(M, Stream); 2044 } 2045 2046 if (TT.isOSDarwin()) 2047 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2048 2049 // Write the generated bitstream to "Out". 2050 Out.write((char*)&Buffer.front(), Buffer.size()); 2051 } 2052